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S.1. INTRODUCTION

THIS SUPPLEMENT CONTAINS DETAILED DERIVATIONS and supplementary ma-
terial for the paper. A separate Technical Data Appendix, located together
with the replication data and code, collects together additional empirical re-
sults and robustness tests.

Section S.2 of this supplement presents a more detailed analysis of the theo-
retical model. We report the technical derivations of the expressions reported
in the paper. We also establish a number of results about the properties of the
general equilibrium with exogenous location characteristics and endogenous
agglomeration forces.

Section S.3 calibrates the model for known parameter values and shows that
there is a one-to-one mapping from these known parameters and the observed
data to unobserved location characteristics. Therefore, these unobserved loca-
tion characteristics correspond to structural residuals that are functions of the
parameters and the observed data.

Section S.4 turns to the structural estimation of the model, where both the
parameters and unobserved location characteristics are unknown and to be es-
timated. We derive the moment conditions used in the estimation and review
the Generalized Method of Moments (GMM) estimator as applied to our set-
ting. We discuss the computational algorithms used to estimate the model and
report the results of a grid search over the parameter space that we use to
characterize the properties of the GMM objective function.

Section S.5 uses the model to undertake counterfactuals for the effects of
division and reunification. Section S.6 contains further information about the
data sources and definitions.

S.2. THEORETICAL MODEL

In this section, we develop in further detail the theoretical model outlined in
the paper. We present the complete technical derivations for all the expressions
and results reported in the paper. In the interests of clarity and to ensure that
this section of the supplement is self-contained, we reproduce some material
from the paper, but also include the intermediate steps for the derivation of
expressions.

We consider a city embedded within a wider economy. The city consists of a
set of discrete locations or blocks, which are indexed by i= 1� � � � � S. The city is
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populated by an endogenous measure of H workers, who are perfectly mobile
within the city and the larger economy. Each block has an effective supply of
floor space Li. Floor space can be used commercially or residentially, and we
denote the endogenous fractions of floor space allocated to commercial and
residential use by θi and (1 − θi), respectively.

Workers decide whether or not to move to the city before observing idiosyn-
cratic utility shocks for each possible pair of residence and employment loca-
tions within the city. If a worker decides to move to the city, she observes these
realizations for idiosyncratic utility, and picks the pair of residence and em-
ployment locations within the city that maximizes her utility. Population mo-
bility between the city and the wider economy implies that the expected utility
from moving to the city equals the reservation level of utility in the wider econ-
omy Ū . Firms produce a single final good, which is costlessly traded within the
city and larger economy, and is chosen as the numeraire (p= 1).1

Locations differ in terms of their final goods productivity (Ai), residential
amenities (Bi), supply of floor space (Li), and access to the transport net-
work (τij). We first develop the model with exogenous values of these location
characteristics, before endogenizing them below.

S.2.1. Preferences

Workers are risk neutral such that the utility of worker o residing in block i
and working in block j is linear in an aggregate consumption index (Cijo):2

Uijo = Cijo�

This aggregate consumption index depends on consumption of the single final
good (cijo), consumption of residential floor space (�ijo), and three other com-
ponents: first, residential amenities (Bi) that capture common characteristics
that make a block a more or less attractive place to live (e.g., leafy streets and
scenic views); second, the disutility from commuting from residence block i to
workplace block j (dij ≥ 1); third, there is an idiosyncratic shock that is spe-
cific to individual workers and varies with the worker’s blocks of employment
and residence (zijo). This idiosyncratic shock captures the idea that individual
workers can have idiosyncratic reasons for living and working in different parts

1We follow the canonical urban model in assuming a single tradable final good and examine
the ability of this canonical model to account quantitatively for the observed impact of division
and reunification, though the model can be extended to allow for the consumption of nontraded
goods at both workplace and residence.

2To simplify the exposition, throughout this supplement, we index a worker’s block of residence
by i or r and her block of employment by j or s unless otherwise indicated.
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of the city. In particular, the aggregate consumption index is assumed to take
the Cobb–Douglas form3

Cijo = Bizijo
dij

(
cijo

β

)β(
�ijo

1 −β
)1−β

� 0<β< 1�(S.1)

where the iceberg commuting cost dij = eκτij ∈ [1�∞) increases with the travel
time between blocks i and j (τij). Travel time is measured in minutes and is
computed based on the transport network, as discussed further in the data
section of this supplement (Section S.6). The parameter κ controls the size of
commuting costs.

Although we model commuting costs in terms of utility, there is an isomor-
phic formulation in terms of a reduction in effective units of labor, because
the iceberg commuting cost dij = eκτij enters the indirect utility function (S.5)
below multiplicatively. As a result, commuting costs are proportional to wages,
and this specification captures changes over time in the opportunity cost of
travel time. Similarly, although we model the heterogeneity in commuting de-
cisions in terms of an idiosyncratic shock to preferences, there is an isomorphic
interpretation in terms of a shock to effective units of labor, because this shock
zijo enters indirect utility (S.5) multiplicatively with the wage.

We model the heterogeneity in the utility that workers derive from living and
working in different parts of the city following McFadden (1974) and Eaton
and Kortum (2002). For each worker o living in block i and commuting to
block j, the idiosyncratic component of utility (zijo) is drawn from an indepen-
dent Fréchet distribution:

F(zijo)= e−TiEjz−εijo � Ti�Ej > 0� ε > 1�(S.2)

where the scale parameter Ti > 0 determines the average utility derived from
living in block i, the scale parameter Ej > 0 determines the average utility de-
rived from working in block j, and the shape parameter ε > 1 controls the
dispersion of idiosyncratic utility.

After observing her realizations for idiosyncratic utility for each pair of resi-
dence and employment locations, each worker chooses her blocks of residence
and employment to maximize her utility, taking as given residential amenities,
goods prices, factor prices, and the location decisions of other workers and
firms. Each worker is endowed with one unit of labor that is supplied inelasti-
cally with zero disutility. Combining our choice of the final good as numeraire
(pi = p= 1 for all i) with the first-order conditions for consumer equilibrium,

3For empirical evidence using U.S. data in support of the constant housing expenditure share
implied by the Cobb–Douglas functional form, see Davis and Ortalo-Magné (2011). The role
played by residential amenities in influencing utility is emphasized in the literature following
Roback (1982). See Albouy (2008) for a recent prominent contribution.
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we obtain the following demands for the final good and residential land for
worker o residing in block i and working in block j:

cijo = βwj�(S.3)

�ijo = (1 −β)wj
Qi
�(S.4)

where wj is the wage received by the worker at her block of employment j
(recall that commuting costs are incurred in terms of utility); Qi is the price of
residential land at her block of residence i. We make the standard assumption
that income from land is accrued by absentee landlords and not spent within
the city, although it is also possible to consider the case where it is redistributed
lump sum to workers. Substituting equilibrium consumption of the final good
(S.3) and residential land use (S.4) into utility (S.1), we obtain the following
expression for the indirect utility function:

U = BizijowjQ
β−1
i

dij
�(S.5)

from which the isomorphic formulation of commuting costs in terms of a re-
duction in effective units of labor is apparent.

S.2.2. Distribution of Utility

Using the monotonic relationship between the aggregate consumption index
(S.1) and the idiosyncratic component of utility, the distribution of utility for a
worker living in block i and working in block j is also Fréchet distributed:

Gij(u)= Pr[U ≤ u] = F
(
udijQ

1−β
i

Biwj

)
�(S.6)

Gij(u)= e−Φiju−ε
� Φij = TiEj

(
dijQ

1−β
i

)−ε
(Biwj)

ε�

From all possible pairs of blocks of residence and employment, each worker
chooses the bilateral commute that offers the maximum utility. Since the max-
imum of a sequence of Fréchet distributed random variables is itself Fréchet
distributed, the distribution of utility across all possible pairs of blocks of resi-
dence and employment is

1 −G(u)= 1 −
S∏
r=1

S∏
s=1

e−Φrsu−ε
�

where the left-hand side is the probability that a worker has a utility greater
than u, and the right-hand side is one minus the probability that the worker has
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a utility less than u for all possible pairs of blocks of residence and employment.
Therefore, we have

G(u)= e−Φu−ε
� Φ=

S∑
r=1

S∑
s=1

Φrs�(S.7)

Given this Fréchet distribution for utility, the expected utility from moving to
the city is

E[u] =
∫ ∞

0
εΦu−εe−Φu−ε

du�(S.8)

Now define the following change of variables:

y =Φu−ε� dy = −εΦu−(ε+1) du�(S.9)

Using this change of variables, the expected utility from moving to the city can
be written as

E[u] =
∫ ∞

0
Φ1/εy−1/εe−y dy�(S.10)

which can be in turn written as

E[u] = γΦ1/ε� γ = �
(
ε− 1
ε

)
�(S.11)

where �(·) is the Gamma function; E is the expectations operator and the ex-
pectation is taken over the distribution for idiosyncratic utility. Population mo-
bility implies that this expected utility must equal the reservation level of utility
in the wider economy:

E[u] = γΦ1/ε = γ
[

S∑
r=1

S∑
s=1

TrEs
(
drsQ

1−β
r

)−ε
(Brws)

ε

]1/ε

= Ū�(S.12)

S.2.3. Residence and Workplace Choices

Using the distribution of utility for pairs of blocks of residence and employ-
ment (S.6), the probability that a worker chooses the bilateral commute from
i to j out of all possible bilateral commutes within the city is

πij = Pr
[
uij ≥ max{urs}; ∀r� s

]
=

∫ ∞

0

∏
s �=j
Gis(u)

[∏
r �=i

∏
s

Grs(u)

]
gij(u)du
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=
∫ ∞

0

S∏
r=1

S∏
s=1

εΦiju
−(ε+1)e−Φrsu−ε

du

=
∫ ∞

0
εΦiju

−(ε+1)e−Φu−ε
du�

Note that

d

du

[
− 1
Φ
e−Φu−ε

]
= εu−(ε+1)e−Φu−ε

�(S.13)

Using this result to evaluate the integral above, the probability that the worker
chooses to live in block i and commute to work in block j is

πij = TiEj
(
dijQ

1−β
i

)−ε
(Biwj)

ε

S∑
r=1

S∑
s=1

TrEs
(
drsQ

1−β
r

)−ε
(Brws)

ε

≡ Φij
Φ
�(S.14)

Therefore, workers sort across residence and employment locations depending
on their idiosyncratic preferences and the characteristics of these locations.
As discussed above, although we interpret the idiosyncratic shock as affect-
ing utility, there is an isomorphic interpretation of the model in which the id-
iosyncratic shock applies to effective units of labor. Therefore, the endogenous
sorting of workers across locations implies that both residence and employ-
ment locations differ in the composition of workers in terms of idiosyncratic
draws for utility or effective units of labor. Residential locations with higher
values of Ti have higher average draws of utility (or effective units of labor).
Similarly, employment locations with higher values of Ej have higher average
draws of utility (or effective units of labor). To ensure that the general equilib-
rium of the model remains tractable, and because we do not observe worker
characteristics in our data, we abstract from other dimensions of worker het-
erogeneity besides the idiosyncratic shock to preferences or effective units of
labor.

Summing across all possible employment locations s, we obtain the proba-
bility that a worker chooses to live in block i out of all possible locations within
the city:

πRi =

S∑
s=1

TiEs
(
disQ

1−β
i

)−ε
(Biws)

ε

S∑
r=1

S∑
s=1

TrEs
(
drsQ

1−β
r

)−ε
(Brws)

ε

≡ Φi
Φ
�(S.15)
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Similarly, summing across all possible residence locations r, we obtain the
probability that a worker chooses to work in block j out of all possible loca-
tions within the city:

πMj =

S∑
r=1

TrEj
(
drjQ

1−β
r

)−ε
(Brwj)

ε

S∑
r=1

S∑
s=1

TrEs
(
drsQ

1−β
r

)−ε
(Brws)

ε

≡ Φj
Φ
�(S.16)

For the measure of workers within block j (HMj), we can evaluate the con-
ditional probability that they commute from block i (conditional on having
chosen to work in block j):

πij|j = Pr
[
uij ≥ max{usj}; ∀s

]
=

∫ ∞

0

∏
s �=i
Gsj(u)gij(u)du=

∫ ∞

0
e−Φju−ε

εΦiju
−(ε+1) du�

Using the result (S.13) to evaluate the integral above, the probability that a
worker commutes from block i conditional on having chosen to work in block
j is

πij|j = TiEj
(
dijQ

1−β
i

)−ε
(Biwj)

ε

S∑
r=1

TrEj
(
drjQ

1−β
r

)−ε
(Brwj)

ε

= Φij
Φj
�

which simplifies to

πij|j = Ti
(
dijQ

1−β
i

)−ε
(Bi)

ε

S∑
r=1

Tr
(
drjQ

1−β
r

)−ε
(Br)

ε

�(S.17)

For the measure of residents within block i (HRi), we can evaluate the condi-
tional probability that they commute to block j (conditional on having chosen
to live in block i):

πij|i = Pr
[
uij ≥ max{uis}; ∀s

]
=

∫ ∞

0

∏
s �=j
Gis(u)gij(u)du=

∫ ∞

0
e−Φiu−ε

εΦiju
−(ε+1) du�
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Using the result (S.13) to evaluate the integral above, the probability that a
worker commutes to block j conditional on having chosen to live in block
i is

πij|i = TiEj
(
dijQ

1−β
i

)−ε
(Biwj)

ε

S∑
s=1

TiEs
(
disQ

1−β
i

)−ε
(Biws)

ε

= Φij
Φi
�

which simplifies to

πij|i = Ej(wj/dij)
ε

S∑
s=1

Es(ws/dis)
ε

�(S.18)

These conditional commuting probabilities provide microeconomic founda-
tions for the reduced-form gravity equations estimated in the empirical liter-
ature on commuting patterns. The probability that a resident of block i com-
mutes to block j depends on the adjusted wage and commuting costs for block
j in the numerator (“bilateral resistance”), but also on the adjusted wage and
commuting costs for all other possible employment locations s in the denomi-
nator (“multilateral resistance”).

Commuting market clearing requires that the measure of workers employed
in each location j (HMj) equals the sum across all locations i of their mea-
sures of residents (HRi) times their conditional probabilities of commuting to
j (πij|i):

HMj =
S∑
i=1

πij|iHRi(S.19)

=
S∑
i=1

Ej(wj/dij)
ε

S∑
s=1

Es(ws/dis)
ε

HRi�

where, since there is a continuous measure of workers residing in each loca-
tion, there is no uncertainty in the supply of workers to each employment lo-
cation.

Expected worker income conditional on living in block i is equal to the wages
in all possible employment locations weighted by the probabilities of commut-
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ing to those locations conditional on living in i:

E[ws|i] =
S∑
s=1

πis|iws(S.20)

=
S∑
s=1

Es(ws/dis)
ε

S∑
r=1

Er(wr/dir)
ε

ws�

where E denotes the expectations operator and the expectation is taken over
the distribution for the idiosyncratic component of utility. Intuitively, expected
worker income is high in blocks that have low commuting costs (low dis) to
high-wage employment locations.4

Finally, another implication of the Fréchet distribution of utility is that the
distribution of utility conditional on residing in block i and commuting to block
j is the same across all bilateral pairs of blocks with positive residents and
employment, and is equal to the distribution of utility for the city as a whole. To
establish this result, note that the distribution of utility conditional on residing
in block i and commuting to block j is given by

1
πij

∫ u

0

∏
s �=j
Gis(v)

[∏
r �=i

∏
s

Grs(v)

]
gij(v)dv(S.21)

= 1
πij

∫ u

0

[
S∏
r=1

S∏
s=1

e−Φrsv−ε
]
εΦijv

−(ε+1) dv

= Φ
Φij

∫ u

0
e−Φv−εεΦijv−(ε+1) dv

= e−Φuε�

On the one hand, more attractive residential fundamentals in location i or a
higher wage in location j raise the utility of a worker with a given realization
of idiosyncratic utility z, and hence increase the expected utility of residing in i
and working in j. On the other hand, more attractive residential fundamentals
or a higher wage induce workers with lower realizations of idiosyncratic utility
z to reside in i and work in j, which reduces the expected utility of residing in i
and working in j. With a Fréchet distribution of utility, these two effects exactly

4For simplicity, we model agents and workers as synonymous, which implies that labor is the
only source of income. More generally, it is straightforward to extend the analysis to introduce
families, where each worker has a fixed number of dependents that consume but do not work,
and/or to allow agents to have a constant amount of nonlabor income.
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offset one another. Pairs of residence and employment locations with attractive
fundamentals attract more commuters on the extensive margin until expected
utility is the same across all pairs of residence and employment locations within
the city.

S.2.4. Production

We follow the canonical urban model in assuming a single final good that
is costlessly traded within the city and the larger economy.5 Final goods pro-
duction occurs under conditions of perfect competition and constant returns
to scale. For simplicity, we assume that the production technology takes the
Cobb–Douglas form, so that output of the final good in block j (yj) is

yj =Aj(HMj)α(LMj)1−α�

whereAj is final goods productivity,HMj is workplace employment, and LMj is
floor space used commercially.

Firms choose their block of production and their inputs of workers and com-
mercial floor space to maximize profits, taking as given final goods productivity
(Aj), the distribution of idiosyncratic utility, goods and factor prices, and the
location decisions of other firms and workers. From the first-order conditions
for profit maximization, we obtain

HMj =
(
αAj

wj

)1/(1−α)
LMj�(S.22)

LMj =
(
(1 − α)Aj
qj

)1/α

HMj�(S.23)

Therefore, employment in block j is increasing in productivity (Aj), decreas-
ing in the wage (wj), and increasing in commercial land use (LMj). Similarly,
commercial land use in block j is increasing in productivity, decreasing in the
commercial floor price (qj), and increasing in employment (HMj).

To determine the equilibrium commercial floor price, qj , we use the require-
ment that profits are zero if the final good is produced:

Aj(HMj)
α(LMj)

1−α −wjHMj − qjLMj = 0�

5Even during division, there was substantial trade between West Berlin and West Germany.
In 1963, the ratio of exports to GDP in West Berlin was around 70 percent, with West Germany
the largest trade partner. Overall, industrial production accounted for around 50 percent of West
Berlin’s GDP in this year (American Embassy (1965)).
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which, together with profit maximization (S.22), yields the following expression
for the equilibrium commercial floor price:

qj = (1 − α)
(
α

wj

)α/(1−α)
A1/(1−α)
j �(S.24)

Intuitively, blocks that have higher productivity (Aj) or lower wages (wj) are
more attractive production locations, and hence must be characterized by
higher commercial floor prices in an equilibrium in which firms make zero
profits in all locations with positive production.

S.2.5. Land Market Clearing

Land market equilibrium requires no-arbitrage between commercial and
residential land use after taking into account the tax equivalent of land use
regulations:

θi = 1 if qi > ξiQi�(S.25)

θi ∈ [0�1] if qi = ξiQi�
θi = 0 if qi < ξiQi�

where ξi ≥ 1 captures one plus the tax equivalent of land use regulations that
restrict commercial land use relative to residential land use. We allow this
wedge between commercial and residential floor prices to vary across blocks.

Therefore, floor space in each block is either allocated entirely to commer-
cial use (qi > ξiQi and θi = 1), allocated entirely to residential use (qi < ξiQi
and θi = 0), or allocated to both uses (qi = ξiQi and θi ∈ (0�1)). We assume
that the observed price of floor space in the data is the maximum of the com-
mercial and residential price of floor space: Qi = max{qi�Qi}. Hence the re-
lationship between observed, commercial, and residential floor prices can be
summarized as

Qi = qi� qi > ξiQi� θi = 1�(S.26)

Qi = qi� qi = ξiQi� θi ∈ (0�1)�
Qi =Qi� qi < ξiQi� θi = 0�

We follow the standard approach in the urban literature of assuming that
floor space L is supplied by a competitive construction sector that uses
geographic land K and capital M as inputs. Following Combes, Duran-
ton, and Gobillon (2014) and Epple, Gordon, and Sieg (2010), we assume
that the production function takes the Cobb–Douglas form: Li =Mμ

i K
1−μ
i .6

6Empirically, we find that this Cobb–Douglas assumption is consistent with the micro data on
property transactions for Berlin from 2000 to 2012, as shown in Section S.6.6 of this supplement.
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Therefore, the corresponding dual cost function for floor space is Qi =
μ−μ(1 − μ)−(1−μ)PμR1−μ

i , where Qi = max{qi�Qi} is the price for floor space,
P is the common price for capital, and Ri is the price for geographic land.
Since the price for capital is the same across all locations, the relationships be-
tween the quantities and prices of floor space and geographical land area can
be summarized as

Li = ϕiK1−μ
i �(S.27)

Qi = χR1−μ
i �(S.28)

where ϕi =Mμ
i determines the density of development (the ratio of floor space

to land area) and χ is a constant.
Residential land market clearing implies that the demand for residential

floor space equals the supply of floor space allocated to residential use in each
location: (1 − θi)Li. Using utility maximization for each worker and taking ex-
pectations over the distribution for idiosyncratic utility, this residential land
market clearing condition can be expressed as

E[�i]HRi = (1 −β)E[ws|i]HRi
Qi

= (1 − θi)Li�(S.29)

Commercial land market clearing requires that the demand for commercial
floor space equals the supply of floor space allocated to commercial use in
each location: θjLj . Using the first-order conditions for profit maximization,
this commercial land market clearing condition can be written as(

(1 − α)Aj
qj

)1/α

HMj = θjLj�(S.30)

When both residential and commercial land market clearing ((S.29) and (S.30),
respectively) are satisfied, total demand for floor space equals the total supply
of floor space:

(1 − θi)Li + θiLi =Li = ϕiK1−μ
i �(S.31)

S.2.6. Properties of General Equilibrium With Exogenous Location
Characteristics

In this subsection, we characterize the properties of general equilibrium with
exogenous location characteristics. In the next subsection, we relax these as-
sumptions to allow for endogenous agglomeration forces.

We start with a benchmark case in which all locations have strictly posi-
tive, finite, and exogenous location characteristics. In this benchmark case, we
show that all locations are incompletely specialized with positive values of both
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workplace and residence employment and positive shares of land allocated to
commercial and residential use. We prove the existence of a unique general
equilibrium for this benchmark case of incomplete specialization.

We next allow some blocks to have zero workplace and/or residence employ-
ment, as observed empirically. We retain the assumption that location charac-
teristics are exogenous. But we extend the analysis to allow for zero final goods
productivity and/or zero residential amenities. We show that a necessary and
sufficient condition for zero workplace employment in a block is zero final
goods productivity in that block. Similarly, a necessary and sufficient condition
for zero residence employment in a block is zero residential amenities in that
block. We extend our proof of the existence of a unique general equilibrium to
allow for these empirically relevant cases. Therefore, with exogenous location
characteristics, the model has a unique general equilibrium.

Definition of Equilibrium: We now formally define the general equilibrium of
the model. Throughout the following, we use bold math font to denote vectors
or matrices.

DEFINITION S.1: Given the model’s parameters {α�β�μ�ε�κ�λ�δ�η�ρ},
the reservation level of utility in the wider economy Ū , and exogenous location-
specific characteristics {T�E�A�B�ϕ�K�ξ�τ}, the general equilibrium of the
model is referenced by the vector {πM�πR�H�Q�q�w�θ}.

The seven elements of the equilibrium vector are determined by the follow-
ing system of seven equations:

γ

[
S∑
r=1

S∑
s=1

TrEs
(
drsQ

1−β
r

)−ε
(Brws)

ε

]1/ε

= Ū�(S.32)

πRi =

S∑
s=1

TiEs
(
disQ

1−β
i

)−ε
(Biws)

ε

S∑
r=1

S∑
s=1

TrEs
(
drsQ

1−β
r

)−ε
(Brws)

ε

�(S.33)

πMi =

S∑
r=1

TrEi
(
driQ

1−β
r

)−ε
(Brwi)

ε

S∑
r=1

S∑
s=1

TrEs
(
drsQ

1−β
r

)−ε
(Brws)

ε

�(S.34)

θiLi =
(
(1 − α)Ai
qi

)1/α

HMi�(S.35)
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(1 − θi)Li = (1 −β)
[

S∑
s=1

Es(ws/dis)
ε

S∑
r=1

Er(wr/dir)
ε

ws

]
HRi

Qi
�(S.36)

qi = (1 − α)
(
α

wi

)α/(1−α)
A1/(1−α)
i �(S.37)

θi = 1 if qi > ξiQi�(S.38)

θi ∈ [0�1] if qi = ξiQi�
θi = 0 if qi < ξiQi�

where recall Li = ϕiK1−μ
i ; (S.32) is population mobility with the wider econ-

omy; (S.33) corresponds to the residential choice probabilities; (S.34) corre-
sponds to the workplace choice probabilities; (S.35) is commercial land market
clearing; (S.36) is residential land market clearing; (S.37) corresponds to profit
maximization and zero profits; (S.38) corresponds to no-arbitrage between al-
ternative uses of land.

Strictly Positive and Finite Exogenous Location Characteristics: We begin by
considering a benchmark case, in which all blocks have strictly positive, finite,
and exogenous location characteristics {T�E�A�B�ϕ�K�ξ�τ}. We allow some
blocks to be more attractive than others in terms of these characteristics. But
workers draw idiosyncratic preferences from a Fréchet distribution for pairs of
residence and workplace locations. Therefore, since the support of the Fréchet
distribution is unbounded from above, any block with strictly positive charac-
teristics has a positive measure of workers that prefer that location as a resi-
dence or workplace at a positive and finite price. Hence, all blocks with finite
positive wages attract a positive measure of workers, and all blocks with finite
positive floor prices attract a positive measure of residents.

LEMMA S.1: Assuming strictly positive, finite, and exogenous location char-
acteristics (Ti ∈ (0�∞), Ei ∈ (0�∞), Ai ∈ (0�∞), Bi ∈ (0�∞), ϕi ∈ (0�∞),
Ki ∈ (0�∞), ξi ∈ (0�∞), τij ∈ (0�∞) × (0�∞)), each location i with a strictly
positive and finite wage (wi ∈ (0�∞)) attracts a strictly positive measure of work-
ers (HMi ∈ (0�∞)), and each location with a strictly positive and finite floor price
(Qi ∈ (0�∞)) attracts a strictly positive measure of residents (HRi ∈ (0�∞)).

PROOF: Both properties follow immediately from the support of the Fréchet
distribution being unbounded from above. For a strictly positive and finite
wage (wi ∈ (0�∞)) for location i, there is a positive measure of workers who
draw a large enough value of the idiosyncratic shock zri for each residence
location r that their preferred workplace is i. Hence, from (S.18), the con-
ditional probabilities of commuting from each residence location r to work-
place i are strictly positive for wi ∈ (0�∞). Additionally, for a strictly positive



THE ECONOMICS OF DENSITY 15

and finite floor price (Qi ∈ (0�∞)) for location i, there is a positive measure
of workers who draw a large enough value of the idiosyncratic shock zis that
their preferred residence is i for each workplace s. Therefore, from (S.17), the
conditional probabilities of commuting from i to each workplace s are strictly
positive for Qi ∈ (0�∞). Q.E.D.

We next show that blocks with strictly positive, finite, and exogenous loca-
tion characteristics {T�E�A�B�ϕ�K�ξ�τ} must have strictly positive and finite
values of both wages and floor prices in equilibrium. The reason is that the
utility and production function satisfy the Inada conditions. Therefore, given a
positive measure of workers, the return to commercial land use becomes large
as the fraction of land allocated to commercial use becomes small. Similarly,
given a positive measure of residents, the return to residential land use be-
comes large as the fraction of land allocated to residential use becomes small.
Since locations attract positive measures of workers and residents at any finite
positive wage and floor price, it follows that positive fractions of land must be
allocated to both commercial and residential use.

LEMMA S.2: Assuming strictly positive, finite, and exogenous location char-
acteristics (Ti ∈ (0�∞), Ei ∈ (0�∞), Ai ∈ (0�∞), Bi ∈ (0�∞), ϕi ∈ (0�∞),
Ki ∈ (0�∞), ξi ∈ (0�∞), τij ∈ (0�∞) × (0�∞)), all locations are incompletely
specialized and allocate positive fractions of land to commercial and residential
use: θi ∈ (0�1).

PROOF: This property follows from the support of the Fréchet distribution
being unbounded from above and from the utility and production functions
both satisfying the Inada conditions. Lemma S.1 implies that each location
with strictly positive and finite wages (wi ∈ (0�∞)) attracts a strictly positive
measure of workers (HMi ∈ (0�∞)). But profit maximization and commercial
land market clearing imply

qi = (1 − α)Ai
(
HMi

θiLi

)α
�

which in turn implies (i) limθi→0 qi = ∞ for Ai ∈ (0�∞) and HMi ∈ (0�∞);
(ii) qi ∈ (0�∞) for all θi ∈ (0�1], Ai ∈ (0�∞), and HMi ∈ (0�∞). Therefore,
a positive fraction of land must be allocated to commercial use: θi > 0. Addi-
tionally, Lemma S.1 implies that each location with strictly positive and finite
values of both amenities (Bi ∈ (0�∞)) and floor prices (Qi ∈ (0�∞)) attracts a
strictly positive measure of residents (HRi ∈ (0�∞)). But utility maximization
and residential land market clearing imply

Qi = (1 −β)
[

S∑
s=1

Es(ws/dis)
ε

S∑
r=1

Er(wr/dir)
ε

ws

]
HRi

(1 − θi)Li �
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which in turn implies (i) lim(1−θi)→0Qi = ∞ for HRi ∈ (0�∞); (ii) Qi ∈ (0�∞)
for all (1 − θi) ∈ (0�1] and HRi ∈ (0�∞). Therefore, a positive fraction of land
must be allocated to residential use: (1 − θi) > 0. Q.E.D.

Having shown that the assumption of strictly positive, finite, and exogenous
location characteristics implies incomplete specialization, we are now in a po-
sition to establish the following proposition.

PROPOSITION S.1: Assuming strictly positive, finite, and exogenous location
characteristics (Ti ∈ (0�∞), Ei ∈ (0�∞), Ai ∈ (0�∞), Bi ∈ (0�∞), ϕi ∈ (0�∞),
Ki ∈ (0�∞), ξi ∈ (0�∞), τij ∈ (0�∞) × (0�∞)), there exists a unique general
equilibrium vector {πM�πR�H�Q�q�w�θ}.

PROOF: With strictly positive, finite, and exogenous location characteristics
(Ti ∈ (0�∞), Ei ∈ (0�∞), Ai ∈ (0�∞), Bi ∈ (0�∞), ϕi ∈ (0�∞), Ki ∈ (0�∞),
ξi ∈ (0�∞), τij ∈ (0�∞)× (0�∞)), locations are incompletely specialized and
the no-arbitrage condition between alternative uses of land (S.25) holds, which
implies that commercial floor prices can be expressed in terms of residential
floor prices: qi = ξiQi. Using this result together with the probability of re-
siding in a location (S.15), the probability of working in a location (S.16), the
zero-profit condition (S.24), and the indifference condition between the city
and the larger economy (S.12), the fraction of the city’s population residing in
location i can be written as

πRi = HRi
H

=
(
γ

Ū

)ε S∑
s=1

TiEs
(
disQ

1−β
i

)−ε(
Bi(1 − α)(1−α)/ααA1/α

s

)ε
× (ξsQs)−(ε(1−α))/α�

while the fraction of the city’s population working in location i can be written
as

πMi = HMi
H

=
(
γ

Ū

)ε S∑
s=1

TsEi
(
dsiQ

1−β
s

)−ε(
Bs(1 − α)(1−α)/ααA1/α

i

)ε
× (ξiQi)−(ε(1−α))/α�
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and expected worker income conditional on residing in block i (S.20) can be
written as

E[ws|i] =
S∑
s=1

Es
(
A1/α
s (ξsQs)

−(1−α)/α/dis
)ε

S∑
r=1

Er
(
A1/α
r (ξrQr)

−(1−α)/α/dir
)ε

× [
(1 − α)(1−α)/ααA1/α

s (ξsQs)
−(1−α)/α]�

Using commercial land market clearing (S.30) and residential land market
clearing (S.29), the requirement that the land market clears can be written
as (

(1 − α)Ai
ξiQi

)1/α

πMi + (1 −β)E[ws|i]
Qi

πRi = Li
H
�

Combining the above relationships, the land market clearing condition can be
written as

Di(Q)=
(
(1 − α)Ai
ξiQi

)1/α S∑
s=1

TsEi

(
Bs(1 − α)(1−α)/ααA1/α

i

dsiQ
1−β
s (ξiQi)

(1−α)/α

)ε

+ (1 −β)
Qi

S∑
s=1

Es
(
A1/α
s (ξsQs)

−(1−α)/α/dis
)ε

S∑
r=1

Er
(
A1/α
r (ξrQr)

−(1−α)/α/dir
)ε

×
[(

1 − α
ξsQs

)(1−α)/α
αA1/α

s

]

×
S∑
s=1

TiEs

(
Bi(1 − α)(1−α)/ααA1/α

s

disQ
1−β
i (ξsQs)

(1−α)/α

)ε
= Li�

for all i, where we have chosen units in which to measure utility so that
(Ū/γ)ε/H = 1. The above land market clearing condition provides a system
of S equations in the S unknown residential floor prices Qi for each location i,
which has the following properties:

lim
Qi→0

Di(Q)= ∞>Li� lim
Qi→∞

Di(Q)= 0<Li�

dDi(Q)
dQi

< 0�
dDi(Q)
dQj

< 0�
∣∣∣∣dDi(Q)dQi

∣∣∣∣> ∣∣∣∣dDi(Q)dQj

∣∣∣∣�



18 AHLFELDT, REDDING, STURM, AND WOLF

It follows that there exists a unique vector of residential floor prices Q that
solves this system of land market clearing conditions. Commercial floor prices
follow immediately from q = ξQ. Having solved for the vectors of floor prices
{Q�q}, the vector of wages w follows immediately from the zero-profit condi-
tion for production (S.24). Given floor prices {Q�q} and wages (w), the prob-
ability of residing in a location (πR) follows immediately from (S.15), and the
probability of working in a location (πM) follows immediately from (S.16).
Having solved for {πM�πR�Q�q�w}, the total measure of workers residing in
the city can be recovered from our choice of units in which to measure utility
((Ū/γ)ε/H = 1), which, together with population mobility (S.12), implies

H =
[

S∑
r=1

S∑
s=1

TrEs
(
drsQ

1−β
r

)−ε
(Brws)

ε

]
�

We therefore obtain HM = πMH and HR = πRH. Given floor prices {Q�q}
and employments {HM�HR}, the fraction of land that is used commercially (θ)
follows immediately from commercial and residential land market clearing.
This completes the determination of the equilibrium vector {πM�πR�H�Q�q�
w�θ}. Q.E.D.

Allowing for Zero Workplace and/or Residence Employment: A corollary of
Lemmas S.1 and S.2 is that a necessary and sufficient condition for zero work-
place employment and zero commercial land use in a block is zero final goods
productivity. Similarly, a necessary and sufficient condition for zero residence
employment and zero residential land use in a block is zero amenities.

LEMMA S.3: Assuming strictly positive, finite, and exogenous location char-
acteristics (Ti ∈ (0�∞), Ei ∈ (0�∞), ϕi ∈ (0�∞), Ki ∈ (0�∞), ξi ∈ (0�∞),
τij ∈ (0�∞)× (0�∞)):

(i) a necessary and sufficient condition for zero workplace employment
(HMi = 0) and zero commercial land use (θi = 0) is zero final goods productivity
(Ai = 0) for location i,

(ii) a necessary and sufficient condition for zero residence employment
(HRi = 0) and zero residential land use ((1 − θi)= 0) is zero amenities (Bi = 0)
for location i.

PROOF: From Lemma S.1 and the conditional probability of commuting to
location i conditional on living in each residence location r (S.18), a necessary
and sufficient condition for HMi = 0 for workplace i is wi = 0. From the first-
order conditions for profit maximization (S.22) and (S.23), a necessary and
sufficient condition for wi = 0 and θi = 0 is Ai = 0. From Lemma S.1 and the
conditional probability of commuting from location i conditional on working
in each workplace s (S.17), a necessary and sufficient condition for HRi = 0 is
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Bi = 0. From residential land market clearing (S.29), a necessary and sufficient
condition for (1 − θi)= 0 is HRi = 0, which is ensured by Bi = 0. Q.E.D.

From Lemma S.3, a necessary and sufficient condition for a block to have
both no commercial activity and no residential activity is Ai = 0 and Bi = 0.
Such blocks with no economic activity play no direct role in the model, but
affect the general equilibrium insofar as they affect travel times (τij) between
blocks with positive economic activity. We now use the results from Lemma S.3
to generalize Proposition S.1 to prove that there exists a unique equilibrium
given exogenous location characteristics once we allow blocks to have no com-
mercial activity and/or no residential activity.

From (S.26), Lemmas S.1–S.3, and no-arbitrage between alternative uses of
land, we can summarize the relationships between the observed price of floor
space (Qi), the price of commercial floor space (qi), the residential price of
floor space (Qi), and land use as

Qi =
{
ζMiqi� ζMi = 1� i ∈ 
M = {Ai > 0�Bi = 0},
ζMiqi� ζMi = 1� i ∈ 
S = {Ai > 0�Bi > 0},(S.39)

Qi =
{
ζRiQi� ζRi = 1� i ∈ 
R = {Ai = 0�Bi > 0},
ζRiQi� ζRi = ξi� i ∈ 
S = {Ai > 0�Bi > 0},

where ζMi and ζRi relate observed floor prices to commercial and residential
floor prices, respectively; 
M is the set of locations specialized in commercial
activity (θi = 1); 
S is the set of locations with both commercial and residential
activity (θi ∈ (0�1)); and 
R is the set of locations specialized in residential
activity (θi = 0).

From (S.39), these relationships between the observed, commercial, and res-
idential prices of floor space {Qi� qi�Qi}, and the allocation of land between
commercial and residential use {θi�1 − θi}, are a function solely of the exoge-
nous locational characteristics {A�B�ξ}. We now use this property to generalize
Proposition S.1 to allow blocks to have no commercial activity and/or residen-
tial activity.

PROPOSITION S.2: Assuming exogenous, finite, and strictly positive location
characteristics (Ti ∈ (0�∞), Ei ∈ (0�∞), ϕi ∈ (0�∞), Ki ∈ (0�∞), ξi ∈ (0�∞),
τij ∈ (0�∞) × (0�∞)), and exogenous, finite, and nonnegative final goods pro-
ductivity Ai ∈ [0�∞) and residential amenities Bi ∈ [0�∞), there exists a unique
general equilibrium vector {πM�πR�H�Q�q�w�θ}.

PROOF: The proof follows a similar structure as for Proposition S.1. For
locations that are completely specialized in commercial activity (i ∈ 
M), the
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land market clearing condition can be written

Di(Q)=
(
(1 − α)Ai

Qi

)1/α ∑
s∈
S∪
R

TsEi

(
Bs(1 − α)(1−α)/ααA1/α

i

dsi(Qs/ζRs)
1−β(Qi)(1−α)/α

)ε
= Li�

For locations that are incompletely specialized in commercial and residential
activity (i ∈ 
S), the land market clearing condition can be written

Di(Q)=
(
(1 − α)Ai

Qi

)1/α ∑
s∈
S∪
R

(
T 1/ε
s E

1/ε
i Bs(1 − α)(1−α)/ααA1/α

i

dsi(Qs/ζRs)
1−β(Qi)(1−α)/α

)ε

+ (1 −β)
Qi/ζRi

×
∑

s∈
M∪
S

Es
(
A1/α
s (Qs)

−(1−α)/α/dis
)ε[(

(1 − α)
Qs

)(1−α)/α
αA1/α

s

]
∑

r∈
M∪
S
Er

(
A1/α
r (Qr)

−(1−α)/α/dir
)ε

×
∑

s∈
M∪
S

(
T 1/ε
i E

1/ε
s Bi(1 − α)(1−α)/ααA1/α

s

dis(Qi/ζRi)
1−β(Qs)(1−α)/α

)ε
= Li�

For locations that are completely specialized in residential activity (i ∈ 
R), the
land market clearing condition can be written

Di(Q)= (1 −β)
Qi/ζRi

×
∑

s∈
M∪
S

Es
(
A1/α
s (Qs)

−(1−α)/α/dis
)ε[(

(1 − α)
Qs

)(1−α)/α
αA1/α

s

]
S∑
r=1

Er
(
A1/α
r (Qr)

−(1−α)/α/dir
)ε

×
∑

s∈
M∪
S

(
T 1/ε
i E

1/ε
s Bi(1 − α)(1−α)/ααA1/α

s

dis(Qi/ζRi)
1−β(Qs)(1−α)/α

)ε
= Li�
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We have again chosen units in which to measure utility so that (Ū/γ)ε/H = 1.
The above land market clearing conditions provide a system of S equations
in the S unknown observed floor prices Qi for each location i, which has the
following properties:

lim
Qi→0

Di(Q)= ∞>Li� lim
Qi→∞

Di(Q)= 0<Li�

dDi(Q)

dQi
< 0�

dDi(Q)

dQj
< 0�

∣∣∣∣dDi(Q)dQi

∣∣∣∣> ∣∣∣∣dDi(Q)dQj

∣∣∣∣�
It follows that there exists a unique vector of observed floor prices Q that solves
this system of land market clearing conditions. Having determined Q, commer-
cial floor prices (q) and residential floor prices (Q) follow immediately from
the relationship between floor prices (S.39) as a function of the exogenous
location characteristics {A�B�ξ}. The remainder of the equilibrium vector fol-
lows from exactly the same arguments as for Proposition S.1. Q.E.D.

We use Proposition S.2 to undertake counterfactuals for division and re-
unification, in which we treat location characteristics as exogenous and hold
them constant at their values before division or reunification. Since the model
features a unique equilibrium with exogenous location characteristics, these
counterfactuals yield determinate predictions for the impact of division and
reunification on the organization of economic activity within the city.

S.2.7. Properties of General Equilibrium With Agglomeration Forces

We now relax the assumption that productivity (Ai) and amenities (Bi) are
exogenous. We examine how the introduction of endogenous agglomeration
forces affects the properties of the general equilibrium of the model. We de-
compose productivity (Ai) and amenities (Bi) into two components, one of
which is exogenous and captures location fundamentals, and the other of which
is endogenous to the surrounding concentration of economic activity and cap-
tures agglomeration forces.

Agglomeration Forces: We allow final goods productivity to depend on pro-
duction fundamentals (aj) and production externalities (Υj). Production fun-
damentals capture features of physical geography that make a location more
or less productive independently of the surrounding density of economic activ-
ity (e.g., access to natural water). Production externalities impose structure on
how the productivity of a given block is affected by the characteristics of other
blocks. Specifically, we follow the standard approach in urban economics of
modeling these externalities as depending on the travel time weighted sum of
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workplace employment density in surrounding blocks:7

Aj = ajΥ λj � Υj ≡
S∑
s=1

e−δτjs
(
HMs

Ks

)
�(S.40)

where HMs/Ks is workplace employment density per unit of geographical land
area; production externalities decline with travel time (τjs) through the iceberg
factor e−δτjs ∈ (0�1]; δ determines their rate of spatial decay; and λ controls
their relative importance in determining overall productivity.8

We model the externalities in workers’ residential choices analogously to
the externalities in firms’ production choices. We allow residential amenities
to depend on residential fundamentals (bi) and residential externalities (Ωi).
Residential fundamentals capture features of physical geography that make a
location a more or less attractive place to live independently of the surround-
ing density of economic activity (e.g., green areas). Residential externalities
again impose structure on how the amenities in a given block are affected by
the characteristics of other blocks. Specifically, we adopt a symmetric speci-
fication as for production externalities, and model residential externalities as
depending on the travel time weighted sum of residential employment density
in surrounding blocks:

Bi = biΩηi � Ωi ≡
S∑
r=1

e−ρτir
(
HRr

Kr

)
�(S.41)

where HRr/Kr is residence employment density per unit of geographical land
area; residential externalities decline with travel time (τir) through the iceberg
factor e−ρτir ∈ (0�1]; ρ determines their rate of spatial decay; and η controls
their relative importance in overall residential amenities.

Equilibrium Properties With Agglomeration Forces: We begin by establishing
some properties of the general equilibrium of the model with agglomeration
forces. Production externalities (Υj) are modeled as the travel time weighted
sum of workplace employment density throughout the city. Therefore, since
travel time within Berlin is finite, production externalities are strictly positive
for all blocks for a finite spatial decay of production externalities (δ), as long
as workplace employment is positive somewhere within Berlin: Υj > 0 for all

7While the canonical interpretation of these production externalities in the urban economics
literature is knowledge spillovers, as in Alonso (1964), Fujita and Ogawa (1982), Lucas (2000),
Mills (1967), Muth (1969), and Sveikauskas (1975), other interpretations are possible, as consid-
ered in Duranton and Puga (2004).

8We make the standard assumption that production externalities depend on employment den-
sity per unit of geographical land area Ki (rather than per unit of floor space Li) to capture
the role of higher ratios of floor space to geographical land area in increasing the surrounding
concentration of economic activity.
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j ∈ {1� � � � � S} if HMs > 0 for some s ∈ {1� � � � � S} and 0< δ <∞. Similarly, res-
idential externalities (Ωi) are modeled as the travel time weighted sum of res-
idence employment density throughout the city. Therefore, since travel time
within Berlin is finite, residential externalities are strictly positive for all blocks
for a finite spatial decay of residential externalities (ρ), as long as residence
employment is positive somewhere within Berlin:Ωi > 0 for all i ∈ {1� � � � � S} if
HRs > 0 for some s ∈ {1� � � � � S} and 0< ρ<∞.

We now combine this result that production and residential externalities are
strictly positive and finite with the properties that (i) the support of the Fréchet
distribution is unbounded from above and (ii) the utility and production func-
tions satisfy the Inada conditions. From these results, if all location character-
istics are strictly positive for all blocks, it follows that all blocks will be incom-
pletely specialized with positive fractions of land allocated to commercial and
residential use. We therefore have the following generalization of Lemmas S.1
and S.2 to the case of endogenous agglomeration forces.

LEMMA S.4: Assume (i) strictly positive, finite, and exogenous location fun-
damentals (Ti ∈ (0�∞), Ei ∈ (0�∞), ai ∈ (0�∞), bi ∈ (0�∞), ϕi ∈ (0�∞),
Ki ∈ (0�∞), ξi ∈ (0�∞), τij ∈ (0�∞) × (0�∞)), (ii) endogenous agglomera-
tion forces (λ�η > 0), (iii) finite spatial decays of agglomeration externalities
(0< δ<∞ and 0< ρ<∞):

(i) Each location i with a strictly positive and finite wage (wi ∈ (0�∞)) at-
tracts a strictly positive measure of workers (HMi ∈ (0�∞)), and each location
with a strictly positive and finite floor price (Qi ∈ (0�∞)) attracts a strictly positive
measure of residents (HRi ∈ (0�∞)).

(ii) Any equilibrium with positive workplace and residence employment some-
where in the city (HMj�HRi > 0 for some j� i ∈ {1� � � � � S}) is characterized by in-
complete specialization, with all locations allocating positive fractions of land to
commercial and residential use: θi ∈ (0�1).

PROOF: The proof of the lemma follows exactly the same structure as the
proof of Lemmas S.1 and S.2 above. Since the support of the Fréchet dis-
tribution is unbounded from above, any location with strictly positive and
finite wages (wi ∈ (0�∞)) attracts a strictly positive measure of workers
(HMi ∈ (0�∞)). But profit maximization and commercial land market clear-
ing imply

qi = (1 − α)aiΥ λi
(
HMi

θiLi

)α
�

which in turn implies (i) limθi→0 qi = ∞ for ai ∈ (0�∞), Υi ∈ (0�∞), andHMi ∈
(0�∞); (ii) qi ∈ (0�∞) for all θi ∈ (0�1], ai ∈ (0�∞), Υi ∈ (0�∞), and HMi ∈
(0�∞). Therefore, a positive fraction of land is allocated to commercial use:
θi > 0. Additionally, each location with strictly positive and finite values of
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residential fundamentals (bi ∈ (0�∞)), residential externalities (Ωi ∈ (0�∞)),
and floor prices (Qi ∈ (0�∞)) attracts a strictly positive measure of residents
(HRi ∈ (0�∞)). But utility maximization and residential land market clearing
imply

Qi = (1 −β)
[

S∑
s=1

Es(ws/dis)
ε

S∑
r=1

Er(wr/dir)
ε

ws

]
HRi

(1 − θi)Li �

which in turn implies (i) lim(1−θi)→0Qi = ∞ for HRi ∈ (0�∞); (ii) Qi ∈ (0�∞)
for all (1 − θi) ∈ (0�1] and HRi ∈ (0�∞). Therefore, a positive fraction of land
is allocated to residential use: (1 − θi) > 0. Q.E.D.

Since production externalities are strictly positive (Υi > 0), an immediate
corollary of Lemma S.4 is that a necessary and sufficient condition for zero
workplace employment and zero commercial land use in a block is zero pro-
duction fundamentals (ai = 0). Similarly, since residential externalities are
strictly positive (Ωi > 0), an immediate corollary of Lemma S.4 is that a neces-
sary and sufficient condition for zero residence employment and zero residen-
tial land use in a block is zero residential fundamentals (bi = 0).

LEMMA S.5: Assume (i) strictly positive, finite, and exogenous location char-
acteristics (Ti ∈ (0�∞), Ei ∈ (0�∞), ϕi ∈ (0�∞), Ki ∈ (0�∞), ξi ∈ (0�∞),
τij ∈ (0�∞)× (0�∞)), (ii) endogenous agglomeration forces (λ�η > 0), (iii) fi-
nite spatial decays of agglomeration externalities (0< δ<∞ and 0< ρ<∞). In
any equilibrium with positive workplace and residence employment somewhere in
the city (HMj�HRi > 0 for some j� i ∈ {1� � � � � S}):

(i) a necessary and sufficient condition for zero workplace employment
(HMi = 0) and zero commercial land use (θi = 0) is zero production fundamentals
(ai = 0) for location i,

(ii) a necessary and sufficient condition for zero residence employment
(HRi = 0) and zero residential land use ((1 − θi) = 0) is zero residential fun-
damentals (bi = 0) for location i.

PROOF: From Lemma S.4 and the conditional probability of commuting to
location i conditional on living in each residence location r (S.18), a neces-
sary and sufficient condition for HMi = 0 for workplace i is wi = 0. From the
first-order conditions for profit maximization (S.22) and (S.23), a necessary
and sufficient condition for wi = 0 and θi = 0 is Ai = 0. From the productivity
specification (S.40), a necessary and sufficient condition for Ai = 0 is ai = 0
since Υi > 0. From Lemma S.4 and the conditional probability of commuting
from location i conditional on working in each workplace s (S.17), a necessary
and sufficient condition for HRi = 0 is Bi = 0. From residential land market
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clearing (S.29), a necessary and sufficient condition for (1 − θi)= 0 isHRi = 0,
which is ensured by Bi = 0. From the amenities specification (S.41), a necessary
and sufficient condition for Bi = 0 is bi = 0 since Ωi > 0. Q.E.D.

Potential for Multiple Equilibria: As is standard in urban models, the pres-
ence of endogenous agglomeration forces introduces the potential for multiple
equilibria into the model: Each agent’s location decision depends on produc-
tivity and amenities, but productivity and amenities in turn depend on the lo-
cation decisions of all agents. Whether or not multiple equilibria exist depends
on the strength of these agglomeration forces relative to the size of the exoge-
nous differences in location characteristics (T, E, a, b, ϕ, K, ξ, τ). The strength
of agglomeration forces depends on both their contribution to productivity and
amenities (λ, η) and their spatial decay with travel times (δ, ρ). An important
feature of our empirical approach is that it explicitly addresses the potential
for multiple equilibria, as discussed further in Sections S.3 and S.4 of this sup-
plement (see, in particular, Propositions S.3 and S.4 and Section S.4.5).

S.3. CALIBRATION

We now show that there is a unique mapping from the observed variables
to unobserved values of location characteristics. These unobserved location
characteristics include production and residential fundamentals and several
other unobserved variables. Since a number of these unobserved variables en-
ter the model isomorphically, we define the following composites denoted by a
tilde:

Ãi =AiEα/εi � ãi = aiEα/εi �
B̃i = BiT 1/ε

i ζ
1−β
Ri � b̃i = biT 1/ε

i ζ
1−β
Ri �

w̃i =wiE1/ε
i �

ϕ̃i = ϕ̃i
(
ϕi�E

1/ε
i � ξi

)
�

where we use i to index all blocks; the function ϕ̃i(·) is defined below; ζRi = 1
for completely specialized residential blocks; and ζRi = ξi for residential blocks
with some commercial land use.

In the labor market, the adjusted wage (w̃i) captures the wage (wi) and the
Fréchet scale parameter for each employment location (E1/ε

i ), because these
both affect the relative attractiveness of an employment location to workers.
On the production side, adjusted productivity (Ãi) captures productivity (Ai)
and the Fréchet scale parameter for each employment location (Eα/εi ), because
these both affect the adjusted wage consistent with zero profits. Adjusted pro-
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duction fundamentals are defined analogously. On the consumption side, ad-
justed amenities (B̃i) capture amenities (Bi), the Fréchet scale parameter for
each residence location (T 1/ε

i ), and the wedge between commercial and resi-
dential floor prices (ξi), because these all affect the relative attractiveness of a
location consistent with population mobility. Adjusted residential fundamen-
tals are defined analogously. Finally, in the land market, the adjusted density
of development (ϕ̃i) includes the density of development (ϕi) and other pro-
duction and residential parameters that affect the equality of the demand and
supply for floor space, as shown below.

In the remainder of this section, we show how the model can be cali-
brated to recover unique adjusted location characteristics given known val-
ues of the model’s parameters {α�β�μ�ε�κ�λ�δ�η�ρ} and the observed data
{Q�HR�HM�K�τ}. We show that there is a one-to-one mapping from these
known parameters and the observed data to the adjusted location character-
istics {ãi� b̃i� ϕ̃i}. Therefore, these unobserved adjusted location characteristics
correspond to structural residuals of the model that are one-to-one functions
of the parameters and the observed data. We use the resulting closed-form
solutions for these structural residuals to construct moment conditions in the
structural estimation of the model in Section S.4, where both the parameters
{α�β�μ�ε�κ�λ�δ�η�ρ} and the unobserved adjusted location characteristics
{ãi� b̃i� ϕ̃i} are unknown and to be estimated.

In addition to establishing the one-to-one mapping from the parameters and
observables to the unobservables, we show that the model has a recursive struc-
ture. Given a subset of the model’s parameters {α�β�μ�ε�κ}, there is a one-to-
one mapping from these parameters and the observed data {Q�HR�HM�K�τ}
to the unobserved adjusted location characteristics {Ãi� B̃i� ϕ̃i}. Therefore,
overall adjusted productivity (Ãi), overall adjusted amenities (B̃i), and the ad-
justed density of development (ϕ̃i) can be uniquely determined irrespective
of whether they are exogenous or endogenous. Furthermore, overall adjusted
productivity (Ãi) and amenities (B̃i) can be determined irrespective of the rela-
tive importance of their components of externalities {Υi�Ωi} and adjusted fun-
damentals {ãi� b̃i}.

S.3.1. Determining {Ã� B̃� ϕ̃} From {α�β�μ�ε�κ} and the Observed Data

We begin by establishing the one-to-one mapping from the subset of the
parameters {α�β�μ�ε�κ} and the observed data {Q�HR�HM�K�τ} to adjusted
final goods productivity, residential amenities, and the density of development
{Ã� B̃� ϕ̃}. To do so, we use the recursive structure of the model:

1. Given {ε�κ} and the observed data {HR�HM�τ}, the equilibrium ad-
justed wage vector {w̃} can be uniquely determined from the commuting mar-
ket clearing condition alone independently of the other equilibrium conditions
of the model.
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2. Given {ε�κ�β�μ}, the observed data {Q�HR�HM�τ}, and adjusted
wages {w̃}, adjusted residential amenities {B̃} can be uniquely determined from
residential choice probabilities.

3. Given {ε�κ�α�μ}, the observed data {Q�HR�HM�τ}, and adjusted
wages {w̃}, adjusted final goods productivity {Ã} can be uniquely determined
from profit maximization and zero profits.

4. Given {ε�κ�α�β�μ}, the observed data {Q�HR�HM�K�τ}, and adjusted
wages and productivity {w̃� Ã}, the adjusted density of development {ϕ̃} can be
uniquely determined from land market clearing.

In the remainder of this subsection, we consider each of these steps in turn.

S.3.1.1. Wages

Given the parameters {ε�κ} and observed data {HM�HR�τ}, commuting
market clearing (S.19) provides a system of equations in observed workplace
and residence employment that determines a unique adjusted wage vector (w̃)
up to a normalization (a choice of units in which to measure wages):

HMj =
S∑
i=1

(
E1/ε
j wj/e

κτij
)ε

S∑
s=1

(
E1/ε
s ws/e

κτis
)εHRi(S.42)

=
S∑
i=1

(
w̃j/e

κτij
)ε

S∑
s=1

(
w̃s/e

κτis
)εHRi�

Adjusted wages (w̃j = E1/ε
j wj) capture (i) wages (wj) in employment location

j and (ii) the Fréchet scale parameter that determines the average utility (or
effective units of labor) for commuters to that employment location (Ej). Note
that E1/ε

j enters the commuting market clearing condition isomorphically towj .
Therefore, only the composite adjusted wage (w̃j) can be recovered from the
data. From Lemmas S.1–S.3, all locations with zero workplace employment
have zero adjusted wages.

We now show that this commuting market clearing condition determines a
unique adjusted wage (w̃j) for each location j = 1� � � � � S. Note that the com-
muting market clearing condition (S.42) can be rewritten as the following ex-
cess demand system:

Dj(w̃)=HMj −
S∑
i=1

(w̃j/dij)
ε

S∑
s=1

(w̃s/dis)
ε

HRi = 0� dij = eκτij �(S.43)
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We use HM ∈ �S+ to denote the observed nonnegative vector of workplace em-
ployment with elements HMj given by the data; HR ∈ �S+ denotes the observed
nonnegative vector of residence employment with elements HRi, given by the
data; τij ∈ �S+ × �S+ denotes the observed bilateral travel time between blocks i
and j; and w̃ ∈ �S+ is the unknown nonnegative adjusted wage vector with ele-
ments w̃j . The system (S.43) captures the requirement of zero excess demand
for commuters at the adjusted wage vector w̃.

LEMMA S.6: Given the parameters {ε�κ} and observables {HM�HR�τ}, the
wage system (S.43) exhibits the following properties in w:

Property (i): D(w̃) is continuous.
Property (ii): D(w̃) is homogeneous of degree zero.
Property (iii):

∑
j∈S Dj(w̃)= 0 for all w̃ ∈ �S+.

Property (iv): D(w̃) exhibits gross substitution:

∂Dj(w̃)
∂w̃k

> 0 for all j�k� j �= k for all w̃ ∈ �S+�
∂Dj(w̃)
∂w̃j

< 0 for all j for all w̃ ∈ �S+�

PROOF: Property (i) follows immediately by inspection of (S.43). Property
(ii) follows immediately by inspection of (S.43). Property (iii) can be estab-
lished by noting

S∑
j=1

Dj(w̃)=
S∑
j=1

HMj −
S∑
i=1

S∑
j=1

(w̃j/dij)
ε

S∑
s=1

(w̃s/dis)
ε

HRi

=
S∑
j=1

HMj −
S∑
i=1

HRi

= 0�

Property (iv) can be established by noting

∂Dj(w̃)
∂w̃k

=
∑
i∈S

(w̃j/dij)
εε(w̃k/dik)

εw̃−1
k[∑

s∈S
(w̃s/dis)

ε

]2 HRi > 0�

and using homogeneity of degree zero, which implies

∇D(w̃)w̃ = 0�
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and hence:

∂Dj(w̃)
∂w̃j

< 0 for all j for all w̃ ∈ �S+�

Therefore, we have established gross substitution. Q.E.D.

LEMMA S.7: Given the parameters {ε�κ} and observed data {HM�HR�τ}, there
exists a unique adjusted wage vector w̃∗ ∈ �S+ such that D(w̃∗)= 0.

PROOF: We first show that the adjusted wage system D(w̃) has at most one
(normalized) solution using the properties established in Lemma S.6. Gross
substitution implies that D(w̃) = D(w̃′) cannot occur whenever w̃ and w̃′ are
two adjusted wage vectors that are not collinear. By homogeneity of degree
zero, we can assume w̃′ ≥ w̃ and w̃j = w̃′

j for some j. Now consider altering the
adjusted wage vector w̃′ to obtain the adjusted wage vector w̃ in S − 1 steps,
lowering (or keeping unaltered) the adjusted wage of all the other S − 1 loca-
tions k �= j one at a time. By gross substitution, the excess demand for labor in
location j cannot decrease in any step, and because w̃ �= w̃′, it will actually in-
crease in at least one step. HenceDj(w̃) >Dj(w̃′) and we have a contradiction.

We next establish that there exists an adjusted wage vector w̃∗ ∈ �S+ such
that D(w̃∗) = 0. By homogeneity of degree zero, we can restrict our search
for an equilibrium adjusted wage vector to the unit simplex Δ = {w̃ ∈ �S+ :∑S

j=1 w̃j = 1}. Define on Δ the functionD+(·) byD+
j (w̃)= max{Dj(w̃)�0}. Note

thatD+(·) is continuous. Denote α(w̃)= ∑S

j=1[w̃j+D+
j (w̃)]. We have α(w̃)≥ 1

for all w̃.
Define a continuous function f (·) from the closed convex set Δ into itself by

f (w̃)= [
1/α(w̃)

][
w̃ +D+(w̃)

]
�

Note that this fixed point function tends to increase the wages of locations
with excess demand for commuters. By Brouwer’s Fixed Point Theorem, there
exists w̃∗ ∈ Δ such that w̃∗ = f (w̃∗).

Since
∑S

j=1Dj(w̃) = 0, it cannot be the case that Dj(w̃) > 0 for all j =
1� � � � � S or Dj(w̃) < 0 for all j = 1� � � � � S. Additionally, if Dj(w̃) > 0 for some j
and Dk(w̃) < 0 for some k �= j� w̃ �= f (w̃). It follows that at the fixed point for
wages, w̃∗ = f (w̃∗), and Dj(w̃)= 0 for all j. Q.E.D.

Homogeneity of degree zero of the commuting market clearing condition
(S.42) implies that the equilibrium adjusted wage vector is unique up to a nor-
malization. We impose the normalization that the geometric mean adjusted
wage is equal to 1 ([∏S

j=1 w̃jt]1/S = 1), as discussed further in Section S.3.1.5
below.
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In our estimation, it proves convenient to rewrite the commuting market
clearing condition (S.42) in terms of a composite parameter ν = εκ that cap-
tures the semi-elasticity of commuting flows with respect to travel times and a
transformation of adjusted wages (ωjt = w̃εjt =Ejtwεjt):

HMjt =
S∑
i=1

ωjt/e
ντijt

S∑
s=1

ωst/e
ντist

HRit �(S.44)

The commuting market clearing condition (S.44) exhibits the same properties
in transformed wages (ωjt) as established for adjusted wages (w̃jt) in Lem-
mas S.6 and S.7 above.

S.3.1.2. Adjusted Residential Amenities

Given the parameters {β�μ�ε�κ}, observed data {Q�HM�HR�τ}, and the
above solutions for adjusted wages {w̃}, the residential choice probabilities
(S.15) and population mobility (S.12) determine a unique vector of adjusted
residential amenities (B̃) up to a normalization. From the residential choice
probabilities (S.15) and population mobility (S.12), we have

BiT
1/ε
i

Ū/γ
=

(
HRi

H

)1/ε
Q1−β
i

W 1/ε
i

�

where Wi is a measure of commuting market access:

Wi =
S∑
s=1

Es(ws/dis)
ε� dis = eκτis �

and these expressions can be equivalently rewritten as

B̃i

Ū/γ
=

(
HRi

H

)1/ε
Q

1−β
i

W 1/ε
i

�(S.45)

Wi =
S∑
s=1

(w̃s/dis)
ε� dis = eκτis �(S.46)

For locations s ∈ 
S ∪ 
R with positive residence employment, residential
floor prices are related to observed floor prices through Qs = ζRsQs, where
(i) ζRs = ξs if s ∈ 
S and (ii) ζRs = 1 if s ∈ 
R. Adjusted residential amenities
(B̃i = BiT 1/ε

i ζ
1−β
Ri ) include (i) residential amenities (Bi), (ii) the Fréchet scale

parameter (Ti) that determines the average utility (or effective units of labor)
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for commuters from location i, and (iii) the relationship between observed and
residential floor prices (ζRi). The parameter ζRi captures land use regulations
that introduce a wedge between commercial and residential floor prices (ξi),
where we allow this wedge (ξi) to vary across blocks. Note that T 1/ε

i and ζ1−β
Ri

enter residential choice probabilities isomorphically to Bi. Therefore, only the
composite adjusted residential amenities (B̃i) can be recovered from the data.
Additionally, from Lemmas S.1–S.3, all locations with zero residential employ-
ment have zero adjusted residential amenities.

We choose units in which to measure adjusted residential amenities such
that the geometric mean of adjusted residential amenities is equal to 1: B̃i =
[∏S

i=1 B̃i]1/S = 1, where a bar above a variable denotes a geometric mean.
Therefore, dividing through by the geometric means in (S.45), adjusted resi-
dential amenities can be determined from

B̃i

B̃i
=

(
HRi

HRi

)1/ε(
Qi

Qi

)1−β(
Wi

W i

)−1/ε

�(S.47)

S.3.1.3. Final Goods Productivity

Given the parameters {α�μ�ε�κ}, observed data {Q�HM�HR�τ}, and the
above solutions for adjusted wages {w̃}, profit maximization and zero profits
(S.24) determine a unique vector for adjusted productivity (Ã) up to the nor-
malization chosen for adjusted wages. For all locations with positive workplace
employment, we require

qj = (1 − α)
(
α

wj

)α/(1−α)
A1/(1−α)
j �(S.48)

Qj = (1 − α)
(
α

w̃j

)α/(1−α)
Ã1/(1−α)
j �

where qj denotes the price of commercial floor space and Qi denotes the ob-
served price of floor space.

For locations s ∈ 
M ∪ 
S with positive workplace employment, commercial
floor prices are related to observed floor prices through qs =Qs. Adjusted final
goods productivity (Ã1/(1−α)

j = Eα/(ε(1−α))
j A1/(1−α)

j ) captures (i) final goods pro-
ductivity (Aj) in an employment location and (ii) the Fréchet scale parameter
that determines the average utility (or effective units of labor) for commuters
to that location (Ej). Note that Eα/(ε(1−α))

j enters the zero-profit condition iso-
morphically to A1/(1−α)

j . Therefore, only the composite adjusted final goods
productivity (Ãj) can be recovered from the data. Additionally, from Lem-
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mas S.1–S.3, all locations with zero workplace employment have zero adjusted
final goods productivity.

LEMMA S.8: Given the parameters {α�μ�ε�κ}, observed data {Q�HM�HR�τ},
and the solution for adjusted wages {w̃∗}, there exists a unique vector of adjusted
final goods productivities Ã∗ ∈RS+ such that the zero-profit condition (S.48) holds
for all locations with positive workplace employment.

PROOF: The lemma follows immediately from the zero-profit condition
(S.48). Q.E.D.

S.3.1.4. Land Market Clearing

Given the parameters {α�β�μ�ε�κ}, the observed data {Q�HM�HR�K�τ},
and the above solutions for adjusted wages and final goods productivity {w̃� Ã},
the land market clearing condition determines a unique vector for the adjusted
density of development (ϕ̃).

For all locations with positive workplace employment, we can solve for
adjusted commercial floor space use from commercial land market clearing
(S.30):

LMi =
(
wi

αAi

)1/(1−α)
HMi�(S.49)

L̃Mi =
(
w̃i

αÃi

)1/(1−α)
HMi�

where adjusted commercial land use satisfies L̃Mi = E1/ε
i LMi. From Lem-

mas S.1–S.3, all locations with zero workplace employment have zero adjusted
commercial floor space use (L̃Mi =LMi = 0).

For all locations with positive residence employment, we can solve for
adjusted residential floor space use from residential land market clearing
(S.29):

LRi = (1 −β)
[

S∑
s=1

(
E1/ε
s ws/dis

)ε
S∑
r=1

(
E1/ε
r wr/dir

)ε ws
]
HRi

Qi
�(S.50)

L̃Ri = (1 −β)
[

S∑
s=1

(w̃s/dis)
ε

S∑
r=1

(w̃r/dir)
ε

w̃s

]
HRi

Qi
�
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where Qi denotes the price of residential floor space and Qi denotes the ob-
served price of floor space. Adjusted residential floor space use is defined
as

L̃Ri =LRiζRi

R∑
s=1

(w̃s/dis)
ε

S∑
r=1

(w̃r/dir)
ε

w̃s

R∑
s=1

(w̃s/dis)
ε

S∑
r=1

(w̃r/dir)
ε

w̃s

E1/ε
s

�(S.51)

The parameter ζRi allows for land use regulations that introduce a wedge be-
tween commercial and residential floor prices (ξi), where we allow this wedge
(ξi) to vary across blocks. The fraction in (S.51) controls for the difference be-
tween adjusted wages (w̃i =E1/ε

i wi) and actual wages (wi). From Lemmas S.1–
S.3, all locations with zero residence employment have zero adjusted residen-
tial floor space use (L̃Ri =LRi = 0).

Combining these solutions for adjusted commercial and residential floor
space use, we can solve for the adjusted density of development (ϕ̃i) from land
market clearing:

L̃i = L̃Mi + L̃Ri = ϕ̃iK1−μ
i �(S.52)

where the adjusted density of development (ϕ̃i) relates adjusted floor space
(L̃i) to observed geographical land area (Ki).

LEMMA S.9: Given the parameters {α�β�μ�ε�κ}, observed data {Q�HM�
HR�K�τ}, and the solutions for adjusted wages and final goods productivity
{w̃∗� Ã∗}, there exists a unique vector of the adjusted density of development
ϕ̃∗ ∈ RS+ such that the land market clearing condition (S.52) holds for all loca-
tions.

PROOF: The lemma follows immediately from the land market clearing con-
dition (S.52) together with commercial land market clearing (S.49) and resi-
dential land market clearing (S.50). Q.E.D.

From commercial land market clearing (S.49) and residential land market
clearing (S.50), we can also solve for the fractions of adjusted floor space (L̃)
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allocated to commercial use (θ̃i) and residential use (1 − θ̃i):

θ̃i =

⎧⎪⎨⎪⎩
1 ifHMi > 0 andHRi = 0,
L̃Mi

L̃Mi + L̃Ri
ifHMi > 0 andHRi > 0,

0 ifHMi = 0 andHRi > 0.

(S.53)

S.3.1.5. Utility, Amenities, and Productivity

To abstract from changes in currency units over time, we divide observed
floor prices in each year by their geometric mean for that year. Therefore,
observed floor prices (Q) are normalized to have a geometric mean of 1 in
each year. Furthermore, as discussed above, we also normalize adjusted wages
(w̃) and adjusted residential amenities (B̃) to each have a geometric mean of 1
in each year. We now discuss the implications of these normalizations for the
choice of units in which variables are measured.

First, the normalizations of observed floor prices and adjusted wages involve
a choice of units in which to measure adjusted final goods productivity (Ã), as
can be seen from the zero-profit condition (S.48). Second, the normalizations
of observed land prices, adjusted wages, and adjusted residential amenities also
imply a choice of units in which to measure utility. This can be seen from the
population mobility condition, which implies that the reservation level of utility
in the wider economy (Ū) satisfies

γ

[
S∑
r=1

S∑
s=1

TrEs
(
drsQ

1−β
r

)−ε
(Brws)

ε

]1/ε

= Ū�(S.54)

γ

[
S∑
r=1

S∑
s=1

(
drsQ

1−β
r

)−ε
(B̃rw̃s)

ε

]1/ε

= Ū�

where γ = �(ε−1
ε
); �(·) is the Gamma function; and we have used w̃i = E1/ε

i wi

and B̃i = BiT 1/ε
i ζ

1−β
Ri . Third, the choice of units in which to measure floor prices,

adjusted wages, and adjusted final goods productivity in turn implies a choice
of units in which to measure the adjusted density of development (ϕ̃), as can
be seen from commercial land market clearing (S.49), residential land market
clearing (S.50), and overall land market clearing (S.52).

We make these normalizations for each year separately. But we recognize
that the absolute levels of adjusted amenities (B̃), adjusted final goods produc-
tivity (Ã), the adjusted density of development (ϕ̃), and the reservation level
of utility in the wider economy (Ū) could change over time (and in particular
could change before and after division or reunification). Therefore, the mo-
ment conditions in our estimation use a “difference-in-difference,” where the
first difference is before and after division (or reunification) and the second
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difference is between different parts of West Berlin. These moment conditions
only exploit relative changes in floor prices and other variables between differ-
ent parts of West Berlin. This use of relative changes implies that our estima-
tion results are invariant to the choice of units in which to measure floor prices,
wages, adjusted amenities, adjusted final goods productivity, the adjusted den-
sity of development, and utility. Similarly, this use of relative changes implies
that our estimation results are unaffected by changes over time in the absolute
levels of adjusted amenities, adjusted final goods productivity, the adjusted
density of development, or the reservation level of utility in the wider econ-
omy.

S.3.1.6. One-to-One Mapping From {α�β�μ�ε�κ} and the Observed Data
to {Ã� B̃� ϕ̃}

We now combine the results in the above lemmas to establish a one-
to-one mapping from the parameters {α�β�μ�ε�κ} and the observed data
{Q�HM�HR�K�τ} to the unobserved values of adjusted final goods produc-
tivity, residential amenities, and the density of development {Ã� B̃� ϕ̃} for each
location.

PROPOSITION S.3: Given the model’s parameters {α�β�μ�ε�κ} and the ob-
served data {Q�HM�HR�K�τ}, there are unique vectors of adjusted final goods
productivity (Ã∗), residential amenities (B̃∗), and the density of development (ϕ̃∗)
that are consistent with the data being an equilibrium of the model.

PROOF: The proposition follows immediately from Lemmas S.6–S.9 above.
Q.E.D.

To interpret this identification result, note that in models with multiple equi-
libria, the mapping from the parameters and fundamentals to the endogenous
variables is nonunique. In such models, the inverse mapping from the endoge-
nous variables and parameters to the fundamentals can be either unique or
nonunique. In the context of our model, Proposition S.3 conditions on the pa-
rameters {α�β�μ�ε�κ} and a combination of observed endogenous variables
{Q�HM�HR} and fundamentals {K�τ}, and uses the equilibrium conditions of
the model to determine unique values of the location characteristics {Ã� B̃� ϕ̃}.
This identification result hinges on the data available. In the absence of any
one of the five observed variables (floor prices, workplace employment, res-
idence employment, land area, and travel times), these unobserved adjusted
fundamentals would be under-identified, and could not be determined without
making further structural assumptions.

The economics underlying this identification result are as follows. Given ob-
served workplace and residence employment, and our measures of travel times,
worker commuting probabilities can be used to solve for unique adjusted wages
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consistent with commuting market clearing (S.19). Given adjusted wages and
observed floor prices, the firm cost function can be used to solve for the unique
adjusted productivity consistent with zero profits (S.24). Given adjusted wages,
observed floor prices, and residence employment shares, worker utility maxi-
mization and population mobility can be used to solve for the unique adjusted
amenities consistent with residential choice probabilities (S.15). Finally, given
observed land area, the implied demands for commercial and residential floor
space can be used to solve for the unique adjusted density of development con-
sistent with market clearing for floor space (S.31).

These relationships for profit maximization, zero profits, utility maximiza-
tion, population mobility, and land market clearing hold irrespective of
whether productivity, amenities, and the density of development are exoge-
nous or endogenous (since agents are atomistic and take the behavior of others
as given). Therefore, they hold regardless of whether the model has a single
equilibrium (as with exogenous location characteristics) or multiple equilibria
(as is possible with endogenous location characteristics). These relationships
also hold irrespective of the relative importance of the two components of pro-
ductivity and amenities (externalities and fundamentals). Therefore, the model
has a recursive structure, in which the adjusted values of overall productivity,
amenities, and the density of development {Ã� B̃� ϕ̃} can be determined using
the subset of the parameters {α�β�μ�ε�κ} and the observed data. In the next
subsection, we examine how overall adjusted productivity and amenities {Ã� B̃}
can be broken down into their two components of externalities {Υi�Ωi} and
fundamentals {ãi� b̃i} using the remaining parameters {λ�δ�η�ρ}.

S.3.2. Determining {ã� b̃} From {α�β�μ�ε�κ�λ�δ�η�ρ} and the Observed Data

We now establish the one-to-one mapping from the full set of parameters
{α�β�μ�ε�κ�λ�δ�η�ρ} and the observed data {Q�HR�HM�K�τ} to adjusted
production and residential fundamentals {ã� b̃}. This involves decomposing ad-
justed productivity and amenities {Ã� B̃} into their two components of external-
ities {Υ �Ω} and adjusted fundamentals {ã� b̃}.

We have already established a one-to-one mapping from the subset of pa-
rameters {α�β�μ�ε�κ} and the observed data to adjusted productivity {Ã}.
From our specification of productivity (S.40), there is in turn a one-to-one map-
ping from adjusted productivity {Ã} and the parameters {λ�δ} to production
externalities and adjusted production fundamentals {Υ � ã}:

ai =AiΥ−λ
i � Υi =

[
S∑
s=1

e−δτis HMs
Ks

]
�(S.55)

ãi = ÃiΥ−λ
i �
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where adjusted production fundamentals (ãi =Eα/εi ai) captures (i) production
fundamentals (ai) and (ii) the Fréchet scale parameter that determines the av-
erage utility from commuting to an employment location (Ei). Note that Eα/εi
enters adjusted production fundamentals isomorphically to ai. Therefore, only
the composite adjusted production fundamentals (ãi) can be recovered from
the data. Additionally, from Lemmas S.1–S.5, all locations with zero workplace
employment have zero adjusted productivity and hence zero adjusted produc-
tion fundamentals.

LEMMA S.10: Given the parameters {α�β�μ�ε�κ�λ�δ�η�ρ}, the observed
data {Q�HM�HR�K�τ}, and the solution for adjusted final goods productiv-
ity {Ã∗}, there exists a unique vector of adjusted production fundamentals ã∗ ∈RS+.

PROOF: The lemma follows immediately from productivity (S.55). Q.E.D.

We have also already established a one-to-one mapping from the subset of
parameters {α�β�μ�ε�κ} and the observed data to adjusted amenities {B̃}.
From our specification of amenities (S.41), there is in turn a one-to-one map-
ping from adjusted amenities {B̃} and the parameters {η�ρ} to residential ex-
ternalities and adjusted residential fundamentals {Ω� b̃}:

bi = BiΩ−η
i � Ωi =

[
S∑
s=1

e−ρτis HRs
Ks

]
�(S.56)

b̃i = B̃iΩ−η
i �

where adjusted residential fundamentals (b̃i = biT 1/ε
i ζ

1−β
Ri ) include (i) residen-

tial fundamentals (bi), (ii) the Fréchet scale parameter that determines the
average utility (or effective units of labor) for commuters from location i (Ti),
and (iii) the relationship between observed and residential floor prices (ζRi).
As discussed above, the parameter ζRi includes the effects of land use reg-
ulations that introduce a wedge between commercial and residential floor
prices (ξi), where we allow this wedge (ξi) to vary across blocks. Note that T 1/ε

i

and ζ1−β
Ri enter adjusted residential fundamentals isomorphically to bi. There-

fore, only the composite value of adjusted residential fundamentals (b̃i) can
be recovered from the data. Additionally, from Lemmas S.1–S.5, all locations
with zero residential employment have zero adjusted amenities and hence zero
adjusted residential fundamentals.

LEMMA S.11: Given the parameters {α�β�μ�ε�κ�λ�δ�η�ρ}, the observed
data {Q�HM�HR�K�τ}, and the solution for adjusted residential amenities {B̃∗},
there exists a unique vector of adjusted residential fundamentals b̃∗ ∈RS+.
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PROOF: The lemma follows immediately from residential amenities (S.56).
Q.E.D.

Combining the above results, we are in a position to establish the following
proposition.

PROPOSITION S.4: Given the model’s parameters {α�β�μ�ε�κ�λ�δ�η�ρ}
and the observed data {Q�HM�HR�K�τ}, there are unique vectors of adjusted
production fundamentals (ã∗) and adjusted residential fundamentals (b̃∗) that are
consistent with the data being an equilibrium of the model.

PROOF: The proposition follows immediately from Proposition S.3 and
Lemmas S.10–S.11. Q.E.D.

Therefore, the earlier Proposition S.3 established a one-to-one mapping
from the known parameters and the observed data to adjusted productivity (Ã),
amenities (B̃), and the density of development (ϕ̃). Proposition S.4 goes fur-
ther in establishing a one-to-one mapping from the known parameters and the
observed data to the two components of adjusted productivity and amenities:
production and residential externalities {Υ �Ω} and adjusted production and
residential fundamentals {ã� b̃}. As for the earlier Proposition S.3, the results in
Proposition S.4 hold regardless of whether the model has a single equilibrium
or multiple equilibria. Conditional on the parameters and the observed com-
bination of endogenous variables and fundamentals, the structural relation-
ships of the model contain enough information to uniquely determine adjusted
production and residential fundamentals {ã� b̃}, which correspond to structural
residuals that ensure the model exactly replaces the observed data as an equi-
librium.

In our structural estimation of the model in Section S.4, we use Proposi-
tions S.3 and S.4 as an input into our Generalized Method of Moments (GMM)
estimation, in which we determine both the parameters and the unobserved
adjusted fundamentals.

This completes our characterization of the one-to-one mapping from the
known parameters {α�β�μ�ε�κ�λ�δ�η�ρ} and the observed data {Q�HM�HR�
K�τ} to the unobserved location characteristics {ã� b̃� ϕ̃}.

S.4. STRUCTURAL ESTIMATION

We now turn to the structural estimation of the model, where both the pa-
rameters and the unobserved location characteristics are unknown and to be
estimated. First, in Section S.4.1, we use the results from Section S.3 to ex-
press the unobserved production and residential fundamentals {ã� b̃} as one-
to-one functions of the observed data {Q�HM�HR�K�τ} and the parameters
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{α�β�μ�ε�κ�λ�δ�η�ρ}. Therefore, these unobserved location characteristics
correspond to structural residuals of the model that are functions of the ob-
served data and parameters.

Second, in Section S.4.2, we use the resulting closed-form solutions for these
structural residuals to construct moment conditions using the exogenous vari-
ation provided by Berlin’s division and reunification. Third, in Section S.4.3,
we show how these moment conditions can be used to estimate the model’s
parameters using the Generalized Method of Moments (GMM). Fourth, in
Section S.4.4 we discuss the computationally demanding optimization problem
over the parameter vector and the algorithms that we use to solve this problem.

Fifth, in Section S.4.5, we show how the moment conditions identify the pa-
rameters, and characterize the properties of the GMM objective function in
the parameter space. We show that the GMM objective has a unique global
minimum in the parameter space. We therefore find that there is only a single
parameter vector that is consistent with the data under our identifying assump-
tions.

S.4.1. Structural Residuals

We first use the results from Section S.3 to write unobserved production
and residential fundamentals as structural residuals that are functions of the
parameters and observed data. Of the model’s eight parameters, the share of
residential floor space in consumer expenditure (1 −β), the share of commer-
cial floor space in firm costs (1 − α), and the share of land in construction
costs (1 − μ) are hard to determine from our data, because information on
consumer expenditures and factor payments at the block level is not available
over our long historical sample period. As there is a degree of consensus about
the value of these parameters, we set them equal to central estimates from the
existing empirical literature. We set the share of residential floor space in con-
sumer expenditure (1 −β) equal to 0.25, which is consistent with the estimates
in Davis and Ortalo-Magné (2011). We assume that the share of commercial
floor space in firm costs (1 − α) is 0.20, which is in line with the findings of
Valentinyi and Herrendorf (2008). We set the share of land in construction
costs (1 − μ) equal to 0.25, which is consistent with the estimates in Combes,
Duranton, and Gobillon (2014) and Epple, Gordon, and Sieg (2010) and with
micro data on property transactions for Berlin from 2000 to 2012.

Given these values for {α�β�μ}, we use the observed data X =
[Q HM HR K τ] and the structure of the model to estimate the six param-
eters determining the strength of agglomeration forces and commuting costs
Λ = [ν ε λ δ η ρ]′ (where ν = εκ is the semi-elasticity of commuting flows
with respect to travel times) and the unobserved characteristics for each loca-
tion Φ = [ϕ̃ ã b̃]. From profit maximization and zero profits (S.48) and pro-
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ductivity (S.55), the structural residual for adjusted production fundamentals
can be written as the following function of the parameters and observed data:

ãit

ãt
=

(
Qit

Qt

)1−α(
w̃it

w̃t

)α(
Υit

Υ t

)−λ
�(S.57)

where we now make time explicit with the subscript t and a bar above a variable
denotes a geometric mean so that Qt = exp{ 1

S

∑S

s=1 lnQst}; adjusted wages (w̃it)
are a function of observed workplace employment, residence employment, and
travel times {HMit�HRit� τijt} from commuting market clearing (S.42); produc-
tion externalities (Υit) are a function of observed workplace employment, geo-
graphical land area, and travel times {HMit�Ki� τijt}:

Υit =
S∑
s=1

e−δτist HMst
Ks
�

where in the estimation we exclude the own region i from the summation to
rule out a mechanical correlation through own-region workplace employment.

From the residential choice probabilities (S.15), the expected utility from
moving to the city (S.54), and amenities (S.56), the structural residual for ad-
justed residential fundamentals can be written as the following function of the
parameters and observed data:

b̃it

b̃t

=
(
HRit

HRt

)1/ε(
Qit

Qt

)1−β(
Wit

W t

)−1/ε(
Ωit

Ωt

)−η
�(S.58)

where a bar above a variable again denotes a geometric mean. Commuting
market access (Wit) is a function of adjusted wages (w̃it) and observed travel
times (τijt):

Wit =
[

S∑
s=1

(
w̃st/e

κτist
)ε]
�

where adjusted wages (w̃it) are again a function of observed workplace em-
ployment, residence employment, and travel times {HMit�HRit� τijt} from com-
muting market clearing (S.42). Residential externalities (Ωit) are a function
of observed residence employment, geographical land area, and travel times
{HRit�Ki� τijt}:

Ωit =
S∑
s=1

e−ρτist HRst
Ks
�
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where in the estimation we again exclude the own region i from the summa-
tion to rule out a mechanical correlation through own-region residence em-
ployment.

We solve for these structural residuals for all of Berlin, both before the war
and after reunification, and for West Berlin during division. To structurally es-
timate the model’s parameters, we focus on the impact of division and reuni-
fication on West Berlin, since it remained a market economy and hence we
expect the mechanisms in the model to apply.9

We assume that each structural residual consists of a time-invariant fixed
effect {ãFi � b̃Fi } and a time-varying stochastic shock {ãVit � b̃Vit }. Taking differences
before and after division (or before and after reunification), the fixed effects
are differenced out, and we obtain the following expression for the relative
changes in the structural residuals across blocks within West Berlin:

� ln
(
ãVit

ã
V

t

)
= (1 − α)� ln

(
Qit

Qt

)
+ α� ln

(
w̃it

w̃t

)
− λ� ln

(
Υit

Υ t

)
�(S.59)

� ln
(
b̃Vit

b̃
V

t

)
= 1
ε
� ln

(
HRit

HRt

)
+ (1 −β)� ln

(
Qit

Qt

)
(S.60)

− 1
ε
� ln

(
Wit

W t

)
−η ln�

(
Ωit

Ωt

)
�

where a bar above a variable again denotes a geometric mean.
The structural residuals in (S.59) and (S.60) correspond to double-

differenced adjusted production and residential fundamentals. The first dif-
ference is before and after division (or before and after reunification) and is
denoted by the time-difference operator (�) in (S.59) and (S.60). This first dif-
ference eliminates any time-invariant factors with time-invariant effects, where
we allow these fixed effects to be correlated with the endogenous variables of
the model. The second difference is across blocks within West Berlin and is
reflected in the normalization relative to the geometric mean in (S.59) and
(S.60). This second difference eliminates variables that are common across
blocks within each time period (e.g., the reservation level of utility, Ūt). It also
ensures that our results are invariant to the choice of units in which to measure
production and residential fundamentals, since this choice of units is common
across blocks and hence is differenced out.

9In contrast, the distribution of economic activity in East Berlin during division was heavily
influenced by central planning, which is unlikely to mimic market forces.
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S.4.2. Moment Conditions

Our moment conditions exploit the exogenous change in the surrounding
concentration of economic activity induced by Berlin’s division and reunifica-
tion. Our identifying assumption is that double-differenced log adjusted pro-
duction and residential fundamentals are uncorrelated with a set of indicator
variables (Ik for k ∈ {1� � � � �KI}) capturing proximity to economic activity in
East Berlin prior to division. Based on the results of our reduced-form regres-
sions, we measure proximity to economic activity in East Berlin using distance
from the pre-war CBD, and use 50 indicator variables for percentiles of this
distance distribution:

E
[
Ik ×� ln(ãit/ãt)

] = 0� k ∈ {1� � � � �KI}�(S.61)

E
[
Ik ×� ln(b̃it/b̃t)

] = 0� k ∈ {1� � � � �KI}�(S.62)

This identifying assumption requires that the systematic change in the gradi-
ent of economic activity in West Berlin relative to the pre-war CBD following
division is explained by the mechanisms in the model (the changes in commut-
ing access and production and residential externalities) rather than by system-
atic changes in the pattern of structural residuals (production and residential
fundamentals). Since Berlin’s division stemmed from military considerations
during the Second World War and its reunification originated in the wider col-
lapse of Communism, the resulting changes in the surrounding concentration
of economic activity are plausibly exogenous to changes in production and res-
idential fundamentals in West Berlin blocks.

Since the moment conditions (S.61)–(S.62) are based on double differences
in adjusted production and residential fundamentals, they only exploit relative
variation across different areas within West Berlin. Any changes in the attrac-
tiveness of West Berlin relative to the larger economy that are common across
locations within West Berlin are differenced out. We do not use moment con-
ditions in the adjusted density of development (ϕ̃i) in our estimation, because
the density of development could, in principle, respond to changes in the rel-
ative demand for floor space across locations within West Berlin as a result of
the mechanisms in the model (the changes in commuting access and produc-
tion and residential externalities).

We augment these moment conditions for adjusted production and residen-
tial fundamentals with two other moment conditions that use data on commut-
ing travel times and wages for West Berlin during division.10 The first of these
moment conditions requires that the total number of workers commuting for

10In the paper, we report over-identification checks in which we show that the model using an
estimated value of ν = εκ for one year is successful in capturing the pattern of commuting flows
in other years of the data, suggesting that the commuting parameters are stable over our sample
period.
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less than 30 minutes in the model is equal to the corresponding number in
the data. From the commuting market clearing condition (S.44), this moment
condition can be expressed as

E

[
ψHMjt −

S∑
i∈ℵj

ωjt/e
ντijt

S∑
s=1

ωst/e
ντijt

HRit

]
= 0�(S.63)

where ν = εκ; ψ is the fraction of workers that commute for less than 30 min-
utes in the data; ωit = w̃εit is a measure of transformed wages from solving the
commuting market clearing condition (S.44); and ℵj is the set of residence lo-
cations i within 30 minutes travel time of workplace location j.

The second of these moment conditions requires that the variance of log
adjusted wages (w̃it =ω1/ε

it ) in the model is equal to the variance of log wages
in the data (σ2

lnwi
) for West Berlin during division:11

E
[
(1/ε)2 ln(ωjt)2 − σ2

lnwit

] = 0�(S.64)

where transformed wages (ωi) depend solely on ν, workplace employment, res-
idence employment, and travel times from the labor market clearing condition
(S.44); ε scales the variance of log adjusted wages (w̃i) relative to the variance
of log transformed wages (ωi).

S.4.3. GMM Estimation

In this subsection, we briefly review the Generalized Method of Moments
(GMM) estimator (Hansen (1982), Cameron and Triveldi (2005)) as applied
to our setting.

One-Step GMM Estimator: Observations are indexed by i ∈ {1� � � � �N}.
The observed data are given by the N × 5 vector X = [Q HM HR K τ].
There are M moment conditions and P parameters in the P × 1 vector Λ =
[ν ε κ λ δ η ρ]′. Our moment conditions can be written as

M(Λ)= 1
N

N∑
i=1

m(Xi�Λ)= 0�(S.65)

where m(Xi�Λ) is the moment function. The one-step GMM estimator solves

Λ̂GMM = arg min

(
1
N

N∑
i=1

m(Xi�Λ)
′
)
W

(
1
N

N∑
i=1

m(Xi�Λ)

)
�(S.66)

11As reliable wage data for pre-war Berlin are unavailable, we use wages by workplace for
West Berlin during division in our moment conditions, which is consistent with our use of the
commuting data above.
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where the weighting matrix W is the identity matrix. The estimated variance–
covariance matrix for the one-step GMM estimates V̂ (Λ̂GMM) is

V̂(Λ̂GMM)=
(
Ĝ′WĜ

)−1(
Ĝ′WŜW′Ĝ

)(
Ĝ′WĜ

)−1
�

where Ĝ is the estimated M × P Jacobian of the M moment conditions with
respect to the P parameters:

Ĝ = 1
N

N∑
i=1

∂m(Xi�Λ)
∂Λ′

∣∣∣∣
Λ̂GMM

�(S.67)

The White (1980) heteroscedasticity robust estimator of the matrix S is

Ŝ0 = 1
N

N∑
i=1

m(Xi� Λ̂)m(Xi� Λ̂)′�

To allow for spatial correlation of the structural errors, we report standard
errors based on the Conley (1999) heteroscedasticity and autocorrelation con-
sistent (HAC) estimator of the matrix S:

Ŝ = Ŝ0 + 1
N

J∑
j=1

ω(j)(S.68)

×
N∑

i=j+1

(
m(Xi� Λ̂)m(Xi−j� Λ̂)′ +m(Xi−j� Λ̂)m(Xi� Λ̂)′

)
�

which can be written as

Ŝ= Ŝ0 +
J∑
j=1

 (j)
(
Ŝj + Ŝ′

j

)
�(S.69)

where J is the maximum spatial lag between observations and (j) is a spatial
weight that is equal to 1 if the spatial distance is less than the specified maxi-
mum spatial lag and zero otherwise. We set the maximum spatial lag equal to
0.5 kilometers.

Two-Step (Efficient) GMM Estimator: The two-step (efficient) GMM estima-
tor uses the efficient (optimal) weighting matrix (Ŝ−1) and solves

Λ̂
E

GMM = arg min

(
1
N

N∑
i=1

m(Xi�Λ)
′
)
Ŝ−1

(
1
N

N∑
i=1

m(Xi�Λ)

)
�
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where Ŝ is computed using the heteroscedasticity robust and autocorrelation
consistent (HAC) estimator (S.68) evaluated at the one-step GMM parameter
estimates (Λ̂GMM). The estimated variance–covariance matrix for the two-step

GMM estimates V̂ (Λ̂
E

GMM) is

V̂
(
Λ̂
E

GMM

) = 1
N

(
Ĝ′S̃−1Ĝ

)−1
�

where Ĝ is computed using (S.67) evaluated at the efficient GMM parameter

estimates (Λ̂
E

GMM); S̃ is computed using (S.68) evaluated at the efficient GMM

parameter estimates (Λ̂
E

GMM).

S.4.4. Estimation Algorithms

The GMM estimator chooses the values of the model’s parameters Λ =
[ν ε λ δ η ρ]′ to minimize the GMM objective function (S.66). This opti-
mization routine searches over alternative parameter vectors and evaluates the
moment functionm(Xi�Λ) for each parameter vector. Evaluating the moment
function for each parameter vector in turn involves solving a fixed point prob-
lem for the transformed wage vector (ω) that solves the commuting market
clearing condition (S.44). Solving this fixed point problem is computationally
demanding, because it involves solving for transformed wages in 15�937 blocks,
where the matrix of commuting probabilities includes 15�937 × 15�937 = 254
million bilateral commuting flows. We now discuss the algorithms that we use
to solve these problems and estimate the model’s parameters.

We first discuss the algorithm that we use to solve the fixed point problem
for transformed wages and hence evaluate the moment function m(Xi�Λ) for
each parameter vector. We next discuss the algorithms that we use to search
over alternative parameter vectors to minimize the GMM objective function.

Algorithms for evaluating the moment function for each parameter vector: To
evaluate the moment function for each parameter vector, we use the recursive
structure of the model, as characterized in Section S.3 above:

1. Given ν and the observed data {HR�HM�τ}, the equilibrium transformed
wage vector {ω} can be uniquely determined (up to a normalization) from the
commuting market clearing condition (S.44) alone independently of the other
equilibrium conditions of the model.

2. Given {ν�ε�β�μ}, the observed data {Q�HR�HM�τ}, and solutions for
transformed wages {ω}, adjusted amenities {B̃} can be uniquely determined
(up to a normalization) from residential choices (S.47).

3. Given {ν�ε�α�μ}, the observed data {Q�HR�HM�τ}, and solutions for
transformed wages {ω}, adjusted productivity {Ã} can be uniquely determined
from the zero-profit condition (S.48).
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4. Given {ν�ε�α�β�μ}, the observed data {Q�HR�HM�K�τ}, and solutions
for transformed wages and adjusted productivity {ω� Ã}, the adjusted density
of development {ϕ̃} can be uniquely determined from land market clearing
(S.52).

5. Given {ν�ε�α�β�μ�λ�δ}, the observed data {Q�HR�HM�K�τ}, and solu-
tions for adjusted productivity {Ã}, adjusted production fundamentals {ã} can
be determined from the specification of productivity (S.55).

6. Given {ν�ε�α�β�μ�η�ρ}, the observed data {Q�HR�HM�K�τ}, and solu-
tions for adjusted residential amenities {B̃}, adjusted residential fundamentals
{b̃} can be determined from the specification of residential amenities (S.56).

We now consider these steps in turn.
1. The commuting market clearing condition (S.44) can be written as

HM =C(ω)HR�(S.70)

where C(ω) is the matrix of commuting probabilities. Lemma S.3 establishes
that locations without positive workplace employment must have zero produc-
tivity and a zero wage. Furthermore, locations with zero residence employment
supply zero commuters to all workplace locations. Therefore, we set trans-
formed wages equal to zero for all locations with zero workplace employment,
and we set commuting probabilities equal to zero for all source locations with
zero residence employment and all destination locations with zero workplace
employment. Hence, we can reduce the dimensionality of the system of equa-
tions (S.70), such that HM is a NM × 1 vector, where NM is the number of
locations with positive workplace employment; HR is a NR × 1 vector, where
NR in the number of locations with positive residence employment; and C(ω)
is aNM ×NR matrix. Note that Lemmas S.6–S.7 establish that the wage system
(S.44) satisfies gross substitution and has a unique equilibrium. Therefore, we
solve for this unique equilibrium using the following iterative procedure. We
guess an initial transformed wage vector ω̂0 and evaluate the matrix of com-
muting probabilities C(ω̂0) to generate predicted workplace employment (ĤM)
given observed residence employment (HR). If predicted workplace employ-
ment is less than observed workplace employment for a location, we increase
our guess of the transformed wage for that location. If predicted workplace
employment is greater than observed workplace employment for a location,
we decrease our guess of the transformed wage for that location. To update
the transformed wage for a location, we compute an intelligent wage adjust-
ment factor using the numerator of the commuting probabilities in (S.44):
ω̂1 = (HM/ĤM)ω̂0. We use this intelligent adjustment factor to update our
guess of the transformed wage vector to ω̂2 = (0�5 × ω̂1) + (0�5 × ω̂0). We
then repeat the above process using this new guess for the transformed wage
vector ω̂2 until the wage system converges. Since the wage system (S.44) satis-
fies gross substitution, this iterative procedure converges rapidly to the unique
equilibrium transformed wage vector.
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2. Solving for transformed wages is the only computationally intensive com-
ponent of the evaluation of the moment function m(Xi�Λ). Having solved for
transformed wages {ω}, we can solve for adjusted amenities {B̃}, adjusted pro-
ductivity {Ã}, the adjusted density of development {ϕ̃}, adjusted production
fundamentals {ã}, and adjusted residential fundamentals {b̃} from simple ma-
nipulations of single equations in Steps 2–6 above, as shown in Propositions S.3
and S.4 in Sections S.3.1 and S.3.2 of this supplement, respectively.

Algorithms for minimizing the GMM objective function with respect to the
parameter vector: Having discussed our algorithms to evaluate the moment
function for each parameter vector Λ = [ν ε λ δ η ρ]′, the algorithms
for minimizing the GMM objective function with respect to the parame-
ter vector are straightforward. The estimation is undertaken in Matlab. To
minimize the GMM objective function with respect to the parameter vec-
tor, we experimented with using both derivative-based constrained optimiza-
tion routines (e.g., fmincon and the Knitro plug-in ktrlink for Mat-
lab) and nonderivative-based constrained optimization methods (e.g., pat-
ternsearch and simulannealbnd from the Global Optimization
Toolbox). To characterize the properties of the GMM objective in the pa-
rameter space, we also undertook a grid search over the parameter space. As
discussed in Section S.4.5 below, the GMM objective is well-behaved in the
parameter space. Therefore, we obtain similar parameter estimates from these
alternative optimization routines and from alternative initial conditions. The
results reported in the paper are estimated using patternsearch.

Computational Time: Evaluating the moment function for a given parame-
ter vector Λ = [ν ε λ δ η ρ]′, and hence solving for transformed wages for
15,937 blocks for this parameter vector, takes around 30 seconds of computing
time on the latest generation of desktop computers. This process also uses a
large amount of RAM to store the 15�937 × 15�937 = 254 million elements of
the matrix of commuting probabilities. Minimizing the GMM objective func-
tion with respect to the parameter vector takes a few days on the latest genera-
tion of desktop computers. Therefore, we trial code on a random sample of 25
percent of blocks on the latest generation of desktop machines. This reduces
the number of blocks for which we solve for transformed wages to 3,984 and
hence reduces the size of the matrix of commuting probabilities to 1.59 mil-
lion elements. Once the code is up and running, we estimate the model for the
full sample of blocks using the computer cluster of the Humboldt University of
Berlin. Minimizing the GMM objective with respect to the parameter vector
takes less than one day for the full sample using this computer cluster.

S.4.5. Identification

In Propositions S.3 and S.4, we show that we can use the equilibrium condi-
tions of the model to exactly identify adjusted production and residential fun-
damentals {ãi� b̃i} from the observed data {Q�HM�HR�K�τ} and known values
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of the model’s parameters {ν�ε�λ�δ�η�ρ}. Therefore, adjusted production
and residential fundamentals are structural residuals that are one-to-one func-
tions of the observed data and parameters, as demonstrated in Section S.4.1.
We now show how our moment conditions in terms of these structural residu-
als can be used to identify the model’s parameters (and hence recover both the
unknown parameters and unobserved adjusted fundamentals).

An important feature of our GMM estimation is that we have closed-form
solutions for the structural residuals of production and residential fundamen-
tals in terms of the observed data and parameters. Therefore, when we con-
sider alternative parameter vectors, we always condition on the same observed
endogenous variables, and use Propositions S.3 and S.4 to solve for the implied
values of production and residential fundamentals. In contrast, in simulation
methods such as simulated method of moments (SMM) or indirect inference,
these closed-form solutions are typically not available. Hence these simulation
methods are required to solve for alternative values of the endogenous vari-
ables for each parameter vector.

We identify the model’s parameters using moment conditions in terms of ad-
justed production and residential fundamentals, commuting flows, and wages,
as discussed in Section S.4.2. In principle, these moment conditions need not
uniquely identify the model’s parameters, because the objective function de-
fined by them may not be globally concave. For example, the objective function
could be flat in the parameter space or there could be multiple local minima
corresponding to different combinations of the parameters {ν�ε�λ�δ�η�ρ}
and unobserved adjusted fundamentals {ã� b̃} that are consistent with the same
observed data {Q�HM�HR�K�τ}. However, in practice, we find that the ob-
jective function is well-behaved in the parameter space, and that our moment
conditions determine a unique parameter vector. Below in this subsection, we
report the results of a grid search over the parameter space, in which we show
that the GMM objective has a unique global minimum that identifies the pa-
rameters. In Section A.3 of the separate Technical Data Appendix, we report
the results of a Monte Carlo simulation, in which we generate data for a hypo-
thetical city using known parameters, and show that our estimation approach
recovers the correct values of these known parameters.

We now consider each of the moment conditions in turn and show how they
identify the parameters {ν�ε�λ�δ�η�ρ}. We begin with the semi-elasticity of
commuting flows with respect to travel times (ν). A higher value of ν implies
that commuting flows decline more rapidly with travel times, which implies that
a larger fraction of workers commute for less than thirty minutes in the com-
muting moment condition (S.63). The recursive structure of the model implies
that none of the other parameters {ε�λ�δ�η�ρ} affect the commuting moment
condition (ε only enters through ν = εκ and ωj). To characterize the proper-
ties of the commuting moment condition in the parameter space, we undertake
a grid search over 20 possible values of ν (from 0.01 to 0.20). In Figure S.1, we
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FIGURE S.1.—Commuting moment condition (sum of squared deviations).

display the value of the commuting moment condition for West Berlin for di-
vision for each value of ν. As apparent from the figure, the moment condition
has a unique global minimum that identifies ν.

We next consider the Fréchet shape parameter determining the heterogene-
ity of commuting decisions (ε). A higher value of ε implies a smaller dispersion
in adjusted wages (w̃it) in the wage moment condition (S.64) for a given disper-
sion of transformed wages (ωit), since σ2

ln w̃it
= (1/ε)2σ2

lnωit
. From the commut-

ing market clearing condition (S.44), transformed wages (ωit) depend solely on
the parameter ν and observed workplace employment, residence employment,
and travel times. The recursive structure of the model implies that none of the
other parameters {λ�δ�η�ρ} affect the wage moment condition. To character-
ize the properties of the wage dispersion moment condition in the parameter
space, we undertake a grid search over 20 possible values of ε (from 5 to 10)
for our estimated value of ν. In Figure S.2, we display the value of the wage dis-
persion moment condition for West Berlin during division for each value of ε.
As shown in the figure, the moment condition has a unique global minimum
that identifies ε.
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FIGURE S.2.—Wage moment condition (sum of squared deviations).

We now turn to the parameters for production spillovers {λ�δ} and residen-
tial spillovers {η�ρ}. Although the division of Berlin provides a single shock,
we can separately identify these two sets of spillover parameters. The reason
is that adjusted productivity and amenities {Ãi� B̃i} can be separately recov-
ered from the observed data using the equilibrium conditions of the model (see
(S.48) and (S.47)). Given these separate measures of adjusted productivity and
amenities, the productivity spillover parameters {λ�δ} could be estimated from
a regression of changes in productivity (Ãi) on changes in production external-
ities (Υi), instrumenting changes in production externalities with indicator vari-
ables for distance grid cells from the pre-war CBD. Similarly, the residential
spillover parameters {η�ρ} could be estimated from a regression of changes
in amenities (B̃i) on changes in residential externalities (Ωi), instrumenting
changes in residential externalities with indicator variables for distance grid
cells from the pre-war CBD. The exclusion restrictions are that: (i) workplace
employment affects adjusted productivity, but not adjusted amenities, (ii) res-
idence employment affects adjusted amenities, but not adjusted productivi-
ties. Assumption (i) is the standard specification of production externalities



THE ECONOMICS OF DENSITY 51

in urban economics and assumption (ii) models residential externalities sym-
metrically to production externalities, as discussed in Section S.2.7. From the
moment conditions for changes in production and residential fundamentals
(S.61)–(S.62), our GMM estimator is similar to these instrumental variable
regressions, but jointly estimates the parameters {ν�ε�λ�δ�η�ρ} as part of a
system that includes our moment conditions for commuting and wages.

The division of Berlin implies a fall in production externalities (Υi) for the
parts of West Berlin close to the Berlin Wall. If this fall in production externali-
ties does not fully explain the changes in adjusted productivity (Ãit) close to the
Berlin Wall, the remainder will be explained by a change in adjusted produc-
tion fundamentals (ãit). The parameters {λ�δ} control the magnitude of the
fall in production externalities and its rate of decay with travel time from East-
ern concentrations of workplace employment. In Figure S.3, we show the mean
changes in log adjusted production fundamentals following division across the
distance grid cells from the pre-war CBD used in the estimation (i) for the
estimated parameters, (ii) for stronger agglomeration forces (larger λ and δ
than estimated), and (iii) for weaker agglomeration forces (smaller λ and δ

FIGURE S.3.—Production fundamentals distance grid cell moments (division).
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FIGURE S.4.—Production fundamentals moment condition (sum of squared deviations).

than estimated). From the moment condition (S.61), the production spillover
parameters {λ�δ} are chosen to make the mean changes in log adjusted pro-
duction fundamentals (S.57) as flat as possible across the distance grid cells
from the pre-war CBD.

To characterize the properties of the adjusted production fundamentals mo-
ment conditions in the parameter space, we undertake a grid search over 20
possible values of λ (from 0.02 to 0.10) and 20 possible values of δ (from 0.01
to 0.101) for our estimated values of ν and ε (400 parameter configurations).
In Figure S.4, we display the sum of the squared mean changes in log adjusted
production fundamentals across the distance grid cells for our baseline speci-
fication pooling division and reunification. We construct contours through this
sum of squared mean changes in log adjusted production fundamentals for
the 400 values of {λ�δ} in the parameter space (shown on the horizontal and
vertical axes). As shown in the figure, the sum of the squared mean changes
in log adjusted production fundamentals has a unique global minimum in the
parameter space that identifies {λ�δ}.

Similarly, the division of Berlin implies a fall in residential externalities (Ωi)
for the parts of West Berlin close to the Berlin Wall. If this fall in residential
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FIGURE S.5.—Residential fundamentals distance grid cell moments (division).

externalities does not fully explain the changes in adjusted amenities (B̃i) close
to the Berlin Wall, the remainder will be explained by a change in adjusted resi-
dential fundamentals (b̃i). The parameters {η�ρ} control the magnitude of the
fall in residential externalities and its rate of decay with travel time from East-
ern concentrations of residence employment. In Figure S.5, we show the mean
changes in log adjusted residential fundamentals following division across the
distance grid cells from the pre-war CBD used in the estimation (i) for the
estimated parameters, (ii) for stronger agglomeration forces (larger η and ρ
than estimated), and (iii) for weaker agglomeration forces (smaller η and ρ
than estimated). From the moment condition (S.62), the residential spillover
parameters {η�ρ} are chosen to make the mean changes in log adjusted res-
idential fundamentals (S.58) as flat as possible across the distance grid cells
from the pre-war CBD.

To characterize the properties of the adjusted residential fundamentals mo-
ment conditions in the parameter space, we undertake a grid search over 20
possible values of η (from 0.11 to 0.18) and 20 possible values of ρ (from 0.31
to 1.01) for our estimated values of ν and ε (400 parameter configurations).
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FIGURE S.6.—Residential fundamentals moment condition (sum of squared deviations).

In Figure S.6, we display the sum of the squared mean changes in log adjusted
residential fundamentals for our baseline specification pooling division and re-
unification. We construct contours through this sum of squared mean changes
in log adjusted residential fundamentals for the 400 values of {η�ρ} in the pa-
rameter space (shown on the horizontal and vertical axes). As shown in the
figure, the sum of the squared mean changes in log adjusted residential fun-
damentals has a unique global minimum in the parameter space that identifies
{η�ρ}.

S.5. COUNTERFACTUALS

Counterfactual Exercises: We consider three sets of counterfactual exercises.
First, we simulate the impact of division using the calibrated adjusted fun-
damentals from 1936. We capture division in the model by assuming infinite
costs of trading the final good, infinite commuting costs (κ → ∞), infinite
rates of decay of production externalities (δ→ ∞), and infinite rates of de-
cay of residential externalities (ρ→ ∞) across the Berlin Wall. We choose the
reservation level of utility in the wider economy following division to ensure
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that the total population of West Berlin (H) is equal to its value in the data
in 1986.

Second, we simulate the impact of reunification using calibrated adjusted
fundamentals for 1986 for West Berlin and values of these fundamentals for
either 2006 or 1936 for East Berlin. We capture reunification in the model
by assuming that the costs of trading the final good across the Berlin Wall
fall from infinity to zero and by assuming that commuting costs, the decay of
production externalities, and the decay of residential externalities across the
Berlin Wall fall from infinity to their estimated values. We choose the reser-
vation level of utility in the wider economy following reunification to ensure
that the total population of Greater Berlin (H) is equal to its value in the data
in 2006.

Third, we simulate the impact of changes in the matrix of bilateral travel
times between locations (τ) as a result of a change in transport technology.
In particular, we examine the impact of the automobile on the location of eco-
nomic activity within Berlin, by using the model to solve for the equilibrium dis-
tribution of economic activity in 2006 using travel time measures based solely
on the public transport network. To focus on the impact of the change in trans-
port technology in Berlin, we hold the reservation utility in the wider economy
constant.

We undertake these counterfactuals for the special case of the model with
exogenous productivity and amenities (λ= η= 0 and hence Ã = ã and B̃ = b̃)
and for the estimated values of the agglomeration parameters {λ�δ�η�ρ}. We
also examine counterfactual changes in the model’s agglomeration parame-
ters {λ�δ�η�ρ}, including no production externalities (λ = 0), no residential
externalities (η= 0), and half the rates of spatial decay of production and res-
idential externalities ({δ�ρ} half their estimated values).

In the special case of the model with exogenous productivity and ameni-
ties, there is a unique equilibrium (as shown in Proposition S.2 above). There-
fore, these counterfactuals yield determinate predictions for the spatial dis-
tribution of economic activity. In contrast, in the presence of agglomeration
forces, there is the potential for multiple equilibria in the model. We assume
the equilibrium selection rule of solving for the closest counterfactual equi-
librium to the observed equilibrium prior to the counterfactual. In particu-
lar, we use the values of the endogenous variables from the observed equi-
librium as our initial guess for the counterfactual equilibrium. Using these
initial values, we solve the model’s system of equations for a new value of
the endogenous variables. We then update our guess for the counterfactual
equilibrium based on a weighted average of these new values and the initial
values. Finally, we repeat this process until the new values and initial values
converge. Our goal in these counterfactuals is not to determine the unique im-
pact on economic activity, but rather to examine whether the model with the
estimated agglomeration parameters is capable of generating counterfactual
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treatment effects for division and reunification close to the observed treatment
effects.

Our structural estimation exactly explains the observed data, because we
solve for unique values of the location fundamentals {ãi� b̃i� ϕ̃i} that replicate
the observed data as an equilibrium of the model. In contrast, our counterfac-
tuals assume alternative values for the location fundamentals and agglomer-
ation parameters, and hence the model’s predictions are no longer necessar-
ily equal to the observed data. We undertake counterfactuals holding location
fundamentals constant at their values before division or reunification to show
that the model can explain the observed treatment effects in the data through
its agglomeration and dispersion forces rather than through changes in loca-
tion fundamentals.

Exogenous Location Characteristics: To solve the counterfactuals with exoge-
nous location characteristics, we use the following solution algorithm. We ob-
serve land area and travel times {Ki� τij}. We assume values for the model’s
parameters {α�β�μ�ν�ε} and the adjusted location fundamentals {ãi� b̃i� ϕ̃i},
where in this special case of the model Ãi = ãi and B̃i = b̃i since λ = η = 0.
We assume starting values for floor prices, adjusted wages, and the fraction of
adjusted floor space used commercially equal to their values in the observed
equilibrium prior to the counterfactual {Q0

i � w̃
0
i � θ̃

0
i }. Given these starting val-

ues, we use the equilibrium conditions of the model to solve for new predicted
values for these endogenous variables {Q1
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If the new predicted values for the endogenous variables of the model are equal
to the starting values:{

Q1
i � w̃

1
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0
i

}
�

we have found the counterfactual equilibrium. If the new predicted values for
the endogenous variables of the model are not equal to the starting values, we
update the endogenous variables of the model using a weighted average of the
starting values and the new predicted values:

Q2
i = ςQ0

i + (1 − ς)Q1
i �(S.83)

w̃2
i = ςw̃0

i + (1 − ς)w̃1
i �

θ̃2
i = ςθ̃0

i + (1 − ς)θ̃1
i �

where 0 < ς < 1. We continue to solve the above system of equations for the
equilibrium conditions of the model until the endogenous variables converge
to the counterfactual equilibrium.

As shown in Lemmas S.1–S.3, any location i ∈ 
S = {Ãi > 0� B̃i > 0} with
strictly positive values of both productivity and amenities remains incompletely
specialized; any location i ∈ 
M = {Ãi > 0� B̃i = 0} with strictly positive pro-
ductivity and zero amenities remains completely specialized in commercial ac-
tivity; and any location i ∈ 
R = {Ãi = 0� B̃i > 0} with zero productivity and
strictly positive amenities remains completely specialized in residential activ-
ity. Furthermore, as shown in Proposition S.2, the general equilibrium of the
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model with exogenous location characteristics is unique. Therefore, the above
algorithm converges rapidly to this unique equilibrium, and these counterfac-
tuals yield determinate predictions for the spatial distribution of economic ac-
tivity.

Endogenous Agglomeration Forces: To solve the counterfactuals with endoge-
nous agglomeration forces, we use a directly analogous solution algorithm. We
observe land area and travel times {Ki� τij}. We assume values for the model’s
parameters {α�β�μ�ν�ε�λ�δ�η�ρ} and the adjusted location fundamentals
{ãi� b̃i� ϕ̃i}. We assume starting values for floor prices, adjusted wages, and
the fraction of adjusted floor space used commercially equal to their values in
the observed equilibrium prior to the counterfactual {Q0

i � w̃
0
i � θ̃

0
i }. Given these

starting values, we use the equilibrium conditions of the model to solve for
new predicted values for these endogenous variables {Q1

i � w̃
1
i � θ̃

1
i }. We expand

the equilibrium conditions of the model (S.71)–(S.82) to include the endoge-
nous determination of adjusted productivity and amenities as a function of
production and residential externalities:
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We continue to solve the system of equations for the equilibrium conditions
of the model until the endogenous variables converge to the counterfactual
equilibrium. As discussed above, in the presence of endogenous agglomera-
tion forces, there is the potential for multiple equilibria in the model. Our use
and updating of the endogenous variables from the observed equilibrium as
our initial guess for the counterfactual equilibrium implies that our equilib-
rium selection rule is to solve for the closest counterfactual equilibrium to the
observed equilibrium. Our goal in these counterfactuals is not to determine
the unique impact of division or reunification, but rather to examine whether
the model with the estimated agglomeration and dispersion forces is capable
of generating counterfactual treatment effects close to the observed data.

Transport Technology Counterfactual: Although the focus of our analysis is
on the division and reunification of Berlin, our quantitative model provides a
tractable platform for undertaking a range of counterfactuals. As an illustra-
tion of the model’s potential, our final counterfactual examines the impact of
the automobile on the location of economic activity within Berlin, by using the
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model to solve for the counterfactual equilibrium distribution of economic ac-
tivity in 2006 using travel time measures based solely on the public transport
network in 2006.

Our 2006 travel time measures using only public transport are typically
higher than our baseline 2006 measures that weight public transport and the
automobile by their modal shares. Nevertheless, the public transport network
is far more extensive in Berlin than in American cities (on average, public
transport, including walking and cycling, accounts for around two thirds of
journeys in our 2006 data) and is relatively more important for commuting into
the central city. Table S.I of this supplement compares the actual and counter-
factual travel times. As shown in rows 1–4 of the table, the unweighted average
travel time across all possible bilateral connections with positive values of ei-
ther workplace or residence employment rises from 51 minutes to 70 minutes,

TABLE S.I

TRANSPORT TECHNOLOGY COUNTERFACTUALa

Transport Technology
Row Variable Counterfactual

Unweighted Actual Travel Time (mins)
1. Mean 50�88
2. Standard Deviation 12�52

Unweighted Counterfactual Travel Time (mins)
3. Mean 69�65
4. Standard Deviation 26�19

Weighted Actual Travel Time (mins)
5. Mean (Actual Commuting Weights) 32�03

Weighted Counterfactual Travel Time (mins)
6. Mean (Actual Commuting Weights) 37�81

Total City Employment
7. Counterfactual/Actual 86�46%

Total City Output
8. Counterfactual/Actual 87�55%

Log Change in Block Floor Prices
9. Mean −20�04%

10. Mean Above Median Treatment Block −29�21%
11. Mean Below Median Treatment Block −10�87%

Weighted Counterfactual Travel Time (mins)
12. Mean (Counterfactual Commuting Weights) 29�52

aCounterfactual using travel time measures based solely on the public transport network in 2006. Unweighted
mean and standard deviation travel times across all possible bilateral connections with positive values of either work-
place or residence employment. Weighted mean travel times weight these bilateral travel times by commuting prob-
abilities in either the actual or the counterfactual equilibrium. Above median treatment blocks are those with an
above median increase in average unweighted travel times across bilateral connections with positive values of either
workplace or residence employment.
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and its standard deviation rises from 13 minutes to 26 minutes (since remote
locations with high actual travel times and poor public transport connections
are most affected). As implied by our gravity equation estimation in Section 6.1
of the paper, commuting flows are higher on average for shorter travel times.
Therefore, as shown in rows 5–6 of the table, if we weight travel times by the
actual bilateral commuting flows in the 2006 equilibrium, average travel times
rise from 32 minutes to 38 minutes.

The commuting technology facilitates a separation of workplace and resi-
dence, enabling people to work in relatively high productivity locations (typi-
cally in more central locations) and live in high amenity locations (typically in
suburban locations). The deterioration of the commuting technology triggers
an outflow of workers from Berlin, until floor prices fall such that expected
utility in Berlin is again equal to the unchanged reservation level of utility in
the wider economy. Total city employment and output fall by around 14 and
12 percent, respectively (rows 7–8 of the table). Output falls by less than em-
ployment, because labor is only one of the two factors of production and the
total supply of floor space is held constant. On average, floor prices decline
by 20 percent (row 9 of the table). This decline in floor prices is substantially
larger for blocks experiencing above median increases in average unweighted
travel times (typically in remote locations) than for blocks experiencing below
median increases in these travel times (typically in more central locations), as
shown in rows 10–11 of the table.

The general equilibrium response of the economy to the deterioration in
the commuting technology is that locations become less specialized in work-
place and residence activity, as shown in Figure S.7 of this supplement. Panel A
shows that blocks that are larger importers of commuters before the change in
transport technology (larger net commuting on the horizontal axis) experience
larger declines in workplace employment (on the vertical axis). Panel B shows
that blocks that are larger exporters of commuters before the change in trans-
port technology (smaller net commuting on the horizontal axis) experience
larger declines in residence employment (on the vertical axis). A corollary of
this decline in block specialization is a change in the pattern of worker sorting
across bilateral pairs of workplace and residence locations. Even though travel
times for a typical bilateral pair have increased, this change in worker sorting
implies that average travel times weighted by commuting flows in the counter-
factual equilibrium (row 12 of Table S.I) marginally decline relative to average
travel times weighted by commuting flows in the actual equilibrium (row 5 of
the table). Taken together, these results highlight that the model provides a
framework that can be used to analyze the endogenous change in the organi-
zation of economic activity within cities in response to changes in the transport
network and other interventions (such as planning regulations).
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61FIGURE S.7.—Simulated change in workplace and residence employment. Note: variables on horizontal and vertical axes normalized to have a
mean of zero.
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S.6. DATA SOURCES AND DEFINITIONS

The data section of the main paper provides an overview of our various data
sources. This section of the supplement provides more detail. Section S.6.1
discusses the construction of the data on employment by residence for the pre-
war period. Section S.6.2 discusses the construction of the data on employment
by workplace for the pre-war period. Section S.6.3 discusses the construction
of the travel times in minutes between blocks. Section S.6.4 discusses the con-
struction of the data on other block characteristics. Section S.6.5 discusses the
commuting survey data. Section S.6.6 discusses the comparison of our standard
land values data with micro data on property transactions.

S.6.1. Employment at Place of Residence 1930s

The 1933 census published data on population for each of the 20 pre-war
districts of Berlin and also the population of each street or segment of street
in Berlin. We digitized the information on population by street and merged it
to the modern block structure. In a first step, we used information on street
name changes provided on http://www.luise-berlin.de to convert the historical
street names into the modern street names. In a second step, we obtained a
data set from the Statistical Office of Berlin (“Senatsverwaltung für Berlin”)
that contains information on the modern statistical blocks to which each street
in Berlin is contiguous. We use this information to distribute the population
of each street equally across all blocks which are contiguous with the street.
In doing so, we take into account whether blocks are water areas or parks to
avoid population being allocated to these blocks. In the case of unmatched
streets, we correct misspellings of street names in both data sets by using an
algorithm that matches streets within the same district and subdistrict (“Orts-
teil”) whose names only differ by one letter. In a small number of cases, we
are unable to match a street to a block, in which case we spread the street’s
population equally across all blocks within the same subdistrict that have pos-
itive population. Finally, we convert our 1933 estimates of population in each
of the modern blocks into employment by residence by using the labor force
participation rates for each district (“Bezirk”) from the 1933 census.

S.6.2. Employment at Workplace 1930s

To estimate the 1933 workplace employment in each modern block, we take a
two-step approach. In the first step, we create estimates of 1933 private sector
employment in each modern block, and in a second step, we estimate 1933
public sector employment in each block.

For the first step, we use two key data sources. First, the 1933 census pub-
lished data on employment at workplace in private enterprises in each district
of Berlin (“Mitteilungen des Statistischen Amts der Stadt Berlin” 1935). Data

http://www.luise-berlin.de
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at a finer spatial scale were not published in pre-war censuses. Second, we ob-
tained a copy of the 1931 company register of Berlin (“Handelsregister”). The
company register contains the name and registered address of each firm in
Berlin and in 1931 lists just over 47,000 firms. We have entered the name and
address of each of these firms. We use information on street name changes pro-
vided on http://www.luise-berlin.de to convert the historical addresses to their
modern equivalent. The Statistical Office of Berlin supplied us with a file that
lists, for each modern postal address in Berlin, the block in which this address
is located. We use this concordance to create a count variable which counts
how many firms were registered in each modern block in 1931. Due to incom-
plete or defective addresses, we managed to allocate 42,818 of the 47,098 firms
listed in the company register to a modern block.

To spread total private sector workplace employment across blocks within
each district, we first estimate the relationship at the district level between log
private sector workplace employment from the 1933 census and the log number
of firms from the company register. In Figure S.8, we display the values for
these variables for each district as well as the regression relationship between
them. As apparent from the figure, we find a close relationship between private
sector workplace employment and the number of firms at the district level,
with a regression R2 of over 0.75. We use the estimated coefficients from this
regression and the number of firms in each block to construct a predicted share
of that block in total district private sector workplace employment. We then use
these predicted employment shares to allocate the district totals across blocks
within districts.

FIGURE S.8.—District employment and number of firms. Note: the graph shows the correla-
tion between the log number of firms in the 1931 company register in each district of Berlin and
the log of total private-sector workplace employment in the 1933 census. The R2 of the regression
is 0.77.

http://www.luise-berlin.de
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FIGURE S.9.—Block employment and establishments 1987. Note: the graph shows the rela-
tionship between log workplace employment and the log number of establishments across blocks
in West Berlin (as reported in the 1987 census) and the regression relationship between them.
The R2 of the regression is 0.57.

Since this first step uses predicted employment shares to allocate district to-
tals across blocks within districts, the district totals for private sector workplace
employment in our data are the same as in the 1933 census. To further assess
the reliability of predicting workplace employment at the block level using in-
formation on the number of firms, we use the 1987 census data for West Berlin,
which reports both workplace employment and the number of establishments
by block. In Figure S.9, we display log workplace employment and the log num-
ber of establishments for all blocks with more than three workers and estab-
lishments (for confidentiality reasons, the disaggregated totals for blocks are
only reported for observations with more than three cases). As apparent from
the figure, we also find a close relationship between these two variables at the
block level, with a regression R2 of 0.57.

In the second step, we construct public sector employment in 1933 for each
modern block by combining data from the 1933 census with detailed infor-
mation on the location of public buildings prior to the Second World War.
The occupational census of 1933 reports city-level totals of public sector em-
ployees and their breakdown into subcategories such as civil servants in the
federal and city administration, primary and secondary school teachers, police
officers, or clergymen. To allocate these occupation-specific totals for Berlin
across blocks, we used a detailed street map of Berlin showing the location of
each public building prior to the Second World War and its purpose (e.g., fed-
eral government ministries, public utilities, schools). This map was compiled by
the Allied occupation authorities in 1945 (War Office (1945)). We allocate the
employment of each occupational group (e.g., primary school teachers) across
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the buildings in which workers from this group are typically employed (e.g.,
primary schools).

S.6.3. Travel Times Between Blocks in Berlin

To determine commuting costs in the model, we need to know the minimum
travel time between each of the 15,937 blocks of Berlin in our data, that is,
nearly 254 million (15,937×15,937) bilateral connections. We have computed
these travel times for 1936, 1986, and 2006. In 1936, commuting to work by
car was rare, and hence we construct minimum travel times using the public
transport network.12 In 1986 and 2006, we construct minimum travel times by
combining information on the public transport network and driving times by
car.

To construct minimum travel times between each pair of blocks i and j by
public transport for the three years, we collected information on the under-
ground rail (“U-Bahn”), suburban rail (“S-Bahn”), tram (“Strassenbahn”), and
bus (“Bus”) network of Berlin in each year. These networks were digitized us-
ing ArcGIS and we used the ArcGIS Network Analyst to compute the fastest
connection between locations i and j. In this computation, we allow passengers
to combine all modes of public transport and walking to minimize the travel
time between i and j. We use the following assumed travel speeds for each
mode of transport: 5 km/h for walking, 25 km/h for underground and suburban
rail travel, 14.5 km/h for trams, and 14.3 km/h for buses. Whenever passengers
change between modes of transport (e.g., changing from the suburban rail to
a bus), we assume that 3 minutes are lost in waiting time at each connection
point. These speeds of travel are taken from Vetter (1928). We assume that
these speeds are the same in all three years of our data set, which is supported
by comparing these travel speeds to current public transport timetables. Note
that these assumptions imply that the travel times from i to j and j to i are the
same.

To construct minimum driving times by car between each pair of blocks i and
j for 1986 and 2006, we obtained an ArcGIS shapefile of the modern street
network of Berlin from a commercial geographical data provider “Geofabrik”
(www.geofabrik.de). This shapefile contains information on the maximum and
average speed on all streets in and around Berlin, and also restrictions on driv-
ing such as one-way streets or prohibited turns. Therefore, the driving times
from i to j and from j to i do not have to be the same, because of one-way
streets and other similar restrictions on road traffic. Using the ArcGIS Net-
work Analyst, we computed the minimum driving times between all pairs of
locations i and j using the average travel speed on each street. As a check on

12Leyden (1933) reported data on travel by mode of transport in pre-war Berlin, in which travel
by car accounts for less than 10 percent of all journeys.

http://www.geofabrik.de
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FIGURE S.10.—ArcGIS versus Google. Note: the graph shows bilateral travel times in minutes
for 100 randomly selected blocks in Berlin. The travel time for these 10,000 bilateral connections
was computed using both Google’s public use license and the ArcGIS Network Analyst. The
correlation between these two measures of driving time is 0.94.

our ArcGIS calculations, we compared the resulting bilateral minimum driv-
ing times for 100 randomly selected blocks to those computed using Google
Maps.13

Figure S.10 shows a scatter plot of our ArcGIS travel times and the Google
travel times for the 10,000 bilateral connections between the 100 randomly
chosen blocks. The correlation between the two estimates of bilateral driving
times within Berlin is nearly 0.94. Our estimates of the car travel times are
slightly lower than Google’s, with the median difference being 7.9 minutes. To
compute the 1986 car travel times, we restricted the road network to streets in
West Berlin. We also adjusted the shapefile to account for the small number of
changes in the main road network of West Berlin between 1986 and 2006.14

To combine the minimum travel times by public transport and car in 1986
and 2006 into a single travel time measure, we use data on the proportion of
journeys undertaken by these two modes of transport in Berlin. In particular,
we use information on the modal split of commuting journeys in each of the
12 present-day districts of Berlin from Senatsverwaltung für Stadtentwicklung
(2011). In these data, the average share of journeys by car is about one third.
We use these data to estimate a simple logit regression that explains the share
of journeys undertaken by car in each of the 12 modern districts as a function

13Under its public use license, Google restricts users to a small number of requests for travel
times per day. Using Google’s public use license to compute all 254 million bilateral driving times
would have taken several years.

14The main changes to the urban motorway system between 1986 and 2006 include the exten-
sion of the A113 between Adlershof and Kreuz Schönefeld, two small extensions of the A100,
and the construction of the A111.
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FIGURE S.11.—Car journeys in overall trips. Note: the graph shows the results of a logit regres-
sion that relates the share of car journeys in overall journeys in a district in 2010 to the average
time saving from undertaking a trip originating in this district by car rather than public transport.
See the main text for data sources and details of the estimation.

of the average difference in driving times by car and public transport between
blocks in this district and any other block in Berlin. In particular, we estimate
the following regression:

ln
(

card
1 − card

)
= β1 +β2Δd + εd�(S.88)

where d indexes districts, card is the share of journeys undertaken by car, and
Δd is the average difference in travel times between public transport and driv-
ing over all bilateral block connections involving district d. Figure S.11 displays
the fitted values from this regression against the actual values of the data.

Using the parameter estimates from this regression, we predict the share of
journeys undertaken by car for each bilateral commute between two blocks in
Berlin. Our final estimate of the average travel time between two blocks i and
j is the weighted average of the car and public transport travel times using the
predicted car and public transport shares as weights. We use the same weights
to combine the public transport and car travel times for 1986.15

S.6.4. Block Characteristics

We have collected data on observable block characteristics from a number
of sources, as discussed below.

15We were unable to find data on the modal split of commuting journeys in Berlin in 1986
by district. However, data in Kloas, Kuhfeld, and Kunert (1988) show that the overall share of
journeys by car was very similar to 2006.
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Block Land Area and Centroids: We used ArcGIS and a shapefile provided
by the Statistical Office of Berlin (“Senatsverwaltung”) to compute geographic
land area in square meters and the centroid of each block for 2006. As dis-
cussed in the data section in the paper, we hold the 2006 block structure con-
stant for all years in our data.

Distance to the Nearest U-Bahn and S-Bahn Station: From each block cen-
troid, we compute the straight-line distance in meters to the nearest under-
ground (U-Bahn) and suburban (S-Bahn) railway station in 1936, 1986, and
2006. Shapefiles showing the exact routing (line shapes) of the rail lines as
well as the exact locations of the stations (point shapes) in 2006 were provided
by the Statistical Office of Berlin (“Senatsverwaltung”). We used historic net-
work plans to identify those stations that did not exist in 1936 or 1986. Scans
of historic network plans are available from the website of Berlin Verkehr
(www.berliner-verkehr.de). To create shapefiles of the 1936 and 1986 networks,
we start from the 2006 shapefiles and delete those parts of the networks that
did not exist in 1936 or 1986. In this backward adjustment process, a small
number of stations were added that existed in 1936, but were no longer served
in 2006 (and 1986).

Green Areas: We used ArcGIS and a shapefile provided by the Statistical
Office of Berlin (“Senatsverwaltung”) to compute the straight-line distance in
meters from each block centroid to the edge of the nearest green area (public
parks, forests, and other green public areas in 2005). We also compute the
square meters of green area for each block.

Water Areas: We used ArcGIS and a shapefile provided by the Statistical
Office of Berlin (“Senatsverwaltung”) to compute the straight-line distance in
meters from each block centroid to the edge of the nearest canal, river, or lake.
We also create a dummy variable for blocks that are adjacent to a canal, river,
or lake.

Schools: We used ArcGIS and a shapefile provided by the Statistical Office
of Berlin (“Senatsverwaltung”) to compute the straight-line distance in meters
from each block centroid to the nearest school in 2006.

Noise: To capture the average noise level within a block, we used ArcGIS and
data provided by the Statistical Office of Berlin (“Senatsverwaltung”) on the
(estimated) average noise levels expressed in decibels (db) for 10 × 10 meter
grid cells. For each block, we compute the average noise level across the grid
cells that fall within the block.

Land Use: The 2006 land value map published by the Committee of Val-
uation Experts (“Gutachterausschuss für Grundstückswerte”) defines zones
(“Bodenrichtwertzonen”) that are homogeneous in terms of land value, build-
ing density, and land use. We use this map to create four dummy variables for
whether the typical land use in a block is commercial, residential, industrial, or
mixed.

Second World War Destruction: We constructed the share of the built-up area
in a block that was destroyed during the Second World War as reported on a

http://www.berliner-verkehr.de
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map from the Agency for Cartography of Berlin in 1945 (“Gebäudeschäden im
Gebiet der Stadt Berlin, Stand 1945, Topographische Karte 1:25000,” Heraus-
geber: Hauptamt für Vermessung der Stadt Berlin).

Listed Buildings: The number of listed buildings in a block in 2008 was cre-
ated based on a shapefile provided by the Statistical Office of Berlin (“Sen-
atsverwaltung”).

Urban Regeneration Policies Post-Reunification: We constructed three dummy
variables indicating whether a block belongs to a renewal area (“Sanierungs-
gebiet”) designated in 2002, a renewal area designated in 2005, or an area of
urban restructuring (“Stadtumbau West”) designated in 2005. Two shapefiles
showing the exact boundaries of renewal areas and areas of urban restructuring
were provided by the Statistical Office of Berlin (“Senatsverwaltung”).

Government Buildings Post-Reunification: We construct a dummy variable for
whether a major government building was located in a block in 2006 using
a map showing all government buildings in 2006 provided by the Statistical
Office of Berlin (“Senatsverwaltung”).

Wages: The Statistical Yearbook of Berlin reports mean wages for each dis-
trict of West Berlin in 1986. The data refer to mean annual wages of blue collar
workers working in the manufacturing industry.

S.6.5. Commuting Survey Data

Micro Commuting Survey Data 2008: Ahrens, Liesske, Wittwer, and Hubrich
(2009) reported the results of a representative commuting survey in Berlin and
several other large German cities for 2008. The survey records, for each trip
that a respondent makes on the day of the survey, the start and end district,
time travelled in minutes, and purpose of the trip. In these data, we observe
for Berlin 7,984 journeys between a worker’s place of residence and her place
of work. We use these data to construct a matrix of bilateral commuting prob-
abilities between the 12 districts of Berlin in 2008.

We also use these data to construct the fractions of commuters with travel
times in the following eight bins: 0–10, 10–20, 20–30, 30–40, 40–50, 50–60,
60–75, and 75–90 minutes. In constructing the fractions of commuters for these
travel time bins, we exclude the negligible fraction of workers that commute for
longer than 90 minutes (in one direction from residence to workplace), who are
likely to be influenced by factors outside the model. We therefore construct the
fractions of commuters for these travel time bins conditional on commuting for
90 minutes or less, so that the fractions add up to 1.

Commuting Survey Data 1982: Brög (1982) reported the results of a rep-
resentative commuting survey of 27,560 households in West Berlin and West
Germany. The data include 291 households in West Berlin and report travel
times in minutes between place of residence and place of work. We use these
data to construct the fraction of commuters with travel times in the following
eight bins: 0–10, 10–20, 20–30, 30–40, 40–50, 50–60, 60–75, and 75–90 minutes.
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We again exclude the negligible fraction of workers that commute for longer
than 90 minutes (in one direction from residence to workplace) and construct
the commuting fractions conditional on commuting for 90 minutes or less so
that they add up to 1.

Commuting Survey Data 1930s: The pre-war commuting data were taken
from Feder (1939). In the second half of the 1930s, Gottfried Feder carried
out a survey of commuting in Berlin. He surveyed a total of 24,336 workers
across eight work locations in Berlin that he intended to be representative for
the city and which included industry, service, and public sector employers. He
asked respondents for the travel time in minutes from their place of residence
to their place of work. We use these data to construct the fraction of com-
muters with travel times in the following six bins: 0–20, 20–30, 30–45, 45–60,
60–75, and 75–90 minutes. We again exclude the negligible fraction of workers
that commute for longer than 90 minutes (in one direction from residence to
workplace) and construct the commuting fractions conditional on commuting
for 90 minutes or less so that they add up to 1.

S.6.6. Micro Data on Property Transactions

We follow the standard approach in the urban literature of assuming that
floor space L is supplied by a competitive construction sector that uses geo-
graphic land K and capital M as inputs. Following Combes, Duranton, and
Gobillon (2014) and Epple, Gordon, and Sieg (2010), we assume that the pro-
duction function takes the Cobb–Douglas form: Li =Mμ

i K
1−μ
i . We now show

that these assumptions are consistent with the micro data on property transac-
tions for Berlin from 2000 to 2012.

From the first-order condition for profit maximization in the construction
sector, the ratio of capital to land area depends on the price of land relative to
the price of capital:

Mi

Ki
= μ

1 −μ
Ri

P
�(S.89)

where Ri is the price of land and P is the common price of capital across all
locations. From the zero-profit condition, total revenue from floor space equals
total payments to capital and land:

QiLi

Ki
= PMi +RiKi

Ki
�(S.90)

Combining these two conditions, total floor space multiplied by the price of
floor space and divided by land area is a linear transformation of the price of
land:

QiLi

Ki
= 1

1 −μRi�(S.91)
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We have obtained access to confidential data from the Committee of Valua-
tion Experts, which contain property transactions in Berlin from 2000 to 2012.
In this data set, we observe transaction prices, which correspond to QiLi, as
well as the corresponding lot sizes, which correspond to Ki. We compare prop-
erty prices divided by the lot size in these transactions data to the standard
land values reported by the Committee that are used in our empirical analysis.
This comparison serves two purposes. First, a strong correlation will indicate
that the standard land values provided by the Committee are truly reflective of
the market valuation. Second, an approximately linear relationship will suggest
that the Cobb–Douglas functional form is a reasonable approximation for the
construction sector in Berlin.

We adjust the observed prices in the property transactions data to 2006
prices using a Case–Shiller type repeated sales approach at the block level. Un-
like in conventional hedonic analysis of Qi, there is no need to correct for hous-
ing attributes like the number of bathrooms or bedrooms because (QiLi)/Ki
is directly observed in the data. However, since housing is durable and depre-
ciates over time, it is important to control for the age of the building stock. We
use the following specification to predict the average (log) price for a newly
developed property per unit of geographic area (in meters squared) in a block
in 2006 prices:

ln(Vkt)=
∑
m

bAD
m ADm +

∑
n�=2006

bYD
n YDn +Φi + εkt�(S.92)

where k indexes properties; i indexes blocks and t indexes time; Vkt is the trans-
action price of a property k sold in year t divided by its lot size (land area); ADm

is a full set of dummies for ten age cohorts m (0–5 years is the base category);
YDn is a full set of dummies for year n (2006 is the base category); εkt is a
stochastic error; and Φi is a time-invariant block specific fixed effect, which we
recover for further analysis.

The parameter estimates are reported in Table S.II. The transaction data
set has sufficient observations to recover block fixed effects for 8,907 blocks.
Figure S.12 provides a comparison of this measure of (QiLi)/Ki to the 2006
land values assessed by the Committee of Valuation Experts, which correspond
to Ri. As predicted by our framework, the two measures are log-linearly related
with a slope of approximately 1. The transactions data we obtained also allow
for a validation of the ratio of floor space to land area (GFZ) reported by the
Committee. Figure S.13 compares the mean floor area divided by the lot size
for each block in the property transactions data to the values reported by the
Committee. Again, we find that the two variables are closely correlated with a
log slope of approximately 1.
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TABLE S.II

MICRO DATA ON PROPERTY TRANSACTIONSa

ln(Transaction Price/Lot Size)

Coefficient Standard Error

Year: 2000 −0�073∗∗∗ (0�020)
Year: 2001 −0�105∗∗∗ (0�021)
Year: 2002 −0�142∗∗∗ (0�020)
Year: 2003 −0�176∗∗∗ (0�019)
Year: 2004 −0�193∗∗∗ (0�020)
Year: 2005 −0�124∗∗∗ (0�017)
Year: 2007 0�082∗∗∗ (0�017)
Year: 2008 −0�004 (0�017)
Year: 2009 −0�014 (0�019)
Year: 2010 0�065∗∗∗ (0�018)
Year: 2011 0�203∗∗∗ (0�018)
Year: 2012 0�279∗∗∗ (0�023)
Age cohort: 5 to 15 years −0�297∗∗∗ (0�031)
Age cohort: 15 to 25 years −0�569∗∗∗ (0�035)
Age cohort: 25 to 35 years −0�783∗∗∗ (0�035)
Age cohort: 35 to 45 years −1�014∗∗∗ (0�036)
Age cohort: 45 to 55 years −1�155∗∗∗ (0�038)
Age cohort: 55 to 65 years −1�021∗∗∗ (0�039)
Age cohort: 65 to 75 years −0�988∗∗∗ (0�033)
Age cohort: 75 to 85 years −1�058∗∗∗ (0�035)
Age cohort: 85 to 95 years −0�967∗∗∗ (0�039)
Age cohort: 95 to 105 years −0�822∗∗∗ (0�039)
Age cohort: 105 to 115 years −0�823∗∗∗ (0�042)
Age cohort: 115 to 125 years −0�859∗∗∗ (0�048)
Age cohort: 125 to 135 years −0�892∗∗∗ (0�070)
Age cohort: 135 to 145 years −0�883∗∗∗ (0�071)
Age cohort: 145 to 155 years −0�854∗∗∗ (0�135)
Age cohort: 155 to 165 years −1�419∗∗∗ (0�206)
Age cohort: 165 to 175 years −1�481∗∗∗ (0�509)
Age cohort: 175 to 185 years −0�430 (0�314)
Age cohort: 185 to 195 years −0�607∗∗∗ (0�115)
Age cohort: 195 to 205 years −0�811∗ (0�462)
Age cohort: 205 to 215 years −0�619∗∗ (0�306)

Block fixed effects Yes
R2 0�769
Observations 51�275

aThis table reports the results of estimating a Case–Shiller type repeated sales specification at the block level using
the micro data on property transactions from 2000–2012. Standard errors in parentheses are heteroscedasticity robust
and clustered by block. ∗ significant at 10%; ∗∗ significant at 5%; ∗∗∗ significant at 1%.
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FIGURE S.12.—Transactions prices versus assessed value.

FIGURE S.13.—Density of development versus assessed GFZ.
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