LARGE ANTIPODAL FAMILIES

BALÁzS CSIKÓS, GYÖRGY KISS, KONRAD J. SWANEPOEL, AND P. OLOFF DE WET

Dedicated to Ted Bisztriczky on the occasion of his 60th birthday

Abstract

A family $\left\{A_{i} \mid i \in I\right\}$ of sets in \mathbb{R}^{d} is antipodal if for any distinct $i, j \in I$ and any $p \in A_{i}, q \in A_{j}$, there is a linear functional $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that $\varphi(p) \neq \varphi(q)$ and $\varphi(p) \leq \varphi(r) \leq \varphi(q)$ for all $r \in \bigcup_{i \in I} A_{i}$. We study the existence of antipodal families of large finite or infinite sets in \mathbb{R}^{3}.

1. Introduction

A set A of points in \mathbb{R}^{d} is antipodal if for every pair of distinct points $x, y \in A$ there is a linear functional φ on \mathbb{R}^{d} such that $\varphi(x) \neq \varphi(y)$ and $\varphi(x) \leq \varphi(z) \leq \varphi(y)$ for all $z \in A$. This notion was first introduced by Klee [7]. Danzer and Grünbaum [3] showed that an antipodal set in \mathbb{R}^{d} has size at most 2^{d}.

A set A of points in \mathbb{R}^{d} is strictly antipodal if for every pair of distinct points $x, y \in A$ there is a linear functional φ on \mathbb{R}^{d} such that $\varphi(x)<\varphi(z)<\varphi(y)$ for all $z \in A \backslash\{x, y\}$. Grünbaum introduced this notion in [6], where he also formulated the statement that a strictly antipodal set in \mathbb{R}^{3} has size at most 5 . A complete proof of this fact follows from the classification of antipodal 3-polytopes given by T. Bisztricky and K. Böröczky [2]. These and related notions were subsequently studied by many authors. See for example the recent papers by Bisztriczky and others $[1,2]$ and the survey [10] for further details.

In this paper we consider antipodal and strictly antipodal families.
Definition 1. Let $\left\{A_{i} \mid i \in I\right\}$ be a family of subsets of \mathbb{R}^{d}. We say that this family is antipodal if for any $i, j \in I, i \neq j$, and any $p \in A_{i}, q \in A_{j}$, there is a linear functional $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that $\varphi(p) \neq \varphi(q)$ and $\varphi(p) \leq \varphi(r) \leq \varphi(q)$ for any $r \in \bigcup_{i \in I} A_{i}$.
Definition 2. Let $\left\{A_{i} \mid i \in I\right\}$ be a family of subsets of \mathbb{R}^{d}. We say that this family is strictly antipodal if for any $i, j \in I, i \neq j$, and any $p \in A_{i}, q \in A_{j}$, there is a linear functional $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that $\varphi(p)<\varphi(r)<\varphi(q)$ for any $r \in \bigcup_{i \in I} A_{i} \backslash\{p, q\}$.
Definition 3. Let $k(d)$ [resp. $\left.k^{\prime}(d)\right]$ be the largest k such that for each m there exists an antipodal [resp. strictly antipodal] family of k sets in \mathbb{R}^{d}, each of size at least m.

Makai and Martini [8] considered the problem of determining $k(d)$ and $k^{\prime}(d)$. They noted the following:

$$
\text { - } 2^{d-1} \leq k(d) \leq 2^{d}-1, \text { in particular, } 4 \leq k(3) \leq 7
$$

[^0]- $k^{\prime}(d)>c^{d}$ for some absolute constant $c>1$;
- $k(2)=2$ and $k^{\prime}(2)=1$;
- $3 \leq k^{\prime}(3) \leq 5$.

They conjectured that $k(d)=2^{d-1}$ (in particular, $k(3)=4$) and $k^{\prime}(3)=3$.
Our results are the following:
(1) We classify antipodal families of 4 segments in \mathbb{R}^{3} (Theorem 1).
(2) There does not exist a strictly antipodal collection of four $\mathcal{C}^{1} \operatorname{arcs}$ in \mathbb{R}^{3} (Theorem 2).
(3) There exists a strictly antipodal collection of 4 sets in \mathbb{R}^{3}, with three of them infinite and the fourth a singleton (Theorem 3).
(4) There does not exist an antipodal collection of six sets in \mathbb{R}^{3} of arbitrary large size. In particular, $k(3) \leq 5$ (Theorem 4).
Theorem 2 supports the conjecture of Makai and Martini that $k^{\prime}(3)=3$. On the other hand, Theorem 3 gives a near-counterexample.

2. Classification of antipodal families of 4 SEGMENTS in \mathbb{R}^{3}

Examples of antipodal families of four segments in \mathbb{R}^{3}

(a) Consider the cube Q with vertices $A_{1}=(0,0,0), A_{2}=(1,0,0), A_{3}=(1,1,0)$, $A_{4}=(0,1,0), A_{5}=(0,0,1), A_{6}=(1,0,1), A_{7}=(1,1,1), A_{8}=(0,1,1)$. Choosing subsegments of the 4 parallel sides $\left[A_{1}, A_{5}\right],\left[A_{2}, A_{6}\right],\left[A_{3}, A_{7}\right],\left[A_{4}, A_{8}\right]$, we obtain an antipodal family of 4 segments.
(b) Taking subsegments of the sides $\left[A_{1}, A_{5}\right]$, $\left[A_{2}, A_{6}\right]$, $\left[A_{3}, A_{4}\right]$, $\left[A_{7}, A_{8}\right]$, we also obtain an antipodal family of 4 segments.
Since antipodality is an affine invariant property, affine images of the above examples are also examples of weakly antipodal collections.

Theorem 1. Any antipodal family of four segments in \mathbb{R}^{3} is affinely equivalent to one of the examples described in (a) and (b) above.

Proof. Denote the segments by I_{1}, I_{2}, I_{3} and I_{4}.
Lemma 1. If two of the segments are coplanar then they are parallel but not collinear.

Proof. Indeed, suppose that, say I_{1} and I_{2} are coplanar. Choose inner points $p \in I_{1}$ and $q \in I_{2}$ and a linear function $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\varphi(p)<\varphi(q)$ and $\varphi(p) \leq$ $\varphi(r) \leq \varphi(q)$ for all $r \in \bigcup_{i=1}^{4} I_{i}$. Then φ is constant both on I_{1} and on I_{2}. Thus, I_{1} and I_{2} are contained in the distinct parallel planes $\Pi_{1}=\left\{x \in \mathbb{R}^{3} \mid \varphi(x)=\varphi(p)\right\}$ and $\Pi_{2}=\left\{x \in \mathbb{R}^{3} \mid \varphi(x)=\varphi(q)\right\}$ respectively. Since I_{1} and I_{2} are coplanar and contained in two distinct parallel planes, they must be parallel and noncollinear.

We shall proceed by case separation. If the segments were coplanar, then by Lemma 1 they would be parallel and noncollinear. However, in that case two of the segments would lie strictly in between the straight lines of the other two segments and the antipodaliy condition would obviously fail for those two segments. We may therefore suppose that the segments are not coplanar.

Consider the case when the segments are parallel to one another. Then intersecting the straight lines of the segments by a transversal plane, we obtain four noncollinear points in antipodal position in the plane. It is well known that four noncollinear points in the plane are in antipodal position if and only if they are
vertices of a parallelogram [3]. This means that the four segments are on the four parallel sides of a parallelepiped. In this case, the family is affinely equivalent to an example of type (a).

By Lemma 1, it remains to study the case when two of the segments, say I_{1} and I_{2} are located on two skew lines. Denote by $\Sigma_{1} \supset I_{1}$ and $\Sigma_{2} \supset I_{2}$ the planes parallel to both I_{1} and I_{2}. According to the antipodality assumption, the other two segments I_{3} and I_{4} are in the closed slab between Σ_{1} and Σ_{2}.

Suppose first that there are no three mutually skew lines among the lines generated by the four segments. Then, by Lemma 1, both I_{3} and I_{4} are parallel either to I_{1} or to I_{2}. If, for example, I_{3} is parallel to I_{1}, then I_{3} must be in the plane Σ_{1}, otherwise the antipodality condition would fail for any pair of inner points $p \in I_{3}$ and $q \in I_{2}$.

It is also easy to see, that I_{3} and I_{4} cannot be parallel to I_{1} simultaneously, since in that case one of the coplanar parallel lines spanned by the segments I_{1}, I_{3} and I_{4}, say the line of I_{j} would separate the other two and then the antipodality condition would fail for inner points of I_{ℓ} and I_{j} for $\ell \in\{1,3,4\} \backslash\{j\}$.

These observations yield that if there are no three mutually skew lines among the lines generated by the four segments, then I_{1} and I_{2} are parallel to exactly one of I_{3} and I_{4}, and if we assume without loss of generality, that $I_{1} \| I_{3}$ and $I_{2} \| I_{4}$, then $I_{3} \subset \Sigma_{1}$ and $I_{4} \subset \Sigma_{2}$.

Applying the antipodality property for inner points of I_{1} and I_{3} and also for inner points of I_{2} and I_{4} we obtain two pairs of parallel supporting planes of the union of the four segments. These planes together with Σ_{1} and Σ_{2} bound a parallelepiped. The segments $I_{1}\left\|I_{3} \nVdash I_{2}\right\| I_{4}$ are located on the opposite faces of this parallelepiped, so in this case the family is affinely equivalent to an example of type (b).

The final and less trivial case is when 3 of the segments, say I_{1}, I_{2} and I_{3} are on three mutually skew lines. We show that this case gives a contradiction. Applying the antipodality condition for each pair of I_{1}, I_{2} and I_{3} we obtain 3 slabs bounded by supporting planes of the union of the intervals. These slabs intersect in a parallelepiped with the property that each of I_{1}, I_{2}, I_{3} is contained in an edge of the parallelepiped. Since parallelepipeds are affinely equivalent to the unit cube Q used in the construction of the examples, we can assume without loss of generality that $I_{1} \subset\left[A_{3}, A_{4}\right], I_{2} \subset\left[A_{5}, A_{8}\right], I_{3} \subset\left[A_{2}, A_{6}\right]$.

We know that I_{4} must be in the unit cube Q.
Let i, j, k be an arbitrary permutation of $1,2,3$. If I_{4} were parallel to I_{i}, then the mutually skew segments I_{4}, I_{j}, I_{k} would lie on the edges of a rectangular box $Q^{\prime} \subsetneq Q$. However, this would yield a contradiction, as such a box Q^{\prime} cannot contain I_{i}. This means that $I_{1}, I_{2}, I_{3}, I_{4}$ must be mutually skew. In particular, I_{4} cannot lie on any of the faces of the cube Q.

For $p, q \in\{1,2,3,4\}, p \neq q$, denote by $\Sigma_{p q}$ the plane containing I_{p} and parallel to I_{q}.

The straight line spanned by I_{4} cuts the boundary of the cube Q at two points, call them S and T. We consider separate cases depending on the location of S and T.

If S and T are on opposite faces of Q, say $S \in \Sigma_{21}$ and $T \in \Sigma_{12}$, then the plane Σ_{42} cuts the cube in a rectangle, which has opposite sides through S and T parallel to I_{2}. Since this rectangle must be different from the face $\Sigma_{32} \cap Q, I_{3}$ and I_{2} must
be on opposite sides of Σ_{42}. This is a contradiction showing that S and T must lie on neighboring faces of Q.

The common edge e of the faces containing S and T either contains one of the segments I_{1}, I_{2}, I_{3} (i.e., $e \in\left\{A_{3} A_{4}, A_{5} A_{8}, A_{2} A_{6}\right\}$) or contains none of them. The latter case can be split into two further subcases depending on whether the vertices of the common edge are covered by the union of the three straight lines spanned by I_{1}, I_{2}, I_{3} (i.e., $e \in\left\{A_{4} A_{8}, A_{5} A_{6}, A_{2} A_{3}\right\}$) or not (i.e., $e \in\left\{A_{1} A_{2}, A_{1} A_{4}, A_{1} A_{5}\right.$, $\left.\left.A_{7} A_{3}, A_{7} A_{6}, A_{7} A_{8}\right\}\right)$.

Consider first the case, when S and T are on faces meeting along an edge containing one of the first three segments. We may suppose without loss of generality that $S \in \Sigma_{31}$ and $T \in \Sigma_{32}$. Then the plane Σ_{43} cuts off a triangular prism from the cube Q which contains the segment I_{4} but does not contain the segments I_{1} and I_{2}. This is a contradiction since Σ_{43} may not separate I_{3} from I_{1} and I_{2}.

Suppose now that the common edge e of the faces of Q containing S and T does not contain any of the segments I_{1}, I_{2}, I_{3}, but the endpoints of e are covered by the three straight lines spanned the segments. (See the left side of Figure 1.) Permuting the rôle of the indices if necessary, we may suppose that $S \in \Sigma_{31}$ and $T \in \Sigma_{21}$. The plane Σ_{42} cuts the face $Q \cap \Sigma_{21}$ in a segment $T^{\prime} T^{\prime \prime}$, where $T \in T^{\prime} T^{\prime \prime} \| I_{2}$, $T^{\prime} \in\left[A_{5}, A_{6}\right], T^{\prime \prime} \in\left[A_{7}, A_{8}\right]$. The intersection of Σ_{42} with the plane Σ_{31} must be the line $T^{\prime} S$. Since I_{2} and I_{3} are on the same side of Σ_{42}, the line $T^{\prime} S$ must intersect the boundary of the square $Q \cap \Sigma_{31}$ at a point $C_{1} \in\left[A_{2}, A_{6}\right]$, for which $I_{3} \subset\left[C_{1}, A_{2}\right]$. The plane Σ_{24} is parallel to Σ_{42} and the segments I_{1} and I_{3} are on the same side of it, therefore the line $\Sigma_{24} \cap \Sigma_{13}$ is parallel to $T^{\prime} C_{1}$, goes through A_{8} and intersects the segment $\left[A_{3}, A_{4}\right]$ at a point C_{2} for which $I_{1} \subset\left[A_{3}, C_{2}\right]$. The triangles $\triangle A_{6} C_{1} T^{\prime}$ and $\triangle A_{4} A_{8} C_{2}$ are similar, thus $A_{6} T^{\prime}: A_{4} C_{2}=A_{6} C_{1}: A_{4} A_{8}<1$, implying $A_{6} T^{\prime}<A_{4} C_{2}$.

Now we repeat the above arguments flipping the rôles of S and T and that of I_{2} and I_{3}. Σ_{43} intersects the face $Q \cap \Sigma_{31}$ in a segment $\left[S^{\prime}, S^{\prime \prime}\right]$, where $S \in$ $\left[S^{\prime}, S^{\prime \prime}\right] \|\left[A_{6}, A_{2}\right], S^{\prime} \in\left[A_{5}, A_{6}\right], S^{\prime \prime} \in\left[A_{1}, A_{2}\right]$. The intersection of Σ_{43} with the face $Q \cap \Sigma_{21}$ is a segment $\left[S^{\prime}, C_{3}\right]$ containing T and ending at a point $C_{3} \in\left[A_{5}, A_{8}\right]$ for which $I_{2} \subset\left[C_{3}, A_{8}\right]$. The plane $\Sigma_{34} \| \Sigma_{43}$ intersects the face $Q \cap \Sigma_{12}$ in a segment $\left[A_{2}, C_{4}\right] \|\left[S^{\prime}, C_{3}\right]$, the endpoint C_{4} of which satisfies $C_{4} \in\left[A_{3}, A_{4}\right]$ and $I_{1} \subset\left[C_{4}, A_{4}\right]$. Using similarity of the triangles $\triangle A_{5} S^{\prime} C_{3}$ and $\triangle A_{3} C_{4} A_{2}$ we obtain $A_{3} C_{4}>S^{\prime} A_{5}$.
I_{1} must be in the intersection of the segments $\left[A_{4}, C_{4}\right]$ and $\left[A_{3}, C_{2}\right]$. On the other hand,

$$
A_{3} C_{2}+C_{4} A_{4}=2 A_{3} A_{4}-A_{3} C_{4}-A_{4} C_{2}<2 A_{5} A_{6}-S^{\prime} A_{5}-A_{6} T^{\prime}<A_{3} A_{4}
$$

which means that $\left[A_{4}, C_{4}\right]$ and $\left[A_{3}, C_{2}\right]$ are disjoint, a contradiction.
The last case that we should consider is when the common edge e of the faces of Q containing S and T has a vertex not covered by any of the straight lines spanned by the segments I_{1}, I_{2}, I_{3}. (See the right side of Figure 1.) By the similar rôle of I_{1}, I_{2} and I_{3} and that of A_{1} and A_{7}, we may assume that $S \in \Sigma_{32}$, and $T \in \Sigma_{21}$. The plane Σ_{42} intersects the face $Q \cap \Sigma_{21}$ in a segment $\left[T^{\prime}, T^{\prime \prime}\right]$ parallel to I_{2} and passing through T. Suppose $T^{\prime \prime}$ is the endpoint on $\left[A_{7}, A_{8}\right]$. The intersection of the plane Σ_{42} with the boundary of the cube Q is a rectangle $T^{\prime} S^{\prime} S^{\prime \prime} T^{\prime \prime}$, where the side $\left[S^{\prime}, S^{\prime \prime}\right] \|\left[T^{\prime}, T^{\prime \prime}\right]$ goes through S, and S^{\prime} is located on the edge $\left[A_{2} A_{6}\right]$ in such a way that the segment I_{3} is contained in the segment $\left[S^{\prime}, A_{2}\right]$. Similarly to the previous case, Σ_{24} cuts the cube Q in a rectangle $A_{5} C_{1} C_{2} A_{8}$,

Figure 1.
where C_{2} is a point of the segment $\left[A_{3}, A_{4}\right]$ for which $I_{1} \subset\left[A_{3}, C_{2}\right]$. The plane Σ_{34} cuts the cube Q in a rectangle $A_{2} A_{6} C_{3} C_{4}$, where C_{3} is a point of the segment [$\left.A_{5}, A_{8}\right]$, for which $I_{2} \subset\left[C_{3}, A_{8}\right]$. Similarly, the plane Σ_{43} cuts Q in a rectangle $C_{5} C_{6} C_{7} C_{8}$, where $T \in\left[C_{5}, C_{8}\right]\left\|\left[A_{6}, C_{3}\right], S \in\left[C_{7}, C_{8}\right]\right\| I_{3}$, and C_{6} is located on the segment $\left[A_{3}, A_{4}\right]$ in such a way that $I_{1} \subset\left[C_{6}, A_{4}\right]$. Finally, the intersection of the cube with the plane Σ_{41} is a rectangle $C_{9} C_{10} C_{11} C_{12}$, where $C_{10} \in\left[A_{6}, A_{7}\right]$, $T \in\left[C_{10}, C_{11}\right] \| I_{1}, C_{9} \in\left[A_{2}, A_{6}\right], S \in\left[C_{9}, C_{10}\right]$ and $I_{3} \subset\left[A_{2}, C_{9}\right]$. As before, I_{1} must be in the intersection of the segments $\left[A_{3}, C_{2}\right]$ and $\left[C_{6}, A_{4}\right]$. Therefore, to obtain a contradiction, it is enough to show that these two segments are disjoint by proving $C_{2} A_{4}>C_{6} A_{4}$.

As the triangles $\triangle A_{5} A_{6} C_{3}, \triangle A_{7} C_{5} C_{8}$, and $\triangle C_{10} T C_{8}$ are similar and $A_{5} A_{6}>$ $A_{5} C_{3}$ we have $A_{7} C_{5}>A_{7} C_{8}, A_{7} T^{\prime \prime}=T C_{10}>C_{8} C_{10}$ and

$$
\begin{equation*}
C_{8} A_{6}>C_{5} A_{8}=C_{6} A_{4} \tag{1}
\end{equation*}
$$

Comparing the right triangles $\triangle A_{7} T^{\prime \prime} S^{\prime \prime}$ and $\triangle C_{8} C_{10} S$ we obtain

$$
\begin{equation*}
\angle S^{\prime} S C_{9}=\angle C_{8} C_{10} S>\angle A_{7} T^{\prime \prime} S^{\prime \prime}=\angle A_{4} C_{2} A_{8} \tag{2}
\end{equation*}
$$

Comparison of the right triangles $\triangle S S^{\prime} C_{9}$ and $\triangle C_{2} A_{4} A_{8}$ using (2) and $A_{4} A_{8}>$ $S^{\prime} C_{9}$ yields

$$
\begin{equation*}
C_{2} A_{4}>S^{\prime} S=C_{8} A_{6} \tag{3}
\end{equation*}
$$

which together with (1) gives $C_{2} A_{4}>C_{6} A_{4}$.

3. Non-EXistence of Strictly antipodal collections of four \mathcal{C}^{1} arcs

Definition 4. We call a subset Γ of \mathbb{R}^{d} a \mathcal{C}^{1} arc if there is an injective continuously differentiable map $\gamma:[0,1] \rightarrow \mathbb{R}^{n}$ with nowhere $\mathbf{0}$ derivative the image of which equals Γ.
Theorem 2. There are no strictly antipodal collections consisting of four \mathcal{C}^{1} arcs in \mathbb{R}^{3}.

Proof. Suppose that there is a strictly antipodal family of four arcs $\Gamma_{1}, \ldots, \Gamma_{4}$ parametrized by the injective regular maps $\gamma_{i}:[0,1] \rightarrow \mathbb{R}^{3}, i=1, \ldots, 4$. Choose four arbitrary parameters $t_{1}, \ldots, t_{4} \in(0,1)$. The strict antipodality condition for $\gamma_{i}\left(t_{i}\right) \in \Gamma_{i}$ and $\gamma_{j}\left(t_{j}\right) \in \Gamma_{j}$ gives two parallel supporting planes of the union $\bigcup_{l=1}^{4} \Gamma_{l}$
passing through $\gamma_{i}\left(t_{i}\right)$ and $\gamma_{j}\left(t_{j}\right)$ respectively. The tangent of Γ_{i} at $\gamma_{i}\left(t_{i}\right)$ and the tangent of Γ_{j} at $\gamma_{j}\left(t_{j}\right)$ must be parallel to these supporting planes, otherwise Γ_{i} or Γ_{j} would cross one of the supporting planes. This means, that taking the tangent of Γ_{i} at $\gamma_{i}\left(t_{i}\right)$ and a sufficiently small segment on it around $\gamma_{i}\left(t_{i}\right)$ for $i=1, \ldots, 4$, we obtain four segments in antipodal position. By Theorem 1, in any antipodal collection of four segments, every segment is parallel to another one. This means that $\gamma_{1}^{\prime}\left(t_{1}\right)$ is parallel to one of the vectors $\gamma_{2}^{\prime}\left(t_{2}\right), \gamma_{3}^{\prime}\left(t_{3}\right), \gamma_{4}^{\prime}\left(t_{4}\right)$. Keeping t_{2}, t_{3}, t_{4} fixed and letting t_{1} run over the interval $(0,1)$ we see that the direction of $\gamma_{1}^{\prime}(t)$ can take only 3 different values. Since it changes continuously as well, the direction of γ_{1}^{\prime} must be constant, so Γ_{1} must be a segment. A similar argument shows that all the curves must be straight line segments, but it is obvious that straight line segments cannot be in strict antipodal position.

4. Construction of a strictly antipodal collection of three \mathcal{C}^{1} arcs AND A SINGLETON

Theorem 3. There exists a strictly antipodal family of four sets consisting of three \mathcal{C}^{1} arcs and a single point.

Proof. Consider the curves

$$
\begin{aligned}
& \gamma_{1}(t)=\left(1+t, a t^{2}-a, 2+a-a t^{2}\right) \\
& \gamma_{2}(t)=\left(2+a-a t^{2}, 1+t, a t^{2}-a\right) \\
& \gamma_{3}(t)=\left(a t^{2}-a, 2+a-a t^{2}, 1+t\right)
\end{aligned}
$$

where $a=1 / 100$ and $t \in[-1 / 10000,1 / 10000]$. We prove that $O=(0,0,0), \Gamma_{1}=$ $\operatorname{im} \gamma_{1}, \Gamma_{2}=\operatorname{im} \gamma_{2}$ and $\Gamma_{3}=\operatorname{im} \gamma_{3}$ form a strictly antipodal collection. Because of the rotational symmetry, it is enough to show the following two claims:
(1) If $P=\gamma_{1}\left(t_{0}\right)$, then there are two parallel planes \mathcal{S}_{O} and \mathcal{S}_{P} such that $\left(\Gamma_{1} \backslash\{P\}\right) \cup \Gamma_{2} \cup \Gamma_{3}$ is contained in the open slab bounded by \mathcal{S}_{O} and \mathcal{S}_{P}.
(2) If $P=\gamma_{1}\left(t_{0}\right)$ and $Q=\gamma_{2}\left(s_{0}\right)$, then there are two parallel planes \mathcal{S}_{P} and \mathcal{S}_{Q} such that $\{O\} \cup\left(\Gamma_{1} \backslash\{P\}\right) \cup\left(\Gamma_{2} \backslash\{Q\}\right) \cup \Gamma_{3}$ is contained in the open slab bounded by \mathcal{S}_{P} and \mathcal{S}_{R}.
(1) The tangent vector to γ_{1} at P is $\mathbf{e}=\left(1,2 a t_{0},-2 a t_{0}\right)$. Let $\mathbf{f}=(0,4,-1)$, and let \mathcal{S}_{O} and \mathcal{S}_{P} be the parallel planes having normal vector $\mathbf{n}=\mathbf{e} \times \mathbf{f}=\left(6 a t_{0}, 1,4\right)$ and passing through O and P, respectively. The open slab bounded by \mathcal{S}_{O} and \mathcal{S}_{P} contains $\Gamma_{1} \backslash\{P\}$, because \mathbf{e} is a tangent to the parabola Γ_{1} at P. Elementary calculation gives that

$$
\mathbf{n} \cdot \overrightarrow{O P}=8+3 a+6 a t_{0}+3 a t_{0}^{2}>8
$$

If $Q_{s}=\gamma_{2}(s) \in \Gamma_{2}$ and $R_{s}=\gamma_{3}(s) \in \Gamma_{3}$ are arbitrary points, then

$$
\begin{aligned}
& \mathbf{n} \cdot \overrightarrow{O Q_{s}}=6 a t_{0}\left(2+a-a s^{2}\right)+(1+s)+4\left(a s^{2}-a\right)=1+c_{2}, \\
& \mathbf{n} \cdot \overrightarrow{O R_{s}}=6 a t_{0}\left(a s^{2}-a\right)+\left(2+a-a s^{2}\right)+4(1+s)=6+c_{3},
\end{aligned}
$$

where $\left|c_{2}\right|<0.02$ and $\left|c_{3}\right|<0.02$, so

$$
\mathbf{n} \cdot \overrightarrow{O O}=0<\mathbf{n} \cdot \overrightarrow{O Q_{s}}<\mathbf{n} \cdot \overrightarrow{O R_{s}}<8<\mathbf{n} \cdot \overrightarrow{O P}
$$

hence the open slab bounded by \mathcal{S}_{O} and \mathcal{S}_{P} contains $\Gamma_{2} \cup \Gamma_{3}$.
(2) The tangent vector to γ_{2} at Q is $\mathbf{g}=\left(-2 a s_{0}, 1,2 a s_{0}\right)$. Let now \mathcal{S}_{P} and \mathcal{S}_{Q} be the parallel planes having normal vector

$$
\mathbf{n}=\mathbf{e} \times \mathbf{g}=\left(2 a t_{0}+4 a^{2} s_{0} t_{0},-2 a s_{0}+4 a^{2} s_{0} t_{0}, 1+4 a^{2} s_{0} t_{0}\right)
$$

and passing through P and Q, respectively. The open slab bounded by \mathcal{S}_{P} and \mathcal{S}_{Q} contains $\Gamma_{1} \backslash\{P\}$, because \mathbf{e} is a tangent to the parabolic arc Γ_{1} at P, and it also contains $\Gamma_{2} \backslash\{Q\}$, because \mathbf{g} is a tangent to the parabolic arc Γ_{2} at Q. Elementary calculation gives that

$$
\begin{aligned}
\mathbf{n} \cdot \overrightarrow{O P}= & \left(2 a t_{0}+4 a^{2} s_{0} t_{0}\right)\left(1+t_{0}\right)+\left(-2 a s_{0}+4 a^{2} s_{0} t_{0}\right)\left(a t_{0}^{2}-a\right)+ \\
& \quad+\left(1+4 a^{2} s_{0} t_{0}\right)\left(2+a-a t_{0}^{2}\right) \\
= & 2+d_{1} \\
\mathbf{n} \cdot \overrightarrow{O Q}= & \left(2 a t_{0}+4 a^{2} s_{0} t_{0}\right)\left(2+a-a s_{0}^{2}\right)+\left(-2 a s_{0}+4 a^{2} s_{0} t_{0}\right)\left(1+s_{0}\right)+ \\
& \quad+\left(1+4 a^{2} s_{0} t_{0}\right)\left(a s_{0}^{2}-a\right) \\
= & -a+d_{2}
\end{aligned}
$$

where $\left|d_{1}\right|<0.02$ and $\left|d_{2}\right|<0.07 a$. If $R_{u}=\gamma_{3}(u) \in \Gamma_{3}$ is an arbitrary point, then

$$
\begin{aligned}
\mathbf{n} \cdot \overrightarrow{O R_{u}=}= & \left(2 a t_{0}+4 a^{2} s_{0} t_{0}\right)\left(a u^{2}-a\right)+\left(-2 a s_{0}+4 a^{2} s_{0} t_{0}\right)\left(2+a-a u^{2}\right)+ \\
& \quad+\left(1+4 a^{2} s_{0} t_{0}\right)(1+u) \\
= & 1+d_{3}
\end{aligned}
$$

where $\left|d_{3}\right|<0.02$. So

$$
\mathbf{n} \cdot \overrightarrow{O Q}<0=\mathbf{n} \cdot \overrightarrow{O O}<\mathbf{n} \cdot \overrightarrow{O R_{u}}<\mathbf{n} \cdot \overrightarrow{O P}
$$

hence the open slab bounded by \mathcal{S}_{P} and \mathcal{S}_{Q} contains $\{O\} \cup \Gamma_{3}$, too.

5. Non-Existence of large antipodal families of six sets

Theorem 4. For some $m \in \mathbb{N}$ there does not exist an antipodal family $\left\{A_{i} \mid i \in I\right\}$ with $\# I=6$ and each $\# A_{i} \geq m$. In particular, $k(3) \leq 5$.

Proof. We use the fact, independently proved in [11] and [2], that an antipodal set of 6 points in \mathbb{R}^{3} can be partitioned into two parts of 3 points each, with the two parts contained in two parallel planes.

Let $\left\{A_{1}, \ldots, A_{6}\right\}$ be an antipodal family in \mathbb{R}^{3} with each $\# A_{i} \geq m$. For each choice of points $a_{i} \in A_{i}, 1 \leq i \leq 6$, the set $\left\{a_{1}, \ldots, a_{6}\right\}$ is an antipodal set. By the above fact, there is a partition $\{J, K\}$ of $\{1, \ldots, 6\}$ into two sets of size three, such that $\left\{a_{i} \mid i \in J\right\}$ and $\left\{a_{i} \mid i \in K\right\}$ are on parallel planes. Note that the parallel planes are uniquely determined by the partition, otherwise both sets of size 3 would be collinear. However, it follows from the definition of antipodal family that no three points from distinct sets can be collinear.

There are $\binom{6}{3}$ such partitions. By the multipartite analogue of Ramsey's theorem (due to Erdős [4]; see also Chapter 5, Theorem 4 of [5]) it follows that if m is sufficiently large, then there exist a fixed partition $\left\{J_{0}, K_{0}\right\}$ of $\{1, \ldots, 6\}$ and subsets $B_{i} \subseteq A_{i}, 1 \leq i \leq 6$, with $\# B_{i}=2$, such that $\left\{a_{i} \mid i \in J_{0}\right\}$ and $\left\{a_{i} \mid i \in K_{0}\right\}$ are on parallel planes for any choice of $a_{i} \in B_{i}$. Without loss of generality $J_{0}=\{1,2,3\}$ and $K_{0}=\{4,5,6\}$.

It is now easily seen that the pair of parallel planes is independent of the choice of $a_{i} \in B_{i}$. Indeed, fix $a_{1} \in B_{1}, a_{2} \in B_{2}, a_{3} \in B_{3}$, and let Π_{1} be the plane through a_{1}, a_{2}, a_{3}. Then for any $a_{4} \in B_{4}$, the plane Π_{2} through a_{4} parallel to Π_{1} must contain $B_{5} \cup B_{6}$. Similarly, B_{4} must also be contained in Π_{2}. It then follows that $\left\{B_{4}, B_{5}, B_{6}\right\}$ is an antipodal family in the plane Π_{2}. However, Martini and Makai [8] showed that there does not exist such a family.

6. Acknowledgements

The authors are grateful to Professor Károly Böröczky for his valuable suggestions to simplify our originial proof of Theorem 1.

References

[1] K. Bezdek, T. Bisztriczky, and K. Böröczky, Edge-antipodal 3-polytopes, Discrete and Computational Geometry (J. E. Goodman, J. Pach, and E. Welzl, eds.), MSRI Special Programs, Cambridge University Press, 2005.
[2] T. Bisztriczky and K. Böröczky, On antipodal 3-polytopes, Rev. Roumaine Math. Pures Appl. 50 (2005), 477-481.
[3] L. Danzer and B. Grünbaum, Über zwei Probleme bezüglich konvexer Körper von P. Erdös und von V. L. Klee, Math. Z. 79 (1962), 95-99.
[4] P. Erdős, On extremal problems of graphs and generalized graphs, Israel J. Math. 2 (1964), 183-190.
[5] R. L. Graham, B. L. Rothschild and J. H. Spencer, Ramsey Theory, Wiley, New York, 1990.
[6] B. Grünbaum, Strictly antipodal sets, Israel J. Math. 1 (1963), 5-10.
[7] V. Klee, Unsolved problems in intuitive geometry, Mimeographed notes, Seattle, 1960.
[8] E. Makai, Jr., H. Martini, On the number of antipodal or strictly antipodal pairs of points in finite subsets of \mathbb{R}^{d}, Applied geometry and discrete mathematics, 457-470, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 4, Amer. Math. Soc., Providence, RI, 1991.
[9] E. Makai, Jr., H. Martini, On the number of antipodal or strictly antipodal pairs of points in finite subsets of \mathbb{R}^{d}. II, Period. Math. Hungar. 27 (1993) 185-198.
[10] H. Martini and V. Soltan, Antipodality properties of finite sets in Euclidean space, Discrete Math. 290 (2005), 221-228.
[11] A. Schürmann and K. Swanepoel, Three-dimensional antipodal and norm-equilateral sets, Pacific J. Math. 228 (2006), 101-121.

Department of Geometry, Eötvös University, Budapest, P.O.B. 120, Hungary, H-1518
Department of Geometry, Eötvös University, Budapest, P.O.B. 120, Hungary, H1518 and Bolyai Institute, University of Szeged, 6720 Szeged, Aradi vértanúk tere 1, Hungary

Fakultät für Mathematik, Technische Universität Chemnitz, Chemnitz 09107, GerMANY

Department of Decision Science, University of South Africa, PO Box 392, UniSA 0003, South Africa

[^0]: The research was supported by the Hungarian-South African Intergovernmental Scientific and Technological Cooperation Programme, NKTH Grant no. ZA-21/2006 and South African National Research Foundation Grant no. UID 61853, as well as Hungarian National Foundation for Scientific Research Grants no. NK 67867 and no. T47102.

