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Abstract. A family {Ai|i ∈ I} of sets in Rd is antipodal if for any distinct
i, j ∈ I and any p ∈ Ai, q ∈ Aj , there is a linear functional ϕ : Rd → R such
that ϕ(p) #= ϕ(q) and ϕ(p) ≤ ϕ(r) ≤ ϕ(q) for all r ∈

S
i∈I Ai. We study the

existence of antipodal families of large finite or infinite sets in R3.

1. Introduction

A set A of points in Rd is antipodal if for every pair of distinct points x, y ∈ A
there is a linear functional ϕ on Rd such that ϕ(x) "= ϕ(y) and ϕ(x) ≤ ϕ(z) ≤ ϕ(y)
for all z ∈ A. This notion was first introduced by Klee [7]. Danzer and Grünbaum
[3] showed that an antipodal set in Rd has size at most 2d.

A set A of points in Rd is strictly antipodal if for every pair of distinct points
x, y ∈ A there is a linear functional ϕ on Rd such that ϕ(x) < ϕ(z) < ϕ(y) for all
z ∈ A \ {x, y}. Grünbaum introduced this notion in [6], where he also formulated
the statement that a strictly antipodal set in R3 has size at most 5. A complete
proof of this fact follows from the classification of antipodal 3-polytopes given by
T. Bisztricky and K. Böröczky [2]. These and related notions were subsequently
studied by many authors. See for example the recent papers by Bisztriczky and
others [1, 2] and the survey [10] for further details.

In this paper we consider antipodal and strictly antipodal families.

Definition 1. Let {Ai | i ∈ I} be a family of subsets of Rd. We say that this
family is antipodal if for any i, j ∈ I, i "= j, and any p ∈ Ai, q ∈ Aj , there is a
linear functional ϕ : Rd → R such that ϕ(p) "= ϕ(q) and ϕ(p) ≤ ϕ(r) ≤ ϕ(q) for
any r ∈

⋃
i∈I Ai.

Definition 2. Let {Ai | i ∈ I} be a family of subsets of Rd. We say that this family
is strictly antipodal if for any i, j ∈ I, i "= j, and any p ∈ Ai, q ∈ Aj , there is a linear
functional ϕ : Rd → R such that ϕ(p) < ϕ(r) < ϕ(q) for any r ∈

⋃
i∈I Ai \ {p, q}.

Definition 3. Let k(d) [resp. k′(d)] be the largest k such that for each m there
exists an antipodal [resp. strictly antipodal] family of k sets in Rd, each of size at
least m.

Makai and Martini [8] considered the problem of determining k(d) and k′(d).
They noted the following:

• 2d−1 ≤ k(d) ≤ 2d − 1, in particular, 4 ≤ k(3) ≤ 7;
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• k′(d) > cd for some absolute constant c > 1;
• k(2) = 2 and k′(2) = 1;
• 3 ≤ k′(3) ≤ 5.

They conjectured that k(d) = 2d−1 (in particular, k(3) = 4) and k′(3) = 3.
Our results are the following:
(1) We classify antipodal families of 4 segments in R3 (Theorem 1).
(2) There does not exist a strictly antipodal collection of four C1 arcs in R3

(Theorem 2).
(3) There exists a strictly antipodal collection of 4 sets in R3, with three of

them infinite and the fourth a singleton (Theorem 3).
(4) There does not exist an antipodal collection of six sets in R3 of arbitrary

large size. In particular, k(3) ≤ 5 (Theorem 4).
Theorem 2 supports the conjecture of Makai and Martini that k′(3) = 3. On the

other hand, Theorem 3 gives a near-counterexample.

2. Classification of antipodal families of 4 segments in R3

Examples of antipodal families of four segments in R3

(a) Consider the cube Q with vertices A1 = (0, 0, 0), A2 = (1, 0, 0), A3 = (1, 1, 0),
A4 = (0, 1, 0), A5 = (0, 0, 1), A6 = (1, 0, 1), A7 = (1, 1, 1), A8 = (0, 1, 1).
Choosing subsegments of the 4 parallel sides [A1, A5], [A2, A6], [A3, A7], [A4, A8],
we obtain an antipodal family of 4 segments.

(b) Taking subsegments of the sides [A1, A5], [A2, A6], [A3, A4], [A7, A8], we also
obtain an antipodal family of 4 segments.

Since antipodality is an affine invariant property, affine images of the above
examples are also examples of weakly antipodal collections.

Theorem 1. Any antipodal family of four segments in R3 is affinely equivalent to
one of the examples described in (a) and (b) above.

Proof. Denote the segments by I1, I2, I3 and I4.

Lemma 1. If two of the segments are coplanar then they are parallel but not
collinear.

Proof. Indeed, suppose that, say I1 and I2 are coplanar. Choose inner points p ∈ I1

and q ∈ I2 and a linear function ϕ : R3 → R such that ϕ(p) < ϕ(q) and ϕ(p) ≤
ϕ(r) ≤ ϕ(q) for all r ∈

⋃4
i=1 Ii. Then ϕ is constant both on I1 and on I2. Thus, I1

and I2 are contained in the distinct parallel planes Π1 = { x ∈ R3 | ϕ(x) = ϕ(p)}
and Π2 = { x ∈ R3 | ϕ(x) = ϕ(q)} respectively. Since I1 and I2 are coplanar and
contained in two distinct parallel planes, they must be parallel and noncollinear. !

We shall proceed by case separation. If the segments were coplanar, then by
Lemma 1 they would be parallel and noncollinear. However, in that case two of the
segments would lie strictly in between the straight lines of the other two segments
and the antipodaliy condition would obviously fail for those two segments. We may
therefore suppose that the segments are not coplanar.

Consider the case when the segments are parallel to one another. Then inter-
secting the straight lines of the segments by a transversal plane, we obtain four
noncollinear points in antipodal position in the plane. It is well known that four
noncollinear points in the plane are in antipodal position if and only if they are
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vertices of a parallelogram [3]. This means that the four segments are on the four
parallel sides of a parallelepiped. In this case, the family is affinely equivalent to
an example of type (a).

By Lemma 1, it remains to study the case when two of the segments, say I1

and I2 are located on two skew lines. Denote by Σ1 ⊃ I1 and Σ2 ⊃ I2 the planes
parallel to both I1 and I2. According to the antipodality assumption, the other
two segments I3 and I4 are in the closed slab between Σ1 and Σ2.

Suppose first that there are no three mutually skew lines among the lines gener-
ated by the four segments. Then, by Lemma 1, both I3 and I4 are parallel either
to I1 or to I2. If, for example, I3 is parallel to I1, then I3 must be in the plane Σ1,
otherwise the antipodality condition would fail for any pair of inner points p ∈ I3

and q ∈ I2.
It is also easy to see, that I3 and I4 cannot be parallel to I1 simultaneously,

since in that case one of the coplanar parallel lines spanned by the segments I1, I3

and I4, say the line of Ij would separate the other two and then the antipodality
condition would fail for inner points of I! and Ij for " ∈ {1, 3, 4} \ {j}.

These observations yield that if there are no three mutually skew lines among
the lines generated by the four segments, then I1 and I2 are parallel to exactly one
of I3 and I4, and if we assume without loss of generality, that I1 ‖ I3 and I2 ‖ I4,
then I3 ⊂ Σ1 and I4 ⊂ Σ2.

Applying the antipodality property for inner points of I1 and I3 and also for
inner points of I2 and I4 we obtain two pairs of parallel supporting planes of the
union of the four segments. These planes together with Σ1 and Σ2 bound a paral-
lelepiped. The segments I1 ‖ I3 ∦ I2 ‖ I4 are located on the opposite faces of this
parallelepiped, so in this case the family is affinely equivalent to an example of type
(b).

The final and less trivial case is when 3 of the segments, say I1, I2 and I3

are on three mutually skew lines. We show that this case gives a contradiction.
Applying the antipodality condition for each pair of I1, I2 and I3 we obtain 3 slabs
bounded by supporting planes of the union of the intervals. These slabs intersect in
a parallelepiped with the property that each of I1, I2, I3 is contained in an edge of
the parallelepiped. Since parallelepipeds are affinely equivalent to the unit cube Q
used in the construction of the examples, we can assume without loss of generality
that I1 ⊂ [A3, A4], I2 ⊂ [A5, A8], I3 ⊂ [A2, A6].

We know that I4 must be in the unit cube Q.
Let i, j, k be an arbitrary permutation of 1, 2, 3. If I4 were parallel to Ii, then

the mutually skew segments I4, Ij , Ik would lie on the edges of a rectangular box
Q′ " Q. However, this would yield a contradiction, as such a box Q′ cannot contain
Ii. This means that I1, I2, I3, I4 must be mutually skew. In particular, I4 cannot
lie on any of the faces of the cube Q.

For p, q ∈ {1, 2, 3, 4}, p "= q, denote by Σpq the plane containing Ip and parallel
to Iq.

The straight line spanned by I4 cuts the boundary of the cube Q at two points,
call them S and T . We consider separate cases depending on the location of S and
T .

If S and T are on opposite faces of Q, say S ∈ Σ21 and T ∈ Σ12, then the plane
Σ42 cuts the cube in a rectangle , which has opposite sides through S and T parallel
to I2. Since this rectangle must be different from the face Σ32 ∩Q, I3 and I2 must
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be on opposite sides of Σ42. This is a contradiction showing that S and T must lie
on neighboring faces of Q.

The common edge e of the faces containing S and T either contains one of the
segments I1, I2, I3 (i.e., e ∈ {A3A4, A5A8, A2A6}) or contains none of them. The
latter case can be split into two further subcases depending on whether the vertices
of the common edge are covered by the union of the three straight lines spanned
by I1, I2, I3 (i.e., e ∈ {A4A8, A5A6, A2A3}) or not (i.e., e ∈ {A1A2, A1A4, A1A5,
A7A3, A7A6, A7A8}).

Consider first the case, when S and T are on faces meeting along an edge con-
taining one of the first three segments. We may suppose without loss of generality
that S ∈ Σ31 and T ∈ Σ32. Then the plane Σ43 cuts off a triangular prism from
the cube Q which contains the segment I4 but does not contain the segments I1

and I2. This is a contradiction since Σ43 may not separate I3 from I1 and I2.
Suppose now that the common edge e of the faces of Q containing S and T does

not contain any of the segments I1, I2, I3, but the endpoints of e are covered by the
three straight lines spanned the segments. (See the left side of Figure 1.) Permuting
the rôle of the indices if necessary, we may suppose that S ∈ Σ31 and T ∈ Σ21.
The plane Σ42 cuts the face Q ∩ Σ21 in a segment T ′T ′′, where T ∈ T ′T ′′ ‖ I2,
T ′ ∈ [A5, A6], T ′′ ∈ [A7, A8]. The intersection of Σ42 with the plane Σ31 must
be the line T ′S. Since I2 and I3 are on the same side of Σ42, the line T ′S must
intersect the boundary of the square Q ∩ Σ31 at a point C1 ∈ [A2, A6], for which
I3 ⊂ [C1, A2]. The plane Σ24 is parallel to Σ42 and the segments I1 and I3 are on the
same side of it, therefore the line Σ24∩Σ13 is parallel to T ′C1, goes through A8 and
intersects the segment [A3, A4] at a point C2 for which I1 ⊂ [A3, C2]. The triangles
*A6C1T ′ and *A4A8C2 are similar, thus A6T ′ : A4C2 = A6C1 : A4A8 < 1,
implying A6T ′ < A4C2.

Now we repeat the above arguments flipping the rôles of S and T and that
of I2 and I3. Σ43 intersects the face Q ∩ Σ31 in a segment [S′, S′′], where S ∈
[S′, S′′] ‖ [A6, A2], S′ ∈ [A5, A6], S′′ ∈ [A1, A2]. The intersection of Σ43 with the
face Q∩Σ21 is a segment [S′, C3] containing T and ending at a point C3 ∈ [A5, A8]
for which I2 ⊂ [C3, A8]. The plane Σ34 ‖ Σ43 intersects the face Q ∩ Σ12 in a
segment [A2, C4] ‖ [S′, C3], the endpoint C4 of which satisfies C4 ∈ [A3, A4] and
I1 ⊂ [C4, A4]. Using similarity of the triangles *A5S′C3 and *A3C4A2 we obtain
A3C4 > S′A5.

I1 must be in the intersection of the segments [A4, C4] and [A3, C2]. On the
other hand,

A3C2 + C4A4 = 2A3A4 −A3C4 −A4C2 < 2A5A6 − S′A5 −A6T
′ < A3A4,

which means that [A4, C4] and [A3, C2] are disjoint, a contradiction.
The last case that we should consider is when the common edge e of the faces

of Q containing S and T has a vertex not covered by any of the straight lines
spanned by the segments I1, I2, I3. (See the right side of Figure 1.) By the
similar rôle of I1, I2 and I3 and that of A1 and A7, we may assume that S ∈ Σ32,
and T ∈ Σ21. The plane Σ42 intersects the face Q ∩ Σ21 in a segment [T ′, T ′′]
parallel to I2 and passing through T . Suppose T ′′ is the endpoint on [A7, A8].
The intersection of the plane Σ42 with the boundary of the cube Q is a rectangle
T ′S′S′′T ′′, where the side [S′, S′′] ‖ [T ′, T ′′] goes through S, and S′ is located on the
edge [A2A6] in such a way that the segment I3 is contained in the segment [S′, A2].
Similarly to the previous case, Σ24 cuts the cube Q in a rectangle A5C1C2A8,
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Figure 1.

where C2 is a point of the segment [A3, A4] for which I1 ⊂ [A3, C2]. The plane
Σ34 cuts the cube Q in a rectangle A2A6C3C4, where C3 is a point of the segment
[A5, A8], for which I2 ⊂ [C3, A8]. Similarly, the plane Σ43 cuts Q in a rectangle
C5C6C7C8, where T ∈ [C5, C8] ‖ [A6, C3], S ∈ [C7, C8] ‖ I3, and C6 is located on
the segment [A3, A4] in such a way that I1 ⊂ [C6, A4]. Finally, the intersection
of the cube with the plane Σ41 is a rectangle C9C10C11C12, where C10 ∈ [A6, A7],
T ∈ [C10, C11] ‖ I1, C9 ∈ [A2, A6], S ∈ [C9, C10] and I3 ⊂ [A2, C9]. As before,
I1 must be in the intersection of the segments [A3, C2] and [C6, A4]. Therefore, to
obtain a contradiction, it is enough to show that these two segments are disjoint
by proving C2A4 > C6A4.

As the triangles *A5A6C3, *A7C5C8, and *C10TC8 are similar and A5A6 >
A5C3 we have A7C5 > A7C8, A7T ′′ = TC10 > C8C10 and

(1) C8A6 > C5A8 = C6A4.

Comparing the right triangles *A7T ′′S′′ and *C8C10S we obtain

(2) ∠S′SC9 = ∠C8C10S > ∠A7T
′′S′′ = ∠A4C2A8.

Comparison of the right triangles *SS′C9 and *C2A4A8 using (2) and A4A8 >
S′C9 yields

(3) C2A4 > S′S = C8A6,

which together with (1) gives C2A4 > C6A4.
!

3. Non-existence of strictly antipodal collections of four C1 arcs

Definition 4. We call a subset Γ of Rd a C1 arc if there is an injective continuously
differentiable map γ : [0, 1] → Rn with nowhere 0 derivative the image of which
equals Γ.

Theorem 2. There are no strictly antipodal collections consisting of four C1 arcs
in R3.

Proof. Suppose that there is a strictly antipodal family of four arcs Γ1, . . . ,Γ4

parametrized by the injective regular maps γi : [0, 1] → R3, i = 1, . . . , 4. Choose
four arbitrary parameters t1, . . . , t4 ∈ (0, 1). The strict antipodality condition for
γi(ti) ∈ Γi and γj(tj) ∈ Γj gives two parallel supporting planes of the union

⋃4
l=1 Γl
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passing through γi(ti) and γj(tj) respectively. The tangent of Γi at γi(ti) and the
tangent of Γj at γj(tj) must be parallel to these supporting planes, otherwise Γi or
Γj would cross one of the supporting planes. This means, that taking the tangent
of Γi at γi(ti) and a sufficiently small segment on it around γi(ti) for i = 1, . . . , 4,
we obtain four segments in antipodal position. By Theorem 1, in any antipodal
collection of four segments, every segment is parallel to another one. This means
that γ′1(t1) is parallel to one of the vectors γ′2(t2), γ′3(t3), γ′4(t4). Keeping t2, t3, t4
fixed and letting t1 run over the interval (0, 1) we see that the direction of γ′1(t)
can take only 3 different values. Since it changes continuously as well, the direction
of γ′1 must be constant, so Γ1 must be a segment. A similar argument shows that
all the curves must be straight line segments, but it is obvious that straight line
segments cannot be in strict antipodal position. !

4. Construction of a strictly antipodal collection of three C1 arcs
and a singleton

Theorem 3. There exists a strictly antipodal family of four sets consisting of three
C1 arcs and a single point.

Proof. Consider the curves

γ1(t) = (1 + t, at2 − a, 2 + a− at2),

γ2(t) = (2 + a− at2, 1 + t, at2 − a),

γ3(t) = (at2 − a, 2 + a− at2, 1 + t)
where a = 1/100 and t ∈ [−1/10000, 1/10000]. We prove that O = (0, 0, 0), Γ1 =
im γ1, Γ2 = im γ2 and Γ3 = im γ3 form a strictly antipodal collection. Because of
the rotational symmetry, it is enough to show the following two claims:

(1) If P = γ1(t0), then there are two parallel planes SO and SP such that
(Γ1 \ {P}) ∪ Γ2 ∪ Γ3 is contained in the open slab bounded by SO and SP .

(2) If P = γ1(t0) and Q = γ2(s0), then there are two parallel planes SP and
SQ such that {O} ∪ (Γ1 \ {P}) ∪ (Γ2 \ {Q}) ∪ Γ3 is contained in the open
slab bounded by SP and SR.

(1) The tangent vector to γ1 at P is e = (1, 2at0,−2at0). Let f = (0, 4,−1), and
let SO and SP be the parallel planes having normal vector n = e× f = (6at0, 1, 4)
and passing through O and P , respectively. The open slab bounded by SO and SP

contains Γ1 \ {P}, because e is a tangent to the parabola Γ1 at P . Elementary
calculation gives that

n ·−−→OP = 8 + 3a + 6at0 + 3at20 > 8.

If Qs = γ2(s) ∈ Γ2 and Rs = γ3(s) ∈ Γ3 are arbitrary points, then

n ·−−→OQs = 6at0(2 + a− as2) + (1 + s) + 4(as2 − a) = 1 + c2,

n ·−−→ORs = 6at0(as2 − a) + (2 + a− as2) + 4(1 + s) = 6 + c3,

where |c2| < 0.02 and |c3| < 0.02, so

n ·−−→OO = 0 < n ·−−→OQs < n ·−−→ORs < 8 < n ·−−→OP,

hence the open slab bounded by SO and SP contains Γ2 ∪ Γ3.
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(2) The tangent vector to γ2 at Q is g = (−2as0, 1, 2as0). Let now SP and SQ

be the parallel planes having normal vector

n = e× g = (2at0 + 4a2s0t0,−2as0 + 4a2s0t0, 1 + 4a2s0t0),

and passing through P and Q, respectively. The open slab bounded by SP and SQ

contains Γ1 \ {P}, because e is a tangent to the parabolic arc Γ1 at P , and it also
contains Γ2 \ {Q}, because g is a tangent to the parabolic arc Γ2 at Q. Elementary
calculation gives that

n ·−−→OP = (2at0 + 4a2s0t0)(1 + t0) + (−2as0 + 4a2s0t0)(at20 − a)+

+ (1 + 4a2s0t0)(2 + a− at20)
= 2 + d1,

n ·−−→OQ = (2at0 + 4a2s0t0)(2 + a− as2
0) + (−2as0 + 4a2s0t0)(1 + s0)+

+ (1 + 4a2s0t0)(as2
0 − a)

= −a + d2,

where |d1| < 0.02 and |d2| < 0.07a. If Ru = γ3(u) ∈ Γ3 is an arbitrary point, then

n ·−−→ORu = (2at0 + 4a2s0t0)(au2 − a) + (−2as0 + 4a2s0t0)(2 + a− au2)+

+ (1 + 4a2s0t0)(1 + u)
= 1 + d3,

where |d3| < 0.02. So

n ·−−→OQ < 0 = n ·−−→OO < n ·−−→ORu < n ·−−→OP,

hence the open slab bounded by SP and SQ contains {O} ∪ Γ3, too. !

5. Non-existence of large antipodal families of six sets

Theorem 4. For some m ∈ N there does not exist an antipodal family {Ai|i ∈ I}
with #I = 6 and each #Ai ≥ m. In particular, k(3) ≤ 5.

Proof. We use the fact, independently proved in [11] and [2], that an antipodal set
of 6 points in R3 can be partitioned into two parts of 3 points each, with the two
parts contained in two parallel planes.

Let {A1, . . . , A6} be an antipodal family in R3 with each #Ai ≥ m. For each
choice of points ai ∈ Ai, 1 ≤ i ≤ 6, the set {a1, . . . , a6} is an antipodal set. By the
above fact, there is a partition {J,K} of {1, . . . , 6} into two sets of size three, such
that {ai|i ∈ J} and {ai|i ∈ K} are on parallel planes. Note that the parallel planes
are uniquely determined by the partition, otherwise both sets of size 3 would be
collinear. However, it follows from the definition of antipodal family that no three
points from distinct sets can be collinear.

There are
(6
3

)
such partitions. By the multipartite analogue of Ramsey’s theorem

(due to Erdős [4]; see also Chapter 5, Theorem 4 of [5]) it follows that if m is
sufficiently large, then there exist a fixed partition {J0,K0} of {1, . . . , 6} and subsets
Bi ⊆ Ai, 1 ≤ i ≤ 6, with #Bi = 2, such that {ai|i ∈ J0} and {ai|i ∈ K0} are on
parallel planes for any choice of ai ∈ Bi. Without loss of generality J0 = {1, 2, 3}
and K0 = {4, 5, 6}.
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It is now easily seen that the pair of parallel planes is independent of the choice
of ai ∈ Bi. Indeed, fix a1 ∈ B1, a2 ∈ B2, a3 ∈ B3, and let Π1 be the plane through
a1, a2, a3. Then for any a4 ∈ B4, the plane Π2 through a4 parallel to Π1 must
contain B5 ∪ B6. Similarly, B4 must also be contained in Π2. It then follows that
{B4, B5, B6} is an antipodal family in the plane Π2. However, Martini and Makai
[8] showed that there does not exist such a family. !
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