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We analyse a situation where a monopolist is selling an indivisible good to risk-neutral buyers who
only have an estimate of their private valuations. The seller can release, without observing, certain addi-
tional signals that affect the buyers’ valuations. Our main result is that in the expected revenue-maximizing
mechanism, the seller makes available all the information that she can, and her expected revenue is the
same as it would be if she could observe the part of the information that is “new” to the buyers. We also
show that this mechanism can be implemented by what we call a handicap auction in interesting appli-
cations. In the first round of this auction, each buyer picks a price premium from a menu offered by the
seller (a smaller premium costs more). Then the seller releases the additional signals. In the second round,
the buyers bid in a second-price auction where the winner pays the sum of his premium and the second
highest non-negative bid. In the case of a single buyer, this mechanism simplifies to a menu of European
call options.

1. INTRODUCTION

In many examples of the monopolist’s selling problem (optimal auctions),1 the seller has con-
siderable control over the accuracy of the buyers’ information concerning their own valuations.
Often the seller can decide whether the buyers can access information that refines their valuations;
however, she either cannot observe these signals or, at least, she is unaware of their significance
to the buyers. For example, the seller of an oil field or a painting can determine the number and
the nature of the tests the buyers can carry out privately (without the seller observing the results).
Another example (due to Bergemann and Pesendorfer, 2002) is where the seller of a company
has detailed information regarding the company’s assets (e.g. its client list), but does not know
how well these assets complement the assets of the potential buyers. Here, the seller can choose
the extent to which she will disclose information about the firm’s assets to the buyers. In other
applications (e.g. selling broadcast rights for a future sports event), the buyers’ valuations for
the good become naturally more precise over time as the uncertainty resolves, and the seller can
decide how long to wait with the sale.

When the buyers’ information acquisition is controlled by the seller, that process can also be
optimized by the mechanism designer. In the present paper we explore the revenue-maximizing
mechanism for the sale of an indivisible good in a model where the buyers initially only have
an estimate of their private valuations. The seller can costlessly release additional private signals
to the buyers that affect their valuations. These signals may be correlated to the buyers’ private

1. Early seminal contributions include Harris and Raviv (1981), Myerson (1981), Riley and Samuelson (1981),
and Maskin and Riley (1984).
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information, they are not observable to the seller, and the seller decides whether a buyer can
observe them. This model captures the common theme of the motivating examples: the seller
controls, but cannot learn certain private information that the buyers care about.2

Our main result is that in the optimal mechanism (and under certain conditions) the seller
releases all the information she can, and her expected revenue is as high as it would be if
she could observe the part of the information controlled by her that is “new” to the buyers.
That is, in the optimal mechanism, the buyers do not enjoy additional informational rents from
learning more about their ex post valuations when the access to additional signals is controlled
by the seller.

We emphasize that the information disclosure policy of the seller does not have to be a 0–1
decision. That is, we could allow the seller to reveal her information only partially. For example,
she could show an element of a partition where the new information belongs to or reveal a signal
that is only imperfectly correlated to the new information. Our result still continues to hold: in
the optimal mechanism the seller reveals all her information.

We also exhibit a simple mechanism, dubbed the handicap auction, which implements the
revenue-maximizing outcome in some interesting applications of the general model. The first
application is one where the buyers’ original information pertains solely to the expected value
of their valuation. (That is, each buyer’s true valuation differs from his initial estimate by an
independent noise.) In the second application, each buyer’s ex post valuation is the realization of
a normally distributed random variable. The buyers’ initial estimates and the seller’s signals are
normally distributed, conditionally independent noisy observations of the buyers’ true valuations.
Note that in this “sampling” application a buyer’s private information and the signal controlled
by the seller are strictly affiliated.3

The handicap auction, which implements the optimal mechanism in the two applications
above, consists of two rounds. In the first round, each buyer buys a price premium from a menu
provided by the seller (a smaller premium costs more). Then, without observing, the seller re-
leases as much information as she can. In the second round, the buyers bid in a second-price
auction, where the winner is required to pay his premium over the second highest non-negative
bid. We call the whole mechanism a handicap auction because buyers compete under unequal
conditions in the second round, where a bidder with a smaller premium has an advantage.

When there is only a single buyer, the handicap auction simplifies to a mechanism that can
be thought of as a menu of European call options offered by the seller. These types of options
are widely used in financial forward markets. In our model, as in reality, an option with a higher
strike price costs more to the buyer. Buyers with different initial estimates regarding the good’s
value sort themselves and choose different options.

Our model nests the classical (independent private values) auction design problem as a spe-
cial case, where the additional signals are identically 0. In this case, the handicap auction imple-
ments the outcome of the optimal auction of Myerson (1981) and Riley and Samuelson (1981).

Information disclosure by the seller in an auction has been studied in the context of the win-
ner’s curse and in the linkage principle by Milgrom and Weber (1982). They investigate whether
in traditional auctions the seller should commit to disclose public signals that are affiliated with
the buyers’ valuations. They find that the seller gains from committing to full disclosure because
that reduces the buyers’ fear of overbidding, thereby increasing their bids and hence the seller’s
revenue. Our problem differs from this classic one in many aspects. Most importantly, in our
setting, the signals that the seller can release are private (not public) signals, in the sense that

2. Note that in some of the motivating examples the seller did observe the “message” disclosed to the potential
buyer, but importantly she did not observe its effect on the buyer’s valuation. This situation is modelled by the assumption
that the seller can release, without observing, private signals to the buyers.

3. We thank Marco Ottaviani for suggesting that we develop an application along these lines.
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each signal affects the valuation of a single buyer and can be disclosed to that buyer only. The
seller will gain from the release of information not because of the linkage principle, but because
the information can improve efficiency. As we show, some of the potential efficiency gain is
appropriated by the seller.

Several papers have studied issues related to how buyers learn their valuations in auctions
and what are the consequences that bear on the seller’s revenue. One strand of the literature
(Persico, 2000; Compte and Jehiel, 2001; and the references therein) focuses on the buyers’
incentives to acquire information in different auction formats. Our approach is different in that
we want to design a revenue-maximizing mechanism in which the seller has the opportunity to
costlessly release (without observing) information to the buyers. In our model, it is the seller (not
the buyers) who controls how much information the buyers acquire.

In Baron and Besanko (1984), Riordan and Sappington (1987), and Courty and Li (2000), a
principal and an agent are contracting over two periods. Independently of the contract, the agent
learns pay-off-relevant private information in both periods. These papers analyse the optimal
two-stage revelation mechanism where the contract is signed in the first period, when the agent
only knows his first-period type. In contrast, in our paper, we solve for the optimal mechanism
in a multi-agent auction environment where the seller can decide whether the buyers receive
additional private signals.

A related literature is that on optimal entry fees in auctions (e.g. French and McCormick,
1984; McAfee and McMillan, 1987; Levin and Smith, 1994). In these papers, in contrast to ours,
entry is endogenous, and competition drives down the bidders’ pay-offs to 0. As a result, the
seller maximizes the total social surplus, and she levies (ex ante) entry fees in order to induce
socially optimal entry. In the independent private values case, for example, socially optimal entry
is achieved by setting entry fees to 0 and committing to an efficient allocation. Our approach is
different in that we focus on the complete mechanism design problem with a fixed number of bid-
ders, and transfers are only allowed at the stage when bidders already have private information.
Consequently, our results are also markedly different from those in this literature. Interpreting
the transfers in our model as (interim) entry fees, we find that it is optimal for the seller to set
them different from 0 and to induce ex post inefficiency by sometimes not selling the good to the
buyer with the highest true valuation.

Our motivation is closer to that of Bergemann and Pesendorfer (2002) and Ganuza (2004),
where the seller decides how much private information the buyers may learn prior to participating
in an auction. Ganuza (2004) focuses on the incentives of the auctioneer to release signals to
the buyers that refine their private valuations before a second-price auction.4 He finds that, in
order to maximize the revenue, the seller should not reveal all her information. In our model, we
find just the opposite: the seller releases everything she can. The reason for the discrepancy is
that Ganuza (2004) fixes the selling mechanism as a second-price auction, and the seller must
reveal her information before the bidders can take any action. In contrast, we allow the seller to
design the fully optimal mechanism. A feature of this auction is that the seller first elicits the
private information of the bidders, and only then does she reveal her own. The main difference
between our paper and that of Bergemann and Pesendorfer (2002) is that in their paper, the
seller first designs a disclosure policy and reveals information and only then proposes the selling
mechanism. Moreover, the seller cannot commit between the two stages. In contrast, in our model
the timing is simultaneous.5 Under their assumptions, Bergemann and Pesendorfer (2002) show
that the information structure that allows the seller to subsequently design the auction with the

4. By allowing the buyers to have more private information, the seller faces a trade-off. More information increases
efficiency and potentially the revenue, but it also increases the buyers’ information rents in the second-price auction.

5. A less important difference is that in Bergemann and Pesendorfer (2002) the buyers do not possess private
information at the beginning of the game.

c© 2007 The Review of Economic Studies Limited
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largest expected revenue is necessarily imperfect. In this structure, buyers are only allowed to
learn which element of a finite partition their valuation falls into.

Compared to these two papers, the difference of our approach is that we consider the design
of the information structure and the transaction rules as one mechanism design problem, as a
whole. This difference may first seem subtle, nevertheless, it is important. In our model, the
seller can integrate the rules of information acquisition into the mechanism used for the sale
itself. For example, the seller can charge the buyers for getting more and more accurate signals
(perhaps in several rounds); the buyers may even be asked to bid for obtaining more information.
In contrast to the two papers cited above, we show that the seller maximizes expected revenue
by designing a mechanism in which she allows the buyers to learn their valuations as precisely
as they can.6 In other words, the trade-off between allowing the buyers to obtain more private
information and generating more revenue disappears in the optimal auction.

The idea that “selling” the access to information may be profitable is not new and can be
illustrated by an example. Suppose that there are two buyers who are unaware of their private
valuations, which the seller can allow them to learn. Consider the following mechanism: the
seller charges both buyers an entry fee. Then, she allows the buyers to observe their valuations
and makes them play a second-price auction with zero reservation price. The second-price auc-
tion will be efficient. If the entry fees equal the buyers’ ex ante expected profits then the seller
appropriates the entire surplus.7

This simple solution—the seller committing to the efficient allocation, releasing the addi-
tional signals, and charging an entry fee equal to the expected efficiency gains—only works when
the buyers do not have private information to start with. Otherwise (e.g. if the buyers privately
observe signals, but their valuations also depend on other signals that they may see at the seller’s
discretion) the auctioneer, as we will show, does not want to commit to an efficient auction in
the continuation, so the previously proposed mechanism does not work. One has to find a more
sophisticated auction, and this is exactly what we will do in the remainder of the paper.

2. THE MODEL

2.1. The environment

There are n potential buyers for a single indivisible good sold by a seller (she). All parties are
risk neutral. The seller’s valuation for the good is normalized to 0; her objective is to maximize
the expected revenue. Each buyer’s pay-off is the negative of his payment to the seller, plus, in
case he wins, the value of the object.

Buyer i’s true valuation for the object is Vi . However, he only observes a noisy signal of
it, vi , which is his private information. The seller has the ability to disclose to buyer i , without
observing, an additional noisy signal about Vi that is denoted by zi .8 Assume that E[Vi | vi , zi ] is
strictly increasing in zi . For example, zi may be identical to Vi , that is, the seller may be able to
reveal to buyer i his actual valuation for the good. We can also allow the seller to only partially
reveal zi to buyer i , for example, by disclosing a signal positively correlated to zi . However, in

6. Note that we, just like the existing literature, require the participation and incentive constraints to hold at all
interim phases (not just ex ante), that is, the buyers want to go ahead with the mechanism at every point in the game.

7. The example is the basis of Gershkov (2002). Demsetz (1968), and Loeb and Magat (1979) proposed the
same method—the ex ante sale of all future rents—for the efficient regulation of natural monopolies. In the context of
a two-period principal–agent problem, Baron and Besanko (1984) showed that if the agent’s type in the second period
is independent of his type in the first period then a period-1 (constant and efficient) contract gives the whole period-2
surplus to the principal.

8. An alternative interpretation of the model is that the seller can in fact observe the signals that she releases, but
she does not know how they affect the valuations of the buyers.

c© 2007 The Review of Economic Studies Limited
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order to simplify the exposition (and without affecting the results), we will not formally model
this possibility.9

Denote the distribution of buyer i’s type, vi , by Fi and the corresponding density by fi . We
assume that fi is positive on the interval [v i ,v i ] and satisfies the monotone hazard rate condition,
that is, fi/(1− Fi ) is weakly increasing.

We emphasize that buyer i’s initial signal and the seller’s signal, vi and zi , need not be
independent nor even conditionally independent given Vi . On the other hand, the pairs (vi , zi ) are
assumed to be independent across i . The independence of information across buyers is a standard
assumption that rules out Crémer and McLean’s (1988) full rent extracting mechanisms.

Since the buyers are risk neutral we can assume without loss of generality that Vi = E[Vi |
vi , zi ], that is, after the seller reveals her signals, the buyers know their true valuations (e.g.
zi ≡ Vi or zi ≡ Vi − vi ). In other words, Vi is the buyer’s posterior valuation given his and the
seller’s signals. Let Hivi denote the distribution of Vi conditional on vi and hivi the corresponding
density.10 We assume that if vi > v̂i then Hivi first-order stochastically dominates Hi v̂i , that is,
∂ Hivi /∂vi < 0. We need the following two additional assumptions on the joint distribution of Vi ,
zi , and vi .

Assumption 1. (∂ Hivi (Vi )/∂vi )/hivi (Vi ) is increasing in Vi .

Assumption 2. (∂ Hivi (Vi )/∂vi )/hivi (Vi ) is increasing in vi .

We shall argue that these assumptions can be interpreted as a kind of substitutability in buyer
i’s posterior valuation between vi and the part of zi that is new to buyer i . In order to explain these
assumptions and make it precise what we mean by new information, we perform an orthogonal
decomposition of zi in the next subsection.

2.2. Decomposition of the seller’s signal

Imagine that buyer i’s type is vi and the seller can disclose to him, without observing, si (zi ,vi )
instead of zi , where si is strictly monotonic in zi . First, notice that since si is monotonic, buyer
i can recover zi from si (zi ,vi ) and execute the same Bayesian updating to compute his posterior
valuation as before. Second, this change makes no difference for the seller either since she cannot
observe zi or si anyway. Hence, our model remains strategically the same. In particular, the
seller’s expected revenue is invariant to such a transformation of the signals.

In Lemma 1 we show that for each vi there exists a particular transformation of zi for which
the random variable si (zi ,vi ) is independent of vi . Since si , which we call buyer i’s shock, is
orthogonal to the buyer’s initial value estimate, it should be considered as the part of the
seller-controlled information, zi , that is new for the buyer.

Lemma 1. (i) There exist functions ui and si , such that ui (vi ,si (zi ,vi )) ≡ Vi , such that ui

is strictly increasing, si is strictly increasing in zi , and si (zi ,vi ) is independent of vi .
(ii) All si ’s satisfying part (i) are positive monotonic transformations of each other.

9. We will show in Theorem 1 that by fully revealing her signals, the seller can do as well as in a specific “bench-
mark” situation that is not attainable by partial revelation. Therefore, restricting attention to the case where the seller can
decide to either reveal zi to buyer i or not reveal it at all does not affect the results.

10. The function Hivi is assumed to be twice continuously differentiable, strictly increasing on R. This assumption
is purely for convenience. As a result, any realization of the ex post valuation, Vi , is possible given any type vi of buyer i .

c© 2007 The Review of Economic Studies Limited
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Proof. Define si (zi ,vi ) ≡ Hivi (Vi ), which is strictly increasing in zi by assumption. Note
that for any y ∈ [0,1], Pr(Hivi (V ) ≤ y) = Pr(V ≤ H−1

ivi
(y)) = Hivi (H−1

ivi
(y)) = y. That is, si is

uniform on [0,1] irrespective of the value of vi , and hence it is independent of vi . Let ui (vi ,si ) =
H−1

ivi
(si ), which is by definition identical to Vi . The monotonicity of ui and part (ii) are proved

in the Appendix. ‖

In part (i) of the lemma, si is constructed as the percentile of the distribution of Vi condi-
tional on vi that the realization of the true valuation belongs to. The function ui is the formula
that buyer i can use to compute his posterior valuation given his type vi and signal si . We will
denote the c.d.f. of si by Gi .11

The transformation in the proof of Lemma 1 requires no assumption regarding the joint
distribution of Vi , vi , and zi . However, assumptions made on this distribution translate into prop-
erties of the function ui . For example, since hv > 0 on R (see footnote 10), for all vi , si , and v ′

i ,
there exists s′

i such that ui (vi ,si ) = ui (v
′
i ,s′

i ).
Now we show what Assumptions 1 and 2 imply regarding the shape of ui . Denote the partial

derivatives of ui by ui1 = ∂ui/∂vi , ui2 = ∂ui/∂si , ui11 = ∂2ui/∂v2
i , and ui12 = ∂2ui/∂vi∂si . The

statement of the next lemma does not depend on the choice of si and ui , as long as they satisfy
part (i) of Lemma 1.

Lemma 2. Assumption 1 is equivalent to ui12 ≤ 0 and Assumption 2 is equivalent to
ui11/ui1 ≤ ui12/ui2.

Proof. See Appendix. ‖

We are ready to interpret Assumptions 1 and 2. Assumption 1 says that the marginal impact
of the si shock on buyer i’s valuation is non-increasing in his type, vi . Assumption 2 means that
an increase in i’s type, holding the ex post valuation constant, weakly decreases the marginal
value of vi .12 The assumptions imply a certain monotonicity condition that is sufficient for our
results. We will comment on the necessity of these assumptions in Section 4.3 after we present
the results.

It is interesting to note that our assumptions are easier to interpret in terms of ui , as
decreasing-returns and substitutability conditions on vi and si , than in terms of the correlations
between Vi , vi , and zi . Intuitively, in order to determine the information rents that the seller has
to leave with the buyers in the optimal mechanism, what matters is not how the “raw” signals
are correlated (to each other and the buyers’ actual values), instead, what matters is whether the
buyers’ original information, and the “new” part of the seller’s signals are substitutes in the
buyers’ ex post valuations.

2.3. Applications, examples

In order to give a flavour of the type of situations that our model covers we now provide a few
applications and examples where our assumptions hold.

11. Notice that si constructed in part (i) of Lemma 1 is uniform on [0,1], therefore Gi could be assumed to be
uniform on [0,1].

12. To see this interpretation of Assumption 2 note that the total differential of ui1 (the change in the marginal value
of i’s type) is ui11dvi +ui12dsi . Keeping ui constant (moving along an “iso-value” curve) means dsi = −ui1/ui2dvi .
Substituting this into the total differential of ui1 yields (ui11 − ui12ui1/ui2)dvi . This expression is non-positive for
dvi > 0 if and only if ui11/ui1 ≤ ui12/ui2.

c© 2007 The Review of Economic Studies Limited



ESŐ & SZENTES OPTIMAL INFORMATION DISCLOSURE 711

Example 1. Assume that buyer i’s true valuation for the good differs from his type by
an additive and independent noise: Vi = vi + zi , where zi is independent of vi . Suppose that
the seller can resolve the uncertainty in buyer i’s valuation by disclosing, without observing, zi .
Since zi is independent of vi , the buyer’s original private information pertains only to the expected
value of the good. Among other things, vi conveys no information regarding the precision of the
buyer’s estimate. Assume that all signals are independent across i’s and that the distribution of vi

satisfies the monotone hazard rate condition. The transformed model obtains by setting si ≡ zi

and ui (vi ,si ) = vi + si . By the linearity of ui , Assumptions 1 and 2 hold.
For a specific example, suppose that the object for sale is a car, and assume that the buyer

knows its make, model, age, and mileage, but not its colour, which the seller can reveal. It seems
reasonable to assume that a buyer’s initial willingness to pay for the car (vi ) and his colour
preference (zi ) are statistically independent.

Example 2a. Consider the following familiar “normal sampling” problem. Suppose that
buyer i’s true valuation for the good, Vi , is drawn from a normal distribution with mean µi and
precision (inverse variance) τi0. His signal, vi , is normally distributed with mean Vi and precision
τiv .13 Suppose that the seller can allow buyer i to observe his true valuation, that is, zi ≡ Vi .
Clearly, Vi , zi , and vi are strictly affiliated. The distribution of vi , which is normal, satisfies the
hazard rate condition.

The c.d.f. of Vi conditional on vi , Hivi , is normal with mean (τi0µi + τivvi )/(τi0 + τiv ) and
precision τi0 + τiv . The realization of vi simply “shifts” the conditional distribution of Vi to the
right without altering its shape: for a unit increase in vi , the mean (and only the mean) of i’s true
valuation increases by τiv/(τi0 + τiv ).

In order to show that this example fits our model, we just need to verify Assumptions 1 and
2. The easiest way to do so is by transforming the seller’s signal and showing that the conditions
in Lemma 2 hold. Define si ≡ Hivi (zi ), and let ui (vi ,si ) = H−1

ivi
(si ) ≡ Vi . It is immediate that ui

is strictly increasing in si . Since vi shifts Hivi (as a function of zi ) to the right by τiv/(τi0 + τiv )

for a unit increase in vi , the derivative of H−1
ivi

with respect to vi is constant, τiv/(τi0 + τiv ).
Therefore, ui is linear and strictly increasing in vi and Assumptions 1 and 2 are satisfied.

Example 2a generalizes to the case where zi , just like vi , is a noisy, normal signal of Vi

(details available upon request). In Examples 1 and 2a, ui is linear in vi in the transformed model.
We will show in Section 5 that the implementation of the optimal mechanism is particularly
simple in this case. However, our model applies more generally.

Example 2b. Suppose that the environment is the same as in Example 2a, with the only
difference that the random variable Vi is not the monetary value of the good for buyer i ; instead,
it is the quantity of an input that the buyer obtains by buying the good. (Think of the auctioned
good as a mineral field and Vi as the quantity of the raw material in the field.) Suppose that the
buyer’s monetary gain from owning the good is an increasing, continuously differentiable, and
concave function of Vi , say, ri (Vi ). The buyer is risk neutral towards monetary gains and losses.

Set, for example, ri (Vi ) = Vi for Vi ≤ 0 and ri (Vi ) = 2(
√

Vi +1 − 1) for Vi ≥ 0. Then, in
the transformed model the signal si is the same as in the transformed version of Example 2a
and the buyer’s monetary valuation for the good is ũi (vi ,si ) ≡ ri (ui (vi ,si )). This function is
clearly non-linear, yet it also satisfies the conditions in Lemma 2 because ui is linear in vi and ri

is concave.

13. The support of vi is not a compact interval, but this does not cause a problem in the analysis.

c© 2007 The Review of Economic Studies Limited
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In the following example, again, the buyer’s signal is correlated to his true valuation, which
the seller has the ability to reveal. We derive the transformed model where ui is genuinely
non-linear but our model still applies.

Example 3. Let vi and zi ≡ Vi have joint p.d.f. φ(vi ,Vi ) = 2eVi for Vi ∈ [0, ln(2)], vi ∈
[eVi −1,1]. Then the densities of the marginals are φv(vi ) = ∫ ln(vi +1)

0 2eVi dVi = 2vi for vi ∈ [0,1]
and φV (Vi ) = ∫ 1

eVi −1 2eVi dvi = (2−eVi )2eVi for Vi ∈ [0, ln(2)]. The hazard rate condition holds
for fi ≡ φv . The p.d.f. of Vi conditional on vi is

hivi (Vi ) ≡ φV |v (Vi | vi ) = φ(vi ,Vi )

φv(vi )
= eVi

vi
.

The corresponding cumulative distribution function is Hivi (Vi ) = (eVi − 1)/vi . Note that the
domain of Vi conditional on vi is [0, ln(vi +1)].

Perform the transformation by letting si = Hivi (Vi ). Then, ui (vi ,si ) = ln(vi si +1) ensures
ui (vi ,si ) ≡ Vi . Now, ui1 = ui2 = 1/(vi si + 1), ui11 = ui12 = −1/(vi si + 1), therefore ui12 < 0
and ui11/ui1 = ui12/ui2, so our assumptions hold.

3. PREVIEW OF THE RESULTS FOR A SINGLE BUYER

In this section we preview our results for the case of a single buyer in the context of Example
2a. This special case allows us to outline the main results of the paper and some heuristic proofs.
It also showcases the practical aspects of the optimal mechanism and its relation to mechanisms
observed in reality, in particular, option contracts.14

In Example 2a the buyer’s valuation for the object on sale, V , is normally distributed with
mean µ and variance 1/τ0. The buyer only observes the signal v , whose distribution conditional
on V is normal with mean V and variance 1/τv . The unconditional distribution of v is normal
with mean µ and variance 1/τ0 +1/τv , hence the c.d.f. of v , F , satisfies the hazard rate condition.
The conditional distribution of V given v , Hv , is also normal with mean (τ0µ+ τvv)/(τ0 + τv)
and variance 1/(τ0 + τv). The seller can disclose to the buyer, without observing, the realiz-
ation of V . We want to find the optimal mechanism that incorporates the rules of information
disclosure and sale.

The main difficulty of this mechanism design problem is that in this set-up, it seems im-
possible to characterize all feasible mechanisms. For example, it is clearly not without loss of
generality to assume that the seller discloses V and asks the buyer to report it back. Our approach
will be to analyse the optimal solution in a relaxed problem and prove that it is implementable in
the original environment.

Suppose that the agents have access to a computer (black box) that works as follows: if
the buyer privately inputs v and the seller reveals to the machine (without observing) V then it
outputs Hv (V ). That is, the machine computes the percentile of the distribution of V given v
that the realization of the true valuation belongs to. Call the output of the machine (which is a
random variable) the signal s. In the proof of part (i) of Lemma 1 we established that s ≡ Hv (V )
is distributed uniformly on [0,1] for all realizations of v , hence it is independent of v .

It does not matter for the buyer whether he observes V or s; knowing v , he can compute V =
H−1

v (s). However, the seller would be better off if she could commit to a mechanism contingent
on s before observing s as she can always discard the information. The benchmark case is the
hypothetical situation where the seller commits to a mechanism that may depend on s and then

14. We thank the Editor, Juuso Välimäki, for suggesting that we include this section and pointing out the realistic
features of the optimal mechanism.
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observes s (but not V or v). The seller’s expected revenue in the benchmark is an upper bound
on that in the original problem.

The benchmark case can be analysed using standard tools of mechanism design. In particu-
lar, any feasible mechanism can be represented by a truthful direct mechanism, where the buyer
is asked to reveal v , the seller observes s, trade takes place with probability X (v,s), and the
buyer pays an expected transfer of T (v,s). If the buyer reports type v̂ while his actual type is v ,
his pay-off in the mechanism is

π∗(v, v̂) =
1∫

0

[
H−1

v (s) X (v̂,s)− T (v̂,s)
]
ds. (1)

The mechanism is incentive compatible if π∗(v, v̂) is maximized in v̂ at v̂ = v . The first-order
condition of maximization is ∂π∗(v, v̂)/∂v̂ = 0 at v̂ = v and the second-order condition boils
down to

∫ 1
0 X (v,s)ds being increasing in v (strictly increasing for sufficiency).

By the envelope theorem, dπ∗(v,v)/dv = ∂π∗(v, v̂)/∂v at v̂ = v . In Example 2a we saw
that ∂ H−1

v (s)/∂v = τv/(τ0 +τv), a constant that we will denote by λ. Therefore, dπ∗(v,v)/dv =∫ 1
0 λX (v,s)ds. Integrating it in v and using (1) yields

π∗(v,v) = π +
v∫

v

1∫
0

λX (y,s)dsdy, (2)

where v is the infimum of types that receive the good with positive probability and π is this type’s
pay-off. The ex ante expectation of the buyer’s surplus is

∞∫
−∞

π∗(v,v)d F(v) = π +
∞∫

−∞

⎡⎣ 1∫
0

λX (v,s)ds
1− F(v)

f (v)

⎤⎦d F(v),

where we used integration by parts (or Fubini’s theorem) in the second term.
The seller’s expected pay-off is the difference between social surplus and the buyer’s ex-

pected surplus, which by the previous expression can be written as

W =
∞∫

−∞

1∫
0

(
H−1

v (s)−λ
1− F(v)

f (v)

)
X (v,s)ds d F(v)−π. (3)

The seller maximizes W by choosing X and π . The constraints to her problem are (i) X ∈ [0,1],
(ii)

∫ 1
0 X (v,s)ds weakly increasing in v , and (iii) π ≥ 0. The optimum is attained by setting

π = 0 and maximizing the integrand in (3) pointwise by letting

X (v,s) =
{

1 if H−1
v (s)−λ(1− F(v))/ f (v) ≥ 0

0 otherwise.
(4)

The resulting X is between 0 and 1, it is strictly increasing in v as H−1
v is increasing and

(1− F)/ f is decreasing in v . The constraints are satisfied and we have an optimum.
Equation (4) defines the allocation rule of the optimal mechanism in the benchmark case.

According to it, the buyer receives the object exactly when his true valuation, V ≡ H−1
v (s),
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exceeds the threshold λ(1 − F(v))/ f (v). By plugging (4) into (3), the seller’s expected revenue
in the optimal mechanism can be written as

W =
∞∫

−∞

1∫
0

max

{
H−1

v (s)−λ
1− F(v)

f (v)
,0

}
ds d F(v). (5)

The interpretation of the optimal mechanism in the benchmark is familiar from Bulow and
Roberts (1989): the seller’s marginal revenue from the buyer with type v and valuation V is
V −λ(1− F(v))/ f (v). The object is sold whenever this expression is non-negative, and the total
revenue is the area under the marginal revenue curve.

Our main result is that the seller can implement the same outcome in the original model
even without observing s. The intuition is that the seller’s marginal revenue from buyer type v is
V −λ(1− F(v))/ f (v) in the original model as well, at least as long as the seller allows the buyer
to learn V . However, this is not the entire argument: it turns out that the conditions under which
the same allocation rule can be implemented without the seller observing s are stronger than they
are in the benchmark model. In what follows, we provide a more formal analysis.

Consider mechanisms where the buyer first reports his type, v , and pays a fee c(v). Then, the
seller allows him to observe V . The buyer makes the decision whether or not to buy; if he buys,
he pays an additional premium p(v). (The functions c and p are announced by the seller before
v is reported.) We argue that such a mechanism can implement the outcome of the benchmark,
(4) and (5).

The buyer with type v who initially announces v̂ buys the good in the end if and only if
V ≥ p(v̂) because c(v̂), which is paid no matter whether or not he buys, is sunk. If the seller
sets p(v) = λ(1 − F(v))/ f (v) then the buyer who reports v truthfully gets the good if and only
if V ≥ λ(1 − F(v))/ f (v), which is exactly the allocation rule in the benchmark according to
equation (4). Now we define a fee schedule c(v) that, together with p(v) defined above, elicits a
truthful type announcement. By reporting v̂ , the buyer with signal v gets a pay-off of

π(v, v̂) =
1∫

0

max
{
H−1

v (s)− p(v̂),0
}

ds − c(v̂). (6)

The first-order condition of incentive compatibility is ∂π(v, v̂)/∂v̂ = 0 at v̂ = v , that is,

c′(v) = −p′(v)
[
1− Hv (p(v))

]
. (7)

The necessary second-order condition of the maximization is p′ ≤ 0, which holds strictly
(implying sufficiency) for p = λ(1− F)/ f by the hazard rate condition.15 Equation (7) defines c
up to a constant, which is set so that for an arbitrary v , π(v,v) = π∗(v,v).

This mechanism implements the allocation rule of the benchmark. We only need to prove
that the seller gets the same expected pay-off as well. By the definition of c, π(v,v) = π∗(v,v)
for some v . By differentiating (2) and using (4),

d

dv
π∗(v,v) =

1∫
0

X (v,s)ds = λ
[
1− Hv (λ(1− F(v))/ f (v))

]
.

15. Recall that in the benchmark case, the corresponding second-order condition requires that
∫ 1

0 X (v,s)ds be
increasing in v , which holds because H−1

v (s) − λ(1 − F(v))/ f (v) is increasing in v . In order to implement the same
allocation rule in the original model, the local second-order condition is stronger: it requires that p = λ(1 − F)/ f be
decreasing in v .
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Using (7), the total derivative of π(v,v) is

d

dv
π(v,v) =

1∫
Hv (p(v))

(
λ− p′(v)

)
ds − c′(v) = λ

[
1− Hv (p(v))

]
.

Since p = λ(1 − F)/ f , we have dπ(v,v)/dv = dπ∗(v,v)/dv for all v . We conclude that the
buyer’s pay-off is the same under the proposed mechanism and the benchmark: π(v,v) = π∗(v,v)
for all v . The seller’s revenue is the difference between the social surplus and the buyer’s
pay-off. In the proposed mechanism, the buyer’s and the social surpluses are the same as their
respective counterparts in the benchmark. Therefore, the seller attains the same expected revenue
in both cases.

The mechanism consisting of the pair of functions (c, p) is remarkably simple and can be
thought of as a menu of European call options offered by the seller. These types of options are
widely used in financial forward markets and in labour and other production contracts as well.
(Prominent examples include professional athletes’ labour contracts and movie producers’ option
contracts regarding sequels.) In our model, it is the monopolist seller, not “time”, that reveals new
information to the buyer of the asset. However, this distinction makes no difference because the
seller reveals all her information anyway. In the optimal mechanism, the buyer picks a fee, c(v),
depending on his prior, from a list provided by the seller. After having learnt his posterior, the
buyer has to pay a corresponding additional strike price, p(v), in case he decides to buy the good.
Since p = (1− F)/ f is decreasing in v , higher buyer types pick options with lower strike prices
but larger upfront fees. (In financial markets, a European call option on the same future asset also
costs more if the strike price is lower.) In our model, the reason why different buyers may choose
options with different strike prices is that they have heterogeneous initial estimates regarding the
asset’s future value.

4. THE OPTIMAL MECHANISM IN THE GENERAL CASE

We now turn to the characterization of the expected revenue-maximizing mechanism in the gen-
eral model. Recall that we showed in Section 2.2 that the seller’s signal can be transformed so
that the resulting random variable, si (buyer i’s shock), is independent of vi , and for an increas-
ing function ui , Vi ≡ ui (vi ,si ). In Section 4.1 we characterize the optimal mechanism under
the assumption that the seller, after having committed to a mechanism, is able to observe the
realizations of the shocks. This provides an upper bound on her revenue in the original model
as the seller can commit to ignore the shocks. Then, in Section 4.2, we show that the same out-
come can be implemented even if the seller cannot observe the si ’s, but controls their release.
While the buyers still enjoy information rents from their types, all their rents from observing the
seller-controlled signals are appropriated by the seller. This is the main result of the paper.

4.1. Benchmark: the seller can observe the shocks

Suppose first, for benchmarking purposes only, that the seller can observe the si ’s after hav-
ing committed to a selling mechanism.16 The revelation principle applies, hence we can re-
strict attention to mechanisms where the buyers report their types and the seller determines
the allocation and the transfers as a function of the reported types and the realization of the

16. Since the seller observes the shocks only after having committed to a mechanism, “informed principal” type
problems do not arise in the benchmark. It does not matter whether the buyers can observe the shocks as long as the
mechanism is verifiable (i.e. the seller cannot lie about si ).
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shocks.17 We will analyse truthful equilibria of direct mechanisms that consist of an allocation
rule, xi (vi ,v−i,si ,s−i) for all i and an (expected) transfer scheme, ti (vi ,v–i,si ,s−i) for all i .
Here, xi (vi ,v−i,si ,s−i) is the probability that buyer i receives the good and ti (vi ,v−i,si ,s−i) is
the transfer that he expects to pay, given the reported types and the realization of the shocks.

We shall prove that the revenue-maximizing allocation is in a way a generalization
of the one in Myerson (1981). The object is rewarded to the bidder with largest non-negative
“shock-adjusted virtual valuation”, Wi (vi ,si ), where

Wi (vi ,si ) = ui (vi ,si )− 1− Fi (vi )

fi (vi )
ui1(vi ,si ). (8)

Ignoring ties, the optimal allocation rule x∗
i is defined as follows:

x∗
i (vi ,v−i,si ,s−i) = 1 if i = argmax

j

{
W j (v j ,s j ),0

}
. (9)

Using the tools of Bayesian mechanism design, we obtain the following solution to the
benchmark problem.

Proposition 1. In the revenue-maximizing mechanism of the benchmark case (when the
seller can observe si ’s after having committed to a selling mechanism), the allocation rule is
defined by (9). The profit of buyer i with type vi is

�∗
i (vi ) =

vi∫
v i

∫
ui1(y,si )X∗

i (y,si )dGi (si )dy, (10)

where X∗
i (vi ,si ) = ∫∫

x∗
i (vi ,v−i,si ,s−i)d F−i (v−i)dG−i (s−i). The seller’s revenue is

R∗ =
∫∫

max
i

{
ui (vi ,si )− 1− Fi (vi )

fi (vi )
ui1(vi ,si ),0

}
d F(v)dG(s). (11)

Proof. See Appendix. ‖

It is useful, for use in subsequent steps of the analysis, to further describe some properties
of the allocation rule.

Corollary 1. (i) X∗
i is continuous in both of its arguments.

(ii) X∗
i is weakly increasing in both of its arguments.

(iii) If vi > v̂i , si < ŝi and ui (vi ,si ) = ui (v̂i , ŝi ) then X∗
i (vi ,si ) ≥ X∗

i (v̂i , ŝi ).

Proof. See Appendix. ‖

4.2. The solution to the seller’s problem

We now show that the allocation rule and seller’s revenue characterized in Proposition 1 can be
implemented even if the seller cannot observe the shocks, as long as she can allow the buyers to
observe them. In order to implement the allocation rule (9), she has to reveal her signals to the
buyers (otherwise nobody can compute Wi ). Therefore, in order to find a mechanism that imple-
ments the benchmark allocation rule, we can restrict attention to two-stage, incentive-compatible

17. Using standard shorthand notation, v−i and s−i denote the vector of types and shocks of buyers other than i ,
while v and s denote the entire profiles.
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direct mechanisms. In the first stage buyers report their vi ’s; in the second stage each buyer
observes his own si and reports it back. For all reporting profiles (v,s) and for all i , the seller al-
locates the good to buyer i with probability xi (vi ,v−i,si ,s−i) and buyer i pays ti (vi ,v−i,si ,s−i);
these functions are set so that truth-telling is incentive compatible in both reporting stages.

Given a two-stage mechanism {xi , ti }n
i=1, define

Xi (vi ,si ) =
∫∫

xi (vi ,v−i,si ,s−i)d F−i (v−i)dG−i (s−i),

Ti (vi ,si ) ≡
∫∫

ti (vi ,v−i,si ,s−i)d F−i (v−i)dG−i (s−i),

as buyer i’s expected probability of winning and expected transfers, respectively.
We will now analyse the consequences of incentive compatibility going backwards, starting

in the second stage of the mechanism. In Lemma 3 we show how the allocation rule pins down
the buyers’ second-round profit functions given truthful revelation of types in the first round.
Then, in Lemma 4 we describe what happens off the equilibrium path—after buyer i reports his
type untruthfully and observes his shock. It turns out that the deviator will report an untruthful
value for his shock in such a way that the two lies “cancel” each other and his true valuation,
ui (vi ,si ), is correctly inferred from his reports. Using these results, in Lemmas 5 and 6 (the final
steps before proving Theorem 1), we derive the indirect profit function of buyer i .

In the second reporting stage, after truthful first round, buyer i with type vi who observes si

and reports ŝi gets
π̃i (si , ŝi ; vi ) = ui (vi ,si )Xi (vi , ŝi )− Ti (vi , ŝi ). (12)

Incentive compatibility in the second reporting stage is equivalent to

π̃i (si , ŝi ; vi ) ≤ π̃i (si ,si ; vi ) for all i,vi ,si , and ŝi . (13)

The following lemma provides the conditions for a mechanism to be incentive compatible in the
second reporting stage after a truthful first round.

Lemma 3. If a two-stage mechanism is incentive compatible and Xi (vi ,si ) induced by the
allocation rule is continuous in si then for all si > ŝi ,

π̃i (si ,si ; vi )− π̃i (ŝi , ŝi ; vi ) =
si∫

ŝi

ui2(vi , z)Xi (vi , z)dz. (14)

Moreover, if (14) holds and Xi is weakly increasing in si then the two-stage mechanism is incen-
tive compatible in the second round after truthful revelation in the first round.

Proof. See Appendix. ‖

In order to complete the analysis of the second round of the mechanism, we also need to
know what buyer i will do if he misreports his type in the first round. The following lemma
claims that he will “correct his lie”.18

18. This correction is possible because for all vi , v̂i , and si there exists ŝi such that ui (vi ,si ) = ui (v̂i , ŝi ). If this
assumption did not hold then the seller could detect deviations more easily.

c© 2007 The Review of Economic Studies Limited



718 REVIEW OF ECONOMIC STUDIES

Lemma 4. In the second round of an incentive-compatible two-stage mechanism, buyer i
with type vi who reported v̂i in the first round and has observed si will report ŝi = σi (vi , v̂i ,si )
such that

ui (vi ,si ) ≡ ui (v̂i ,σi (vi , v̂i ,si )). (15)

Proof. Had buyer i indeed have type v̂i (as reported) and observed ŝi , incentive compati-
bility in the second round would require

ui (v̂i , ŝi )Xi (v̂i , ŝi )− Ti (v̂i , ŝi ) ≥ ui (v̂i , ŝi )Xi (v̂i ,s′
i )− Ti (v̂i ,s′

i ),

for all s′
i . By (15), that is, ui (vi ,si ) = ui (v̂i , ŝi ), this is equivalent to

ui (vi ,si )Xi (v̂i , ŝi )− Ti (v̂i , ŝi ) ≥ ui (vi ,si )Xi (v̂i ,s′
i )− Ti (v̂i ,s′

i ),

which means that type vi that reported v̂i in the first round and then observed si is indeed best off
by reporting ŝi . ‖

Now we move back to the first round and examine the consequences of incentive compat-
ibility there. Our goal is to derive the buyers’ equilibrium profit functions, and we proceed as
follows. Using the result of Lemma 4 regarding continuation play after a first-round deviation
(buyer i misreporting his type) we first derive the deviating buyer’s profit function (see Lemma
5). In Lemma 6 we use these formulae for the deviator’s pay-off to derive the buyers’ equilibrium
(or indirect) profit functions.

Lemma 5. In an incentive-compatible two-stage mechanism, if type vi of buyer i reports
v̂i in the first round then his pay-off is

πi (vi , v̂i ) = πi (v̂i , v̂i )+
∫ vi∫

v̂i

ui1(y,si )Xi (v̂i ,σi (y, v̂i ,si ))dy dGi (si ), (16)

where
∫ b

a denotes −∫ a
b for a < b.

Proof. See Appendix. ‖

Incentive compatibility in the first round is equivalent to, for all vi > v̂i ,

πi (vi , v̂i ) ≤ πi (vi ,vi ) and πi (v̂i ,vi ) ≤ πi (v̂i , v̂i ). (17)

Equation (16) is used in the following lemma to characterize the buyers’ indirect profit functions
in an incentive-compatible two-stage mechanism.

Lemma 6. If a two-stage mechanism is incentive compatible and Xi (vi ,si ) induced by
the allocation rule is continuous then buyer i’s indirect profit (as a function of his type) can be
written as

�i (vi ) = �i (v)+
vi∫

v i

∫
ui1(y,si )Xi (y,si )dGi (si )dy. (18)

Proof. See Appendix. ‖
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The significance of equation (18) is that it closely resembles equation (10), the profit func-
tion of buyer i under the benchmark case. By comparing the two formulae we see that if X∗

i can
be implemented with �i (v) = 0, then �i (vi ) = �∗

i (vi ) and the seller’s revenue is the same as in
the benchmark. The following result—which is the main result of the paper—shows that this is
indeed the case.

Theorem 1. When the seller can disclose without observing the buyers’ shocks, the same
outcome can be implemented as in the benchmark case described in Proposition 1.

Proof. Set Xi = X∗
i and suppose that all buyers except i report their types truthfully.

Consider buyer i with type vi contemplating to misreport to v̂i < vi . Note that his deviation
pay-off is

πi (vi , v̂i )−πi (vi ,vi ) = [
πi (vi , v̂i )−πi (v̂i , v̂i )

]− [πi (vi ,vi )−πi (v̂i , v̂i )
]
.

By (16) and (18), the difference of the two bracketed expressions can be written as

∫ vi∫
v̂i

ui1(y,si )X∗
i (v̂i ,σi (y, v̂i ,si ))dydGi (si )−

∫ vi∫
v̂i

ui1(y,si )X∗
i (y,si )dydGi (si ). (19)

But since for all y ∈ [v̂i ,vi ], by property (iii) of X∗
i (Corollary 1),

X∗
i (v̂i ,σi (y, v̂i ,si )) ≤ X∗

i (y,si ),

the difference in (19) and hence πi (vi , v̂i )−πi (vi ,vi ) is non-positive. A similar argument can be
used to rule out deviation to v̂i > vi .

Buyer i’s participation constraint holds in the first stage (when he only knows vi ) be-
cause �∗

i ≥ 0. His second-stage participation constraint fails if for some (vi ,si ), T ∗
i (vi ,si ) >

X∗
i (vi ,si )ui (vi ,si ). This is a consequence of the simplification that transfers are made at the end.

By asking buyer i to pay γi (vi ) = supsi
{X∗

i (vi ,si )ui (vi ,si )− T ∗
i (vi ,si )} in the first round and

then T ∗
i (vi ,si )−γi (vi ) in the second round, the same allocation is implemented, and all interim

participation constraints hold.
Finally, we point out that the necessary and sufficient condition that guarantees truthful

reports in the first stage is that (19) is non-positive. ‖

A key feature of the optimal allocation rule that makes the proof work is that for all vi , v̂i ∈
[v, v̄] and si , ŝi ∈ R such that vi > v̂i and ui (vi ,si ) = ui (v̂i , ŝi ), the allocation rule “favours” the
pair (vi ,si ), that is, X∗

i (v̂i , ŝi ) ≤ X∗
i (vi ,si ), as seen in property (iii) in Corollary 1. In words,

buyer i with type vi and a given ex post valuation wins the object more often than he does with a
lower type v̂i , but the same ex post valuation.

4.3. Necessary and sufficient conditions

The assumptions made in Section 2 (in particular, Assumptions 1 and 2) are not necessary for
our main result to hold. Below we discuss what are the necessary and sufficient conditions for
the allocation X∗

i , defined by (9), to be implementable by an incentive-compatible mechanism in
both the benchmark and the original models.
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The benchmark case. At the end of the proof of Proposition 1, we have concluded that X∗
i

can be implemented in the benchmark case if and only if for all i , v̂i ,vi ∈ [0,1],∫ vi∫
v̂i

ui1(y,si )X∗
i (y,si )dy dGi (si ) ≥

∫
(ui (vi ,si )−ui (v̂i ,si ))X∗

i (v̂i ,si )dGi (si ), (20)

where
∫ vi
v̂i

denotes −∫ v̂i
vi

for vi < v̂i . Notice that if there were no shocks (si was 0 with probability
1), this condition would boil down to the necessary condition identified in the standard optimal
auction literature (see Myerson, 1981), which requires a buyer with a higher type to win with a
higher probability. That is, X∗

i has to be increasing in vi . Because of the shocks, this condition
only has to be satisfied in expectation in the benchmark. Our sufficient conditions imply that X∗

i
is increasing in vi , not only in expectation, but for all si . This is because Assumptions 1 and 2
guarantee that buyer i’s shock-adjusted virtual valuation, Wi , is increasing in vi and therefore X∗

i
is increasing, too. As a matter of fact the monotonicity of Wi in vi follows from the concavity of
ui in vi , which is a much weaker requirement than Assumptions 1 and 2.

The original model. Recall that the allocation rule X∗
i is implemented in a two-stage mech-

anism. In the first stage, buyers report their types. In the second stage, they learn their shocks and
report them. Hence, there will be two conditions, one for each stage, that are necessary and
sufficient for incentive compatibility.

The first condition guarantees that at the second stage buyer i reports si truthfully, given
truthful reports in the first stage. At the end of the proof of Lemma 3 we pointed out that this
condition holds, if and only if, for all i , ŝi , si , and vi such that ŝi < si ,

X∗
i (vi ,si ) ≥ X∗

i (vi , ŝi ). (21)

By the second stage the seller knows the buyers’ types. Hence the problem of inducing them
to report their new information is essentially the same as in a standard optimal auction. That is
why we get the usual condition: a buyer with a larger shock must win the object with higher
probability. Assumption 1 implies that Wi is increasing in si and hence X∗

i is increasing too.
Notice that in the benchmark case it does not matter whether X∗

i is monotonic in si . The seller
observes the shocks and does not have to elicit this information from the buyers. As a result, if
(20) holds but (21) does not, X∗

i can be implemented in the benchmark but not in the original
model.

The second condition guarantees that buyer i reports her type truthfully at the first stage. At
the end of the proof of Theorem 1 we showed that this holds if and only if for all i , v̂i ,vi ∈ [0,1],∫ vi∫

v̂i

ui1(y,si )X∗
i (y,si )dydGi (si ) ≥

∫ vi∫
v̂i

ui1(y,si )X∗
i (v̂i ,σi (y, v̂i ,si ))dydGi (si ). (22)

This condition is probably the hardest to interpret. Recall that the definition of σi is that ui (v̂i ,
σi (vi , v̂i ,si )) = ui (vi ,si ). If one replaces σi (y, v̂i ,si ) by si in the R.H.S. of (22), then this con-
dition would coincide with the necessary and sufficient condition in the benchmark, (20). Unlike
in the benchmark, if a buyer misreports his type in the first stage, he can also misreport his shock
in the second stage. As we have proved in Lemma 4, he would indeed do so, and instead of si ,
he would report σi (vi , v̂i ,si ). That is, he would make a report in the second stage such that the
ex post valuation computed from his reports was his true valuation. This explains the discrep-
ancy between (20) and (22). It is not enough that X∗

i is increasing in vi in expectation, it must
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be increasing even under the second-stage deviation strategy of the buyers. Again, Assumption 2
implies that (22) does not only hold in expectation but also pointwise. This is because X∗

i satisfies
property (iii) in Corollary 1.

To summarize, condition (21) is irrelevant for the benchmark, since the seller observes the
shocks and does not have to induce the buyers to report them. Condition (22) is stronger than
condition (20) because a deviation in the first stage is linked to a deviation in the second stage,
which is not possible in the benchmark. Furthermore, Assumption 1 is sufficient for (21), and
Assumption 2 is sufficient for (22). The concavity of ui in vi implies (20), which is a weak
consequence of Assumptions 1 and 2.

We want to point out that the conditions (20)–(22) can be stated in terms of the joint distri-
bution of Vi , vi , and zi without introducing the variable si . These conditions involve ui , ui1, and
X∗

i , which can all be expressed without si . Recall from the proof of Lemma 2 that si ≡ Hvi (Vi ),
ui (vi ,si ) = Vi , and ui1(vi ,si ) = (∂ Hivi (Vi )/∂vi )/hivi (Vi ). Therefore, buyer i’s shock-adjusted
virtual valuation, Wi , is

Vi − 1− Fi (vi )

fi (vi )

∂ Hivi (Vi )/∂vi

hivi (Vi )
.

Since according to the optimal allocation rule the object goes to the buyer with the largest
shock-adjusted virtual valuation, X∗

i can also be defined without the introduction of si . However,
as we have seen, X∗

i and the necessary–sufficient monotonicity conditions can be interpreted
more easily with the help of the transformed signal, si .

Below we show, by examples, that sometimes the allocation rule X∗
i is only implementable

in the benchmark case, but not in the original model. These examples also illustrate that Assump-
tions 1 and 2 are not necessary.

Example 4. Suppose that there is a single buyer, and in the transformed model u(v,s) =
α(v +s)+βvs. In order to guarantee that u is increasing in both arguments, assume (α,β) ∈ A ≡
{(a,b) : a ≥ max{0,−b}} and v,s ∈ [0,1]. Let F(v) = 1 − (1 − v)k with k ≥ 1 and assume s is
uniform. We shall characterize the subsets of A such that X∗ is implementable in the benchmark
case and in the original model, respectively.

The shock-adjusted virtual valuation of the buyer is W (v,s) = α(v + s) + βvs − (1 − v)
(1 + βs)/k. Recall that X∗(v,s) = 1 if W (v,s) ≥ 0 and 0 otherwise. Since ∂W/∂v =
(α +βs)(k +1)/k, W is increasing in v when α ≥ max{0,−β}. Therefore, condition (20) holds
for all (α,β) ∈ A and X∗ is implementable on the entire set A.

Condition (21) is satisfied if and only if W is increasing in s. Since ∂W/∂s = α + βv −
(1 − v)β/k, this requires α ≥ max{β/k,−β}.19 Hence, α ≥ max{β/k,−β} is necessary and
sufficient for (21) to hold.

Finally, (22) is satisfied if and only if X∗(v,σ (v + δ,v,s)) ≤ X∗(v + δ,s) whenever δ ≥ 0.
This holds if and only if W (v,σ (v + δ,v,s)) ≤ W (v + δ,s). We show that this condition holds
for all (α,β) ∈ A. In this example

σ(v + δ,v,s) = α(δ + s)+β(v + δ)s

α +βv
.

Therefore, W (v + δ,s)− W (v,σ (v + δ,v,s)) is

1− v

k

(
α +β

α(δ + s)+β(v + δ)s

α +βv

)
− 1− v − δ

k
(α +βs) = δ(α +βs)

k

α +β

α +βv
> 0.

19. If α < max{β/k,−β}, then there exists an interval on which W is decreasing in s, which implies that (21) does
not hold.
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We conclude that while X∗ is implementable in the benchmark case for all (α,β) ∈ A, in
the original model it is only implementable for α ≥ max{β/k,−β}.

This example also shows that Assumptions 1 and 2 are not necessary for our results. Notice
that Assumption 1 holds if and only if β ≤ 0 and Assumption 2 holds if and only if β ≥ 0.
However, X∗ is implementable whenever α ≥ max{β/k,−β}.

In the following two examples the orthogonal transformation yields special cases of the
parametric model of Example 4.

Example 5. Suppose that there is a single buyer whose true valuation is distributed ac-
cording to the c.d.f. V 2 on [0,1]. His signal, v , is a uniform draw from [0,V ]. Assume that the
seller can disclose, without observing, the realization of V to the buyer.

Notice that the joint distribution of (V,v) is uniform on the triangle 0 ≤ v ≤ V ≤ 1. As a
result, the conditional distribution of V given v is also uniform on the interval [v,1] with c.d.f.
Hv (V ) = (V − v)/(1 − v). The unconditional c.d.f. of v is F(v) = 1 − (1 − v)2. To perform the
transformation, define s ≡ Hv (V ). Then, u(v,s) = H−1

v (s) = v + s − vs.
By direct calculation, u1 = 1 − s, u11 = 0, u2 = 1 − v , and u12 = −1. Therefore, Assump-

tion 1 holds (u12 ≤ 0), but Assumption 2 does not (u11/u1 > u12/u2). However, the model is
equivalent to Example 4 with k = 2, α = 1, and β = −1. Since α ≥ max{β/k,−β}, X∗ can be
implemented in the original model. This illustrates that Assumptions 1 and 2 are not necessary
for Theorem 1.

It is interesting to note that the shock-adjusted virtual valuation simplifies to W = [3u(v,s)−
1]/2. Recall that in the optimal allocation the buyer gets the good whenever W ≥ 0, that is,
u(v,s) ≡ V ≥ 1/3. The allocation rule only depends on the buyer’s true valuation and not on his
original signal, v . In this example (and its extension to multiple symmetric buyers), there is no
distortion in the allocation of the good conditional on sale.

Example 6. Suppose that the joint p.d.f. of v and V is φ(v,V ) = 1/v for 0 ≤ V ≤ v ≤ 1,
and the seller can disclose V to the buyer. The p.d.f. of v is f (v) ≡ φv(v) = ∫ v

0 1/vdV = 1, that
is, uniform on [0,1]. The distribution of V conditional on v is Hv (V ) = V/v , that is, uniform on
[0,v]. Define s ≡ Hv (V ) = V/v . Then, u(v,s) = H−1

v (s) = vs.
This model is equivalent to Example 4 with k = 1, α = 0, and β = 1. Since max{β/k,−β} >

α ≥ max{0,−β}, X∗ cannot be implemented in the original model.

4.4. Discussion of the optimal mechanism

As we have pointed out, in the optimal mechanism, two ex ante symmetric buyers with the same
ex post valuation may not have the same probability of winning. According to Corollary 1, an
increase in a buyer’s type, holding his true valuation constant, weakly increases the probability
that he wins the object.20 This is so because Wi (vi ,si ) in equation (8) is weakly increasing in
vi even if ui (vi ,si ) is compensated. (Example 5 is a knife-edge case where Wi remains constant
for such a compensated change.) The economic reason for this property is that the seller uses
discrimination—giving preference to someone with a higher type—in order to screen the buyers.

This property implies that the auction is not efficient, even under ex ante symmetry of the
bidders and conditional on the object being sold. In contrast, in the classical symmetric set-up
with deterministic valuations, the optimal auction of Myerson (1981) and Riley and Samuelson
(1981) is efficient conditional on sale.

20. In the previous section, we showed that this is a necessary condition for implementation when the seller cannot
observe her signals. However, it is not necessary in the benchmark, when the seller can observe the shocks.
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ESŐ & SZENTES OPTIMAL INFORMATION DISCLOSURE 723

In order to better explain Theorem 1, consider a set-up where the buyers are ex ante symmet-
ric (the vi ’s are identically distributed) and the shocks are additive, mean zero random variables.
Let us compare the optimal allocation rule in our model with that of the revenue-maximizing
auction when nobody (neither the seller nor the buyers) can observe them. In the latter case, the
seller should allocate the good to the buyer with the largest non-negative virtual value estimate,
vi − (1− F(vi ))/ f (vi ). In our model, in the optimal mechanism, the good will be allocated more
efficiently, as the winner will now be the buyer with the highest non-negative shock-adjusted
virtual valuation, vi + si − (1 − F(vi ))/ f (vi ).21 According to Theorem 1, the seller, by control-
ling the release of the shocks and without actually observing them, can implement this rule and
appropriate the increase in efficiency.22

5. THE HANDICAP AUCTION

In this section we show how to implement the optimal mechanism when in the transformed model
ui1 is constant, like in Examples 1 and 2a. We call the mechanism handicap auction.

A handicap auction consists of two rounds. In the first round, each buyer i , knowing his
type, chooses a price premium pi for a fee Ci (pi ), where Ci is a fee schedule published by the
seller. The buyers do not observe the premia chosen by others. The second round is a traditional
auction, but the winner is required to pay his premium over the price. Between the two rounds,
the seller may send messages to the buyers. In the optimal handicap auction the seller discloses
her signals to the buyers, and the second round is a second-price (or English) auction with a zero
reservation price. We call this mechanism a handicap auction because in the second round, the
buyers compete under unequal conditions: a bidder with a smaller premium has an advantage.
The bidders buy their premium in the initial round, which is a form of price discrimination.23 If
there is only a single buyer, then, as we have seen it in Section 3, the handicap auction simplifies
to a menu of buy options: pi can be thought of as the strike price, and the upfront fee, Ci (pi ), is
the cost of the option.

It is a dominant strategy for buyer i who chose premium pi in the first stage to bid ui (vi ,si )−
pi in the second stage of the handicap auction. Assuming that the buyers follow this weakly dom-
inant strategy in the second round, the handicap auction can be represented by pairs of functions,
pi : [v, v̄] → R and ci : [v, v̄] → R, for i = 1, . . . ,n, where pi (vi ) is the price premium that in
equilibrium type vi picks for a fee of ci (vi ) ≡ Ci (pi (vi )).

Proposition 2. If ui1 is constant then the optimal mechanism of Theorem 1 can be imple-
mented via a handicap auction {ci , pi }n

i=1, where

pi (vi ) = 1− Fi (vi )

fi (vi )
ui1, (23)

21. It is easy to see that if vi −(1− F(vi ))/ f (vi ) < v j −(1− F(v j ))/ f (v j ), but, by adding the shocks to both sides
the inequality is reversed, then vi + si > v j + s j . Therefore, an allocation based on the shock-adjusted virtual valuations
“pointwise” improves efficiency. (This may not be true if Fi ’s are not identical.)

22. If the buyers’ ex ante type distributions are not identical then, as the seller gets to observe the signals, the
efficiency of the optimal mechanism may only improve in ex ante expectation. Still, there will be some efficiency gain,
which will be extracted by the seller even if she cannot observe the additional signals.

23. The handicap auction can also be implemented as a mechanism where, in the first round, each bidder buys a
discount (larger discounts cost more) and then participates in a second-price auction with a positive reservation price,
where the winner’s discount is applied towards his payment.
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and ci (vi ) is defined by

ci (vi ) =
∫∫ ⎡⎣max

{
Wi (vi ,si )− W 0−i (v−i,s−i),0

}−
vi∫

v

ui11{Wi (y,si )≥W 0−i (v−i,s−i)}dy

⎤⎦d F−i dG,

(24)
where Wi (vi ,si ) = ui (vi ,si )− pi (vi ) and W 0−i (v−i,s−i) = max j �=i{W j (v j ,s j ),0}.

From the seller’s perspective, the premium-fee schedule works as a device to discriminate
among buyers with different value estimates. A buyer with a high type, expecting to win often,
chooses a small price premium for a large fee in order not to pay much when he wins. Low types
choose large price premia, which are cheaper, but make winning more expensive. In the optimal
handicap auction, just like in the general optimal mechanism, two buyers with the same ex post
valuation do not have the same probability of winning. The buyer with a larger vi chooses a
smaller price premium, bids higher in the second round, and ends up winning more often.

One may suggest that the way the seller can appropriate all rents from the additional in-
formation is that in the handicap auction she essentially charges the buyers a type-dependent
upfront fee equal to the “value” of the information they are about to receive. This intuition may
be appealing, but it overly simplifies the workings of the mechanism. The value of the additional
information to the participants is not well defined because it depends on the rules of the sell-
ing mechanism. This value could be different if the seller chose a mechanism different from the
handicap auction.

It may be useful to compute a numerical example not only for illustrative purposes but also
to see how a seller may be able to calculate the parameters of the optimal handicap auction (the
price premium-fee schedule) in a practical application.

Example 1 (Revisited). Consider the set-up of Example 1, with the following additional as-
sumptions: the buyers’ types are distributed uniformly on [0,1] and the shocks are distributed
according to a standard logistic distribution.24

First, suppose that there is a single buyer. Then, as seen also in Section 3, the handicap
auction can be thought of as a menu of buy options, represented by C1(p1), where p1 is the
strike price and C1(p1) is the fee of the option. In the first round, the buyer chooses a price
p1 and pays C1(p1); in the second round (after having observed s1), he has the option to buy
the good at price p1. Again, we represent this menu as a pair of functions, c1(v1) and p1(v1),
v1 ∈ [0,1].

The expected revenue-maximizing strike price schedule is given by (23), p1(v1) = 1 − v1.
The fee schedule in (24) becomes

c1(v1) = 1

2
ln(1+ e)−1+ v1 + 1

2
ln(1+ e1−2v1).

We can also express the cost of the option as a function of the strike price

c1 = C1(p1) = 1

2
ln[(1+ e)(1+ e2p1−1)]− p1.

C1 is a strictly decreasing function on [0,∞). The buyer with a higher estimate buys an option
with a lower strike price at a higher cost. For example, if the buyer has the lowest estimate, v1 = 0,
then he buys the option of getting the good at p1 = 1, which costs c1 = ln[(1 + e)/e] ≈ 0·31

24. The c.d.f. of the standard logistic distribution is Gi (si ) = esi /(1+ esi ), si ∈ (−∞,+∞).
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upfront, and yields zero net surplus. In contrast, the highest type, v1 = 1, buys a call option with
zero strike price at a cost of about 0·81.

As the number of buyers increases, the premium-fee schedule, Ci (pi ), shifts down and
flattens out. This is so because the premium as a function of the buyer’s type, given by (23),
remains the same, pi (vi ) = 1− vi . As there are more buyers in the second round of the auction,
competition increases and the bidders’ gains from learning their valuations precisely decrease.
As a result, they are willing to pay less upfront: the fee schedule, ci (vi ), computed using (24),
decreases for all vi as n increases.

6. CONCLUSIONS

We have analysed an auction model where the seller can reveal without observing signals to the
buyers that, together with the buyers’ original private information, affect their valuations. We
have derived the expected revenue-maximizing mechanism comprising both the rules of infor-
mation disclosure and those of the transaction.

In the optimal mechanism, the seller discloses all the information that she can and obtains
the same expected revenue as if she could observe the “new” part of the additional signals that she
can release without observing. The buyers do not enjoy any additional information rents from the
signals whose disclosure is controlled by the seller. We have provided necessary and sufficient
conditions for this result. The optimal mechanism can be implemented via a “handicap auction”
in interesting applications.

There are selling mechanisms that have similar features to our optimal auction. For a single
buyer, the optimal mechanism is a menu of “buy” options, where the cost of the option is nega-
tively related to the strike price of the good. Similar contracts are used in financial, labour, and
other production relationships. Sellers often demand that bids incorporate payments contingent
on further exploration of the good’s value, just like in our optimal mechanism.25 Firms that solicit
bids from underwriters before their initial public offering favour the most aggressive bidders in
subsequent bidding for financial contracts.26 These types of mechanisms, like our optimal auc-
tion, have the feature that ex post discrimination among bidders is based upon a prior contractual
relationship.

The overall conclusion of our investigation is that under certain conditions, the seller who
controls the “flow of information” in an auction appropriates the rents of that information.

APPENDIX: OMITTED PROOFS

Proof of Lemma 1 (Monotonicity). Differentiating the identity si ≡ Hivi (ui (vi ,si )) in vi and si , respectively,
rearranging, and using ui (vi ,si ) = Vi yield

∂ui (vi ,si )

∂vi
= − ∂ Hivi (Vi )/∂vi

hivi (Vi )
, (25)

∂ui (vi ,si )

∂si
= 1

hivi (Vi )
. (26)

The density hivi is positive and by assumption ∂ Hivi (Vi )/∂vi < 0, therefore ui is strictly increasing in both arguments.
(ii) Suppose that si and s̃i are independent of vi and there exist functions ui and ũi , strictly increasing in their

second argument, such that ui (vi ,si ) ≡ ũi (vi , s̃i ) ≡ Vi .27 We want to show that s̃i is a monotonic transformation of si ,

25. See, for example, the privatization of the Antamina mine by the Peruvian government, as described in Moel
and Tufano (1997).

26. See Krigman, Shaw and Womack (2001) and the references therein.
27. The latter condition means that for all ξ ∈ R, Pr(ui (vi ,si ) ≤ ξ) = Hivi (ν) = Pr(ũi (vi , s̃i ) ≤ ξ).
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that is, there exists an increasing function λ such that for all vi and σ ,

Pr(ui (vi ,si ) ≤ ui (vi ,σ )) = Pr(ũi (vi , s̃i ) ≤ ũi (vi ,λ(σ ))). (27)

The issue is that λ must be the same function for all realizations of vi .
Define λ so that for all σ , Pr(si ≤ σ) = Pr(s̃i ≤ λ(σ)). (The function λ associates the same percentiles of si and

s̃i with each other.) Note that this function is increasing and does not depend on the realization of vi as both si and s̃i
are independent of vi . By the monotonicity of ui in its second argument, the L.H.S. of (27) equals Pr(si ≤ σ), which in
turn equals Pr(s̃i ≤ λ(σ)) by the definition of λ. By the monotonicity of ũi in its second argument, Pr(s̃i ≤ λ(σ)) equals
Pr(ũi (vi , s̃i ) ≤ ũi (vi ,λ(σ ))), which is the R.H.S. of (27), therefore the equality indeed holds. ‖

Proof of Lemma 2. In this proof we omit the reference to the identity of buyer i . Recall from Lemma 1 that the
model can be transformed into one with orthogonally normalized v and s by letting s ≡ Hv (V ) and u(v,s) = H−1

v (s).
First, we prove the lemma for this s and u and then argue that the choice of s and u does not matter.

By partially differentiating (∂ Hv (V )/∂v)/hv (V ), Assumption 1 can be written as

∂hv /∂v

∂ Hv /∂v
≤ h′

v

hv
, (28)

and Assumption 2 can be expressed as

∂2 Hv (V )

∂v2

/
∂ Hv (V )

∂v
≤ ∂hv (V )

∂v

/
hv (V ). (29)

From (26), using the chain rule we get

∂2u(v,s)

∂s∂v
= − 1

h2
v (V )

(
∂hv (V )

∂v
+h′

v (V )
∂ H−1

v (s)

∂v

)⌋
V=H−1

v (s)

= 1

h2
v (V )

(
h′
v (V )

hv (V )

∂ Hv (V )

∂v
− ∂hv (V )

∂v

)⌋
V=H−1

v (s)
, (30)

where the second line follows from (25). Since the density hv is positive and ∂ Hv /∂v ≤ 0, u12 ≤ 0 translates into (28).
Differentiate (25) in v to get

∂2u(v,s)

∂v2
= − ∂[∂ Hv (H−1

v (s))
/
∂v]

/
hv (H−1

v (s))

∂v
.

This can be rewritten as

∂2u(v,s)

∂v2
= − 1

hv (V )

[
∂2 Hv (V )

∂v2
− ∂ Hv (V )

∂v

∂hv (V )

∂v

1

hv (V )

]

+ 1

h2
v (V )

∂ Hv (V )

∂v

[
∂hv (V )

∂v
− h′

v (V )

hv (V )

∂ Hv (V )

∂v

]

= 1

hv (V )

[
2

hv (V )

∂ Hv (V )

∂v

∂hv (V )

∂v
− h′

v (V )

h2
v (V )

(
∂ Hv (V )

∂v

)2
− ∂2 Hv (V )

∂v2

]
,

where V = H−1
v (s). Hence, using this expression and (25),

∂2u(v,s)

∂v2

/
∂u(v,s)

∂v
= −2

hv (V )

∂hv (V )

∂v
+ h′

v (V )

h2
v (V )

∂ Hv (V )

∂v
+ ∂2 Hv (V )

∂v2

/
∂ Hv (V )

∂v

⌋
V=H−1

v (s)

.

By (30) and (26),

∂2u(v,s)

∂v∂s

/
∂u(v,s)

∂s
= 1

hv (V )

(
h′
v (V )

hv (V )

∂ Hv (V )

∂v
− ∂hv (V )

∂v

)⌋
V=H−1

v (s)
.
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Hence ui11/ui1 ≤ ui12/ui2 is equivalent to

h′
v (V )

h2
v (V )

∂ Hv (V )

∂v
+ ∂2 Hv (V )

∂v2

/
∂ Hv (V )

∂v
− 2

hv (V )

∂hv (V )

∂v
≤ h′

v (V )

h2
v (V )

∂ Hv (V )

∂v
− 1

hv (V )

∂hv (V )

∂v
.

The first terms in each side cancel and we get exactly (29).
So far we assumed that u(v,s) = H−1

v (s). It remains to show that the choice of si and ui does not affect the statement
of this lemma as long as they satisfy part (i) in Lemma 1. To see this, consider a positive monotonic transformation of si ,
s̃i ≡ λ(si ), and a corresponding ũi with ũi (vi , s̃i ) ≡ ui (vi ,λ(si )). For simplicity assume λ is differentiable, hence λ′ > 0.
Since ũi1 = ui1, ũi2 = ui2λ′, ũi11 = ui11, and ũi12 = ui12λ′, the statement of this lemma is valid for ũi whenever it is
valid for ui . ‖

Proof of Proposition 1. Fix a direct mechanism and define

Xi (vi ,si ) =
∫∫

xi (vi ,v−i,si ,s−i)d F−i (v−i)dG−i (s−i). (31)

If buyer i with type vi reports type v̂i then his profit is

πi (vi , v̂i ) =
∫∫

[xi (v̂i ,v−i,si ,s−i)ui (vi ,si )− ti (v̂i ,v−i,si ,s−i)]d F−i (v−i)dG(s). (32)

The mechanism is incentive compatible if and only if πi (vi , v̂i ) ≤ πi (vi ,vi ), for all i and all vi , v̂i ∈ [v, v̄]. Define
�i (vi ) ≡ πi (vi ,vi ) as the equilibrium (or indirect) profit function of buyer i . The seller’s expected revenue can be
written as the difference of the social surplus and the buyers’ expected profits

n∑
i=1

∫∫
[ui (vi ,si )xi (vi ,v−i,si ,s−i)−�i (vi )]d F(v)dG(s). (33)

The benchmark problem is to maximize (33) subject to the buyers’ incentive compatibility and participation constraints.
The incentive constraint guaranteeing that a bidder with type vi does not report v̂i (and vice versa) can be rewritten

as ∫
[ui (vi ,si )−ui (v̂i ,si )]Xi (v̂i ,si )dGi (si ) ≤ πi (vi ,vi )−πi (v̂i , v̂i )

≤
∫

[ui (vi ,si )−ui (v̂i ,si )]Xi (vi ,si )dGi (si ). (34)

From this inequality chain, using the standard techniques of Bayesian mechanism design, one can conclude that

�i (vi ) = �i (vi )+
vi∫

vi

∫
si

ui1(y,si )Xi (y,si )dGi (si )dy. (35)

Given the profit function of buyer type vi in (35), we can write the seller’s expected revenue (after the application
of Fubini’s Theorem) as∫∫ ∑

i

xi (vi ,v−i,si ,s−i)

[
ui (vi ,si )− 1− Fi (vi )

fi (vi )
ui1(vi ,si )

]
d F(v)dG(s). (36)

The allocation rule x∗
i (vi ,v−i,si ,s−i) maximizes the integrand in (36) pointwise.

We need to show that this rule is incentive compatible. The candidate optimal allocation rule, x∗
i (vi ,v−i,si ,s−i),

hence X∗
i (vi ,si ), is weakly increasing in vi . This is because Wi is increasing in vi since, by assumption, ui is increasing

in vi , (1 − Fi )/ fi is weakly decreasing in vi , and finally, Assumptions 1 and 2 imply that ui is concave in vi . Suppose
vi > v̂i and use (35) to rewrite

�∗
i (vi )−�∗

i (v̂i ) =
∫ vi∫

v̂i

ui1(y,si )X∗
i (y,si )dy dGi (si ).
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Since X∗
i (y,si ) is increasing in y,

∫ vi∫
v̂i

ui1(y,si )X∗
i (y,si )dy dGi (si ) ≥

∫ vi∫
v̂i

ui1(y,si )dy X∗
i (v̂i ,si )dGi (si )

=
∫

(ui (vi ,si )−ui (v̂i ,si ))X∗
i (v̂i ,si )dGi (si ). (37)

But this is exactly the incentive compatibility condition for buyer type vi not to imitate v̂i < vi , (34). A similar argument
applies when v̂i > vi .

We want to point out that the necessary and sufficient condition for X∗
i to be implementable is (37), where, by

convention, if vi < v̂i ,
∫ vi
v̂i

= −∫ v̂i
vi

. This condition may hold even if X∗
i is not increasing in its first argument. ‖

Proof of Corollary 1. Continuity of X∗
i follows because the distributions are atomless. X∗

i is weakly increasing
in vi and si because (8) is strictly increasing in both variables, which in turn follows from the monotone hazard rate
condition, ui1 > 0, ui11 ≤ 0, ui2 > 0, and ui12 ≤ 0. Finally, (iii) is another monotonicity property stating that X∗

i is
weakly increasing in vi even if si is adjusted to keep ui (vi ,si ) constant. To see this, consider vi > v̂i and si < ŝi with
ui (vi ,si ) = ui (v̂i , ŝi ) and compare (8) for (vi ,si ) and (v̂i , ŝi ). The first term of (8) is the same by assumption; in the
second term (1 − Fi (vi ))/ fi (vi ) ≤ (1 − Fi (v̂i ))/ fi (v̂i ) by the monotone hazard rate condition, ui1(vi ,si ) ≤ ui1(v̂i , ŝi )

because ui11/ui1 ≤ ui12/ui2 (see footnote 12). ‖

Proof of Lemma 3. Rewrite (13) as

π̃i (si , ŝi ; vi ) = π̃i (ŝi , ŝi ; vi )+ [ui (vi ,si )−ui (vi , ŝi )]Xi (vi , ŝi ). (38)

By reversing the roles of si and ŝi , we get

π̃i (ŝi ,si ; vi ) = π̃i (si ,si ; vi )− [ui (vi ,si )−ui (vi , ŝi )]Xi (vi ,si ).

From these equalities standard techniques of Bayesian mechanism design yield (14).
To see the second part of the claim, suppose buyer i reports ŝi < si after seeing si . His deviation gain is

π̃i (si , ŝi ; vi )− π̃i (si ,si ; vi ) = [π̃i (si , ŝi ; vi )− π̃i (ŝi , ŝi ; vi )]− [π̃i (si ,si ; vi )− π̃i (ŝi , ŝi ; vi )].

Recall from (38) that the first bracketed difference is [ui (vi ,si )− ui (vi , ŝi )]Xi (vi , ŝi ), and by (14) the second one can
be rewritten as

si∫
ŝi

ui2(vi , z)Xi (vi , z)dz ≥
si∫

ŝi

ui2(vi , z)Xi (vi , ŝi )dz = [ui (vi ,si )−ui (vi , ŝi )]Xi (vi , ŝi ). (39)

The inequality follows from Xi being weakly increasing in si . Therefore, the gain from deviation is non-positive. A
similar argument can be used to show that a deviation to ŝi > si is not profitable either. We want to point out that (39)
is the necessary and sufficient condition that guarantees that bidder i truthfully reports her shock, given truthful reports
in the first stage. Also notice that if the allocation Xi is continuously differentiable in its second argument than Xi being
weakly increasing in si is equivalent to (39). (This is because if Xi was not increasing in si , there would exists an interval
[ŝi ,si ], where Xi is increasing and hence the opposite inequality would hold.) ‖

Proof of Lemma 5. Buyer i’s expected profit when his type is vi but reports v̂i in the first round is

πi (vi , v̂i ) =
∫

[ui (vi ,si )Xi (v̂i ,σi (vi , v̂i ,si ))− Ti (v̂i ,σi (vi , v̂i ,si ))]dGi (si ).

Using (15) and Lemma 4 we have

πi (vi , v̂i ) =
∫

π̃i (σi (vi , v̂i ,si ),σi (vi , v̂i ,si ); v̂i )dGi (si ). (40)

Suppose vi > v̂i . Note that by (15) and the monotonicity of ui , we have σi (vi , v̂i ,si ) > si > σi (v̂i ,vi ,si ). By (14), we
can rewrite (40) as

πi (vi , v̂i ) =
∫ ⎡⎢⎣π̃i (si ,si ; v̂i )+

σi (vi ,v̂i ,si )∫
si

ui2(v̂i , z)Xi (v̂i , z)dz

⎤⎥⎦dGi (si ).
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This becomes, by πi (v̂i , v̂i ) = ∫
π̃i (si ,si , v̂i )dGi (si ),

πi (vi , v̂i ) = πi (v̂i , v̂i )+
∫ σi (vi ,v̂i ,si )∫

si

ui2(v̂i , z)Xi (v̂i , z)dz dGi (si ). (41)

Note that σi defined by (15) is continuous and monotonic. Hence the image of σi (y, v̂i ,si ) on y ∈ [v̂i ,vi ] is
[si ,σi (vi , v̂i ,si )], and thus we can change the variable of the inside integral in (41) from z ∈ [si ,σi (vi , v̂i ,si )] to
y ∈ [v̂i ,vi ] to get

πi (vi , v̂i ) = πi (v̂i , v̂i )+
∫ vi∫

v̂i

ui2(v̂i ,σi (y, v̂i ,si ))Xi (v̂i ,σi (y, v̂i ,si ))σi1(y, v̂i ,si )dy dGi (si ).

By differentiating (15) in vi (using the implicit function theorem),

ui1(vi ,si ) = ui2(v̂i ,σi (vi , v̂i ,si ))σi1(vi , v̂i ,si ). (42)

The last two equations imply (16) for the case of vi > v̂i . An identical argument yields the same for vi < v̂i . ‖

Proof of Lemma 6. Using (16), incentive compatibility in the first round (the inequality system (17)) is equivalent
to, for all vi > v̂i ,

∫ ∫ vi
v̂i

ui1(y,si )Xi (v̂i ,σi (y, v̂i ,si ))dy

vi − v̂i
dGi (si ) ≤ πi (vi ,vi )−πi (v̂i , v̂i )

vi − v̂i

≤
∫ ∫ vi

v̂i
ui1(y,si )Xi (vi ,σi (y,vi ,si ))dy

vi − v̂i
dGi (si ).

By Xi ≤ 1 and the concavity of ui in vi ,∫ vi
v̂i

ui1(y,si )Xi (v̂i ,σi (y, v̂i ,si ))dy

vi − v̂i
≤
∫ vi
v̂i

ui1(y,si )dy

vi − v̂i
≤ ui1(v̂i ,si ),

and by assumption ui1(v̂i ,si ) has a finite expectation with respect to si . Therefore, by the Lebesgue convergence theorem

lim
vi →v̂i

∫ ∫ vi
v̂i

ui1(y,si )Xi (v̂i ,σi (y, v̂i ,si ))dy

vi − v̂i
dGi (si )

=
∫

lim
vi →v̂i

∫ vi
v̂i

ui1(y,si )Xi (v̂i ,σi (y, v̂i ,si ))dy

vi − v̂i
dGi (si ) =

∫
ui1(v̂i ,si )Xi (v̂i ,si )dGi (si ).

By analogous reasoning

lim
v̂i →vi

∫ ∫ vi
v̂i

ui1(y,si )Xi (vi ,σi (y,vi ,si ))dy

vi − v̂i
dGi (si ) =

∫
ui1(vi ,si )Xi (vi ,si )dGi (si ).

Therefore, if Xi is continuous in vi then �i (vi ) ≡ πi (vi ,vi ) is differentiable everywhere, and

�′
i (vi ) =

∫
ui1(vi ,si )Xi (vi ,si )dGi (si ).

Since this derivative is finite for all vi , �i is Lipschitz continuous and hence it can be recovered from its derivative, and
we obtain (18). ‖

Proof of Proposition 2. If, for all j = 1, . . . ,n and v j ∈ [v, v̄], type v j of buyer j purchases a premium p j (v j ) =
(1− Fj (v j ))/ f j (v j )ui1 then buyer i will win in the second round if and only if, for all j ,

ui (vi ,si )− 1− Fi (vi )

fi (vi )
ui1 ≥ max

{
u j (v j ,s j )− 1− Fj (v j )

f j (v j )
ui1,0

}
.
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This is so because in the second round, every buyer j bids u j (v j ,s j )− p j (v j ) by the assumption that the buyers follow
weakly dominant strategies in the second round. Hence the allocation rule is indeed the same as in the optimal mechanism,
provided that all buyers behave “truthfully”, that is, every buyer j with type v j chooses p j (v j ) for a fee c j (v j ) defined
in (24).

We show that the handicap auction defined by (23) and (24) is incentive compatible. Let πh
i (vi , v̂i ) denote the

pay-off of buyer i with type vi if he “deviates” to v̂i (chooses ci (v̂i ) and pi (v̂i )). First, we show that for buyer i there is
no incentive to deviate downwards. Suppose v̂i < vi . Then the deviator bids ui (vi ,si )− pi (v̂i ) in the second round and
his pay-off is

πh
i (vi , v̂i ) = −ci (v̂i )+

∫∫
max{ui (vi ,si )− pi (v̂i )− W 0−i (v−i,s−i),0}d F−i dG.

Using the definitions of ci and Wi , this can be rewritten as

∫∫ v̂i∫
v

ui11{Wi (y,si )≥W 0−i (v−i,s−i)}dy −max{ui (v̂i ,si )− pi (v̂i )− W 0−i (v−i,s−i),0}d F−i dG

−
∫∫

max{ui (vi ,si )− pi (v̂i )− W 0−i (v−i,s−i),0}d F−i dG.

Notice, if vi = v̂i then the last two terms cancel each other; therefore the integral in the first line equals πh
i (v̂i , v̂i ). This

implies that

πh
i (vi ,vi ) = πh

i (v̂i , v̂i )+
∫∫ ⎡⎢⎣ vi∫

v̂i

ui11{Wi (y,si )≥W 0−i (v−i,s−i)}dy

⎤⎥⎦d F−i dG (43)

and

πh
i (vi , v̂i ) = πh

i (v̂i , v̂i )−
∫∫

max{ui (v̂i ,si )− pi (v̂i )− W 0−i (v−i,s−i),0}d F−i dG

+
∫∫

max{ui (vi ,si )− pi (v̂i )− W 0−i (v−i,s−i),0}d F−i dG. (44)

Since ∂ui (vi ,si )/∂vi = ui1 is a constant, ui (vi ,si ) can be written as ui1vi +ri (si ). We claim that the difference between
the integrands in the second and third terms can be rewritten as

max{ui1vi + ri (si )− pi (v̂i )− W 0−i (v−i,s−i),0}−max{ui1v̂i + ri (si )− pi (v̂i )− W 0−i (v−i,s−i),0}

=
vi∫

v̂i

ui11{ui1 y+ri (si )−pi (v̂i )≥W 0−i (v−i,s−i)}dy. (45)

If ui1v̂i + ri (si )− pi (v̂i ) ≥ W 0−i (v−i,s−i) then the difference is

ui1(vi − v̂i ) =
vi∫

v̂i

ui1dy =
vi∫

v̂i

ui11{ui1 y+ri (si )−pi (v̂i )≥W 0−i (v−i,s−i)}dy.

Suppose ui1vi + ri (si ) − pi (v̂i ) ≥ W 0−i (v−i,s−i) ≥ ui1v̂i + ri (si ) − pi (v̂i ). Let y∗ ∈ {v̂i ,vi } be such that

W 0−i (v−i,s−i) = ui1vi + ri (si )− pi (v̂i ). Then (45) is

ui1vi + ri (si )− pi (v̂i )− W 0−i (v−i,s−i) = ui1(vi − y∗) =
vi∫

y∗
ui1dy

=
vi∫

v̂i

ui11{ui1 y+ri (si )−pi (v̂i )≥W 0−i (v−i,s−i)}dy.
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If W 0−i (v−i,s−i) ≥ ui1 y + ri (si )− pi (v̂i ) then the value of both sides of (45) is 0. Therefore, (45) indeed holds. From
(44) and (45) it follows that

πh
i (vi , v̂i ) = πh

i (v̂i , v̂i )+
∫∫ ⎡⎢⎣ vi∫

v̂i

ui11{ui1 y+ri (si )−pi (v̂i )≥W 0−i (v−i,s−i)}dy

⎤⎥⎦d F−i dG.

Notice that since pi is decreasing, ui1 y + ri (si )− pi (v̂i ) ≤ ui1 y + ri (si )− pi (y) whenever y ∈ {v̂i ,vi
}
. Hence

πh
i (vi , v̂i ) ≤ πh

i (v̂i , v̂i )+
∫∫ ⎡⎢⎣ vi∫

v̂i

ui11{ui1 y+ri (si )−pi (y)≥W 0−i (v−i,s−i)}dy

⎤⎥⎦d F−i dG = πh
i (vi ,vi ),

where the equality follows from (43). This means that for buyer i there is no incentive to deviate downwards. An almost
identical argument shows that there is no incentive to deviate upwards either. ‖
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