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Evolution of Time Preference by Natural Selection: Comment 

By Arthur J Robson and Bal?zs Szentes* 

Why do individuals have the preferences they have9 Why are they as risk-averse as they are, 
or as impatient9 Although these questions have traditionally been claimed to be inappropriate to 

address within the field of economics, recent work has realized some of the potential of evolu? 

tionary biology and anthropology to provide illuminating answers 

One such path-breaking contribution is due to Alan R Rogers (1994), who examines the bio? 

logical underpinnings of intertemporal preferences and of the rate of time preference, in par? 
ticular Rogers' argument can be paraphrased as follows Consider the evolution of a sexually 

reproducing species in which resource availability plays a key role Each individual uses resources 

to increase the probability of survival until the next period, but, as a simplifying assumption, 
has fixed fertility at every age at which he or she is alive Furthermore, each parent can save 

resources for the ultimate benefit of an offspring Rogers supposes that savings behavior is con? 

trolled genetically, and looks for the evolutionary equilibrium level of such savings He considers 

how individuals might be motivated to choose the equilibrium level of saving by means of the 

appropriate interdependent utility functions These interdependent utilities are, then, those that 

would be generated by the evolutionary process 

Rogers considers that a key option is for a mother to make a "same-age transfer," that is, to 
save resources to benefit her daughter in the future, at a date when her daughter will be the same 

age as the mother is now Since the daughter has more remaining reproductive life than her 

mother will at that future date, it may be advantageous for the mother to make this transfer rather 

than to keep the repayment for herself This advantage is offset by the fact that the daughter is 

only a half-relative of her mother, and offset as well by population growth When considering the 

trade-off between resources now for the mother and resources in the future for the daughter, it is 

only the degree of relatedness of one-half, and the population growth rate, that matter, since the 

mother's biological value now and that of her daughter later are the same Rogers assumes there 
is no growth in income, and that the rate of interest then equals the pure rate of time preference 

With zero population growth, the overall discount factor due to time preference must then equal 
a half, and this is also the overall discount factor due to interest Given a reasonable estimate of 

the length of a generation, he then derives a plausible estimate of annual rate of pure time prefer? 
ence, and of the annual real rate of interest, in the neighborhood of 2 percent 

Although we believe strongly in the basic biological approach adopted here, there are serious 

problems with Rogers' model Altogether, these problems make much of his argument invalid as 
it stands In particular, his prediction concerning the real rate of interest does not follow Rogers' 

paper is frequently cited within the small but growing research field that attempts to provide a 

biological basis for economic phenomena Since it is a keystone paper in this area, it is crucial 

to get the analysis correct We illustrate the problems with Rogers' approach by means of an 

example that permits some insight into the true properties of such a model 

Perhaps Rogers' most important theoretical claim is that the utility function of an individual 

can be derived from "reproductive value 
" 

The overall biological success (or "inclusive fitness") 

* Robson Department of Economics Simon Fraser University Burnaby BC Canada V5A 1S6 (e mail robson? 

sfuca) Szentes Department of Economics University of Chicago 1126 E 59th St Chicago IL 60637 (e mail szen 

tes@uchicago edu) We thank three referees for helpful comments Robson was supported by a Canada Research Chair 
Szentes by the National Science Foundation 
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of an individual must allow for the reproductive value of descendants as well, so this utility 
function is interdependent. Rogers uses a notion of reproductive value due to Ronald A. Fisher 

(1930), which is the expected future offspring of an individual, discounted by the rate of growth 
of population, and conditioning on the age of the individual. We show, however, that this particu? 
lar notion is inappropriate here, since it presumes that all offspring are identical, which cannot 
be true when the mother makes resource transfers to her offspring that vary with her age. The 

preferences identified by Rogers do not generate evolutionarily appropriate behavior. 
In analyzing our example, we need a more general notion of reproductive value. This general 

notion allows for different types of individual, and reflects the ultimate representation of each 

type's descendants in the overall population. The type of an individual here is determined by the 

age of his or her mother at birth. Such types must be distinguished, since offspring with larger 
transfers are at a biological advantage and hence have a higher reproductive value than do their 

poorer siblings. The evolutionary equilibrium choices are supported by utility functions that are 
the total discounted general reproductive values of all the individuals who would be directly 
affected by any one-shot variation in the prevailing choice. 

Furthermore, although Rogers requires an interior solution to a same-age transfer problem in 
his prediction of the long-term interest rate, such an interior solution need not exist. Indeed, there 
must be a difficulty with Rogers' argument, simply because there are many possible "same-age 
transfers" in general. That is, a 20-year-old mother may save to benefit her new born daughter 20 

years later. A 30-year-old mother may also save to benefit her newborn daughter 30 years later. 
But different time horizons like this for the various same-age transfers require different interest 
rates to have interior solutions, so corner solutions must arise for most of these.1 

Our example illustrates this claim as well. The example is constructed so as to produce an 
incentive for transfers and saving in favor of offspring. However, the optimal transfer that is 

positive is consumed when the daughter will be younger than her mother is now. The associated 

marginal rate of substitution (MRS) does not depend only on the degree of relatedness and the 

population growth rate, as it would for a same-age transfer; it depends also, in a complex way, 
on the underlying survival functions. Even though these survival functions are assumed to have 
infinite derivatives at zero, a corner solution arises for the same-age transfer considered. 

I. The Example 

Survival Probabilities and Reproduction.?Individuals are born at age 0 and live, at most, to 

age 3. Let P, (c?) denote the survival probability from age / to age / + 1, when consumption is c, 
at age /, for i 

? 
0,1,2. In particular, it is assumed that P0 

? 1, so that individuals surely survive 
until the age of one.2 The functions Px and P2 are assumed to be continuously differentiable, 
strictly increasing, strictly concave, and to have infinite derivatives at 0. This last condition 
favors transfers and savings. 

At each age, / = 1,2,3, each individual is paired with another individual of the same age and 
the couple has two offspring.3 

1 We thank a referee for clarifying this observation 
2 
This last assumption is made partly to facilitate direct comparison with Rogers, who never discusses how the 

possibility that an intended recipient dies before receiving a transfer must affect the analysis In particular, then, the 
mortality rate is not incorporated in the rate of time preference in Rogers, in contrast to Irving Fisher (1930, part II, 
chapter IV, section 60-62) Elsewhere in the present paper, we consider the implications of a positive mortality rate and 
incorporate it into the rate of time preference 3 

Fertility will be held constant across all types?nonmutant and mutant 
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Endowments and Transfers.?Individuals have zero endowment at ages / = 0,1,3 but have 
one unit of endowment at age 2.4 At first, we allow only one transfer: at age 2, the individual can 

transfer part of her endowment to her two newborn offspring, but she can make no other trans? 

fers, and cannot save. The transfer from each parent is shared equally between each of the two 

offspring. The newborn offspring will choose to save this transfer, since survival for one period 
is guaranteed. The technology for intertemporal transformation is linear, with an exogenous 
interest factor of R. It follows that each offspring then receives Rs/2 at the age of one, as the 

return from a particular parent who chose to save s, which the offspring is assumed to consume 

at once. 

The Genes.?The transfer decision is controlled by a single gene, with each possible choice 

implemented by a corresponding variety (or al?ele) of that gene. Therefore, each al?ele can be 

identified as s E [0,1], the amount of saving at age two. Sexual reproduction means that each 

offspring acquires either the paternal al?ele or the maternal al?ele, each with probability Vi.5 We 

assume that it is not possible for a parent to recognize the genetic type, or "genotype," of her off? 

spring. Hence, individuals cannot condition their transfers on the genotype of their offspring. 

Evolutionary Equilibrium.?The question is: what value of s would arise in equilibrium? 
Consider a population with an al?ele that selects savings s. A small proportion of the population 
is then replaced by a mutant al?ele that saves s. The question becomes: for what value of s is it 

true that, no matter what s is, the mutant al?ele saving s grows no faster than the original al?ele 

that saves si 

A. Characterization of Equilibrium 

To address this question, consider a population with an al?ele that induces savings s. We shall 

characterize the growth rate of a small measure of mutants in this population. We denote the sav? 

ings of the mutants by s. To this end, first, we compute the survival probabilities of the mutants. 

The survival probability of a mutant two-year-old who saved s is given by P2 (1 
- 

s). The 

probability of survival of a mutant (or any) one-year-old who had one- or three-year-old parents, 
and hence got zero transfer, is simply given by Px (0). What is the probability of survival of a 

mutant one-year-old who had two-year-old parents? Since the mutant gene is rare, essentially all 

mutant individuals have one mutant and one nonmutant parent. Recall that the total resources 

passed down by the two parents, s 4- s, are shared equally between their two offspring. Hence, 
the survival probability of the one-year-old mutant is Px [R(s 4- s)/2], because the total return 

on savings is [R(s 4- s)/2]. 
Next, we characterize the unique steady-state growth factor of the mutant population. In steady 

state, the mutants grow with this fixed factor, and the age distribution of the mutant population 
is constant.6 Let p,,, for / = 1,2,3, denote the steady-state proportion of /-year-olds in the mutant 

4 
Perhaps a more realistic pattern of fertility and income would reverse the situation of three-year-olds, giving these 

income but zero fertility This would reduce savings by the newborn offspring of two-year-olds, since the income of 

three-year-olds could serve instead The survival of two-year-olds to age three would then be a somatic (bodily) form of 

saving The present assumption produces a central need for savings, which illuminates the issues that arise in Rogers' 
model 

5 The assumption that individuals are characterized by a single al?ele is that individuals are "haploid," with a single 
"locus 

" 
This is for simplicity, since, in reality, humans are diploid, having two al?eles at each of a large number of posi? 

tion or "loci 
" 

Sexual reproduction actually entails each of two individuals randomly making a selection of one al?ele 

from each locus, and then contributing that to the new individual 
6 It can be shown that, no matter what the initial age distribution of the mutants, the mutant population converges 

to this steady state Given that there are few enough mutants to start with, this steady-state growth rate determines the 
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gene pool, ignoring newborns, so that 2,=i M* 
= L These proportions need not match those in 

the general population. Thus, F(s) 
= 

[(/jlx + /x3) P,(0) 4- fx2Px(R(s + s)/2)] is the overall prob? 

ability of survival of a mutant individual from age one to two. It follows that, if yt is the number 

of newborn mutant individuals at date t, then 

(i) y< 
= 

yt-i + y,-2 f (*) + y,-3 ̂2 (1 
- 

*) f(s). 

Each of the terms on the right-hand side of (1) is now explained. First, yf_j is the number of 

mutant newborns at date t who have one mutant one-year-old parent. This is because there are 

y,_! one-year-old mutants in the population at date r, and each of these is paired with a nonmutant 

individual, to have one mutant offspring in expectation. Second, yt_2F(s) is the number of mutant 

newborns at date t with one mutant two-year-old parent; since yr_2 is the number of one-year-old 
mutants at date t - 1, and F(s) of these survive from date t ? Hot. Third, y,_3P2(l 

- 
s)F(s) is 

the number of newborn mutants at date t who had one mutant three-year-old parent, since y,_3 is 

the number of one-year-old mutants at date t - 2 and P2(l 
- 

s)F(s) of these survive from date 
t - 2 to t. 

Since, in steady state, the mutant population grows at a constant factor, denoted by g, (1) 
becomes 

(2) g3 
= 

82 + (g + P2^-s))F(s). 

It follows that7 

1 P2(l-s) 
Mi 

= 
"?M3 

= 
M2-, and Mi + M2 + M3 

= 1? 

so the steady-state population proportions are given by 

1 g-1 A P2(l-i) *-l 
(3) Mi 

= 
"?M2 

= 
?T7T? and /x3 

= 
g g + Pi S g + P2 

Upon substituting these values for the /x/s into (2), we obtain the following equation implicitly 

determining the growth factor of the mutant population: 

(4) g3 = g2 + (1 + P2(l 
- 

s))Px(0) + (g 
- 

l)^i(? ̂ 
* 

It follows that g as determined by this equation is maximized if and only if the right-hand side 
is maximized over s for parametric choice of g. There must be a unique solution for this maximi? 
zation problem, with first-order condition 

(5) Pi (1 
- 

s)Px (0) 
> ?-, with equality if s > 0. 

fate of the mutant 
7 Consider the second equation, for example Suppose that the total population of ages 1,2, and 3 is normalized to 

unity It follows that /jl2P21S tnen tne number of two-year-olds who survive to age three Given steady-state growth, this 
must also equal the number of three-year-olds from last period times the growth rate, /ju3g 
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This characterizes the choice of s that yields the fastest growth rate of a small fraction of mutant 

al?eles, where the rest of the population chooses s. The right-hand side of (4) is strictly concave in 

s. In addition, if s 
? s, then the growth rate of the mutant al?eles must match that of the original 

type. Hence, if the maximum of (4) occurs anywhere except at s 
- s, the mutants can invade in 

the sense of initially growing faster than the original population. Conversely, if the maximum is 

at s = s, then any nontrivial mutant with s i1 s will be strictly outdone by the original al?ele. 

The condition P? (0) 
= oo 

implies that s = 0 is not a solution for (5) when s = 0. Therefore, 
s > 0, in equilibrium. Altogether, that is, the evolutionary equilibrium value of savings and the 

growth factor satisfy 

?<.-i>M0)-22^. 

where g3 
= 

g2 + (1 + P2(l 
- 

5))P,(0) + (g 
- 

!)/>,(/?). 
Note that (6) can be written in the form 

2P2'(l-?)/>,(0) =R 
p;m(g -1) 

where the left-hand side is an appropriate MRS. However, this MRS depends in a complex way 
on the two unrelated survival functions, Px and P2, and is generally not simply the factor of 2g 
that is derived by Rogers. 

The factor of 2 arises here from the assumption that transfers must be made blindly and there? 

fore equally to each of the two offspring, one of whom is a fellow mutant, in expectation, but one 

of whom is not. This is a particular derivation of a general result known as Hamilton's rule. (See 
Theodore C. Bergstrom (1995) for a discussion of this rule and the limits to its applicability.) 

B. Reproductive Value 

Next, we argue that the equilibrium saving behavior is a solution to a problem where each two 

year-old individual maximizes the total discounted reproductive value of those who are directly 
affected by her savings. Indeed, this total reproductive value is the utility function representing 

equilibrium behavior. 
In general, the reproductive values should be defined as the relative shares attained in the 

population, in the limit as the time into the future tends to infinity (see Robson and Szentes 

2008). In the present example, a heuristic approach to finding the correct reproductive values 

is as follows. Let v(0x) and v(li) denote the reproductive values of individuals of ages 0 and 1, 

respectively, who receive no transfer; and v(02) and v(l2) denote the reproductive values of indi? 
viduals of ages 0 and 1, respectively, who receive transfer (s 4- s)/2. In addition, let v(2) and v(3) 
denote the reproductive values of individuals of age two and three, respectively. Considering the 
descendants of each type one period ahead, these values must satisfy the recursive relationships 

(7) v (00 =-; v (02) =-; 
<5 o 

"O?) 
= 

v(0,) +-; v(l2) 
= 

v(0,) +-; 

v(2) 
= 

v(02) + -?-^;v(3) 
= 

v(01). 
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Let us explain the third equality, yielding v(\x), the value of a one-year-old who had one- or 

three-year-old parents, for example. Such a one-year-old produces an offspring with value v(0j). 
(Actually, each mutant parent has two offspring. What matters, however, is that, on average, only 
one of these would share a rare parental al?ele.) In addition, this one-year-old survives to the next 

period with probability P}(0), when her reproductive value is v(2). This expected reproductive 
value from the next period must finally be discounted by g because population growth deflates 

the evolutionary importance of any given number of individuals. 

We now show that the equilibrium behavior can be derived from each two-year-old individual 

solving the following problem: 

Px(R^)v(2) 
(8) max P2 (1 

- 
s) v(3) + . 

s 6 

The maximand is the relevant component of intertemporal preferences for a two-year-old par? 
ent. It is the expected reproductive value of the parent, as influenced by the choice of s, plus 
the expected discounted reproductive value of an age-one recipient, also as influenced by the 

choice of s.8 Thus, these reproductive values generate the utility that underpins the evolutionary 

equilibrium. Rogers must be given credit for this basic insight. Our disagreement stems from 

the appropriate notion of reproductive value to be used in such an expression. We first show that 
our general notion of reproductive value does generate equilibrium behavior; the next subsection 
shows that the simple notion used by Rogers does not. 

A comparison of (8) and (6) implies that what is necessary and sufficient for these problems 
to be identical is that 

v(3) Pt(0) (9) 
v(2) g(g-D' 

But it is a straightforward calculation to show that the equations in (7) pin down all relative 

reproductive values, and that (9) holds, in particular, as required. 

C. Rogers/Fisher Reproductive Value 

The notion of reproductive value used by Rogers is due to Ronald A. Fisher (1930, 27-30). 
This notion, which is appropriate in models where offspring are identical, simply counts the 
future expected discounted total fertility of an individual at each age. In the present example, this 
would mean, using the notation w instead of v: 

,n. w(l,) 1 P,(0) P,(0)/>2 
n?i) 

=-= - + ?? + ?3? ; 
8 ? 8 8 

w(?2)= ?^ 
= - 

+?~2? 
+ 

?3?; 

Pi 
w(2)= 1 + -1 ;w(3) 

8 
Although there are two offspring, each of them inherits the parent's gene with probability half The second expres? 

sion then reflects the expected number of mutant offspring 
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This implies that 

w(3) g > v(3) _ P}(0) 
(2) g + P2 v(2) *(_-!] 

since, using (4), 

?3-_2-/,,(0)?-P1(0)i,2 
= 

P^P^j-P^O) (g-l)>0. 

Thus the evolutionary equilibrium is not the solution to 

maxP2(l 
- 

s)w(3) + 
P,(^)w(2) 

2g 
' 

indeed, the solution to the problem as formulated by Rogers entails too little savings. The problem 
is that Fisher's notion of reproductive value is inappropriate when offspring are distinguished in 

any important way, perhaps by their inheritance, as here. Thus Rogers' formulation of the utility 
functions that support the equilibrium level of savings is incorrect on this account. 

D. Zero Same-Age Transfer 

The previous analysis assumed that the only transfer possible was from a two-year-old parent 
to her current newborn. Suppose now that this two-year-old parent has one more option?she 
can put aside resources for her current one-year-old offspring. These resources must be saved 
for one period, and are then given to the offspring. Thus, this offspring will be the same age 
when she consumes the transfer as her mother is when she gives it. This combination has, then, 
the potential to be a same-age transfer, as in Rogers. To make the correspondence between the 
two models exact, however, we also assume that, when a two-year-old individual determines her 
transfer to her current one-year-old offspring, she observes neither the income derived from her 

parent nor her parent's age.9 

We assume that there exists a competitive market for these savings by current one-year 
old offspring. This market returns a fixed interest factor, R'. Since only a proportion of 

Pi(0) of the intended recipients survives until the age of two, and the market is competitive, 
R' = 

R/Px(0).l? 

9 
Suppose this individual can observe the transfer she receives, so her transfer depends on her parent's transfer 

But her parent's transfer depends on her grandparent's transfer, and so on In general, then, the donor is almost never 

identical, from her point of view, to the recipient It is impossible, then, for the simple Rogers' first-order condition to 

apply Even if the donor cannot observe the incoming transfer, there may still be an asymmetry between donor and 

recipient?the donor does not know her own transfer but she does know that of her offspring However, this issue does 
not arise in our equilibrium because the same-age transfer is zero Thus all two-year-olds are identical in every way and 
we can directly relate our first-order condition to that m Rogers 10 

Nothing crucial depends on this specific assumption A similar conclusion is valid even if we assume, instead, that 
the saving is lost Although Rogers does not address such issues, they necessarily arise in his model As noted previ? 
ously, mortality does not, then, influence the rate of time preference in Rogers' model 
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We now show that, in any evolutionary equilibrium, zero additional transfers like this will be 

made, given that R < 2g. It can be shown that this additional transfer is zero in equilibrium if and 

only if the following applies for each two-year-old parent:11 

Pt(0)P2(l -s + P'V)v(3) 0 E arg max V(s') 
= 

P2 (1 
- s - s')v(3) + ^^^-^j^ s o 

where s still denotes the equilibrium savings to newborns. The function V, from a biological 
viewpoint, is "inclusive fitness"; from an economic viewpoint, it is the utility function that under? 

pins behavior. That is, it is the relevant part of intertemporal preferences for this two-year-old 
parent contemplating transfers to her current one-year-old offspring. The first term is the indi? 
vidual's own expected survival probability to age three multiplied by her age-three reproductive 
value. The second term is the survival probability of the current one-year-old offspring from age 
one to age three multiplied by the present value of her age-three reproductive value. 

Since R < 2g, it follows that 

x x R'Pi(0)P2f(l ~s)v(3) 
V'(0) 

= 
-P2 (1 

- 
s) v(3) +-^-^--u 

R 
1 

V?g 
P2(l-?)v(3)<0, 

so s' = 0 is an equilibrium transfer.12 
The reason that an interior solution does not generally exist for the same-age transfer here 

can be explained as follows. In equilibrium, all two-year-olds have the same net resources. The 

marginal cost of a small "same-age transfer" is the marginal "utility" of the age-two parent at 
that net resource level. The marginal benefit of the transfer derives from the marginal utility of 
the age-two offspring, evaluated at the same level as for the parent. In addition, the marginal 
benefit is inflated by the constant interest factor, R, since resources grow over time. There is also 
a constant factor of g that dilutes the marginal benefit because one individual is a smaller frac? 
tion of a larger population. Finally, there is a dilution factor of 2 reflecting Hamilton's rule. In 
the end, then, the sign of the marginal overall effect of such a same-age transfer depends only 
on the constant factors. 

Note that, although the growth factor, g, is endogenous, it must generally differ from R/2. For 

example, here it must be that g > g for some g > 1, since all offspring survive to be one year old 
and have one offspring at that age, and have a positive probability of having further offspring. If 
the exogenous parameter R < 2 g, then R < 2g. 

E. Zero Population Growth and Endogenous Interest 

The Rogers approach involves assuming zero population growth, on the basis of the argu? 
ment that the average growth rate for humans must have been close to zero over the two million 

11 A formal argument deriving this first-order condition can be made by establishing a direct connection between 
maximization of the growth rate and maximization of reproductive value, with no reliance then on first-order condi? 
tions or concavity (Such a general argument can also be made for the one-transfer case ) 12 If R > 2g, one might imagine that two-year-old parents would now save as much as possible, that is, their entire 
endowment Again, there would not be an interior solution for s' However, the analysis of this case is complicated 
because there are two distinct types of two-year-olds?those who receive transfers like this from their parents, and 
those who do not Since such complexity was not allowed for by Rogers, it will not rescue his results 
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years of our history. Our example entails a growth rate necessarily greater than zero, since all 
individuals survive to age one, where each couple produces two offspring, and each individual 
has a positive probability of producing more offspring after that. But nothing crucial depends on 
a positive growth rate. 

In order to generate an example with zero population growth, all that is needed is to deflate all 

probabilities of survival by a factor of g, where g is the maximum growth factor, as found above. 
That is, define 

PXcJ 
= 

PXcyg, for i = 0,...,3. 

Suppose now that the interest factor R facing an individual is maintained at the same numeri? 

cal value as above. To achieve this, the underlying technological interest factor must be scaled 

down by g because the uniform increase in the probability of dying would otherwise increase the 

actuarially fair interest factor paid to surviving beneficiaries. That is, if this underlying factor is 

R, then R = Rig, so that R = Rg. 
The analysis above applies to this modified example with minor reinterpretation. That is, 

the same levels of transfers and savings yield an evolutionary equilibrium, but the equilibrium 

growth factor is now one. Rogers' analysis is still subject to the same criticisms, and there is no 

robust prediction on the real rate of interest, for example. 
The discussion thus far has been based on a linear intertemporal technology. What would 

happen if the aggregate saving technology were strictly convex, so the interest factor were endog? 
enous? Note, first, that a convex technology means there is implicitly a fixed factor of production, 
and perhaps a carrying capacity constraint. There would then be constant population in the limit, 

generating an interest factor that clears the market. 

There still need not be an interior solution for any particular same-age transfer. The basic 

intuition for this is as follows. One might think that a zero same-age transfer would imply a 

large interest factor. This would then favor a positive same-age transfer. However, in general, the 

endogenous interest rate is heavily influenced by transfers that are not same-age transfers. In the 

example above, the interest factor is determined by the savings of newborn offspring of two-year 
old parents and not by the same-age transfer. That is, even if the interest rate is endogenous, there 

is no robust prediction concerning the real rate of interest, contrary to Rogers' claim. 

We can obtain a specific example illustrating this, as follows. Consider the example of the first 

three paragraphs, where the scaling down of all the probabilities of survival is fixed. Given that 

the technological interest factor is R, the population growth rate is zero in the evolutionary equi? 
librium, and the same-age transfer is zero. But even if the saving technology is now changed to be 

convex, the interest factor is forced to be R, and the evolutionary equilibrium remains the same. 

To see this, assume that, instead of the linear savings technology, there now exists a period 

to-period technology described by the strictly increasing, differentiable, and strictly concave 

production function/, satisfying/(0) 
= 

0,/'(0) 
= oo 

and/(5)/5 -? 0 as S ?> o?. That is, if S is 
the total saving in the population in a certain period, then/(5) is the total amount of resources 

available in the next period. The effective technological interest factor R is then f(S)/S. Such a 
convex technology implies a carrying-capacity constraint, so the population will reach a steady 
state in which it is constant. 

Let S denote the unique solution of R = f(S)/S. Suppose, for the moment, that the savings 
behavior of individuals is unchanged. It then follows that S = S and R = R in the steady-state 
equilibrium.13 Furthermore, however, such a population is immune to invasion by the mutant 

13 
Suppose, first, that S < S Then, R =f(S)/S > Rso the population grows at a positive rate This implies that S increases 

and R falls Eventually, S settles at S, and the interest factor becomes R Similarly, if S > S then the population 
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al?ele associated with any alternative savings behavior. Indeed, the fate of a mutant al?ele hinges 
on its relative growth when it is arbitrarily rare, so that the interest factor is essentially unaf? 
fected by the presence of the mutant, and the previous analysis applies. Hence, the evolutionary 

equilibrium of this example where the savings technology is convex coincides with the equilib? 
rium of the example where the technology is linear, as described in the first three paragraphs. In 

particular, there is zero same-age transfer. 

F. A Generalized Example 

One might be concerned that our conclusions hold only because we severely restricted savings 
and transfers. Indeed, in a generalized example, a reasonable philosophy might be that all indi? 

viduals may transfer any amount contemporaneously to any living relative, and all individuals 

may save any amount, although they cannot borrow. This is consistent with a stylized version of a 

primitive agricultural society in which savings were made by means of the storage or replanting 
of the harvest, but where credit opportunities were limited. There were approximate precursors 
of such transfer and saving options in foraging societies, which helps to ensure an adequate time 

span for natural selection to act on preferences. In these societies, that is, a massive transfer of 
resources from adults to children is observed, and this transfer finances a similarly massive 
investment in learning how to hunt, for example.14 

In Robson and Szentes (2008), we reanalyze the present example in this light. Although the 

analysis is more complex, the essential points made by the version of the example above are 

preserved. In addition to transferring resources to their newborn offspring, two-year-old parents 
now make positive transfers to their one-year-old offspring, who immediately consume these.15 

Two-year-old parents also save for one period, with the return from this being completely trans? 

ferred to the newborn offspring they have at age three. These offspring reinvest this transfer and 

finally consume it at age one. It remains inappropriate to use the simple notion of reproductive 
value used by Rogers. Furthermore, all the other myriad contemporaneous transfers and savings 
that might be made in principle in this generalized example are chosen to be zero in equilibrium. 

Most significantly, that is, there are now a number of combined transfer and savings options that 
amount to same age transfers, and all of these are chosen to be zero.16 

II. Conclusion 

Although we are enthusiastic about Rogers' basic biological approach to deriving the rate 

of time preference, a number of aspects of his model do not withstand careful examination. 

Relatively minor issues include his neglect of mortality when considering intertemporal choice. 

Mortality is not, then, a component of the rate of time preference. There are perhaps two key 

grows at a negative rate, and therefore S also decreases and converges to S That is, a constant population of the 

appropriate size to generate total savings of S will arise in the limit 
14 See Robson and Hillard S Kaplan (2003) Intergenerational transfers remain massive today Laurence J Kothkoff 

and Lawrence H Summers (1981) present evidence suggesting that the preponderance of modern US savings is benefit 

ting descendants rather than smoothing lifetime consumption of the same individual 
15 The complexity can be illustrated as follows Age-two parents have a strong incentive to transfer resources to their 

current one-year-old offspring However, such transfers might well imply a proliferation of types of such offspring 
There are those with no surviving parent, those with one surviving parent, and those with two In addition, the trans? 
fers made by one parent might be contingent on whether the other parent is still alive This complexity seems entirely 
tangential to the current purposes, however Robson and Szentes (2008) are then motivated to make an alternative 

simplifying assumption 16 This extended example also illustrates the argument in the introduction that, since different same-age transfers 

require different interest rates for interior solutions, it is, on that account alone, impossible for all such solutions to be 
interior simultaneously 
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aspects of his model that do not hold up. The first of these is that the reproductive value he uses 

is not general enough for the present circumstances. The expression he gives for the utility func? 

tion is correct only in its basic additive form. The second issue is that there will not generally be 

interior solutions for "same-age transfers." Although the one-half degree of relatedness between 
mothers and daughters does play an important role in determining the marginal rates of substitu? 
tion between consumption now and consumption in the future, the theoretical situation here is 

more complex than described by Rogers. The most striking conclusion of Rogers?a particular 
real rate of interest?does not generally follow. 
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