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Dealing with Systemic Risk When We Measure It Badly: 

A Minority Report

 

 Abstract: While an omniscient regulator would base a bank's capital requirement upon its 

contribution to systemic risk, we show that a regulator who measures a bank's contribution to 

systemic risk badly will find it optimal to use a simple leverage ratio instead.   We empirically 

analyze the performance of leading risk measurement methods and find that they are incapable of 

providing either precise estimates of an individual bank's contribution to systemic risk or reliable 

rankings of banks by the amount of systemic risk they create.  We conclude that a simple 

leverage ratio dominates a policy of systemic risk based capital requirements.  JEL Codes: D81, 

G28, G32, G38.
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In the film Minority Report the PreCrime unit of the DC Police uses psychic powers to detect  

people who are about to commit crimes and then locks them up before they do so.  Macro-

prudential policy is envisioned to work in more or less the same way (Crockett (2000)): the 

crime in this case is to cause a financial crisis, the perpetrators are banks pursuing high-risk 

strategies that may bring about such a crisis if they become stressed or fail, and the task of the 

PreCrime units of central banks/regulators is to detect these banks in advance and to require 

them to increase the proportion of costly capital in their balance sheets so as to enable them to 

survive the future shocks that would otherwise tip them over into the stressed state.1  The crucial 

role of the psychics is played by algorithms or riskometers that empirically implement a 

theoretical measure of how much systemic risk each bank creates.2  In the movie the government 

shuts down PreCrime as it turns out that the psychics’ visions are not precise enough to justify 

locking people up on the basis of the information they provide.  In this paper we examine the 

merits of a policy that gives central banks/regulators the authority to treat banks in a radically 

different manner on the basis of the systemic risk readings that their riskometers provide.

To keep our analysis focused on the merits of macroprudential policy in general rather than 

on the accuracy of any given set of riskometers in particular, we (optimistically) assume that 

each riskometer we examine implements a true measure of the amount of systemic risk a bank 

3

1 Our analysis here focuses upon the “cross-section” dimension of systemic risk (i.e., how risk varies across firms) 
rather than the “time-series” dimension (i.e., the evolution of risk over time for the financial system as a whole).  

2 We owe the term riskometer to Danielsson (2009).



creates (riskometer errors that arise from a flawed measure of systemic risk can be fixed by 

revising an existing measure or by devising a new one).3  We instead focus on a common point of 

failure for all riskometers, viz., that any empirical implementation of even a systemic risk 

measure that truly captures the amount of systemic risk a bank creates will inevitably lead to risk 

readings that are (to at least some) degree imprecise.      

Our analysis proceeds in two steps.  First, we show theoretically that a policy of treating all 

banks the same by requiring that they abide by a simple leverage ratio dominates the 

macroprudential (MP) policy of basing bank capital requirements upon the regulator’s endowed 

riskometer if that riskometer is sufficiently imprecise.4  Second, we examine the empirical 

performance of three leading riskometers.  We find that each of the riskometers we investigate 

provides an extremely imprecise reading of the systemic risk created by individual banks and a 

completely unreliable ranking of banks by the amount of systemic risk they create.  We therefore 

conclude that, while systemic risk based capital requirements (or other regulatory interventions) 

may make sense for an omniscient being who can simply observe the risk fundamentals, they 

probably do not make sense for regulators who must base their decisions upon highly imprecise 

estimates of those fundamentals.5

4

3 And indeed, there is now an enormous and still burgeoning literature on devising and improving systemic risk 
measures.  See Bisias et. al.’s (2012) survey for an overview of the state of play.

4 See D'Hulster (2009) for background on the leverage ratio.

5 Hildebrand (2008) argues that flaws in risk models and/or gaming of the capital rules by banks may leave banks 
with too little capital and hence sees a role for the leverage ratio as a backstop for a MP policy.



We analyze the importance of riskometer imprecision in the context of a model in which a 

regulator acts to minimize the probability of a systemic crisis by setting each bank’s capital 

requirement at either a high or a low level.  The banking system consists of type H banks that 

always pursue a high risk strategy and type D banks that pursue a high risk (low risk) strategy if 

they operate with high levels (low levels) of capital.  Banks pursuing a high risk strategy with 

low capital create the greatest risk of a systemic crisis, banks pursuing a high risk strategy with 

high levels of capital create a systemic crisis with a lower probability, and banks pursuing the 

low risk strategy never create a systemic crisis.  

The regulator has three options: i) he can require all banks to operate with high capital (the 

HighCap policy); ii) he can require all banks to operate with low capital (the LowCap policy); or 

iii) he can use his imperfect but better than random riskometer to get a reading on a bank’s type 

and base his capital decision upon that reading (the MP policy).  All three policies lead to costly 

errors.  Under the HighCap policy type H banks operate with the optimal amount of capital 

(lowering systemic risk), but the high capital requirement leads type D banks to pursue the high 

risk strategy (increasing systemic risk).  Under the LowCap policy, type D banks can operate 

with low levels of capital and so pursue the low risk strategy (lowering systemic risk), but high 

risk banks can also operate with low levels of capital (increasing systemic risk).  The regulator 

therefore eliminates the policy option that leads to the more expensive error (as a function of the 

model parameters).  Under the MP policy, the regulator will make fewer errors as he uses his 
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riskometer to get information on each bank’s type, but he will make both types of error (allowing 

some H banks to operate with low capital and forcing some D banks into the high risk strategy).  

Hence, his errors will on average be more expensive.  It follows that a regulator will find the MP 

policy optimal only if his riskometer is precise enough to compensate for the more costly errors 

he makes while using it–a riskometer that is merely "better than nothing" will not suffice.

With this result in mind, we empirically evaluate the performance of the Value-at-Risk (VaR) 

riskometer, the Marginal Expected Shortfall (MES) riskometer devised by Acharya et. al. (2010), 

and the CoVaR riskometer devised by Adrian and Brunnermeier (2008).  We use Acharya et. al.’s 

(2010) sample of large US financial firms to do so, and we examine the pre-crisis (2003–2006) 

and crisis (2007–2010) periods separately.  We assess riskometer performance along three 

dimensions: i) Absolute Imprecision; ii) Relative Imprecision; and iii) Rank Imprecision.  A 

riskometer's Absolute Imprecision is low if it can pin down the level of a bank's risk reading to 

within a narrow numerical range.  A riskometer’s Relative Imprecision is low if that riskometer 

can pin down a bank’s risk reading to within a narrow range of the distribution of risk readings 

for the sample banks.  A riskometer's Rank Imprecision is low if it can reliably order a sample of 

banks by the level of systemic risk they create (as defined by that riskometer).  

We evaluate riskometer precision by using a stationary bootstrap (Politis and Romano 

(1991)) to construct 10,000 trial return histories for each sample period.  For each trial we 

compute each riskometer’s reading for each bank, and we set the plausible range of a given 
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riskometer’s reading for a given bank equal to the middle 95% of the that riskometer’s trial 

readings for that bank.  We measure a riskometer’s Absolute Imprecision by the ratio of its 

highest plausible reading to its lowest plausible reading, and we find that this ratio averages 

between 1.5 (for VaR in the pre-crisis period) and 3 (CoVaR in the crisis period).  We measure 

Relative Imprecision by comparing the plausible range of a given bank’s risk reading to the span 

of the distribution of the point-estimate risk readings for the sample banks (in percentile space), 

and we find that that this range covers an average of between 40 (for VaR in the pre-crisis 

period) and 88 (for CoVaR in the crisis period) percentiles of that distribution.6  That is, the 

imprecision of a riskometer reading for the typical bank is so large that one cannot generally rule 

out the possibility that a bank with a relatively low risk reading is in fact among the riskiest 

banks.  We measure a riskometer’s Rank Imprecision by computing the Spearman rank order 

correlation coefficient between banks ordered by riskometer reading for two trials selected at 

random, and we find that it is not statistically significantly different from 0.  In short, we find 

that the riskometers we examine are not precise enough to support the demands that a 

macroprudential policy will place upon them even in the best-case scenario that we consider 

here.    

While we assume that each riskometer implements a true measure of systemic risk and 

analyze the importance of riskometer precision, much of the research on this topic ignores the 

7

6 To illustrate, suppose for a given riskometer that the point-estimate readings of the sample were uniformly 
distribution on {10, 20} and that the plausible range of bank B’s reading was {11, 19}.  Then, our measure of B’s 
Relative Imprecision would be 80 as its plausible range spans 80 percentiles of the point-estimate distribution.  



role of precision and instead focuses almost exclusively upon devising the correct measure of 

systemic risk (Danielsson (2002, 2008) is an exception).  One strand of this research seeks to 

derive a measure of the amount of systemic risk a bank creates from a micro-founded model of 

complex optimizing banks in a complex financial system (see, for example, Elsinger, Lehar, and 

Summer (2002), Goodhart, Sunirand, and Tsomocos (2004), and Danielsson, Shin, and Zigrand 

(2011)).  However, while this strand of research does provide important qualitative insights into 

the nature of systemic risk, it has yet to yield a theoretically sound and empirically 

implementable measure of a bank's contribution to systemic risk.

In the absence of such a model, researchers devising practicable riskometers generally take 

the shock process (the initial shock plus any endogenous risk driven amplification/attenuation of 

that shock) as given and work with observable data on bank and financial system performance–

with the idea being that performance data incorporate the impact of shocks that occur.  While 

systemic risk measurement along these lines is a very active area of research (e.g., Segoviano 

and Goodhart (2009), Tarashev, Borio, and Tsatsaronis (2010), and Zhou (2010)), we focus here 

upon VaR, SES, and CoVaR, which are in our view the three most developed riskometers both 

theoretically and empirically.

The quest for the ideal systemic risk measure has led to both new risk measures and to 

constant tinkering with existing measures.  Danielsson (2008) and Danielsson et. al. (2012) 

examine 6 methods of estimating VaR, Adrian and Brunnermeier (2008) discuss several 
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implementations of their CoVaR measure, and Brownlees and Engle (2011) continue to develop 

and refine MES.  So, if we were critiquing existing riskometers on the basis that they did not 

provide true measures of systemic risk, we would definitely be aiming at a moving target.  But, 

that is not our critique.  We assume that the quest of the true systemic measure is a success and 

are instead asking if it is possible to estimate that measure with the precision that 

macroprudential policy requires.  For this purpose, the simplest version of each of the three 

riskometers we examine offers the best test-case for our analysis, and so we use that version of 

each riskometer in the analysis below.               

Our analysis of riskometer imprecision builds upon Pástor and Stambaugh’s (2012) analysis 

of the importance of incorporating estimation risk into an agent’s optimization problem and 

Danielsson’s (2002, 2008) critique of VaR.  Pástor and Stambaugh show that even if stocks are 

fundamentally less volatile over the long run due to mean reversion, stocks are in fact more 

volatile over the long run from the perspective of investors because investors must imprecisely 

estimate rather than observe the fundamentals of the return process.  Thus, they find that 

imprecision can have a substantial impact upon an investor’s strategy.  Danielsson (2002) 

explores the statistical assumptions behind the VaR measure, and Danielsson (2008) shows that 

the VaR riskometer performs poorly even in the relatively straightforward case of a $1000 

investment in IBM.  So, while few would disagree with the observation that riskometers will 
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inevitably be imprecise to at least some extent, we show here that the imprecision of one's 

riskometer matters as it affects the optimal policy choice.  

I. Optimal Policy When Using An Imprecise Riskometer

A. Set - Up and Assumptions

We examine the importance of riskometer precision by analyzing the case of a regulator who 

sets bank capital requirements so as to maximize the probability that the financial system 

remains stable.  The banking system consists of two types of (large) banks, type H and type D, 

and the regulator can set a bank’s capital requirement at either a high level or a low level.7  An H 

banks always pursue a high risk strategy, and a D bank pursues the the low risk strategy unless 

the regulator requires it to operate with a high level of capital, in which case it pursues the high 

risk strategy.8  A bank pursuing a high risk strategy with low capital sets in train a series of 

events that creates a crisis with a probability of χHL, and a bank pursuing a high risk strategy with 

high capital does so with probability χHH, with χHL > χHH.  A bank pursuing the low risk strategy 

never creates a crisis.  The banking system consists of QH (QD) banks of type H (D), and to 

simplify the exposition we further assume that the number of banks is large enough to be treated 

as a continuum.

10

7 We assume that small banks do not create any systemic risk externalities and so do not include them in the 
analysis.

8 We implicitly assume here that requiring a bank to operate with a high capital requirement increases its cost, and 
these higher costs make the low risk strategy unprofitable (as in, for example, Hellmann, Murdock, and Stiglitz 
(2000)).  



We model this problem as a two period game.  In the first period all banks operate with low 

capital, and so D (H) banks choose the low-risk (high-risk) strategy.  In the second period the 

regulator sets sets each bank's capital requirement and then a crisis occurs with a probability that 

is a function of the capital requirements he sets.  We impose the constraint (consistent with actual 

behavior) that the regulator cannot act in a capricious and arbitrary fashion.  We operationalize 

this constraint by assuming that the regulator must: i) treat every bank that looks identical to him 

in an identical manner; and ii) require all banks that look identical to him to hold the same level 

of capital.  

The regulator knows all of the parameters of the model, but he cannot observe a bank’s type 

or its strategy.  The only way that he can get information on a bank's type is to use his endowed 

riskometer to measure the risk of the strategy the bank pursued in period 1.  The riskometer will 

give one reading of either "High Risk" or "Low Risk" per bank, and that reading will be correct 

(incorrect) with probability π (1–π), with 0.5 < π ≤ 1.9  That is, we assume that the riskometer is 

always better than random.

B. Optimal Policy

Since the requirement that the regulator treat all banks that look identical to him in an 

identical manner rules out any policy that involves a mixed strategy, the regulator has the 

11

9 Intuitively, one could think that all banks try to appear to be low risk, and that the regulator can use his riskometer 
to (imperfectly) sort the actual high risk banks from the actual low risk banks.  We have assumed for simplicity that 
the probability that the riskometer provides the correct reading is the same for both high risk and low risk banks, but 
allowing the probability to vary across bank types would not fundamentally alter the results below.



following policy options available to him.  He can eschew his riskometer (in which case all 

banks do look the same to him) and simply require that all banks operate with a uniform level of 

capital.  Capital can be set at either a low level (the LowCap policy) or at a high level (the 

HighCap policy).  Alternatively, the regulator can choose to use his riskometer (the MP policy), 

in which case he must use it for all banks and he must require a bank with a "High Risk" ("Low 

Risk") reading to operate with a high level (low level) of capital in period 2.  Consider the costs 

of each policy in turn.

If the regulator chooses the LowCap policy, then all banks operate with a low level of capital 

in period 2.  It follows that D banks choose the low risk strategy and H banks the high risk.  

Hence, the probability of a stability is under this policy is θLowCap, with:

 θLowCap = 1− χHL( )QH . (1)

If the regulator chooses the HighCap policy, then all banks operate with high levels of capital.  

Hence, both D and H banks choose the high-risk strategy, implying that the probability of 

banking system stability under this policy is θHighCap, with: 

 θHighCap = 1− χHH( )QD+QH . (2)

If the regulator chooses the MP policy, then he treats each bank as if it is of the type indicated 

by his riskometer's reading.  Consequently, the number of H banks operating with a high level of 

capital is equal to the number of H banks (QH) times the probability that the regulator’s 
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riskometer picks correctly identifies them (π), which is π QH.  The number of H banks operating 

with a low level of capital is then QH (1 – π).  The total number D banks that operate with low 

capital is equal to the number of D banks that the riskometer classifies correctly, which is π QD.  

The number of D banks that the regulator forces to operate with high capital (and so that pursue 

the high risk strategy) equals the number of D banks that the riskometer classifies incorrectly, 

which is (1 – π) QD.  Hence, the probability of banking stability under the MP policy is θMP, 

with:

 θMP = 1− χHL( )QH 1−π( ) 1− χHH( )QHπ+QD 1−π( )  . (3)

When π = 0.5,

 θMP π=0.5 = 1− χHL( )
QH
2 1− χHH( )

QH +QD
2 , (4)

and when π = 1, we have

 θMP π=1 = 1− χHH( )QH . (5)

Obviously, θMP|π = 1 > θMP|π = 1/2  and  ∂θMP

∂π
> 0 .  

Let us now consider the relationship between the probability of banking system stability 

across the regulator’s policy options.
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LEMMA 1.  The regulator chooses the MP policy if his riskometer can perfectly identify a 

bank’s type.

Proof.  Under the MP policy with a perfect riskometer, all D banks operate with a low level 

of capital and so pursue the low risk strategy (and thereby create a crisis with probability 0), and 

all H banks operate with a high level of capital and so each cause a crisis with probability χHH.  

Under the LowCap policy all D banks operate with a low level of capital, but all H banks also 

operate with a low level of capital and so each cause a crisis with probability χHL, χHL  > χHH.  

Obviously, the regulator prefers the MP policy in this case.  Under the HighCap policy, all H 

banks operate with a high level of capital and so also each cause a crisis with probability χHH as 

under the MP policy. However, the D banks must also operate with a high level of capital and so 

also each cause a crisis with probability χHH instead of 0.  Hence, the regulator prefers the MP 

policy with a perfect riskometer to the HighCap policy as well. 

∎       

LEMMA 2.  The regulator chooses one of the leverage ratio policies if his riskometer works 

poorly.

Proof.  Suppose that θMP|π = 1/2 > θHighCap.  In then follows from equations 2 and 4 that
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1− χHL( )

QH
2 1− χHH( )

QH +QD
2 > 1− χHH( )QD+QH

⇒ 1− χHL( )
QH
2 > 1− χHH( )

QH +QD
2

, (6)

Now suppose also that θMP|π = 1/2 > θLowCap.  In then follows from equations 1 and 4 that

 
1− χHL( )

QH
2 1− χHH( )

QH +QD
2 > 1− χHL( )QH

⇒ 1− χHH( )
QH +QD
2 > 1− χHL( )

QH
2

, (7)

Equations 6 and 7 are inconsistent, and thus it is impossible for θMP|π = 1/2 to be greater than both 

θLowCap and θHighCap at the same time.  The regulator therefore prefers one of the leverage ratio 

policies to the MP policy if his riskometer works poorly.     

∎

Having established the key properties of the regulatory policy cost functions, we can now 

derive our main result.

PROPOSITION 1.  The regulator prefers the leverage ratio to the MP policy if his riskometer 

 is sufficiently imprecise.

Proof.   We know from Lemmas 1 and 2 that
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 θMP π=0.5 <Max θHighCap ,θLowCap{ }⎡⎣ ⎤⎦ <θMP π=1 , (8)

and from equation 3 that ∂θMP

∂π
> 0 .  It follows that there exists a π* such that 

θ MP π=π* =Max θLowCap ,θHighCap{ }⎡⎣ ⎤⎦  .  The regulator therefore prefers either the HighCap or the 

LowCap policy if π < π* and the MP policy if π > π*.

∎

Our analysis demonstrates that the regulator's optimal policy choice depends upon the quality  

of his riskometer.  If the regulator finds himself in possession of a perfect riskometer, then a 

policy of setting capital requirements on the basis of that riskometer's readings is indeed optimal.  

However, as the regulator's riskometer becomes less precise, there comes a point where (poorly 

measured) systemic risk based capital requirements become dominated by other policies.  So, 

what riskometers do we have and just how precise are they?

II. Riskometer Design: VaR, MES, and CoVaR

A riskometer Ψγ is an algorithm that implements an approach γ for measuring a bank's 

contribution to systemic risk.  Provided with the data concerning a given bank B that the 

riskometer requires, it provides a quantitative reading of B's contribution to systemic risk, 

denoted by Ψγ,B. 
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A.  The VaR Riskometer

If one assumes that the marginal increase in the probability of a financial crisis due to a bank 

entering into a stressed state is independent of the state of the financial system, then a sensible 

measure of the systemic risk that a given bank creates is just the probability that the bank enters 

into a stressed state.  The probability that a bank enters into a stressed state increases with the 

magnitude of a negative shock to its value (all else equal).  Hence, banks that experience larger 

negative shocks create more systemic risk.  If a bank does experience larger negative shocks, 

then one might expect its return distribution to have a longer left tail.  A conceptually simple (if 

manipulatable) measure of the length of the tail is the position of a given extreme quantile of the 

return distribution.  This line of thought leads to the VaR riskometer, where a bank's systemic 

risk measure is set equal to the value of a given extreme quantile of its return distribution.

To empirically implement the VaR riskometer, one must choose a return quantile and a 

method of estimating the location of that quantile.  To begin with the quantile decision, the 

choice of exactly which quantile to use is of course arbitrary.  The trade-off when selecting the 

quantile is that while a quantile further out in the tail provides a better estimate of the return 

consequences of a plausible worst case event, the further one goes out into the tail of the 

distribution, the fewer observations one has with which to estimate the location of the quantile 

for which one is aiming.  The standard solution to this trade-off is to set the VaR quantile at 
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either the 1th percentile or the 5th percentile of the return distribution.  We use the 1th percentile 

here.10

There exist a wide variety of methods that one can use to estimate the location of the VaR 

quantile one selects.  To avoid needless complexity, we simply take as our estimate of the 1th 

percentile of the return distribution the 1th percentile value of the return series we examine (that 

is, we use the Historical Simulation method of estimating VaR).11

We denote this quantile plus method specification of VaR as ΨVaR.  So, ΨVaR for a bank B with 

a return series {RB,1, RB,2 ... RB,T} is ΨVaR,B, with 

 ΨVaR,B = Quantile RB,1 ,RB,1 ...RB,T{ },0.01⎡⎣ ⎤⎦ . (9)

We implement this measure using daily market returns for sample banks.

B.  The MES Riskometer

The MES riskometer takes its inspiration from the idea that, as Andrew Crocket (2000) put it, 

"the financial system is a system".  That is, since the real economy requires the services that the 

financial system provides in order to function properly, a bank creates a risk to the overall 

economy (i.e., systemic risk) to the extent that it contributes to stress in the financial system as a 

whole.  Building upon this idea, Acharya et. al. (2010) construct a theory yielding the result that 

18

10 We obtain the same results when using the 5th percentile.

11 Danielsson et. al. (2012) show that all standard methods of estimating VaR are highly imprecise.  Since there is no 
general agreement on which method is best, adding in the imprecision that arises from the fact that one can estimate 
VaRs in different ways would strengthen our empirical results below.    



a bank creates systemic risk if it performs poorly at the same time as the economy as a whole 

performs poorly.  This conclusion in turn leads to the MES riskometer, which is defined as a 

bank's expected return conditional upon the market performing poorly.12  Acharya et. al. (2010) 

operationalize MES as follows: a bank B's MES is equal to its average return on days when the 

market return RMarket is at or below its 5th percentile value for the sample period ( VaRMarket
5% ), 

determining the 5th percentile value of the market return series using the Historical Simulation 

method as above.  Denoting this specification of MES as ΨMES, a bank B's ΨMES is then

 
 
ΨMES,B =Mean RB, z1

,RB, z2
...RB, zW{ }⎡

⎣
⎤
⎦  ,  (10)

where {z1, z2... zW} is the set of days such that RMarket,z <   VaRMarket
5% .  Following Acharya et. al. 

(2010), we compute this measure using daily returns and we use the return on the value-weighted 

CRSP index as our measure of RMarket.13

C.  The CoVaR Riskometer

CoVaR shares with MES the idea that a bank creates systemic stress when stress at the bank 

coincides with stress in the financial system as a whole, and it shares with VaR the idea that the 

19

12 MES is the key building block of Acharya et. al.'s (2010) full systemic risk measure SES, which also includes a 
leverage measure.  Given that SES builds upon MES, any imprecision in MES will necessarily affect SES.  Thus, we 
concentrate our analysis here upon the MES part of SES.

13 One aspect of MES that is worth noting is that, as Acharya et. al. (2010) acknowledge, the 5th percentile threshold 
is not really extreme enough to properly serve as a defining bound for "market stress".  However, Acharya et. al. 
(2010) argue that this bound is far enough out into the tail of the market return distribution to lead to MES readings 
that are proportional to what MES readings would be if there was enough data to estimate them with a more 
realistically extreme bound to define episodes of market stress.



location of the 1th percentile of a return distribution provides a good measure of risk.  Combining 

these two ideas, Adrian and Brunnermeier (2008) posit that a bank B creates systemic risk if risk 

in the financial system as a whole increases as stress at the bank increases.  Their measure of risk 

in the financial system is  VaRFinSys
1% , which is the 1% VaR of the portfolio of financial firms.

Assume that B is under stress when RB = ΨVaR,B and not under stress when RB = Median[RB], 

where RB is the return series for B.  We then get the CoVaR riskometer's measure of systemic risk 

at bank B ΨCoVaR,B, with

 
 
ΨCoVaR,B =VaRFinSys

1%
RB=ΨVaR ,B

−VaRFinSys
1%

RB=Median[RB ]
 . (11)

Following Adrian and Brunnermeier (2008), we estimate 
 
VaRFinSys

1%
RB

with

 
 
VaRFinSys

1%
RB
=α + βRB + ε  . (12)

using a quantile regression.14  We then calculate ΨCoVaR,B with the estimated parameters from 

equation 12.

There are obviously many ways of implementing this general CoVaR idea, and Adrian and 

Brunnermeier (2008) discuss several specifications in their paper.  In particular, one must decide 

whether to measure returns by common stock returns or by changes in the market value of bank 

20

14 We thank Johannes Ludsteck for sharing and updating the code he developed to estimate quantile regressions in 
Mathematica.



assets.  Given that Adrian and Brunnermeier (2008) report that both methods lead to similar 

results in practice, we choose to measure returns with (easily observable) stock returns rather 

than by (difficult to infer) changes in the market value of bank assets so as to avoid a very 

significant errors in variable problem.15  While Adrian and Brunnermeier estimate ΨCoVaR with 

weekly returns, we use daily returns in our analysis below to be consistent with our analysis of 

ΨVaR and ΨMES.16  We set RFinSys equal to the return on the Fama-French Finance Industry 

portfolio.

IV. Riskometer Performance

A.  Gauging Performance: Criteria and Method

Since the goal of the MP policy is to make a bank's capital requirement a function of the 

amount of systemic risk that the bank creates, a regulator pursuing a MP policy needs a 

riskometer that enables him to precisely measure the amount of systemic risk that each individual 

bank creates.  We gauge riskometer precision along three dimensions, Absolute, Relative, and 

Rank.  A riskometer is precise in the Absolute dimension if it can pin down the numerical 

measure of the amount of systemic risk a bank creates (as defined by that riskometer) to within a 
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15 The errors in variable problem can arise through several channels.  Among these channels are the following.  First, 
banks report asset values on a quarterly basis.  One is therefore left with either very few return observations or one 
must use some ad hoc interpolation rule to trace the path of asset values over the quarter.  Second, a considerable 
proportion of assets are reported at book rather than market value, so one must use some ad hoc method to transform 
book values to market values.  Third, reported asset values are highly vulnerable to accounting manipulation.  
Fourth, publicly reported asset values do not include (at times substantial) off-balance sheet items and so may 
present a very incomplete picture of true assets.

16 We repeated the analysis below using weekly returns and found that doing so did not alter our results.



narrow range.  A riskometer is precise in the Relative dimension if it can pin down the amount of 

risk that a given bank creates to within a narrow range relative to the amount of systemic risk 

that other bank creates.  A riskometer provides Rank precision if it can reliably order a sample of 

banks by the amount of systemic risk they create.    

As there is no simple analytical formula available to compute the plausible ranges of and the 

correlations between the bank riskometer readings that we need to measure riskometer precision, 

we examine riskometer imprecision by using a bootstrap.  For each sample period, we generate 

10,000 return histories ("trials").  Since our return data incorporates both cross-sectional and time 

series relationships, our trials must capture these aspects of the data.  We therefore generate the 

trials as follows.  To capture the cross-sectional relationships between RMarket, RFinSys, and 

individual bank returns, we construct our trials by drawing sample days.  So, if bank B's return 

has a cross-sectional relationship with RMarket, that relationship will appear in the trials as we will 

have RMarket and RB observations for the same days.  To capture the time series relationships in 

the data, we select the days we include in a trial using a stationary bootstrap (Politis and Romano 

(1991)).  In this technique one initially draws an observation day at random from the sample and 

then includes a random number of following days.  The number of additional days that one 

includes is given by a draw from a geometric distribution with parameter g, with g =  T-1/3, where 

T is the number of days in the sample period.  One then repeats this process until the number of 

days in the trial equals T.  Each trial τ produces one reading for each riskometer γ and each bank 
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B, denoted by Ψγ,B,τ.  The list of trial risk readings for a given bank/riskometer pair is then 

Ψγ,B,Boot, with   

 Ψγ ,B,Boot = Ψγ ,B,1 ,...Ψγ ,B,10000{ }   (13) 

We measure a riskometer’s Absolute Imprecision for a bank B by the ratio of its highest 

plausible risk reading to its lowest plausible risk reading, and we set that plausible range equal to 

the middle 95% of the distribution of riskometer readings generated by the bootstrap.  Labeling 

this ratio for riskometer γ and bank B as AbPγ,B, it follows that

 AbPγ ,B =
Quantile[Ψγ ,B,Boot ,0.975]
Quantile[Ψγ ,B,Boot ,0.025]

 (14)

We measure a riskometer’s Relative Imprecision for a bank B by measuring the plausible 

range of its riskometer reading relative to the distribution of the point-estimate risk readings for 

the sample banks.  We label this measure as RelPγ,B.  We calculate this measure as follows.  

Denote the distribution of the point-estimate risk readings produced by riskometer γ by Ωγ.  

Then,

 RelPγ ,B = 100*(CDF Ωγ ,Quantile[Ψγ ,B,Boot ,0.975]⎡⎣ ⎤⎦ −CDF Ωγ ,Quantile[Ψγ ,B,Boot ,0.025]⎡⎣ ⎤⎦)  (15)

To illustrate, suppose that the risk readings generated by riskometer γ applied to a sample of 

banks were uniformly distributed on the interval {10, 20}, and that the confidence interval for 
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bank B’s reading was {11, 19}.  Then, RelPγ,B equals 100 * (CDF[Ωγ, 19] – CDF[Ωγ, 11]) = 100 * 

(0.9 – 0.1) = 80.

To measure Rank Imprecision for a given riskometer we calculate the Spearman rank order 

correlation coefficient ρ between trials selected at random.  If banks tend to appear in the same 

order when ranked on the basis of riskometer readings from trial to trial (even if the value of 

those readings varies a great deal), then ρ will be positive.  We obtain the distribution of  ρ by 

computing it for 10,000 pairs of trials, with each trail in the pair selected at random.  We sort the 

set of  ρ's we obtain by value and take the 99% confidence interval to be equal to the bounds on 

the middle 99% of that distribution.

B.  Data

Systemic risk concerns arise in connection with large financial firms.  We therefore construct 

our sample by beginning with the large financial firm sample used in Acharya et. al. (2010).  

This sample consists of the 101 financial firms with a market cap in excess of $5 billion as of 

June 2007.  We examine a pre-crisis sample period consisting of the years 2003–2006 and a 

crisis sample period consisting of the years 2007–2010.  We include a bank in a sample period if 

we have a return observation for that bank for at least 75% of sample days.  Our 2003–2006 

sample consists of 92 firms, and our 2007–2010 sample consists of 77 firms.  We obtain our firm 

returns from CRSP.
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C.  Absolute Imprecision

We report the distribution of the AbP for the sample banks for each riskometer and each 

sample period in Table I.  The best performing riskometer is VaR, which produces an average 

AbP of 1.5 for the 2003/2006 sample period and of 1.8 for the 2007/2010 sample period.  If the 

amount of capital the regulator requires a bank to hold is a linear function of its risk reading, then 

the imprecision in the VaR readings could lead to the amount of capital a bank is required to hold 

to vary by 50% to 80%.  So, even the best performing riskometer does not perform very well.

The VaR riskometer does not derive from a model of how systemic risk arises.  The MES and 

CoVaR riskometers, on the other hand, do rest upon elegant and theoretically coherent 

foundations.  However, a theoretically sound riskometer is probably a more complicated 

riskometer, and a more complicated riskometer will necessarily place greater demands upon the 

data.  Hence, we were not surprised to see that Absolute Imprecision for both MES and CoVaR is 

much higher than it is for VaR.  

In the case of MES, we find that the average AbP ratio is about 2 for both sample periods, 

and in the case of CoVaR the average AbP ratio is about 3 for both sample periods.  That is, if a 

bank’s capital requirement is a linear function of its risk reading, then the capital requirement a 

regulator using the MES or CoVaR riskometer imposes upon a bank could vary by a factor of 2 

to 3 purely due to the difficulty the regulator has in estimating the parameters of his risk model.    
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D.  Relative Imprecision

We report the distribution of RelP for the sample banks for each riskometer and each sample 

period in Table II.  The best performing riskometer is, once again, VaR (average RelP of about 

40), followed by MES (average RelP of about 50) and then CoVaR (average RelP of 70 to 80).  

In the case of VaR and MES, then, the imprecision of the riskometer readings means that the 

regulator cannot generally be confident that a bank with a riskometer reading that places it well 

into the lower half of the risk reading distribution for sample banks does not in fact belong in the 

upper half of that distribution.  In the case of CoVaR, the confidence interval for the typical 

bank’s risk reading spans fully 70 to 80 percentiles of the risk-reading distribution.  Here the 

regulator could not be confident that a bank with a risk reading placing it among the least risky 

banks in the sample was not in fact one of the riskiest banks in the sample.              

E.  Rank Precision

Our analysis of Absolute and Relative Imprecision demonstrates that individual bank 

riskometer readings vary tremendously across trials.  But, it could be the case that individual 

bank riskometer readings covary from trial to trial as well.  That is, some trials may produce high 

riskometer readings for all banks, and some trials may produce low riskometer readings for all 

banks.  So, our results on Absolute and Relative Imprecision results above do not rule out the 

possibility that a regulator can still rank banks by the amount of risk they create.  If this is the 
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case, then a regulator would at least find it possible to require high risk banks to hold more 

capital than low risk banks.

We analyze this possibility by computing the Spearman rank order correlation coefficient ρ 

for banks ordered by risk-reading for pairs of trials selected at random.  We report the results of 

this analysis in Table III.  We find for each riskometer and each sample period that the ranking of 

banks by riskometer reading are essentially uncorrelated from trial to trial, and hence that ρ is not 

statistically significantly different from 0.  It follows that a regulator can not use the riskometers 

we examine here to order banks by the level of systemic risk they create.

V. CONCLUSION

Basing a bank's capital requirement (or other regulatory intervention) upon the level of 

systemic risk that the bank creates is undoubtedly far superior to basing its capital requirement 

upon a cruder policy such as a simple leverage ratio...at least in theory.  Yet, the macroprudential 

policy will only be superior in practice if the regulator possesses a riskometer that enables him to 

precisely measure the amount of systemic risk that individual banks create.  We examine the 

three leading riskometers, viz., VaR, MES, and CoVaR, and find that they are incapable meeting 

the demands that macroprudential policy places upon them.  

We note that our critique of the riskometers we examine is not that they are theoretically 

unsound or that they are mis-specified.  If this were the case, then a different riskometer or a 
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different specification for an existing riskometer might solve the problem.  But this is not the 

case: MES and CoVaR in particular have strong theoretical foundations, and these foundations 

lead to plausible empirical risk measures.  Instead, we show that the three analytically distinct 

riskometers that we do examine are all empirically unreliable.  Since the empirical 

implementation of any systemic risk measure–no matter how theoretically attractive–will have to 

deal with similar problems to those that caused the VaR, MES, and CoVaR riskometers to 

produce such imprecise risk readings, we think it likely that riskometers in general will struggle 

to provide the precise risk readings that macroprudential policy requires.  We therefore conclude 

that, in practice, less informationally intensive policies such as the leverage ratio may offer a 

more sensible approach to dealing with systemic risk than a more theoretically attractive 

macroprudential policy.

We draw two implications from our analysis.  First, on a methodological note, our analysis 

highlights the importance of taking measurement uncertainty seriously.  A policy option that may 

make sense for an omniscient being that can observe all of the relevant parameters directly may 

not make sense for regulators who must operate with imperfect estimates of those parameters.  

Second, while we do think that the leverage ratio may dominate macroprudential policy in 

practice, this is not because the leverage ratio is itself ideal–it is just that we don't know enough 

to get macroprudential policy to work well.  It follows that capital will inevitably be an 

inefficient tool with which to address systemic risk.  And while the inefficiency of capital by no 
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means implies that a better tool exists, it does suggest that it would be worth looking hard to find 

one (or more).

Our analysis of systemic risk based capital requirements brings to mind the story of Phaeton, 

the long lost son of the god Apollo.  One day Phaeton appeared on Mount Olympus and Apollo 

was so delighted to see him that he offered to grant him anything that he desired.  Phaeton asked 

to drive the chariot that pulled the Sun across the heavens.  Apollo argued that this was a terrible 

idea as the chariot was built for him–a god–and not for a mortal.  But Phaeton stood firm and 

Apollo had given his word, so the next morning Phaeton set off.  Of course, he was completely 

incapable of controlling Apollo's chariot and was thus in the process of destroying the world 

when Zeus stuck him down with a thunderbolt.  The moral of the story is that one should be wary  

of using tools that require divine powers to operate effectively if one doesn’t have them.  This is 

wisdom that we forget at our peril.
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TABLE I

Absolute Imprecision 

We measure a riskometer’s Absolute Imprecision AbP for a given bank by the ratio of its maximum plausible 
value to its minimum plausible value.  In this table we plot the distribution of AbP for sample banks for three 
riskometers (VaR, MES, and CoVaR) and two sample periods (2003/2006 and 2007/2010).  The rectangle in the 
middle of each plot gives the interquartile range, the bars at the end mark the middle 95% of the distribution (with 
numerical values), and the vertical line in the middle indicates the average AbP value (with its numerical value 
underneath).  We compute AbP by: i) using a stationary bootstrap to construct 10,000 trial return histories for each 
sample; ii) calculating riskometer readings for each bank for each trial; and iii) setting the plausible range of a 
bank’s riskometer reading equal to the middle 95% of its trial riskometer readings.  AbP for bank B is thus equal to 
the ratio of the 97.5th percentile value of its trail riskometer readings to the 2.5th percentile value of those readings.  
Our base sample consists of the 101 financial firms with a market cap in excess of $5 billion as of June 2007.  We 
include a firm in a sample period if we have a return observation for that firm for at least 75% of sample days.  Our 
2003/2006 sample consists of 92 firms, and our 2007/2010 sample consists of 77 firms.  

VaR0306
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MES0306
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1.344 3.656

CoVaR0306
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1.551 2.805

CoVaR0710
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TABLE II

Relative Imprecision 

We measure a riskometer’s Relative Imprecision RelP for a given bank by the number of percentiles of the 
sample point estimate risk reading distribution covered by the plausible range of the riskometer reading for that 
bank.  To illustrate, if the sample point estimate risk readings for a given riskometer are uniformly distributed on the 
interval {10, 20} and if the plausible range of the riskometer reading for a given bank B is {11, 19}, then RelP for 
that bank is 80 as the plausible range for that bank’s riskometer reading covers 80 percentiles of the sample point 
estimate risk reading distribution.  In this table we plot the distribution of RelP for sample banks for three 
riskometers (VaR, MES, and CoVaR) and two sample periods (2003/2006 and 2007/2010).  The rectangle in the 
middle of each plot gives the interquartile range, the bars at the end mark the middle 95% of the distribution (with 
numerical values), and the vertical line in the middle indicates the average RelP value (with its numerical value 
underneath).  We compute RelP by: i) using a stationary bootstrap to construct 10,000 trial return histories for each 
sample; ii) calculating riskometer readings for each bank for each trial; iii) setting the plausible range of a bank’s 
riskometer reading equal to the middle 95% of its trial riskometer readings; and iv) comparing that plausible range 
to the point-estimate risk reading distribution.  See Table I for a description of the sample.  
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TABLE III

Rank Imprecision

In this table we report summary statistics for the Spearman rank order correlation coefficient for each 
riskometer for each sample period.  We compute these statistics by: i) using a stationary bootstrap to construct 
10,000 trial return histories for each sample; ii) ordering the sample firms by riskometer readings for each trial; and 
iii) calculating the Spearman coefficient for 10,000 pairs of trials selected at random.  See Table I for a description 
of the sample. 

Sample Riskometer Median 99% Confidence Interval

VaR 0.05 8-0.22, 0.32<
2003ê2006 MES 0.01 8-0.26, 0.28<

CoVaR 0.03 8-0.24, 0.29<
VaR 0.12 8-0.19, 0.41<

2007ê2010 MES 0.09 8-0.21, 0.39<
CoVaR 0.08 8-0.2, 0.36<
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