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Abstract

Statistical systemic risk measures (SRMs) have been proposed by
several authors. Those generally depend on established methods from
market risk forecasting. The two most common SRMs, MES and
CoVaR, along with VaR, are compared theoretically and then critically
empirically analyzed. They are found to contain a high degree of
model risk so that the signal they produce is highly unreliable. Finally,
the paper discusses the main problems in systemic risk forecasting and
proposes evaluation criteria for such models.
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1 Introduction

Systemic risk, having been a neglected backwater in the empirical literature
before the crisis, has emerged as a major public concern, with policy makers
under considerable political pressure to develop methodologies for measur-
ing and containing systemic risk. In this paper, we approach the issue of
systemic risk measurement from the point of view of model risk, and em-
pirically analyze the most common approaches. Our results are essentially
negative, existing empirical methods for systemic risk come up short and do
not provide a reliable signal to policymakers.

Most recent systemic risk initiatives in the literature are theoretic in nature
and it is usually not possible to bring such models to data. There are sev-
eral exceptions where theory motivated models lend themselves naturally to
the question of empirical systemic risk. Of these, the most prominent are
CoVaR proposed by Adrian and Brunnermeier (2010), MES suggested by
Acharya et al. (2010); Brownlees and Engle (2011) and the Shapley value
(SV) approach of Tarashev et al. (2010).

These methods, along with other similar approaches, are fundamentally based
on using daily price data to forecast value–at–risk (VaR) as a first step in
the calculation of the systemic risk measure, perhaps with expected shortfall
(ES) as the next intermediate step. Because VaR is the first step in the
calculations, it is the cornerstone upon which all subsequent calculations are
based.

Surprisingly, in spite of its prominence, very little formal model risk analysis
has been done on VaR. Of course, various authors have studied the empirical
properties of different VaR measures, but not usually from the point of view
of model risk. This means that the empirical properties of most riskometers,1

like VaR, are not well understood.

The question of model risk in systemic risk riskometers is important, be-
cause as concluded by Danielsson, James, Valenzuela and Zer (2011) a noisy
riskometer may be worse than no riskometer at all, that is, for a riskometer
to be useful it needs to be of a high–quality, not just weakly better than
noise.

We consider the two most commonly used systemic risk measures (SRMs)
in detail, MES and CoVaR, but our conclusions likely would apply to other
SRMs like SV. We employ a sample of daily returns from the 92 largest finan-
cial institutions in the US from January 1997 to December 2010 for the VaR

1In the terminology of Dańıelsson (2009).
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and MES analysis and a subsample of those for CoVaR. We present represen-
tative results in this paper, with full results, along with the computer code to
implement all methods, relegated to the Webappendix, www.RiskResearch.
org/sysrisk.

MES and CoVaR derive from the joint distribution risk of the system and
the risk of institution. CoVaR is the conditional risk of the system given
the institution whilst MES is the conditional risk of the institution given the
system. CoVaR directly uses VaR whilst MES is based on ES, which then
itself is based on VaR. We could just as easily have defined CoES and MVaR.

We start by focusing on VaR model risk and forecast daily 1% VaR with
six of the most commonly used empirical methods and three estimation win-
dows. Our main tool of analysis is the ratio of the highest to the lowest
VaR forecasts, VaR ratio. In the 4 institution subsample presented in this
paper, the median VaR ratio is 3, with the smallest 1.4 and largest 13.3. The
lowest values come from normal or conditionally normal approaches whilst
the highest provided by fat tailed or historical simulation based methods.
The VaR ratio is highest during market turmoil. This suggests to us that
the model risk in VaR is quite high and increasing with market uncertainty.
This cost doubts about the wisdom of basing SRMs on VaR.

The first SRM we study is 5% MES which is based on ES and in turn derived
from VaR, where we investigate the model risk of MES employing the same
VaR forecast methodologies. There are two reasons for using 5% in spite of
its rather none–extreme nature. First, MES was proposed by Acharya et al.
(2010) who use 5% probability, and second it is not possible to estimate MSE
at more extreme probabilities except in special cases. We find similar results
as for VaR, MES estimates highly depend on the chosen model, especially
during the crisis period, and model risk is very high.

One gets much more accurate risk forecasts in the center of the distribution
compared to the tails, and therefore 5% risk forecasts are more accurate than
1% risk forecasts. This however does not mean the the dynamic behavior of
5% risk forecasts says much about the dynamic behavior of 1% risk forecasts,
especially when one compares non–crisis periods to crisis periods. The reason
is that in a crisis, the shape of the return distribution changes and different
quantiles are affected differently. For example, we may expect much bigger
relative changes in the more extreme quantiles. ultimately this means that
less extreme risk forecasts, such as at 5% are not all that informative about
more extreme risk, at 1% and beyond.

Finally, we consider CoVaR, and especially ∆CoVaR which is the difference
between the CoVaR conditional on a institution under distress and CoVaR
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calculated in the median state of the same institution. In order to understand
the empirical properties of ∆CoVaR we focus on both the cross–sectional and
time–series relationship between ∆CoVaR and VaR. We find that there is a
considerable difference between the two measures cross–sectionally, suggest-
ing that even when the VaR of two institutions is similar, their contribution
to a systemic event, i.e. their ∆CoVaR can be different, confirming the re-
sults in Adrian and Brunnermeier (2010). We then estimate the confidence
intervals in of the ∆CoVaR — VaR measures and find them to be quite large.
Finally, mathematical and time–series analyses suggest that ∆CoVaR is more
than 99% correlated with VaR implying that it may be sufficient just to use
VaR.

Taken together, the results provide a rather dismal view of the current crop
of SRMs. The main reason is that these methods depend on established
methods in market risk forecasting, with strong assumptions on the stochas-
tic processes governing market prices necessary. Since different statistical
methods depend on different assumptions, there is no surprise that model
risk is very high. This problem is made worse by the stochastic processes of
market prices being quite different in crisis and non-crisis periods, so that
models estimated before a crisis are likely to give very misleading indications
of risk during crisis.

The SRMs suffer from two additional problems. First, they are most needed
during crisis periods but at that time they are least reliable both because
the data has undergone a structural break and also because of the relative
scarcity of crisis data. Secondly, because they depend on additional model
assumptions beyond the underlying VaR, for example in estimating ES and
other measures that are conditional on VaR but in addition rely on other
assumptions as well, model risk accumulates, making them less reliable than
the basic market risk models.

Ultimately this means we have serious reservations about the use of currently
available SRMs for policy purposes. However, there are some models on the
drawing board that may provide a useful indicator of risk during crises, and
we discuss some those below.

Finally, because of the importance attached to any SRM, we feel that they
should be subject to a set of evaluation criteria before use. First, point
forecasts are not sufficient, confidence intervals, backtesting and robustness
analysis should be required. Second, models should not only rely on observed
market prices, instead, ought to aim at capturing the pre–crisis built-up of
risk as well. Finally, the probabilities should correspond to actual crisis
probabilities. SRMs usually focus on 1% or 5% daily events, those that
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happen once every 5 months or once a month respectively. That is hardly
systemic. Extreme market turmoil happens perhaps once a decade, so the
relevant probability is less than 0.1%.

The outline of the paper is as follows. In Section 2 we start by providing a
survey of the literature, followed by a systematic attempt at identifying sys-
temic risk methodologies, especially those with an empirical bent in Section
3. In Sections 5, 6, 7 we analyze in detail three riskometers, VaR, SES/MES
and CoVaR respectively. This is followed by Section 8 analyzing the results
and proposing criteria for systemic riskometers. Section 9 concludes.

2 Related Literature

Following the financial crisis, a number of studies are proposed for embed-
ding risk measurement — typically of the systemic risk type — within the
macroprudential regulatory structure. Such proposals generally aim to mea-
sure an individual bank’s contribution to overall financial system risk, aiming
to capture phenomena such as extreme risk and how extreme risk is related
between bank, the causality between an individual bank risk and the risk of
the system and the joint risk of banks and the system.

The current empirical literature on systemic risk can split into two, as noted
by Tarashev et al. (2010). One branch of the literature explicitly treats the
financial system as a portfolio of banks. Among others, Segoviano and Good-
hart (2009) propose a set of quantitative measures of the financial stability of
a portfolio of banks (banking stability measures) by considering the depen-
dence among the banks. Zhou (2010) proposes two measures as an extension
to their work: a systemic impact index (SII) and a vulnerability index (VI).
The SII measures the distress in the overall system given one particular bank
fails, whereas VI is the reversed measure, the probability of a particular bank
failure given that there exists at least one another failure in the system.

The other branch of the literature focuses on how an individual bank con-
tributes to systemic risk. Several different methods have been proposed,
for example the conditional value at risk (CoVaR) method of by Adrian and
Brunnermeier (2010) which aims to measure the systemic importance of indi-
vidual banks and distress in one bank given that another bank is in financial
distress.

Other methods consider the reverse problem of a bank risk given system
risk. Recent examples include Acharya et al. (2010), who propose marginal
expected shortfall (MES) as a measure to a bank’s contribution to systemic
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risk. Banks with higher MES are the ones that contribute the most to the
market decline, hence they are more likely to be systemically risky. By em-
ploying TGARCH and DCC models, Brownlees and Engle (2011) investigate
time series dynamics of MES. They conclude that higher volatility of the
institution and less diversification with respect to the market induces higher
MES, i.e. higher systemic risk contribution.

Huang et al. (2010) construct a systemic risk indicator using the structural
model of Vasicek (1991). They assess the individual banks’ marginal contri-
bution to systemic risk by credit risk models where the probability of default,
size and asset return correlations, are estimated from banks’ CDS spreads.

Tarashev et al. (2010) propose a Shapley value (SV) methodology which is
a game theoretical concept first introduced by Shapley (1953). It aims to
allocate the total value generated by a coalition to individual players. As an
application to this game theoretical approach on systemic risk, SV method-
ology allocates the total risk of the aggregated financial system, measured
by both VaR and ES, to individual institutions. Those allocations are based
on each institution’s marginal contribution to the overall risk.

The SV approach diverges from both SES and CoVaR in that SES and Co-
VaR do not try to decompose the overall systemic risk, they rather focus on
individual institutions, whereas SV decomposes the systemic risk based on a
characteristic function. This means that the summing up of CoVaRs for all
individual institutions in the system does not give the overall systemic risk,
summation of all SVs does.

All of the studies above assume that the the shocks to the banking system
and individual banks are essentially exogenous. This means the models as-
sume away for the most parts the potential for domino effects in defaults or
risk transmission. Addressing this problem, Drehmann and Tarashev (2011)
take into account the interbank linkages by considering the system as a net-
work of institutions using a SV approach similar to Tarashev et al. (2010). In
their sample of 20 global large banks they conclude that the contribution of
interconnected banks to systemic risk is higher than the ones without any in-
terconnection. Moreover, systemic importance of an institution is increasing
with its level of interbank market activity.

Most empirical implementations of the methods discussed are based on us-
ing market price data, perhaps coupled with other information like balance
sheet data, to construct the systemic risk measure (SRM). In most cases, the
fundamental building block of the SRM is daily VaR. While there are many
studies considering the forecast properties of the various VaR implementa-
tions, not many papers have formally used model risk analysis to study VaR.
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One exception is Dańıelsson (2002), and a more recent paper by Boucher
et al. (2011) who propose a formal environment for understanding model
risk in riskometers.

3 Systemic risk measures

Amongst the many systemic risk measures (SRMs) that have been proposed,
two have gained particular attraction; SES and CoVaR. They are closely
related to each other and in turn derived from VaR.

Let Ri indicate the risky outcomes of a financial institution i on which the
risk measures are calculated. This could be for example, daily returns of such
an institution. Similarly, we denote the risky outcomes of the entire financial
system by RS. We can then define the joint density of an institution and the
system by

f (Ri, RS) .

The marginal density of the institution is then f(Ri), and the two conditional
densities are f (Ri|RS) and f (RS|Ri). If we then consider the marginal
density of the system as a normalizing constant, we get by Bayes theorem:

f (Ri|RS) ∝ f (RS|Ri) f(Ri).

Suppose we use VaR as a risk measure, we arrive at CoVaR. Define Q as the
event such that:

pr[R ≤ Q] = p

where Q is some extreme negative quantile and p is the probability. Then,
CoVaRi is the value at risk of the financial system given that the institution
i is under financial distress. i.e.,

CoVaRi = pr[RS ≤ QS|Ri ≤ Qi] = p

If alternatively we use ES:
E[R|R ≤ Q]

we get MES; institutions expected equity loss in tail market outcomes:

MESi = E[Ri|RS ≤ QS] (1)

We could just as easily have defined MVaR as

MVaRi = pr[Ri ≤ Qi|RS ≤ QS] = p

7



and CoES as
CoESi = E[RS|Ri ≤ Qi].

To summarize;

Marginal
risk measure Condition on system Condition on institution

MVaR CoVaR
VaR pr[Ri ≤ Qi|RS ≤ QS] = p pr[RS ≤ QS|Ri ≤ Qi] = p

MES CoES
ES E[Ri|RS ≤ QS] E[RS|Ri ≤ Qi]

The Shapley value (SV) methodology falls under this classification scheme, by
adding a characteristic function, which maps any subgroup of institutions into
a measure of risk. The SV of an institution i is a function of a characteristic
function θ and the system S. If we choose θ as VaR, then

SVi = g(S, θ) = g(S,VaR).

If the characteristic function is chosen as the expected loss of a subsystem
given that the entire system is in a tail event, we end up the same definition
of MES.

Ultimately, this suggests that regardless of the risk measure or conditioning,
the main determinant of the empirical performance of each measure is VaR.
It would consequently be of benefit to study the empirical properties of VaR
in detail.

4 Data

Since our focus is on systemic risk, it would be natural to consider a sample
of financial institutions. In order to keep the estimation manageable and
avoid problems of holidays and time zones, we focus on the largest financial
market in the world, the US. Similar to the sample used in Acharya et al.
(2010), we pick the 101 largest publicly traded financial institutions, each
with a market capitalization in excess of $5 billion as of June 2007. However,
as we would like to use a relatively long time period for the analysis, we need
to drop 9 institutions since they have fewer than 1501 return observations
over the period of January 1997–December 2010. Therefore, for all of the
three risk measures discussed in the following section, the sample consists
of 92 financial institutions. Not all institutions are present throughout the

8



entire sample, but because of the nature of our study, we do not need to
worry about survivorship bias.

The daily market equity data is obtained from CRSP, in a total return form,
i.e., adjusted for issues such as splits, dividends and buybacks. To capture
the overall financial system, following Acharya et al. (2010) we use the value-
weighted market return from CRSP.

Adrian and Brunnermeier (2010) in their proposal for CoVaR use a quantile
regression method that depends on the presence of certain state variables.
The list of all the state variables and data sources can be found in Appendix.

For the sake of brevity, the analysis in the following sections is based on four
representative stocks: Bank of New York Mellon (BK), JP Morgan Chase&
Co. (JPM), State Street (STT) and US Bancorp (USB). However, entire set
of results can be found in the Webappendix.

5 VaR

The two main systemic risk measures studied in detail below fundamentally
dependent on VaR. It makes no difference whether they are based on VaR
directly like CoVaR or indirectly like MES. The same applies to the Shapley
measures.

Empirical analysis of VaR will therefore provide useful guidance on how we
can expect the systemic risk measures to perform. After all, their perfor-
mance will necessarily be worse than VaR.

5.1 Estimation

We employ the most common VaR forecast methodologies used by indus-
try: normal GARCH (G), Student–t GARCH (tG), moving average (MA),
Student–t moving average (tMA), exponentially weighted moving average
(EWMA) and historical simulation (HS) along with 3 estimation window
sizes; 500, 1000 and 1500 days. The probability is 1%. In turn, this gener-
ates 18 VaR forecasts for each institution each day.

It was not possible to obtain VaR forecasts for every estimation method and
institution each day. In some cases, the nonlinear optimization methods
would not converge, usually for tGARCH, but even in some cases happened
for GARCH, always on days with extreme market outcomes. In other cases,
the optimizer did converge but the results were nonsensical, where the VaR
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exceeded the portfolio value.

While one might be tempted to use different optimizer, our investigation
showed that the optimization failed because the model was badly mis–specified
given some of the extreme outcomes. In particular, the models were unable
to simultaneously find parameter combinations that work for typical market
outcomes and the extreme outcomes. Using a different optimizer would not
solve that problem.

For this reason, for cases where the optimizer did not converge, we report a
NaN. For the plots in the Webappendix we imposed an additional magnitude
restriction on the VaR.

5.2 Results

In order to present representative results, in the figures below we only present
end of quarter results. As always, the full results can be found in the Webap-
pendix. We present the ratio of the highest to lowest VaR across all methods
in Figure 1.

Figure 1: Ratio of highest to lowest daily 1% VaR. End of quarter results.
Probability is 1%
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The most quiet part of the sample is at the beginning and at this also where
the highest and lowest VaR forecasts are most similar, with a ratio below
two for all but one asset. As we move into the 2007 crisis, the ratio increases
sharply, exceeding 13 for one of the banks during the extreme turmoil of 2008.
Taken together, these results suggest that there is a considerable difference
between the forecasts, with little guidance on which to employ.
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Figure 2: JP Morgan highest and lowest daily VaR and the VaR methods.
Every time the VaR method changes, the label changes. End of quarter
results. Portfolio value is $1000 and probability 1%
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In order to investigate this further, Figure 2 focuses on JP Morgan and
shows which VaR method produced the highest and the lowest forecast. In
order to minimize clutter, we only indicate the method if it changes from the
previous quarter. As expected, the fat tailed methods, HS, tGARCH and
tMA produce the highest forecasts whilst the relativity thin tailed methods
of EWMA, MA and GARCH result in the lowest forecasts.

5.3 Analysis

The empirical results suggest that model risk is quite high. By using the
most commonly used methods and assumptions employed by the financial
industry and academics, the method producing the highest forecasts results
in forecasts that are on average times higher than the lowest. Unfortunately,
there is no obvious way to identify which method is best.

One could employ back testing, but that is at the best of times limited, and
especially likely to fail during the structural break of 2007. Suppose one
had found the best model to use at the end of 2006. A financial institution
choosing to implement that model cannot easily change it in the future, and
similarly a SRM may not be changed. After the model choice has been made,
the crisis arrives along with a structural break in the stochastic process for
returns. In order to identify a better model, the back testing procedure would
need to have sufficiently large data sample after the crisis started. However,
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by that time the crisis might be over. For this reason, one cannot rely on
back testing to pick the best model.

The end result is that we are faced with a wide range of possible VaR forecasts
with no reliable method for identifying the best.

6 MES

The first SRM we study is MES as proposed by Acharya et al. (2010). It is
defined as the institution’s expected equity loss given that the system is in a
tail event. Its formal definition is given by (1), i.e.

MESi = E[Ri|RS ≤ QS]

where Ri is the institution’s risky outcome on which the VaR is calculated,
RS is the system outcome and Q is some extreme negative quantile.

Hence it is an expected shortfall (ES) estimate modified to use a threshold
from the overall system rather than the returns of the institution itself. It is
therefore dependent on the system VaR.

6.1 Estimation

In order to investigate the model risk of MES, we employ the same VaR
forecast methodologies used in Section 5 with a 500 day estimation window
size for 5% probability level. There are two reasons for using 5% in spite of
its rather none–extreme nature. First, MES was proposed by Acharya et al.
(2010) who use 5% probability, and second and since it is not possible to
estimate MSE at more extreme probabilities except in special cases.

As a first step, the VaR of the overall financial system is estimated. Then, we
obtain the days in which the system is in distress compared to its VaR level.
Finally, using the definition of MES, for those given days, we calculate the ES
of each institution. For 92 stocks in our sample, we end up six different MES
estimates for each methodology employed for the overall testing window.2

6.2 Results

Figure 3 illustrates the ratio of the highest and lowest MES estimates within
the six methods for the last day of each month in our sample period.

2Acharya et al. (2010) employ historical simulation.
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Figure 3: MES model risk. Ratio of maximum and minimum daily 5% MES.
End of quarter results
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Results shows that the ratio fluctuates significantly for different methodolo-
gies employed. It even increases sharply to over 5 for BK in 2008. During the
crises period the ratio is usually equal to about two. Note that these ratios
are closer to one than the VaR ratios in Figure 1. This is because estimation
is much more robust at the 5% probability level than at the 1% level.

6.3 MES peculiarities

The results above are based on a 5% probability level following Acharya
et al. (2010), which is an event that happens about once a month on average,
hardly an extreme event. In order to ascertain how MES performs in more
uncommon outcomes, we repeated the analysis for p = 1%, keeping the esti-
mation window size at 500. Those results demonstrate a particular weakness
of the MES approach.

In order to calculate the MES, we first need to identify the days in which
system VaR is violated based on different methods employed. Since we are
interested in in–sample violations, HS will always give p × EW number of
violations, where EW is the estimation window size. Any other method
could in principle result in the number of violations being any number from
0 to the full window size.

In our sample, for some days VaR is violated for only one of the days when we
use GARCH, tGARCH or EWMA. This does not cause problems for VaR or
ES. However when we calculate MES, the ratio of the highest to the lowest
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forecasts can be very high.

As a example, we present detailed analysis for January 10, 2006, a day chosen
at random. Given the VaR, HS identifies 5 days as VaR violation, whereas
according to GARCH, system VaR is violated only on a single day. Table 1
shows the ES and MES estimates for the system and BK respectively.

Table 1: MES and ES comparison for BK, January 15,
2004 to January 09, 2006 (EW = 500). Portfolio value
is $1000 and probability 1%

Method ES MESBK

HS −16.1 −18.02
MA −16.2 −15.25
tMA −16.12 −15.25
EWMA −15.6 −17.98
GARCH −16.8 −0.35
tGARCH −16.4 −12.12

Ratio of highest to lowest 1.08 52.23

As Table 1 shows, although the number days that VaR is violated is different
under two methods, the resulting ES figures are close because the ES calcu-
lation is based on the expected returns of the system given that the system
is in the tail. On the other hand, in order to estimate the MES for BK, we
need to calculate the expected returns of BK, not the system, for the days
in which our methods identify as the system is in distress. In that case the
return in a single day can be very close to 0, as in this case, making the ratio
very far from 1.

This suggest us that estimating MES for 1% or even 5% but with a small
sample does not make sense. Because depending on the method employed,
one can end up very misleading results.

6.4 Analysis

The MES results indicate that the estimates are strongly model dependent
with the model risk worse during the crises period. It would be even harder
to backtest MES than VaR since it depends on ES.
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7 CoVaR

The other SRM we study in detail is CoVaR as proposed by Adrian and
Brunnermeier (2010), in particular ∆CoVaR which is the marginal contri-
bution of a particular institution to the systemic risk. In what is perhaps
their key result, they find that even if the VaR of two institutions is similar,
their ∆CoVaR can be significantly different, implying that the policy maker
should consider this while forming policy regrding institutions’ risk.

CoVaRi is defined as the value at risk of the financial system given that the
institution i is under financial distress;

CoVaRi = pr[RS ≤ QS|Ri ≤ Qi] = p

where R is the institution’s risky outcome on which the VaR is calculated,
Q is some extreme negative quantile and p is the probability.

7.1 Estimation of CoVaR

Following Adrian and Brunnermeier (2010), R is defined as the growth rate
of marked-valued total assets. The time-varying CoVaR is estimated by
employing the following quantile regressions:

Rt,i = αi + γiMt−1 + εt,i

Rt,S = αS|i + βS|iRt,i + γS|iMt−1 + εt,S|i

where M denotes the set of state variables that captures the risk over time.
A list of the state variables used in above regressions can be found in the
Appendix.

By definition, VaR and CoVaR are obtained by the predicted values of the
quantile regressions:

VaRt,i = α̂i + γ̂iMt−1

CoVaRt,i = α̂S|i + β̂S|i VaRt,i +γ̂S|iMt−1.

7.2 ∆CoVaR

The marginal contribution of an institution, ∆CoVaR, is the difference be-
tween the CoVaR conditional on the institution is under distress and CoVaR
calculated in the median state of the same institution. i.e.,

∆CoVaRt,i = CoVaR
Ri=VaR

p

i

t −CoVaR
Ri=VaR

50%
i

t
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which implies that ∆CoVaR is equal to

∆CoVaRt,i(p) = β̂S|i [VaRt,i(p)− VaRt,i(50%)] . (2)

Given that the financial returns are (almost) symmetrically distributed, one
expects VaR calculated at 50% is equal to zero. Hence (2) suggests that
∆CoVaR is simply a linear function of VaR.

7.3 Results

We replicate a subset of the results for 12 stocks to focus on the relationship
between ∆CoVaR and VaR both in cross-sectional and time-series.3 The
sample financial system is composed of 12 stocks. However the results are
qualitatively similar when the system consists of 92 stocks instead of 12. Full
results are in the Webappendix.

7.3.1 Cross–sectional results

We found that there is considerable difference between VaR and ∆CoVaR
cross–sectionally, as can be seen in Figure 4, confirming the results of Figure
1 in Adrian and Brunnermeier (2010).

To get the idea of the noise embedded in this estimation, for each of the four
stocks we re-run quantile regressions for 1000 times by reshuffling the error
terms and estimate VaR, CoVaR and ∆CoVaR for each trial. Figure 5 shows
99% confidence intervals of the bootstrapped estimates. It suggests that a
conclusion of STT being systemically riskier than JPM requires a caution
since the confidence intervals overlaps in quite wide ranges.

7.3.2 Time–series results

When we consider the time–series relationship between VaR and ∆CoVaR, we
see that the two measures are almost indistinguishable. Their unconditional
correlation mostly exceeds 99%. Figure 6 shows the time–series relationship
between VaR and ∆CoVaR for the same four institutions, suggesting that
the scaled signal provided by ∆CoVaR is very similar to the signal provided
by VaR. This means that the results in Section 5 apply to ∆CoVaR as well.

3American Express (AXP), Bank of America (BAC), Bank of New York Mellon (BK),
Fifth Third Bancorp (FITB), JP Morgan Chase & Co. (JPM), Keycorp (Key), Pnc
Finl.Svs.Gp. (PNC), Regions Finl.New (RF), State Street (STT), Suntrust Banks (STI),
Us Bancorp (USB), Wells Fargo & Co (WFC).
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Figure 4: VaR and ∆CoVaR in Q4 2006
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7.4 Analysis

How useful is ∆CoVaR as a macroprudential tool? Our results suggest not
very. For example, suppose that a supervisor would like to generate a tax
scheme to discourage the risk taking behavior of systemically important
banks, where systemic contribution is calculated based on ∆CoVaR. But
then, our time–series analysis suggests that employing ∆CoVaR might not
bring any advantages to simply using VaR, since they are giving almost the
same signal.

On the other hand, one can argue that ∆CoVaR and VaR are different cross–
sectionally, so ∆CoVaR seems useful to generate a relative regulation scheme,
a tax scheme proportional to the relative systemic importance of the institu-
tions. However, this makes sense only if ∆CoVaR is robust. Cross–sectional
analysis suggests the reverse though. The bootstrapping exercise finds that
the confidence intervals underlying ∆CoVaR estimates are quite large, so it
is not possible to conclude which institution is systemically riskier than the
other. It is worth to note here that this represents the best case scenario
since it is conditional on the model being correctly specified. In reality, the
confidence intervals would be even larger.
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Figure 5: 99% confidence intervals for the institutions in Figure 4
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8 Can we measure systemic risk?

Taken together, the results above provide a rather dismal view of the current
crop of SRMs. This leaves the question of how we should address the prob-
lem of systemic risk measurements and how we should interpret the results
suggested by those riskometers.

8.1 Relevance of data

The most obvious approach to measure systemic risk is the one taken by the
papers discussed above which is to adopt established methodologies in mar-
ket risk, in particular daily 99% or 95% VaR. There are however particular
reasons why such an approach is likely to fail.

First, we are facing the problem of lack of data. There is of course no
shortage of financial data, with almost an infinite number of observations on
key market variables. However, this leaves open the question of how relevant
such data is for measuring systemic risk. Such events are by definition very
uncommon, and it is hard to see how observed data relate to such uncommon
events, especially ex–ante. It is important not to confuse data availability
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Figure 6: Time Series VaR vs ∆CoVaR
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with data informativeness.

Over the past half a century, we have observed less than 10 episodes of ex-
treme market turmoil in global international markets, a few more if we con-
sider regional crisis. None of these events can really be considered systemic
in the commonly understood sense of the term. The challenge in building
an empirical systemic risk model is therefore capturing the risk of an event
that has almost never happened using market variables during times when
not much is going on. It requires a leap of faith to believe that price dynam-
ics during calm time have much to say about price dynamics during crisis,
especially when there is no real crisis to compare the forecast to.

Second, our empirical analysis suggests that the riskometers are subject to
high degree of model risk and it increases significantly in the days of fi-
nancial crises. The main reason for this is that such models embed strong
assumptions about the stochastic processes governing market prices, assump-
tions that are likely to fail when the economy transits from a calm period to
turmoil or even crisis. From the point of view of statistical modelling, the
stochastic processes governing market prices appears to be different in and
out of crisis. At the very least, this implies that a reliable method would
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need to consider the transition from one state of the world to another.

Figure 7: Daily JP Morgan returns before, during and after the last crisis,
along with daily volatility
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The challenges in applying market data can be seen by a graph of returns
on JPM, before, during and after the crisis as seen in Figure 7. There are
three distinct regimes, volatility and extreme outcomes before the crisis do
not seem to indicate the potential for future crisis event, and similarly, data
during the crisis would lead to the conclusion that risk is too high after the
crisis. In other words, we get it wrong in all states of the world, risk assess-
ments are too low before the crisis and too high after the crisis. Ultimately,
there is no way to get from the failure process in normal times to the failure
process in crisis times.

This also leaves the question of the relevant event probabilities. The systemic
riskometers discussed above are estimated with publicly available data, re-
porting non–extreme outcome probabilities. This however leaves open the
question of how reliable such estimation is for the intended purpose. For ex-
ample, focusing on 99% daily or weekly events would seem to be rather silly
if systemic risk events have a lot lower probabilities of occurrence. Further-
more, even if we learn from a previous crisis episode, it might seem rather
useless to claim that data predicting the last crisis will predict the next,
especially when the causes of crises are different.

One gets much more accurate risk forecasts in the center of the distribution
compared to the tails, and therefore 5% risk forecasts are more accurate than
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1% risk forecasts. This however does not mean the the dynamic behavior of
5% risk forecasts says much about the dynamic behavior of 1% risk forecasts,
especially when one compares non–crisis periods to crisis periods. The reason
is that in a crisis, the shape of the return distribution changes and different
quantiles are affected differently. For example, we may expect much bigger
relative changes in the more extreme quantiles. ultimately this means that
less extreme risk forecasts, such as at 5% are not informative about more
extreme risk, at 1% and beyond.

To sum up, the main reason why currently available risk models fail when
confronted with extreme events is because they assume that currently ob-
served market prices provide a good guidance as to future risk. While this
is true for common events, it is not true for systemic crisis. The reason was
suggested by the former head of the Basel committee, Crockett (2000):

“The received wisdom is that risk increases in recessions and falls
in booms. In contrast, it may be more helpful to think of risk
as increasing you upswings, as financial imbalances build up, and
materialising in recessions.”

8.2 Quality control for SRMs

Statistical models used by the supervisors for policy purposes ought to be
subject to stringent quality controls. After all, if the policymakers want to
use such models to supervise or impose costs on the economy, they must be
able to demonstrate robustness of the underlying statistical procedures. This
suggests a set of criteria for the evaluation of SRMs:

1. Point forecasts are not sufficient, confidence intervals incorporating
both the uncertainty from a particular model as well as model risk
should be provided along with any point forecast. Methods need to be
analyzed for robustness, including both uncertainty in the model and
also model risk;

2. Data should be predictive and not reactive. A large number of time se-
ries coincide in signaling market turmoil. However, most of these show
market turmoil only after it has occurred. It is therefore important
that a systemic riskometer be properly predictive;

3. Statistical method needs to include backtesting. Simply proposing a
riskometer without demonstrating how it has performed over historical
periods of market turmoil is not sufficient;
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4. Event probabilities need to correspond with the probability of actual
market turmoil. If such events happen once every 10 years, 99% prob-
abilities of the events, which happen 2.5 times a year are of little rele-
vance.

8.3 Is a bad SRM better than none?

When the pros and cons of SRMs are discussed, few would argue that they
are without flaws, but a common view is that a bad SRM is better than none.
This leaves open two key questions.

How bad are the SRMs? Our results above suggest they are quite bad,
perhaps indistinguishable from random noise or at best weakly better in
prediction. One must be careful of not falling into the fallacy of requiring a
number for decision–making regardless of the number quality. If the methods
are as bad as we find them to be, the immediate conclusion should be to go
back to the drawing board and not to use them for policy purposes.

Secondly, is a bad SRM better than none? The idea behind SRMs is that
they be used for policy purposes, perhaps determine capital for systemat-
ically important institutions, or in the design of financial regulations. In
such applications there is a high cost of using an incorrect method and be-
cause methodological approaches tend to become a part of the regulatory
approaches, once they are a part of the regulatory structure are likely to re-
main there. Witness how resilient the 1% VaR is, virtually unchanged from
its initial proposal in 1996. If they are proven to be wrong, the economic
consequences can be disastrous. For this reason, a bad SRM should not be
acceptable for policy purposes, it actually should be of a proven quality.

8.4 Proposals

While much of the current crop of SRMs does not seem to be fit for purpose,
it does not necessarily imply that the task of designing a reliable SRM is
impossible.

Such a method needs to take into account the insight provided by Andrew
Crockett above and go beyond focusing on real–time indicators. After all,
we learned in 2007 that all indicators trigger at the same time. Instead, such
a method could take a leaf from theories of endogenous risk and explicitly
model the slow buildup of hidden risk. Several such approaches have recently
been emerging, either from general equilibrium approaches or agent based
modeling.
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Creating such theoretically based model would be quite challenging, but
alternative empirical approaches, perhaps based on Markov switching type
methodologies, might provide a partial answer where the switching could be
based on the buildup hidden risk before a crisis.

9 Conclusion

This paper has focused on the problem of systemic risk measurements (SRMs)
and studied in detail the two main approaches to SRM analysis, CoVaR and
MES. Since both of those methods, as well as some others proposed in the
literature, such as Shapley values, are fundamentally based on daily VaR,
analysis of the quality of VaR risk forecasts provides a baseline for the quality
of forecasts from the SRMs.

The results are essentially negative. The models are subject to a high degree
of model risk and parameter uncertainty, suggesting that any systemic risk
forecast out of these models is unreliable.

23



Appendix 1: State Variables

This appendix lists the state variables used in the time–varying CoVaR anal-
ysis. State variables have been selected in order to capture the time–varying
risk factors.

1. Chicago Board Options Exchange Market Volatility Index (VIX): Cap-
tures the implied volatility in the stock market. Index is available on
the Chicago Board Options Exchange’s website since 1990.

2. Short–term liquidity spread: Calculated as the difference between 3M-
US repo rate and 3M Treasury bill rate. 3M-US repo rate is available
in Bloomberg since 1991 whereas bill rate is from the Federal Reserve
Board’s H.15 release.

3. The change in the 3M Treasury bill rate.

4. Credit spread change: Difference between BAA-rated corporate bonds
from Moody’s and 10Y treasury rate, again from H.15 release.

5. The change in the slope of the yield curve: The change in difference of
the yield spread between the 10Y Treasury rate and the 3M bill rate.

6. S&P500 index.

7. Dow Jones real estate sector stocks return.
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