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Instructions to candidates

This open-book exam has 3 questions. Some parts are harder than others. Substantial
credit will be given for partial answers and ideas which you cannot justify, provided
that you clearly distinguish between statements which you believe but do not see how
to prove, statements which you believe you have proved, and statements you think
are obvious enough not to need a proof.

You may wish to use Internet searches in addition to the lecture notes. This is
allowed. You are also allowed to use any theorems you find, provided they are properly
referenced.



1 Let G0 be the four-vertex cycle. For each i ≥ 1 we define a graph Gi as follows. Suppose the

vertices of Gi−1 are {u1, . . . , uk}; we take a copy of Gi−1, and add to it vertices v1, . . . , vk, w.

We add edges uivj for pairs (i, j) such that uiuj ∈ E(Gi−1), and edges viw for each

1 ≤ i ≤ k.

What is the chromatic number of Gi?

2 Given a graph G with vertex set {1, . . . , n}, the adjacency matrix A of G is the n × n

matrix such that Aij = 1 if and only if ij ∈ E(G).

(a) Prove that all eigenvalues of A(G) are real.

For k ≥ 0, a walk in G of length k is a sequence (u1, . . . , uk+1) of not necessarily distinct

vertices of G such that uiui+1 ∈ E(G) for each 1 ≤ i ≤ k.

(b) Show that the number of walks of length k in G whose first vertex is i and last vertex

is j is (Ak)ij.

The distance between two vertices i and j of G is the minimum length of a walk in G

whose first vertex is i and last is j. If there is no such walk, we say the distance is∞. The

diameter of G is the maximum, over pairs (i, j) of vertices of G, of the distance from i to

j.

(c) Find an algorithm which, for input G, finds the diameter of G. You should determine

the worst-case running time of your algorithm in the form O(nx) where x is a constant.

Points will be awarded as follows: one point for finding such an algorithm, plus
⌈

1
x−2

⌉
points.

3 (a) Given any η > 0, show that there is C > 0 such that the following holds for any

p ≥ Cn−1. With probability tending to 1 as n → ∞, G(n, p) does not contain any

disjoint vertex sets X, Y with |X|, |Y | ≥ ηn such that e(X, Y ) ≥ 2p|X||Y |.
Given a graph G and 0 < p ≤ 1, let A and B be disjoint vertex sets in G. We define

dp(A,B) := e(A,B)
p|A||B| . We say (A,B) is (ε, p)-regular if the following holds. For any A′ ⊂ A

and B′ ⊂ B, such that |A′| ≥ ε|A| and |B′| ≥ ε|B|, we have dp(A
′, B′) = dp(A,B)± ε.

(b) Given any ε > 0, show that there are C > 0 and K ∈ N such that for any p ≥ Cn−1,

with probability tending to 1 as n → ∞, the random graph Γ = G(n, p) has the

following property. If G is any n-vertex subgraph of Γ, then there is a partition of V (G)

into parts V0, V1, . . . , Vt where ε−1 ≤ t ≤ K, such that |V0| ≤ εn and |V1| = · · · = |Vt|,
and in addition for all but at most εt2 pairs (Vi, Vj) the pair (Vi, Vj) is (ε, p)-regular.

(c) Is it true, for p = n−0.9 and ε = 10−1000, that with probability tending to 1 as n→∞,

the random graph Γ = G(n, p) has the following property. Suppose V1, V2, V3 are three

disjoint vertex sets in Γ each of size bn
3
c. Suppose G is any subgraph of Γ such that

(Vi, Vj) is (ε, p)-regular and dp(Vi, Vj) ≥ 1
2
. Then G contains at least 1

1000
p3n3 copies of

K3.

(d) Is the statement of (c) true if p = n−0.1?


