
London Taught Course Centre

2020 examination

Graph Theory

Answers

1 This question is closely related to the Mycielski construction; with sufficient Googling it

can likely be found.

The chromatic number of Gn is n+ 2 for each n. To prove the upper bound (inductively)

observe G0 has a 2-colouring. Now given n ≥ 1 and an (n + 1)-colouring of Gn−1, we

extend this to a colouring of Gn as follows. We colour each vi with the same colour that

ui ∈ Gn−1 has. Then we assign colour n+ 2 to w. Another way to do this is to colour each

vi with colour n+ 2 and then colour w with colour 1.

Now we prove the lower bound inductively. It is obvious that we need 2 colours to colour

G0. Now suppose n ≥ 1 and we have a proper (n + 1)-colouring c of Gn. Consider the

copy of Gn−1 in Gn. For each colour 1 ≤ i ≤ n + 1, there must exist a vertex in Gn−1

which is assigned colour i by c, otherwise we have a colouring of Gn−1 with less than n+ 1

colours. Furthermore, for each 1 ≤ i ≤ n− 1 there must exist a vertex uti of Gn−1 whose

colour is i and whose neighbours contain all colours other than i. Otherwise, we could one

by one recolour every vertex of colour i to a colour not in its neighbourhood; since the

vertices of colour i form an independent set, this recolouring does not affect the colours in

the neighbourhood of any colour i vertices. That would give us a proper colouring of Gn−1

with less than n+ 1 colours, a contradiction.

Now the vertex vti must have colour i, since its neighbourhood amongst the uj is the same

as that of uti and so contains all colours [n+ 1] \ {i}. Finally w is adjacent to each vertex

vti for 1 ≤ i ≤ n+ 1, so w cannot have any colour in [n+ 1], a contradiction.

A standard mistake here is to try to argue the lower bound in reverse: if we have a colouring

of Gn with n + 1 colours, then there has to be a colour on w, so there are n colours left

for the vi vertices, and we can copy the colouring of the vi vertices to the ui vertices for a

colouring of Gn−1 with only n colours. Sounds reasonable, but the last step is false: you

can’t do that so simply, as the proper colouring example where all the vi vertices have the

same colour shows. The problem is that when you recolour one ui you change what colours

are available at its neighbours; if you try to recolour a neighbour as well, then you are

in trouble. To make this work, you need to find some way to do the recolouring without

recolouring some ui and uj which are adjacent; one way to do it is to specify that you will

only recolour vertices ui which have the same colour as w.

2 (a) A is a real symmetric matrix since ij ∈ E(G) if and only if ji ∈ E(G). All real

symmetric matrices have only real eigenvalues. Most people obviously knew this is a

standard fact of linear algebra, but still gave a proof — don’t bother, next time. This

is the kind of thing you should simply quote.

(b) This is an easy induction on k which everyone did well.

(c) It’s fairly easy to do O(n3) time; for example run breadth first search from each vertex

(worst case n2 time) and take the maximum result. That is worth 2 points.

There is a way to improve, which the question slightly points you in the direction of:

try to view this as a matrix multiplication problem, using (b). The problem is the

same as finding the smallest k such that for any i, j there is a walk of length at most

k from i to j. This is (again trivially) the same thing as finding the smallest k such

that (A+ I)k has no zero entries. If (A+ I)n−1 has zero entries, then the graph is not

connected, so the diameter is ∞. You can easily check connectivity in O(n2) time, so

from now on let’s assume G is connected hence has diameter at most n− 1.

There are now two tricks you need to find. One is ‘standard’ and often taught: if you

are trying to guess a number between 1 and n and you can always find out if your

guess is too large, too small or just right, then the way to do this efficiently is binary

search. That is, guess n/2, and either you’re right, or you have only half the range

to search: you will get to the right answer in about log n steps (which is the best you

can hope for; obviously it is much better than a linear search where you might need

to guess every single number before finding the answer at the end).

The other is a standard trap, which everyone fell into (everyone always does, the first

time) — if you’re going to do any computational work, remember it! It’s easy to

find statements like ‘you can multiply n × n matrices in time O(n2.373...)’ (a theorem

of Le Gall) on the internet, but this statement is missing details, and it’s important

here. What is true is that this time bound holds for matrices with bounded integer

entries, or (with a polylog factor, but that is almost irrelevant in the time complexity)

with integer entries which grow at most polynomially in n. But the statement is not

true without some such bound — and that’s actually pretty obvious: if you want to

calculate with an n×n integer matrix where lots of entries are as big as say 2n, then you

need something like n3 time just to write the matrix down; in fact Le Gall’s algorithm

will not even do this well.

And in this problem, that matters. Suppose the graph you’re working with contains a

clique with n/2 vertices, plus some other things so that the diameter is still linear (say

a path of n/2 vertices). There are (n/2)! paths of length n/2 in this clique, and even

more walks which start at any given vertex. That means by the time you compute

(A + I)n/2, you’re dealing with a matrix in which n2/4 entries are all at least (n/2)!;

even writing this matrix down takes more than cubic time!

The trick to notice here is that we do not need to keep track of how many walks there

are between a given pair of vertices. It’s enough to be able to distinguish between

0 and ≥ 1. So after we do each matrix multiplication, we can afford to reduce our

matrices back to {0, 1}-matrices, by replacing integers bigger than 1 with 1. That

keeps the numbers from blowing up.

Let’s now sketch the algorithm that works. Let Mk be the matrix we get from (A+I)k

by replacing all integers bigger than 1 with 1. What we want is to find the smallest k

such that Mk has no zero entries. Let t := dlog ne.
We first compute M2s for s = 0, . . . , t − 1 by repeated squaring; we store all these

matrices. That is, we have M1 = A+ I, and given M2s we can get M2s+1 by squaring

Ms then reducing the result to an {0, 1}-matrix.

Now we do binary search. We start with the ‘possible interval’ J0 being 1 up to 2t,

and the ‘start matrix’ S0 being the identity. We check whether the matrix S0 ×M2t−1

(which is one of our stored matrices) contains a zero entry or not, and accordingly

we change our ‘possible interval’ to J1 being either 1 to 2t−1 or 2t−1 + 1 to 2t, and

start matrix S1 to respectively S0 or S0 ×M2t−1 reduced to a {0, 1}-matrix. Then we

continue like this. In step k, we are given Jk−1 and Sk−1; we check if Sk−1×M2t−k has

zeroes or not, and update Jk and Sk correspondingly.

Note that we are careful that any time we do a matrix multiplication, what we multiply

are {0, 1}-matrices. We end up doing O(log n) matrix multiplications, plus the same

number of checks whether the matrix has zero entries (which take O(n2) time).

So the time complexity is O
(
nx(log n)

)
where nx is the time required to multiply two

n × n {0, 1}-matrices, since it is known (and obvious!) that this x is at least 2. The

current best we know for x is roughly 2.373..., a theorem of Le Gall; that works out

to 4 points for the question. As far as I know, this is the current best we know for

the diameter problem. However, it’s often conjectured (though not by everyone!) that

matrix multiplication can be done in time O(n2+ε) for every ε > 0. So maybe the

question is worth infinitely many points..!

3 (a) This is a straightforward application of Chernoff’s inequality and the union bound.

The probability that a given (X, Y) violates the desired condition is at most exp
(
−

1
3
p|X||Y |

)
≤ exp

(
−Cη2n/3

)
, while there are at most 22n choices for (X, Y). Choosing

C ≥ 12η−2, by the union bound there are no such pairs.

Note that this probability bound is fairly sharp — if p = o(n−1) then the statement

becomes false (and that is not too hard to prove).

(b) This is the Sparse Regularity Lemma, due independently to Kohayakawa and Rödl.

It can be proved by a (actually rather easy) modification of arguments in notes; it’s

also easy to Google. Briefly, the modification one should make to the notes proof is (i)

define a p-energy of a partition in terms of the p-density defined in the question, and

(ii) check (this requires a little work to do properly!) that we only need to care about

partitions in which all parts have size at least ηn, where η > 0 is a (very very small!)

constant depending on ε but not n, so that for such partitions by 3(a) the p-energy

cannot exceed 4.

(c) This is false, and the argument was shown in a different context in lectures. The

expected number of triangles in G(n, p) is at most p3n3 = n0.3, so with high probability

Γ has at most n0.4 triangles (Markov’s inequality). We can simply remove one edge of

each triangle from Γ to obtain a triangle-free graph G. By a small variant of (a), with

high probability Γ is (ε
2
, p)-regular with dp(Vi, Vj) = 1± ε

2
on the given partition, and

(by simple counting) removing n0.4 edges to form G at worst changes the ε
2

to ε. So

this gives us a graph G which satisfies the conditions of the question, but doesn’t have

any triangles at all, let alone 1
1000

p3n3 of them.

(d) This is true, but (moderately) hard to prove. A student who tries to Google this

should find a reference easily enough though. This particular statement is (more or

less!) a theorem of Kohayakawa, Luczak and Rödl, though reproved several times in

more generality since then.

For both the last two parts, a standard mistake is to try to mimic the proof of the Counting

Lemma from lectures. This does not work (and for (c) it can’t as it would prove a false

statement!); the place where it goes wrong is that in the proof of the Counting Lemma,

we pick a typical v in V1 and look at its neighbours in V2 and V3. These are two large sets

(on the order of n vertices, by choice of ε much bigger than εn) and so ε-regularity tells

us how many edges go between the sets, i.e. how many triangles there are at v. If we try

to do this in this sparse setting, then we will be able to show that a typical vertex in V1
has neighbourhoods of the ‘right’ size in V2 and V3, but the ‘right size’ is on the order of

pn, which is much smaller than εn: (ε, p)-regularity doesn’t tell us anything about edges

between such small sets.

As usual with this course, this exam was supposed to highlight a few important features

and standard traps (i.e. you should hopefully learn from it), and to make you suffer (at

least a bit) if you tried to do it without using the internet. The reason for the last is that

if you try to do research without first finding out what other people have done, you can

waste a lot of time trying to prove false statements, or repeating others’ work. Find out

what is out there before trying to solve a problem. You might not want to look at someone

else’s solution right away — you can learn a lot by trying to find your own — but it’s a

good idea to know whether the problem you are looking at is solved or not.

