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Question 1
LetG1, G2, G3 be three simple graphs on the same vertex set. We denote by a parallel edge-colouring
of G1, G2, G3 a colouring of the edges E(G1) ∪ E(G2) ∪ E(G3) that gives a proper edge-colouring
of each of E(G1), E(G2), E(G3), i.e., in none of the graphs are there two edges of the same colour
that are adjacent. (A parallel edge-colouring of G1, G2, G3 does not necessarily need to be a proper
edge-colouring of the graph with edge set E(G1) ∪ E(G2) ∪ E(G3).)
We let χ′(3,∆) be the minimum number of colours needed in a parallel edge-colouring of any choice
of three graphs G1, G2, G3, each of which has maximum degree at most ∆. Improve on the trivial
upper and lower bounds ∆ + 1 ≤ χ′(3,∆) ≤ 3∆ + 1.

Solution : This type of colouring is known as simultaneous colouring and the bounds

3b∆
2 c ≤ χ′(3,∆) ≤ 3b∆

2 c+ ∆ + 2 .

can be obtained along the lines of the arguments by Bosquet and Durain in arXiv:2001.01463.
We first give a construction that proves χ′(3,∆) ≥ 3b∆

2 c. Consider three sets of vertices A1, A2, A3

of size b∆
2 c and one additional vertex v. LetGi,j for i 6= j be the graph with vertex setAi ∪Aj ∪ {v}

and edges vu for u ∈ Ai ∪ Aj . Each Gi,j has maximum degree ∆ and any pair of edges of G =
G1,2 ∪ G1,3 ∪ G2,3 appears in one of the graphs. Therefore, a parallel edge-colouring of G needs to
be a proper edge-colouring and uses at least |A1|+ |A2|+ |A3| ≥ 3b∆

2 c colours.
Next we will prove thatχ′(3,∆) ≤ 3b∆

2 c+∆+2. LetG1, G2, G3 be three graphs of maximum degree
∆ on the same vertex set and consider their unionG = G1∪G2∪G3. Then letH2 be the edges ofG
that appear in at least two graphs from G1, G2, G3 and letH1 be the edges of G that appear in only
one graph from G1, G2, G3. As each edge of H2 appears in at least two graphs we get that H2 has
maximum degree at most 3b∆

2 c. Therefore, using Vizings’s Theorem from the lecture, we can colour
H2 with 3b∆

2 c+ 1 colours. Similarly, ∆ + 1 colours are sufficient for a parallel colouring of the edges
ofG1, G2, G3 inH1. For this it suffices to apply Vizing’s Theorem to each partGi∩H1 independently
and use that is has maximum degree ∆. Together this gives a parallel colouring of G1, G2, G3 with
3b∆

2 c+ ∆ + 2 colours.

Question 2
With t ≥ 2 we let Zt(n) be the maximum number of edges in a simple graph on n vertices that does
not contain a copy ofHt, whereHt is obtained from the complete bipartite graphKt,t by removing a
perfect matching. Prove that there are constants c and C independent of n such that

cn2−2(t−1)/(t2−t−1) ≤ Zt(n) ≤ Cn2−1/t .

Hint: Try a probabilistic construction for the lower bound. For the upper bound, try considering a super-
graph ofHt and counting copies ofK1,t.

Can you improve the exponent in either of the bounds for some values of t?
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Solution : This is a question about the extremal number of bipartite graphs, forwhich the asymptotic
behaviour is not known in general. We start with a probabilistic construction for the lower bound. In
the binomial random graph G(n, p) the expected number of edges is at least pn2/4. The expected
number of copies ofHt is atmost (2t)!n2tpt(t−1). The goal is to pick p such that this is atmost pn2/8,
because then we can delete one edge from each copy ofHt and still keep the other pn2/8 edges. We
choose p = 1

(8·2t)!n
−(2t−2)/(t(t−1)−1). With this choice of p the number of edges minus the number

of copies ofHt is in expectation at least pn2/8. Therefore, there exists a graphG, where by removing
one edge from each copy ofHt, we get aHt-free graph with pn2/8 ≥ cn2−2(t−1)/(t2−t−1) edges for
some appropriately chosen c. This implies Zt(n) ≥ cn2−2(t−1)/(t2−t−1).
For the upper bound we only assume that we have a graph G on n vertices that does not contain a
copy ofKt,t, because this contains Ht. We can additionally assume that all vertex degrees in G are
at least t (because vertices of smaller degree can not be contained in a copy of Kt,t and removing
them deletes less than t edges). Then we let T be the number of copies of K1,t in G and obtain
T =

∑
v∈V (G)

(deg(v)
t

)
. As there is no copy ofKt,t inG no t vertices can be the set of leaves ofK1,t

in t different copies ofK1,t. Therefore, we also have T ≤
(n
t

)
(t− 1). We can then estimate

(t−1)

(
n

t

)
≥

∑
v∈V (G)

(
deg(v)

t

)
≥ n

(∑
v∈V (G) deg(v)/n

t

)
= n

(
2e(G)/n

t

)
≥ n

(2e(G)/n− t)t

t!
,

where we use Jensen’s inequality in the second estimate and that the vertex degrees are at least t.
From this we obtain

e(G) ≤ n

2

(
(t− 1)

(n
t

)
nt!

)1/t

+
2n

t
≤ Cn2−1/t ,

for some appropriately chosen C. This implies that Zt(n) ≤ Cn2−1/t.
There are no better bounds known, expect for some small values of t. First note that H2 consists
of 2 independent edges and, therefore, Z2(n) = n − 1 follows from the star K1,n−1. Next, we have
thatH3 is C6 and, therefore, Z3(n) = Θ(n4/3) is known. Finally,H4 is the cube on 8 vertices, where
the best known lower bound Z4(n) ≥ cn3/2 comes from C4 and the best known upper bound is
Z4(n) ≤ Cn8/5.

Question 3
In the exercises we proved that 2-SAT is in P. Use this to show that the following problem PRE-3-COL
is in P. The input for PRE-3-COL is a graphG with some vertices which are pre-coloured with a colour
from {1, 2, 3}, such that any vertex of G is either pre-coloured, or has a pre-coloured neighbour. The
question to be answered in PRE-3-COL then is if the given pre-colouring can be extended to a proper
(vertex) 3-colouring ofG.

Solution : For this question one should recall the reduction from GRAPH-3-COL to SAT that we dis-
cussed in a lecture: This reduction proceeds by introducing for each vertex x three boolean variables
x1, x2, x3 where we interpret xc being true as “vertex x has colour c”. Our SAT-formula then is a con-
junction of the following clauses: For each vertex x we have the clause x1 ∨ x2 ∨ x3 (meaning that x
gets assigned a colour) and the clauses ¬xc ∨ ¬xc′ for any pair c 6= c′ of colours (meaning that x
does not get more than one colour). Moreover, for each edge xy and every colour c we have a clause
¬xc ∨ ¬yc (meaning that x and y do not get the same colours).
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Nowweobserve that among our clauses the only ones that containmore than 2 literals are the clauses
that list the colours that are possible for a vertex: x1 ∨ x2 ∨ x3. Now, in our scenario each vertex x is
either already pre-coloured with some colour c in which case we can replace the clause x1 ∨ x2 ∨ x3

with the clausexc; or it has a neighbour that is pre-colouredwith some colour c, in which casex cannot
be coloured with c and hence we can replace the clause x1∨x2∨x3 by the clause xc′ ∨xc′′ such that
{c, c′, c′′} = {1, 2, 3}. After performing all these replacements (which we can easily do in polynomial
time) we end up with a 2-SAT formula that is satisfyable if and only if the given pre-colouring of the
given graph can be extended to a proper 3-colouring. Checking if this 2-SAT formula is satisfyable,
which we can do in polynomial time, thus solves the given problem.

Question 4
Let us call the graph on vertex set {1, 2, 3, 4} with edges {1, 2}, {2, 3}, {1, 3}, {3, 4} the lollipop
graph. Prove a counting lemma for the lollipop graph, that is, show: If G is a is a graph with V (G) =
V1 ∪ V2 ∪ V3 ∪ V4 (where the Vi are pairwise disjoint), |Vi| = n for each i ∈ {1, 2, 3, 4}, and in which
(V1, V2), (V2, V3), (V1, V3), (V3, V4) are ε-regular pairs, of densities d12, d23, d13, d34, respectively, and
G has no other edges, thenG contains(

d12d23d13d34 + 2d2
12d23d13 + 2d12d

2
23d13 + 2d12d23d

2
13 ± 1000ε

)
n4

copies of the lollipop graph.

Solution : We first observe that we can assume ε ≤ 1/100, because otherwise the statement is
trivially true. (This is helpful with some calculations below.)
Proving this is somewhat technical, and there are different ways of doing it. One way is to use the
counting lemma for triangles as a black box, which we do here. One important observation here
is that (up to isomorphism) there are 7 different ways of mapping the lollipop graph vertices to the
clusters V1, V2, V3, V4 so that edges are mapped to regular pairs: The vertex 3 could be mapped to
V1, to V2, or to V3; the two other triangle-vertices 1 and 2 then have to be mapped to the other two of
these three clusters (and, up to isomorphism, it does not matter which way around wemap them); the
vertex 4 then can be mapped as follows: If 3 is mapped to V1, then 4 can be mapped to V2 or V3; If 3
is mapped to V2, then 4 can be mapped to V1 or V3; If 3 is mapped to V3, then 4 can be mapped to V1,
V2 or V4.
Among these 7 mappings there is one mapping where we get (d12d23d13d34± 20ε)n4 lollipop-copies
obeying this mapping, two mappings where we get (d2

12d23d13±20ε)n4, two mappings where we get
(d12d

2
23d13 ± 20ε)n4, and two mappings where we get (d12d23d

2
13 ± 20ε)n4. We only show this here

for the first of these cases: the mapping φ that maps vertex i to Vi; for the others the calculations are
similar. This implies that in total we get

(d12d23d13d34 + 2d2
12d23d13 + 2d12d

2
23d13 + 2d12d23d

2
13 ± 140ε)n4

lollipop-copies. So here the error term±140ε seems to be enough; the question iswrittenwith±1000ε
instead, to give somewriggle-room for the calculations, and because in applications it is not important
what the precise constant here is.
Now let us consider the mapping φ. As indicated before, we want to apply the counting lemma for
triangles: This could be used to count the triangles in (V1, V2, V3) – but then it would be more difficult
to argue which of these triangles can be extended to how many copies of the lollipop graph; to avoid
this, it helps to first perform some cleaning. To this end, let V ∗3 ⊆ V3 be the set of those vertices in V3

that contain (d34 ± ε)n neighbours in V4. By the definition of regularity, we have |V3 \ V ∗3 | ≤ 2εn.
Now consider the pair (V1, V

∗
3 ): We want to show that it is ε∗-regular for some constant ε∗ (so that
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we can later still apply the counting lemma using this subset). Indeed, since (V1, V3) is ε-regular we
know for subsets V ′1 ⊆ V1 and V ′3 ⊆ V ∗3 of size at least εn ≥ 2ε|V ∗3 | that d(V ′1 , V

′
3) = d13 ± ε, and

hence |d(V ′1 , V
′

3)−d(V1, V
∗

3 )| ≤ 2ε. It follows that (V1, V
∗

3 ) is ε∗-regular with ε∗ = 2ε and has density
d∗13 = d13 ± ε. Similarly, (V2, V

∗
3 ) is ε∗-regular with ε∗ = 2ε and has density d∗13 = d13 ± ε.

Now we can apply the triangle counting lemma to (V1, V2, V
∗

3 ), concluding that that we find
(d12d

∗
13d
∗
23±10ε)n2(n±2εn) triangles there. By the definition ofV ∗3 , each of these triangles extends to

(d34±ε)n lollipop copies mapping vertex 4 to V4. So we get (d34±ε)n(d12d
∗
13d
∗
23±10ε)n2(n±2εn)

lollipop copies obeying φ in (V1, V2, V
∗

3 , V4). In (V1, V2, V3, V4) we certainly cannot have less such
copies, but we could have up to 2εn4 more. We conclude that the number of φ-obeying lollipop copies
in (V1, V2, V3, V4) is

(d34 ± ε)n(d12d
∗
13d
∗
23 ± 10ε)n2(n± 2εn)± 2εn4

=(d34 ± ε)
(
d12(d13 ± ε)(d23 ± ε)± 10ε

)
n3(n± 2εn)± 2εn4

=(d34 ± ε)
(
d12d13d23 ± 3ε± 10ε

)
n3(n± 2εn)± 2εn4

=
(
d34d12d13d23 ± 15ε

)
n3(n± 2εn)± 2εn4

=
(
d34d12d13d23 ± 18ε

)
n4 ± 2εn4

=
(
d34d12d13d23 ± 20ε

)
n4 .

END OF PAPER
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