London Taught Course Centre: Graph Theory Exam Solutions

2021

Question 1

Let G_{1}, G_{2}, G_{3} be three simple graphs on the same vertex set. We denote by a parallel edge-colouring of G_{1}, G_{2}, G_{3} a colouring of the edges $E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup E\left(G_{3}\right)$ that gives a proper edge-colouring of each of $E\left(G_{1}\right), E\left(G_{2}\right), E\left(G_{3}\right)$, i.e., in none of the graphs are there two edges of the same colour that are adjacent. (A parallel edge-colouring of G_{1}, G_{2}, G_{3} does not necessarily need to be a proper edge-colouring of the graph with edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup E\left(G_{3}\right)$.)
We let $\chi^{\prime}(3, \Delta)$ be the minimum number of colours needed in a parallel edge-colouring of any choice of three graphs G_{1}, G_{2}, G_{3}, each of which has maximum degree at most Δ. Improve on the trivial upper and lower bounds $\Delta+1 \leq \chi^{\prime}(3, \Delta) \leq 3 \Delta+1$.

Solution: This type of colouring is known as simultaneous colouring and the bounds

$$
3\left\lfloor\frac{\Delta}{2}\right\rfloor \leq \chi^{\prime}(3, \Delta) \leq 3\left\lfloor\frac{\Delta}{2}\right\rfloor+\Delta+2 .
$$

can be obtained along the lines of the arguments by Bosquet and Durain in arXiv:2001.01463.
We first give a construction that proves $\chi^{\prime}(3, \Delta) \geq 3\left\lfloor\frac{\Delta}{2}\right\rfloor$. Consider three sets of vertices A_{1}, A_{2}, A_{3} of size $\left\lfloor\frac{\Delta}{2}\right\rfloor$ and one additional vertex v. Let $G_{i, j}$ for $i \neq j$ be the graph with vertex set $A_{i} \cup A_{j} \cup\{v\}$ and edges $v u$ for $u \in A_{i} \cup A_{j}$. Each $G_{i, j}$ has maximum degree Δ and any pair of edges of $G=$ $G_{1,2} \cup G_{1,3} \cup G_{2,3}$ appears in one of the graphs. Therefore, a parallel edge-colouring of G needs to be a proper edge-colouring and uses at least $\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right| \geq 3\left\lfloor\frac{\Delta}{2}\right\rfloor$ colours.
Next we will prove that $\chi^{\prime}(3, \Delta) \leq 3\left\lfloor\frac{\Delta}{2}\right\rfloor+\Delta+2$. Let G_{1}, G_{2}, G_{3} be three graphs of maximum degree Δ on the same vertex set and consider their union $G=G_{1} \cup G_{2} \cup G_{3}$. Then let H_{2} be the edges of G that appear in at least two graphs from G_{1}, G_{2}, G_{3} and let H_{1} be the edges of G that appear in only one graph from G_{1}, G_{2}, G_{3}. As each edge of H_{2} appears in at least two graphs we get that H_{2} has maximum degree at most $3\left\lfloor\frac{\Delta}{2}\right\rfloor$. Therefore, using Vizings's Theorem from the lecture, we can colour H_{2} with $3\left\lfloor\frac{\Delta}{2}\right\rfloor+1$ colours. Similarly, $\Delta+1$ colours are sufficient for a parallel colouring of the edges of G_{1}, G_{2}, G_{3} in H_{1}. For this it suffices to apply Vizing's Theorem to each part $G_{i} \cap H_{1}$ independently and use that is has maximum degree Δ. Together this gives a parallel colouring of G_{1}, G_{2}, G_{3} with $3\left\lfloor\frac{\Delta}{2}\right\rfloor+\Delta+2$ colours.

Question 2

With $t \geq 2$ we let $Z_{t}(n)$ be the maximum number of edges in a simple graph on n vertices that does not contain a copy of H_{t}, where H_{t} is obtained from the complete bipartite graph $K_{t, t}$ by removing a perfect matching. Prove that there are constants c and C independent of n such that

$$
c n^{2-2(t-1) /\left(t^{2}-t-1\right)} \leq Z_{t}(n) \leq C n^{2-1 / t}
$$

Hint: Try a probabilistic construction for the lower bound. For the upper bound, try considering a supergraph of H_{t} and counting copies of $K_{1, t}$.

Can you improve the exponent in either of the bounds for some values of t ?

Solution: This is a question about the extremal number of bipartite graphs, for which the asymptotic behaviour is not known in general. We start with a probabilistic construction for the lower bound. In the binomial random graph $G(n, p)$ the expected number of edges is at least $p n^{2} / 4$. The expected number of copies of H_{t} is at most $(2 t)!n^{2 t} p^{t(t-1)}$. The goal is to pick p such that this is at most $p n^{2} / 8$, because then we can delete one edge from each copy of H_{t} and still keep the other $p n^{2} / 8$ edges. We choose $p=\frac{1}{(8.2 t)!} n^{-(2 t-2) /(t(t-1)-1)}$. With this choice of p the number of edges minus the number of copies of H_{t} is in expectation at least $p n^{2} / 8$. Therefore, there exists a graph G, where by removing one edge from each copy of H_{t}, we get a H_{t}-free graph with $p n^{2} / 8 \geq c n^{2-2(t-1) /\left(t^{2}-t-1\right)}$ edges for some appropriately chosen c. This implies $Z_{t}(n) \geq c n^{2-2(t-1) /\left(t^{2}-t-1\right)}$.
For the upper bound we only assume that we have a graph G on n vertices that does not contain a copy of $K_{t, t}$, because this contains H_{t}. We can additionally assume that all vertex degrees in G are at least t (because vertices of smaller degree can not be contained in a copy of $K_{t, t}$ and removing them deletes less than t edges). Then we let T be the number of copies of $K_{1, t}$ in G and obtain $T=\sum_{v \in V(G)}\binom{\operatorname{deg}(v)}{t}$. As there is no copy of $K_{t, t}$ in G no t vertices can be the set of leaves of $K_{1, t}$ in t different copies of $K_{1, t}$. Therefore, we also have $T \leq\binom{ n}{t}(t-1)$. We can then estimate

$$
(t-1)\binom{n}{t} \geq \sum_{v \in V(G)}\binom{\operatorname{deg}(v)}{t} \geq n\binom{\sum_{v \in V(G)} \operatorname{deg}(v) / n}{t}=n\binom{2 e(G) / n}{t} \geq n \frac{(2 e(G) / n-t)^{t}}{t!}
$$

where we use Jensen's inequality in the second estimate and that the vertex degrees are at least t. From this we obtain

$$
e(G) \leq \frac{n}{2}\left(\frac{(t-1)\binom{n}{t}}{n t!}\right)^{1 / t}+\frac{2 n}{t} \leq C n^{2-1 / t}
$$

for some appropriately chosen C. This implies that $Z_{t}(n) \leq C n^{2-1 / t}$.
There are no better bounds known, expect for some small values of t. First note that H_{2} consists of 2 independent edges and, therefore, $Z_{2}(n)=n-1$ follows from the star $K_{1, n-1}$. Next, we have that H_{3} is C_{6} and, therefore, $Z_{3}(n)=\Theta\left(n^{4 / 3}\right)$ is known. Finally, H_{4} is the cube on 8 vertices, where the best known lower bound $Z_{4}(n) \geq c n^{3 / 2}$ comes from C_{4} and the best known upper bound is $Z_{4}(n) \leq C n^{8 / 5}$.

Question 3

In the exercises we proved that 2-SAT is in P. Use this to show that the following problem PRE-3-COL is in P. The input for PRE-3-COL is a graph G with some vertices which are pre-coloured with a colour from $\{1,2,3\}$, such that any vertex of G is either pre-coloured, or has a pre-coloured neighbour. The question to be answered in PRE-3-COL then is if the given pre-colouring can be extended to a proper (vertex) 3 -colouring of G.

Solution: For this question one should recall the reduction from GRAPH-3-COL to SAT that we discussed in a lecture: This reduction proceeds by introducing for each vertex x three boolean variables x_{1}, x_{2}, x_{3} where we interpret x_{c} being true as "vertex x has colour c ". Our SAT-formula then is a conjunction of the following clauses: For each vertex x we have the clause $x_{1} \vee x_{2} \vee x_{3}$ (meaning that x gets assigned a colour) and the clauses $\neg x_{c} \vee \neg x_{c^{\prime}}$ for any pair $c \neq c^{\prime}$ of colours (meaning that x does not get more than one colour). Moreover, for each edge $x y$ and every colour c we have a clause $\neg x_{c} \vee \neg y_{c}$ (meaning that x and y do not get the same colours).

Now we observe that among our clauses the only ones that contain more than 2 literals are the clauses that list the colours that are possible for a vertex: $x_{1} \vee x_{2} \vee x_{3}$. Now, in our scenario each vertex x is either already pre-coloured with some colour c in which case we can replace the clause $x_{1} \vee x_{2} \vee x_{3}$ with the clause x_{c}; or it has a neighbour that is pre-coloured with some colour c, in which case x cannot be coloured with c and hence we can replace the clause $x_{1} \vee x_{2} \vee x_{3}$ by the clause $x_{c^{\prime}} \vee x_{c^{\prime \prime}}$ such that $\left\{c, c^{\prime}, c^{\prime \prime}\right\}=\{1,2,3\}$. After performing all these replacements (which we can easily do in polynomial time) we end up with a 2-SAT formula that is satisfyable if and only if the given pre-colouring of the given graph can be extended to a proper 3 -colouring. Checking if this 2 -SAT formula is satisfyable, which we can do in polynomial time, thus solves the given problem.

Question 4

Let us call the graph on vertex set $\{1,2,3,4\}$ with edges $\{1,2\},\{2,3\},\{1,3\},\{3,4\}$ the lollipop graph. Prove a counting lemma for the lollipop graph, that is, show: If G is a is a graph with $V(G)=$ $V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$ (where the V_{i} are pairwise disjoint), $\left|V_{i}\right|=n$ for each $i \in\{1,2,3,4\}$, and in which $\left(V_{1}, V_{2}\right),\left(V_{2}, V_{3}\right),\left(V_{1}, V_{3}\right),\left(V_{3}, V_{4}\right)$ are ε-regular pairs, of densities $d_{12}, d_{23}, d_{13}, d_{34}$, respectively, and G has no other edges, then G contains

$$
\left(d_{12} d_{23} d_{13} d_{34}+2 d_{12}^{2} d_{23} d_{13}+2 d_{12} d_{23}^{2} d_{13}+2 d_{12} d_{23} d_{13}^{2} \pm 1000 \varepsilon\right) n^{4}
$$

copies of the Iollipop graph.
Solution: We first observe that we can assume $\varepsilon \leq 1 / 100$, because otherwise the statement is trivially true. (This is helpful with some calculations below.)
Proving this is somewhat technical, and there are different ways of doing it. One way is to use the counting lemma for triangles as a black box, which we do here. One important observation here is that (up to isomorphism) there are 7 different ways of mapping the lollipop graph vertices to the clusters $V_{1}, V_{2}, V_{3}, V_{4}$ so that edges are mapped to regular pairs: The vertex 3 could be mapped to V_{1}, to V_{2}, or to V_{3}; the two other triangle-vertices 1 and 2 then have to be mapped to the other two of these three clusters (and, up to isomorphism, it does not matter which way around we map them); the vertex 4 then can be mapped as follows: If 3 is mapped to V_{1}, then 4 can be mapped to V_{2} or V_{3}; If 3 is mapped to V_{2}, then 4 can be mapped to V_{1} or V_{3}; If 3 is mapped to V_{3}, then 4 can be mapped to V_{1}, V_{2} or V_{4}.
Among these 7 mappings there is one mapping where we get $\left(d_{12} d_{23} d_{13} d_{34} \pm 20 \varepsilon\right) n^{4}$ Iollipop-copies obeying this mapping, two mappings where we get $\left(d_{12}^{2} d_{23} d_{13} \pm 20 \varepsilon\right) n^{4}$, two mappings where we get $\left(d_{12} d_{23}^{2} d_{13} \pm 20 \varepsilon\right) n^{4}$, and two mappings where we get $\left(d_{12} d_{23} d_{13}^{2} \pm 20 \varepsilon\right) n^{4}$. We only show this here for the first of these cases: the mapping ϕ that maps vertex i to V_{i}; for the others the calculations are similar. This implies that in total we get

$$
\left(d_{12} d_{23} d_{13} d_{34}+2 d_{12}^{2} d_{23} d_{13}+2 d_{12} d_{23}^{2} d_{13}+2 d_{12} d_{23} d_{13}^{2} \pm 140 \varepsilon\right) n^{4}
$$

Iollipop-copies. So here the error term $\pm 140 \varepsilon$ seems to be enough; the question is written with $\pm 1000 \varepsilon$ instead, to give some wriggle-room for the calculations, and because in applications it is not important what the precise constant here is.
Now let us consider the mapping ϕ. As indicated before, we want to apply the counting lemma for triangles: This could be used to count the triangles in $\left(V_{1}, V_{2}, V_{3}\right)$ - but then it would be more difficult to argue which of these triangles can be extended to how many copies of the lollipop graph; to avoid this, it helps to first perform some cleaning. To this end, let $V_{3}^{*} \subseteq V_{3}$ be the set of those vertices in V_{3} that contain $\left(d_{34} \pm \varepsilon\right) n$ neighbours in V_{4}. By the definition of regularity, we have $\left|V_{3} \backslash V_{3}^{*}\right| \leq 2 \varepsilon n$. Now consider the pair $\left(V_{1}, V_{3}^{*}\right)$: We want to show that it is ε^{*}-regular for some constant ε^{*} (so that
we can later still apply the counting lemma using this subset). Indeed, since $\left(V_{1}, V_{3}\right)$ is ε-regular we know for subsets $V_{1}^{\prime} \subseteq V_{1}$ and $V_{3}^{\prime} \subseteq V_{3}^{*}$ of size at least $\varepsilon n \geq 2 \varepsilon\left|V_{3}^{*}\right|$ that $d\left(V_{1}^{\prime}, V_{3}^{\prime}\right)=d_{13} \pm \varepsilon$, and hence $\left|d\left(V_{1}^{\prime}, V_{3}^{\prime}\right)-d\left(V_{1}, V_{3}^{*}\right)\right| \leq 2 \varepsilon$. It follows that $\left(V_{1}, V_{3}^{*}\right)$ is ε^{*}-regular with $\varepsilon^{*}=2 \varepsilon$ and has density $d_{13}^{*}=d_{13} \pm \varepsilon$. Similarly, $\left(V_{2}, V_{3}^{*}\right)$ is ε^{*}-regular with $\varepsilon^{*}=2 \varepsilon$ and has density $d_{13}^{*}=d_{13} \pm \varepsilon$.
Now we can apply the triangle counting lemma to (V_{1}, V_{2}, V_{3}^{*}), concluding that that we find ($\left.d_{12} d_{13}^{*} d_{23}^{*} \pm 10 \varepsilon\right) n^{2}(n \pm 2 \varepsilon n)$ triangles there. By the definition of V_{3}^{*}, each of these triangles extends to $\left(d_{34} \pm \varepsilon\right) n$ lollipop copies mapping vertex 4 to V_{4}. So we get $\left(d_{34} \pm \varepsilon\right) n\left(d_{12} d_{13}^{*} d_{23}^{*} \pm 10 \varepsilon\right) n^{2}(n \pm 2 \varepsilon n)$ lollipop copies obeying ϕ in $\left(V_{1}, V_{2}, V_{3}^{*}, V_{4}\right)$. In $\left(V_{1}, V_{2}, V_{3}, V_{4}\right)$ we certainly cannot have less such copies, but we could have up to $2 \varepsilon n^{4}$ more. We conclude that the number of ϕ-obeying lollipop copies in $\left(V_{1}, V_{2}, V_{3}, V_{4}\right)$ is

$$
\begin{aligned}
& \left(d_{34} \pm \varepsilon\right) n\left(d_{12} d_{13}^{*} d_{23}^{*} \pm 10 \varepsilon\right) n^{2}(n \pm 2 \varepsilon n) \pm 2 \varepsilon n^{4} \\
= & \left(d_{34} \pm \varepsilon\right)\left(d_{12}\left(d_{13} \pm \varepsilon\right)\left(d_{23} \pm \varepsilon\right) \pm 10 \varepsilon\right) n^{3}(n \pm 2 \varepsilon n) \pm 2 \varepsilon n^{4} \\
= & \left(d_{34} \pm \varepsilon\right)\left(d_{12} d_{13} d_{23} \pm 3 \varepsilon \pm 10 \varepsilon\right) n^{3}(n \pm 2 \varepsilon n) \pm 2 \varepsilon n^{4} \\
= & \left(d_{34} d_{12} d_{13} d_{23} \pm 15 \varepsilon\right) n^{3}(n \pm 2 \varepsilon n) \pm 2 \varepsilon n^{4} \\
= & \left(d_{34} d_{12} d_{13} d_{23} \pm 18 \varepsilon\right) n^{4} \pm 2 \varepsilon n^{4} \\
= & \left(d_{34} d_{12} d_{13} d_{23} \pm 20 \varepsilon\right) n^{4} .
\end{aligned}
$$

