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Question 1

(a) The (m× n)-grid is the graph with vertex set {(x, y) : 1 ≤ x ≤ m, 1 ≤ y ≤ n} and edge set{
(x1, y1)(x2, y2) : either |x1 − x2| = 1 or |y1 − y2| = 1 (but not both)

}
.

Determine the list chromatic number of the (m× n)-grid.

Solution : Form = n = 1 this clearly is 1 and form = 2 and n ≤ 2 (or vices versa) this can
easily be seen to be 2.
In general, the (m× n)-grid is obviously 2-degenerate, so the greedy colouring algorithm (with
the vertex order being a degeneracy order) works with lists of length 3. For lists of length 2, on
the other hand we cannot always find a proper colouring ifm ≥ 2 and n > 2: In this case the
(m × n)-grid contains the (2 × 3)-grid, which is not 2-list colourable as the following choice
of lists shows. We give the vertices (1, 2) and (2, 2) both the list {1, 2}, so in a valid colouring
one of these two vertices gets colour 1 and the other colour 2. We give the vertices (1, 1) and
(2, 3) both the list {1, 3}, and the two remaining vertices (2, 1) and (1, 3) both the list {2, 3}.
Now assume first that (2, 1) is coloured 1 and hence (2, 2) is coloured 2. Then for both vertices
(1, 1) and (2, 1) only colour 3 is possible, which is not permissible because these two vertices
are adjacent. Similarly, if (2, 1) is coloured 2 and hence (2, 2) is coloured 1, then for both vertices
(3, 1) and (3, 2) only colour 3 is possible, which again is not permissible. We conclude that the
list chromatic number of the (m× n)-grid in the general case is 3.

(b) A double torus is a surface that is homeomorphic to the sphere with 2 handles, that is, a double
torus is an orientable surface with genus 2. A tcdt-graph (two-cell double-toroidal graph) is a
(simple) graph which has a 2-cell embedding on a double torus.
State and prove an upper bound on the chromatic number of tcdt-graphs.

Solution : For planar graphs we derived a bound by determining the degeneracy and using
greedy colouring. So lets try to do this here too. We first want a bound on the degeneracy of a
tcdt-graph G. We take the Euler-Poicaré formula as given: In our case the Euler characteristic
is 2 − 2 · 2 = −2, and hence we have v − e + f = −2, if we have a 2-cell embedding (as
assumed) of G with v vertices, e edges, and f faces. It is still true that in an embedding, each
edge is either contained in the walks around two faces or twice on the walk around one face,
and the walk around each face has length at least 3, and thus 3f ≤ 2e. Plugging this in, we
obtain −2 = v − e + f ≤ v − e + 2e/3 and hence e ≤ 3v + 6. We conclude that for v > 6
we have a vertex of degree at most 7: Otherwise we would have 8v ≤ 2e by the handshaking
lemma, and hence 4v ≤ 3v + 6, which is only true for v ≤ 6, where trivially all our vertices
have degree at most 5. We conclude that G is 7-degenerate, and hence we can use the greedy
colouring algorithm to colour tcdt-graphs with 8 colours.
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Question 2
Let Fn,n be a graph with vertex set {x1, . . . , xn, y1, . . . , yn} whose edge set is randomly constructed
as follows. For each 1 ≤ i < j ≤ n independently, we consider the four potential edges

xixj , xiyj , yixj , yiyj ,

pick one uniformly at random that we omit, and then add the three remaining ones as edges to Fn,n.

(a) Prove that for every ε > 0 with probability tending to 1 as n tends to infinity, the graphFn,n does
not contain a complete graphKs with s ≥ εn as a subgraph.

Solution : A copy of Ks in this graph can only use at most one vertex of every pair xi, yi.
Hence, such aKs uses a vertex from exactly s of the pairs, for which there are

(n
s

)
choices, and

in each pair one vertex, for which there are 2s choices. For a pair of vertices vivj with vm ∈
{xm, ym} for m ∈ {i, j} the probability that vivj forms an edge is 3

4 and this is independent
from all other pairs vi′vj′ as long as {i, j} 6= {i′, j′}. We conclude that the expected number

ofKs in Fn,n is
(n
s

)
2s(34)(

s
2) ≤ (2n)s(34)s

2/3, where the inequality holds for large s. For s = εn
this expectation is at most

(2n)εn
(

3

4

)ε2n2/3

= 2εn log(2n)−(ε2 log(4/3)/3)n2 ,

which goes to 0 with n. We conclude that with high probability there is noKεn.

(b) Prove that for every ε > 0 with probability tending to 1 as n tends to infinity, the graphFn,n does
not contain aKt-minor with t ≥ (23 + ε)n as a subgraph.

Solution : We use the following characterisation of minors: AKt-minor in Fn,n is a collection
of t vertex disjoint bags B1, . . . , Bt ⊆ V (Fn,n) such that Fn,n[Bi] is connected for each i, and
for each i 6= j there is some edge between Bi and Bj in Fn,n. Part (a) tells us there is noKt-
minor with all bags of size 1 for t ≥ 1

2εn. It is also easy to see that there is noKt-minor with all
bags of size at least 3 for t ≥ (23 + ε)n as Fn,n does not have enough vertices for this. It thus
remains to check for minors in which all bags are of size at most 2. Assume that such a minor
exists, then it has at least (23 + 1

2ε)n bags of size exactly 2, because otherwise there would be a
K1

2εn
-subgraph. Hence, it remains to show that noKt′ -minor with all bags exactly size 2 exists

for t′ ≥ (23 + 1
2ε)n.

Indeed, in such a minor each Bi contains vertices from two different pairs xj , yj and xj′ , yj′ ,
since pairs do not contain edges. Also, by possibly omitting two thirds of the bags, we obtain
aKt′′ -minor with t′′ ≥ 2

3(23 + 1
2ε)n ≥ εn with bags B1, . . . , Bt′′ such that for each pair xj , yj

only at most one vertex is contained in
⋃

iBi.
Now, let B1, . . . , Bt′′ be one possible choice of such bags. Let us estimate the probability that
these give aKt′′ -minor. Consider two of the bags Bi = {bi, b′i} and Bj = {bj , b′j} with i 6= j.
By assumption the vertices bi, b′i, bj , b

′
j come from 4 different pairs of Fn,n. So the probabilities

that bibj is an edge, that b′ibj is an edge, that bib′j is an edge, and that that b′ib
′
j is an edge

are pairwise independent, and as in (a), each of these probabilities is 3
4 . We conclude that the

probability that there is one of these edges is 1− (14)4. Consequently, the probability that there

is an edge between each pair of bags in B1, . . . , Bt′′ is
(
1 − (14)4

)(t′′2 ). For t′′ = εn, since
we have at most

( 2n
2εn

)
ways to select 2εn vertices in Fn,n, one from each pair (though we are

ignoring this in the counting), and there are at most (2εn)! ways of pairing these vertices up
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into bags (again, this is overcounting), we get that there are at most
( 2n
2εn

)
(2εn)! ≤ (2n)2εn

choices for bags. Hence, the probability that we get a Kt′′ -minor of the described form is at

most (2n)2εn
(
1− (14)4

)(εn2 ), which tends to 0 as n tends to infinity, similarly as in (a).
This proof is taken from https://arxiv.org/pdf/2103.10684.pdf.

Question 3
For U and V disjoint with n vertices each, let (U, V ) be an ε-regular pair with density at least d. Solve
the following questions “by hand”, that is, without using any existing lemmas that directly provide the
answers (you may use results along the way that you find, however). A binary tree is a tree in which at
most 1 vertex has degree 2 and all other vertices have degree 3 or 1.

(a) What is the longest path you can find in (U, V )?

(b) What is the longest cycle you can find in (U, V )?

(c) What is the biggest binary tree you can find in (U, V )?

(d) What is the biggest complete bipartite graph you can find in (U, V )?

Solution : In each of U and in V we could have εn isolated vertices, so we certainly cannot hope
for connected subgraphs on more than 2n(1− ε) vertices. So we can only hope for almost spanning
connected subgraphs. For the first three parts we indeed always get almost spanning subgraphs (if
ε is sufficiently small compared to d).
To see this in the case of paths, we can simply embed them greedily as follows: Choose a vertex x1
in U at least d

2n neighbours in V , which exists by regularity and embed the first path vertex there.
Next choose a vertex x2 inN(x1) which has at least d

2 |U \ {x1}| neighbours in U \ {x1}. In general,
let X be the set of vertices x1, . . . , xi−1 that were already used earlier and choose a vertex xi in
N(xi−1) \X which has at least d

2 |(U ∪ V ) \X| neighbours in (U ∪ V ) \X . This is possible as long
as |U \X|, |V \X| ≥ (2 ε

d)n, as then we maintain that |N(xi−1) \X| ≥ d
2(2 ε

dn) = εn and hence we
can find such a vertex by regularity. Hence, if d ≥

√
ε, we get a path of length 2n(1−

√
ε).

For the case of cycles, of course we should find even length cycles, and we can basically use the same
strategy with the following slight modification. Once we embedded x1, we choose an arbitrary set Y
of size (2 ε

d)n ≤ |N(x1)/2| inN(x1) that we set aside and do not use for the embedding of x2, x3, . . . .
Apart from this we proceed as before, until just before the penultimate vertex. When embedding the
penultimate vertex we then make sure that we choose a vertex with many neighbours in Y , so that
we can then choose the last vertex in Y , completing the circle.

For binary trees, we need more care. There are different ways of doing this. Here is the outline of one:
Let T be a binary tree on 2n(1−

√
ε) vertices that has almost equally sized colour classes. This can

be done for example by choosing a path and in addition adding to each inner vertex a leaf. We can
then notice that we can cut up the tree into subtrees of roughly the same size: This is easy for the
example tree we have just chosen, but it is also not hard to show that this can be done in general for
binary trees if the sizes of the pieces are allowed to differ by a factor of 2. So assume our subtree sizes
are between ξn and 2ξn for some constant ξ that we choose much larger than ε but much smaller
than d. For each of these subtrees we choose a natural root: We first choose a root of the whole tree,
which will also be a root for one of the subtrees. We then choose the roots of the other subtrees as
the vertex in the subtree closest the the tree root. So, we get constantly many subtrees, each with a
root, which we will embed subtree by subtree, in a natural order given by the tree: We embed subtrees
earlier if their root is closer to the tree root.
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For the actual embeddingwedo the following: Similarly as in the cycle case, we set aside a setYU ⊆ U
and a setYV ⊆ V of size (10 ε

d)n each at the start. In these setswewill embed all the root vertices, and
all other vertices will be embedded inU \YU and in V \YV . We start with the first subtree, embedding
its root into YU such that the chosen vertex has many neighbours in YV and also in V \ YV , and then
embed the remaining vertices of the subtree in a search order. When in this process we embed a
non-root vertex, we embed it into V \ YV and U \ YU proceeding analogously to the case of the path;
this is possible because the subtree is small and hence neighbourhoods of chosen vertices do not get
filled up. When in this process we embed a vertex that is the neighbour of a root of another subtree,
we also guarantee that it is embedded to a vertex with many neighbours in the remaining vertices of
YU or YV , depending on whether it is embedded to U or V . This is possible because few vertices
get embedded to YU and YV . Once this subtree is embedded we can proceed to the next subtree,
choosing an image for the subtree root in the neighbourhood of the already embedded neighbour of
the subtree root.

The last task is harder, and a result we did not cover in the lecture (but that can be looked up)
helps: The Kővári-Sós–Turán Theoremstates that 2n-vertex graphswith at least (s−12 )1/r(2n)2−1/r =

(s−1n )1/rn2 edges contain aKs,t. So if s = r = log n/C , this implies that all 2n-vertex graphs with at
least (log n/Cn)C/ lognn2 = 2−C+o(1)n2 edges contain aKlogn/C,logn/C .
On the other hand, we can consider a bipartite graph with vertex classes of size n and each edge
between the vertex classes present randomly (and independently of all other choices) with proba-
bility d. It is easy to show that such a graph is an (ε, d)-regular pair. The expected number of Ks,s

in this graph is
(n
s

)2
ds

2 ≤ n2sds
2
. For s = C log n the last expression is n2C logn · dC2 log2 n =

2log
2 n(2C−C2 log d−1), which tends to 0 for C large enough. Hence, with high probability, this regular

pair does not contain aKC logn,C logn. So the largest complete bipartite graph we can hope for is of
order Θ(log n).

END OF PAPER
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