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More or less everything we will be discussing in the lectures and these notes can be found in great
detail in Chapter 5 of Diestel (in particular Section 5.4). Also Chapter V of Bollobás (and, again,
in particular Section V.4) has everything we need.

The best source for anything related to graph colouring is the book Graph Coloring Problems,
by T.R. Jensen and B. Toft, John-Wiley (1995).

The proof from the last section is not covered in these books though.

1.1 Vertex Colouring

Given a graph G = (V,E) and a finite colour set C, a (proper) vertex colouring of G is a function
ϕ : V → C so that for all edges uv ∈ E we have ϕ(u) 6= ϕ(v). The chromatic number χ(G) of G is
the smallest number of colours a colour set must have so that a vertex colouring exists.

We usually use positive integers for the colours, C = {1, . . . , k} for some k. And then we can
say that χ(G) is the minimum k so that there is a vertex colouring ϕ : V → {1, . . . , k}. If G admits
a vertex colouring with k colours, we say G is k-colourable. So saying that G is k-colourable is
equivalent to stating that χ(G) ≤ k.

Many of the bounds on the chromatic number are in terms of vertex degrees. For example,
the obvious greedy algorithm to colour each of the vertices one by one gives a proof that χ(G) ≤
∆(G)+1. We define the degeneracy deg(G) of G to be the maximum of δ(H) over all subgraphs H
of G. It is obvious that deg(G) ≤ ∆(G) holds for all graphs G.

Proposition 1.
For all graphs G we have χ(G) ≤ deg(G) + 1.

Proof. Suppose deg(G) = m and G has n vertices. We begin by finding an order V (G) =
{v1, . . . , vn} such that for each 1 ≤ i ≤ n, the vertex vi has at most m neighbours in {v1, . . . , vi−1}.
For each i = n, n− 1, . . . , 1 in that order, choose vi to be a vertex in V (G) \ {vi+1, . . . , vn} with the
least number of neighbours in V (G) \ {vi+1, . . . , vn}. Since G[V (G) \ {vi+1, . . . , vn}] is a subgraph
of G, by definition of degeneracy vi has at most m neighbours in V (G) \ {vi+1, . . . , vn}.

Now we colour V (G) greedily in the order we found: for each i = 1, . . . , n in that order, colour vi
with the smallest number colour not used on any neighbour of vi in {v1, . . . , vi−1}. There are at
most m colours used on these vertices, so the smallest number colour not used is at most m+ 1, as
desired.

This is a proof by algorithm; it finds the desired colouring in polynomial time (polynomial in n),
and the algorithm actually also finds the degeneracy of G. (Check you see why this is true.) Graphs
such as the complete bipartite graphs Kn,n, consisting of 2n vertices divided into two equal parts,
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with the edge set consisting of all crossing pairs, show that the degeneracy can be much larger than
the chromatic number, though: Kn,n has chromatic number two (colour one part with colour one
and the other with colour two), but degeneracy n.

In the other direction, the complete graph Kt (obviously) needs t colours in a proper colouring,
and it has maximum degree and degeneracy equal to t− 1, so Proposition ?? can be sharp. With
some effort, you can say a little more.

Theorem 2 (Brooks, 1941).
A connected graph G that is not a complete graph or an odd cycle satisfies χ(G) ≤ ∆(G).

Proof. We’ll only give a sketch of the proof to highlight the main idea. First, the case ∆(G) = 2 is
easy: such a connected graph G can only be a path or a cycle; paths and even cycles are 2-colourable,
which leaves only the odd cycles.

For ∆(G) = ∆ ≥ 3, the only exceptional graph is supposed to be K∆+1. First, suppose G is
not regular. Then there is a vertex vn with degree at most ∆ − 1. We order V (G) by choosing,
for each i = n− 1, . . . , 1, a vertex vi with at least one neighbour in {vi+1, . . . , vn}; this is possible
because G is connected. Now colour V (G) greedily (as in Proposition ??) in this order, from v1

to vn. For each i, the vertex vi has at most ∆ − 1 neighbours preceding it in the order: for i < n
because vi has at most ∆(G) neighbours in total, at least one of which comes later in the order,
and for i = n by choice of vn. So the greedy colouring uses at most ∆− 1 + 1 = ∆ colours.

Next, we’d like to make something like this trick work when G is regular. Pick a vertex vn of
V (G) arbitrarily. If all pairs of its neighbours are adjacent, then G is the complete graph K∆+1. So
we can assume some pair v1, v2 are not adjacent. We try to repeat more or less the proof above: for
each i = n− 1, . . . , 3 in that order, let vi be a vertex with at least one neighbour in {vi+1, . . . , vn},
and colour V (G) using the greedy strategy in this order. If this is possible (meaning: if it’s possible
to create this vertex order), then both v1 and v2 get colour one (because they’re not adjacent); we
can colour each vertex v3, . . . , vn−1 with a colour at most ∆ for the same reason as above; and we
can colour vn with a colour at most ∆ because although it has ∆ neighbours, two have the same
colour (namely v1 and v2) and so at most ∆ − 1 colours are used on its neighbourhood. In other
words, we’re done.

The only problem is: what if the order we asked for doesn’t exist? This happens if and only if
G− {v1, v2} is a disconnected graph. It’s fairly easy to prove that if for some v the graph G− {v}
is disconnected, then we can colour it with ∆ colours. Let C be a component of G − {v}; let
G1 = G[C ∪{v}] and G2 = G−C. By induction we can colour both G1 and G2 with ∆(G) colours,
and permuting the colours on one if necessary we can ask that the colourings agree on v; and then
they give a colouring of G.

What’s left is the case that G− {v} is connected for every v, but G− {v1, v2} is disconnected.
It is a good exercise (Exercise ??) to show that this case can also be handled by induction. If your
proof is a simple generalisation of the proof above dealing with the case G − {v} is disconnected,
then you missed something, though.

These results (more or less obviously) give algorithms that actually give colourings. But in general
colouring a graph G optimally is a hard algorithmic problem. It is an easy exercise to give an
algorithm which, for input G, either returns a 2-colouring of G or a witness that this is not possible
in the form of a cycle of odd length in G. But if 2 is replaced by 3 (or any larger number),
then there is no known algorithm which performs much better than the brute-force approach of
simply testing all maps c : V (G) → {1, 2, 3} to see if one is a proper colouring. This is one of
the (many) incarnations of the famous “P versus NP” problem (see Lecture 3); most (but not all)
mathematicians believe that there is in fact no polynomial-time (polynomial in V (G)) algorithm
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for this problem. This is something like a reason why problems in the area of graph colouring tend
to be difficult: you want to prove a non-trivial result relating to perhaps χ(G), but if your approach
would imply an algorithm which gives a χ(G)-colouring of G, it is unlikely to work.

Much research on graph colouring has focused on finding the best upper bound on the chromatic
number of planar graphs. A planar graph is a graph that can be drawn in the plane so that the
vertices are different points, the edges are simple curves connecting their endvertices, and the
interior of each edge contains no vertex and no point from any other edge. We will see a lot more
about planar graphs (and more general related concepts) in the next lecture.

The Four Colour Conjecture can be stated as “every planar graph is 4-colourable”. It was
originally formulated as a conjecture on the number of colours needed to colour a map of contiguous
regions in the plane, by Francis Guthrie in 1852. Francis asked the question to his brother Frederick,
who was at that time a student of De Morgan at University College London. De Morgan started
mentioning the problem to mathematicians he communicated with.

From Euler’s Formula (see the next lecture), it is easy to obtain that a planar graph G = (V,E)
on at least three vertices satisfies |E| ≤ 3|V | − 6. Since

∑
v∈V d(v) = 2|E|, from this we can derive

that a planar graph always has a vertex of degree at most five. So we have deg(G) ≤ 5, and hence
Proposition ?? guarantees that every planar graph G is 6-colourable.

A next, non-trivial, improvement was obtained by Heawood, using ideas of Kempe. Kempe
had used these in a proof he published in 1879, claiming to prove the Four Colour Conjecture.
Unfortunately the proof had a flaw, but the paper got reviewed and published, and it took 11 years
until Heawood pointed out there was an error. However, Heawood also realised that the methods
used in the proof, in particular a concept we call Kempe chain today, could be used to show that
every planar graph is 5-colourable.

Theorem 3 (Heawood, 1890; Kempe, 1879).
All planar graphs are 5-colourable.

Proof. We prove this by contradiction. Suppose there is a planar graph which is not 5-colourable,
and let G be such a graph with fewest vertices. Now G has a vertex v of degree at most 5, since
e(G) ≤ 3v(G) − 6. Fix a plane drawing of G. Let c be a 5-colouring of G − v, which exists by
minimality of G. Now the only reason why we cannot extend c to a 5-colouring of G is that v
has five neighbours on which c uses all five colours; without loss of generality we can assume the
neighbours u1, . . . , u5 of v, listed in clockwise order around v, get colours 1 to 5 in that order.

For any given 1 ≤ i < j ≤ 5, consider the subgraph Gij of G− v induced by the vertices getting
colours i and j. If ui and uj are in different connected components of this graph, then we can swap
the colours i and j on all vertices of Gij containing ui, in order to obtain a 5-colouring c′ of G− v
in which both ui and uj are coloured j; this colouring extends to a 5-colouring of G.

But if u1 and u3 are in the same component of G13, then there is a path in G13 from u1 to u3

(a Kempe chain). Adding the vertex v to this path, we obtain a cycle C in G. This cycle separates
the plane into two regions, one containing u2 and the other containing u4 and u5. Because we have
a plane drawing of G, it follows that in particular u2 and u4 are in different connected components
of G24, so G is 5-colourable.

So after Heywood’s discovery of the error in Kempe’s argument, the Four Colour Conjecture was
open once again, and remained so for almost another 100 years. The concept of Kempe chains,
however, proved to be influential in the area; open problems related to them remain.

The search for a proof of the Four Colour Conjecture that all planar graphs are 4-colourable
eventually led to a proof.

3



Theorem 4 (Appel & Haken, 1977).
All planar graphs are 4-colourable.

Appel and Haken’s proof was quite controversial, since it relied on computer assistance in checking
a very large number of cases. At the time it wasn’t realistically possible for other mathematicians
to independently verify the computer part of the proof; the program they used was optimised (by
Koch) for specific hardware which could have had a bug. (If this sounds far-fetched, a bug in the
original Intel Pentium chip did exist and was found by Nicely when an inconsistency appeared in
computer searches for enumerations of twin, triplet and quadruplet primes.) Rewriting or using
other hardware was prohibitively expensive (supercomputer time isn’t free).

A more recent proof of the Four Colour Theorem by Robertson, Sanders, Seymour and Thomas
reduces the need for computer checking and uses a simpler (checkable) program which can be run
fairly fast on any modern computer; today the result is not really debated, though no human-
checkable proof exists.

One can generalise all these problems to graphs which can be drawn on surfaces other than the
plane without crossings: for example graphs which can be drawn on the torus, and so on. One can
always use an argument similar to Heawood’s (and in fact Heawood himself gave it) to get an upper
bound for the chromatic number of surfaces of any given Euler characteristic (see next lecture for
the definition); this bound grows as the surface gets more complicated.

You might think, given that Heawood’s Theorem ?? is off by one from the best possible answer,
that this would be true for more complicated surfaces too: but in fact it usually isn’t. Ringel and
Youngs showed that for all surfaces other than the sphere (which is basically the same as the plane;
more accurately, the sphere is the plane together with a single-point compactification at infinity,
and reversing this we can always remove a point not used in the drawing of a given graph on the
sphere) and the Klein bottle, Heawood’s bound is best possible. Graphs on the Klein bottle can
have chromatic number 6, but 7 (which is Heawood’s bound for this surface) turns out not to be
possible.

These results are much easier than Theorem ??. More or less, this happens because n-vertex
graphs on any given surface have at most 3n+C edges for some C depending on the surface (this
is again from Euler’s formula) and therefore most vertices have degree at most 6. It’s easy to
colour them if you have 7 colours to choose from (the case for all surfaces except the sphere and
Klein bottle), so the high chromatic number can only come from the (at most constant) number
of vertices of degree more than 6; we might as well delete them from the graph and assume every
vertex has degree at least 7. It turns out that the best one can do is simply to make the high
degree vertices form a clique (this needs a proof!), and what Ringel and Youngs did is to show that
the obvious bound from Euler’s formula on the maximum size of a clique in a graph on any given
surface (except the sphere and Klein bottle) is actually attainable.

1.2 Vertex List Colouring

Given a graph G and a finite set of colours C, a list assignment is an assignment L : V → P(C) of
subsets of the colours to the vertices of G. So each vertex v gets attached to it a list L(v) of colours.
Given a list assignment L, we call the graph L-colourable if there exists a function ϕ : V → C so
that ϕ(v) ∈ L(v) for all vertices v and such that for all edges uv ∈ E we have ϕ(u) 6= ϕ(v).

We say that G is k-list-colourable or k-choosable if G is L-colourable for every list assignment L
with |L(v)| = k for all vertices v. And the list chromatic number or choice number ch(G) is the
smallest k so that G is k-choosable.
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By giving all vertices the same list L(v) = {1, . . . , k} of colours, it follows directly that ch(G) ≥
χ(G). And somehow one would expect that the case when all colours have the same list is the
“hardest” to colour, that cases where the lists are not identical are “easier”. Surprisingly enough,
that is not the case.

Proposition 5.
For all k ≥ 2, the graph G = Kk,kk (which is 2-colourable) has ch(G) > k.

Proof. We use k2 colours, the pairs of integers {1, . . . , k}×{1, . . . , k}. Let the small part of G have
vertices x1, . . . , xk. We let the list of xi be {(i, 1), (i, 2), . . . , (i, k)} for each i. Now there are kk

sequences of integers a1, . . . , ak with 1 ≤ aj ≤ k for each j; so for each such sequence we can have a
vertex in the large part of G with list {(1, a1), (2, a2), . . . , (k, ak)}. However we colour the vertices
x1, . . . , xk from their lists, we will use all the colours on (exactly) one list in the large part.

An easy positive result is that Proposition ?? works if χ(G) is replaced by ch(G); the proof is
essentially identical.

Proposition 6.
For all graphs G we have ch(G) ≤ deg(G) + 1.

As soon as the concept of list colouring was introduced (usually attributed to Vizing, 1976), deter-
mining the choice number of planar graphs became a hot topic. Since there are planar graphs that
are not 3-colourable, there are also planar graphs that are not 3-choosable. And the argument of
Proposition ?? guarantees that for every planar graph G we have ch(G) ≤ 6. So for quite a while
it was an open question what the exact number should be. This question was settled in the 1990s
with surprisingly simple proofs.

Theorem 7 (Voigt, 1993).
There exist planar graphs that are not 4-choosable.

Voigt gave a 238-vertex planar graphs with lists of size four from which it cannot be coloured
properly. The construction was simplified by Mirzakhani (the late Fields medallist, in one of her
first papers while still at school) in 1996 to a 63-vertex graph. We’ll describe a variant with 69
vertices.

Proof. We begin by giving a 17-vertex planar graph H and some lists of colours (taken from the
set of colours 1 to 5) with the following property: any proper colouring from the lists uses colour
5 somewhere on the outer cycle.

1345 1235

23451245

1234 1234

1245

1345

2345

1235

1234

1234

1234

1345 2345

1245 1235
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We first show that H cannot be coloured properly from the lists without using the colour 5 on
one of the vertices on the outer face. One way is to consider the colours of the two upper vertices in
the central square. If the left uses 4 and the right 3, then in the upper square 5 has to be used. If
the right uses 4 and the left 3, then in the middle square the colour 5 has to be used. By symmetry,
we cannot use 1 and 2 to colour the bottom two vertices of the central square, nor 2 and 3 for the
left two, nor 1 and 4 for the right two.

Now there are two cases left. Suppose we do not use 5 on the outer face. First, suppose we
colour the top right vertex of the central square with 1. Then, as we just showed, we have to use 2
on the bottom right vertex, so 3 on the bottom left, so 4 on the top left; and now the central vertex
is not colourable. Second, if we don’t colour the top right vertex with colour 1, then it gets colour 3
or 4; so the top left vertex has to get colour 2. We can now deduce that the bottom left, bottom
right and top right vertices have colours 1, 4, 3 in that order, and again the central vertex is not
colourable.

To go from this graph H to the desired counterexample, we take four disjoint copies of this
graph, called H1, H2, H3 and H4. We use the same lists on each graph as in H, except that we
swap colours 1 and 5 in the lists for H1, we swap 2 and 5 in the lists for H2, and so on. By
construction, any proper colouring of the resulting graph from its lists has to use colour i on the
outer face of Hi for each i. We add one more vertex v adjacent to all vertices on all four outer
cycles and give it the list {1, 2, 3, 4}; now the result cannot be properly coloured from its lists. It
is also easy to see that this final graph is planar.

Note that this construction actually has chromatic number 3 (Voigt’s construction is not 3-colourable).
Mirzakhani was able to save a few vertices by noticing that one can identify a few vertices of some
graphs Hi and Hj (on the outer faces with the same lists).

Giving a matching upper bound, Thomassen proved the following.

Theorem 8 (Thomassen, 1994).
All planar graphs are 5-choosable.

Thomassen’s proof is stunningly simple and subtle at the same time. Before we describe its main
idea, we need one more concept. A planar drawing of a planar graph in the plane (called, slightly
confusingly, a plane graph) divides the plane into a number of connected “regions”. Such a region
is called a face of the plane graph. The face on the outside is usually called the outer face.

To prove Theorem ??, we only need to consider planar graphs that are connected and which
can be drawn in the plane such that each face is bounded by exactly three edges; we call such a
face a triangle and the embedding a triangulation. Indeed, if a planar graph has a face with more
than three edges on its boundary, than we can add an edge so that the graph remains planar (see
Exercise ??). Any colouring of this larger graph is certainly a colouring of the original graph.

A near-triangulation is an embedding of a connected planar graph in which each face, except
for the outside face, is a triangle, and the outside face is a simple cycle (no repeated vertices).
Thomassen then proves the following for near-triangulations:

Theorem 9 (Thomassen, 1994).
Let G be a planar graph that can be drawn in the plane as a near-triangulation, and suppose that
v1v2 . . . vkv1 is the sequence of vertices encountered when walking along the boundary of the outside
face. Suppose that the vertices of G have been assigned lists of colours with the following properties:
– v1 and v2 have a list of one colour each, with L(v1) 6= L(v2);
– the other vertices on the outer face have a list of three colours;
– all vertices not on the outer face have a list of five colours.
Then there exists a colouring of G where each vertex receives a colour from its list.
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Note that the lists of colours given to each vertex according to Theorem ?? is always at most five.
This means that Theorem ?? is a direct consequence of Theorem ??.

The point of the complicated Theorem ?? is that it is easy to prove by induction on v(G); most
of the work is to find the statement of Theorem ??.

Proof of Theorem ??. We prove the theorem by induction on v(G). The base case v(G) ≤ 3 is
trivial, so suppose G is a minimal counterexample with at least four vertices.

Let C be the cycle in G bounding the outer face. First suppose that C has a chord; that is,
there is an edge of G between two vertices of C which is not an edge of C. Then G is split into two
smaller graphs G1 and G2 by this chord which are near-triangulations and whose outer faces are
the two parts of C together with the chord. At least one of these graphs, say G1, contains both v1

and v2, so by induction we can colour it properly from its lists. This fixes the colours of both
vertices of the chord in G2, but the remaining vertices of the outer face of G2 are not v1 nor v2, so
have lists of size at least three; by induction we can complete the colouring.

Second, suppose C has no chord. Let the neighbours of vk be vk−1, u1, u2, . . . , um, v1 in order
around vk. Since the interior faces are all triangles, these vertices are the vertices of a path in G
from vk−1 to v1. Since C has no chord, we have m ≥ 1 and the vertices u1, . . . , um are not on C.

We now use induction to colour G − vk and extend the colouring to vk. Let x and y be two
colours in L(vk) which are not in L(v1). We change the lists of u1, . . . , um by removing x and y
from these lists; since they originally had lists of size five, the resulting lists are of size three and so
the induction statement applies; we can colour G − vk from the new lists. Now neither x nor y is
used on any of u1, . . . , um, v1 in this colouring, and at most one is used on vk−1; so we can choose
the other to colour vk as desired.

1.3 Edge Colouring

In this section we allow graphs to have multiple edges (but still no loops). When we want to exclude
multiple edges, we use the term simple graph.

Given a graph G = (V,E) and a finite colour set C, a (proper) edge colouring of G is a function
ϕ : E → C so that for any two adjacent edges e, f ∈ E (i.e. e and f have at least one common
endvertex) we have ϕ(e) 6= ϕ(f).

We use terminology similar to vertex colouring. So a graph G can be k-edge-colourable, and the
minimum k for which G is k-edge-colourable is the edge chromatic number or chromatic index χ′(G).
For a graph G = (V,E), the line graph L(G) = (VL, EL) is the graph that has the edges of G as

vertices: VL = E; and two edges are adjacent in the line graph if they have a common endvertex
in G.

It is easy to see that edge colouring a graphG is the same as vertex colouring the line graph L(G).
So in that sense, edge colouring is just a special case of vertex colouring. But by arguing in this
way, we ignore the special structural properties of the edge set of a graph that can be used when
analysing edge colouring, but are not present in vertex colouring in general.

Another way to look at this is that a vertex-colouring of G is a partition of V (G) into indepen-
dent sets; an edge-colouring of G is a partition of E(G) into matchings.

For a graph with multiple edges, we count the degree of a vertex as the number of edges incident
with that vertex. So ∆(G) is the maximum number of edges incident with any vertex of G.

It is obvious that χ′(G) ≥ ∆(G). Since any edge can be adjacent to at most 2(∆(G)− 1) other
edges, this gives the following trivial bounds for the chromatic index.
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Proposition 10.
For all graphs G we have ∆(G) ≤ χ′(G) ≤ 2∆(G)− 1.

But in fact, the relationship between chromatic index and maximum degree is much closer than the
relationship between chromatic number and maximum degree, as the following two classical results
illustrate.

Theorem 11 (Kőnig, 1916).
For a bipartite graph G we have χ′(G) = ∆(G).

Proof. There are two steps to proving this. First, we show that any bipartite graph G is a subgraph
of some bipartite H all of whose vertices have degree ∆(G). Second, a well-known consequence
of Hall’s theorem is that any regular bipartite graph has a perfect matching. So we can simply
remove sequentially perfect matchings from H (which maintains regularity) until no edges remain;
this gives a proper ∆(G)-edge-colouring of H, which in particular contains the edge-colouring of G
we want.

One way to do the first step (not particularly efficient, but easy) is as follows. Suppose G is
not regular. We first add isolated vertices to G if necessary to make it balanced (i.e. to have the
same number of vertices in each part). Think of the bipartition of G as top and bottom. We take
a second identical copy of G with the top and bottom parts swapped. We join any vertex whose
degree in G is less than ∆(G) to its copy. The result is a graph G′ which contains G and which
has δ(G′) = δ(G) + 1 and ∆(G′) = ∆(G). Now we repeat this until we have a regular graph.

Another much simpler, way is: add vertices to G to make it balanced if necessary, then add
edges to make it regular. The difference is that the first way gives a simple graph; this way does
not (it might create multiple edges). But for the next part of the proof this is not a problem!

For this second part, we need Hall’s theorem. If you don’t know this, Wikipedia gives one of the
several known proofs. The statement is: A bipartite graph F with parts X and Y has a matching
covering X if and only if for every set S ⊆ X, there are at least |S| vertices in Y with a neighbour
in S.

To go from this to showing that for k ≥ 1 any k-regular bipartite graph has a perfect matching,
consider any set S ⊆ X. Let T be the set of vertices in Y with at least one neighbour in S. Since
all k|S| edges leaving S go to T , on average a vertex in T has degree at least k|S|/|T |, and in
particular there is a vertex with degree at least k|S|/|T |. Since every vertex has degree k, we have
|T | ≥ |S|. It follows that there is a matching covering X. By symmetry, we have |X| = |Y | so the
matching is perfect.

Theorem 12 (Shannon, 1949).
For a graph G we have χ′(G) ≤ 3

2∆(G).

Note that Theorem ?? is best possible. Form a graph G on three vertices x, y, z by adding m
multiple edges between each pair from x, y, z. Then ∆(G) = 2m, but all 3m edges are adjacent,
hence χ′(G) = 3m.

It is no accident that the graphs that show that Shannon’s bound are best possible have multiple
edges. Let µ(G) denote the maximum edge multiplicity of a graph G. Hence G is simple if and
only if µ(G) ≤ 1.

Theorem 13 (Vizing, 1964).
For a graph G we have χ′(G) ≤ ∆(G) + µ(G).

Proof. We prove this by induction on e(G). The statement is trivial for graphs with none or one
edge. Suppose G is a minimal counterexample, and let e be any edge in G and x and y the vertices
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contained in e. By assumption, there is an edge-colouring c of G − e with ∆(G) + µ(G) colours,
which we fix.

For any vertex v let M(v) denote the set of colours in {1, . . . ,∆(G) + µ(G)} which are missing
at v, that is, which are not used by c on any edges containing v. Note that for each vertex v we
have |M(v)| ≥ µ(G). If M(x) ∩M(y) 6= ∅, we can extend c to a colouring of G and are done. If
not, we try to modify c in order to get to this situation.

We start by looking at the edges containing y. If we can somehow recolour just these edges,
maintaining a proper edge-colouring of G − e, in order to free up a colour in M(x), then we are
done. We’ll consider only a special type of recolouring encoded by a directed multigraph. Let H be
a directed multigraph on NG(y), where we put an arc from u to v for each edge f between v and y
in G whose colour is in M(u). The out-neighbours of x are the vertices v such that some edge f
between y and v has a colour in M(x); in other words, if we can recolour f we will free up c(f) for
the edge e we are eventually trying to colour. Two-arc paths from x correspond to doing two-step
recolourings, and so on. Let X be the set of vertices in H we can reach from x. We first consider
recolouring only edges adjacent to y.

Claim 1. For each colour α ∈M(y) and v ∈ X we have α 6∈M(v).

Proof. Suppose this is not true, and let α and v be a counterexample. Let (x, u1, . . . , ut, v) be a
shortest path in H from x to v. We first give e a colour used on some edge e1 between y and u1

which is in M(x). Now we recolour e1 with a colour used on some edge e2 between y and u2 which
is in M(u1), then e2 with a colour used on some e3 between y and u3 which is in M(u2), and so
on until we recolour et with a colour used on edge et+1 between y and v which is in M(ut). These
colours and edges exist by the definition of H and because we chose a shortest path (and therefore
each new edge we encounter still has the colour given by c). Finally, we recolour et+1 with colour α
to obtain a proper edge-colouring of G. �

Another way we can try recolouring is to make the following observation: The subgraph Gij of G
consisting of all edges with colour i or j has maximum degree 2, and therefore all its components
are either paths or (even) cycles. Suppose that α is some colour in M(x), and β is in M(y). There
has to be an edge of colour α at y (otherwise α is in M(x)∩M(y)) and since by assumption there
is no edge of colour β, it follows that y is the start of a path component of Gαβ. We can swap the
colours α and β for all edges on this path, which maintains a proper edge-colouring of G− e. Now
we can colour e with colour α, unless this swapping destroyed the property α ∈ M(x); in other
words, unless the path in Gαβ has ends y and x. Putting this together with the idea of Claim ??
we get the following.

Claim 2. For each colour α ∈ M(y), each v ∈ X and each β ∈ M(v), the graph Gαβ has a
component which is a path from v to y.

Proof. Suppose not, and let α, β be the colours in a counterexample. Let v be a vertex of X which
is at minimum distance from x forming a counterexample, and let P be a shortest path from x to v
in H.

We first recolour edges ‘following P ’ to v as in the proof of Claim ??. Let f denote the final
edge from y to v whose colour we use in the recolouring; then the only reason we do not obtain a
proper edge-colouring is that y was already incident to an edge in colour β. Since P is a shortest
path, we still have α ∈M(y) and β ∈M(v), so by Claim ?? we do not have α ∈M(v). Thus there
is a component of Gαβ which is a path Q starting at v. If Q does not either end at y or a vertex
of P , then we can swap colours α and β on Q, and recolour f with colour α to obtain a proper
colouring.

9



It remains only to argue that Q cannot end at some vertex of P . Suppose to the contrary that
its end-vertex z is on P . Because M(z) does not contain α by Claim ??, it follows that M(z) does
contain β, and therefore α, β, z is a counterexample to the claim with smaller distance from x to z
than from x to v, a contradiction. �

Finally, we can conclude that for any distinct v, w ∈ X we have M(v) ∩M(w) = ∅, for if not
let β be in both sets and by Claim ?? for any α ∈M(y) we see that in Gαβ there are components
which are paths starting at v and at w whose other ends are both y; this contradicts their being
components.

Now we can complete the proof. On the one hand, from Claim ??, for each v ∈ X and β ∈M(v)
we have β 6∈M(y) and therefore there is an edge from y to some w (not v by assumption) of colour β.
This gives an arc in H from v to w. It follows that there are at least |M(v)| ≥ µ(G) arcs leaving
each v ∈ X in H, and at least |M(x)| ≥ µ(G) + 1 arcs leaving x in H, so that in total at least
|X|µ(G) + 1 arcs of H lie in X.

On the other hand, for any u ∈ X and colour α used on some edge from u to y, if α is responsible
for an arc −→vu in H, then by definition of H we have α ∈ M(v) and v ∈ X. But if v and w are
two distinct vertices of X, we just proved M(v) ∩M(w) = ∅, so α is responsible from at most one
arc in H going from X to u. In other words, the in-degree of u is at most equal to the number of
colours used on edges from y to u; this is at most µ(G) for any u ∈ X, and at most µ(G) − 1 for
u = x. Summing, the number of arcs in H is at most |X|µ(G) − 1. This contradiction completes
the proof.

It is fairly easy to deduce Shannon’s Theorem ?? from Vizing’s Theorem. For simple graphs we
get the following.

Corollary 14 (Vizing, 1964).
For a simple graph G we have ∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

Determining which of the two numbers ∆(G),∆(G) + 1 is the right value for the chromatic index
of a given simple graph G is not an easy task. This problem is known to be NP-complete. Even if
all vertices have degree three, deciding if a the simple graph has chromatic index three or four is
NP-complete (both results are due to Holyer, 1981)

1.4 Edge List Colouring

Also for this section we allow graphs to have multiple edges.
List colourings of edges are defined analogously to vertex list colourings. The essential compa-

rable concepts are k-edge-list-colourable or k-edge-choosable, and edge list chromatic number, list
chromatic index or edge choice number. This latter parameter is denoted ch′(G).

Again we trivially have ch′(G) ≥ χ′(G). For vertex colouring, we have seen that the chromatic
number and the choice number can be arbitrarily far apart. For edge colouring, it is conjectured
that there actually is no difference! The following List Colouring Conjecture is attributed to Vizing
(1975). (But see the Jensen & Toft book for a discussion about its history.)

Conjecture 15.
For every graph G, ch′(G) = χ′(G).

Using a greedy algorithm, it is again easy to obtain that ch′(G) ≤ 2∆(G)− 1. For a long time, not
much progress was made beyond that easy observation.
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Theorem 16 (Borodin, Kostochka & Woodall, 1997)).
For a graph G we have ch′(G) ≤ 3

2∆(G) (so ch′(G) ≤ 3
2χ
′(G)).

Theorem ?? should be compared with Theorem ??. The proof of Theorem ?? uses the techniques
developed by Galvin (see below). The next result says more, but only if the maximum degree is
very large.

Theorem 17 (Kahn, 2000).
For every ε > 0 there exists a constant Dε, so that if G is a graph with χ′(G) ≥ ∆(G) ≥ Dε, then
ch′(G) ≤ (1 + ε)χ′(G).

Kahn’s proof is a masterpiece of probabilistic techniques (for which see Lecture 4).

One of the major breakthroughs in the research on edge list colouring was the following result.

Theorem 18 (Galvin, 1995).
For every bipartite graph G, ch′(G) = χ′(G).

Galvin’s proof relies on a concept called “kernels in directed graphs”. An orientation G∗ of an
undirected graph G is an assignment of exactly one of the two possible directions to each edge of G.
By the outdegree d+

G∗(v) of a vertex v we denote the number of arcs that have v as a tail.
A kernel of a directed graph G∗ is an independent set K ⊆ V , so that for every vertex v ∈ V \K,

there is an arc in G∗ from v to a vertex in K. (An independent set is a set of vertices in which no
pair is joined by an edge.)

The first step to proving Theorem ?? is to show that orientations with kernels help in vertex -
colouring (a result of Bondy, Boppana and Siegel).

Lemma 19. Let G be a graph and L a vertex list assignment of G. Suppose there exists an
orientation G∗ of G, such that |L(v)| ≥ d+

G∗(v) + 1 for each vertex v and such that every induced
subgraph of G∗ has a kernel. Then G is L-colourable.

Proof. We use induction on v(G). Given G and an assignment L of lists with |L(v)| ≥ d+
G∗(v) + 1

for each v, choose a colour c which appears in at least one list, and let S be the set of vertices v
such that c ∈ L(v). Let K be a kernel of G∗[S]. By induction, we can properly colour V (G) \K
such that for each v ∈ V (G) \K we assign to v a colour in L(v) \ {c}. The reason is that for v ∈ S
we have |L(v) \ {c}| = |L(v)| − 1, but v has an outneighbour in K (since K is a kernel) while for
v 6∈ S we have |L(v) \ {c}| = |L(v)| by definition of S. Now since K is independent and all vertices
of K have lists containing c, we can colour all vertices of K with colour c, obtaining the desired
colouring.

Recall that the line graph L(G) = (VL, EL) is the graph that has the edges of G as vertices: VL = E;
and two edges are adjacent in the line graph if they have a common endvertex in G.

For a graph G, for each vertex v choose a linear ordering ≤v of the edges incident with v. Then
we can translate this to an orientation of the line graph L(G) as follows: If two edges e, f have a
common endvertex v, and e ≤v f in the chosen linear ordering around v, then orient the edge ef
in L(G) from e to f . If e and f are parallel edges, then it is possible that we have both an arc
from e to f and an arc from f to e (if e and f have different ordering around each of their two
common endvertices). This causes no problems in what follows.

We call any orientation of L(G) obtained from a system ≤v of linear orderings as above a normal
orientation. Notice that an induced subgraph of a line graph with a normal orientation is again a
line graph with a normal orientation.
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So what does a kernel in a line graph L(G)∗ with normal orientation look like? First we observe
that an independent set in a line graph L(G) corresponds to a matching in G. (A matching is a
set of edges so that no two have a common endvertex.) Next assume the normal orientation of the
line graph originated from linear orderings ≤v of the edges incident with each vertex v. So a kernel
in L(G)∗ is a matching M in G so that for each edge e ∈ E \M there is an arc from e to some
f ∈ M in L(G)∗. In other words, for each edge e = uv ∈ E with e /∈ M , we have that there is an
edge uw = f1 ∈M with e ≤u f1, or an edge wv = f2 ∈M with e ≤v f2.

The following lemma, together with Lemma ??, is most of the proof of Galvin’s Theorem ??.

Lemma 20. Let G be a bipartite graph and let L(G)∗ be a normal orientation of the line graph
of G. Then L(G)∗ has a kernel.

Proof. Assume the normal orientation of the line graph originated from linear orderings ≤v of the
edges incident with each vertex v. And denote the two parts of G by X and Y .

We prove the lemma by induction on the number of edges of G. If there is only one edge, then we
can just use that edge as the kernel. So assume there is more than one edge. For each x ∈ X, let ex
be the edge incident with x that is maximal for the linear ordering ≤x. Take N = {ex | x ∈ X}.

If N is a matching, then it is a kernel in L(G)∗, since for each other edge e = xy with x ∈ X,
we have that e ≤x ex, hence there is an arc in L(G)∗ from e to ex ∈ N .

So suppose N is not a matching, hence there exists x, x′ ∈ X, x 6= x′, and y ∈ Y so that ex = xy
and ex′ = x′y. Without loss of generality we can assume ex ≤y ex′ . Now remove ex from G to
form G−, and leave the orderings of the edges around each vertex the same. By induction, L(G−)∗

has a kernel. This kernel corresponds to a matching M in G−.
If ex′ ∈M , then, since ex ≤y ex′ , there is an arc in L(G)∗ from ex to ex′ , so M is also a kernel

in L(G)∗.
If ex′ /∈ M , then there is an edge f ∈ M so that there is an arc in L(G)∗ from ex′ to f . But

since ex′ was the maximal element around x′, this arc must arise since ex′ and f both have y as a
common endvertex, and ex′ ≤y f . As we also have ex ≤y ex′ , this means ex ≤y f , and hence also
this time we can conclude that M is a kernel in L(G)∗.

Proof of Theorem ??. Take k = χ′(G), and let ϕ : E → {1, . . . , k} be an edge colouring of G.
Denote the two parts of G by X and Y .

We form the following linear orderings of the edges around a vertex v. If x ∈ X, and e1, e2

have x as an endvertex, then we set e1 ≤x e2 if ϕ(e1) ≤ ϕ(e2). While if y ∈ Y , and e1, e2 have y as
an endvertex, then we set e1 ≤y e2 if ϕ(e1) ≥ ϕ(e2).

Form the orientation L(G)∗ of L(G) using the linear orderings above. What can we say about
d+
L(G)∗(e) of an edge e = xy of G? This is the number of edges incident with x that have a colour

larger than e plus the number of edges incident with y that have a colour smaller than e. Since
all edges incident with the same vertex have different colours, and there are k colours in total, this
means that for all edges e we have d+

L(G)∗(e) ≤ k − 1 (we subtract one for the colour e has itself).

So if we give each edge e a list L(e) of k = χ′(G) colours, then by Lemma ?? we know that the
edges are L-colourable, proving the theorem.

1.5 Colouring C5-free graphs

All the proofs in the last sections are fairly ‘hands-on’. Except for Galvin’s Theorem, we construct
a colouring step by step, perhaps having to play with a colouring which almost works until it does.
Galvin’s Theorem is a little different; we take bigger steps, using the kernel method. But still this
is in some sense a step-by-step colouring.
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There are lots of other methods of colouring, though. Here is one.

Theorem 21.
For each α > 0, there exists C = C(α) such that every n-vertex graph G which has minimum degree
at least αn and does not contain C5 (a cycle on 5 vertices) satisfies χ(G) ≤ C.

This is originally a theorem of Thomassen (with a very nice proof). The proof here is due to  Luczak
and Thomassé.

Proof. We can assume α ≤ 1
2 , since any graph with five or more vertices and minimum degree

bigger than 1
2n contains C5. (This is an easy exercise.) We choose ε = 1

100α. (Which is easily small
enough for the proof; there is no good reason to try to optimise constants in this proof.) And we

set K =
⌊
log1+ε

( 2

α

)⌋
+ 1. We choose

C(α) = 100Kα−K−10.

If n ≤ C(α), we simply colour each vertex of G with a different colour. So suppose n > C(α).
We begin by taking a maximum cut (X,Y ) of G; that is, Y = V (G) \ X where X is chosen to
maximise the number of edges between X and Y .

Without loss of generality, we can assume χ(G[X]) ≥ χ(G[Y ]). So it is enough to show
χ(G[X]) ≤ 1

2C. Observe that for each x ∈ X we have d(x;Y ) ≥ 1
2αn (otherwise we could move x

to Y and increase the number of edges crossing). Here d(x;Y ) means the number of edges from x
to Y .

Given X ′ ⊂ X and Y ′ ⊂ Y , and a partition Y ′ = Y1 ∪ Y2 ∪ Y3, for i = 1, 2, 3 let

Xi :=
{
x ∈ X ′

∣∣∣ x 6∈ Xj for j < i and
d(x;Yi)

|Yi|
≥ (1 + ε)

d(x;Y ′)

|Y ′|

}
.

Let X4 := X ′ \ (X1 ∪X2 ∪X3). If |Yi| ≥ 1
10α|Y

′| for each i = 1, 2, 3, and X4 is independent, then
we have an ε-booster for (X ′, Y ′).

We generate partitions X and Y of X and Y respectively, together with a relation ‘in corre-
spondence’, as follows. We begin with {X}, {Y } and we say that X and Y are in correspondence.
We now iteratively do the following. Pick X ′ ∈ X and Y ′ ∈ Y which are in correspondence. If
there is a ε-booster Y1, Y2, Y3 for (X ′, Y ′), we replace Y ′ with Y1, Y2, Y3 and we replace X ′ with
X1, X2, X3, X4 (if some of these sets are empty we simply do not add them); we say Xi and Yi are
in correspondence for each i = 1, 2, 3. So X4 is not in correspondence with any set of the new Y.
We repeat this procedure until any remaining (X ′, Y ′) which are in correspondence do not have
ε-boosters.

There is a natural way to draw a tree representing this process: we start with the root labelledX,
then add children labelled with the sets into which X is split by finding an ε-booster for (X,Y ),
and then to each of those, children for their ε-boosters, and so on.

We claim that when this process terminates we have X with at most 4K parts. Indeed, suppose
that we have in the above tree a path from the root with K + 1 vertices. Then we have Y =
Y ′0 , Y

′
1 , . . . , Y

′
K , where each Y ′i is obtained by finding an ε-booster in Y ′i−1. Let x be a vertex in the

corresponding set of X (the end of the path). Then we have

d(x;Y ′K)

|Y ′K |
≥ (1 + ε)

d(x;Y ′K−1)

|Y ′K−1|
≥ · · · ≥ (1 + ε)K

d(x;Y ′0)

|Y ′0 |
≥ (1 + ε)K

2

α
> 1.
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But x cannot have more than |Y ′K | neighbours in Y ′K ; this is a contradiction. So our tree, in which
each node has at most four children, also has depth at most K; it has at most 4K leaves, and the
leaves are precisely the elements of X .

This also justifies that any set Y ′ ∈ Y has size at least
(

1
10α
)K+1

n; we start with |Y | ≥ 1
2αn,

and by definition each time we find a booster our sets decrease in size by at most a 1
10α factor.

Now consider a set X ′ in the final X . If it does not have a corresponding Y ′, it is independent.
If it does have a corresponding Y ′, then (X ′, Y ′) does not have any ε-booster. Suppose a, b, c ∈ X ′
and ab ∈ E(G). Each of a, b, c have at least 1

2α|Y
′| neighbours in Y ′ by construction. Let Z1 be a set

of 1
4α|Y

′| vertices in Y ′ which are neighbours of a; and let Z2 be a disjoint set of 1
4α|Y

′| neighbours
of b in Y ′. Let Z3 := Y ′ \ (Z1 ∪ Z2). Note that each of Z1, Z2, Z3 contains more than 1

10α|Y
′|

vertices. Since there is no booster for (X ′, Y ′), in particular this partition of Y ′ does not give an
ε-booster. So in the corresponding partition X ′1, X

′
2, X

′
3, X

′
4 of X ′ the set X ′4 is not independent.

We need to separate two cases. First, it is possible that we have a, b ∈ X ′4. But this can only

happen if both a and b have more than (1−ε)|Y ′| neighbours in Y ′ (because we need (1+ε)d(a;Y ′)
|Y ′| > 1

to avoid a ∈ X ′1, and similarly for b). But in this case, since c has at least 1
2α|Y

′| neighbours in Y ,
and since n > C(α), we can find distinct vertices d, e ∈ Y ′ such that d is adjacent to a and c, and
e to b and c. Now a, d, c, e, b gives a copy of C5 in G, a contradiction.

The ‘interesting’ case is that at most one of a, b is in X ′4. Since X ′4 is not independent, it
contains at least two vertices; we can take c to be some vertex of X ′4 other than a, b. Now, as
above, if c has neighbours d in Z1 and e in Z2, we get a copy of C5 on vertices a, d, c, e, b. But
suppose c has no neighbours in Z1. Then we have d(c;Z2 ∪ Z3) = d(c;Y ′), and so

d(c;Z2 ∪ Z3)|Y ′|
|Z2 ∪ Z3|d(c;Y ′)

=
|Y ′|

|Z2 ∪ Z3|
≥ 1

1− 1
10α

> 1 + ε,

and by averaging for at least one of i = 2, 3 we have

d(c;Zi)|Y ′|
|Zi|d(c;Y ′)

> 1 + ε.

This is a contradiction to the assumption c ∈ X ′4. The same calculation gives a contradiction if c
has no neighbours in Z2; again we reached a contradiction.

In conclusion, if in the final X we have a set X ′ in correspondence with some Y ′, then either X ′

is independent, or it has at most two vertices; in either case we can colour it with at most two
colours. So we can colour G[X] using at most 2 ·4K colours. By the same argument we can colour Y
with at most 2 · 4K colours. Putting these together, we can colour G with at most 4K+1 < C(α)
colours, as desired.

This ‘booster-tree method’ is one we don’t really know how to use. It’s been used in proofs broadly
similar to the above, but it probably should be much more widely useful.
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Exercises

Exercise 1.
Complete the proof of Brooks’ Theorem.

Exercise 2.
For n ≥ 3, a cycle Cn is a graph with vertex set {v1, . . . , vn} and edge set {v1v2, v2v3, . . . , vn−1vn,
vnv1}.

Let Cn, n ≥ 3, be a cycle. Let us assign lists L(v) of two colours to each vertex v of Cn. Show
that there is an L-colouring, except if n is odd and all lists are identical.

Let C2k, k ≥ 2, be an even cycle. Prove that χ(C2k) = ch(C2k) = χ′(C2k) = ch′(C2k) = 2, using
only the definitions.

Let C2k−1, k ≥ 2, be an odd cycle. Prove that χ(C2k−1) = ch(C2k−1) = χ′(C2k−1) = ch′(C2k−1) =
3.

Exercise 3.
Determine the chromatic index χ′(Kn) of the complete graphs Kn.

Exercise 4.
Let G be a planar graph and suppose it is drawn in the plane so that at least one face has more
than three edges on its boundary. Show that you can add an edge to G so that the larger graph is
again a planar, simple, graph. (The issue here is that you need to prevent adding an edge between
two vertices that are already connected by an edge. In other words: make sure that after adding an
edge the larger graph is still simple.)

Exercise 5.
Explain how Shannon’s Theorem ?? follows easily from Vizing’s Theorem ??.

Exercise 6.
Give an infinite family of directed graphs without a kernel.

Exercise 7.
A total colouring of a graph G = (V,E) is an assignment of colours to vertices and edges V ∪ E
so that adjacent or incident elements get different colours. The smallest k such that G has a total
colouring with k colours is called the total chromatic number, denoted χ′′(G).

Find lower and upper bounds of χ′′(G) in terms of ∆(G) and/or deg(G).
Determine the total chromatic number of cycles Cn and complete graphs Kn.
Show that if the List Colouring Conjecture ?? is true, then for simple graph G we have χ′′(G) ≤

∆(G) + 3.

Exercise 8.
This is a question that one of us once got in a job interview: What goes wrong with the proof of
Theorem 3 when we want to use it to prove that all planar graphs are 4-colourable?
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