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Chapter 4 of Diestel is good for planar graphs, and Section 1.7 covers the notions of minor and
topological minor. Section V.3 of Bollobás covers graphs on surfaces, and colourings thereof.

The definitive textbook for graphs on surfaces is Graphs on Surfaces, by Bojan Mohar and
Carsten Thomassen, Johns Hopkins (2001); www.fmf.uni-lj.si/~mohar/Book.html.

Most of what we will be discussing in the lectures and notes regarding graph minors can also
be found in Chapter 12 of Diestel.

We continue to assume that our graphs are finite and simple (no loops or multiple edges). Much
of the material could be adapted for non-simple graphs, but many things will go horribly wrong if
we allow our graphs to be infinite.

It is also convenient to assume throughout that a graph has at least one vertex. (To paraphrase
Frank Harary: “A graph without vertices is a pointless concept.”)

2.1 Surfaces and Embeddings

A (closed) surface is a compact connected 2-manifold (i.e. every point has a neighbourhood home-
omorphic to the open disc in R2). Surfaces can be classified as orientable and non-orientable.
Moreover, each orientable surface is homeomorphic to one of the surfaces Sk, k ≥ 0, where Sk is a
“sphere with k handles”. The sphere itself is S0; the torus is S1.

The surface Sk, for k ≥ 1, can be constructed as follows. Take a convex region in the plane
whose boundary is a 4k-gon. Label the boundary segments consecutively as

−→
a1,
−→
b1 ,
←−
a1,
←−
b1 ,
−→
a2,
−→
b2 ,
←−
a2,
←−
b2 , . . . ,

−→
ak,
−→
bk ,
←−
ak,
←−
bk .

Now identify the pairs of segments labelled
−→
ai and

←−
ai , for each i, preserving the orientations given

by the arrows, and do likewise for the
−→
bi and

←−
bi . It’s easy to see that this process identifies all the

corners of the 4k-gon into one point.
The genus of Sk is k, and its Euler characteristic χ is 2− 2k.

There is a similar construction giving all the non-orientable surfaces: Nk is formed from a
2k-gon labelled as −→

a1,
−→
a1,
−→
a2,
−→
a2, . . . ,

−→
ak,
−→
ak.

The non-orientable surface Nk (k ≥ 1) has genus k and Euler characteristic 2 − k. The first two
non-orientable surfaces in the list are the projective plane N1 and the Klein bottle N2.

More details can be found in Bollobás, for instance.
An embedding of a graph G = (V,E) on a surface S is a function taking each vertex x of G to

a point ϕ(x) of S, and each edge xy of G to a Jordan curve in S, with endpoints ϕ(x) and ϕ(y),
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in such a way that the only intersections between the points and curves in the surface are those
corresponding to incidences between edges and vertices of G. This all means what you think it
ought to mean, and this is exactly how we think of graphs being drawn on a surface: vertices
are drawn as different points, edges are curves (not necessarily straight lines!) connecting their
endvertices, and two edges don’t cross.

A graph can be embedded on the sphere S0 if and only if it can be embedded on the plane, in
which case it is called a planar graph.

We’ll skip the work required to develop enough machinery to prove anything rigorously. (E.g.,
the “Jordan curve theorem” says that a closed Jordan curve in the plane has an inside and an
outside. Although intuitively this is obvious, it is actually easy to prove.) The result we need is
that, if we remove the image of G from the surface S, we are left with a number of connected
components called the faces of the embedding. The embedding is a 2-cell embedding if each face is
homeomorphic to the open unit disc.

In the case of the sphere S0, the only way an embedding of a connected graph can fail to be a
2-cell embedding is if the graph has no vertices. For surfaces with more interesting topology, this
is a non-trivial condition.

Two central questions of the subject are: (i) Given a surface S, which graphs can be embedded
on S? (ii) Given a graph embedded on S, what can we say about its chromatic number? We
discussed (ii) a bit in the previous lecture. Here, we’ll concentrate on (i).

2.2 The Euler-Poincaré Formula

The Euler-Poincaré Formula states that, if we have a 2-cell embedding of a graph on a surface S,
then

v − e+ f = χ,

where v is the number of vertices of the graph, e is the number of edges of the graph, f is the
number of faces of the embedding, and χ is the Euler characteristic of the surface S.

We’ll just prove this in the case where S is the plane, whose Euler characteristic is 2.

Theorem 1 (Euler’s Formula).
Let G be a connected graph with at least one vertex, embedded in the plane. Then v − e + f = 2,
where v = |V (G)|, e = |E(G)|, and f is the number of faces of the embedding.

Proof. We work by induction on the number f of faces. When f = 1, the graph has no cycles, so
is a tree, and v = e+ 1, which is consistent with the formula.

For f ≥ 2, we suppose the result is true for embeddings with at most f − 1 faces, and take
an embedding of a graph with f faces. Choose an edge separating two different faces, and delete
it. The graph remains connected: the number of faces has decreased by one, as has the number
of edges, while the number of vertices is unchanged. By the induction hypothesis, Euler’s Formula
holds for the new embedding. Thus it holds for our embedding. Thus, by induction, the formula is
valid for all embeddings.

Euler’s Formula is often quoted as referring to the number of vertices, edges and faces of a convex
polyhedron in 3-space. The formula for polyhedra follows from the theorem for graphs, as a convex
polyhedron can be “drawn in the plane” so that the notions of vertex, edge and face are preserved.

Euler’s Formula is often used in conjunction with a “double-counting” of the edges in an em-
bedding. For a face F which is homeomorphic to an open disc, let the degree d(F ) be the number
of edges we encounter on the boundary walk of F . Note that if an edge appears twice in such a
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walk, we count it double. This means, for instance, that an embedding of an n-vertex tree in the
plane yields one face with degree 2n− 2.

If F is the set of faces of the embedding, then we note that
∑

F∈F d(F ) counts the total number
of edges on the boundaries of all the faces, and that each edge is counted exactly twice by this sum.
So we have ∑

F∈F
d(F ) = 2e.

Since all our graphs are finite, each face has at least 3 edges on its boundary, and hence in particular
we see that 2e ≥ 3f . So using Euler’s Formula now gives that for a planar graph we have

e ≤ 3v − 6.

Notice that this bound makes no mention of the embedding, so it gives a necessary condition for a
graph to be planar. (Indeed, the same argument gives an upper bound on the number of edges of
a graph that can be embedded on any given surface.)

By the Handshaking Lemma, we know that for any graph G we have
∑

v∈V (G) d(v) = 2e.
Combining that with the formula above means

∑
v∈V (G) d(v) ≤ 6v − 12. This means that the

average degree of any planar graph is strictly less than 6, so that any planar graph contains a vertex
of degree at most 5. Hence deg(G) ≤ 5 for any planar graph, which implies that χ(G) ≤ ch(G) ≤ 6.
We saw last week that this can be improved!

Today, we head in a different direction. From the above inequality, we see that a planar graph
on 5 vertices has at most 9 edges. This means that the complete graph K5 is not planar. Also
the complete bipartite graph K3,3 is not planar. To see this, notice that, in any embedding of a
bipartite graph on a surface, all faces have an even number of sides, so in particular at have degree
at least 4. Thus we have 2e =

∑
F∈F d(F ) ≥ 4f . Combining that with Euler’s Formula leads to

e ≤ 2v − 4, and this is false for K3,3.

2.3 Subgraphs and minors

Now we know that K5 and K3,3 are not planar, we can deduce that any graphs “containing” them
are not planar. For sure, this is true if our notion of containment is containment as a subgraph,
but in fact we can make stronger statements by introducing more general notions of containment.

Let G be a graph. We define the following operations:

• Removing a vertex means removing that vertex from the vertex set of G and also removing all
edges that vertices is incident with from the edge set.

• Removing an edge means removing that edge from the edge set of G.

• Suppressing a vertex of degree two means removing that vertex and adding an edge between its
two neighbours, provided that edge is not already present (if the edge is already there, we don’t
add a new one).
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• Contracting an edge: If e = xy is an edge of G, then contracting e means removing x and y,
adding a new vertex z which is adjacent to all vertices that were adjacent to x or y, after which
multiple edges are removed.
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Let H and G be two graphs.

• H is an induced subgraph of G, or G has H as an induced subgraph, notation H ≤I G, if H can
be obtained by a sequence of vertex removals.

• H is a subgraph of G, or G has H as a subgraph, notation H ≤S G, if H can be obtained from G
by a sequence of vertex and edge removals.

• H is a topological minor of G, or G has H as a topological minor, notation H ≤T G, if H can
be obtained from G by a sequence of vertex removals, edge removals, and suppression of vertices
of degree two.

• H is a minor of G, or G has H as a minor, notation H ≤M G, if H can be obtained from G
by a sequence of vertex removals, edge removals, and edge contractions.

Note that in the definitions above we allow the sequences to have length zero, so every graph
is a subgraph, etc., of itself.

There is a clear hierarchy of the order relations above:

H ≤I G =⇒ H ≤S G =⇒ H ≤T G =⇒ H ≤M G.

The following useful result, whose proof is an exercise, gives an alternative characterisation of
the minor relation.

Theorem 2.
The following two statements are equivalent for all graphs H,G:

• H is a minor of G.

• For each u ∈ V (H), there exists a subset Vu ⊆ V (G) of vertices from G so that
– the sets {Vu | u ∈ V (H)} are disjoint;
– each set Vu, u ∈ V (H), induces a connected subgraph of G; and
– for all u, v ∈ V (H) with uv ∈ E(H), there are vertices x ∈ Vu, y ∈ Vv with xy ∈ E(G).

2.4 Minors and Embeddings

Suppose that G is a planar graph, and that H is obtained from G by any of the operations of:
vertex removal, edge removal, suppression of a vertex of degree 2, and edge contraction. We claim
that H is also planar.

The first two of these are obvious. For suppression of vertices of degree 2, we obtain an em-
bedding of H by replacing the two Jordan curves representing the edges removed from G by a
single Jordan curve representing the new edge of H. The same also holds if we replace “planar” by
“embeddable on the surface S”, for any S.

For edge contraction, given an embedding of G, and an edge e = xy of G to be contracted, we
derive an embedding of H by placing the new vertex z anywhere on the curve representing xy, and
extending all the curves incident with x or y inside thin tubes to reach z, following the path of the
curve formerly representing xy.

The arguments above have the following consequence.

Theorem 3.
If G can be embedded on a surface S, and G contains H as a minor, then H can be embedded on S.
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We say that the family of graphs that can be embedded on a surface S is minor-closed : if G is in
the family, and H is a minor of G, then H is in the family.

Because of the hierarchy of the operations introduced in the previous subsection, certainly if G
can be embedded on a surface, and G contains H in any of the other senses discussed above, then H
can be embedded on the surface.

Returning to the planar case, we now have the following results.

Theorem 4.
If G is planar, then:

(1) G contains neither K5 nor K3,3 as a minor;

(2) G contains neither K5 nor K3,3 as a topological minor.

Kuratowski’s Theorem says that the converses of both (1) and (2) in the previous theorem are true.

Theorem 5 (Kuratowski, 1930).
The following statements are equivalent for all graphs G:

(a) G is planar.

(b)G contains neither K5 nor K3,3 as a minor;

(c) G contains neither K5 nor K3,3 as a topological minor.

We’ve seen that (a) implies (b), and (b) implies (c), since if G contains one of the graphs as a
topological minor, it contains that graph as a minor.

This section contains only a proof that (c) implies (b): if G contains one of K5 or K3,3 as a
minor, then G contains one of K5 or K3,3 as a topological minor. It is important to stress that this
is not a special case of any general result; it’s more in the nature of a lucky accident that having
one of K5 and K3,3 as a minor implies having one of the two as a topological minor.

Proof of (c) ⇒ (b). We use the characterisation of the graph minor relation given in Theorem 2.
Suppose first that G contains K3,3 as a minor, and take a collection of six sets Vu ⊆ V (G) as

in Theorem 2, one for each u ∈ V (K3,3). For each set Vu, we identify three edges to Vu from the
sets Vw, where w is in the opposite class of K3,3 from u. These “land” at three, not necessarily
distinct, vertices of Vu: call these x, y, z. It is not hard to see that there is some vertex vu in Vu
(possibly equal to one or more of x, y, z) which has disjoint paths to x, y, z (possibly trivial, i.e. of
length zero) in G[Vu]. (By G[Vu] we denote the subgraph of G induced by the vertex set Vu ⊆ V (G).)
The six vertices wu, u ∈ V (K3,3), together with the various edges and paths we identified above,
form a copy of a graph inside G that contains K3,3 as a topological minor.

The paragraph above actually shows that if a graph G contains K3,3 as a minor, then G
contains K3,3 as a topological minor. However (and hopefully this gives some insight into how and
why the notions of minor and topological minor are different), if G contains K5 as a minor, then it
need not contain K5 as a topological minor. Indeed, G can have a K5 minor even if it has maximum
degree 3, but a graph with K5 as a topological minor must have at least five vertices of degree 4.

To complete the proof of (c) ⇒ (b), we need to prove that, if G contains K5 as a minor,
then it contains either K5 or K3,3 as a topological minor. Again we use the characterisation from
Theorem 2. So suppose that there are five disjoint connected sets Va, Vb, Vc, Vd, Ve in G, with edges
between each pair. The plan is to set off trying to find K5 as a topological minor. So, for each Vi,
i ∈ {a, b, c, d, e}, we find the four “landing points” xij ∈ Vi of the edges that connect Vi to the
other Vj . Either there is a vertex wi in Vi with four disjoint paths to the xij , or there are two
vertices f and g in Vi, connected by a path, with two of the xij sending paths to f and the other
two to g, all five paths being internally disjoint. If the first case occurs for all Vi, then we found a
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topological minor of K5 in G. If the latter case occurs with any of the Vi, then we change plans: in
this case, we divide Vi into two connected parts, one containing f and two of the xij , and the other
containing g and the other two xij . The six vertex sets now witness that K3,3 is also a minor, and
therefore a topological minor, of G.

Of course, the hard part of Theorem 5 is to prove that (b) and (c) imply (a); given a graph G
which doesn’t contain K5 or K3,3 as a minor, we want to find a plane embedding of G.

We give only a brief sketch. The proof goes by induction on v(G). If G is not connected, then
we draw its connected components (by induction) disjointly in the plane.1 If G is connected but
not 2-connected, we can do something similar: let v be a vertex such that G − v is disconnected,
and let C be a component of G− v. We can draw the graphs G− C and G[C ∪ {v}] in the plane
by induction; we put the drawing of the second, without loss of generality with v on the outer face,
in a face of the drawing of the first containing v, and identify the vertex v in the two drawings.

To deal with 2-connected but not 3-connected G becomes a little harder. Suppose {u, v} is a
separating set, that is G − {u, v} is disconnected, and let C be a component of G − {u, v}; let
G1 = G − C and G2 = G[C ∪ {u, v}]. If uv is an edge of G, then we can repeat the trick of
drawing G1 and G2 by induction and putting the drawing of G2, with uv on an outer face, in a
face of G1 containing uv, then identifying u and v. If uv is not an edge of G, this doesn’t work.
But the trick is to notice that we can simply add uv to both G1 and G2 without creating a K5

or K3,3 topological minor, then use induction. Suppose G1 ∪ {uv} has one of these two graphs
as a topological minor. The edge uv must be used in this topological minor, since G1 does not
contain K3,3 or K5 as a topological minor. But there is a path in G2 from u to v: for if not, then
G−u would be disconnected. We can replace uv with this path to find K3,3 or K5 as a topological
minor in G, a contradiction.

Finally, we can assume G is 3-connected. This is the point where we really need to do some
work, and where we will skip most of the details. Note that this sketch is substantially appealing
to your intuition on how planar drawings work; if you were forced to actually write down details
of how to identify the two copies of uv given planar drawings, it would be rather painful (and
long). We can assume that all edges in all our planar drawings are straight lines (this property
would easily be preserved by the induction steps above, and the following sketch gives it for the
3-connected case) which makes life rather easier, but still not really easy.

Briefly, to deal with the case G is 3-connected, either we have G = K4 and it is easy to draw
a plane embedding (with straight lines) or G has 5 or more vertices. One can fairly easily check
that in this case (Lemma 3.2.4 in Diestel) there is some edge xy such that when we contract xy we
obtain a graph G′ which is still 3-connected. We can draw this in the plane by induction; let z be
the vertex obtained by contracting xy. Let C be the face of G′ − z containing z. We try to draw
x and y inside C, with a straight line joining them, and add more straight lines to form a drawing
of C. Now by a case analysis (Lemma 4.4.3 of Diestel) you can check that either this is possible,
or you find a K5 or K3,3 minor.

2.5 Orderings and closedness of properties

We will now leave the topic of graphs on surfaces, and examine the notions of graph containment
for their own sake. To begin with, we observe that our relations of containment are all transitive
(if G contains H and H contains J , then G contains J), and so give “orderings” on the set of all
graphs. Let us be more precise.

1Note that this works for the plane; it would not work for the torus or other more complicated surfaces.
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If 4 is a relation on a set X, then (X,4) is called a quasi-ordering or pre-order if the relation
is reflexive (x 4 x for all x ∈ X) and transitive ((x 4 y ∧ y 4 z)⇒ (x 4 z) for all x, y, z ∈ X). We
say that a quasi-ordering (X,4) is without infinite descent if there is no infinite strictly decreasing
sequence x1 � x2 � x3 � · · · (where x � y means y 4 x and x 6= y). It is easy to see that the
orderings defined in the previous section on the class G of all (simple, finite) graphs correspond to
quasi-orderings without infinite descent.

A subset A ⊆ X of a quasi-ordering (X,4) is an antichain if every two elements from A are
incomparable (i.e. if a, b ∈ A with a 6= b, then a 64 b and b 64 a).

Proposition 6.
Given a quasi-ordering (X,4), any infinite sequence a1, . . . in X either repeats one term infinitely
often or contains at least one of the following three things: an infinite strictly decreasing sequence,
an infinite strictly increasing sequence, and an infinite antichain.

Proof. This is really a special case of the infinite Ramsey theorem, and we’ll prove it in that
language. (We shall return to Ramsey theory in the last lecture of this course.) We colour the
complete graph on N with four colours, colouring the edge ij (for i < j) with the relation between ai
and aj (which can be one of ai = aj , or ai ≺ aj , or aj ≺ ai, or none of the above). We claim that
for any 4-colouring of the complete graph on N there is an infinite set S such that all pairs in S
have the same colour; the existence of this set proves the proposition.

To find such a set, we work as follows. Let s1 = 1, and colour s1 with a colour c1 appearing on
infinitely many edges leaving 1; let T1 be the set of vertices joined to s1 with colour c1. Now for
each i = 2, . . . , let si be the smallest element of Ti−1. Let ci be a colour appearing on infinitely
many edges from si to Ti−1, and let Ti be the set of vertices in Ti−1 joined to si with colour ci. We
obtain in this way an infinite sequence since by construction each Ti is infinite.

Now pick a colour c which appears infinitely often in the sequence c1, . . . , and let S = {si | ci =
c}. It is easy to check that S is the desired infinite monochromatic clique. Note that this proof
doesn’t rely on having specifically 4 colours; any finite number would work.

Let P be a property defined on the elements of X. We say that P is closed under 4 or 4-closed
if for every two elements x, y ∈ X we have that if x has property P and y 4 x, then y also has
property P .

As an example, suppose property P is defined for G ∈ G (the set of all graphs) as “G is
bipartite”. This property is closed under both the subgraph and the induced subgraph ordering,
but not under the topological minor or the minor ordering. (See Exercises.)

Let (X,4) be a quasi-ordering and suppose P is a 4-closed property defined on the elements
of X. Then we can talk about the set P of all elements in X that satisfy property P . And of course
we also have the complement P = X \P of all elements in X that do not satisfy property P .
Let M be a set of minimal elements of P

Since P is assumed to be 4-closed, we know that if x ∈P and x 4 y, then y ∈P. This leads
to the following crucial observation:

x has property P ⇐⇒ there is no m ∈M with m 4 x.

In other words: a property that is 4-closed is completely determined once we know a set of minimal
elements of the set of elements that don’t have the property. Such a minimal set is called a minimal
forbidden set of the property.

The observations above may provide a good description of certain properties and may provide
efficient algorithms to test if a given element satisfies the property. This possible usefulness depends
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on the answers to questions like: Can we find a minimal forbidden set? Is this set finite? Is there
a good algorithm to test if x 4 y or not? Etc.

You may wonder why we look at a set of minimal elements of the set P of elements in X that
do not satisfy property P . Wouldn’t it be more natural to look at the set of maximal elements
of P? Yes, it would be more natural. But for the orderings we are considering such a set of
maximal elements usually doesn’t exist. The orderings give natural minimal elements, since from
every finite graph, we can only have a finite number of descending steps before we have to stop
(we’ve reached a graph with one vertex, say). But in general we won’t have maximal elements
(except for very special properties).

Here is an example illustrating the concepts above. For a graph G = (V,E), recall that the line
graph L(G) = (VL, EL) is the graph that has the edges of G as vertices: VL = E; and two edges
are adjacent in the line graph if they have a common end-vertex in G. A graph H is a line graph
if H ∼= L(G) for some graph G.

It’s easy to see that if H is a line graph, then every induced subgraph of H is also a line graph.
Hence the property of “being a line graph”, defined on the set G of graphs, is closed under the
induced subgraph ordering ≤I . For this property, we actually do know the unique set of minimal
forbidden elements.

Theorem 7 (Beineke, 1968).
A graph H is a line graph if and only if it does not contain one of the nine graphs below as an
induced subgraph.

2.6 Well-quasi-ordering

A quasi-ordering (X,4) is a well-quasi-ordering if for every infinite sequence x1, x2, . . . of elements
from X, there are two indices i < j so that xi 4 xj . In particular, Proposition 6 implies the
following.

Proposition 8.
The following two properties are equivalent for a quasi-ordering (X,4):

• (X,4) is a well-quasi-ordering.

• (X,4) is a quasi-ordering without infinite descent and without infinite antichains.
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Requiring a quasi-ordering to be a well-quasi-ordering is a very strong requirement. For instance,
for the graph orderings defined in the first section, neither (G ,≤I), nor (G ,≤S), nor (G ,≤T ), are
well-quasi-orderings. For the induced subgraph ordering and the subgraph ordering, the sequence
of cycles C3, C4, C5, . . . forms an infinite sequence that fails the condition in the definition. In one of
the exercises you will be asked to find counterexamples yourself for the topological minor ordering.

A fundamental property of well-quasi-orderings is that given a well-quasi-ordering (X,4), one
can build a new well-quasi-ordering as follows. Let X<∞ denote the set of finite subsets of X.
Given A,B ∈ X<∞, we write A 4 B if there is an injection f : A→ B such that a 4 f(a) for each
a ∈ A. This turns out to be a well-quasi-order.

Lemma 9 (Higman’s Lemma, 1952).
The quasi-ordering (X<∞,4) is a well-quasi-ordering.

Proof. It’s easy to check that since (X,4) is a quasi-ordering, so is (X<∞,4). So what we need to
show is that there is no infinite descending sequence or antichain; in other words, for any sequence
A1, . . . in X<∞, there are i < j such that Ai 4 Aj . Call a sequence with this property good, and
one which does not have it bad. Suppose for contradiction that such bad sequences exist.

We now construct a sequence. First, let A1 be an element of X<∞ with fewest elements such
that A1 is the first term of some bad sequence. Now, for each i = 2, . . . , given A1, . . . , Ai−1, let Ai

be an element of X<∞ with fewest elements such that A1, . . . , Ai is an initial segment of some bad
sequence. By construction, the result is a bad sequence.

Because ∅ 4 A for each A ∈ X<∞, we have |Ai| ≥ 1 for each i. Thus for each i we can choose
ai ∈ Ai. Let Bi = Ai\{ai} for each i. Because (X,4) is a well-quasi-ordering, by Proposition 6 there
is an infinite (not necessarily strictly) increasing subsequence (ai1 , . . . ) of (ai)

∞
i=1. Now consider

the sequence A1, . . . , Ai1−1, Bi1 , Bi2 , . . . . By choice of Ai1 this sequence is good. We do not have
Ai 4 Aj for any i < j, and since Bj 4 Aj using the trivial identity injection, we also do not have
Ai 4 Bj for any i < j. Thus the reason that A1, . . . , Ai1−1, Bi1 , Bi2 , . . . is good is that there exist k
and ` with k < ` such that Bik 4 Bi` . Let φ : Bik → Bi` be an injection witnessing Bik 4 Bi` , and
let φ′ be the injection from Aik to Ai` extending φ with φ′(aik) = ai` . Now φ′ witnesses Aik 4 Ai` ,
a contradiction.

Although the whole class of graphs is not well-quasi-ordered under the topological minor ordering,
some important subclasses are.

Theorem 10 (Kruskal, 1960).
The class of all trees, with topological minor as the ordering, is well-quasi-ordered.

The proof of this is quite similar to that of Lemma 9, with one extra trick.

Proof. We aim to prove a slightly stronger statement. A rooted tree is a tree T with one vertex
identified as the root. Now a tree T is a topological minor of another tree T ′ if and only if we
can subdivide the edges of T (that is, we are allowed to perform the operation of replacing an
edge uv with a new vertex w and the edges uw, vw as often as we like) and find an isomorphism φ
from the result to a subgraph of T ′. If T and T ′ are rooted trees, we say that in addition φ is
order-preserving if the following condition holds. For any x, y ∈ V (T ) such that the path from the
root of T to y goes through x, so the path from the root of T ′ to φ(y) goes through φ(x). We will
prove that the class T of all rooted trees, with order-preserving topological minor as the ordering,
is well-quasi-ordered. We denote this ordering by 4O.

Let us now show that no bad sequence (as in Lemma 9) of rooted trees exists. Suppose to the
contrary that such a bad sequence exists. We construct a sequence T1, T2, . . . inductively as follows
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(essentially as in the proof of Lemma 9). Let T1 be a smallest (number of vertices) rooted tree
which is in such a bad sequence. Now for each n ≥ 1 successively, given T1, . . . , Tn, choose Tn+1 to
be a smallest rooted tree such that T1, . . . , Tn+1 is an initial segment of a bad sequence. Let r1, . . .
be the roots of the trees T1, . . . . Note that trivially each Ti has at least two vertices (actually at
least three is also trivial; but we won’t need it).

For each i, observe that Ti − ri forms a finite collection of trees, which we root at the vertices
adjacent to ri in Ti. For each i, let Ai be the set of rooted trees Ti − ri. Now our goal is to show
that for some i < j we have Ai 4O Aj , where as with Lemma 9 we derive a quasi-ordering on T <∞

from that on T . Given such a pair, since Ai 4O Aj we have a collection of maps witnessing this,
whose union is a map from Ti − ri to Tj − rj . Extending this map by adding ri → rj we have a
map from Ti to Tj which witnesses Ti 4O Tj ; that is the contradiction we want.

The trick now is to show that the subset of T formed by the rooted trees in A :=
⋃

iAi is well-
quasi-ordered by 4O. By Lemma 9, this implies that A<∞ ⊆ T <∞ is well-quasi-ordered by 4O.
Since A1, . . . is a sequence in A<∞, we thus get i < j such that Ai 4O Aj as desired.

It remains to show that (A,4O) is a well-quasi-ordering. To that end, let B1, . . . be a sequence
of trees inA. For each i, let n(i) be such that Bi ∈ An(i), and choose k minimising n(k). Trivially Bk

has fewer vertices than Tn(k), so by construction of the sequence T1, . . . , it follows that the sequence
T1, T2, . . . , Tn(k)−1, Bk, Bk+1, . . . is good. Let B 4O B′ be a pair witnessing that this sequence is
good (soB comes beforeB′ in the sequence). NowB cannot be in the initial segment T1, . . . , Tn(k)−1,
since otherwise either B′ is also in this initial segment, contradicting badness of T1, . . . , or B′ = Bi

for some i, but then we have B 4O B′ = Bi 4O Tn(i) and since n(i) > n(k)− 1 by choice of k, this
too is a contradiction to badness of T1, . . . . But then we have B = Bi and B′ = Bj for some i < j;
in other words, the sequence B1, . . . is good, as desired.

An interesting point to note here is that this proof (and that of Higman’s Lemma 9) really use
infinite sets and the Axiom of Choice in a fundamental way; not a very common thing in discrete
mathematics. It’s easy enough to see that in Theorem 10 we really need an infinite set to guarantee
finding two trees where one is a topological minor of another (for any finite n we can just take all
non-isomorphic n-vertex trees; the number of such trees tends to infinity with n). But Kruskal’s
theorem in particular implies the following, observed by Friedman.

Corollary 11.
Let tree(n) denote the minimum m such that the following statement holds. For every sequence
T1, . . . , Tm of trees, where Ti has i+ n vertices, there is some pair with one a topological minor of
the other.

Then tree(n) exists.

Proof. This is a classical compactness argument. Suppose tree(n) does not exist; then for each
m there is a counterexample sequence of m trees. Let T1 be a tree which plays the rôle of T1 in
infinitely many of these sequences, and discard the other sequences. Let T2 be a tree which plays
the rôle of T2 in infinitely many of these sequences, and discard the other sequences. Repeat forever;
the result is an infinite sequence of trees, which by Theorem 10 is good. Fix a pair Ti, Tj with i < j
witnessing this, and we see that the supposed counterexample sequence for m = j contains the pair
Ti, Tj where Ti is a topological minor of Tj .

This proof provides no hint of how fast tree(n) grows. In fact, it turns out to grow incredibly fast;
so fast that it cannot really be described by ‘Peano arithmetic’ (this is a minimal system of axioms
that let you perform arithmetic; normally that’s about all we need in discrete mathematics), so
that while you can prove any given tree(n) exists in Peano arithmetic (by brute force enumeration,
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say) you cannot prove Corollary 11 in Peano arithmetic (at least, if ZFC is consistent). You
really need to assume stronger axioms (like the Axiom of Choice) which normally aren’t needed in
discrete mathematics. This is also a result of Friedman (indeed, this motivated his observation of
Corollary 11); the idea is to show that on the one hand Peano arithmetic cannot prove the existence
of very fast-growing functions, and on the other hand that tree(n) does grow so fast.

We conclude this section with an easy but important proposition.

Proposition 12.
Let (X,4) be a well-quasi-ordering and P a 4-closed property on X. Then a minimal forbidden
set of P is finite.

Proof. Let F be a forbidden set of P . If F is infinite, then by definition there are F1 6= F2 such
that F1 4 F2. Let F ′ = F −{F2}. We claim that F ′ is a forbidden set of P . Indeed, if Q 6∈ P , then
by definition of F there exists F ∈ F such that F 4 Q. Either F 6= F2, in which case F ∈ F ′, or
F = F2, in which case we have F1 4 F2 4 Q and hence F1 4 Q. It follows that F is not a minimal
forbidden set of P .

The importance of this property is that once we know that (X,4) is a well-quasi-ordering, then
every property that is 4-closed has a finite minimal forbidden set. If we also have, for each x ∈ X,
an algorithm which efficiently answers the question ‘Given y ∈ X, is x 4 y?’, then that proves that
for any 4-closed property P , there exists an efficient algorithm that decides the question ‘Given
y ∈ X, is y ∈ P?’.

But note that the proofs we saw so far that some quasi-orderings are well-quasi-orderings are
not constructive. In particular, they don’t help us find these minimal forbidden sets guaranteed
by Proposition 12. So when we can test x 4 y efficiently, we are in the rather strange position of
knowing efficient algorithms exist without being able to find them. We’ll see in the next section
that this is exactly the case for minor-closed graph properties.

2.7 Minors of graphs

In the early 1980s, Robertson and Seymour announced a proof of a conjecture of Wagner: that the
class of finite graphs with the minor ordering is a well-quasi-ordering. The proof spans 20 papers
and over 400 pages which appeared over the next 20 years, the ‘Graph Minors’ series (and the series
continued for a few more papers to tie up some related problems).

Theorem 13 (Graph Minor Theorem, Robertson & Seymour, 1986–2004).
The class of finite graphs is well-quasi-ordered under the minor ordering.

They also proved, in this series, that indeed, for any fixed G, one can check if G is a minor of
an input graph H in time cubic in |E(H)| (and the algorithm for this is completely explicit), so
that for any given minor-closed class of graphs G, one can decide in cubic time if H ∈ G. But,
unless you are given G in a way which makes it obvious what the list of forbidden minors is, then
you probably cannot find this list in any useful way. Indeed, if G is given via Turing machines
(which is a reasonable enough way), then the problem is known to be undecidable (Fellows and
Langston, 1989). To take a more practical view, we know there are 2 forbidden minors for the class
of planar graphs (Theorem 5). For the next orientable surface, the torus, there are over 239,000
known forbidden minors (found by computer search); and there is no reason to believe that the
total number is close to this.

We can try to sketch, very briefly(!) how the Graph Minor Theorem is proved. For now, consider
only planar graphs. Let G1, . . . be a sequence of planar graphs.
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If this sequence contains as minors arbitrarily large ‘grids’, then it is a good sequence. A grid
of size k is simply a graph drawn on the integer points [k]× [k] in the plane by joining each point
to the at most four points at unit distance from it. A large grid ‘obviously’ contains any small
planar graph (say G1) as a minor: to see this, enlarge your (straight line) planar drawing of G1

by a large factor, replace the edges and vertices with small rectangles and circles respectively, and
superimpose it on the grid; this gives an ‘obvious’ minor.

On the other hand, the case that all the planar graphs ‘look like a tree’ is easy (at least by
comparison to the rest of this monumental proof) to handle; one can start with Theorem 10 and
try to generalise it.

To be more precise about what ‘looks like a tree’ means, we need to say what a tree decomposition
of a graph G is. This is a tree T , whose nodes are sets of vertices of G, with the following two
properties. First, every edge of G goes between two vertices which are in some node set of T .
Second, every vertex of G is in a collection of node sets of T which form a subtree of T . The width
of such a tree decomposition is defined to be the size of a largest node set minus one (the reason for
subtracting 1 is just to look pretty: so that trees have tree decompositions of width 1). Finally, the
treewidth of a graph G is the minimum width of any tree decomposition of G. This parameter turns
out to be important in a lot of graph theory, especially when one starts doing algorithms. Here,
the relevance is that if there is some r such that all graphs G1, . . . have treewidth at most r, then
one can push through the generalisation of Theorem 10 to show that G1, . . . is a good sequence.

Finally, we are left to deal with sequences G1, . . . which don’t contain arbitrarily large grid
minors, but where there is no bound on the treewidth. Somewhat surprisingly (and the proof is
not easy), Robertson and Seymour proved that there is no such sequence: for any k, there is r such
that a graph whose treewidth exceeds r necessarily contains a grid of size k as a minor.

Moving to the general case, very vaguely, the idea is as follows. First, we can assume no graph
in our sequence contains a Kt minor for t = v(G1). Then, we prove that any graph which doesn’t
contain a Kt minor has a tree-decomposition in which all the node-sets induce ‘nice’ graphs, and
we prove that ‘nice’ graphs are well-quasi-ordered, and then we can use something like Kruskal’s
theorem to put the pieces together. Unfortunately the definition of ‘nice’ gets rather complicated
for the general case; a short version is ‘almost embeds in some surface that Kt does not embed
into’, but this short version omits so many technicalities it’s almost a lie. In any case, the point
is that there are only finitely many of these surfaces, and a sufficiently complicated graph on a
surface S contains all small graphs on S as minors (by the same sort of argument as why a large
grid contains all small planar graphs). Of course, this sketch too leaves out so many details it is
almost closer to false than true.
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Exercises

Exercise 1.
How does Euler’s Formula for graphs embedded in the plane need to be modified to handle graphs
with c components, where c is not necessarily equal to 1?

Exercise 2.
Consider the oriented surface Sk, k ≥ 1. Draw a graph in Sk by putting a vertex at each corner
of the boundary 4k-gon, and an edge along each segment of the boundary, identifying any of these
edges and vertices as necessary. Count the number of vertices, edges, and faces in this embedding,
and verify the Euler-Poincaré Formula in this case.

Exercise 3.
(a) Describe the graphs not containing K3 as a minor.

(b) Describe the graphs not containing the 4-cycle C4 as a minor.

Exercise 4.
Let P be the Petersen graph. (If you don’t know what this is, find out!)

(a) Show that P is non-planar in the following three ways:
– using Euler’s Formula;
– by showing that P contains K3,3 as a topological minor;
– by showing that P contains K5 as a minor.

(b) What is the minimum size of a set F of edges of P whose deletion leaves a planar graph?

Exercise 5.
Show that the property of being bipartite is not closed for the topological minor ordering on graphs.
(Very easy)

Exercise 6.
Prove that the property of having no connected component with more edges than vertices is minor-
closed.

Find as many minimal forbidden minors as you can for this property.

Exercise 7.
Prove that the set of finite simple graphs G with the topological minor ordering ≤T is not a well-
quasi-ordering. In other words, give an infinite sequence of graphs G1, G2, . . ., for which there are
no two indices i, j with i < j and Gi ≤T Gj.

(This is a hard question. Feel free to do an Internet search, but you must show that the sequence
you give has the desired property.)
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