Discussion of:

Predictable Price Pressure

by

Samuel M. Hartzmark and David H. Solomon

Discussant: Dimitri Vayanos

NBER Asset Pricing - November 2021

This Paper

- Show that anticipated demand/supply shocks generate price pressure.
- Return on aggregate market is high on days where aggregate dividend payments are large. Reinvestment of dividends → Demand shock.
 - Return is higher by 6bps for each of top fifty dividend-payment days in a year.
 - High return during payment day and next few days. Slow and partial reversal.
 - Effect holds internationally.
 - Effect is smaller towards end of year, when mutual funds pay out dividends as cash rather than reinvesting them.
 - Effect is larger when VIX is higher.
- Return on firms with large stock grants to employees is low on days after earning announcements. Employees allowed to sell \rightarrow Supply shock.
 - Return is -120bps for firms above 95% percentile of stock grants.
- Price multiplier implied by dividend reinvestment effect is between 1.5-2.3.

- Round-trip arbitrage and transaction costs.
- Trade-timing arbitrage and bird-in-the-hand effect.
- Price multipliers (a.k.a. price impact, Kyle's lambda) of anticipated and unanticipated shocks.
 - Model and comparative statics.
 - Quantification.
- Related papers.

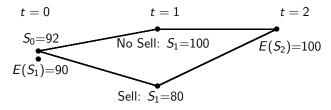
Round-Trip Arbitrage and Transaction Costs

- Can dividend reinvestment effect be turned into profitable trading strategy?
 - Commission for S&P 500 futures is 0.25bps and price impact for a \$100M order is 1.25bps. https://www.cmegroup.com/trading/equity-index/ report-a-cost-comparison-of-futures-and-etfs.html
 - $\bullet \ \rightarrow \mbox{Round-trip cost is 3bps.}$
 - \rightarrow Profit is 3bps (=6-3) for each of top fifty dividend-payment days.
 - $\bullet\, \rightarrow$ Return during the year is 150bps. Relatively small.
- Stock grant effect seems more profitable.

- Transaction costs weaken round-trip arbitrage but not trade-timing arbitrage.
- Trade-timing arbitrage:
 - Market order to buy S&P 500 on day before large aggregate dividend payment.
 - Why should a trader take other side rather than wait to sell at higher price on the next day?
 - ullet \to Price should not be rising predictably.

Bird-in-the-Hand Effect.

- Why should a trader buy ahead of a large sell order, rather than wait to buy at a lower price when sell order materializes?
- Answer:
 - Current price has dropped in anticipation of sell order.
 - $\bullet \rightarrow$ Buying asset offers an attractive long-run return.
 - Waiting to buy at a lower price risks that attractive return may disappear.
- Example from Vayanos-Woolley (RFS 2013, VW):



- Buy at $t = 0 \rightarrow$ lock-in expected return of 8.
- Buy at $t = 1 \rightarrow$ Gamble for expected return of 20 or 0.
- Anticipated demand/supply shocks in VW generate return momentum.

- Why do anticipated shocks impact prices?
- What drives their price multiplier?
- How does their price multiplier compare to that of anticipated shocks?
- Two approaches:
 - $\bullet\,$ Traders do not anticipate shocks \to Price multiplier is same as for unanticipated shocks.
 - $\bullet~\mbox{Traders}$ anticipate shocks $\rightarrow~\mbox{This}~\mbox{discussion}.$

Model

- Discrete time *t* = 0, 1,
- Constant riskless rate r.
- Risky asset pays dividend d_t at time t and is in supply of $\theta > 0$ shares. Dividend follows random walk

$$d_{t+1} = d_t + \epsilon_{d,t+1},$$

where $\epsilon_{d,t} \sim \mathcal{N}(0, \sigma_d^2)$ and independent across periods.

• Competitive investor with CARA utility over intertemporal consumption

$$\mathbb{E}_{0}\sum_{t=0}^{\infty}\exp(-\alpha c_{t}-\beta t).$$

- At time $t_0 > 0$, anticipated supply shock of u shares, where $u \sim \mathcal{N}(\bar{u}, \sigma_u^2)$.
- Supply shock reverts to zero at rate κ_u .

- Set $\bar{u} = \sigma_u = 0$.
- Investor's value function is

$$-\exp(-AW_t-B),$$

where $A = \frac{r\alpha}{1+r}$ and B is a constant.

• Price of risky asset is

$$S_t = \frac{d_t}{r} - Z.$$

• Expected return of risky asset in excess of riskless asset is

$$\mathbb{E}_t(R_{t+1}) = \mathbb{E}_t(d_{t+1} + S_{t+1} - (1+r)S_t) = rZ = A\theta \frac{(1+r)^2}{r^2} \sigma_d^2.$$

Expected excess return is positive and constant over time.

Supply Shock – Dynamics After the Shock

• Shock at time
$$t \ge t_0$$
 is $u_t = (1 - \kappa_u)^{t - t_0} u$.

• Investor's value function for $t \ge t_0$ is

$$-\exp(-AW_t-B-B_uu_t-B_{uu}u_t^2),$$

where (A, B) are as before and (B_u, B_{uu}) are constants.

• Price of risky asset is

$$S_t = \frac{d_t}{r} - Z - Z_u u_t,$$

where Z is as before and

$$Z_u = \frac{1}{r + \kappa_u} A \frac{(1+r)^2}{r^2} \sigma_d^2.$$

Price drops when shock hits (u > 0) and gradually rises to no-shock value.

• Expected return of risky asset in excess of riskless asset is

$$\mathbb{E}_t(R_{t+1}) = A(\theta + u_t) \frac{(1+r)^2}{r^2} \sigma_d^2.$$

Expected excess return rises when no shock hits and gradually drops to no-shock value.

Price Multiplier of Unanticipated Shock

- Suppose that shock is unanticipated.
- Price drops by $Z_u u_t$, where

$$Z_u = \frac{1}{r + \kappa_u} A \frac{(1+r)^2}{r^2} \sigma_d^2$$

is price multiplier.

- Price multiplier increases in:
 - Risk aversion (A).
 - Dividend risk (σ_d) .
 - Persistence of shock $\left(\frac{1}{\kappa_u}\right)$.

Supply Shock – Dynamics Before the Shock

• Investor's value function for $t < t_0$ is

$$-\exp(-AW_t-B-b_t),$$

where (A, B) are as before and b_t is a deterministic function of t.

• Price of risky asset is

$$S_t = \frac{d_t}{r} - Z - z_t,$$

where Z is as before,

$$\mathbf{z}_t = \left\{ egin{array}{c} rac{z_{t_0-1}}{(1+r)^{t_0-1-t}} & ext{for} \ t < t_0-1 \ rac{Z_u ar{u}}{1+r} rac{1}{1+x} & ext{for} \ t = t_0-1 \end{array}
ight.$$

and

$$x = \frac{r + \kappa_u}{r + 2\kappa_u - \kappa_u^2} A Z_u \sigma_u^2.$$

Price drops gradually in anticipation of shock $(\bar{u} > 0)$ but not fully $(z_{t_0-1} < \frac{Z_u \bar{u}}{1+r})$. Bird-in-the-hand effect.

Price Multiplier of Anticipated Shock

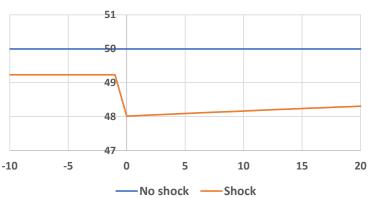
• Expected price drop in period t₀ is

$$\mathbb{E}_{t_0-1}(S_{t_0}) - (1+r)S_{t_0-1} = -Z_u \bar{u} \frac{x}{1+x}$$

- Price multiplier of anticipated shock is coefficient of \bar{u} .
- Ratio of price multipliers:

 $\frac{\text{Price Multiplier Anticipated Shock}}{\text{Price Multiplier Unanticipated Shock}} = \frac{x}{1+x}.$

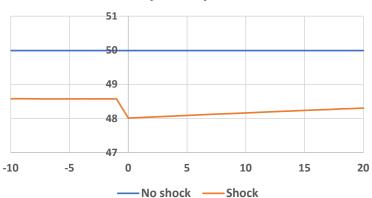
- Ratio increases in $x = \frac{r + \kappa_u}{r + 2\kappa_u \kappa_u^2} A Z_u \sigma_u^2$, and thus in:
 - Risk aversion (A).
 - Price multiplier of unanticipated shock (market illiquidity) (Z_u).
 - Uncertainty about shock (σ_u) .



Expected price

- Ratio of price multipliers is 61%.
- $\frac{\sigma_u}{\bar{u}} = 2.5.$

Price Graph for Lower σ_u



Expected price

- Assume σ_u is half as large. $\frac{\sigma_u}{\bar{u}} = 1.25$.
- Ratio of price multipliers drops to 29%.

- Calibrate VW so that fraction of return variance, at industry-sector level, due to flows is 15%.
- Ratio of price multipliers is 25%.
- Price multiplier of 1.5-2.3 of anticipated shocks implies multiplier of 6-9.2 of unanticipated shocks.

- Lou-Yan-Zhang (RFS 2013) show price impact of anticipated shocks in government bond market.
 - Prices drop predictably around auctions.
 - Effect is 9.07bps for 2-year notes, 16.81bps for 5-year notes, and 18.43bps for 10-year notes.
 - Compute price multiplier. What is relevant asset supply?
- See also large literature on QE, e.g., D'Amico-King (JFE 2013).

- Convincing evidence that anticipated shocks in the stock market generate price pressure.
- Useful to understand why the effect arises and what determines the price multiplier.
- Compare to other estimates within and outside the stock market.