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Abstract

We examine empirically how the supply and maturity structure of government debt affect

bond yields and expected returns. We organize our investigation around a term-structure model

in which risk-averse arbitrageurs absorb shocks to the demand and supply for bonds of different

maturities. These shocks affect the term structure because they alter the price of duration risk.

Consistent with the model, we find that the maturity-weighted-debt-to-GDP ratio is positively

related to bond yields and future returns, controlling for the short rate. Moreover, these effects

are stronger for longer-maturity bonds and following periods when arbitrageurs have lost money.

We use our empirical estimates to calibrate the model.
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1 Introduction

How do the supply and maturity structure of government debt affect interest rates? If, for example,

the government raises the supply of long-term bonds, would this raise the spread between long and

short rates? According to standard representative-agent models, there should be no effect because

of Ricardian equivalence (Barro (1974)). Intuitively, the consumption of the representative agent,

and hence interest rates, depend on government spending but not on how spending is financed.

The irrelevance result is at odds with a view held by many policy makers and emphasized in

early term-structure theories. According to the portfolio-balance theory (e.g., Tobin 1958,1969),

investors would be willing to absorb an increased supply of long-term bonds, and hence bear more

risk, only if they were compensated by an increase in long rates relative to short rates. According

to the preferred-habitat theory (e.g., Culbertson 1957, Modigliani and Sutch 1966), an increased

supply of long-term bonds would mainly be absorbed by a clientele of long-horizon investors. Long

rates would increase, while short rates, mainly determined by short-horizon investors, might not

be affected.

Determining empirically how the supply and maturity structure of government debt affect inter-

est rates is important for informing the theory of the term structure, especially given the conflicting

predictions. An empirical investigation of supply effects is also relevant from a policy viewpoint.

For example, during the recent financial crisis, central banks around the world conducted unprece-

dented open-market purchases of intermediate- and long-term government bonds. Drawing on the

portfolio-balance and preferred-habitat theories, the central banks hoped that their purchases, also

known as quantitative easing, would lower long-term interest rates and stimulate private investment.

In this paper we use time-series data to examine how the supply and maturity structure of

government debt affect government bond yields and expected returns in the U.S. We organize our

investigation around a term-structure model in which risk-averse arbitrageurs absorb shocks to the

demand and supply for bonds of different maturities. The model predicts that an increase in supply

should raise bond yields and expected returns, holding the short rate constant. Moreover, these

effects should be stronger for longer-maturity bonds and during times when arbitrageurs are more

risk averse. The data support these predictions. Using our empirical estimates of supply effects,

we calibrate the model and infer arbitrageur risk aversion.

Our theory builds on the preferred-habitat model of Vayanos and Vila (2009). We simplify that

model by assuming that the demand and supply for each maturity in the absence of arbitrageurs are

price-inelastic. The resulting model captures the portfolio-balance effect but abstracts away from

clienteles and preferred habitats since the only agents absorbing shocks are identical arbitrageurs.

Changes in supply in our model affect bond yields and expected returns because they change
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the amount of interest-rate risk, or “duration risk,” borne by arbitrageurs. For example, to ac-

commodate an increase in the supply of long-term bonds, arbitrageurs must absorb more duration

risk, and hence require all bonds in their portfolio to offer higher expected returns in excess of the

short rate. As a consequence, prices go down for all bonds, and yields and expected returns go up.

This holds even when the increase in the supply of long-term bonds is accompanied by an equal

decrease in the supply of short-term bonds. Indeed, since long-term bonds are more sensitive to

duration risk than short-term bonds, arbitrageurs must absorb more such risk. Therefore, prices

go down for all bonds, including for short-term ones whose supply decreases.

We assume that supply is described by one stochastic factor, and allow the loadings on that

factor to differ across maturities in both magnitude and sign. For example, increases in the supply

factor could correspond to increases in the supply of long-term bonds and decreases in the supply

of short-term bonds. We also assume, as a normalization and without loss of generality, that

increases in the supply factor correspond to increases in duration-weighted supply. Therefore,

when the supply factor increases, so do the yields and expected returns of all bonds, holding the

short rate constant.

Increases in the supply factor have stronger effects when arbitrageurs are more risk averse.

Moreover, the effects on expected returns are stronger for long-term bonds than for short-term

bonds. This is because long-term bonds are more sensitive to duration risk, and hence to changes

in the price of that risk. Finally, the effects of supply on yields are increasing or hump-shaped across

maturities, and are smaller than on expected returns. Both results follow from the property that the

effect of a supply shock on a bond’s yield is equal to the average effect on the bond’s instantaneous

expected return over the bond’s life. This average effect can be stronger for an intermediate-term

bond than for a long-term bond if the shock mean-reverts quickly. It is also smaller than the effect

on the bond’s current expected return for two reasons. Since the shock mean-reverts, its effect on

the expected return of all bonds dies down over time. And even in the absence of mean reversion,

the shock’s effect on the expected return of any given bond decreases over time. This is because

the bond’s time to maturity decreases and so does the bond’s sensitivity to changes in the price of

duration risk.

We test the predictions of our model using data on the U.S. Treasury market from 1952-2007.

For every bond, CRSP maintains a record of bond characteristics (e.g., coupon rate and maturity)

as well as monthly observations of face value outstanding. Using these data, we compute the

maturity structure of aggregate payments on government debt. We also compute a dollar duration

of these payments by multiplying each payment by the corresponding maturity and summing across

maturities. We use this dollar duration as our main measure of supply, as suggested by our model,

scale it by GDP, and term it the maturity-weighted-debt-to-GDP ratio. Maturity-weighted debt
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to GDP is approximately the product of debt to GDP times the average maturity of debt.

We regress yields and future returns on our supply measure, controlling for the one-year yield

which we use as a proxy for the short rate. Consistent with our model, we find that supply

is positively related to yields and future returns. The effects are statistically and economically

significant. For example, a one-standard-deviation increase in our main measure of supply raises

the yield on a long-term bond with approximate maturity twenty years by 40 basis points (bps) and

its expected return over a one-year horizon by 259bps. We find evidence in support of the other

predictions of our model as well. The effects of supply on yields and expected returns are increasing

with maturity, and the effects on yields are smaller than on expected returns. Moreover, using a

measure of arbitrageur wealth implied by our model, we find that both supply and the slope of the

term structure become stronger predictors of future returns when arbitrageur wealth is low.

We subject our empirical results to a number of robustness tests, two of which deserve particular

mention. First, we extend the time-series by collecting additional data on the supply and maturity

structure of government debt in a pre-war 1916-1940 sample. The results in that sample are

broadly similar to those in our main sample. Second, we address the concern that supply might be

endogenous. For example, the government might choose maturity structure to cater to fluctuations

in investor demand, mitigating and potentially even reversing any positive relationship that would

otherwise obtain between supply and yields or expected returns. We instrument maturity-weighted

debt to GDP by marketable Treasury debt to GDP. This is a suitable instrument because it is

correlated with maturity-weighted debt to GDP, while also being driven mostly by the cumulation

of past deficits rather than by changes in investor demand. In the instrumental-variables regressions,

the effect of supply on expected returns remains statistically significant, and the coefficients are

almost identical to their OLS counterparts.

Last, we calibrate our model to the data. We estimate parameters for the processes governing

the short rate and the supply factor. We also estimate how supply at each maturity loads on

the supply factor. Combining these with our estimates of supply effects on yields and expected

returns, we infer a coefficient of relative risk aversion (CRRA) for the arbitrageurs. We find that

this coefficient is 57 times the ratio of arbitrageur wealth to GDP. This yields a range from 7.6 in

the case where shocks to the supply of government debt are absorbed only by hedge funds, to 91.2

in the case where private pension funds, insurance companies, and mutual funds are equally active

in absorbing the supply shocks.

A number of papers measure supply effects by analyzing the behavior of bond yields around

specific policy events. Such events include Operation Twist, a program undertaken by the U.S.

Treasury and Federal Reserve during 1962-1964 with the objective to shorten the average maturity

of government debt (e.g., Modigliani and Sutch 1966, Ross 1966, Wallace 1967, Swanson 2011), the
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2000-2002 buybacks by the U.S. Treasury, undertaken with a similar objective (e.g., Garbade and

Rutherford 2007, Greenwood and Vayanos 2010), and the recent QE programs in the U.S. (e.g.,

Gagnon et al. 2011, Krishnamurthy and Vissing-Jorgensen 2011, D’Amico et al. 2012, D’Amico

and King 2013) and the U.K. (e.g., Joyce et al 2011).1 An advantage of such event studies is

that because the exact dates of policy events are known, it is easier to map changes in supply to

changes in yields. At the same time, these events can sometimes be confounded by news about

future monetary policy or the broader economy, or can occur during times when arbitrageur capital

is limited (Krishnamurthy and Vissing-Jorgensen 2011).

Simon (1991,1994), Duffee (1996) and Fleming (2002) document supply effects in the cross

section of Treasury Bills by correlating the supply of individual bills with the idiosyncratic com-

ponent of their yields. Fleming and Rosenberg (2007) find that Treasury dealers are compensated

by high excess returns when holding large inventories of newly issued Treasury securities. Lou et

al. (2013) document that prices of Treasury securities drop before issuance dates and then rebound

predictably. We focus instead on effects at a more aggregate scale and a lower frequency.

Reinhart and Sack (2000) and Dai and Philippon (2006) find that government deficits raise

the spread between long- and short-term interest rates. The latter paper also shows that the

effect occurs partly through an increase in the risk premia of long-term bonds. Kuttner (2006)

finds that shifts in Federal Reserve holdings of government debt towards long maturities lower the

risk premia of two-, three-, four- and five-year bonds. We examine instead how a theoretically

motivated measure of the supply of Treasury debt, which includes both the level of debt and its

average maturity, affects bond yields and expected returns. Beyond these findings, we also test for

predictions of our model on how supply effects should manifest themselves in the cross-section and

the time-series.2

Hamilton and Wu (2012) structurally estimate a discretized version of Vayanos and Vila (VV

2009) and derive measures of supply which they then use to predict returns in the 1990-2007

sample. Li and Wei (2012) estimate an affine term-structure model with macro-economic factors

and two explicit supply factors, imposing some of the structure suggested by VV. The estimates

of supply effects from these papers are broadly consistent with ours. Other papers that employ a

similar theoretical framework include Hanson (2012) and Malkhozov et al. (2013), who examine

how changes in the duration of mortgage-backed securities arising from prepayment options affect

yields and expected returns, and Hong et al. (2013), who examine how the effects of supply in the

1See also Bernanke et al. (2004) for a broader analysis of QE programs, and Joyce et al. (2012) for a survey of
the theoretical and empirical literature on QE.

2Some papers document price effects of demand rather than of supply. See, for example, Park and Reinganum
(1986), Ogden (1987), Fernald et al. (1994), Kambhu and Mosser (2001), Sierra (2010), and Baker and Wurgler
(2012).
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Treasury market interact with those of disagreement about future inflation.

Longstaff (2004) finds that U.S. Treasury bonds trade at a high price premium relative to bonds

issued by Refcorp, a U.S. government agency, during those months of the 2000-2002 buybacks when

the Treasury made large purchases. Krishnamurthy and Vissing-Jorgensen (2012) find that when

government bonds are in small supply, i.e., debt to GDP is low, they trade at a high price premium

relative to AAA-rated corporate bonds. The findings of these papers suggest that clienteles and

preferred habitats can exist not only within the Treasury market but also between Treasuries and

other markets.

The rest of this paper is organized as follows. Section 2 develops the theoretical framework

and derives the empirical hypotheses. Section 3 describes the data and our measures of supply.

Section 4 presents the empirical results. Section 5 calibrates our model to the data, and Section 6

concludes. The proofs of the theoretical results, as well as some supplementary tables and other

data material, are in the Appendix.

2 Theoretical Predictions

A theoretical framework helps organize our empirical investigation of supply effects on the term

structure. The theory builds on the preferred-habitat model of Vayanos and Vila (VV 2009), in

which arbitrageurs absorb shocks to the demand and supply for bonds of different maturities.

Arbitrageurs integrate the markets for different maturities, rendering the term structure arbitrage-

free. Because, however, they are risk averse, demand and supply shocks affect bond prices. We

focus on the two-factor version of VV, with a short-rate and a supply factor, and simplify the

model by assuming that the demand and supply for each maturity in the absence of arbitrageurs

are price-inelastic. This allows us to derive closed-form solutions and compute the equilibrium for

a broader range of parameters than VV. Using the closed-form solutions, we determine how the

supply of government debt affects bond prices, and derive our empirical hypotheses.

2.1 Model

The model is set in continuous time. The term structure at time t consists of a continuum of

zero-coupon bonds with maturities in the interval (0, T ] and face value one. We denote by P
(τ)
t the

price of the bond with maturity τ at time t, and by y
(τ)
t the bond’s yield (i.e., the spot rate for
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maturity τ). The yield is related to the price through

y
(τ)
t = − logP

(τ)
t

τ
. (1)

We denote by rt the short rate, which is the limit of y
(τ)
t when τ goes to zero.

Bonds are issued by a government and are traded by arbitrageurs and other investors. We model

explicitly only the arbitrageurs, and treat the demand and supply coming out of the government

and the other investors as exogenous and price-inelastic. We assume that arbitrageurs choose a

bond portfolio to trade off the instantaneous mean and variance of changes in wealth. Denoting

their time-t wealth by Wt and their dollar investment in the bond with maturity τ by x
(τ)
t , their

budget constraint is

dWt =

∫ T

0
x
(τ)
t

dP
(τ)
t

P
(τ)
t

dτ +

(
Wt −

∫ T

0
x
(τ)
t dτ

)
rtdt. (2)

The first term in (2) is the arbitrageurs’ return from investing in bonds, and the second term is

their return from investing their remaining wealth in the short rate. The arbitrageurs’ optimization

problem is

max
{x(τ)

t }τ∈(0,T ]

[
Et(dWt)−

a

2
V art(dWt)

]
, (3)

where a is a risk-aversion coefficient. One interpretation of the preferences in (3) is that arbitrageurs

form overlapping generations, each of which starts with the same level of wealth, lives for a short

period, and maximizes expected utility of final wealth. Introducing long-lived arbitrageurs would

complicate the optimization problem. Wealth would generally become a state variable, and arbi-

trageurs could have a hedging demand in addition to the myopic one generated by (3). Within our

simple specification (3), we can derive wealth effects as comparative statics by identifying changes

in wealth with changes in a. We can also introduce a hedging motive by allowing arbitrageurs to

care not only about mean and variance but also about the covariance between changes in wealth and

the risk factors. In Appendix B.1 we show that the hedging demand generated by this covariance

does not affect our main results.

We assume that the net supply coming out of the government and the other investors is described

by a one-factor model: the dollar value of the bond with maturity τ supplied to arbitrageurs at
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time t is

s
(τ)
t = ζ(τ) + θ(τ)βt, (4)

where ζ(τ) and θ(τ) are deterministic functions of τ , and βt is a stochastic supply factor. The

factor βt follows the Ornstein-Uhlenbeck process

dβt = −κββtdt+ σβdBβ,t, (5)

where κβ > 0 and σβ > 0 are constants, and Bβ,t is a Brownian motion. The assumption σβ > 0

is without loss of generality since we can switch the sign of Bβ,t.

Since the supply factor βt has mean zero, the function ζ(τ) measures the average supply for

maturity τ . The function θ(τ) measures the sensitivity of that supply to βt. We assume that θ(τ)

has the following properties.

Assumption 1. The function θ(τ) satisfies:

(i)
∫ T
0 θ(τ)dτ ≥ 0.

(ii) There exists τ∗ ∈ [0, T ) such that θ(τ) < 0 for τ < τ∗ and θ(τ) > 0 for τ > τ∗.

Part (i) of Assumption 1 requires that an increase in βt does not decrease the total dollar value

of bonds supplied to arbitrageurs. This is without loss of generality since we can switch the sign of

βt. Part (ii) of Assumption 1 allows for the possibility that the supply for some maturities decreases

when βt increases, even though the total supply does not decrease. The maturities for which supply

can decrease are restricted to be at the short end of the term structure. As we show in Section 2.3,

Parts (i) and (ii) together ensure that an increase in βt makes the portfolio that arbitrageurs hold

in equilibrium more sensitive to movements in the short rate. This increase in sensitivity is what

generates a positive effect of βt on yields and expected returns.

Assumption 1 includes many cases of interest. One polar case is that an increase in βt increases

supply for each maturity and hence total supply. This case can be derived by setting the threshold

τ∗ to zero so that θ(τ) > 0 for all τ . Another polar case is that an increase in βt leaves total supply

constant, but only shifts weight from short maturities to long maturities. This case can be derived

by setting
∫ T
0 θ(τ)dτ to zero.

We treat the short rate rt as exogenous, but motivated in part by the data, allow it to depend

on the supply factor βt. We assume that rt follows the Ornstein-Uhlenbeck process

drt = κr(r̄ − rt − γβt)dt+ σrdBr,t + σrβdBβ,t, (6)
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where r̄, κr > 0, σr > 0, γ, σrβ are constants, and Br,t is a Brownian motion independent of Bβ,t.

The assumption σr > 0 is without loss of generality since we can switch the sign of Br,t. The

constants γ and σrβ introduce correlation between rt and βt. We mainly focus on the case where

rt and βt are independent, thus setting γ = σrβ = 0, because the independent case is simple and

yields the main intuitions. We sketch the analysis of the correlated case at the end of Section 2.3.

2.2 Equilibrium Term Structure

The two risk factors in our model are the short rate rt and the supply factor βt. We next examine

how shocks to these factors influence the bond prices P
(τ)
t that are endogenously determined in

equilibrium. We solve for equilibrium in two steps: first solve the arbitrageurs’ optimization problem

for equilibrium bond prices of a conjectured form, and second use market clearing to verify the

conjectured form of prices. We conjecture that equilibrium bond yields are affine functions of the

risk factors. Bond prices thus take the form

P
(τ)
t = e−[Ar(τ)rt+Aβ(τ)βt+C(τ)] (7)

for three functions Ar(τ), Aβ(τ) and C(τ) that depend on maturity τ . The functions Ar(τ) and

Aβ(τ) characterize the sensitivity of bond prices to the short rate rt and the supply factor βt,

respectively, where sensitivity is defined as the percentage price drop per unit of factor increase.

Applying Ito’s Lemma to (7) and using the dynamics of βt and rt in (5) and (6) for γ = σrβ = 0,

we find that the instantaneous return of the bond with maturity τ is

dP
(τ)
t

P
(τ)
t

= µ
(τ)
t dt−Ar(τ)σrdBr,t −Aβ(τ)σβdBβ,t, (8)

where

µ
(τ)
t ≡ A′

r(τ)rt+A′
β(τ)βt+C ′(τ)+Ar(τ)κr(rt− r̄)+Aβ(τ)κββt+

1

2
Ar(τ)

2σ2
r +

1

2
Aβ(τ)

2σ2
β (9)

denotes the instantaneous expected return. Substituting bond returns (8) into the arbitrageurs’

budget constraint (2), we can solve the arbitrageurs’ optimization problem (3).

Lemma 1. The arbitrageurs’ first-order condition is

µ
(τ)
t − rt = Ar(τ)λr,t +Aβ(τ)λβ,t, (10)
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where for i = r, β,

λi,t ≡ aσ2
i

∫ T

0
x
(τ)
t Ai(τ)dτ. (11)

According to (10), a bond’s instantaneous expected return in excess of the short rate, µ
(τ)
t − rt,

is a linear function of the bond’s sensitivities Ar(τ) to the short rate and Aβ(τ) to the supply

factor. The coefficients λr,t and λβ,t of the linear function (which are the same for all bonds) are

the prices of short-rate and supply risk, respectively. These coefficients measure the expected excess

return per unit of sensitivity to each factor. While we derive (10) from the optimization problem

of arbitrageurs with mean-variance preferences, this equation is a more general consequence of the

absence of arbitrage: the expected excess return per unit of factor sensitivity must be the same for

all bonds, otherwise it would be possible to construct arbitrage portfolios.

Absence of arbitrage imposes essentially no restrictions on the prices of risk λr,t and λβ,t. We

determine these instead from market clearing. Eq. (11) shows that the price of risk λi,t for factor

i = r, β depends on the overall sensitivity
∫ T
0 x

(τ)
t Ai(τ)dτ of arbitrageurs’ portfolio to that factor.

Intuitively, if arbitrageurs are highly exposed to a factor, they require that any asset they hold

yields high expected return per unit of factor sensitivity. The portfolio that arbitrageurs hold in

equilibrium is determined from the market-clearing condition

x
(τ)
t = s

(τ)
t , (12)

which equates the arbitrageurs’ dollar investment x
(τ)
t in the bond with maturity τ to the bond’s

dollar supply s
(τ)
t . Substituting µ

(τ)
t and x

(τ)
t from (4), (9) and (12) into (10), we find an affine

equation in rt and βt. Setting linear terms in rt and βt to zero yields two ordinary differential

equations (ODEs) in Ar(τ) and Aβ(τ), respectively. Setting constant terms to zero yields an

additional ODE in C(τ). We solve the three ODEs in Theorem 1.

Theorem 1. The functions Ar(τ) and Aβ(τ) are given by

Ar(τ) =
1− e−κrτ

κr
, (13)

Aβ(τ) =
Z

κr

(
1− e−κ̂βτ

κ̂β
− e−κrτ − e−κ̂βτ

κ̂β − κr

)
, (14)

9



respectively, where

Z ≡ aσ2
rIr,

Ir ≡
∫ T

0

1− e−κrτ

κr
θ(τ)dτ, (15)

and κ̂β solves

κ̂β = κβ − a2σ2
rσ

2
βIr

∫ T

0

1

κr

(
1− e−κ̂βτ

κ̂β
− e−κrτ − e−κ̂βτ

κ̂β − κr

)
θ(τ)dτ. (16)

Eq. (16) has a solution if a is below a threshold ā > 0. The function C(τ) is given by (A.10) in

Appendix A.

In the proof of Theorem 1 we show that (16) has an even number of solutions, possibly zero. If

the number of solutions is zero, then equilibria with affine yields fail to exist. Otherwise, equilibria

exist and are in even number. The mechanism causing the multiplicity is reminiscent of that in

DeLong, Summers, Shleifer and Waldmann (1990) and Spiegel (1998). If yields are highly sensitive

to shocks to the supply risk factor βt, then bonds become highly risky for arbitrageurs. Hence,

arbitrageurs absorb supply shocks only if they are compensated by large changes in yields, making

the high sensitivity of yields to shocks self-fulfilling.

Equilibria exist if the arbitrageurs’ risk-aversion coefficient a is below a threshold ā > 0. We

focus on that case, and select the equilibrium corresponding to the largest solution of (16). This

equilibrium is well behaved in the sense that when a converges to zero, it converges to the unique

equilibrium that exists for a = 0.

2.3 Effects of Debt Supply

We next derive the implications of Theorem 1 for how shocks to the supply factor βt affect yields

and expected returns. We derive our empirical hypotheses from these implications.

Proposition 1 (Supply and Yields). A shock to the supply factor βt moves the yields of all

bonds in the same direction as the shock. Moreover, the effect is either increasing or hump-shaped

across maturities.

Proposition 2 (Supply and Expected Returns). A shock to the supply factor βt moves the

instantaneous expected returns of all bonds in the same direction as the shock. Moreover, the effect

is increasing across maturities.
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That an increase in supply raises the yields and instantaneous expected returns of all bonds

appears intuitive: the price of a bond must drop so that risk-averse arbitrageurs are induced to hold

the bond’s increased supply. Implicit in this explanation, however, is that the increase in supply

concerns all bonds. Our definition of the supply factor is more general: Assumption 1 requires that

an increase in the supply factor corresponds to a (weak) increase in total supply, but allows for the

possibility that the supply of short-term bonds decreases.

Why do the prices of short-term bonds decrease when their supply decreases? A bond’s price

and supply can move in the same direction because supply effects do not operate locally, but

globally through changes in the prices of risk. Local effects are made global through the activity

of arbitrageurs, who integrate the markets for different maturities. Following an increase in the

supply factor, the portfolio that arbitrageurs hold in equilibrium becomes more sensitive to changes

in the short rate. This is so even when the supply of short-term bonds decreases because overall

supply (weakly) increases and long-term bonds are more sensitive to changes in the short rate than

short-term bonds. Because arbitrageurs become more exposed to short-rate risk, they become less

willing to bear that risk, and that risk’s price increases. Since all bonds load positively on short-rate

risk, in the sense of experiencing a price drop when the short rate increases, their instantaneous

expected return increases. Therefore, the price of all bonds—both short- and long-term—decreases

and their yield increases.3

The increase in instantaneous expected returns is largest for long-term bonds because they are

the most sensitive to risk. The increase in yields, however, can be larger for intermediate-term

bonds than for long-term bonds. Intuitively, the effect of a supply shock on a bond’s yield is equal

to the average effect on the bond’s instantaneous expected return over the bond’s life. This average

effect can be largest for intermediate-term bonds if the shock mean-reverts quickly. Regardless of

mean-reversion, however, supply shocks have small effects on the yields and expected returns of

short-term bonds. Intuitively, short-term bonds are close substitutes to investing in the short rate,

and arbitrageurs can tie their yields closely to current and expected future short rates.

The effect of supply on instantaneous expected returns, derived in Proposition 2, is larger than

the effect on yields, derived in Proposition 1. This follows from the property that the effect of a

supply shock on a bond’s yield is equal to the average effect on the bond’s instantaneous expected

return over the bond’s life. The average effect on the bond’s expected return is smaller than the

effect on the current expected return for two reasons. Since the shock mean-reverts, its effect on

the expected return of all bonds dies down over time. And even in the absence of mean reversion,

3Recent evidence suggests that supply effects can have a significant local component. For example, in September
2011 the Federal Reserve announced its intention to buy Treasury securities with maturities from six to 30 years and
sell an equal amount of securities with maturities up to three years. Upon announcement short-term yields increased,
contrary to our model. One way to generate more local effects of supply is to assume that the demand and supply
for each maturity in the absence of arbitrageurs are price-elastic. See Vayanos and Vila (2009).
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the shock’s effect on the expected return of any given bond decreases over time because the bond’s

time to maturity decreases and so does the bond’s sensitivity to changes in the price of short-rate

risk.

Proposition 3 (Expected Returns vs. Yields). A shock to the supply factor βt has a larger

effect on instantaneous expected returns than on yields.

Supply can affect prices only when arbitrageurs are risk averse. Indeed, when arbitrageurs

are risk neutral, they require no compensation for absorbing supply shocks, and these shocks do

not affect prices. More generally, supply has stronger effects when the arbitrageurs’ risk aversion

coefficient a increases, i.e., not only when comparing risk-averse (a > 0) to risk-neutral (a = 0)

arbitrageurs, but also when comparing across any different values of a.

Proposition 4 (Arbitrageur Risk Aversion). The effect of the supply factor βt on instantaneous

expected returns is increasing in the arbitrageurs’ risk-aversion coefficient a.

To turn Propositions 1-4 into testable hypotheses, we need to construct empirical measures of

supply. Changes in supply in our model are fully described by the single factor βt, and are hence

perfectly correlated across maturities. In practice, however, the correlation might be imperfect and

multiple factors might be needed to describe supply. Despite this limitation, our model provides

some guidance on suitable measures of supply. Indeed, supply affects the equilibrium through the

prices of risk λr,t and λβ,t. Substituting (12) into (11), we find λi,t = aσ2
i∆i,t for i = r, β, where

∆i,t ≡
∫ T

0
s
(τ)
t Ai(τ)dτ. (17)

The price of risk for factor i = r, β is thus proportional to ∆i,t, the factor sensitivity of the

total supply available to arbitrageurs. The quantities ∆r,t and ∆β,t characterize fully the effects

of supply. Suppose, in particular, that supply is described by multiple factors, but one factor

suffices to describe the joint dynamics of ∆r,t and ∆β,t. Then the equilibrium is the same as in

our model, in which supply is described by one factor. Using the calibration of our model based

on post-war U.S. data in Section 5, we can compute the functions Ar(τ) and Aβ(τ), and evaluate

the correlation between ∆r,t and ∆β,t in the data. This correlation is 98%, suggesting that our

one-factor description of supply is a good approximation.

The quantities ∆r,t and ∆β,t are similar to dollar duration. Indeed, the dollar duration of the

supply available to arbitrageurs is ∆t ≡
∫ T
0 s

(τ)
t τdτ , the sum of supply for each maturity τ , weighted

by τ . The quantities ∆r,t and ∆β,t are similar weighted sums, with the weighting function τ being
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replaced by Ar(τ) and Aβ(τ), respectively. In our empirical analysis, we use dollar duration ∆t as

the basis for our main measure of supply since it is similar in spirit to ∆r,t and ∆β,t, and simpler to

construct. Using our calibration, we find that ∆t has correlation 99% and 97%, respectively, with

∆r,t and ∆β,t in the data. Hence, it approximates well both quantities.

The dollar duration ∆t concerns the supply s
(τ)
t available to arbitrageurs, which we do not

observe. We proxy this supply by the supply of bonds issued by the government. This proxy

is accurate for our empirical purposes if shocks to the supply of government debt affect the bond

portfolios held by arbitrageurs and other investors in a proportional manner. Propositions 1-3 yield

empirical hypotheses 1-3, respectively.

Hypothesis 1. A regression of bond yields on the dollar duration of government bond supply,

controlling for the short rate, has a positive coefficient. This coefficient is either increasing or

hump-shaped across maturities.

Hypothesis 2. A regression of future bond returns on the dollar duration of government bond

supply, controlling for the short rate, has a positive coefficient. This coefficient is increasing across

maturities.

Hypothesis 3. The regression coefficient in Hypothesis 2 is larger than the one in Hypothesis 1.

The regression coefficients in Hypotheses 1 and 2 correspond to the effects of βt derived in

Propositions 1 and 2. These effects are comparative statics, holding the short rate rt constant. To

identify these effects in a regression, we control for the short rate. This control is not necessary

when the short rate is independent of supply, but becomes necessary when the two are correlated.

An additional empirical hypothesis follows from Proposition 4, which shows that the effect of

supply on instantaneous expected returns is increasing in the arbitrageurs’ risk-aversion coefficient

a. In our model a is constant over time, and Proposition 4 is a comparative statics result. Stepping

outside of the model, however, we can interpret Proposition 4 as concerning the effects of time-

variation in a. If, in particular, a is decreasing in arbitrageur wealth, then it increases in periods

when arbitrageurs lose money. Identifying such periods requires a measure of arbitrageur returns.

We use a measure that is implied by our model and is simple to construct. Specifically, arbitrageurs

in our model hold large long positions in bonds when βt is high, and in that case their portfolio is

highly sensitive to changes in the short rate and the supply factor. Moreover, when either factor

increases, bond prices decrease, especially for long-term bonds. Thus, arbitrageurs lose money

when high values of βt are followed by under-performance of long- relative to short-term bonds. By

a similar argument, they also lose money when low values of βt are followed by over-performance

of long- relative to short-term bonds. We can identify high values of βt by high values of dollar
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duration of government bond supply. Using Proposition 1, we can also identify high βt by high

yields of intermediate- and long-term bonds relative to short-term bonds.

Hypothesis 4. The regression coefficient in Hypothesis 2 is decreasing in arbitrageur wealth. Ar-

bitrageur wealth is low when:

• Periods when the term structure slopes up or the dollar duration of government bond supply

is high are followed by under-performance of long- relative to short-term bonds.

• Periods when the term structure slopes down or the dollar duration of government bond supply

is low are followed by over-performance of long- relative to short-term bonds.

Our analysis so far focuses on the case where the short rate rt and the supply factor βt are

independent. The independent case is derived by setting γ = σrβ = 0 in the specification of the

short-rate process (6). We can also consider the correlated case, allowing γ and σrβ to be non-

zero. When σrβ ̸= 0, supply shocks affect the current short rate. When γ ̸= 0, supply shocks

affect expected future short rates holding the current short rate constant. In Section 5 we find

that γ is positive in the data, meaning that an increase in supply lowers expected future short

rates. We derive an equilibrium with affine yields in the correlated case in Appendix B.2. Within

this equilibrium, we can show that a positive γ reinforces the result of Proposition 3, shown in

the independent case, that supply has a smaller effect on yields than on instantaneous expected

returns.

3 Data

3.1 Supply of Government Debt

Our main sample covers the period from June 1952 to December 2007. We also use a second sample

covering the period from June 1916 to June 1940, to evaluate the robustness of our findings. We

omit the period between the two samples because the U.S. Federal Reserve was pegging bond yields

across the term structure, so variation in yields was limited.4 We end our main sample in 2007

because we forecast three-year returns, which go until 2010.

To construct our main sample, we collect data from the CRSP historical bond database on every

U.S. government bond issued between 1940 and 2007. CRSP provides data on bond characteristics

(issue date, coupon rate, maturity, callability features) as well as monthly observations of face value

outstanding. As in Doepke and Schneider (2006), we break the stream of each bond’s cash flows

4See, for example, Hetzel and Leach (2001) and D’Amico et al. (2012) for a description of the Fed’s policy during
that period.
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into principal and coupon payments. Consider, for example, the 7-year bond issued in February

1969 (CRSP ID 19760215.206250) with a coupon payment of 6.25%. On the last day of March

1972, investors holding the bond were expecting eight more coupon payments of $3.125 per $100 of

face value, starting in August 1972 and ending in February 1976 (the maturity of the bond), with

the full principal to be repaid in February 1976. CRSP reports a total face value of $882 million

outstanding as of March 1972. Thus, as of the last day of March 1972 there were eight coupon

payments of $27.56 million and the principal payment of $882 million.

Despite generally complete data from CRSP, there are some reporting gaps in face values. When

these occur, we fill in with the face value outstanding at the end of the previous month. In early

years, face values are reported only occasionally. By the early 1950s, face values are reported

consistently. We further check the accuracy of the CRSP data by comparing aggregate face values

in selected months with releases of the Monthly Statement of the Public Debt.

For a large fraction of securities, CRSP reports both the entire face value and the face value

held by the public. The latter measure nets out Federal Reserve and interagency holdings, so it

seems a better proxy for the supply of bonds available to arbitrageurs. The face value held by

the public, however, is reported only sporadically for some bonds, and tends to be missing for bills

until the 1990s. We thus use the entire face value, although we explore corrections for Fed holdings,

which we report in our robustness tests in Section 4.3. Simple measures of the average maturity

of Fed holdings correlate strongly with the average maturity of all outstanding bonds. Moreover,

the size of the Fed’s portfolio is positively correlated with the debt-to-GDP ratio, and fluctuated

between 4-7% of GDP during the 1952-2007 sample period. Taken together, these facts suggest

that variation in Fed holdings should generate only small variation in the supply of bonds held by

the public prior to 2007.

We construct the maturity structure of government debt at a given date by aggregating cash

flows across individual bonds. Total payments due τ years from date t are

D
(τ)
t = PR

(τ)
t + C

(τ)
t =

∑
i

PR
(τ)
it +

∑
i

C
(τ)
it ,

where PR
(τ)
t are total principal payments, derived by summing over bonds the principal payment

PR
(τ)
it that each bond i is due to make τ years from date t, and C

(τ)
t are total coupon payments,

derived by summing over bonds the coupon payment C
(τ)
it that each bond i is due to make τ years

from date t. Figure 1 shows the time-series average maturity structure of total payments scaled by

GDP. The figure marks principal and coupon payments separately.
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Following the theoretical discussion in Section 2, we construct our main measure of the supply

of government debt based on dollar duration. Our main measure is the maturity-weighted-debt-to-

GDP ratio

(
MWD

GDP

)
t

=

∑
0<τ≤30D

(τ)
t τ

GDPt
,

computed by multiplying the payments D
(τ)
t for each maturity τ times τ , summing across matu-

rities, and scaling by GDP. Maturity-weighted debt is similar to dollar duration of debt, except

that we express the payments D
(τ)
t in face value rather than market value terms. Following Kr-

ishnamurthy and Vissing-Jorgensen (2012), we also measure supply by the long-term-debt-to-GDP

ratio. We compute this ratio

(
LTD

GDP

)
t

=

∑
10≤τ≤30D

(τ)
t

GDPt
,

by summing payments D
(τ)
t across all maturities τ longer than ten years and scaling by GDP. This

measure is similar in spirit to our main measure, except that the weighting function is zero for

maturities below ten years and one for maturities above.

We express debt payments in face value rather than market value terms to avoid an endogeneity

problem: bond yields and returns, our dependent variables, have a mechanical effect on supply, our

independent variable, if the latter is computed using market values. This effect tends to generate a

spurious negative relationship between supply and yields or returns. For example, a decrease in the

demand for long-term bonds by investors would lower bond prices, and raise yields and expected

returns. It would also lower maturity-weighted debt and long-term debt if these are computed using

market values, thus generating a negative relationship. As we argue in Section 4.2, endogeneity

concerns are not entirely avoided when our measures are computed using face values. To address

these concerns, we perform instrumental-variables regressions. In Section 4.3 we also re-estimate

our regressions with market-value counterparts of our supply measures, and show that our main

results are robust.5

5Our results are also robust to scaling by household net worth from Table B100 of the Flow of Funds instead of
by GDP. Either scaling can be viewed a simple way to adjust for time-series variation in the risk-bearing capacity of
arbitrageurs. Finally, our results would not be affected by taking bond callability into account. This is because there
are few callable bonds and most of them are callable close to their maturity date.
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A useful decomposition of maturity-weighted debt to GDP is

(
MWD

GDP

)
t

= Mt ·
∑

0<τ≤30D
(τ)
t

GDPt
, (18)

where

Mt =

∑
0<τ≤30D

(τ)
t τ∑

0<τ≤30D
(τ)
t

.

The variable Mt is dollar-weighted average maturity, constructed by weighting each maturity τ

by the fraction that the corresponding payments D
(τ)
t represent of total payments. The variable∑

0<τ≤30D
(τ)
t /GDPt is total debt payments divided by GDP. It differs from the standard debt-to-

GDP ratio (such as described in Bohn 2008) because it includes coupon payments but does not

include non-marketable debt such as intra-governmental obligations. Despite these differences, it

is highly correlated with debt to GDP: the correlation is 92% in the 1952-2007 sample. Eq. (18)

thus implies that maturity-weighted debt to GDP can be thought of intuitively as the product of

average maturity times debt to GDP.

While variation in maturity-weighted debt to GDP can be decomposed into two distinct com-

ponents, variation in average maturity and in debt to GDP, these two components are strongly

positively correlated: the correlation between dollar-weighted average maturity and debt to GDP

is 60% in the 1952-2007 sample. The positive correlation reflects the fact that as the US govern-

ment increased the size of its debt, it issued a larger fraction of it long-term to reduce the risk

of having to refinance large amounts of short-term debt at high rates (Greenwood, Hanson and

Stein 2010). The strong correlation makes it somewhat difficult to discern whether the effects of

debt supply are driven by maturity-weighted debt to GDP, or by average maturity, or by debt

to GDP. Nevertheless, in our main return-forecasting regressions maturity-weighted debt to GDP

drives out either of the other two variables in horse races, as we show in Table C.4 in Appendix C.

Thus, average maturity brings useful additional information relative to debt to GDP in forecasting

returns, and conversely debt to GDP brings useful information relative to average maturity.

Figure 2 plots dollar-weighted average maturity, debt to GDP, and our two measures of debt

supply for the 1952-2007 sample. Panel A of Table 1 reports summary statistics for these variables.

Figure 2 shows that maturity-weighted debt to GDP varies significantly over time. For example,

it decreased sharply from the mid-1960s to the mid-1970s, to a minimum value of 79.9%, and

increased sharply from the mid-1970s to the early 1990s, to a maximum value of 463%. These
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movements were driven by variation in both average maturity and debt to GDP.

The sharp drop in average maturity from the mid-1960s to the mid-1970s, and the subsequent

rise, were partly driven by the 4.5% regulatory ceiling on bonds’ coupon rates. Because of the

ceiling, the Treasury did not issue bonds between 1965-1973, leading to a decline in average ma-

turity. Maturity started increasing in 1976, when Congress raised the maturity of notes, to which

the ceiling did not apply, to ten years. The ceiling was eliminated in 1988. An additional driver

of the rise in average maturity during the 1980s was the expansion of government debt. Indeed,

the Treasury issued at long maturities to reduce the risk of having to refinance large amounts of

short-term debt at high interest rates.6 The sharp increase in debt during the 1980s and early

1990s was driven by a combination of tax cuts and increased military spending.

To construct our second sample, we collect data from Banking and Monetary Statistics (BMS).

BMS reports the maturity structure of government debt in six- and twelve-month intervals begin-

ning in June 1916. Using these data, we construct maturity-weighted debt to GDP. We use the

same definition as for the 1952-2007 sample, but because the data are coarser we construct our

measure slightly differently. BMS groups bonds into maturity buckets and reports total face value

within a bucket. We assign the average maturity of each bucket to all bonds in that bucket, e.g.,

all bonds in the five- to ten- year bucket are assigned maturity 7.5 years. Moreover, we do not take

into account coupon payments since they are not reported in the BMS data.

Figure 3 plots dollar-weighted average maturity, debt to GDP, and our two measures of debt

supply as a function of time for the 1916-1940 sample. Panel B of Table 1 reports summary statistics

of the same variables. Figure 3 shows that maturity-weighted debt to GDP varies significantly over

time. Its movements parallel those of debt to GDP, as average maturity is approximately flat in

most of the sample. Debt to GDP was nearly zero in 1916, then rose sharply during World War I,

and then declined during the 1920s. It rose sharply again during the early 1930s, as GDP decreased

during the Great Depression and spending on social programs increased.

3.2 Bond Yields and Returns

We use the Fama-Bliss discount bond database to obtain yields and holding-period returns for one-,

two-, three-, four- and five-year zero-coupon bonds for the 1952-2007 sample period. Beyond five

years, yields are not available for most maturities. However, Ibbotson Associates provides yields

and returns for a bond with an approximate maturity of twenty years, and we use this to obtain a

long-term yield and return. For the 1971-2007 period, we use the zero-coupon curves provided by

Gurkaynak, Sack and Wright (2007) to obtain yields and returns for bonds with maturities of up

6A detailed discussion of the variation in the maturity of government debt from 1952 onwards is in Garbade (2007).
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to fifteen years. For the 1916-1940 period, we use Global Financial Data to obtain the yield and

return of a bond with an approximate maturity of ten years. We do not have one-year zero-coupon

yields (the Fama-Bliss database starts in 1952), and use instead monthly Treasury-bill yields rolled

over one year as our measure of the one-year yield.

Yields and returns are computed in logs. We denote by y
(τ)
t the yield of the τ -year bond at

date t. (This is consistent with the notation in our model for the one- to five-year bonds because

they are zero-coupon, and for simplicity we also use this notation for the long-term coupon bond.)

We denote by r
(τ)
t+1 the return of the τ -year bond during the year following date t, and by

r
(τ)
t+k,k ≡

k∑
k′=1

r
(τ−k′+1)
t+k′

the bond’s cumulative return during the k years following date t.

4 Results

4.1 Basic Tests

Table 2 shows regressions of yields and future returns on our two measures of government debt

supply: maturity-weighted debt to GDP, and long-term debt to GDP. The yield regression is

y
(τ)
t = a+ bXt + cy

(1)
t + ut, (19)

where y
(τ)
t is the yield on the τ -year bond, Xt is the measure of supply, and y

(1)
t is the one-year yield

which we use as a control for the short rate. Observations are monthly. We include the short-rate

control in all our regressions for yields and returns because the short rate in the data is negatively

correlated with supply. In Table C.1 in Appendix C we show that omitting this control and using

as dependent variables yield spreads instead of yields and excess returns instead of returns does

not affect our results.

The results of the yield regression are in the first five rows of Table 2. Because yields can depend

on persistent variables other than supply and the short rate (e.g., expected future short rates), the

regression residuals are serially correlated and t-statistics must be adjusted accordingly. We report

a first set of t-statistics using Newey and West (1987) standard errors and allowing for 36 months

of lags. Allowing for more lags does not seem to affect the results. We also report a second set
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of t-statistics computed by estimating an AR(1) process for the regression residuals. These are

lower than in Table 2 but the positive relationship between supply and yields remains statistically

significant (at the one-sided 5% level) in most specifications. Our findings thus support Hypothesis

1.

To evaluate the economic significance of the yield results, we note, for example, that when supply

is measured by maturity-weighted debt to GDP, it carries a coefficient of 0.004 in the regression of

the long-term yield. Thus, an increase in supply by one standard deviation (0.997 from Table 1),

holding the one-year yield constant, is associated with an increase of 40 basis points (bps) in the

long-term yield. This is about one-half of the long-term yield’s standard deviation conditional on

the one-year yield. Measuring supply by long-term debt to GDP yields similar results.

Our time-series estimates of the link between supply and yields are somewhat smaller than

estimates of the price impact of recent Quantitative Easing (QE) programs undertaken in the U.K.

and the U.S. During a first QE program in 2009-2010, the U.S. Federal Reserve bought $300 billion

of Treasury securities and about $1 trillion of other securities such as agency and mortgage-backed.

It bought an additional $600 billion of Treasury securities during a second QE program in 2010-

2011. The average maturity of Treasury securities purchased by the Fed was approximately 6.5

years (Figure 1 of D’Amico and King 2013). Taking the corresponding duration to be five years

and GDP to be $14 trillion, the reduction in maturity-weight debt to GDP was 0.9×5/14 = 0.32 if

only Treasury securities are included, and 1.9×5/14 = 0.68 if the other securities are also included.

Gagnon et al. (2011), D’Amico et al. (2012), and Li and Wei (2012) estimate that the two QE

programs together lowered the 10-year Treasury yield by 90-100 basis points.

Between 2009 and mid-2010, the Bank of England bought £200 of Treasury securities. The

average maturity of the purchased bonds was approximately 14.5 years (Chart 4 of Joyce et al.

2011). Taking the corresponding duration to be ten years and GDP to be £1.5 trillion, the reduction

in maturity-weight debt to GDP was 0.2× 10/1.5 = 1.33. Joyce et al. (2011) estimate that the QE

program lowered the 10-year Treasury yield by about 100bps.

Our estimate that a unit decrease in maturity-weighted debt to GDP lowers the long-term yield

by 40bps is somewhat smaller than the QE estimates. This could be because of the higher risk

aversion during the QE period and the financial crisis. Moreover, part of the QE effect was due to a

decrease in expected future short rates (about one-third in the U.S. according to Krishnamurthy and

Vissing-Jorgensen 2012), while in our time-series analysis decreases in bond supply are associated

with increases in expected future short rates.

We next turn to the results on returns. Panel A of Figure 4 plots maturity-weighted debt to

GDP (horizontal axis) against the subsequent three-year excess return of the long-term bond. The
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series are sampled annually, in December. The figure shows a positive correlation. We complement

the figure with the return regression

r
(τ)
t+k,k = a+ bXt + cy

(1)
t + ut+k, (20)

where r
(τ)
t+k,k is the future k-year return of the τ -year bond, Xt is supply, and y

(1)
t is the one-year

yield. Observations are monthly. We perform this regression for one-year returns for all bonds in

our sample, and for three- and five-year returns for the long-term bond.

The results of the return regression are in the last seven rows of Table 2. As in the case of yields,

t-statistics must be adjusted for serial correlation in the regression residuals. In the case of returns,

serial correlation arises from two sources. First, persistent variables other than supply and the

short rate can affect expected returns (e.g., macroeconomic variables, investor demand). Second,

because returns are measured over one or more years but are sampled monthly, measurement

periods overlap. Sampling returns annually eliminates the overlap problem in the case of one-year

returns. Results for annual sampling, shown in Table 5, are similar to those in Table 2.

We report a first set of t-statistics in Table 2 using Newey and West (1987) standard errors

and allowing for min{36, 1.5k} months of lags, where k is the forecast horizon in years (thus,

36 months for one-year returns, 54 months for three-year returns, and 90 months for five-year

returns). Allowing for more lags does not seem to affect the results. We also report a second set of

t-statistics obtained by estimating a parametric process for the regression residuals. As Cochrane

(2008) points out, a plausible process in the case of one-year returns and annual sampling is

ARMA(1,1): such a process would arise if we assume that the annual residuals are the sum of a

white-noise component and an expected-return component that is AR(1). Under monthly sampling,

the same assumptions on the monthly residuals generate instead an ARMA(1,12k) process for k-

year returns. The t-statistics based on the ARMA(1,12k) process tend to be slightly lower but

the positive relationship between supply and future returns remains statistically significant in most

specifications. For example, for three-year returns the t-statistic is 4.200 under Newey and West,

and 4.203 under ARMA(1,36); for five-year returns it is 5.381 under Newey and West, and 3.824

under ARMA(1,60). Our findings thus support Hypothesis 2.

As an additional robustness check for our yield and return regressions, we use the bootstrap

approach suggested by Bekaert and Hodrick (2001) and Bekaert, Hodrick and Marshall (2001). We

compute bootstrapped p-values by comparing the Newey and West t-statistic to the distribution

of bootstrapped t-statistics. To preserve the time-series dependence of the original data, we create

pseudo time series using the stationary block bootstrap of Politis and Romano (1994). We repeat
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this exercise, varying the block size between 12 months and 24 years (288 months). When supply

is measured by maturity-weighted debt to GDP, p-values range between 3.8-7.2% for the yield of

the long-term bond and 0.6-2.3% for that bond’s one-year return (Table C.3 in Appendix C).7

To evaluate the economic significance of the return results, we note, for example, that when

supply is measured by maturity-weighted debt to GDP, it carries a coefficient of 0.026 in the

regression of the one-year return of the long-term bond. Thus, an increase in supply by one

standard deviation, holding the one-year yield constant, is associated with an increase of 259bps

in the expected one-year return of the long-term bond. This is about one-third of that return’s

standard deviation conditional on the one-year yield. Measuring supply by long-term debt to GDP

yields similar results.

The effects of supply on yields are smaller than on expected returns: the coefficients in the

yield regression in the first five rows of Table 2 are smaller than their counterparts in the return

regression in the next five rows of the table. This is consistent with Hypothesis 3. As we point out

in Section 2, a smaller effect of supply on yields than on returns is to be expected for two reasons.

First, supply shocks in the data are negatively correlated with changes in future short rates, and

this dampens the effect that they have on yields through expected returns. Second, even in the

absence of correlation, the effect of a supply shock on a bond’s expected return dies down over time

both because (i) the shock mean-reverts, and (ii) the bond’s time to maturity decreases and so does

the bond’s sensitivity to changes in the price of short-rate risk. The shock’s mean-reversion can

be caused by mean-reversion in the supply of bonds by the government, or by entry of new capital

in the market to absorb the shock. Since the shock’s effect on a bond’s expected return dies out

over time, the shock’s effect on the bond’s yield, which is the average effect on the bond’s expected

return over the bond’s life, is smaller than the effect on the bond’s current expected return.

According to Hypothesis 2, the coefficient of supply in the return regression should be increasing

with maturity because longer-maturity bonds are more sensitive to changes in the price of short-rate

risk. Moreover, according to Hypothesis 1, the coefficient of supply in the yield regression should

be increasing or hump-shaped. Table 2 shows an increasing pattern for the five maturities that

are available in our 1952-2007 sample. To examine whether this pattern holds for a larger set of

maturities, we focus on the sub-sample 1971-2007 for which Gurkaynak, Sack, and Wright (2007)

provide zero-coupon yields for all maturities between one and fifteen years. Table 3 reports the

coefficients from our yield and return regressions in the sub-sample, in the case of one-year returns

and maturity-weighted debt to GDP. Figure 5 plots these coefficients as a function of maturity. The

7An additional concern related to statistical significance is that the coefficient of the return regression may be
biased if innovations in the forecasting variable, i.e., supply, are correlated with innovations in returns (Mankiw
and Shapiro (1986), Stambaugh (1986)). This bias is small in our data and works against us because it lowers the
regression coefficient.
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table and the figure confirm the increasing pattern, while also showing that the effects of supply

remain significant in the sub-sample.

4.2 Instrumental Variables Tests

One concern with our analysis is that our measures of supply could be endogenous and affected by

variables which also affect bond yields and returns. As we point out in Section 3, one endogeneity

problem arises when supply is measured in market value terms since it is then affected mechanically

by bond yields and returns. But endogeneity could arise even when supply is measured in face

value terms. Suppose, for example, that the government chooses maturity structure to minimize

the expected interest payments on its debt. Then, an increase in the demand for long-term bonds

by investors would lower their yields and induce the government to shift the issuance of its debt

towards long maturities.8 The average maturity of government debt would then increase, and so

would maturity-weighted debt to GDP which is (approximately) the product of average maturity

times debt to GDP. This would generate a negative relationship between supply and yields or

returns, and would bias our analysis towards finding smaller effects.

To address the possible endogeneity of the maturity structure of government debt, we follow the

instrumental variables (IV) approach of Krishnamurthy and Vissing-Jorgensen (KVJ 2012). KVJ

use debt to GDP, as well as its square and cube, as instruments for maturity structure. Debt to

GDP is a suitable instrument because it is driven mostly by the cumulation of past deficits rather

than by changes in investor demand. It causes variation in maturity-weighted debt to GDP through

two channels. The first is mechanical: holding average maturity constant, maturity-weighted debt

to GDP varies because it is (approximately) the product of average maturity times debt to GDP.

Second, and as pointed out in Section 3, an increase in debt to GDP induces governments to issue

a larger fraction of their debt long term, hence raising average maturity.

Table 4 shows IV regressions for the yield and for the one- and three-year return of the long-term

bond. We measure supply by maturity-weighted debt to GDP, and use the ratio of marketable

Treasury debt to GDP as our instrument. Marketable debt includes the bonds in the CRSP

database as well as Inflation Protected Securities (TIPS), and is measured in face value terms.

Adding the square and cube of marketable debt to GDP as instruments, as in KVJ, does not affect

our results. Our results are also not affected if we use only the bonds in CRSP instead of all

8Guibaud, Nosbusch and Vayanos (2013) study issuance policy in the presence of investor clienteles and demand
shocks. They show that a welfare-maximizing government tailors the maturity structure of its debt to the clientele
mix, e.g., issues a larger fraction of its debt long-term when the fraction of long-horizon investors increases. A supply
response to demand shocks could also be generated by the private sector. Koijen, Van Hemert, and Van Nieuwerburgh
(2009) show that households are more likely to take fixed-rate mortgages (effectively issuing long-term bonds) when
long-term bonds are expensive relative to short-term bonds. Greenwood, Hanson and Stein (2010) show that private
firms issue a larger fraction of their debt long-term when the supply of long-term bonds by the government is low.
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marketable Treasury debt. If we use total debt (Bohn 2008), which includes also non-marketable

debt, then our results weaken somewhat. The results for the latter two instruments are shown in

Tables C.5 and C.6 in Appendix C.

The top panel of Table 4 shows the first-stage regression of maturity-weighted debt to GDP

on marketable debt to GDP, controlling for the short rate. The R-squared is 83.5%, confirming

that much of the variation in maturity-weighted debt to GDP is driven by debt to GDP. The

bottom panel shows the IV regressions. The t-statistics are computed using Newey and West

(1987) standard errors and allowing for 36 months of lags for the yield and the one-year return, and

54 months for the three-year return. The effect of supply on the yield is not statistically significant.

The effect on the one- and three-year return is, however, and the coefficients are almost identical to

their OLS counterparts in Table 2 (0.028 for IV and 0.026 for OLS in the case of one-year return;

0.067 for IV and 0.065 for OLS in the case of three-year return).

4.3 Robustness Tests

In addition to the IV tests shown in Table 4, we perform a number of other robustness tests. Some

of the tests concern our main sample and others our second sample 1916-1940. Table 5 reports tests

on our main sample for the one- and three-year return of the long-term bond. We first compute our

measures of supply in market value rather than face value terms. The market-value counterpart of

maturity-weighted debt to GDP is

(
MWD

GDP

)
MV,t

=

∑
0<τ≤30 e

−τy
(τ)
t D

(τ)
t τ

GDPt
,

where y
(τ)
t is the yield of a zero-coupon bond with maturity τ at date t. Because there is not enough

information to compute an accurate term structure of zero-coupon yields for the entire 1952-2007

sample period, we use the approximation

(
MWD

GDP

)
MV,t

≈
∑

iMVi,tDuri,t
GDPt

, (21)

where the summation is over all bonds in the CRSP database, MVi,t is the market value of bond i

at date t, and Duri,t is the bond’s Macaulay duration. We can compute Macaulay duration because

CRSP reports yield to maturity for each bond. The approximation (21) is exact when the term

structure is flat. We compute a market-value counterpart of long-term debt to GDP by adding the

market value of all bonds whose remaining maturity exceeds ten years and scaling by GDP.
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Rows (2)-(5) of Table 5 show OLS and IV regressions for our market-value-based measures

of supply. For the IV regressions we use the same instrument and methodology as in Table 4.

The coefficients of our supply measures are larger in the IV regression than in the OLS regression,

especially for one-year returns (0.007 for IV and 0.003 for OLS in the case of maturity-weighted debt

to GDP; 1.395 for IV and 0.894 for OLS in the case of long-term debt to GDP). This is consistent

with the endogeneity problem mentioned in Section 3: measuring supply in market value terms

tends to induce a mechanical negative relationship between supply and yields or returns, biasing

the OLS estimates downwards. The IV coefficients are statistically significant, with t-statistics

similar to those derived when measuring supply in face value terms (Table 4). The OLS coefficients

have smaller t-statistics than their face-value counterparts (Table 2), but they remain statistically

significant except in one case.

We next add to our regressions a number of macroeconomic controls. Macroeconomic variables,

such as output growth and inflation, have been shown to forecast bond returns (e.g., Ferson and

Harvey (1991), Baker, Greenwood and Wurgler (2003), and Ludvigson and Ng (2009)). If the same

variables affect maturity structure and debt to GDP, then our supply measures could forecast bond

returns regardless of any causal effect of supply.

Rows (6)-(12) report the results of including macroeconomic controls. Supply in these rows and

the rest of Table 5 is measured by maturity-weighted debt to GDP computed in face value terms.

Our first control is the term spread, defined as the yield spread between the long-term and the

one-year bond. According to our model and the evidence in Table 2, the term spread is affected by

supply and can hence subsume some of the supply effect. Yet, Table 5 shows that supply remains

significant when controlling for the term spread. Our remaining controls are output gap, output

growth, inflation, inflation risk, volatility in short-term interest rates, and stock market volatility.

(Details of how each of these controls is computed are in Table 1.) Table 5 shows that the positive

relationship between supply and future returns remains significant when including any of these

controls. This is not entirely surprising: macroeconomic risk premia mainly vary at business-cycle

frequency, but supply captures a lower-frequency component of expected returns.

Rows (13)-(17) show that our results remain significant after the following controls and adjust-

ments. Row (13) controls for a time trend. Row (14) controls for future changes in debt supply by

adding the variable (MWD/GDP )t+k − (MWD/GDP )t to the regression. Since debt supply af-

fects yields, as implied by our model and the evidence in Table 2, changes in supply can explain part

of returns. Controlling for them reduces estimation noise, and indeed our results strengthen some-

what. Row (15) nets out Federal Reserve holdings to derive a better proxy for the supply of bonds

available to arbitrageurs. We compute Fed holdings using data from Banking and Monetary Statis-

tics between 1952-1970 and from issues of the Federal Reserve Bulletin after 1970. These sources
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report holdings by maturity buckets rather than for individual bonds. We construct a measure of

maturity-weighted debt held by the Fed by assigning the average maturity of each bucket to all

bonds in that bucket. We then subtract that measure from our main measure of maturity-weighted

debt. Rows (16) and (17) sample the data annually in September and December respectively. For

these annual regressions, the Newey-West standard errors are based on three years of lags in the

case of one-year returns, and five years of lags in the case of three-year returns.

An important robustness test is whether our results hold in another time period. We consider

the period 1916-1940, and omit the period between 1941 and the beginning of our main sample in

1952 for reasons explained in Section 3. Panel B of Figure 4 plots our main result for the 1916-

1940 sample. Maturity-weighted debt to GDP (horizontal axis) is positively correlated with the

subsequent three-year excess return of the long-term bond. Table 6 shows our yield and return

regressions for the long-term bond. Yields are positively correlated with supply, but the correlation

is not statistically significant. Future returns are also positively correlated with supply. This

correlation is not statistically significant for one-year returns but becomes highly significant for

three-year returns. The latter correlation remains significant even after excluding the years 1916

and 1917 which appear in Figure 4 to play a large role in driving the correlation.

4.4 Arbitrageur Wealth and Bond Returns

When arbitrageurs become more risk averse, they demand higher compensation to accommodate

changes in bond supply, and bond supply has a stronger effect on expected returns. In this section

we explore time-series implications of this idea under the assumption that risk aversion increases

following losses. Based on Hypothesis 4, we construct two measures of the change in arbitrageur

wealth during the year that precedes date t:

∆WArb
1t = (y

(τ)
t−1 − y

(1)
t−1) · rx

(τ)
t , (22)

∆WArb
2t =

(
MWD

GDP

)
t−1

· rx(τ)t , (23)

where rx
(τ)
t ≡ r

(τ)
t − y

(1)
t−1 denotes the excess return of the bond with maturity τ during that year.

The first measure is the product of the yield spread between maturities τ and one at date t−1 times

excess bond returns during the following year. This measure identifies arbitrageurs’ past positions

based on the slope of the term structure. The second measure is the product of maturity-weighted

debt to GDP at date t − 1 times excess bond returns during the following year. This measure
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identifies arbitrageurs’ past positions based on the supply of government debt.9 We assume that

the yield spread and excess returns in the definition of the measures concern the long-term bond.

We examine whether our measures of arbitrageur wealth influence the relationship between

supply and future returns, documented in Section 4.1, and between the slope of the term structure

and future returns. The latter relationship has been documented by Fama and Bliss (1987), and

arises naturally in our model. Indeed, in periods when supply is high, expected bond returns are

high (Proposition 2), and the term structure slopes up in the sense that intermediate- and long-

term bonds have high yields relative to short-term bonds (Proposition 1). As with supply, slope

has predictive power only when arbitrageurs are risk averse, so we would expect more predictive

power the higher risk aversion is.

Table 7 reports results from regressing the return of the long-term bond, over both a one- and

a three-year horizon, on (i) maturity-weighted debt to GDP and its interaction with either of our

two measures of arbitrageur wealth, or on (ii) the long-term yield spread and its interaction with

either of our two measures. In all cases we control for the short rate, so the regression equation is

r
(LT )
t+k,k = a+b

(
MWD

GDP

)
t

+c(y
(LT )
t −y

(1)
t )+d∆WArb

t

(
MWD

GDP

)
t

+e∆WArb
t (y

(LT )
t −y

(1)
t )+fy

(1)
t +ut+k.

According to Hypothesis 4, the interaction terms should have a negative coefficient: supply and

slope predict returns positively, and more so when arbitrageur wealth decreases. The results confirm

this prediction in the case of one-year returns. Indeed, the interaction terms between supply and

our two measures of arbitrageur wealth have a negative and statistically significant coefficient, and

the same is true for the interaction terms between slope and arbitrageur wealth. In the case of

three-year returns, the interaction terms have a negative coefficient, but only one out of the four

is statistically significant. Controlling for past returns does not affect the statistical significance of

the interaction terms.

The coefficients of the interaction terms are economically significant. Consider, for example,

the interaction term between supply and our first measure of arbitrageur wealth, (22). This term

has a coefficient of -4.436 for one-year returns. From Table 1, the standard deviation of the wealth

measure is 0.0015. Therefore, a one-standard deviation movement in the wealth measure changes

9An alternative version of measure (23), which is more in the spirit of Hypothesis 4, is

∆WArb
2t =

((
MWD

GDP

)
t−1

−
(
MWD

GDP

))
· rx(τ)

t , (24)

where
(
MWD
GDP

)
denotes the time-series average of maturity-weighted debt to GDP. Under both (24) and Hypothesis

4, arbitrageurs are short bonds when the dollar duration of government bond supply is low. Under (23) instead,
arbitrageurs hold a small long position. The choice of (23) or (24) does not matter for our results.
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the coefficient of maturity-weighted debt to GDP by 4.436×0.0015=0.0067. This is approximately

a one-quarter percentage change since the coefficient is 0.026 (Tables 2 and 7).

Table 7 assumes that arbitrageur risk aversion is influenced by trading performance over a one-

year horizon. The relevant horizon might be different, however, and is influenced by the speed at

which fresh capital can enter in the arbitrage industry. If entry is fast, then capital losses over the

distant past do not affect current capital or risk aversion because the lost capital is replenished

quickly. Our analysis provides an estimate of the speed of entry, which might be relevant for theories

of slow-moving capital.10 In Table C.7 in Appendix C we measure the change in arbitrageur wealth

by

∆WArb
1t =

k∑
j=1

(y
(τ)
t−j − y

(1)
t−j) · rx

(τ)
t−j+1,

∆WArb
2t =

k∑
j=1

(
MWD

GDP

)
t−j

· rx(τ)t−j+1,

i.e., the sum of wealth changes over the past k years, where the change in wealth over any given

year is measured as in the baseline case (Eqs. (22) and (23)). The interaction term is economically

and statistically significant at horizons of one and two years. These findings suggest that capital

losses in term-structure arbitrage take two to three years to be offset by inflows of fresh capital.

5 Calibration

In this section we calibrate our model to the data. We estimate parameters for the supply-factor

process (5) and the short-rate process (6). We also estimate the sensitivity of supply at each

maturity to changes in the supply factor. These parameters, together with the arbitrageur risk-

aversion coefficient a, fully determine the effects of supply on yields and expected returns within

the model. Since these effects are an increasing function of a, there exists a unique value of a that

equates the average effect of supply on yields and expected returns in the model and in the data.

We compute this value and compare it to estimates of risk aversion used in the literature. We also

examine whether the value of a that matches the average effect of supply can also match relative

effects, e.g., on yields relative to expected returns and on long- relative to short-term bonds.

To estimate parameters (κβ , κr, γ, σβ , σr, σrβ) for the supply-factor process (5) and the short-

10See, for example, Duffie’s (2010) presidential address to the American Finance Association for a model of slow-
moving capital and a survey of the theoretical and empirical work in that area. See also Gromb and Vayanos (2010)
for a survey of the theoretical literature on the limits of arbitrage.
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rate process (6), we discretize these processes and perform a vector auto-regression (VAR) on

monthly data in the 1952-2007 sample. We use maturity-weighted debt to GDP as our proxy for

the supply factor βt, and the one-year yield y
(1)
t as our proxy for the short rate rt.

11 The details of

the vector auto-regressions and of the remaining steps in our calibration are in Appendix B.3. Our

estimate of the mean-reversion parameter κr for the short rate is larger than its counterpart κβ

for the supply factor: the short rate mean-reverts at business-cycle frequency, while movements in

maturity-weighted debt to GDP occur at a lower frequency as shown in Figure 2. Our estimate of

γ is positive, meaning that a shock to the supply factor moves expected future short rates, holding

the current short rate constant, and this movement is in the direction opposite to the shock. Our

estimate of σrβ is positive, meaning that shocks to the supply factor and to the short rate are

positively correlated. The correlation is small, however.

To estimate the sensitivity of supply at any given maturity τ to changes in the supply factor,

we regress supply at that maturity scaled by GDP on maturity-weighted debt to GDP. This yields

an estimate for the function θ(τ), which we plot in Figure C.2 in Appendix C. The function θ(τ)

is positive, meaning that an increase in the supply factor raises supply at each maturity.

Given our estimates for (κβ , κr, γ, σβ , σr, σrβ , θ(τ)) and a value for the arbitrageur risk-aversion

coefficient a, we compute an equilibrium in our model using Theorem B.2 in Appendix B.2. We

then compute the average coefficient of supply across the 28 yield and return regressions reported

in Table 3, which concern zero-coupon bonds with maturities from two to fifteen years. The value

of a that renders this average coefficient in the model equal to that in the data is a = 57. Using

a different set of regressions has a small effect on a: for example, using only the fourteen yield

regressions we find a = 42, and using only the fourteen return regressions we find a = 64.

We can compute a standard error for our estimates of a using Monte-Carlo simulation. We

generate artificial samples by simulating the VAR equations with the parameters computed from

our actual sample and reported in Table B.1 in Appendix B.3. For each artificial sample, we re-

estimate the VAR, and compute a new value for a using the procedure described in this section.

With 10000 samples, the standard error for the estimate a = 57 is 13.7 and the [5%, 95%] confidence

interval is [37.1, 82.6].

The coefficient a measures the absolute risk aversion of arbitrageurs. To convert a into a

coefficient of relative risk aversion (CRRA), we must multiply it by arbitrageur wealth. This

11An alternative proxy for βt could be constructed based on the total supply of debt, i.e., including corporate and
mortgage-backed debt in addition to government debt. This proxy captures the idea that arbitrageurs care about the
total duration risk that they bear, whether it comes from government or non-government debt. If shocks to the supply
of government and non-government debt are positively correlated, then our estimate of arbitrageur risk aversion a
under the alternative proxy will be lower than under our original proxy. Indeed, since positive correlation implies
larger shocks to total duration risk, explaining a given effect of supply requires lower arbitrageur risk aversion. The
opposite will be true if the two sets of shocks are negatively correlated. Constructing the alternative proxy requires
time-series data on the maturity composition of non-government debt, which are not available for much of our sample.
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wealth must be expressed as a fraction of GDP since debt supply is expressed in the same manner.

A natural interpretation of arbitrageurs in our model is as hedge funds and proprietary-trading

desks: these agents typically have short horizons as our arbitrageurs. Hedge Fund Research reports

that the capital controlled by hedge funds in 2007 was 13.3% of GDP. Assuming that this is

representative of the level of arbitrage capital in our 1952-2007 sample, we estimate the CRRA to

be 57× 13.3% = 7.6.

Our estimate of CRRA assumes that arbitrageurs are the only agents to absorb shocks to the

supply of government debt. This is because we proxy the supply available to arbitrageurs, which

we do not observe, by the supply of bonds issued by the government. Arbitrageurs, however, are

likely to be absorbing only a fraction of supply shocks, with the rest being absorbed by investors

such as pension funds, insurance companies, and mutual funds. Such investors have typically longer

horizons than arbitrageurs. Our model treats their demand as exogenous and part of the net supply

available to arbitrageurs. As a crude way to adjust for the presence of these investors, we add the

capital that they control to arbitrage capital. According to the Flow of Funds tables, the capital

controlled by private pension funds in 2007 was 45.7% of GDP, that by insurance companies (life and

property casualty) was 45.2%, and that by mutual funds was 55.8%. Adding these to hedge-fund

capital, we estimate the CRRA to be 57× (13.3% + 45.7% + 45.2% + 55.8%) = 91.2.

Our second estimate of the CRRA assumes that investors can respond to supply shocks in the

same manner as arbitrageurs. If, however, their response is slow or limited by constraints related

to market segmentation (e.g., pension funds must keep a stable bond-stock mix), then the estimate

would be smaller. The estimate would also be smaller if we include additional risk factors in the

model, e.g., allow for variation in investor demand. Yet, our finding that supply effects in the

bond market can be consistent with CRRA values that are large relative to typical values used

in the literature is worthy of further investigation. This is especially so since estimates of supply

effects from recent quantitative easing programs are somewhat larger than ours (Section 4.1), hence

implying even larger values of risk aversion.

We next examine whether the risk-aversion coefficient that matches the average effect of supply

in the model and in the data can also match relative effects. Figure 6 plots the coefficients of

supply in the 28 yield and return regressions in Table 3 as a function of maturity, and compares

with the coefficients derived from the model for a = 57. The spread between the returns and yields

coefficients is smaller in the model than in the data. These discrepancies are, however, mostly

within confidence intervals. Both sets of coefficients are increasing with maturity in the model as

in the data. The effect of maturity is larger in the model than in the data for the yields coefficients

and smaller for the returns coefficients.
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6 Conclusion

The supply and maturity structure of government debt play no role in standard term-structure

theories. Yet, their effects on bond yields and expected returns are the subject of numerous policy

debates, ranging from debt management by treasury departments to quantitative easing by central

banks. Given the importance of these debates, it is surprising how little empirical evidence there

is correlating supply and maturity structure to bond yields and returns in long time-series. This

paper is an attempt to fill that gap.

We organize our empirical investigation around a term-structure model in which risk-averse

arbitrageurs absorb shocks to the demand and supply for bonds of different maturities. The model

predicts that an increase in supply should raise bond yields and expected returns, holding the short

rate constant, and these effects should be stronger for longer-maturity bonds and during times when

arbitrageurs are more risk averse. The model also suggests that the empirically relevant measure

of supply is maturity-weighted debt, which captures the duration risk that arbitrageurs must bear.

Using U.S. data, we find support for the model’s predictions. In particular, an increase in our

supply measure by one standard deviation, holding the one-year rate constant, raises the yield on a

long-term government bond with approximate maturity twenty years by 40 basis points (bps) and

its expected return over a one-year horizon by 259bps. We use our empirical estimates of supply

effects to calibrate the model and infer arbitrageur risk aversion.
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Figure 1 
Principal and coupon payments 

 
The time-series average, for each maturity year, of total payments on bills, bonds, and notes scaled by GDP. 

The bottom bars denote principal payments. The darker top bars denote coupon payments. Any payments 

beyond 30 years are included in the 30-year bucket. The data are based on the CRSP bond database and cover 

the period June 1952-December 2007.  
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Figure 2 
Bond supply, 1952-2007 

 

MWD/GDP is the maturity-weighted-debt-to-GDP ratio, computed by multiplying each debt payment 

by the corresponding maturity, summing across maturities, and scaling by GDP. LTD/GDP is the long-

term-debt-to-GDP ratio, computed by summing all debt payments with maturity beyond ten years, and 

scaling by GDP. M is the dollar-weighted average maturity expressed in years. D/GDP is the ratio of the 

aggregate principal payments of all Treasury securities to GDP. MWD/GDP, LTD/GDP, and M are 

computed using aggregate principal and coupon payments.  
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Figure 3 
Bond supply, 1916-1940 

 

 

MWD/GDP is the maturity-weighted-debt-to-GDP ratio, computed by multiplying each debt payment 

by the corresponding maturity, summing across maturities, and scaling by GDP. LTD/GDP is the long-

term-debt-to-GDP ratio, computed by summing all debt payments with maturity beyond ten years, and 

scaling by GDP. M is the dollar-weighted average maturity expressed in years and divided by five (to fit 

into the picture). D/GDP is the ratio of the aggregate principal payments of all Treasury securities to 

GDP. MWD/GDP, LTD/GDP, and M are computed using aggregate principal payments.  
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Figure 4 
Bond supply and excess bond returns 

 

Plots of three-year holding-period excess return on long-term government bonds (vertical axis) 

against the maturity-weighted-debt-to-GDP ratio (horizontal axis). Panel A shows the 1952-2007 

period. Panel B shows the 1916-1941 period. 
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Figure 5 
Bond supply, bond yields and bond returns: regression coefficients as a function of maturity 

 

We use the data provided by Gürkaynak, Sack and Wright (2007) to obtain yields and one-year returns for zero-

coupon bonds with maturities between two and fifteen years during the November 1971-December 2007 period. 

For each maturity τ, we estimate monthly time-series regressions of the form: 
( ) (1)

( ) (1)

,

( / ) ,  and

( / ) .

t t t t

t k k t t t k

y a b MWD GDP cy u

r a b MWD GDP cy u







 

   

   
 

In the first equation the yield is regressed on the maturity-weighted-debt-to-GDP ratio controlling for the one-

year yield. In the second equation the dependent variable is instead the one-year return. The figures below show 

the coefficients bτ as a function of τ, together with 95% confidence intervals.  

 

Panel A. Yields 

 
 
Panel B. Returns 

  



 

Figure 6 
Model calibration 

 

The solid and dashed lines plot the coefficients bτ from the monthly time-series regressions: 
( ) (1)

( ) (1)

,

/ ) ,  and

/ ) ,

(

(

t t t

t k k t t k

t

t

y a b MWD GDP cy u

r a b MWD GDP cy u







 

   

   
 

as a function of maturity τ ranging from two to fifteen years. In the first equation the one-year return of a zero-

coupon bond with maturity τ is regressed on the maturity-weighted-debt-to-GDP ratio controlling for the one-
year yield. In the second equation the dependent variable is instead the bond’s yield. The solid lines are the 

coefficients derived from the model. The dashed lines are the coefficients when the regressions are performed on 

actual data during the 1971-2007 period. The risk aversion coefficient of arbitrageurs in the model is chosen so 

that the average across all points in the two solid lines is equal to the average across all points in the two 

dashed lines.  
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Table 1  
Summary Statistics 

 

Panel A summarizes the main sample 1952-2007. MWD/GDP is the maturity-weighted-debt-to-GDP ratio. Its 

market-valued based version multiplies the market value of each bond by Macaulay duration, sums across bonds, 

and scales by GDP. LTD/GDP is the long-term-debt-to-GDP ratio. Its market-value based version sums the 

market values of all bonds with maturity beyond ten years, and scales by GDP. M is the dollar-weighted average 

maturity expressed in years. D/GDP is the ratio of the aggregate principal payments of all Treasury securities to 

GDP. y(LT) is the yield of a long-term bond with approximate maturity twenty years and y(1) is the one-year yield. 

r1, r2, and r3 are holding-period returns for the long-term bond over one-, three-, and five-year horizons, respectively. 

Output gap is the residual from a Hodrick-Prescott filter of log GDP. Output growth is the difference between log 

real GDP in the most recent quarter t and log real GDP in quarter t-4. Inflation risk is the standard deviation of 

monthly inflation over the past year. Interest-rate risk is the standard deviation of the monthly short-term 

Treasury-bill yield over the past year.  Stock-market risk is the standard deviation of daily CRSP value-weighted 

stock returns over the past month. Change in arbitrageur wealth ΔW1
Arb is the product of the one-year lagged 

spread between the long-term and the one-year yield, times the subsequent one-year excess return of the long-term 

bond. Change in arbitrageur wealth ΔW2
Arb is the product of the one-year lagged MWD/GDP, times the 

subsequent one-year excess return of the long-term bond. Panel B summarizes the pre-war sample 1916-1940.  

 

 

Panel A. Main sample 1952-2007 

 

Mean Median SD Min Max 

Measures of Debt Maturity and Debt Supply: 

MWD/GDP 2.284 2.142 0.997 0.671 4.275 

MWD/GDP (MV-based) 1.050 1.117 0.444 0.338 2.127 

LTD/GDP 0.077 0.070 0.038 0.019 0.149 

LTD/GDP (MV-based) 0.047 0.046 0.025 0.011 0.116 

M 5.387 5.511 1.016 3.269 7.024 

D/GDP 0.313 0.322 0.073 0.175 0.452 

Returns and Yields: 

y(LT) 0.063 0.060 0.025 0.026 0.138 

y(LT)-y(1) 0.008 0.008 0.012 -0.032 0.041 

y(1) 0.055 0.053 0.029 0.006 0.158 

r1 0.062 0.049 0.093 -0.187 0.434 

r3 0.189 0.187 0.165 -0.187 0.680 

r5 0.320 0.312 0.232 -0.166 1.100 

Macroeconomic Conditions and Other Controls: 

Output gap 0.000 0.000 0.016 -0.048 0.038 

Output growth 0.033 0.033 0.024 -0.031 0.091 

Inflation 0.038 0.031 0.028 -0.009 0.138 

Inflation risk 0.002 0.002 0.001 0.001 0.006 

Interest-rate risk 0.007 0.006 0.006 0.001 0.035 

Stock-market risk 0.007 0.006 0.004 0.002 0.049 

MWD/GDP (Fed adjusted) 2.154 2.044 1.001 0.555 4.134 

Arbitrageur Wealth: 

ΔW1
Arb 0.000 0.000 0.001 -0.004 0.007 

ΔW2
Arb 0.040 0.006 0.225 -0.673 0.958 

 

 

 

  



 

Table I Continued 

 

 

 

Panel B. Pre-war sample 1916-1940 

 

 

Mean Median SD Min Max 

      

MWD/GDP 3.062 3.500 0.974 0.552 4.264 

LTD/GDP 0.128 0.151 0.045 0.022 0.181 

M 12.857 12.307 3.572 9.153 23.377 

D/GDP 0.250 0.238 0.104 0.024 0.426 

y(LT) 0.035 0.036 0.008 0.022 0.055 

y(1) 0.023 0.029 0.019 0.000 0.058 

r1 0.000 0.000 0.000 0.000 0.001 

r3 0.031 0.035 0.010 0.006 0.043 

      

 

 

 



Table 2 
Bond supply, bond yields and bond returns 

Monthly time-series regressions of the form:  
( ) (1)

( ) (1)

,

t t t t

t k k t t t k

y a bX cy u

r a bX cy u





 

   

   
 

The dependent variable is the yield or the one-year, three-year, or five-year return of the τ-year bond. The independent variable Xt is MWD/GDP, the 
maturity-weighted-debt-to-GDP ratio, or LTD/GDP, the long-term-debt-to-GDP ratio. The regressions control for the one-year yield. The first set of t-
statistics, reported in brackets, are based on Newey-West standard errors with 36 lags in the case of the yield and one-year return regressions, and 54 and 90 

lags in the case of the three- and five-year return regressions. The second set of t-statistics are based on modeling the error process as AR(1) for the yield 

regressions, and as ARMA(1,k) for the return regressions where k denotes the number of months in the return cumulation (e.g., twelve for the one-year 

return).  

 
  X=MWD/GDP X= LTD/GDP 

  b [t NW] [t AR] c [t NW] [t AR] R2 b [t NW] [t AR] c [t NW] [t AR] R2 

                
 Yield spreads:               

 Yield 2-yr bond 0.001 [2.597] [2.363]

] 
0.981 [50.113] [70.970]

0 
0.987 0.029 [2.476] [2.293] 0.982 [49.381] [69.955] 0.987 

 Yield 3-yr bond 0.002 [2.510] [1.881] 0.951 [29.510] [36.999] 0.968 0.044 [2.364] [1.811] 0.952 [29.150] [36.591] 0.968 

 Yield 4-yr bond 0.002 [2.497] [1.805] 0.932 [22.657] [30.645] 0.949 0.058 [2.356] [1.772] 0.934 [22.419] [30.362] 0.948 

 Yield 5-yr bond 0.002 [2.358] [1.580] 0.913 [19.528] [23.621] 0.933 0.064 [2.258] [1.601] 0.914 [19.387] [23.506] 0.932 

 Yield LT bond 0.004 [2.682] [1.719] 0.795 [12.167] [12.993] 0.379 0.107 [2.610] [1.822] 0.797 [12.234] [13.253] 0.374 

                

 Returns:               

 1-year return 2-yr 

bond 
0.004 [1.979] [1.438] 1.114 [12.201] [11.290] 0.774 0.116 [2.176] [1.590] 1.118 [12.214] [11.245] 0.776 

 1-year return 3-yr 

bond 
0.007 [1.860] [1.512] 1.134 [6.751] [6.847] 0.507 0.191 [2.013] [1.627] 1.140 [6.750] [6.804] 0.509 

 1-year return 4-yr 

bond 
0.010 [1.964] [1.774] 1.157 [4.864] [4.535] 0.358 0.266 [2.084] [1.867] 1.166 [4.855] [4.495] 0.360 

 1-year return 5-yr 

bond 
0.011 [1.902] [1.852] 1.145 [3.897] [4.172] 0.263 0.308 [2.012] [1.913] 1.154 [3.897] [4.132] 0.265 

 1-year return LT bond 0.026 [3.097] [3.462] 1.212 [2.846] [3.181] 0.190 0.685 [3.196] [3.468] 1.229 [2.860] [3.142] 0.189 

 3-year return LT bond 0.065 [4.200] [4.121] 3.737 [4.971] [4.587] 0.506 1.786 [4.200] [4.284] 3.795 [5.039] [4.627] 0.516 

 5-year return LT bond 0.094 [5.421] [3.580] 6.139 [5.401] [4.650] 0.658 2.625 [5.340] [4.068] 6.235 [5.612] [5.062] 0.675 

                

 

 



Table 3 
Bond supply, bond yields and bond returns: regression coefficients as a function of maturity 

 

Monthly time-series regressions of the form:  
( ) (1)

( ) (1)

,

( / ) ,  and

( / ) .

t t t t

t k k t t t k

y a b MWD GDP cy u

r a b MWD GDP cy u







 

   

   
 

for each maturity τ between two and fifteen years, during the 1971-2007 period. The dependent variable is the 

yield or the one-year return of the τ-year bond. The independent variable is MWD/GDP, the maturity-

weighted-debt-to-GDP ratio. The regressions control for the one-year yield. The first set of t-statistics, reported 

in brackets, are based on Newey-West standard errors with 36 lags. The second set of t-statistics are based on 

modeling the error process as AR(1) for the yield regressions, and as ARMA(1,12) for the return regressions. 

 
  Yields 1-yr returns 

  b [t NW] [t AR] R2 b [t NW] [t AR] R2 

 τ=         

 2-yr 0.0009 [2.051] [1.567] 0.985 0.005 [2.143] [1.484] 0.752 

 3-yr 0.0014 [2.016] [1.360] 0.961 0.008 [2.134] [1.659] 0.489 

 4-yr 0.0017 [2.045] [1.303] 0.938 0.011 [2.223] [1.881] 0.339 

 5-yr 0.0020 [2.087] [1.280] 0.916 0.014 [2.340] [2.088] 0.254 

 6-yr 0.0023 [2.133] [1.271] 0.898 0.016 [2.459] [2.267] 0.203 

 7-yr 0.0025 [2.178] [1.270] 0.882 0.019 [2.569] [2.421] 0.171 

 8-yr 0.0026 [2.222] [1.275] 0.868 0.022 [2.663] [2.555] 0.151 

 9-yr 0.0028 [2.263] [1.286] 0.856 0.024 [2.740] [2.671] 0.137 

 10-yr 0.0029 [2.301] [1.301] 0.846 0.027 [2.800] [2.772] 0.128 

 11-yr 0.0030 [2.334] [1.319] 0.836 0.029 [2.845] [2.858] 0.121 

 12-yr 0.0030 [2.363] [1.338] 0.827 0.032 [2.878] [2.933] 0.115 

 13-yr 0.0031 [2.386] [1.356] 0.819 0.034 [2.901] [2.998] 0.111 

 14-yr 0.0032 [2.403] [1.373] 0.812 0.037 [2.916] [3.054] 0.107 

 15-yr 0.0032 [2.414] [1.388]]

8] 
0.805 0.039 [2.926] [3.104] 0.104 

          



 

Table 4 
Instrumental-variables tests 

 

We instrument for the maturity-weighted-debt-to-GDP ratio by the Treasury-debt-to-GDP ratio. Both the first- 

and second-stage regressions are monthly and include a control for the one-year yield. The dependent variable in 

the second-stage regression is the yield or one-year return of the long-term bond. t-statistics, reported in 

parentheses, are based on Newey-West standard errors with 36 lags in the case of the yield and one-year return 

regressions, and 54 lags in the case of the three-year return regression.  

 

First stage regressions:

 

(1)( / ) ( / )t t t t tX MWD GDP D GDP y u        

 

 Instrument = D/GDP  

D/GDP 14.186 

 
[12.33] 

y(1) 12.809 

 [4.08] 

R2 0.835 

 

 

Second stage regressions:
 

( ) (1)

( ) (1)

,

ˆ ,  and

ˆ

LT

t t t t

LT

t k k t t t k

y a bX y u

r a bX y u 

   

   
 

 

 
Yield 1-year return 3-year return 

MWD/GDP (IV) 0.002 0.028 0.067 

 
[1.129] [2.885] [3.493] 

y(1) 0.845 1.223 3.748 

 
[11.600] [2.868] [4.923] 

R2 0.849 0.189 0.506 

 

 

  



Table 5 
Robustness tests 

 

OLS and instrumental-variables monthly time-series regressions of the form: 
( ) (1)

,
( / )

LT

t k k t t t ktr a b MWD GDP cy dZ u
 

    
 

where Z denotes a control that includes the term spread, output gap, output growth, inflation, inflation risk, 

interest-rate risk and stock-market risk. The dependent variable is the one- or three-year return of the long-term 

bond. t-statistics, reported in parentheses, are based on Newey-West standard errors with 36 lags in the case of 

the one-year return regression and 54 lags in the case of three-year return regression.  

 
  1-year return 3-year return 

  b [t] R2 b [t] R2 

        
(1) Base case: control for short rate only 0.026 [3.097] 0.190 0.065 [4.200] 0.506 

        

 Market value based measures of supply:       

(2) MWD/GDP MV (OLS) 0.003 [1.748] 0.136 0.011 [2.269] 0.426 

(3) MWD/GDP MV (IV) 0.007 [2.671] 0.114 0.016 [3.110] 0.409 

(4) LTD/GDP MV (OLS) 0.894 [2.586] 0.155 2.887 [3.728] 0.489 

(5) LTD/GDP MV (IV) 1.395 [2.837] 0.142 3.317 [3.448] 0.486 

        

 Macroeconomic and other controls:       

(6) Add control for term spread 0.014 [1.892] 0.281 0.046 [2.422] 0.582 

(7) Add control for output gap 0.026 [3.399] 0.207 0.065 [4.308] 0.536 

(8) Add control for output gr. 0.026 [3.165] 0.188 0.066 [4.376] 0.522 

(9) Add control for inflation 0.020 [2.680] 0.210 0.061 [4.511] 0.509 

(10) Add control for inflation risk 0.027 [3.124] 0.191 0.076 [4.809] 0.588 

(11) Add control for interest-rate risk 0.026 [3.126] 0.189 0.068 [4.358] 0.519 

(12) Add control for stock-market risk 0.026 [3.101] 0.194 0.064 [4.324] 0.538 

(13) Time trend control 0.020 [2.343] 0.215 0.045 [2.892] 0.594 

(14) Future changes in debt maturity 0.027 [3.198] 0.202 0.067 [4.402] 0.524 

(15) Adjust MWD for fed holdings 0.027 [3.120] 0.199 0.660 [4.242] 0.516 

(16) Annual sampling (September) 0.028 [3.085] 0.183 0.072 [4.106] 0.505 

(17) Annual sampling (December) 0.023 [2.524] 0.139 0.060 [3.538] 0.456 

 



Table 6 
Bond supply, bond yields and bond returns, 1916-1940 

 

Annual time-series regressions of the form:  
( ) (1)

( ) (1)

,

/

/

LT

t t t t

LT

t k k t t t k

y a bMWD GDP cy u

r a bMWD GDP cy u 

   

   
 

during the 1916-1940 period (with one-year returns extending to 1941 and three-year returns extending to 1943). 

The data are sampled at the end of June. The dependent variable is the yield or the one- or three-year return of 

the long-term bond. t-statistics, reported in parentheses, are based on Newey-West standard errors with three 

lags in the case of the yield and one-year return regressions, and five lags in the case of the three-year return 

regression.  

 

 

Yield Returns 

  1-year return 3-year return 

    
MWD/GDP 0.001 0.008 0.029 

 

[1.310] [0.988] [5.528] 

y(1) 0.379 0.035 1.169 

 

[5.216] [0.103] [2.778] 

R2 0.698 0.043 0.448 

 



Table 7 
Bond supply, bond returns, and arbitrageur wealth 

 

Monthly time-series regressions of the form: 
( ) (1) ( ) (1) (1)( )

,
( ) ( )/ /

LT LT

t t t t t t k

LT Arb Arb

t k k t t t
a b y y y y y ur MWD GDP c e W MWD GDP f W g


           

The dependent variable is the one- or three-year return of the long-term bond. The independent variables include the spread between the long-term and the one-

year yield, MWD/GDP, and interactions between these variables and changes in arbitrageur wealth. We use two measures of arbitrageur wealth. The first 

measure, ΔW1
Arb, is the product of the one-year lagged spread between the long-term and the one-year yield, times the subsequent one-year excess return of the 

long-term bond. The second measure, ΔW2
Arb, is the product of the one-year lagged MWD/GDP, times the subsequent one-year excess return of the long-term 

bond. t-statistics, reported in parentheses, are based on Newey-West standard errors with 36 lags in the case of the one-year return regression and 54 lags in the 

case of three-year return regression.  

 1-year return 3-year return 

MWD/GDP 0.026 0.031 0.034    
0.065 0.067 0.069 

   
 [3.102] [3.408] [3.634]    

[4.210] [4.252] [4.268] 
   

y(LT)- y(1) 

   

3.443 4.26 4.114 
   

6.46 7.076 6.819 

 
   

[5.136] [5.190] [5.633] 
   

[4.710] [4.611] [4.375] 

1 /ArbW MWD GDP   

 

-4.729 

 
    

-1.971 
    

 
 

[-3.386] 

 
    

[-1.221] 
    

2 /ArbW MWD GDP   

  

-0.029      
-0.013 

   

 
  

[-3.114]      
[-1.422] 

   
( ) (1)

1 ( )Arb LTW y y    

   
 

-675.811 
     

-509.326 
 

 
   

 
[-2.774] 

     
[-2.404] 

 
( ) (1)

2 ( )Arb LTW y y    

   
  

-5.226 
     

-2.792 

 
   

  
[-2.954] 

     
[-1.153] 

y(1) 1.214 1.146 1.130 1.894 1.838 1.989 3.741 3.713 3.703 4.945 4.903 4.995 

 [2.791] [2.587] [2.489] [5.405] [5.406] [5.918] [4.830] [4.806] [4.670] [6.994] [7.059] [6.862] 

R2 0.190 0.239 0.238 0.265 0.309 0.307 0.503 0.505 0.506 0.518 0.526 0.522 

 

 



APPENDIX

A Proofs of Theoretical Results

Proof of Lemma 1: Using (8), we can write (2) as

dWt =

(
Wtrt +

∫ T

0
x
(τ)
t (µ

(τ)
t − rt)dτ

)
dt−

(∫ T

0
x
(τ)
t Ar(τ)dτ

)
σrdBr,t−

(∫ T

0
x
(τ)
t Aβ(τ)dτ

)
σβdBβ,t,

and (3) as

max
{x(τ)

t }τ∈(0,T ]

[∫ T

0
x
(τ)
t (µ

(τ)
t − rt)dτ − aσ2

r

2

(∫ T

0
x
(τ)
t Ar(τ)dτ

)2

−
aσ2

β

2

(∫ T

0
x
(τ)
t Aβ(τ)dτ

)2
]
. (A.1)

Point-wise maximization of (A.1) yields (10).

We next show two useful lemmas.

Lemma A.1. If a function g(τ) is positive and increasing, then
∫ T
0 g(τ)θ(τ)dτ > 0.

Proof: We can write the integral
∫ T
0 g(τ)θ(τ)dτ as

∫ T

0
g(τ)θ(τ)dτ =

∫ τ∗

0
g(τ)θ(τ)dτ +

∫ T

τ∗
g(τ)θ(τ)dτ

> g(τ∗)

∫ τ∗

0
θ(τ)dτ + g(τ∗)

∫ T

τ∗
θ(τ)dτ

= g(τ∗)

∫ T

0
θ(τ)dτ ≥ 0,

where the second step follows from Part (ii) of Assumption 1 and because g(τ) is increasing, and

the last step follows from Part (i) of Assumption 1 and because g(τ) is positive.

Lemma A.2. The functions Ar(τ) and Aβ(τ), given by (13) and (14), respectively, are positive

and increasing. For Aβ(τ), this holds for any value of κ̂β, and not only for κ̂β solutions to (16).

Proof: Eq. (13) implies that Ar(τ) is positive and increasing. Therefore, Lemma A.1 implies that

1



Ir > 0 and Z > 0. To show that Aβ(τ) is positive and increasing, we write it as

Aβ(τ) = Z

∫ τ

0

1− e−κr τ̂

κr
e−κ̂β(τ−τ̂)dτ̂ . (A.2)

Since Z > 0, (A.2) implies that Aβ(τ) is positive. Differentiating (A.2), we find

A′
β(τ) = Z

(
1− e−κrτ

κr
− κ̂β

∫ τ

0

1− e−κr τ̂

κr
e−κ̂β(τ−τ̂)dτ̂

)
. (A.3)

If κ̂β ≤ 0, (A.3) implies that

A′
β(τ) ≥ Z

1− e−κrτ

κr
> 0.

If κ̂β > 0, (A.3) implies that

A′
β(τ) > Z

1− e−κrτ

κr

(
1− κ̂β

∫ τ

0
e−κ̂β(τ−τ̂)dτ̂

)
= Z

1− e−κrτ

κr
e−κ̂βτ > 0,

since Ar(τ) is increasing in τ . Therefore, in both cases, Aβ(τ) is increasing in τ .

Proof of Theorem 1: Substituting x
(τ)
t from (4) and (12) into (11), we find

λi,t = aσ2
i

∫ T

0
[ζ(τ) + θ(τ)βt]Ai(τ)dτ. (A.4)

Substituting µ
(τ)
t and λi,t from (9) and (A.4) into (10), we find an affine equation in (rt, βt).

Identifying terms in rt yields

κrAr(τ) +A′
r(τ)− 1 = 0, (A.5)

identifying terms in βt yields

κβAβ(τ) +A′
β(τ) = aσ2

rAr(τ)

∫ T

0
Ar(τ)θ(τ)dτ + aσ2

βAβ(τ)

∫ T

0
Aβ(τ)θ(τ)dτ, (A.6)

2



and identifying constant terms yields

C ′(τ)−κr r̄Ar(τ)+
σ2
r

2
Ar(τ)

2+
σ2
β

2
Aβ(τ)

2 = aσ2
rAr(τ)

∫ T

0
Ar(τ)ζ(τ)dτ+aσ2

βAβ(τ)

∫ T

0
Aβ(τ)ζ(τ)dτ.

(A.7)

The ordinary differential equations (ODEs) (A.5)-(A.7) must be solved with the initial condition

Ar(0) = Aβ(0) = C(0) = 0. The solution to (A.5) is (13). Using (13) and the definitions of Ir and

Z, we can write (A.6) as

κ̂βAβ(τ) +A′
β(τ) = Z

1− e−κr

κr
, (A.8)

where

κ̂β ≡ κβ − aσ2
β

∫ T

0
Aβ(τ)θ(τ)dτ. (A.9)

The solution to (A.8) is (14). Substituting into (A.9), we find that κ̂β is given by (16). The solution

to (A.7) is

C(τ) = Zr

∫ τ

0
Ar(τ

′)dτ ′ + Zβ

∫ τ

0
Aβ(τ

′)dτ ′ − σ2
r

2

∫ τ

0
Ar(τ

′)2dτ ′ −
σ2
β

2

∫ τ

0
Aβ(τ

′)2dτ ′, (A.10)

where

Zr ≡ κrr̄ + aσ2
r

∫ T

0

1− e−κr

κr
ζ(τ)dτ,

Zβ ≡ Zaσ2
β

∫ T

0

1

κr

(
1− e−κ̂βτ

κ̂β
− e−κrτ − e−κ̂βτ

κ̂β − κr

)
ζ(τ)dτ.

To complete the proof of the theorem, we must show that (16) has a solution for a below a

threshold ā > 0. Since the function Aβ(τ) is positive and increasing from Lemma A.2, Lemma

A.1 implies that the second term in the right-hand side of (16) is positive. Therefore, any solution

to (16) must satisfy κ̂β < κβ . When κ̂β = κβ , the left-hand side of (16) is equal to κβ and the

right-hand side is smaller than κβ . When instead κ̂β goes to −∞, both left- and right-hand side

go to −∞, but the right-hand side converges at the rate − e
−κ̂βT

κ̂2
β

which is faster than the rate κ̂β

3



at which the left-hand side converges. Therefore, (16) has an even number of solutions, possibly

zero. A sufficient condition for (16) to have a solution is that the left-hand side is smaller than the

right-hand side for κ̂β = 0, i.e.,

κβ − a2σ2
rσ

2
βIr

∫ T

0

1

κr

(
τ − 1− e−κrτ

κr

)
θ(τ)dτ > 0

⇔ a <

√√√√ κβ

σ2
rσ

2
βIr
∫ T
0

1
κr

(
τ − 1−e−κrτ

κr

)
θ(τ)dτ

. (A.11)

Thus, (16) has a solution when a is smaller than the threshold ā > 0 defined as the right-hand side

of (A.11).

Proof of Proposition 1: Since the yield of the bond with maturity τ at time t is

y
(τ)
t ≡ −

log
(
P

(τ)
t

)
τ

=
Ar(τ)rt +Aβ(τ)βt + C(τ)

τ
, (A.12)

the effect of a shock to βt is

∂y
(τ)
t

∂βt
=

Aβ(τ)

τ
. (A.13)

Since the function Aβ(τ) is positive, the effect in (A.13) is positive. To determine how the effect

depends on maturity, we differentiate with respect to τ :

d
(
Aβ(τ)

τ

)
dτ

=
τA′

β(τ)−Aβ(τ)

τ2
.

The function τ → τA′
β(τ)−Aβ(τ) is zero for τ = 0. Its derivative is τA′′

β(τ). Differentiating (A.3),

we find

A′′
β(τ) = Z

(
e−κrτ − κ̂β

1− e−κrτ

κr
+ κ̂2β

∫ τ

0

1− e−κr τ̂

κr
e−κ̂β(τ−τ̂)dτ̂

)
.

The function A′′
β(τ) has the same sign as

F (τ) ≡ e(κ̂β−κr)τ − κ̂β
eκ̂βτ − e(κ̂β−κr)τ

κr
+ κ̂2β

∫ τ

0

1− e−κr τ̂

κr
eκ̂β τ̂dτ̂ .

4



Since F (0) > 0 and

F ′(τ) = (κ̂β − κr)e
(κ̂β−κr)τ − κ̂β

κ̂βe
κ̂βτ − (κ̂β − κr)e

(κ̂β−κr)τ

κr
+ κ̂2β

1− e−κrτ

κr
eκ̂βτ

= −κre
(κ̂β−κr)τ < 0,

the function F (τ) is either positive or positive and then negative, and the same is true for A′′
β(τ).

Therefore, the function τA′
β(τ)−Aβ(τ) is either increasing or increasing and then decreasing. Since

it is zero for τ = 0, it is either positive or positive and then negative. Hence, the function Aβ(τ)/τ

is either increasing or increasing and then decreasing, which means that the effect of a shock to βt

on yields is either increasing or hump-shaped across maturities.

Proof of Proposition 2: Eqs. (10) and (A.4) imply that the effect of a shock to βt on the

instantaneous expected return of the bond with maturity τ at time t is

∂µ
(τ)
t

∂βt
= aσ2

rAr(τ)

∫ T

0
Ar(τ)θ(τ)dτ + aσ2

rAβ(τ)

∫ T

0
Aβ(τ)θ(τ)dτ. (A.14)

Since the functions Ar(τ) and Aβ(τ) are positive and increasing from Lemma A.2, Lemma A.1

implies that the two integrals in (A.14) are positive. This property, together with Ar(τ) and Aβ(τ)

being positive and increasing, imply that the effect in (A.14) is positive and increasing across

maturities.

Proof of Proposition 3: Eqs. (A.6) and (A.14) imply that

Aβ(τ) =

∫ τ

0

∂µ
(τ̂)
t

∂βt
e−κβ(τ−τ̂)dτ̂ <

∂µ
(τ)
t

∂βt

1− e−κβτ

κβ
, (A.15)

where the second step follows because Proposition 2 implies that ∂µ
(τ)
t /∂βt is increasing in τ .

Combining (A.13) and (A.15), we find

∂y
(τ)
t

∂βt
<

∂µ
(τ)
t

∂βt

1− e−κβτ

κβτ
<

∂µ
(τ)
t

∂βt
,

where the second step follows because κβ > 0. Hence, the effect of a shock to βt on yields is smaller

than on instantaneous expected returns.

Proof of Proposition 4: Since the right-hand side of (16) is decreasing in a, the largest solution

5



for κ̂β is decreasing in a. Eq. (A.2) then implies that the function Aβ(τ) is increasing in a, and

(13) and (A.14) imply that the effect of βt on instantaneous expected returns is increasing in a.

B Extensions and Calibration

B.1 Hedging Demand

In this section we modify arbitrageurs’ preferences to introduce a hedging demand. We replace the

optimization problem (3) by

max
{x(τ)

t }τ∈(0,T ]

[
Et(dWt)−

a

2
[V art(dWt) + ΨCovt(dWt, dRt)]

]
, (B.1)

where dRt is a portfolio return with loadings Λr and Λβ , respectively, on the shocks dBr,t and dBβ,t.

The covariance term can be given multiple interpretations. For example, arbitrageurs could be

asset managers tracking a benchmark portfolio. Their optimization problem would then be

max
{x(τ)

t }τ∈(0,T ]

[
Et(dWt)−

a

2
V art(dWt −WtdRt)

]
, (B.2)

where Rt is the return on the benchmark portfolio. Alternatively, arbitrageurs could be pension-

fund managers hedging a fixed-term liability. Their optimization problem would then be (B.2),

where Wt is replaced by the market value Lt of the liability and Rt is the return on Lt. These

optimization problems are equivalent to (B.1) provided that Ψt = −2Wt in the first case and Ψ =

−2Lt in the second case. If Wt and Lt are constant over time because managers form overlapping

generations that start with the same wealth and liabilities, then Ψ is constant. Moreover, if dRt

is a portfolio of zero-coupon bonds with weights that are constant over time, then Λr and Λβ are

constant.

Introducing a hedging demand affects only the function C(τ) in the equilibrium derived in

Section 2, but not the functions Ar(τ) and Aβ(τ). Therefore, Propositions 1-4 continue to hold.

Theorem B.1. The functions Ar(τ) and Aβ(τ) are given by (13) and (14), respectively. The

function C(τ) is given by (A.10) with Zr and Zβ given by (B.9) and (B.10), respectively.

Proof of Theorem B.1: With a hedging demand, the arbitrageurs’ optimization problem (A.1)

6



is replaced by

max
{x(τ)

t }τ∈(0,T ]

[∫ T

0
x
(τ)
t (µ

(τ)
t − rt)dτ − aσ2

r

2

(∫ T

0
x
(τ)
t Ar(τ)dτ

)2

−
aσ2

β

2

(∫ T

0
x
(τ)
t Aβ(τ)dτ

)2

−aΨσrΛr

2

∫ T

0
x
(τ)
t Ar(τ)dτ −

aΨσβΛβ

2

∫ T

0
x
(τ)
t Aβ(τ)dτ

]
. (B.3)

Point-wise maximization of (B.3) yields the first-order condition (10), with (11) replaced by

λr,t ≡ aσ2
r

∫ T

0
x
(τ)
t Ar(τ)dτ +

aΨσrΛr

2
, (B.4)

λβ,t ≡ aσ2
β

∫ T

0
x
(τ)
t Aβ(τ)dτ +

aΨσβΛβ

2
. (B.5)

Substituting x
(τ)
t from (4) and (12) into (B.15) and (B.16), we find

λr,t ≡ aσ2
r

∫ T

0
[ζ(τ) + θ(τ)βt]Ar(τ)dτ +

aΨσrΛr

2
, (B.6)

λβ,t ≡ aσ2
β

∫ T

0
[ζ(τ) + θ(τ)βt]Aβ(τ)dτ +

aΨσβΛβ

2
. (B.7)

Substituting µ
(τ)
t , λr,t and λβ,t from (9), (B.6) and (B.7) into (10), we find an affine equation in

(rt, βt). Identifying terms in rt and βt yields (A.5) and (A.6), respectively. Identifying constant

terms yields

C ′(τ)− κr r̄Ar(τ) +
σ2
r

2
Ar(τ)

2 +
σ2
β

2
Aβ(τ)

2

= aσ2
rAr(τ)

∫ T

0
Ar(τ)ζ(τ)dτ + aσ2

βAβ(τ)

∫ T

0
Aβ(τ)ζ(τ)dτ +

aΨσrΛr

2
Ar(τ) +

aΨσβΛβ

2
Aβ(τ).

(B.8)

The solutions to (A.5) and (A.6) are (13) and (14), respectively. The solution to (B.8) is (A.10)

with

Zr ≡ κrr̄ + aσ2
r

∫ T

0

1− e−κr

κr
ζ(τ)dτ +

aΨσrΛr

2
, (B.9)

Zβ ≡ Zaσ2
β

∫ T

0

1

κr

(
1− e−κ̂βτ

κ̂β
− e−κrτ − e−κ̂βτ

κ̂β − κr

)
ζ(τ)dτ +

aΨσβΛβ

2
. (B.10)
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Hence, the functions Ar(τ), Aβ(τ) and C(τ) are as in the theorem’s statement.

B.2 Correlated Short Rate and Supply Factor

In this section we study the case where the short rate rt and the supply factor βt are correlated.

Correlation affects the functions Aβ(τ) and C(τ) in the equilibrium derived in Section 2, but not

the function Ar(τ).

Theorem B.2. The functions Ar(τ) and Aβ(τ) are given by (13) and (14), respectively, where

Z ≡
a(σ2

r + σ2
rβ)Ir − κrγ

1− aσrβσβ
∫ T
0

1
κr

(
1−e

−κ̂βτ

κ̂β
− e−κrτ−e

−κ̂βτ

κ̂β−κr

)
θ(τ)dτ

,

Ir is given by (15), and κ̂β solves

κ̂β = κβ−aσrβσβIr−

(
a(σ2

r + σ2
rβ)Ir − κrγ

)
aσ2

β

∫ T
0

1
κr

(
1−e

−κ̂βτ

κ̂β
− e−κrτ−e

−κ̂βτ

κ̂β−κr

)
θ(τ)dτ

1− aσrβσβ
∫ T
0

1
κr

(
1−e

−κ̂βτ

κ̂β
− e−κrτ−e

−κ̂βτ

κ̂β−κr

)
θ(τ)dτ

. (B.11)

Eq. (B.11) has a solution if a is below a threshold ā > 0. The function C(τ) is given by (B.23).

Proof of Theorem B.2: In the correlated case, (8) is replaced by

dP
(τ)
t

P
(τ)
t

= µ
(τ)
t dt−Ar(τ)σrdBr,t − (Ar(τ)σrβ +Aβ(τ)σβ)dBβ,t, (B.12)

where

µ
(τ)
t =A′

r(τ)rt +A′
β(τ)βt + C ′(τ) +Ar(τ)κr(rt − r̄ + γβt) +Aβ(τ)κββt

+
1

2
Ar(τ)

2(σ2
r + σ2

rβ) +
1

2
Aβ(τ)

2σ2
β +Ar(τ)Aβ(τ)σrβσβ . (B.13)

The arbitrageurs’ optimization problem (A.1) is replaced by

max
{x(τ)

t }τ∈(0,T ]

[∫ T

0
x
(τ)
t (µ

(τ)
t − rt)dτ − aσ2

r

2

(∫ T

0
x
(τ)
t Ar(τ)dτ

)2

− a

2

(∫ T

0
x
(τ)
t (σrβAr(τ) + σβAβ(τ))dτ

)2
]
.

(B.14)
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Point-wise maximization of (B.14) yields the first-order condition (10), with (11) replaced by

λr,t ≡ aσ2
r

∫ T

0
x
(τ)
t Ar(τ)dτ + aσrβ

∫ T

0
x
(τ)
t (σrβAr(τ) + σβAβ(τ))dτ, (B.15)

λβ,t ≡ aσβ

∫ T

0
x
(τ)
t (σrβAr(τ) + σβAβ(τ))dτ. (B.16)

Substituting x
(τ)
t from (4) and (12) into (B.15) and (B.16), we find

λr,t ≡ aσ2
r

∫ T

0
[ζ(τ) + θ(τ)βt]Ar(τ)dτ + aσrβ

∫ T

0
[ζ(τ) + θ(τ)βt](σrβAr(τ) + σβAβ(τ))dτ,

(B.17)

λβ,t ≡ aσβ

∫ T

0
[ζ(τ) + θ(τ)βt](σrβAr(τ) + σβAβ(τ))dτ. (B.18)

Substituting µ
(τ)
t , λr,t and λβ,t from (9), (B.17) and (B.18) into (10), we find an affine equation in

(rt, βt). Identifying terms in rt yields (A.5), identifying terms in βt yields

κrγAr(τ) + κβAβ(τ) +A′
β(τ)

=aσ2
rAr(τ)

∫ T

0
Ar(τ)θ(τ)dτ + a(σrβAr(τ) + σβAβ(τ))

∫ T

0
(σrβAr(τ) + σβAβ(τ))θ(τ)dτ,

(B.19)

and identifying constant terms yields

C ′(τ)− κr r̄Ar(τ) +
σ2
r + σ2

rβ

2
Ar(τ)

2 +
σ2
β

2
Aβ(τ)

2 + σrβσβAr(τ)Aβ(τ)

= aσ2
rAr(τ)

∫ T

0
Ar(τ)ζ(τ)dτ + a(σrβAr(τ) + σβAβ(τ))

∫ T

0
(σrβAr(τ) + σβAβ(τ))ζ(τ)dτ.

(B.20)

The solution to (A.5) is (13). Using (13) and the definition of Ir, we can write (A.6) as

κ̂βAβ(τ) +A′
β(τ) =

[
a(σ2

r + σ2
rβ) + aσrβσβ

∫ T

0
Aβ(τ)θ(τ)dτ − κrγ

]
1− e−κr

κr
, (B.21)
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where

κ̂β ≡ κβ − a

(
σrβσβIr + σ2

β

∫ T

0
Aβ(τ)θ(τ)dτ

)
. (B.22)

The solution to (A.8) is (14), with Z given by

Z = a(σ2
r + σ2

rβ) + ZσβσrβIβ − κrγ

and hence as in the theorem’s statement. Substituting into (B.22), we find that κ̂β is given by

(B.11). The solution to (B.20) is

C(τ) =Zr

∫ τ

0
Ar(τ

′)dτ ′ + Zβ

∫ τ

0
Aβ(τ

′)dτ ′

−
σ2
r + σ2

rβ

2

∫ τ

0
Ar(τ

′)2dτ ′ −
σ2
β

2

∫ τ

0
Aβ(τ

′)2dτ ′ −
σrβσβ

2

∫ τ

0
Ar(τ

′)Aβ(τ
′)dτ ′, (B.23)

where

Zr ≡ κrr̄ + a(σ2
r + σ2

rβ)

∫ T

0

1− e−κr

κr
ζ(τ)dτ + Zaσrβσβ

∫ T

0

1

κr

(
1− e−κ̂βτ

κ̂β
− e−κrτ − e−κ̂βτ

κ̂β − κr

)
ζ(τ)dτ,

Zβ ≡ aσrβσβ

∫ T

0

1− e−κr

κr
ζ(τ)dτ + Zaσ2

β

∫ T

0

1

κr

(
1− e−κ̂βτ

κ̂β
− e−κrτ − e−κ̂βτ

κ̂β − κr

)
ζ(τ)dτ.

To complete the proof of the theorem, we must show that (B.11) has a solution for a below a

threshold ā > 0. When κβ goes to ∞, the left-hand side of (B.11) goes to ∞ and the right-hand

side goes to the finite limit κβ − aσrβσβIr. A sufficient condition for (B.11) to have a solution is

that (i) the left-hand side is smaller than the right-hand side for κ̂β = 0, and (ii) the denominator

in the right-hand side is bounded away from zero for κ̂β ∈ [0,∞), which implies that the right-hand

side is a continuous function of κ̂β over [0,∞). Since (i) is satisfied for a = 0, it is also satisfied for

a below a threshold ā1 > 0. Since the function

κ̂β −→
∫ T

0

1

κr

(
1− e−κ̂βτ

κ̂β
− e−κrτ − e−κ̂βτ

κ̂β − κr

)
θ(τ)dτ

converges to zero when κ̂β goes to ∞, it has a finite supremum on [0,∞). Therefore, (ii) is satisfied

for a below a threshold ā2 > 0.
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B.3 Calibration

We compute maturity-weighted debt to GDP in face value terms, i.e., use our main measure of

supply. Since our supply factor βt has zero mean but our supply measure does not, we de-mean

our measure. We discretize (5) and (6) with step ∆t as follows

βt+∆t = (1− κβ∆t)βt + σβ(Bβ,t+∆t −Bβ,t), (B.24)

rt+∆t = κr r̄∆t+ (1− κr∆t)rt − κrγ∆tβt + σr(Br,t+∆t −Br,t) + σrβ(Bβ,t+∆t −Bβ,t), (B.25)

and perform the vector auto-regression

βt+∆t = cββt + ϵβ,t+∆t, (B.26)

rt+∆t = c+ crrt + crββt + ϵr,τ+∆t. (B.27)

The regression results are in Table B.1.

cβ cr crβ

Coefficient 0.99824 0.98322 -0.00025

Standard error 0.02264 0.00655 0.00019

Covariance matrix of residuals ϵβ,t+∆t ϵr,t+∆t

ϵβ,t+∆t 0.003412 0.000008

ϵr,t+∆t 0 0.000023

Table B.1: Results from the vector auto-regression (B.26) and (B.27).
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Comparing (B.26) and (B.27) with (B.24) and (B.25), we find

κβ =
1− cβ
∆t

, (B.28)

κr =
1− cr
∆t

, (B.29)

γ = −
crβ
κr∆t

, (B.30)

σβ =

√
Var(ϵβ,t)

∆t
, (B.31)

σrβ =
Cov(ϵβ,t, ϵr,t)

σβ∆t
, (B.32)

σr =

√
Var(ϵr,t)

∆t
− σ2

rβ . (B.33)

Substituting the results from Table B.1 into (B.28)-(B.33), and setting the discretization step ∆t

to 1/12 because we use monthly data, we can compute (κβ , κr, γ, σβ , σr, σrβ). The results are in

Table B.2.

κβ κr γ σβ σr σrβ

0.021 0.201 0.015 0.202 0.017 0.001

Table B.2: Estimated parameters for the supply-factor process (5) and the short-rate process (6).

To estimate the function θ(τ), we express supply at any given maturity in face value terms (as

we do for maturity-weighted debt to GDP). We plot the function θ(τ) in Figure C.2 in Appendix

C.

Proposition B.1 computes the model-implied coefficients of supply in our basic yield and return

regressions. These coefficients are not identical to the effects of supply derived in Propositions 1

and 2 because (i) the short rate and the supply factor can be correlated, (ii) we are controlling for

the one-year yield rather than for the instantaneous short rate, and (iii) we are regressing one-year

returns rather than instantaneous returns.

Proposition B.1. The regression (19) of the τ -year yield y
(τ)
t on the supply factor βt and the

one-year yield y
(1)
t produces a coefficient

b =
Aβ(τ)

τ
−

Ar(τ)Aβ(1)

τAr(1)
(B.34)
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on the supply factor. The regression (20) of the future one-year return r
(τ)
t+1 of the τ -year bond on

the supply factor βt and the one-year yield y
(1)
t produces a coefficient

b = Aβ(τ)− e−κβAβ(τ − 1)−Aβ(1) + κrγ
e−κβ − e−κr

κr − κβ
Ar(τ − 1). (B.35)

on the supply factor.

Proof of Proposition B.1: Using (A.12), we can write (19) as

Ar(τ)rt +Aβ(τ)βt + C(τ)

τ
= a+ bβt + c (Ar(1)rt +Aβ(1)βt + C(1)) + ut. (B.36)

The two independent variables account for all the variation in the dependent variable, and hence

ut = 0. Identifying terms in rt and βt, we find

Ar(τ)

τ
= cAr(1) ⇒ c =

Ar(τ)

τAr(1)
,

Aβ(τ)

τ
= b+ cAβ(1) ⇒ b =

Aβ(τ)

τ
−

Ar(τ)Aβ(1)

τAr(1)
.

Since returns are computed in logs,

r
(τ)
t+1 = log

(
P

(τ−1)
t+1

P
(τ)
t

)

= Ar(τ)rt +Aβ(τ)βt + C(τ)− (Ar(τ − 1)rt+1 +Aβ(τ − 1)βt+1 + C(τ − 1)) , (B.37)

where the second step follows from (7). Using (A.12) and (B.37), we can write (20) as

Ar(τ)rt +Aβ(τ)βt + C(τ)− (Ar(τ − 1)rt+1 +Aβ(τ − 1)βt+1 + C(τ − 1))

= a+ bβt + c (Ar(1)rt +Aβ(1)βt + C(1)) + ut+1. (B.38)

Because the processes (5) and (6) are linear, we can compute the conditional expectations of rt+1

and βt+1 as of date t by omitting the Brownian terms in (5) and (6), and solving the resulting
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ODEs from date t onwards. The solution to these ODEs is

βt′ =
(
1− e−κβ(t

′−t)
)
β̄ + e−κβ(t

′−t)βt, (B.39)

rt′ =
(
1− e−κr(t′−t)

)
r̄ + e−κr(t′−t)rt − κrγ

e−κβ(t
′−t) − e−κr(t′−t)

κr − κβ
βt, (B.40)

for t′ > t. Using (B.39) and (B.40), we can write (B.38) as

Ar(τ)rt +Aβ(τ)βt + C(τ)

−Ar(τ − 1)

((
1− e−κr

)
r̄ + e−κrrt − κrγ

e−κβ − e−κr

κr − κβ
βt

)
−Aβ(τ − 1)

((
1− e−κβ

)
β̄ + e−κββt

)
− C(τ − 1) + vt+1

= a+ bβt + c (Ar(1)rt +Aβ(1)βt + C(1)) + ut+1, (B.41)

where vt+1 has zero conditional expectation as of date t. Subtracting (B.41) from its conditional

expectation as of date t, we find ut+1 = vt+1. Identifying terms in rt, we find

Ar(τ)− e−κrAr(τ − 1) = cAr(1) ⇒ c = 1,

where the second step follows from (13). Identifying terms in βt, we find

Aβ(τ)− e−κβAβ(τ − 1) + κrγ
e−κβ − e−κr

κr − κβ
Ar(τ − 1) = b+ cAβ(1)

⇒ b = Aβ(τ)− e−κβAβ(τ − 1)−Aβ(1) + κrγ
e−κβ − e−κr

κr − κβ
Ar(τ − 1).

Therefore, the coefficients are as in the proposition’s statement.
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Figure C.1 
Contribution of principal and coupons to construction of MWD 

 
The time-series average, for each maturity year, of total payments on bills, bonds, and notes scaled by GDP and 
multiplied by the maturity year. The bottom bars denote principal payments. The darker top bars denote coupon 
payments. Any payments beyond 30 years are included in the 30-year bucket. The data are based on the CRSP 
bond database and cover the period June 1952-December 2007.  
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Figure C.2 

Supply loadings 
 

Regression coefficients bτ from 30 monthly time-series regressions of the supply of bonds of maturity τ, scaled by GDP, 
on maturity-weighted debt to GDP.  

( ) ( / )t t tD a b MWD GDP u
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The sample period is 1952-2007.  
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Table C.1 
Yield spreads and excess returns 

Monthly time-series regressions of the form:  
( ) (1)

( ) (1)
,

t t t t

t k k t t t k

y y a bX u

r y a bX u




 

   

   
 

The dependent variable is the yield spread or the one-year, three-year, or five-year excess return of the τ-year bond 
relative to the one-year bond. The independent variable Xt is MWD/GDP, the maturity-weighted-debt-to-GDP ratio, or 
LTD/GDP, the long-term-debt-to-GDP ratio. t-statistics, reported in parentheses, are based on Newey-West standard 
errors with 36 lags in the case of the yield and one-year return regressions, and 54 and 90 lags in the case of the 
three- and five-year return regressions. 

 

 
 X=MWD/GDP X= LTD/GDP 
 b [t] R2 b [t] R2

Yield spreads:    
Yield 2-year bond 0.001 [2.722] 0.117 0.031 [2.655] 0.113 
Yield 3-year bond 0.002 [2.620] 0.122 0.049 [2.566] 0.116 
Yield 4-year bond 0.003 [2.624] 0.133 0.065 [2.578] 0.126 
Yield 5-year bond 0.003 [2.512] 0.128 0.074 [2.513] 0.124 
Yield LT bond 0.005 [2.905] 0.156 0.13 [3.002] 0.158 
    
Returns:    
1-year return 2-year bond 0.004 [1.810] 0.042 0.103 [1.940] 0.047 
1-year return 3-year bond 0.006 [1.726] 0.038 0.175 [1.826] 0.041 
1-year return 4-year bond 0.009 [1.851] 0.040 0.247 [1.921] 0.042 
1-year return 5-year bond 0.011 [1.808] 0.036 0.290 [1.881] 0.037 
1-year return LT bond 0.025 [2.990] 0.082 0.658 [3.025] 0.081 
3-year return LT bond 0.067 [3.814] 0.188 1.849 [3.666] 0.201 
5-year return LT bond 0.107 [5.310] 0.253 3.002 [4.798] 0.282 
   



Table C.2 
Yield spreads and excess returns, ARMA(1,k) standard errors 

Monthly time-series regressions of the form:  
( ) (1)

( ) (1)
,

t t t t

t k k t t t k

y y a bX u

r y a bX u




 

   

   
 

The dependent variable is the yield spread or the one-year, three-year, or five-year excess return of the τ-year bond relative to the one-year bond. The 
independent variable Xt is MWD/GDP, the maturity-weighted-debt-to-GDP ratio, or LTD/GDP, the long-term-debt-to-GDP ratio. t-statistics, reported in 
parentheses, are based on modeling the error process as AR(1) for the yield regressions, and as ARMA(1,k) for the return regressions where k denotes the 
number of months in the return cumulation (e.g., 12 for the one-year return).  
 
 
  X=MWD/GDP X= LTD/GDP 
  b [t] ρ SE b [t] ρ SE 

 Yield spreads:    
 Yield 2-year bond 0.001 [2.506] 0.859 AR(1) 0.031 [2.467] 0.862 AR(1) 
 Yield 3-year bond 0.002 [1.990] 0.914 AR(1) 0.049 [1.953] 0.916 AR(1) 
 Yield 4-year bond 0.003 [1.957] 0.924 AR(1) 0.065 [1.936] 0.926 AR(1) 
 Yield 5-year bond 0.003 [1.729] 0.937 AR(1) 0.074 [1.758] 0.937 AR(1) 
 Yield LT bond 0.005 [1.936] 0.946 AR(1) 0.130 [2.005] 0.946 AR(1) 
    
 Returns:   
 1-year return 2-year bond 0.004 [1.427] 0.936 AR(1,12) 0.103 [1.545] 0.932 AR(1,12) 
 1-year return 3-year bond 0.006 [1.534] 0.947 AR(1,12) 0.175 [1.621] 0.945 AR(1,12) 
 1-year return 4-year bond 0.009 [1.793] 0.953 AR(1,12) 0.247 [1.854] 0.949 AR(1,12) 
 1-year return 5-year bond 0.011 [1.950] 0.954 AR(1,12) 0.290 [2.000] 0.950 AR(1,12) 
 1-year return LT-bond 0.025 [3.808] 0.945 AR(1,12) 0.658 [3.808] 0.939 AR(1,12) 
 3-year return LT-bond 0.067 [4.472] 0.951 AR(1,36) 1.849 [4.682] 0.949 AR(1,36) 
 5-year return LT-bond 0.118 [3.034] 0.966 AR(1,60) 3.336 [3.413] 0.962 AR(1,60) 
   



Table C.3 
Yields and returns, Newey-West + Block bootstrap p-values 

We show p-values from a stationary block bootstrap, for monthly time-series regressions of the form:  
( ) (1)

( ) (1)
,

t t t t

t k k t t t k

y a bX cy u

r a bX cy u




 

   

   
 

The dependent variable is the yield or the one-year, three-year, or five-year return of the τ-year bond. The 
independent variable Xt is MWD/GDP, the maturity-weighted-debt-to-GDP ratio, or LTD/GDP, the long-term-debt-to-
GDP ratio. The regressions control for the one-year yield. In Panel A, we show all regressions for a blocklength of 
120. In Panel B, we show how the starred regression p-value changes as a function of the blocklength. 

Panel A. All regressions 

 X=MWD/GDP X= LTD/GDP 
 b [t] [p-val] b [t] [p-val]

Yield spreads:     
Yield 2-year bond 0.001 [2.603] [0.060] 0.029 [2.482] [0.059]
Yield 3-year bond 0.002 [2.516] [0.062] 0.044 [2.369] [0.065]
Yield 4-year bond 0.002 [2.503] [0.067] 0.058 [2.361] [0.072]
Yield 5-year bond 0.002 [2.364] [0.079] 0.064 [2.263] [0.080]
Yield LT bond 0.004 [2.688] [0.067] 0.107 [2.616] [0.061]

Returns:    
1-year return 2-year bond 0.004 [1.983] [0.082] 0.116 [2.181] [0.059]
1-year return 3-year bond 0.007 [1.865] [0.111] 0.191 [2.017] [0.083]
1-year return 4-year bond 0.010 [1.969] [0.095] 0.266 [2.089] [0.075]
1-year return 5-year bond 0.011 [1.906] [0.098] 0.308 [2.017] [0.086]
1-year return LT-bond* 0.026 [3.104] [0.021] 0.685 [3.203] [0.025]
3-year return LT-bond 0.065 [4.209] [0.017] 1.786 [4.210] [0.020]
5-year return LT-bond 0.094 [5.433] [0.008] 2.626 [5.352] [0.006]

 

Panel B. Vary the blocklength in the regression ( ) (1)
1,1
LT
t t t t kr a bX cy u      

Block Length p-value Block Length p-value 
12 [0.009] 156 [0.019] 
24 [0.006] 168 [0.020] 
36 [0.007] 180 [0.023] 
48 [0.012] 192 [0.020] 
60 [0.012] 204 [0.019] 
72 [0.014] 216 [0.018] 
84 [0.018] 228 [0.018] 
96 [0.016] 240 [0.020] 
108 [0.020] 252 [0.022] 
120 [0.021] 264 [0.019] 
132 [0.020] 276 [0.015] 
144 [0.022] 288 [0.017] 



Table C.4 
Horse-race regressions 

Monthly time-series regressions of the form:  
( ) (1)

,
LT

t k k t t t t kr a bX cy dZ u       

The dependent variable is the yield or the one-year or three-year return of the long-term bond. The independent 
variable Xt is MWD/GDP, the maturity-weighted-debt-to-GDP ratio. The independent variable Zt is D/GDP, the total-
debt-to-GDP ratio (Bohn 2008), or M, the dollar-weighted average maturity of debt. The regressions control for the 
one-year yield. t-statistics, reported in parentheses, are based on Newey-West standard errors with 36 lags in the 
case of the one-year return regression, and 54 lags in the case of the three-year return regression.  
 

1-yr ret 3-yr ret 1-yr ret 3-yr ret 1-yr ret 3-yr ret 1-yr ret 3-yr ret 
D/GDP 0.21 0.477 -0.095 -0.352 

[-1.832] [-1.461] [-0.646] [-1.200] 
M 0.019 0.054 -0.027 -0.036 

[2.286] [3.381] [-1.106] [-0.686] 
MWD/GDP  0.031 0.086 0.051 0.099 

[2.437] [4.332] [1.984] [1.836] 
y(1) 1.508 4.384 1.049 3.133 1.154 3.606 1.244 3.781 

[2.842] [3.905] [1.870] [2.986] [2.594] [4.723] [2.905] [4.771] 
R2 0.144 0.403 0.193 0.518 0.159 0.461 0.203 0.513 

 

 



Table C.5 
Additional IV Regressions  

 
We repeat the instrumental variables specifications from Table 4 of the paper including each of the four measures of bond supply and each of three possible 
ways to measure the instrument, which is the debt to GDP ratio. MWD/GDP is the maturity-weighted-debt-to-GDP ratio. Its market-valued based version 
multiplies the market value of each bond by Macaulay duration, sums across bonds, and scales by GDP. LTD/GDP is the long-term-debt-to-GDP ratio. Its 
market-value based version sums the market values of all bonds with maturity beyond ten years, and scales by GDP.  Debt to GDP is either the ratio of 
marketable Treasury debt to GDP, or the ratio of all Treasury debt listed on CRSP to GDP, or the ratio of total debt (Bohn 2008) to GDP. These three 
measures, although highly correlated, differ because some marketable bonds, such as TIPS, are not listed in the CRSP database, and because total debt 
includes some nonmarketable securities such as intra-governmental claims. The omitted first-stage regressions are shown in the next table (Table C.7).  

 
X = MWD/GDP X =MWD/GDP (MV) X=LTD/GDP X=LTD/GDP (MV) 

Yield 1-yr ret 3-yr ret Yield 1-yr ret 3-yr ret Yield 1-yr ret 3-yr ret Yield 1-yr ret 3-yr ret 
Panel A: Instrument for X = Marketable Treasury Debt/GDP 
X (fitted) 0.002 0.028 0.067 0.001 0.007 0.016 0.058 0.763 1.815 0.106 1.395 3.317 
[t] [1.129] [2.885] [3.493] [1.050] [2.671] [3.110] [1.129] [2.921] [3.575] [1.096] [2.837] [3.448] 
y 0.846 1.223 3.748 0.898 1.904 5.366 0.847 1.245 3.801 0.880 1.668 4.806 
[t] [11.596] [2.868] [4.923] [8.413] [3.488] [4.855] [11.543] [2.902] [4.984] [9.760] [3.536] [5.566] 
Panel B: Instrument for X= Treasury Debt on CRSP/GDP 
X (fitted) 0.002 0.026 0.061 0.001 0.006 0.015 0.057 0.711 1.654 0.105 1.309 3.043 
[t] [1.085] [2.706] [3.080] [1.008] [2.490] [2.714] [1.085] [2.735] [3.128] [1.054] [2.659] [3.023] 
Y 0.845 1.214 3.720 0.896 1.841 5.179 0.847 1.235 3.769 0.879 1.632 4.693 
[t] [11.559] [2.828] [4.831] [8.332] [3.363] [4.596] [11.503] [2.859] [4.882] [9.650] [3.438] [5.301] 
Panel C: Instrument for X = Total Debt/GDP 
X (fitted) 0.000 0.021 0.046 0.000 0.004 0.009 -0.013 0.536 1.184 -0.022 0.903 1.995 
[t] [0.180] [1.794] [1.668] [0.184] [1.632] [1.426] [0.181] [1.815] [1.657] [0.182] [1.766] [1.572] 
y 0.833 1.188 3.649 0.824 1.58 4.515 0.833 1.200 3.675 0.827 1.465 4.26 
[t] [10.833] [2.673] [4.570] [7.682] [2.754] [3.832] [10.737] [2.679] [4.599] [8.484] [2.891] [4.467] 

 
  



Table C.6 
Additional IV Regressions (First stage estimates) 

 
We show the first stage regressions from Table A9 above. Columns (1)-(4) are used in Panel A of Table C.9; Columns (5)-(8) are used in Panel B; 
Columns (9)-(12) are used in Panel C. 
 

MWD/ 
GDP 

MWD/ 
GDP 

(MV)
LTD/ 
GDP

LTD/ 
GDP 

(MV)
MWD/ 
GDP

MWD/ 
GDP 

(MV)
LTD/ 
GDP

LTD/ 
GDP 

(MV)
MWD/ 
GDP

MWD/ 
GDP 

(MV)
LTD/ 
GDP

LTD/ 
GDP 

(MV) 
D/GDP (Marketable)  14.186 58.363 0.527 0.288 
[t]  [13.390] [19.397] [12.683] [13.182] 
D/GDP (CRSP)  14.003 58.113 0.52 0.282 
[t]  [12.116] [17.362] [11.331] [11.555] 
D/GDP (Bohn)  9.558 48.027 0.371 0.22 
[t]  [4.694] [13.219] [5.351] [6.982] 
y  12.809 -46.12 0.446 -0.059 12.217 -47.954 0.424 -0.073 13.757 -25.491 0.513 0.011 
[t]  [4.426] [4.183] [3.878] [0.811] [3.842] [4.618] [3.345] [0.954] [2.715] [2.690] [2.552] [0.100] 
N  667 667 667 667 667 667 667 667 667 667 667 667 
R2  0.835 0.919 0.813 0.816 0.832 0.926 0.81 0.806 0.554 0.908 0.59 0.727 

  



Table C.7 
Arbitrageur wealth changes measured over different horizons 

 
Monthly time-series regressions of the form: 

( ) (1) ( ) (1) (1)( )

, ( ) ( )/ /LT LT

t t t t t t k

LT Arb Arb

t k k t t ta b y y y y y ur MWD GDP c e W MWD GDP f W g
            

The dependent variable is the one-year return of the long-term bond. The independent variables include the spread between the long-term and the one-year 
yield, MWD/GDP, and interactions between these variables and changes in arbitrageur wealth. We use two measures of arbitrageur wealth. The first measure, 
∆W1

Arb, is the sum of wealth changes over the past k years, where the change in wealth over any given year is the product of the spread between the 
long-term and the one-year yield in the previous year, times the subsequent one-year excess return of the long-term bond. The second measure, ∆W2

Arb, is 
the sum of wealth changes over the past k years, where the change in wealth over any given year is the product of MWD/GDP in the previous year, times 
the subsequent one-year excess return of the long-term bond. t-statistics, reported in parentheses, are based on Newey-West standard errors with 36 lags in 
the case of the one-year return regression and 54 lags in the case of three-year return regression.  
 
 Forecast horizon: 1-year return 
Lookback period: 6 months 1 year 2 years  3 years 
MWD/GDP 0.027 0.017 0.031 0.034 0.032 0.042 0.031 0.047 

[3.076] [2.189] [3.408] [3.634] [3.392] [3.876] [3.008] [3.425] 

1 /ArbW MWD GDP   -1.97 -4.729 -2.986 -1.742 

[-0.886] [-3.386] [-1.479] [-0.904] 

2 /ArbW MWD GDP   0.035 -0.029 -0.030 -0.028 
[3.455] [-3.114] [-3.226] [-2.467] 

y(1) 1.181 1.162 1.146 1.130 1.166 1.038 1.044 0.865 
 [2.673] [2.872] [2.587] [2.489] [2.359] [2.194] [2.091] [1.811] 
R2 0.192 0.256 0.239 0.238 0.204 0.239 0.170 0.213 

 
  



Matlab Routine for Computing ARMA(p,q) standard errors for multivariate regressions 
 
The routine below makes use of the ARMAXFILTER routine provided by Kevin Sheppard in the MFE toolbox 
(http://www.kevinsheppard.com/wiki/MFE_Toolbox). That routine estimates an ARMA(p,q) model from a column of time-series data. 
 
 
function [beta_out, se_arma, t_arma, se_ols, t_ols]=ols_arma_multi(y_1,x_1,p,q,x_2) 
  
if isempty(x_2) 
   x_part = [ones(T,1)]; 
else 
   x_part = [ones(T,1) x_2]; 
end 
  
K = size(x_part,2)+1; 
  
% Partial X_part from x_1 and y_1. In the case, where x_2 == [], this is simply demeaning; 
x=x_1 - x_part*inv(x_part'*x_part)*(x_part'*x_1); 
y=y_1 - x_part*inv(x_part'*x_part)*(x_part'*y_1); 
beta_out=inv(x'*x)*(x'*y); 
  
e=y-x*beta_out; 
se_ols=sqrt(diag(inv(x'*x))*((e'*e)/(T-K)));  % for comparison 
t_ols = beta_out./se_ols; 
  
xe=x.*e; 
  
xe=double(xe); 
[PARAMS, LL, ERRORS, SEREGRESSION, DIAGNOSTICS, VCVROBUST, VCV, LIKELIHOODS, SCORES]=armaxfilter(xe,1,p,q); 
  
% Fits ARMA(p,q) model (the first argument is a flag to denote whether to 
% include a constant 
 
PARAMS'; 
adj =  ( (1+sum(PARAMS(p+2:end)))^2  ) / (1-sum(PARAMS(2:p+1)))^2 ; 
OMEGA = adj*(ERRORS'*ERRORS); 
var_arma = (T/(T-K))*inv(x'*x)*OMEGA*inv(x'*x); 
se_arma=sqrt(diag(var_arma)); 
t_arma = beta_out./se_arma; 



Matlab Routine for Block Bootstrap 
 
function [b_nw, t_nw, pvalues_circ, pvalues_stat] = olsnw_boot(y,X,c,nwlags,NB,W) 
 
% Linear regression estimation with Newey-West HAC standard errors at Block-Bootstrapped p-values. 
% 
% USAGE: 
%   [b_nw, t_nw, pvalues_circ, pvalues_stat] = olsnw_boot(y,X,c,nwlags,NB,W) 
% 
% INPUTS: 
%   Y       - T by 1 vector of dependent data 
%   X       - T by K vector of independent data 
%   C       - [OPTIONAL] 1 or 0 to indicate whether a constant should be included (1: include 
%               constant). The default value is 1. 
%   NWLAGS  - [OPTIONAL] Number of lags to included in the covariance matrix estimator. If omitted 
%               or empty, NWLAGS = floor(T^(1/3)). If set to 0 estimates White's Heteroskedasticity 
%               Consistent variance-covariance. 
%   NB      - Number of bootstrap replications. 
%   W       - Width of block for moving block boostrap. For stationary bootstrap, this is the average block length. 
%             (Block lengths are draw from the geometric distribution with parameter p = 1/W 
% 
% OUTPUTS: 
%   b_bw          - A K(+1 is C=1) vector of parameters.  If a constant is included, it is the first parameter 
%   t_bw          - A K(+1) vector of t-statistics computed using Newey-West HAC standard errors 
%   pvalues_circ  - p-values from circular moving-blocks bootstrap 
%   pvalues_stat  - p-values from stationary block bootstrap 
 
% Reset random number generators to get the same results each time; 
reset(RandStream.getDefaultStream); 
 
% NW regression; 
% USAGE: [B,TSTAT,S2,VCVNW,R2,RBAR,YHAT] = olsnw(Y,X,C,NWLAGS) ; 
% INPUTS: Y T by 1 vector of dependent data ; 
% X T by K vector of independent data ; 
% C 1 or 0 to indicate whether a constant should be included (1: include constant) ; 
% NWLAGS Number of lags to included in the covariance matrix estimator. If omitted or empty, ; 
% NWLAGS = floor(T^(1/3)). If set to 0 estimates White’s Heteroskedasticity Consistent variancecovariance. ; 
 
T = size(X,1); 
if c == 1 
   K = size(X,2)+1; 
else 



   K = size(X,2); 
end 
 
if (c==1) 
 [betas,se,R2,R2adj,v,F_trash] =olsgmm(y,[ones(T,1),X],nwlags,1); 
else 
 [betas,se,R2,R2adj,v,F_trash] =olsgmm(y,X,nwlags,1); 
end 
b_nw=betas; 
t_nw=betas./se; 
 
% Code above replaces: 
% [b_nw,t_nw] = olsnw(y,X,c,nwlags); 
 
% Boostrap; 
indices = 1:T; 
indices = indices'; 
 
% Circular block bootstrap: creates a set of indices which can be used to run bootstrap; 
% [BSDATA, INDICES]=block_bootstrap(DATA,B,W) ; 
% INPUTS: DATA T by 1 vector of data to be bootstrapped ; 
% B Number of bootstraps ; 
% W Block length ; 
% BSDATA and INDICES are T x B matrices; 
 
bsindices_circ = block_bootstrap(indices,NB,W); 
if max(max(bsindices_circ)) > T 
   stop; 
end 
 
for i = 1:NB 
    y_star = y(bsindices_circ(:,i),:); 
    X_star = X(bsindices_circ(:,i),:); 
    [b_star,t_star,s2_star,vcvnw_star] = olsnw(y_star,X_star,c,nwlags); 
    tstat_star_circ(:,i) = (b_star - b_nw)./sqrt(diag(vcvnw_star)); 
end 
 
% Display and save p-value 
pvalues_circ = mean(abs(kron(t_nw,ones(1,NB))) < abs(tstat_star_circ),2); 
 
% Stationary block bootstrap: creates a set of indices which can be used to run bootstrap; 
% [BSDATA, INDICES]=stationary_bootstrap(DATA,B,W) ; 



 
bsindices_stat = stationary_bootstrap(indices,NB,W); 
if max(max(bsindices_stat)) > T 
   stop; 
end 
 
for i = 1:NB 
    y_star = y(bsindices_stat(:,i),:); 
    X_star = X(bsindices_stat(:,i),:); 
    [b_star,t_star,s2_star,vcvnw_star] = olsnw(y_star,X_star,c,nwlags); 
    tstat_star_stat(:,i) = (b_star - b_nw)./sqrt(diag(vcvnw_star)); 
end 
 
% Display and save p-value 
pvalues_stat = mean(abs(kron(t_nw,ones(1,NB))) < abs(tstat_star_stat),2); 



Table C8 
Data on the Maturity Structure of Government Debt 

 
GDP=Nominal GDP in billions of USD; MWD=Maturity weighted debt to GDP; LTD=Long-term debt/GDP (including all 
coupon payments). Calculation details in Greenwood and Vayanos (2012). Please email the authors for a complete 
dataset of the time-series used in the paper, as well as replication code. 
 

Date 

GDP 
(most 
recent 
Qtrly) 

FV all debt 
in CRSP 
($bn) MWD/GDP LTD/GDP Date 

GDP 
(most 
recent 
Qtrly) 

FV all debt 
in CRSP 
($bn) MWD/GDP LTD/GDP 

           
195201      351       143  3.018 0.137 195601      428       163  2.540 0.093 
195202      351       151  3.022 0.137 195602      428       163  2.507 0.093 
195203      351       141  2.982 0.137 195603      428       159  2.502 0.093 
195204      352       142 2.949 0.136 195604     434     160  2.437 0.091
195205      352       143  2.913 0.136 195605      434       160  2.407 0.091 
195206      352       145  2.968 0.136 195606      434       155  2.376 0.091 
195207      359       144  2.805 0.114 195607      439       155  2.347 0.089 
195208      359       144  2.773 0.114 195608      439       157  2.321 0.089 
195209      359       143  2.771 0.114 195609      439       156  2.284 0.089 
195210      371       147 2.655 0.109 195610     448     158  2.210 0.087
195211      371       148  2.624 0.109 195611      448       159  2.197 0.087 
195212      371       148 2.589 0.109 195612     448     160  2.169 0.087
195301      378       148  2.508 0.097 195701      457       161  2.099 0.085 
195302      378       148  2.506 0.097 195702      457       161  2.100 0.085 
195303      378       146  2.473 0.097 195703      457       160  2.084 0.085 
195304      382       148  2.608 0.103 195704      459       160  2.046 0.084 
195305      382       148  2.588 0.103 195705      459       160  2.030 0.084 
195306      382       148 2.548 0.103 195706     459     159  2.006 0.084
195307      381       154  2.535 0.100 195707      466       170  2.004 0.078 
195308      381       154  2.510 0.100 195708      466       160  1.974 0.078 
195309      381       153  2.519 0.100 195709      466       162  1.994 0.079 
195310      376       153  2.520 0.101 195710      462       162  1.988 0.080 
195311      376       155  2.586 0.101 195711      462       164  2.027 0.081 
195312      376       155 2.553 0.101 195712     462     163  1.997 0.081
195401      375       155  2.523 0.100 195801      454       163  2.002 0.082 
195402      375       154  2.745 0.100 195802      454       164  2.239 0.089 
195403      375       150  2.718 0.100 195803      454       163  2.241 0.089 
195404      376       151  2.678 0.100 195804      458       166  2.238 0.088 
195405      376       153  2.718 0.100 195805      458       166  2.208 0.088 
195406      376       150 2.684 0.100 195806     458     167  2.383 0.091
195407      381       154  2.623 0.098 195807      472       168  2.308 0.088 
195408      381       154  2.665 0.098 195808      472       169  2.277 0.088 
195409      381       158  2.661 0.098 195809      472       170  2.249 0.088 
195410      389       158  2.568 0.095 195810      485       172  2.161 0.085 
195411      389       158  2.534 0.095 195811      485       177  2.172 0.085 
195412      389       158 2.688 0.095 195812     485     176  2.143 0.085
195501      403       158  2.566 0.091 195901      496       180  2.131 0.080 
195502      403       158  2.851 0.100 195902      496       179  2.136 0.080 
195503      403       156  2.820 0.101 195903      496       180  2.127 0.080 
195504      411       157  2.730 0.098 195904      509       180  2.059 0.079 
195505      411       158  2.716 0.098 195905      509       179  2.036 0.079 
195506      411       155 2.682 0.098 195906     509     178  2.008 0.079
195507      419       160  2.720 0.099 195907      509       183  2.046 0.071 
195508      419       159 2.708 0.099 195908     509     184  2.018 0.071
195509      419       159  2.679 0.099 195909      509       183  1.988 0.070 
195510      426       163  2.613 0.097 195910      513       188  1.972 0.070 
195511      426       174  2.618 0.097 195911      513       189  1.976 0.067 
195512      426       163  2.585 0.097 195912      513       188  1.954 0.067 

 



Data on the Maturity Structure of Government Debt [Continued] 
 
 
 

Date 

GDP 
(most 
recent 
Qtrly) 

FV all debt 
in CRSP 
($bn) MWD/GDP LTD/GDP Date 

GDP 
(most 
recent 
Qtrly) 

FV all debt 
in CRSP 
($bn) MWD/GDP LTD/GDP 

196001      527       190  1.877 0.058  196401      650       208  2.178 0.058 
196002      527       188  1.902 0.058  196402      650       209  2.174 0.058 
196003      527       185 1.873 0.058 196403     650     206  2.147 0.058
196004      526       187  1.895 0.050  196404      659       207  2.094 0.057 
196005      526       188 1.895 0.050 196405     659     209  2.119 0.059
196006      526       184  1.890 0.050  196406      659       204  2.091 0.056 
196007      529       187  1.858 0.049  196407      671       206  2.201 0.058 
196008      529       185  1.862 0.049  196408      671       207  2.186 0.058 
196009      529       188  2.150 0.060  196409      671       206  2.161 0.058 
196010      524       191  2.187 0.063  196410      676       209  2.121 0.058 
196011      524       189 2.174 0.063 196411     676     211  2.118 0.058
196012      524       189  2.144 0.063  196412      676       212  2.095 0.054 
196101      528       189  2.096 0.062  196501      696       214  2.219 0.058 
196102      528       190  2.090 0.062  196502      696       214  2.199 0.058 
196103      528       193  2.138 0.062  196503      696       209  2.170 0.057 
196104      539       188  2.049 0.055  196504      708       212  2.108 0.056 
196105      539       189 2.041 0.055 196505     708     210  2.124 0.056
196106      539       187  2.012 0.055  196506      708       207  2.101 0.056 
196107      550       193  2.007 0.054  196507      725       208  2.028 0.055 
196108      550       190  1.978 0.054  196508      725       207  2.026 0.055 
196109      550       192  2.178 0.065  196509      725       208  2.003 0.054 
196110      563       195  2.113 0.063  196510      748       212  1.924 0.053 
196111      563       195 2.128 0.064 196511     748     213  1.923 0.053
196112      563       196  2.104 0.064  196512      748       215  1.900 0.052 
196201      576       198  2.047 0.062  196601      771       218  1.822 0.051 
196202      576       198  2.068 0.062  196602      771       218  1.854 0.051 
196203      576       196  2.229 0.066  196603      771       215  1.832 0.050 
196204      583       198  2.192 0.065  196604      780       215  1.787 0.050 
196205      583       198 2.220 0.065 196605     780     212  1.781 0.050
196206      583       196  2.191 0.064  196606      780       209  1.759 0.049 
196207      590       196  2.141 0.061  196607      793       209  1.708 0.048 
196208      590       199  2.179 0.062  196608      793       210  1.725 0.048 
196209      590       200 2.247 0.062  196609      793       211  1.704 0.048 
196210      593       201  2.210 0.058  196610      807       215  1.656 0.047 
196211      593       202 2.243 0.058 196611     807     213  1.639 0.047
196212      593       202 2.217 0.058  196612      807       218  1.632 0.047 
196301      603       204 2.180 0.053 196701     818     218  1.589 0.046
196302      603       204 2.187 0.053  196702      818       218  1.590 0.046 
196303      603       203 2.265 0.057  196703      818       222  1.570 0.046 
196304      611       203 2.234 0.057  196704      822       219  1.539 0.045 
196305      611       204 2.231 0.057  196705      822       217  1.564 0.045 
196306      611       203 2.229 0.057  196706      822       211  1.543 0.045 
196307      624       202 2.159 0.056 196707     837     215  1.499 0.044
196308      624       204 2.146 0.056  196708      837       218  1.507 0.044 
196309      624       204 2.290 0.059  196709      837       217  1.485 0.044 
196310      634       204 2.230 0.058  196710      853       222  1.442 0.043 
196311      634       206 2.225 0.058  196711      853       226  1.455 0.043 
196312      634       205 2.198 0.058  196712      853       226  1.433 0.043 

    

 
  



Data on the Maturity Structure of Government Debt [Continued] 
 
 

Date 

GDP 
(most 
recent 
Qtrly) 

FV all debt 
in CRSP 
($bn) MWD/GDP LTD/GDP Date 

GDP 
(most 
recent 
Qtrly) 

FV all debt 
in CRSP 
($bn) MWD/GDP LTD/GDP 

196801      880       228 1.371 0.041  197201   1,190       262  0.921 0.023 
196802      880       233 1.405 0.041 197202  1,190     257  0.936 0.025
196803      880       231  1.383 0.041  197203   1,190       261  0.919 0.022 
196804      904       226 1.326 0.040  197204   1,226       259  0.880 0.022 
196805      904       232 1.377 0.040  197205   1,226       256  0.873 0.022 
196806      904       226 1.356 0.040  197206   1,226       257  0.859 0.021 
196807      919       229 1.318 0.039  197207   1,249       257  0.827 0.021 
196808      919       232 1.378 0.039 197208  1,249     258  0.881 0.023
196809      919       233 1.358 0.039  197209   1,249       256  0.865 0.023 
196810      936       236 1.317 0.038  197210   1,287       257  0.830 0.022 
196811      936       235 1.328 0.038  197211   1,287       263  0.827 0.022 
196812      936       235 1.309 0.038  197212   1,287       268  0.816 0.022 
196901      961       238 1.257 0.036  197301   1,335       267  0.788 0.022 
196902      961       227 1.270 0.036 197302  1,335     265  0.795 0.022
196903      961       231  1.262 0.036  197303   1,335       268  0.779 0.021 
196904      976       230 1.224 0.035 197304  1,372     265  0.745 0.021
196905      976       232 1.232 0.035  197305   1,372       263  0.802 0.022 
196906      976       225 1.213 0.035  197306   1,372       259  0.787 0.022 
196907      996       229 1.174 0.034  197307   1,391       261  0.763 0.020 
196908      996       228 1.160 0.034  197308   1,391       260  0.783 0.021 
196909      996       220 1.142 0.034  197309   1,391       262  0.772 0.021 
196910   1,005       235 1.146 0.034 197310  1,432     262  0.736 0.020
196911   1,005       237 1.128 0.034  197311   1,432       270  0.750 0.021 
196912   1,005       234 1.111 0.033  197312   1,432       268  0.736 0.021 
197001   1,017       235 1.079 0.033  197401   1,447       268  0.715 0.020 
197002   1,017       234 1.088 0.033  197402   1,447       269  0.733 0.021 
197003   1,017       236 1.072 0.030  197403   1,447       273  0.720 0.021 
197004   1,033       234 1.037 0.029 197404  1,485     266  0.688 0.020
197005   1,033       236 1.081 0.029  197405   1,485       268  0.710 0.021 
197006   1,033       229 1.063 0.029  197406   1,485       264  0.696 0.021 
197007   1,051       237 1.032 0.029  197407   1,514       265  0.671 0.020 
197008   1,051       240 1.051 0.029  197408   1,514       270  0.722 0.021 
197009   1,051       237 1.034 0.028  197409   1,514       271  0.713 0.020 
197010   1,053       242 1.016 0.028 197410  1,553     272  0.684 0.019
197011   1,053       244 1.036 0.028  197411   1,553       276  0.726 0.020 
197012   1,053       247 1.019 0.026  197412   1,553       277  0.721 0.020 
197101   1,098       245 0.959 0.025  197501   1,569       285  0.707 0.020 
197102   1,098       247 1.036 0.025  197502   1,569       288  0.743 0.021 
197103   1,098       243 1.018 0.025  197503   1,569       300  0.749 0.021 
197104   1,119       242 0.983 0.024 197504  1,605     302  0.743 0.022
197105   1,119       239 0.981 0.024  197505   1,605       313  0.829 0.024 
197106   1,119       239 0.968 0.024  197506   1,605       316  0.821 0.023 
197107   1,139       245 0.935 0.023  197507   1,662       324  0.787 0.022 
197108   1,139       247 0.948 0.024  197508   1,662       331  0.836 0.023 
197109   1,139       250 0.937 0.023  197509   1,662       333  0.832 0.023 
197110   1,151       251 0.917 0.023 197510  1,714     351  0.808 0.022
197111   1,151       255 0.988 0.024  197511   1,714       356  0.844 0.024 
197112   1,151       262 0.972 0.024 197512  1,714     357  0.833 0.023
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197601   1,772       369 0.807 0.023  198001   2,724       536  1.291 0.043 
197602   1,772       379 0.868 0.023 198002  2,724     537  1.375 0.047
197603   1,772       379 0.864 0.023  198003   2,724       554  1.375 0.045 
197604   1,804       384 0.843 0.023  198004   2,728       552  1.377 0.046 
197605   1,804       386 0.894 0.027  198005   2,728       562  1.470 0.049 
197606   1,804       387 0.892 0.023  198006   2,728       567  1.474 0.048 
197607   1,838       398 0.869 0.023  198007   2,785       576  1.446 0.048 
197608   1,838       398 0.973 0.030 198008  2,785     583  1.507 0.052
197609   1,838       408 0.967 0.024  198009   2,785       587  1.510 0.050 
197610   1,885       409 0.935 0.023  198010   2,915       595  1.440 0.048 
197611   1,885       409 0.967 0.024  198011   2,915       601  1.513 0.052 
197612   1,885       421  0.962 0.024  198012   2,915       611  1.518 0.050 
197701   1,939       424 0.927 0.023  198101   3,051       629  1.466 0.049 
197702   1,939       432 0.977 0.024 198102  3,051     643  1.549 0.052
197703   1,939       435 0.971 0.024  198103   3,051       653  1.552 0.052 
197704   2,005       431 0.931 0.023 198104  3,084     658  1.558 0.053
197705   2,005       425 1.004 0.026  198105   3,084       657  1.624 0.056 
197706   2,005       431  0.996 0.025  198106   3,084       652  1.625 0.055 
197707   2,066       430 0.968 0.026  198107   3,177       666  1.600 0.054 
197708   2,066       432 1.014 0.027  198108   3,177       674  1.675 0.058 
197709   2,066       443 1.010 0.027  198109   3,177       674  1.674 0.057 
197710   2,111       447 0.985 0.026 198110  3,195     690  1.687 0.058
197711   2,111       449 1.043 0.029  198111   3,195       705  1.766 0.062 
197712   2,111       460 1.036 0.028  198112   3,195       720  1.765 0.060 
197801   2,149       461  1.025 0.028  198201   3,185       727  1.789 0.061 
197802   2,149       465 1.092 0.030  198202   3,185       738  1.870 0.065 
197803   2,149       475 1.086 0.030  198203   3,185       743  1.871 0.064 
197804   2,275       469 1.017 0.028 198204  3,241     756  1.833 0.063
197805   2,275       468 1.079 0.032  198205   3,241       756  1.845 0.064 
197806   2,275       478 1.073 0.030  198206   3,241       754  1.840 0.062 
197807   2,335       481  1.052 0.031  198207   3,274       774  1.823 0.061 
197808   2,335       486 1.126 0.033  198208   3,274       792  1.849 0.061 
197809   2,335       485 1.114 0.033  198209   3,274       824  1.905 0.061 
197810   2,416       486 1.083 0.032 198210  3,313     825  1.854 0.060
197811   2,416       493 1.168 0.037  198211   3,313       837  1.936 0.064 
197812   2,416       488 1.151 0.035  198212   3,313       881  1.941 0.062 
197901   2,463       491  1.140 0.035  198301   3,381       889  1.935 0.063 
197902   2,463       492 1.218 0.038  198302   3,381       908  2.038 0.068 
197903   2,463       497 1.208 0.038  198303   3,381       938  2.042 0.065 
197904   2,526       502 1.182 0.038 198304  3,482     935  2.011 0.065
197905   2,526       507 1.247 0.041  198305   3,482       945  2.111 0.070 
197906   2,526       499 1.229 0.040  198306   3,482       979  2.113 0.068 
197907   2,600       501  1.203 0.039  198307   3,587       986  2.082 0.068 
197908   2,600       509 1.272 0.042  198308   3,587       998  2.222 0.074 
197909   2,600       507 1.261 0.041  198309   3,587    1,024  2.223 0.071 
197910   2,659       509 1.243 0.041 198310  3,688  1,035  2.196 0.071
197911   2,659       520 1.320 0.045  198311   3,688    1,025  2.312 0.077 
197912   2,659       525 1.319 0.044 198312  3,688  1,051  2.300 0.074
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198401   3,807    1,070  2.278 0.074  198801   4,949    1,702  3.543 0.121 
198402   3,807    1,088  2.404 0.078 198802  4,949  1,729  3.668 0.128
198403   3,807    1,098  2.388 0.077  198803   4,949    1,742  3.653 0.125 
198404   3,906    1,123  2.376 0.077  198804   5,059    1,728  3.548 0.122 
198405   3,906    1,131  2.501 0.083  198805   5,059    1,746  3.677 0.129 
198406   3,906    1,127  2.484 0.080  198806   5,059    1,753  3.660 0.125 
198407   3,976    1,144  2.495 0.082  198807   5,143    1,745  3.575 0.123 
198408   3,976    1,185  2.619 0.088 198808  5,143  1,744  3.588 0.126
198409   3,976    1,177  2.599 0.085  198809   5,143    1,780  3.574 0.122 
198410   4,034    1,186  2.609 0.086  198810   5,251    1,795  3.481 0.120 
198411   4,034    1,214  2.740 0.093  198811   5,251    1,807  3.605 0.127 
198412   4,034    1,233  2.739 0.089  198812   5,251    1,805  3.578 0.123 
198501   4,117    1,258  2.720 0.090  198901   5,360    1,830  3.497 0.120 
198502   4,117    1,273  2.851 0.097 198902  5,360  1,844  3.624 0.127
198503   4,117    1,270  2.831 0.094  198903   5,360    1,856  3.610 0.124 
198504   4,176    1,286  2.837 0.095 198904  5,454  1,842  3.524 0.122
198505   4,176    1,313  2.971 0.101  198905   5,454    1,847  3.653 0.129 
198506   4,176    1,308  2.949 0.098  198906   5,454    1,861  3.636 0.125 
198507   4,258    1,327  2.937 0.098  198907   5,533    1,857  3.562 0.123 
198508   4,258    1,345  3.075 0.105  198908   5,533    1,874  3.687 0.130 
198509   4,258    1,357  3.063 0.102  198909   5,533    1,861  3.658 0.127 
198510   4,319    1,364  2.995 0.101 198910  5,582  1,915  3.620 0.126
198511   4,319    1,395  3.181 0.110  198911   5,582    1,942  3.745 0.132 
198512   4,319    1,407  3.177 0.106  198912   5,582    1,929  3.716 0.129 
198601   4,382    1,433  3.159 0.107  199001   5,708    1,944  3.624 0.126 
198602   4,382    1,447  3.283 0.113  199002   5,708    1,960  3.749 0.133 
198603   4,382    1,455  3.272 0.110  199003   5,708    1,980  3.721 0.129 
198604   4,423    1,450  3.226 0.109 199004  5,797  1,986  3.655 0.127
198605   4,423    1,470  3.362 0.117  199005   5,797    2,009  3.780 0.134 
198606   4,423    1,495  3.356 0.113  199006   5,797    2,012  3.751 0.130 
198607   4,491    1,508  3.290 0.112  199007   5,851    2,053  3.710 0.129 
198608   4,491    1,516  3.427 0.117  199008   5,851    2,099  3.841 0.136 
198609   4,491    1,524  3.422 0.116  199009   5,851    2,078  3.812 0.132 
198610   4,543    1,550  3.355 0.114 199010  5,846  2,107  3.806 0.132
198611   4,543    1,574  3.504 0.122  199011   5,846    2,168  3.943 0.139 
198612   4,543    1,587  3.497 0.118  199012   5,846    2,181  3.925 0.136 
198701   4,611    1,595  3.424 0.116  199101   5,880    2,207  3.893 0.135 
198702   4,611    1,605  3.562 0.121  199102   5,880    2,242  4.028 0.142 
198703   4,611    1,604  3.554 0.120  199103   5,880    2,213  3.986 0.138 
198704   4,687    1,622  3.479 0.118 199104  5,962  2,223  3.931 0.136
198705   4,687    1,623  3.620 0.126  199105   5,962    2,263  4.083 0.144 
198706   4,687    1,628  3.612 0.122  199106   5,962    2,253  4.041 0.140 
198707   4,765    1,634  3.534 0.120  199107   6,034    2,284  3.997 0.138 
198708   4,765    1,669  3.674 0.128  199108   6,034    2,332  4.133 0.146 
198709   4,765    1,635  3.650 0.125  199109   6,034    2,376  4.121 0.141 
198710   4,883    1,676  3.549 0.122 199110  6,093  2,414  4.070 0.140
198711   4,883    1,699  3.629 0.126  199111   6,093    2,424  4.198 0.147 
198712   4,883    1,708  3.615 0.123 199112  6,093  2,435  4.184 0.143
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199201   6,191    2,471  4.105 0.141  199601   7,638    3,305  3.684 0.124 
199202   6,191    2,478  4.204 0.145 199602  7,638  3,372  3.790 0.130
199203   6,191    2,537  4.193 0.144  199603   7,638    3,360  3.746 0.126 
199204   6,295    2,539  4.113 0.141  199604   7,800    3,385  3.661 0.123 
199205   6,295    2,558  4.215 0.148  199605   7,800    3,372  3.673 0.125 
199206   6,295    2,590  4.203 0.144  199606   7,800    3,370  3.648 0.122 
199207   6,390    2,623  4.132 0.142  199607   7,893    3,393  3.619 0.124 
199208   6,390    2,657  4.240 0.148 199608  7,893  3,417  3.686 0.124
199209   6,390    2,639  4.212 0.144  199609   7,893    3,403  3.659 0.122 
199210   6,494    2,646  4.116 0.142  199610   8,023    3,442  3.614 0.123 
199211   6,494    2,719  4.244 0.146  199611   8,023    3,478  3.682 0.124 
199212   6,494    2,739  4.219 0.144  199612   8,023    3,479  3.658 0.123 
199301   6,545    2,730  4.156 0.143  199701   8,137    3,460  3.580 0.121 
199302   6,545    2,757  4.256 0.149 199702  8,137  3,489  3.661 0.126
199303   6,545    2,757  4.242 0.145  199703   8,137    3,511  3.634 0.122 
199304   6,623    2,782  4.178 0.143 199704  8,277  3,475  3.545 0.120
199305   6,623    2,795  4.245 0.146  199705   8,277    3,428  3.548 0.122 
199306   6,623    2,783  4.233 0.144  199706   8,277    3,414  3.520 0.119 
199307   6,688    2,813  4.151 0.143  199707   8,410    3,394  3.437 0.117 
199308   6,688    2,878  4.275 0.149  199708   8,410    3,421  3.513 0.121 
199309   6,688    2,890  4.247 0.145  199709   8,410    3,411  3.485 0.118 
199310   6,814    2,909  4.141 0.142 199710  8,506  3,420  3.421 0.117
199311   6,814    2,963  4.153 0.142  199711   8,506    3,526  3.497 0.120 
199312   6,814    2,974  4.126 0.139  199712   8,506    3,450  3.468 0.119 
199401   6,916    2,971  4.037 0.137  199801   8,601    3,403  3.402 0.117 
199402   6,916    3,002  4.137 0.143  199802   8,601    3,429  3.477 0.122 
199403   6,916    3,028  4.111 0.139  199803   8,601    3,449  3.451 0.119 
199404   7,044    3,036  4.011 0.137 199804  8,699  3,345  3.384 0.118
199405   7,044    3,048  4.020 0.139  199805   8,699    3,329  3.384 0.119 
199406   7,044    3,036  3.994 0.135  199806   8,699    3,316  3.352 0.116 
199407   7,132    3,051  3.918 0.133  199807   8,847    3,277  3.267 0.114 
199408   7,132    3,075  4.032 0.139  199808   8,847    3,311  3.337 0.117 
199409   7,132    3,077  4.004 0.135  199809   8,847    3,258  3.304 0.116 
199410   7,248    3,108  3.913 0.133 199810  9,028  3,263  3.208 0.113
199411   7,248    3,124  3.924 0.135  199811   9,028    3,294  3.271 0.117 
199412   7,248    3,143  3.898 0.131  199812   9,028    3,300  3.242 0.114 
199501   7,308    3,172  3.840 0.129  199901   9,149    3,241  3.166 0.113 
199502   7,308    3,210  3.951 0.136  199902   9,149    3,249  3.228 0.115 
199503   7,308    3,230  3.925 0.132  199903   9,149    3,298  3.198 0.114 
199504   7,356    3,216  3.871 0.131 199904  9,253  3,185  3.131 0.113
199505   7,356    3,215  3.880 0.133  199905   9,253    3,173  3.133 0.114 
199506   7,356    3,237  3.852 0.129  199906   9,253    3,150  3.102 0.111 
199507   7,453    3,256  3.774 0.127  199907   9,405    3,137  3.023 0.109 
199508   7,453    3,271  3.883 0.133  199908   9,405    3,174  3.095 0.113 
199509   7,453    3,276  3.854 0.128  199909   9,405    3,137  3.065 0.111 
199510   7,543    3,278  3.779 0.127 199910  9,608  3,128  2.973 0.108
199511   7,543    3,336  3.787 0.129  199911   9,608    3,141  2.973 0.108 
199512   7,543    3,324  3.759 0.126 199912  9,608  3,191  2.946 0.107
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200001 
     
9,710    3,104  2.887 0.106 200401

     
11,590  3,419  1.934 0.067

200002 
     
9,710    3,110  2.950 0.110  200402 

     
11,590    3,511  1.960 0.070 

200003 
     
9,710    3,153  2.925 0.107  200403 

     
11,590    3,572  1.948 0.066 

200004 
     
9,949    3,021  2.809 0.103  200404 

     
11,763    3,519  1.907 0.065 

200005 
     
9,949    2,992  2.778 0.102  200405 

     
11,763    3,573  1.930 0.068 

200006 
     
9,949    2,947  2.743 0.100  200406 

     
11,763    3,598  1.918 0.064 

200007    10,018    2,917  2.680 0.099 200407
     
11,936  3,606  1.878 0.063

200008    10,018    2,939  2.704 0.101 200408
     
11,936  3,647  1.898 0.066

200009    10,018    2,892  2.672 0.098  200409 
     
11,936    3,646  1.887 0.062 

200010    10,130    2,873  2.604 0.097  200410 
     
12,124    3,681  1.845 0.061 

200011    10,130    2,916  2.595 0.096  200411 
     
12,124    3,737  1.864 0.063 

200012    10,130    2,862  2.561 0.094  200412 
     
12,124    3,723  1.852 0.060 

200101    10,165    2,852  2.517 0.094  200501 
     
12,362    3,717  1.803 0.059 

200102    10,165    2,860  2.568 0.097 200502
     
12,362  3,801  1.819 0.061

200103    10,165    2,866  2.530 0.094  200503 
     
12,362    3,845  1.808 0.057 

200104    10,301    2,747  2.456 0.092  200504 
     
12,500    3,786  1.774 0.057 

200105    10,301    2,727  2.447 0.091 200505
     
12,500  3,776  1.790 0.059

200106    10,301    2,710  2.419 0.090  200506 
     
12,500    3,746  1.776 0.056 

200107    10,305    2,721  2.382 0.089  200507 
     
12,729    3,775  1.730 0.055 

200108    10,305    2,797  2.401 0.091  200508 
     
12,729    3,837  1.743 0.057 

200109    10,305    2,785  2.380 0.089 200509
     
12,729  3,785  1.729 0.054

200110    10,373    2,785  2.342 0.088  200510 
     
12,901    3,817  1.691 0.053 

200111    10,373    2,857  2.339 0.087  200511 
     
12,901    3,896  1.704 0.055 

200112    10,373    2,851  2.307 0.085 200512
     
12,901  3,828  1.689 0.052

200201    10,499    2,826  2.261 0.084  200601 
     
13,161    3,857  1.641 0.051 

200202    10,499    2,890  2.264 0.086  200602 
     
13,161    3,952  1.713 0.055 

200203    10,499    2,871  2.242 0.083  200603 
     
13,161    3,998  1.701 0.052 



200204    10,602    2,851  2.199 0.082  200604 
     
13,330    3,931  1.665 0.052 

200205    10,602    2,904  2.202 0.082  200605 
     
13,330    3,913  1.678 0.054 

200206    10,602    2,880  2.178 0.081  200606 
     
13,330    3,883  1.666 0.050 

200207    10,702    2,964  2.147 0.080 200607
     
13,433  3,904  1.647 0.049

200208    10,702    3,018  2.166 0.082  200608 
     
13,433    3,967  1.698 0.053 

200209    10,702    3,042  2.157 0.079  200609 
     
13,433    3,925  1.685 0.050 

200210    10,767    3,064  2.126 0.079 200610
     
13,584  3,930  1.652 0.050

200211    10,767    3,085  2.131 0.081  200611 
     
13,584    3,984  1.665 0.052 

200212    10,767    3,080  2.113 0.077  200612 
     
13,584    3,946  1.651 0.048 

200301    10,887    3,067  2.073 0.076  200701 
     
13,759    3,964  1.616 0.047 

200302    10,887    3,142  2.090 0.078  200702 
     
13,759    4,015  1.662 0.050 

200303    10,887    3,187  2.073 0.075  200703 
     
13,759    4,069  1.650 0.048 

200304    11,012    3,169  2.030 0.074  200704 
     
13,977    3,985  1.608 0.047 

200305    11,012    3,227  2.055 0.076 200705
     
13,977  3,958  1.647 0.050

200306    11,012    3,248  2.036 0.074  200706 
     
13,977    3,919  1.632 0.047 

200307    11,255    3,248  1.974 0.072  200707 
     
14,126    3,957  1.601 0.046 

200308    11,255    3,335  2.009 0.075  200708 
     
14,126    4,057  1.665 0.050 

200309    11,255    3,316  1.997 0.070  200709 
     
14,126    4,008  1.650 0.047 

200310    11,415    3,366  1.959 0.069  200710 
     
14,253    3,946  1.621 0.046 

200311    11,415    3,426  1.986 0.072 200711
     
14,253  4,095  1.656 0.049

200312    11,415    3,441  1.975 0.068  200712 
     
14,253    4,070  1.641 0.047 

           

 


