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Abstract

We propose a multiperiod model in which competitive arbitrageurs exploit discrep-

ancies between the prices of two identical risky assets traded in segmented markets.

Arbitrageurs need to collateralize separately their positions in each asset, and this im-

plies a financial constraint limiting positions as a function of wealth. In our model,

arbitrage activity benefits all investors because arbitrageurs supply liquidity to the

market. However, arbitrageurs might fail to take a socially optimal level of risk, in the

sense that a change in their positions can make all investors better off. We characterize

conditions under which arbitrageurs take too much or too little risk.
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1. Introduction

This paper proposes a financial market model in which some investors (arbitrageurs)

have better investment opportunities than others, but face financial constraints. We study

the constraints’ implications for arbitrageur behavior, asset prices, and welfare. In our

model, arbitrage activity benefits all investors. This is because through their trading, arbi-

trageurs bring prices closer to fundamentals and supply liquidity to the market. Competitive

arbitrageurs could, however, fail to take a socially optimal level of risk. In some cases, for

example, a reduction in their positions can make all investors better off. Our analysis

provides insights into possible sources of allocative inefficiency in financial markets.

While the importance of financially constrained arbitrage had been emphasized before,

it was put into particularly sharp focus during the 1998 financial crisis. Prior to that crisis,

many hedge funds were following arbitrage strategies, betting that prices of comparable

securities would eventually converge. During the crisis, as prices instead diverged, hedge

funds incurred heavy losses and had to liquidate many of their positions. That these posi-

tions were generally viewed as profitable in the long run suggests that a short-run decline in

net worth severely constrained the hedge funds’ investment capacity. Interestingly, different

“legs” of an arbitrage position were often liquidated separately, exposing their buyers to

greater risk than holding the whole position.1 This suggests that hedge funds were uniquely

able to manage complex arbitrage positions, and that other investors could not easily “jump

in” and replace them.

We consider a multiperiod competitive economy with a riskless asset and two risky assets

with identical payoffs. The markets for the risky assets are segmented in that some investors

can only invest in one asset and some only in the other. Investors’ demand for an asset

is affected by endowment shocks that covary with the asset payoff. Since the covariances

differ for the two types of investors, the assets’ prices can differ. A third type of investor

(arbitrageurs) can invest in both assets and exploit price discrepancies. Arbitrageurs act

as intermediaries: by exploiting price discrepancies, they facilitate trade among the other

1For example, the Wall Street Journal (September 28, 1998), writing about Long-Term Capital Manage-
ment, a major hedge fund and one of the worst hit during the crisis, reports, “And while Long-Term Capital
ran its derivatives portfolio to offset risks and hedges from other balance-sheet investments, a bankruptcy
or liquidation also could have thrown the entire portfolio onto the market without the dealers necessarily
hedged. Such moves would have given dealers new risks as they attempted to cope with the flood of financial
instruments being forced into their hands. Long-Term Capital, on its own, may have ‘aggregated’ the risks
of both sides of a given trade to neutralize the market impact. In a bankruptcy or liquidation, however,
these instruments would have become unbundled and spread across dealers who didn’t necessarily have these
positions hedged, leaving them vulnerable to market risks.” (Emphasis in original.)
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investors, in effect providing liquidity to them.2

We model the financial constraints as follows. First, arbitrageurs have one margin

account for each risky asset, consisting of positions in that asset and in the riskless asset.

Second, the overall position in the account has to be such that the account’s value remains

positive until the next period. Requiring each account to be collateralized separately (i.e.,

ruling out cross-margining) implies that arbitrageurs’ wealth constrains the positions they

can take. Intuitively, arbitrageurs must have enough wealth to cover variations in the

values of the two accounts, even though these variations cancel out eventually. The no

cross-margining assumption captures the notion that the custodians of the arbitrageurs’

margin accounts in one market might not accept a position in the other as collateral.3

We show that if arbitrageurs’ wealth is insufficient, they may be unable to eliminate

price discrepancies between the risky assets. The resulting price wedge increases with

the relative demand of the two types of investors, and decreases with the arbitrageurs’

wealth. Arbitrageurs exploit the price wedge by holding opposite positions in the two assets.

Interestingly, if the capital gain on the arbitrage opportunity until the next period is risky

(because the relative demand of the two types of investors can vary), arbitrageurs could

choose not to invest up to the financial constraint. This is for risk management reasons:

arbitrageurs realize capital losses when the price wedge widens, which deprives them of funds

when they have the best use for them. Although arbitrageurs engage in risk management,

they can exacerbate price volatility: when prices diverge, they may have to liquidate some

of their positions in each market, further widening the price wedge. These results are

consistent with earlier papers, particularly Shleifer and Vishny (1997), and capture some

features of the 1998 crisis.

We next move to the welfare analysis, which we view as this paper’s main contribution.

Understanding the welfare implications of investors’ financial constraints is important, as

they underlie many policy debates. For example, during the 1998 crisis, it was feared

that the positions of Long-Term Capital Management (LTCM), a major hedge fund and

one of the worst hit during the crisis, were so large that their forced liquidation would

2While market segmentation is exogenous in our model, it could result from frictions such as asymmetric
information or institutional constraints. For example, prior to the 1998 crisis, British government bonds
were significantly more expensive than comparable German bonds. Some hedge funds attempted to exploit
this price discrepancy, which they viewed as arising from the fact that many British institutional investors
were constrained to hold British securities.

3This assumption is thus related to that of market segmentation. Indeed, the same friction that prevents
investors in one asset from investing in the other can also prevent the custodians of the arbitrageurs’ accounts
in one market from accepting a position in the other as collateral. Returning to the government bond
example, many British bond dealers did not deal in German securities. Therefore, a hedge fund shorting
British bonds through these dealers could not post German bonds as collateral.
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depress prices. This could disrupt markets and possibly jeopardize the financial system,

with consequences reaching far beyond LTCM’s investors. Such concerns were behind the

Federal Reserve’s controversial decision to orchestrate LTCM’s rescue.4 Our model provides

a framework for conducting a welfare analysis of markets with financial constraints, which

to our knowledge has not been done before.

In our model, arbitrage activity is beneficial to all investors, because arbitrageurs supply

liquidity to the market. We show, however, that arbitrageurs can fail to take a socially

optimal level of risk. When, in equilibrium, arbitrageurs are heavily invested in the arbitrage

opportunity, a reduction in their positions can make all investors better off. Conversely,

when, in equilibrium, arbitrageurs do not invest much in the arbitrage opportunity, an

increase in their positions can be Pareto improving.

How can a change in the arbitrageurs’ positions be Pareto improving? The intuition

is that (i) competitive arbitrageurs fail to internalize that changing their positions affects

prices, and (ii) due to market segmentation and financial constraints, agents’ marginal rates

of substitution differ, and so a redistribution of wealth induced by a change in prices can

be Pareto improving. This mechanism was first pointed out by Geanakoplos and Pole-

marchakis (1986) in a general incomplete markets setting. Our contribution is to explore

this mechanism when incompleteness is created by market segmentation and financial con-

straints.5

To illustrate how the mechanism operates in our setting, suppose that after arbitrageurs

have chosen their positions, the other investors’ relative demand increases. These investors

are then eager for liquidity, which arbitrageurs are eager to provide because the price wedge

is wide. However, the arbitrageurs are hampered by the capital losses on their positions.

Reducing the positions would limit the losses, and enable arbitrageurs to provide more

liquidity. Of course, arbitrageurs internalize that liquidity provision is profitable, which is

why they might choose positions below the financial constraint. However, what competitive

arbitrageurs fail to internalize is that reducing their positions affects prices, i.e., that with

4According to Alan Greenspan’s testimony before Congress: “[T]he act of unwinding LTCM’s portfolio
in a forced liquidation would not only have a significant distorting effect on market prices but also in the
process would produce large losses, or worse, for a number of creditors and counterparties, and for other
market participants who were not directly involved with LTCM....Had the failure of LTCM triggered the
seizing up of markets, substantial damage could have been inflicted on many market participants...and could
have potentially impaired the economies of many nations, including our own.” (Quoted from Edwards, 1999.)

5We should note that in our model the extent of market incompleteness is endogenous, and depends on
the arbitrageurs’ wealth. Indeed, if wealth is large, then arbitrageurs can close the arbitrage opportunity,
and markets are effectively complete. In this sense, arbitrageurs can be interpreted as “financial innovators,”
and our model is related to the financial innovation literature. For surveys of this literature, see Allen and
Gale (1994) and Duffie and Rahi (1995).
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smaller losses, they can invest more aggressively, thus attenuating the widening of the price

wedge. This would further reduce their losses, allowing them to further exploit the wide

price wedge. Hence, they can be better off. For the other investors, the benefit of increased

liquidity when they need it most can dominate the cost of the initial reduction in liquidity.

Hence, they too can be better off.

Critical to this Pareto improvement is that the change in prices induces a redistribution

of wealth, and that agents’ marginal rates of substitution differ. The wealth redistribution

benefits the arbitrageurs in the early periods and in states where the price wedge widens,

and benefits the other investors in later periods (through the arbitrageurs’ increased ability

to provide liquidity). This can be Pareto improving because arbitrageurs have a stronger

preference, relative to the other investors, for receiving funds in the early periods (since

they have a greater return on wealth) and in states where the price wedge widens (since

only arbitrageurs can exploit the price wedge). Note that the differences in marginal rates

of substitution arise naturally from market segmentation and financial constraints.

The sources of allocative inefficiency in our model seem quite realistic. That a liquidation

of arbitrageurs’ positions can reduce other arbitrageurs’ net worth through price effects was

an important feature of the 1998 crisis. Indeed, during the crisis, there were concerns that

hedge funds were imposing negative externalities on each other, precisely through price

effects. A liquidation of arbitrageurs’ positions can also be detrimental to other investors

through a reduction in market liquidity. Indeed, the Federal Reserve’s concerns about

market disruption can partly be interpreted as concerns about market liquidity. (In fact,

liquidity dried up in many markets during the crisis.)

This paper is related to several strands of the literature, in addition to that on general

equilibrium with incomplete markets. The notion that some investors have better invest-

ment opportunities than others underlies all models of financial markets with asymmetric

information. In most of these models, however, financial constraints are very limited. For

example, it is generally assumed that investors can freely borrow at the riskless rate. We

should note that asymmetric information models assume some implicit financial constraints.

For example, informed investors are generally prevented from issuing “equity,” i.e., forming

a mutual fund, although Admati and Pfleiderer (1990) represent an exception.

Some papers focus on financial constraints more explicitly. In Tuckman and Vila (1992,

1993), financial constraints arise from holding costs, and they prevent arbitrageurs from
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eliminating mispricings.6 In Dow and Gorton (1994), financial constraints take the form

of a short horizon and a trading cost, and again mispricings can arise. Yuan (1999, 2001)

considers a model where arbitrageurs face a borrowing constraint.

Shleifer and Vishny (1997) are the first to emphasize the intertemporal wealth effects

of financial constraints: the arbitrageurs’ ability to invest is constrained by their wealth,

which itself depends on the past performance of the arbitrageurs’ investments. In their

model, arbitrageurs rely on external funds and face the constraint that the inflow of funds

is sensitive to performance.7 They show that arbitrageurs can choose not to invest up to

the financial constraint and, through their trading, can amplify the effects of noise shocks

on prices. Intertemporal wealth effects are also central to our analysis. The main difference

with Shleifer and Vishny is that we model more explicitly the arbitrageurs’ advantage

over the other investors (through market segmentation) and the mechanics of the financial

constraint (through the margin accounts). This allows us to conduct a welfare analysis.

Intertemporal wealth effects are studied in several other recent papers. Xiong (2001)

considers a model in which arbitrageurs and “long-term” investors invest in a single risky

asset. He shows that arbitrageurs can amplify the effects of noise shocks on prices. Aiyagari

and Gertler (1999) and Sodini (2001) obtain similar amplification effects in models with

margin constraints. See also Attari and Mello (2001) for a model with a monopolistic

arbitrageur. Kyle and Xiong (2001) assume two risky assets, and show that arbitrageurs

can induce financial contagion in the form of an increased correlation between asset prices.

These results are driven not by financial constraints but by the fact that arbitrageurs have

logarithmic utility, and thus their demand for risky assets is increasing in wealth.

In Loewenstein and Willard (2001), arbitrageurs with long horizons provide liquidity to

overlapping generations of short-horizon investors, by holding the assets with short-term

price risk. Arbitrageurs face the constraint that wealth must be nonnegative at any time. In

Basak and Croitoru (2000), agents hold heterogeneous beliefs, and trade a risky asset and

a financial derivative, under portfolio constraints. In both papers, arbitrage opportunities

can exist.

A recent strand of the literature studies the optimal policy of an investor facing exoge-

6In Tuckman and Vila, the arbitrageurs’ advantage over the other investors derives not from better
information, but from the arbitrageurs’ ability to participate in a larger set of markets. For other models of
limited market participation see, for example, Basak and Cuoco (1998) and Zigrand (2001).

7Allen and Gale (1999) and Holmström and Tirole (2001) also consider equilibrium models where in-
vestors rely on external funds and are facing financial constraints. For models exploring the macroeconomic
implications of financial constraints see, for example, Kiyotaki and Moore (1998), Krishnamurthy (2000),
and Mian (2002).
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nous portfolio constraints.8 In Liu and Longstaff (2001), an arbitrageur can invest in a

stochastic “spread,” known to converge at some fixed time, under the constraint that his

position cannot exceed a given function of wealth. Because of this constraint the arbitrage

strategy becomes risky, and the arbitrageur could choose not to invest up to the constraint.

This paper proceeds as follows. In Section 2 we present the model. In Section 3 we derive

a competitive equilibrium, and in Section 4 we study its welfare properties. In Section 5 we

compute the equilibrium and the welfare effects in closed form, in the “continuous-time”

case, where the time between consecutive periods goes to zero. In Section 6 we conclude, and

discuss some possible extensions and policy implications. All proofs are in the Appendix.

2. The model

There are T + 1 periods, t = 0, 1, .., T , with T ≥ 2. The universe of assets consists of

a riskless asset and two risky assets, A and B. All agents can invest in the riskless asset.

However, only some agents (arbitrageurs) can invest in both risky assets, while the other

agents (A- and B-investors) can invest in only one risky asset.

2.1. Assets

The riskless asset has an exogenous return equal to one. Assets A and B are in zero net

supply, and pay off only in period T . Their payoffs are identical and equal to
∑T

t=0 δt, where

δt is a random variable revealed in period t. We assume that the δt are independent and

identically distributed, and that the distribution is symmetric around zero on the bounded

support [−δ, δ]. We denote by pi,t the price of asset i = A, B in period t, and set

φi,t = Et

(

T
∑

s=0

δs

)

− pi,t =
t
∑

s=0

δs − pi,t.

The variable φi,t represents the expected excess return per share of asset i and, for simplicity,

we refer to it as asset i’s risk premium.

The assumptions of exogenous riskless return, zero net supply assets, and identical

asset payoffs are for simplicity. In particular, the zero net supply assumption ensures that

arbitrageurs hold opposite positions in the two risky assets, and do not bear any aggregate

risk. The bounded support assumption plays a role for the financial constraint (see below).

8See, for example, Cvitanic and Karatzas (1992), Grossman and Vila (1992), and Cuoco (1997). See also
Kogan and Uppal (2001), who perform both a partial and a general equilibrium analysis.
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2.2. A- and B-investors

The markets for assets A and B are segmented in that some agents, A-investors, can

only invest in asset A and the riskless asset, while others, B-investors, can only invest in

asset B and the riskless asset.

We take market segmentation as given. We simply assume that A-investors face large

transaction costs for investing in asset B, and so do B-investors for asset A. These costs can

be due to “physical” factors, such as distance. Alternatively, they may be a reduced form

for information asymmetries or institutional constraints. Market segmentation is a realistic

assumption in many contexts. In an international context, for example, it is well known that

there is “home bias,” i.e., investors mainly hold domestic rather than foreign assets. One

simple story in the spirit of information asymmetry could run as follows. Assets A and B

are “certificates,” written in different languages, A and B. A-investors understand language

A but not language B. Hence, A-investors will not hold an asset written in language B, for

fear of holding a worthless piece of paper. The reverse holds for B-investors.

The i-investors, i = A, B, are competitive, form a continuum with measure 1, and have

initial wealth wi,0. They maximize the expected utility of period T wealth, wi,T . We assume

that utility is exponential, i.e.,

Ui(wi,T ) = − exp (−αwi,T ) .

In each period t ≥ 1, investors receive an endowment that is correlated with the infor-

mation δt on the asset payoffs. We assume that the endowment of i-investors in period t is

ui,t−1δt. The coefficient ui,t−1 measures the extent to which the endowment covaries with δt.

If ui,t−1 is high, the covariance is high, and thus the willingness of i-investors to hold asset i

in period t− 1 is low. We refer to ui,t−1 as the “supply shock” of i-investors in period t− 1,

to emphasize that it negatively affects investor demand in that period. To be consistent

with the zero net supply assumption, the endowments can be interpreted as positions in

a different but correlated asset. Our specification of endowments is quite standard in the

market microstructure literature (see O’Hara, 1995).

We assume that the supply shocks are opposites for the A- and B-investors, i.e.,

uA,t = −uB,t = ut, for t = 0, .., T − 1.

We assume opposite shocks for simplicity. What is critical for our model is that A- and

B-investors incur different shocks. Different shocks, together with market segmentation,
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create a role for the arbitrageurs. Indeed, arbitrageurs exploit price discrepancies between

assets A and B, which can arise because A- and B-investors have different propensities

to hold the assets (due to the different supply shocks) but cannot trade with each other

(due to market segmentation). Note that arbitrageurs act as intermediaries. Suppose, for

example, that A-investors receive a positive supply shock, in which case B-investors receive

a negative shock. Then arbitrageurs buy asset A from the A-investors, who are willing to

sell, and sell asset B to the B-investors, who are willing to buy. Through this transaction

arbitrageurs make a profit, while at the same time providing liquidity to the other investors.

We consider two cases for the supply shock ut. The first is the certainty case where ut is

deterministic and, for simplicity, identical in all periods, i.e., ut = u0 for t = 0, .., T −1. The

certainty case is a useful benchmark, and illustrates the mechanics of the model. Second,

we consider the uncertainty case where ut is stochastic. For simplicity, we assume that all

uncertainty is resolved in period 1, and ut is identical in all subsequent periods, i.e., ut = u1

for t = 1, .., T − 1.9 In both cases, we assume that u0 > 0. Furthermore, in the uncertainty

case we assume that u1 has positive and bounded support [u1, u1] and is independent of δ1.

The i-investors choose holdings of asset i in period t, yi,t, to maximize expected utility

of period T wealth. Their optimization problem, Pi, is

max
yi,t

t=0,..,T−1

−E0 exp (−αwi,T ) ,

subject to the dynamic budget constraint

wi,t+1 = wi,t + yi,t(pi,t+1 − pi,t) + ui,tδt+1 for t = 0, .., T − 1. (1)

Eq. (1) states that period t + 1 wealth equals period t wealth plus the capital gains and

endowment received between periods t and t + 1.

2.3. Arbitrageurs

Arbitrageurs can invest in both assets A and B. They are competitive, form a continuum

with measure µ, and have initial wealth w0.
10 They maximize expected utility of period T

wealth, wT . We denote the arbitrageurs’ utility by U(wT ).

9A more natural assumption would be that uncertainty is resolved gradually over periods 1, .., T − 1.
Gradual resolution of uncertainty would, however, complicate the analysis, while assuming that T = 2
would eliminate some interesting economic effects (as explained in Section 5).

10We should note that by fixing the measure of the arbitrageurs, we do not allow for entry into the
arbitrage industry, which seems a realistic assumption for understanding short-run market behavior. For
example, during the 1998 crisis, when prices of securities involved in arbitrage strategies diverged, there was
little inflow of new capital to correct the divergence.
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Arbitrageurs are subject not only to the budget constraint, as are the A- and B-investors,

but also to a financial constraint, that we model as follows. First, arbitrageurs have one

margin account for each risky asset, consisting of positions in the asset and in the riskless

asset. Second, the overall position in the account has to be such that the account’s value

remains positive until the next period. Denoting by xi,t the position in asset i = A, B in

period t, and by Vi,t the value of the margin account, we have

Vi,t+1 = Vi,t + xi,t(pi,t+1 − pi,t).

Requiring that Vi,t+1 ≥ 0 implies that

Vi,t ≥ max
pi,t+1

{xi,t (pi,t − pi,t+1)}.

This in turn implies the financial constraint

wt =
∑

i=A,B

Vi,t ≥
∑

i=A,B

max
pi,t+1

{xi,t (pi,t − pi,t+1)},

where wt denotes the arbitrageurs’ wealth in period t. The financial constraint requires

arbitrageurs to have enough wealth to cover the maximum loss that each margin account

can incur. This implies that arbitrageurs’ wealth constrains the positions they can take. In

particular, arbitrageurs may be unable to eliminate a price discrepancy in a given period,

even if it is known that the discrepancy will disappear in the next period. Of course,

arbitrageurs would always be able to eliminate such a discrepancy if they were subject only

to the standard constraint that wealth be nonnegative in each period.

Requiring each margin account to be collateralized separately (i.e., ruling out cross-

margining) means that arbitrageurs cannot use a position in one asset as collateral for a

position in the other. Suppose, for example, that arbitrageurs short asset B. Then they

must deposit as collateral in their B-account both the cash proceeds from selling asset B

and some additional cash, to cover the cost of buying asset B next period. They cannot,

however, deposit asset A.

The no cross-margining assumption is, in fact, related to that of market segmentation.

Indeed, the same frictions (e.g., institutional constraints, etc.) that prevent B-investors

from investing in asset A can also prevent the custodians of arbitrageurs’ B-accounts from

accepting asset A as collateral.11 Returning to our language story, the custodians of the

11The custodians can be the financial exchanges if the assets are futures contracts, or the brokers/dealers
through whom the arbitrageurs are trading if the assets are stocks or bonds. The no cross-margining
assumption is quite realistic in both cases. For example, futures exchanges generally accept as collateral
only positions in contracts traded within the exchange, and dealers generally accept only positions in assets
they are dealing in. In practice, arbitrageurs sometimes avoid cross-margining even when it is allowed, for
fear of revealing all their information to a single counterparty and then being front-run (see Ko, 2000).

9



B-accounts do accept asset A as collateral because they do not understand language A.

Requiring each margin account to be fully collateralized ensures that arbitrageurs never

default. Ruling out default allows us to avoid modeling the custodians of the arbitrageurs’

margin accounts, and having to consider their welfare. (For example, A- and B-investors

can serve as custodians.) Note that it is because of the full collateralization assumption

that we need to consider probability distributions with bounded support.12 13

The arbitrageurs’ optimization problem, P, is

max
xA,t,xB,t
t=0,..,T−1

E0U (wT ) ,

subject to the dynamic budget constraint

wt+1 = wt +
∑

i=A,B

xi,t(pi,t+1 − pi,t) for t = 0, .., T − 1,

and the financial constraint

wt ≥
∑

i=A,B

max
pi,t+1

{xi,t (pi,t − pi,t+1)} for t = 0, .., T − 1.

2.4. Equilibrium

We define competitive equilibrium as follows.

Definition 1 A competitive equilibrium consists of prices {pi,t} i=A,B
t=0,..,T

, asset holdings of the

i-investors {yi,t}t=0,..,T−1, for i = A, B, and of the arbitrageurs {xi,t} i=A,B
t=0,..,T−1

, such that

• given the prices, {yi,t}t=0,..,T−1 solve problem Pi, for i = A, B, and {xi,t} i=A,B
t=0,..,T−1

solve problem P, and

• for i = A, B, t = 0, .., T − 1, markets clear:

yi,t + µxi,t = 0.

12In one sense, our financial constraint is endogenous in that it depends on the properties of the price
process. The notion that margin requirements are endogenously chosen to prevent default has appeared in
recent general equilibrium literature (see, e.g., Geanakoplos, 2001 and the references therein).

13The financial constraint is imposed only on the arbitrageurs and not on the A- and B-investors. The
constraint will not be binding for these investors if their initial wealth is large enough. Indeed, since utility
is exponential, optimal holdings of the risky asset are independent of wealth, and so are capital gains.
Moreover, since asset payoffs and supply shocks have bounded support, so do capital gains. Therefore, for
large enough initial wealth, capital losses are always smaller than wealth, and the financial constraint is not
binding. Note that the initial wealth of the A- and B-investors does not have to be larger than that of the
arbitrageurs. Indeed, if the measure µ of the arbitrageurs is small enough, the arbitrageurs’ positions are
much larger than those of the A- and B-investors, and thus require more collateral.
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3. Equilibrium

In this section, we derive a competitive equilibrium. We look for an equilibrium that

satisfies two properties. First, the risk premia of assets A and B are opposites, i.e., φB,t =

−φA,t, because the assets are in zero net supply and the supply shocks of the A- and B-

investors are opposites. Second, the arbitrageurs’ positions in assets A and B are also

opposites, i.e., xB,t = −xA,t, because the risk premia of the two assets are opposites. (Note

that since the arbitrageurs’ positions are opposites, the same is true for the positions of the

A- and B-investors.) We refer to an equilibrium satisfying these properties as symmetric.

A symmetric equilibrium is characterized by the risk premium of asset A, φA,t, and the

arbitrageurs’ position in that asset, xA,t, t = 0, .., T − 1 (for t = T , φA,T = 0). In what

follows we drop the subscript A from φA,t, xA,t, and yA,t. Note that the risk premium φt is

one-half of the price wedge between assets A and B, since

pB,t − pA,t =

(

t
∑

s=0

δs + φt

)

−
(

t
∑

s=0

δs − φt

)

= 2φt.

In a symmetric equilibrium, φt and xt do not depend on δt, the asset payoff information.

This is because the arbitrageurs’ positions in assets A and B are opposites, and thus the

arbitrageurs’ wealth does not depend on δt. Therefore, φt and xt can be stochastic only

because of the supply shock ut. In the certainty case, where ut is deterministic, φt and xt are

thus deterministic. Likewise, in the uncertainty case, where ut is deterministic from period

1 on, so are φt and xt. We study the certainty case in Section 3.1, and the uncertainty case

in Section 3.2.

3.1. The certainty case

We first study the optimization problem PA of the A-investors. Since uA,t = ut = u0,

we can write the dynamic budget constraint (1) as

wA,t+1 = wA,t + yt(pA,t+1 − pA,t) + u0δt+1

= wA,t + yt

[(

t+1
∑

s=0

δs − φt+1

)

−
(

t
∑

s=0

δs − φt

)]

+ u0δt+1

= wA,t + yt(φt − φt+1) + (yt + u0)δt+1.

The term yt(φt − φt+1) is the expected capital gain of the A-investors between periods t

and t+1. It is proportional to the difference between the risk premia in these periods. The

11



term (yt +u0)δt+1 represents the risk borne by the A-investors between periods t and t+1.

It is the sum of the unexpected capital gain and the period t + 1 endowment.

Expected utility is

−E exp (−αwA,T ) = −E exp

[

−α

(

wA,0 +
T−1
∑

t=0

(yt(φt − φt+1) + (yt + u0)δt+1)

)]

.

To compute expected utility, we need to compute

E exp(−α(yt + u0)δt+1).

This expectation depends on the probability distribution of δt+1. We do not assume a

specific distribution, but rather define the function f by

E exp(−αyδ) ≡ exp(αf(y)).

Some useful properties of f are summarized in the following Lemma.

Lemma 1 The function f is positive, strictly convex, and satisfies f(y) = f(−y) and

limy→∞ f ′(y) = δ.

Using f , we can write expected utility as

− exp

[

−α

(

wA,0 +
T−1
∑

t=0

(yt(φt − φt+1)− f(yt + u0))

)]

,

and the optimization problem of the A-investors as

max
yt

t=0,..,T−1

T−1
∑

t=0

(yt(φt − φt+1)− f(yt + u0)) .

The optimization problem takes a simple form. We can interpret f(yt + u0) as a cost of

bearing risk between periods t and t + 1. This “inventory” cost depends on the position

yt in asset A and on the supply shock u0. (The inventory cost would be quadratic if the

probability distribution of δt were normal; a normal distribution is, however, ruled out by

the bounded support requirement.) The optimization problem consists in maximizing the

sum of expected capital gains, minus the sum of inventory costs. At the optimum, the

expected capital gain per unit of asset A equals the marginal inventory cost, i.e.,

φt − φt+1 = f ′(yt + u0). (2)

The optimization problem PB of the B-investors also yields Eq. (2), since the risk premium,

the supply shock, and investors’ positions for assets A and B are opposites, and f ′(y) =

−f ′(−y).
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We next study the optimization problem P of the arbitrageurs. The arbitrageurs’ finan-

cial constraint is

wt ≥
∑

i=A,B

max
pi,t+1

{xi,t (pi,t − pi,t+1)}

≥ max
δt+1

{xt(−φt + φt+1 − δt+1)}+ max
δt+1

{−xt(φt − φt+1 − δt+1)}

≥ 2 max
δt+1

{xt(−φt + φt+1 − δt+1)}

≥ 2|xt|δ − 2xt(φt − φt+1),

where the last two steps follow from the symmetry of the support of δt+1 around zero. For

xt ≥ 0 (which will be the case in equilibrium) we can write the financial constraint as

xt ≤
wt

2
(

δ − (φt − φt+1)
) .

The constraint becomes more severe when the arbitrageurs’ wealth wt decreases. It also be-

comes more severe when the bound δ increases, because more volatile asset payoffs increase

the maximum loss of a position. Finally, it becomes less severe when φt − φt+1 increases,

i.e., the price wedge in period t + 1 becomes narrower relative to that in period t. This is

because the maximum loss of a position decreases.

The dynamic budget constraint is

wt+1 = wt +
∑

i=A,B

xi,t(pi,t+1 − pi,t)

= wt + xt(φt − φt+1 + δt+1)− xt(−φt + φt+1 + δt+1)

= wt + 2xt(φt − φt+1). (3)

The term 2xt(φt − φt+1) is the arbitrageurs’ capital gain between periods t and t + 1. It is

independent of δt+1, and thus riskless, since the arbitrageurs’ positions in assets A and B

are opposites.

The arbitrageurs’ optimization problem consists in maximizing the sum of capital gains,

subject to the financial constraint. Since capital gains are riskless, the solution to this

problem is very simple: invest up to the financial constraint if capital gains are positive,

and any amount up to the constraint if capital gains are zero. Formally,

xt =
wt

2
(

δ − (φt − φt+1)
) if φt − φt+1 > 0 (4)

xt ≤
wt

2
(

δ − (φt − φt+1)
) if φt − φt+1 = 0. (5)
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The equilibrium is characterized by the market-clearing condition

yt + µxt = 0, (6)

and Eqs. (2), (3), (4), and (5). This system of equations turns out to have a unique solution

for φt and xt, t = 0, .., T − 1. While the solution depends on all parameters, it will prove

useful to emphasize its dependence on the arbitrageurs’ initial wealth w0 and the supply

shock u0, and thus, to denote it as

{(φ (w0, u0, t) , x (w0, u0, t))}t=0,...,T−1
.

Proposition 1 There exists a unique symmetric competitive equilibrium. In this equilib-

rium, φt and xt are given by the unique solution to the system of (2)-(6), i.e.,

φt = φ (w0, u0, t) and xt = x (w0, u0, t) for t = 0, .., T − 1.

The equilibrium can take one of two forms:

• If w0 ≥ w0 ≡ 2δu0

µ
, the financial constraint never binds. The arbitrageurs fully absorb

the supply shock, and close the price wedge in all periods, i.e., µxt = u0 and φt = 0,

for t = 0, .., T − 1.

• If w0 < w0, the financial constraint binds in all periods. The arbitrageurs do not fully

absorb the supply shock, i.e., µxt < u0, for t = 0, .., T − 1. The price wedge narrows

over time and is closed only in period T , i.e., φt − φt+1 > 0, for t = 0, .., T − 1, and

φT = 0. The arbitrageurs’ position in asset A is given by

x0 − x0

f ′(u0 − µx0)

δ
=

w0

2δ
, (7)

xt − xt
f ′(u0 − µxt)

δ
= xt−1, (8)

and it increases over time. The risk premium of asset A is given by φT = 0 and

φt − φt+1 = f ′(u0 − µxt). (9)

Proposition 1 provides a simple characterization of the equilibrium. The financial con-

straint either never binds, if the arbitrageurs’ initial wealth is large enough, or binds in all

periods. In the latter case, the price wedge is not closed, and the arbitrageurs realize capital

gains. Due to these gains, the arbitrageurs’ wealth increases over time, and so does their

position.
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A variable that will prove useful is the return on an agent’s period t wealth, defined as

the impact on the agent’s wealth in period T of an increase in wealth in period t. For the

i-investors, the return is equal to 1, since at the margin these investors invest in the riskless

asset whose return is 1. For the arbitrageurs, we denote the return by Rt, and distinguish

two cases. When the financial constraint does not bind, Rt = 1, since the price wedge is

closed, and thus an arbitrage position is equivalent to a position in the riskless asset. To

compute Rt when the financial constraint binds, we plug Eq. (4) into (3) and get

wt+1 = wt
1

1− φt−φt+1

δ

.

Therefore,

wT = wt

T−1
∏

s=t

1

1− φs−φs+1

δ

and

Rt =
T−1
∏

s=t

1

1− φs−φs+1

δ

. (10)

When the financial constraint binds, the price wedge narrows over time, and we have φs −
φs+1 > 0. Therefore, Eq. (10) implies that Rt > 1, which simply means that arbitrageurs

have better investment opportunities than the i-investors. Eq. (10) also implies that Rt

decreases over time. This is because arbitrageurs have fewer periods over which to exploit

their better opportunities.

3.2. The uncertainty case

We first note that from period 1 on, we are in the certainty case, and can use Proposition

1. We thus have

φt = φ (w1, u1, t− 1) and xt = x (w1, u1, t− 1) for t = 1, .., T − 1. (11)

To complete the derivation of the equilibrium, we need the agents’ optimality conditions in

period 0. We first derive the optimality condition of the A-investors (which is identical to

that of the B-investors). The A-investors’ expected utility is

−E exp

[

−α

(

wA,0 +
T−1
∑

t=0

yt(φt − φt+1) + (y0 + u0)δ1 +
T−1
∑

t=1

(yt + u1)δt

)]

= −E exp

[

−α

(

wA,0 +
T−1
∑

t=0

yt(φt − φt+1)− f(y0 + u0)−
T−1
∑

t=1

f(yt + u1)

)]

, (12)
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where the second expectation is taken only with respect to u1. Maximizing this second

expectation with respect to y0, we get the optimality condition

E
[

(φ0 − φ1 − f ′(y0 + u0))MA

]

= 0, (13)

where

MA = α exp

[

−α

(

wA,0 +
T−1
∑

t=0

yt(φt − φt+1)− f(y0 + u0)−
T−1
∑

t=1

f(yt + u1)

)]

.

To understand the intuition for Eq. (13), compare it to the optimality condition in the

certainty case,

φ0 − φ1 − f ′(y0 + u0) = 0.

The term φ0 − φ1 − f ′(y0 + u0) is the expected capital gain per unit of asset A, net of

the marginal inventory cost. The optimality condition consists in setting this “net expected

capital gain” to zero. In the uncertainty case, φ0−φ1−f ′(y0+u0) is the net expected capital

gain, conditional on u1. Furthermore, MA is the A-investors’ expected marginal utility of

wealth, conditional on u1. The optimality condition consists in setting the expectation,

with respect to u1, of the product of these two terms to zero.

Next, we derive the arbitrageurs’ optimality condition. Their dynamic budget constraint

is

w1 = w0 + 2x0(φ0 − φ1). (14)

Using Eq. (14) and wT = w1R1, we can write expected utility as

EU(wT ) = EU [(w0 + 2x0(φ0 − φ1))R1] . (15)

Arbitrageurs maximize expected utility with respect to x0, subject to the financial constraint

w0 ≥ 2 max
δ1,u1

{x0(−φ0 + φ1 − δ1)}. (16)

The derivative of the arbitrageurs’ expected utility is

dEU

dx0

= E [2(φ0 − φ1)R1M ] ,

where M = U ′(wT ). The derivative is equal to the expectation, with respect to u1, of the

product of two terms: the capital gain per unit of the arbitrage opportunity, 2(φ0 − φ1),

and the marginal utility derived from wealth received in period 1, R1M .

The derivative of the arbitrageurs’ expected utility depends not only on the expected

capital gain, but also on the covariance between the capital gain and R1M . Although the
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expected capital gain is nonnegative, the covariance between the capital gain and R1M is

generally negative. To see why, notice that the covariance between the capital gain and R1

is negative. Indeed, the arbitrageurs’ period 0 position pays off when the risk premium φ1 is

low, i.e., the price wedge narrows, which is exactly when R1 is low. The covariance between

the capital gain and R1 can be interpreted as a covariance between internal funds (the

arbitrageurs’ wealth) and profitability of investment opportunities. This suggests a parallel

to theories of corporate risk management based on financial constraints. For example, Froot,

Scharfstein, and Stein (1993) posit that firms should manage risk to match their internal

funds with the profitability of their investment opportunities, because external finance is

costly, and the ability to invest depends on internal funds. In our setting, the arbitrageurs’

ability to invest depends on their wealth (the “internal funds”) because of the financial

constraint. A negative covariance between the capital gain and R1 implies a negative

covariance between internal funds and the profitability of investment opportunities. This

makes the arbitrage opportunity less desirable as a risk management instrument, relative

to the riskless asset.

The form of the arbitrageurs’ optimality condition depends on whether the financial

constraint is binding upwards (preventing the arbitrageurs from increasing their position),

slack, or binding downwards:

dEU

dx0

> 0, w0 = 2 max
δ1,u1

{x0(−φ0 + φ1 − δ1)}, and x0 > 0, (17)

or
dEU

dx0

= 0 and w0 > 2 max
δ1,u1

{x0(−φ0 + φ1 − δ1)}, (18)

or
dEU

dx0

< 0, w0 = 2 max
δ1,u1

{x0(−φ0 + φ1 − δ1)}, and x0 < 0. (19)

It is important to note that the financial constraint can be slack or binding downwards,

even when the expected capital gain on the arbitrage opportunity is positive. This result is

in contrast to the certainty case, and is due to the negative covariance between the capital

gain and R1M . This result is obtained, in a different setting, in Shleifer and Vishny (1997)

and Liu and Longstaff (2001).

The equilibrium is characterized by Eqs. (6), (11), (13), (14), and (16)-(19). In the

uncertainty case, we have not shown existence or uniqueness of the equilibrium. In our

numerical solutions, however, we have always been able to find an equilibrium, and this

equilibrium seems to be unique.
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4. Welfare

We now turn to the welfare analysis, which we view as this paper’s main contribution.

Understanding the welfare implications of investors’ financial constraints is important, as

they underlie many policy debates. An example is the debate on systemic risk, i.e., on

whether a worsening of the financial condition of some market participants can propagate

into the financial system with harmful effects. One important aspect of this debate concerns

the ex ante incentives for risk taking. Do market participants take an appropriate level of

risk, given that their potential losses can affect others? Our model provides a framework

for studying this question.

In our model, arbitrageurs choose between investing in the riskless asset and the risky

arbitrage position. Before examining whether they take an appropriate level of risk, we

examine whether they should take any risk at all. More precisely, we compare the welfare

of each type of agent under the equilibrium allocation, and under the no-trade allocation

in which arbitrageurs are not allowed to invest in the risky assets, i.e., xt = 0 for all t.

For completeness, we also consider the no-constraint allocation in which arbitrageurs are

not subject to the financial constraint, and therefore fully absorb the supply shocks, i.e.,

µxt = ut for all t.

Lemma 2 Compared to the equilibrium allocation,

• under the no-trade allocation, A- and B-investors and arbitrageurs are worse off,

• under the no-constraint allocation, A- and B-investors are better off, while arbi-

trageurs are worse off.

Lemma 2 shows that allowing the arbitrageurs to invest in the risky assets is Pareto

improving. The intuition is that under the equilibrium allocation, arbitrageurs make a

profit by exploiting price discrepancies between assets A and B. At the same time, they

provide liquidity to the A- and B-investors by absorbing, to some extent, these investors’

supply shocks. Under the no-trade allocation, arbitrageurs cannot invest in assets A and

B. Therefore, they make no profit, and provide no liquidity to the A- and B-investors.

Under the no-constraint allocation, arbitrageurs close the price wedge, and thus make no

profit. At the same time, they fully absorb the supply shocks of the A- and B-investors,

thus providing perfect liquidity to these investors.
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Note that while the result that arbitrage activity benefits all investors is intuitive, it is

by no means general. Suppose, for example, that there were some A′-investors, who could

invest only in asset A, but received no endowment shocks. In the absence of arbitrageurs,

these investors would profit from providing liquidity to the A-investors. Introducing arbi-

trageurs would provide more liquidity to the A-investors, but “steal the business” of the

A′-investors (see Zigrand, 2001). Our main result is that even when arbitrage activity is

Pareto improving, arbitrageurs might fail to take a socially optimal level of risk.

We next examine whether arbitrageurs take an appropriate level of risk. Since the

arbitrage opportunity is risky only in period 0, we focus on the arbitrageurs’ position in

that period, and consider the following thought experiment. Suppose that a social planner

changes the arbitrageurs’ period 0 position from its equilibrium value. The social planner

affects only that position, and lets the market determine all other positions and prices. In

addition, the change is subject to the financial constraint, i.e., the arbitrageurs’ position can

only be reduced (increased) when the constraint is binding upwards (downwards). Finally,

for simplicity, the change is infinitesimal. (Considering noninfinitesimal changes would

only strengthen our results on the nonoptimality of the arbitrageurs’ position.) If the

social planner can achieve a Pareto improvement by reducing (increasing) the arbitrageurs’

position, then the position is said to involve too much (too little) risk. Otherwise, the

position is said to be (locally) socially optimal.

To implement the experiment formally, we treat the arbitrageurs’ period 0 position, x0,

as an exogenous parameter. For each value of x0, we define an “x0 equilibrium” by adding

to Definition 1 the requirement that the arbitrageurs’ period 0 position be x0. We compute

the agents’ expected utilities in this x0 equilibrium, and evaluate their derivatives at the

value of x0 that corresponds to the original equilibrium. Whether x0 involves too much

risk, too little risk, or is socially optimal depends on the sign of these derivatives.

Proposition 2 The derivative of the i-investors’ expected utility with respect to x0 is

E

[(

T−1
∑

t=0

d(φt − φt+1)

dx0

yt

)

Mi

]

, for i = A, B, (20)

and the derivative of the arbitrageurs’ expected utility is

E

[(

2(φ0 − φ1)R1 + 2
d(φ0 − φ1)

dx0

x0R1 + 2
T−1
∑

t=1

d(φt − φt+1)

dx0

xtRt

)

M

]

. (21)

The intuition for Eqs. (20) and (21) is as follows. A change in x0 has two effects on an

agent’s expected utility: first through the change in the agent’s period 0 position (direct
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effect) and second through the change in the prices the agent is facing (indirect effect). For

the A- and B-investors, the direct effect is zero since these investors’ period 0 positions are

unconstrained optima. To determine the indirect effect, we focus on the A-investors, and

consider the capital gain on asset A between periods t and t + 1. Changing x0 changes this

capital gain by d(φt−φt+1)/dx0. Therefore, it changes the A-investors’ period t + 1 wealth

by that amount multiplied by the investors’ period t position, yt. Notice that the change

in wealth depends only on u1, and not on δt. Therefore, the change in expected utility can

be computed by taking the expectation, with respect to u1, of the change in wealth times

MA, the expected marginal utility of wealth conditional on u1.

For the arbitrageurs, the direct effect can be nonzero, since the financial constraint

could be binding in period 0. To determine the direct effect, we note that if prices are

held constant, changing x0 changes the arbitrageurs’ period 1 wealth by 2(φ0 − φ1). The

resulting change in expected utility is the expectation, with respect to u1, of the change in

wealth times R1M , the marginal utility of wealth received in period 1. The indirect effects

are as for the A- and B-investors, with the difference that the change in period t+1 wealth

is multiplied by Rt+1M , the marginal utility of wealth received in that period.14

We can now state the paper’s main result.

Proposition 3 The arbitrageurs’ period 0 position may fail to be socially optimal. It some-

times involves too much and sometimes too little risk.

Before the formal analysis, it is worth giving a broad intuition for the result. Consider

first the case in which, in equilibrium, arbitrageurs are heavily invested in the arbitrage op-

portunity. Suppose that after they have chosen their positions, the other investors’ relative

demand increases. These investors are then eager for liquidity (in this and subsequent peri-

ods), which arbitrageurs are eager to provide because the price wedge is wide. However, the

arbitrageurs’ ability to do so is limited due to the capital losses on their positions. Reducing

the positions would limit the losses, and enable arbitrageurs to provide more liquidity. Of

course, arbitrageurs internalize that liquidity provision is profitable, which is why they may

choose positions below the financial constraint. However, what competitive arbitrageurs

fail to internalize is that reducing their positions affects prices, i.e., that with smaller losses,

they can invest more aggressively, thus attenuating the widening of the price wedge. This

14The change in period t+1 wealth is equal to the change in the capital gain on the arbitrage opportunity
between periods t and t + 1, 2d(φt − φt+1)/dx0, times the arbitrageurs’ period t position, xt. For t ≥ 1, we
also need to multiply by Rt/Rt+1. This is because a change in the capital gain affects the financial constraint
in period t, and thus affects xt.
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would further reduce their losses, allowing them to exploit the wide price wedge. Hence,

they can be better off. For the other investors, the benefit of increased liquidity when they

need it most can dominate the cost of the initial reduction in liquidity. Hence, they too can

be better off. Altogether, reducing the arbitrageurs’ positions can be Pareto improving.

Consider next the case in which, in equilibrium, arbitrageurs are not invested in the

arbitrage opportunity initially, and again, suppose that the other investors’ relative demand

increases. An increase in the arbitrageurs’ initial positions would further widen the price

wedge, an effect they fail to internalize. Unlike in the previous case, however, arbitrageurs

benefit from a wider price wedge since they can exploit it without having realized capital

losses. Hence they can be better off. For the other investors, a wider price wedge implies

less liquidity. However, this can be more than offset by the fact that the arbitrageurs’

increased wealth allows them to provide more liquidity in later periods. Hence, the other

investors too can be better off. Altogether, increasing the arbitrageurs’ positions can be

Pareto improving.

We should emphasize that these Pareto improvements occur through price changes. This

is consistent with Eqs. (20) and (21). Indeed, the direct effect in Eq. (21) always reduces the

arbitrageurs’ utility, since it is equal to the change in utility holding prices constant, and

arbitrageurs maximize utility. Therefore, a Pareto improvement can occur only through

the indirect effects, i.e., through a change in prices. The intuition is that a change in

prices induces a redistribution of wealth, and this can be Pareto improving because agents’

marginal rates of substitution (MRS) differ.

In the remainder of this section, we explain why agents’ MRS differ. We complete our

analysis in Section 5, where we derive the equilibrium in closed form in a special case, and

determine the redistribution of wealth achieved by a change in prices. As we show in that

section, both the redistribution across time and across states of nature are necessary for a

Pareto improvement.

Recall the coefficients translating a change in period t wealth to a change in expected

utility. For the i-investors, the coefficient is Mi, the expected marginal utility of wealth

conditional on u1. For the arbitrageurs, the coefficient is RtM , the marginal utility of

wealth received in period t.

Consider now the MRS across time periods, say t and t′ > t. For the i-investors, Mi

is independent of t, and thus the MRS is equal to 1. The intuition is that at the margin,

i-investors invest in the riskless asset, whose return is 1. For the arbitrageurs, the MRS
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is RtM/Rt′M = Rt/Rt′ . When a price wedge remains, Rt decreases over time, and thus

the MRS is greater than 1. The intuition is that at the margin, arbitrageurs invest in an

arbitrage position, whose return exceeds 1. Since the arbitrageurs’ MRS can exceed that of

the i-investors, the arbitrageurs have a greater preference for receiving wealth in the early

periods. Therefore, a redistribution of wealth that benefits the arbitrageurs in the early

periods and the i-investors in the later periods has the potential to be Pareto improving.

Consider next the MRS across states, i.e., for different values of u1, in the special case

where t = 1, and where the arbitrageurs’ financial constraint in period 0 is slack. The

arbitrageurs’ optimality condition is

E [(φ0 − φ1)R1M ] = 0,

and that of the i-investors is

E
[

(φ0 − φ1 − f ′(y0 + u0))Mi

]

= 0.

For these equations to be consistent, R1M must give more weight, relative to Mi, to the

states where φ1 is high. In other words, arbitrageurs must have a greater preference, relative

to i-investors, for receiving wealth in states where the price wedge widens. The intuition

is that at the margin, both the i-investors and the arbitrageurs invest in the riskless asset.

Since the arbitrageurs do not face asset payoff (δt) risk, they must be more adversely affected

(relative to the i-investors) by the risk that the price wedge widens. When this is the case,

a redistribution of wealth that benefits the arbitrageurs in states where the price wedge

widens, and the i-investors otherwise, has the potential to be Pareto improving.15

5. The continuous-time case

To gain further insight into the equilibrium, it is desirable to solve the model in closed

form. One would expect this to be easiest for T = 2, i.e., when the number of periods is the

smallest. However, the case T = 2 is not very tractable and, in addition, it fails to capture

some interesting economic effects. In particular, the redistribution of wealth induced by a

change in prices occurs not across time, but only across states of nature, and this turns out

to be insufficient for a Pareto improvement.16

15Differences in MRS across states could be eliminated by trading claims contingent on u1. These claims,
however, would need to be contingent on the prices of both assets A and B, which would run counter to the
market segmentation assumption.

16The analysis of the case T = 2 is available upon request. An additional limitation of that case is that
a supply shock in period 1 increases, rather than decreases, the arbitrageurs’ period 1 position. Intuitively,
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In this section, we solve the model in the “continuous-time” case, where the number

of periods goes to infinity, while the “calendar” time between the first and the last period

remains constant. The continuous-time case captures the effects we want to consider, while

remaining very tractable and allowing for closed-form solutions.

5.1. The model

We assume that calendar time, θ, belongs to an interval [0, Θ] that contains T + 1

equally spaced periods. Period t, t = 0, 1, .., T , corresponds to calendar time θ = th, where

h ≡ Θ/T represents the calendar time between two consecutive periods. To obtain the

continuous-time case, we assume that the number of periods, T + 1, goes to infinity, and

thus h goes to 0. In addition, we assume that the probability distribution of δt, the asset

payoff information in period t, is given by

Outcome −δ −δ̂
√

h δ̂
√

h δ

Probability ha 1

2
− ha 1

2
− ha ha

and the probability distribution of u1, the supply shock in period 1, is given by

Outcome u0 − û
√

h u0 + û
√

h

Probability 1

2

1

2

where δ, δ̂, a > 1, and û are constants that do not depend on h. The information δt on

the asset payoff has two components: a “diffusion” component δ̂
√

h, which converges to a

Brownian motion when h goes to zero, and a “jump” component δ. Without the latter,

the maximum loss of a position within one period would converge to zero, and thus the

financial constraint would vanish. We assume a 6= 1 only for simplicity. For simplicity, we

also omit the jump component from the supply shock u1. Note that the certainty case is

obtained by setting û = 0.

5.2. Equilibrium

We treat all variables as functions of the calendar time θ, and use the subscript θ rather

than t. To study the equilibrium, we determine the asymptotic behavior of the risk premium

the supply shock has two effects. First, it decreases the arbitrageurs’ period 1 wealth, through the widening
of the price wedge. Second, it increases the profitability of the positions that arbitrageurs can establish in
period 1 in assets A and B. This reduces the maximum loss of these positions, thus relaxing the financial
constraint in period 1. The first effect dominates only when the number of periods is large enough (and, in
particular, in the continuous-time case, as shown in Lemma 6). This is because the widening of the price
wedge reflects the expectation of the supply shocks over all future periods, while the financial constraint
concerns the maximum loss of a position only over the next period.
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φθ and the arbitrageurs’ position xθ, when h goes to 0.

5.2.1. The certainty case

To focus on the case in which the financial constraint is binding, we assume w0 < w0 ≡
2δu0

µ
. In this case, xθ is given by Eq. (8), which we can write in terms of calendar time as

xθ − xθ
f ′(u0 − µxθ)

δ
= xθ−h

⇒ xθ − xθ−h

h
= xθ

f ′(u0 − µxθ)

hδ
. (22)

To study Eq. (22), we use the following lemma.

Lemma 3 We have

lim
h→0

f ′(y)

h
= αδ̂2y.

Lemma 3 implies that when h goes to 0, the inventory cost f(y) is linear in h, the

calendar time between two consecutive periods, and quadratic in y, the position in the

risky asset. In addition, it is increasing in α, the risk-aversion coefficient, and in δ̂, which

is a measure of asset payoff risk.

Taking the limit of Eq. (22) when h goes to 0, and using Lemma 3, we get

dxθ

dθ
= xθ

αδ̂2(u0 − µxθ)

δ
. (23)

Using Eq. (9), and following a similar procedure, we get

dφθ

dθ
= −αδ̂2(u0 − µxθ). (24)

The initial conditions for the differential Eqs. (23) and (24) are x0 = w0

2δ
, which follows from

Eq. (7), and φΘ = 0. We denote the solutions to the differential equations by x∗θ and φ∗θ.

These functions represent the limits of xθ and φθ when h goes to zero.

Lemma 4 When h goes to 0, xθ goes to

x∗θ =
w0

2δ

q

1 + (q − 1)e−rθ
, (25)

and φθ goes to

φ∗θ = δ log
1 + (q − 1)e−rθ

1 + (q − 1)e−rΘ
, (26)

where

q =
w0

w0

> 1 and r =
u0αδ̂2

δ
.
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Eq. (25) implies that x∗θ increases with θ. This confirms the general result of Proposition

1 that the arbitrageurs’ position increases over time. Eq. (25) also implies that when θ goes

to infinity, x∗θ converges to (w0/2δ)q = u0/µ. This means that when the calendar time

interval is long enough, the arbitrageurs accumulate enough wealth from their arbitrage

activity to be able to fully absorb the A- and B-investors’ supply shock.

5.2.2. The uncertainty case

We first note that the limits of φθ and xθ when h goes to zero are the same as in the

certainty case, i.e., φ∗θ and x∗θ, except perhaps for the limit of x0. This is because from

period 1 on, the uncertainty case is identical to the certainty case. Moreover, when h goes

to zero, period 1 converges to calendar time θ = 0, and the “state variables” uh and wh,

which correspond to period 1, converge to u0 and w0. (For wh, this is because the risk

between periods 0 and 1 converges to zero, and thus the difference between the risk premia

in these periods – which determines the arbitrageurs’ capital gain – also converges to zero.)

Therefore, for all θ > 0, the limits of φθ and xθ are the same as in the certainty case. The

limit of φ0 is also the same because the difference between the risk premia in periods 0 and

1 converges to 0.

We next study the asymptotic behavior of φθ and xθ around their limits. This will

reveal some interesting properties of the equilibrium which, in addition, are relevant for the

welfare analysis. We focus on the asymptotic behavior of φ0 − φh, the difference between

the risk premia in periods 0 and 1, and xθ for θ ≥ h, the arbitrageurs’ position in periods

t ≥ 1. To state our results, we define

s =
2x̃∗0δ

w0

,

where x̃∗0 denotes the limit of x0 in the uncertainty case. The variable s measures the extent

to which arbitrageurs invest in the arbitrage opportunity in period 0, when h goes to zero.

Notice that when h goes to zero, the financial constraint in period 0, i.e., Eq. (16), becomes

w0 ≥ 2|x̃0|δ.

Therefore, the financial constraint is binding upwards when s = 1, is slack when |s| < 1,

and is binding downwards when s = −1.

Lemma 5 We have

φ0 − φh = −Φ(uh − u0) + Φ̂h + o(h), (27)
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where

Φ =
δ

u0

1− e−rΘ + (q − 1)rΘe−rΘ

(1− s)(1− e−rΘ) + qe−rΘ
, (28)

and

Φ̂ = rδ

(

1− s

q

)

+
1

2
αΦû2

[

φ∗0 + Φu0

(

(

1− s

q

)

+ e
φ∗
0

δ
1

q
(1− s)

)]

. (29)

The term −Φ(uh − u0) in the Taylor expansion (27) is stochastic, has zero expectation,

and is of order
√

h. This term reflects the uncertainty that the period 1 supply shock

introduces into the period 1 risk premium. The effect of the supply shock is measured by

the coefficient Φ. This coefficient is positive, which simply means that the supply shock

increases the risk premium. In addition, Φ increases with s, which means that the more

heavily arbitrageurs are invested in the arbitrage opportunity in period 0, the more they

amplify the effect of the period 1 supply shock on prices. This amplification effect is through

the arbitrageurs’ period 1 wealth, and is similar to effects derived in a number of recent

papers.17

The term Φ̂h is deterministic and of order h. This term is equal to the expected difference

between the risk premia in periods 0 and 1, i.e., the expected capital gain per unit of asset

A. This expected capital gain is determined by the optimality condition of the A-investors,

and reflects the compensation that these investors require for bearing risk.

Lemma 6 For θ ≥ h, we have

xθ − x∗θ = Xθ(uh − u0) + o
(√

h
)

, (30)

where

Xθ =
1

µ(1 + (q − 1)e−rθ)2

[

1− e−rθ + (q − 1)rθe−rθ − sqe−rθ 1− e−rΘ + (q − 1)rΘe−rΘ

(1− s)(1− e−rΘ) + qe−rΘ

]

.

(31)

Moreover, Xθ < 0 for θ ∈ [0, θ(s)) and Xθ > 0 for θ ∈ (θ(s), Θ], where θ(s) is an increasing

function such that θ(0) = 0 and θ(1) = Θ.

The coefficient Xθ measures the effect of the period 1 supply shock on the arbitrageurs’

position xθ. When s ∈ (0, 1), i.e., arbitrageurs invest in period 0 but not up to the financial

constraint, the sign of the effect changes over time. In a first phase, for θ ∈ [h, θ(s)), the

supply shock reduces the arbitrageurs’ position. The intuition is that the supply shock

17For example, papers on the limits of arbitrage (Shleifer and Vishny, 1997; Xiong, 2001), margin require-
ments (Aiyagari and Gertler, 1999; Sodini, 2001), macroeconomic credit cycles (Kiyotaki and Moore, 1998;
Krishnamurthy, 2000; Mian, 2002), and corporate asset fire sales (Shleifer and Vishny, 1992).
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increases the risk premium in period 1, and thus reduces the arbitrageurs’ wealth in that

period. In a second phase, for θ ∈ (θ(s), Θ], however, the supply shock increases the

arbitrageurs’ position. The intuition is that the supply shock increases the profitability of

an arbitrage position established after period 1. This increases the rate at which arbitrageurs

accumulate wealth and, eventually, increases their wealth. When s = 1, i.e., arbitrageurs

invest up to the financial constraint, the reduction in period 1 wealth dominates the increase

in the accumulation rate, and the second phase disappears. By contrast, when s ≤ 0, i.e.,

arbitrageurs either do not invest or short the arbitrage opportunity, the period 1 wealth

does not decrease, and the first phase disappears.

We finally determine the limit of the arbitrageurs’ period 0 position, x0.

Lemma 7 Set

g(s) = Φ̂− Φ2

δ
û2(1− γ(1− s)), (32)

where γ is the coefficient of relative risk aversion of the arbitrageurs’ utility function U at

the point w0e
φ∗
0

δ . Then

s = 1 if g(1) ≥ 0,

g(s) = 0 and s ∈ (−1, 1) if g(−1) > 0 > g(1),

s = −1 if g(−1) ≤ 0.

Arbitrageurs do not invest up to the financial constraint if g(1) < 0. Using the definition

of Φ̂, we can write this equation as

rδ

(

1− 1

q

)

+ Φû2

[

1

2
αφ∗0 +

1

2
αΦu0

(

1− 1

q

)

− Φ

δ

]

< 0. (33)

Eq. (33) is satisfied if û is large, i.e., there is enough uncertainty about the period 1 supply

shock, and α is small, i.e., A- and B-investors are not very risk-averse. There must be

enough uncertainty so that the arbitrageurs’ risk-management motive to invest conserva-

tively is important. Furthermore, A- and B-investors must not very risk-averse, otherwise

the expected capital gain on the arbitrage opportunity would become large, making the

opportunity very attractive to arbitrageurs.

5.3. Welfare

We next turn to the welfare analysis, and consider the derivatives of agents’ expected

utilities with respect to the arbitrageurs’ period 0 position, x0. In the limit when h goes to
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zero, the effect of changing the arbitrageurs’ position in any given period becomes negligible.

Therefore, the derivatives of agents’ expected utilities converge to zero, and their sign for

h close to zero depends on their asymptotic behavior around their limit.

Lemma 8 The derivative of the i-investors’ expected utility with respect to x0 has the form

Ψih + o(h),

and the derivative of the arbitrageurs’ expected utility has the form

Ψh + o(h),

where i = A, B, and Ψi and Ψ are given by Eqs. (46) and (52) in the Appendix.

Lemma 8 implies that for small h, the sign of the derivatives is the same as that of Ψi

and Ψ.

5.3.1. The certainty case

In the certainty case, the financial constraint in period 0 is binding upwards, and thus

the social planner can only reduce the arbitrageurs’ position.

Proposition 4 In the certainty case, Ψi > 0, while Ψ can have either sign.

Proposition 4 implies that reducing the arbitrageurs’ period 0 position makes the i-

investors worse off, and can make the arbitrageurs better or worse off. This means that

in the certainty case, the social planner cannot achieve a Pareto improvement, and the

arbitrageurs’ position is socially optimal.

To explain the intuition, we use Eqs. (20) and (21), which give the derivatives of agents’

expected utilities in the general case. The derivative of the arbitrageurs’ expected utility is

E

[(

2(φ0 − φ1)R1 + 2
d(φ0 − φ1)

dx0

x0R1 + 2
T−1
∑

t=1

d(φt − φt+1)

dx0

xtRt

)

M

]

.

The first term in this equation represents the direct effect of x0. Reducing x0 means

that arbitrageurs invest less aggressively in period 0. Holding prices constant, this reduces

the arbitrageurs’ period 1 wealth. The second term represents the indirect effect of x0

through the capital gain on the arbitrage opportunity between periods 0 and 1. Since

arbitrageurs invest less aggressively in period 0, the capital gain increases, and so does
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the arbitrageurs’ period 1 wealth. Finally, the third term represents the indirect effect of

x0 through the capital gain on the arbitrage opportunity from period 1 on. This effect

is through the arbitrageurs’ period 1 wealth: if, for example, wealth increases, then the

arbitrageurs can invest more aggressively, and the capital gain decreases. Reducing x0 can

make the arbitrageurs better or worse off, simply because it can increase or decrease their

period 1 wealth. It is worth pointing out that the effects of x0 on period 1 wealth are

identical to those of the quantity chosen by a monopoly on the monopoly’s profits.

The derivative of the i-investors’ expected utility is

E

[(

T−1
∑

t=0

d(φt − φt+1)

dx0

yt

)

Mi

]

.

The effects of x0 for the i-investors are indirect, and of opposite signs to the indirect effects

for the arbitrageurs. Intuitively, an increase in the capital gain on the arbitrage opportunity

makes the arbitrageurs better off. It makes, however, the i-investors worse off, since the

price wedge is wider, and thus these investors obtain less liquidity. Reducing x0 increases

the capital gain on the arbitrage opportunity between periods 0 and 1, and can either

decrease or increase the capital gain from period 1 on. The i-investors are worse off because

the decrease in liquidity in period 0 dominates any increase in liquidity from period 1 on.

5.3.2. The uncertainty case

For simplicity, we focus on the case in which the financial constraint in period 0 is slack.

From Eq. (33), this occurs when there is enough uncertainty, and the i-investors are not

very risk-averse.

Proposition 5 In the uncertainty case:

• If Θ is small, then Ψi > 0 and Ψ < 0.

• If Θ is large and s is close to 1, then Ψi < 0 and Ψ < 0.

• If Θ is large and s is close to 0, then Ψ > 0, while Ψi can have either sign.

Proposition 5 implies that the arbitrageurs’ period 0 position is socially optimal when

the calendar time interval is short (i.e., Θ is small). When the calendar time interval is long,

however, the arbitrageurs’ position may involve too much or too little risk. It involves too

much risk when arbitrageurs are almost fully invested in the arbitrage opportunity (i.e., s
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is close to 1), which in turn occurs when there is enough, but not too much, uncertainty. It

may involve too little risk when arbitrageurs are not invested in the arbitrage opportunity

(i.e., s is close to zero).

To explain the intuition, we consider the indirect effects of x0 for the arbitrageurs. Con-

sider first the indirect effect through the capital gain on the arbitrage opportunity between

periods 0 and 1. Reducing x0, and holding prices constant, increases the arbitrageurs’ pe-

riod 1 wealth more in the “bad” state, where the price wedge widens, than in the “good”

state, where it narrows. This means that the arbitrageurs’ ability to invest in period 1, and

to close the price wedge, increases more in the bad state. Therefore, the capital gain on

the arbitrage opportunity between periods 0 and 1 increases more in the bad state, and so

does the arbitrageurs’ period 1 wealth through the indirect effect. The indirect effect is, in

fact, the “flip-side” of the amplification effect of Lemma 5, i.e., if arbitrageurs invest more

aggressively, they amplify the effect of the supply shock on prices.

Consider next the indirect effect through the capital gain on the arbitrage opportunity

from period 1 on. As explained in the previous paragraph, reducing x0 increases the ar-

bitrageurs’ period 1 wealth, and ability to invest, more in the bad state. Therefore, the

capital gain on the arbitrage opportunity from period 1 on decreases more in the bad state,

and so does the rate at which arbitrageurs accumulate wealth from period 1 on.

Suppose now that the calendar time interval is long, and that in period 0 arbitrageurs

are almost fully invested in the arbitrage opportunity. Reducing x0 transfers wealth to

the arbitrageurs in period 1 and in the bad state. (In what follows, we consider transfers

relative to the certainty case.) This transfer, which occurs through the change in the capital

gain between periods 0 and 1, is important, since in period 0 arbitrageurs are almost fully

invested in the arbitrage opportunity. Reducing x0 also transfers wealth away from the

arbitrageurs in periods t > 1 and in the bad state. This transfer, which occurs through the

change in the capital gain from period 1 on, is important when the arbitrageurs’ investment

is higher in the bad than in the good state. This occurs in the later periods, during the

second phase described in Lemma 6.

Overall, wealth is transferred to the arbitrageurs in the early periods and in the bad

state, and away from them in the later periods or in the good state. This redistribution of

wealth has the potential to be (and, in fact, is) Pareto improving, because it is in the early

periods and in the bad state when arbitrageurs value wealth the most.
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Notice that a redistribution both across time and across states is required for achieving

the Pareto improvement. Indeed, when the calendar time interval is short, and the redistri-

bution across time becomes negligible, the arbitrageurs’ position is socially optimal. Social

optimality also holds in the certainty case, where there is no redistribution across states. A

redistribution both across time and across states matters for the i-investors. These investors

are made better off because they obtain liquidity in the later periods, and more so in the

bad state where they value liquidity the most.

Suppose finally that the calendar time interval is long, and that in period 0 arbitrageurs

are not invested in the arbitrage opportunity. Reducing x0 does not imply any transfers in

period 1, since the arbitrageurs’ period 0 investment is zero. Therefore, the only transfers

are in periods t > 1, and are away from the arbitrageurs in the bad state. This redistri-

bution of wealth has the potential to make all agents worse off, since it is in the bad state

where arbitrageurs value wealth the most. Therefore, the reverse redistribution of wealth,

achieved by increasing x0, has the potential to be Pareto improving. In fact, as shown in

the Appendix, it is indeed Pareto improving when the arbitrageurs and the i-investors are

not very risk-averse.

6. Concluding remarks

We propose a multiperiod model in which competitive arbitrageurs exploit discrepancies

between the prices of two identical risky assets traded in segmented markets. Arbitrageurs

need to collateralize separately their positions in each asset, and this implies a financial

constraint limiting positions as a function of wealth. In our model, arbitrage activity benefits

all investors because arbitrageurs supply liquidity to the market. However, arbitrageurs

might fail to take a socially optimal level of risk, in the sense that a change in their positions

can make all investors better off. We characterize conditions under which arbitrageurs take

too much or too little risk.

Besides showing that the market outcome can fail to be allocatively efficient, we clarify

the source of the inefficiency. This is that (i) competitive arbitrageurs fail to internalize that

changing their positions affects prices, and (ii) due to market segmentation and financial

constraints, agents’ marginal rates of substitution differ, and so a redistribution of wealth

induced by a change in prices can be Pareto improving. This source of inefficiency has

already been identified in the literature on general equilibrium with incomplete markets.

Our contribution is to explore the direction of the inefficiency when incompleteness is created
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by market segmentation and financial constraints. We also argue that this particular form of

incompleteness could be fruitful for understanding features of financial markets and policy

debates regarding these markets.

An example is the debate on systemic risk, i.e., on whether a worsening of the financial

condition of some market participants can propagate into the financial system with harmful

effects. Our model captures features of systemic risk, since a reduction in arbitrageurs’

wealth can be detrimental not only to other arbitrageurs but also to other investors. In

addition, our model lends theoretical support to the notion that market participants could

fail to take an appropriate level of risk ex ante, an important argument in the systemic risk

debate.

A second debate concerns the regulation of financial institutions. Much of this regulation

(e.g., capital requirements) aims at controlling problems arising from the possibility of

default. Our model rules out default since margin accounts need to be fully collateralized.

That inefficiencies can still arise suggests that there might be a motive for regulation even

without reference to default. Regulations could be aimed at alleviating the distortions on

arbitrageurs’ investments induced by frictions in their access to capital.

While our model suggests a motive for regulations, it is too stylized for discussing their

implementation or effectiveness. For example, it is not explicit about what regulators can

do or know, relative to the agents in the economy in particular. Therefore, our discussion

of policy implications should be interpreted as speculative and preliminary. Nevertheless,

we find these questions interesting and intend to address them more thoroughly in future

research.

One channel of regulatory intervention is to affect arbitrageurs’ financial constraints.

Regulators might have some control over these constraints by altering, for example, arbi-

trageurs’ capital or margin requirements, or by influencing their financiers (e.g., regulating

investment banks’ lending to hedge funds). Such issues were raised in the wake of 1998

crisis (Edwards, 1999). Our results suggest that a regulator with only limited control over

financial constraints might prefer to tighten the constraints in some cases, since this may

reduce overinvestment.

In our model, inefficiency also arises from the lack of entry into the arbitrage industry.

While a full welfare discussion of entry is delicate, some insight can be gained by examining

A- and B-investors’ welfare. Sufficient entry would remove segmentation, and maximize A-

and B-investors’ welfare. Short of this level, however, entry might exacerbate arbitrageurs’
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overinvestment and be detrimental to A- and B-investors. Therefore, policies limiting entry

can have benefits. Incidentally, while limiting entry might also reduce competition among

arbitrageurs, this could come with benefits. Indeed, in our model, the arbitrageurs’ over-

investment is linked to their price-taking behavior, a problem that would be reduced by

monopolization (or cooperation among arbitrageurs). One can therefore conceive of A- and

B-investors being better off with a less than perfectly competitive arbitrage industry.

Contagion phenomena can arise naturally in our framework. Suppose that arbitrageurs

can take several unrelated arbitrage positions. An adverse shock to one position would

trigger the liquidation of some of the other positions, creating a price linkage between

otherwise unrelated assets (see, for example, Krishnamurthy, 2000; Kyle and Xiong, 2001).

Our framework could be used to analyze the implications of contagion for welfare and policy.

For example, the equilibrium level of liquidation itself could be inefficient (see Gromb and

Vayanos, 2000).
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APPENDIX

Proof to Lemma 1: To show that f is positive, we use Jensen’s inequality:

exp(αf(y)) = E exp(−αyδ) > exp [E(−αyδ)] = exp [−αyE(δ)] = 1.

(Jensen’s inequality is strict since δt is stochastic.)

To show that f is strictly convex, we compute its second derivative. We have

f(y) =
1

α
log [E exp(−αyδ)] .

Therefore,

f ′(y) = −E (δ exp(−αyδ))

E exp(−αyδ)
, (34)

and

f ′′(y) = α
E
(

δ2 exp(−αyδ)
)

E exp(−αyδ)− [E (δ exp(−αyδ))]2

[E exp(−αyδ)]2
.

That f ′′(y) > 0 follows from the Cauchy-Schwarz inequality

E(gh)2 ≤ E(g2)E(h2),

for the functions g = δ exp(−αyδ/2) and h = exp(−αyδ/2). (The Cauchy-Schwarz inequal-

ity is strict since δt is stochastic, and thus g and h are not proportional.)

To show that f(y) = f(−y), we use the symmetry of the probability distribution of δ

around zero:

exp(αf(y)) = E exp(−αyδ) = E exp(αyδ) = exp(αf(−y)).

Finally, to show that limy→∞ f ′(y) = δ, we note that

|f ′(y)− δ| =
∣

∣

∣

∣

−E [δ exp(−αyδ)]

E exp(−αyδ)
− δ

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

E
[

(δ + δ) exp(−αyδ)
]

E exp(−αyδ)

∣

∣

∣

∣

∣

∣

.

To show that the last term goes to zero when y goes to ∞, we fix ε > 0. We have

∣

∣

∣

∣

∣

∣

E
[

(δ + δ) exp(−αyδ)1
δ≤−δ+ε

]

E exp(−αyδ)

∣

∣

∣

∣

∣

∣

≤ ε

∣

∣

∣

∣

∣

∣

E
[

exp(−αyδ)1
δ≤−δ+ε

]

E exp(−αyδ)

∣

∣

∣

∣

∣

∣

≤ ε.

Moreover, for y large enough,

∣

∣

∣

∣

∣

∣

E
[

(δ + δ) exp(−αyδ)1
δ>−δ+ε

]

E exp(−αyδ)

∣

∣

∣

∣

∣

∣
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becomes smaller than ε. Q.E.D.

Proof to Proposition 1: Suppose first that w0 ≥ w0. We will show that the only equilib-

rium can be φt = 0 and µxt = u0. We proceed by induction. The induction hypothesis, Ht,

is that for all s ≤ t, we have φs − φs+1 = 0 and µxs = u0. We assume Ht−1, and will show

Ht. (To start the induction, we note that H−1 obviously holds.) If φt − φt+1 > 0, then the

financial constraint is binding upwards, i.e.,

xt =
wt

2
(

δ − (φt − φt+1)
) . (35)

In that case, however,

u0 − µxt < u0 − µ
wt

2δ
= u0 − µ

w0

2δ
< 0,

and thus

φt − φt+1 = f ′(u0 − µxt) < 0,

a contradiction. (Since f(y) = f(−y), we have f ′(0) = 0. Moreover, since f is strictly

convex, we have f ′(y) > 0 for y > 0, and f ′(y) < 0 for y < 0.) If φt − φt+1 < 0, then the

financial constraint is binding downwards. In that case, however,

u0 − µxt > u0 > 0,

and thus

φt − φt+1 = f ′(u0 − µxt) > 0,

a contradiction. Therefore, we must have φt − φt+1 = 0. Since

f ′(u0 − µxt) = φt − φt+1 = 0,

we must also have µxt = u0. Therefore, Ht holds, and thus the only equilibrium can be

φt = 0 and µxt = u0. It is easy to check that this is indeed an equilibrium.

Suppose next that w0 < w0. We first show that for xt ≥ 0, the difference equation given

by (7) and (8) has a unique solution, and this solution satisfies µxt < u0. We proceed by

induction. The induction hypothesis, Ht, is that the above is true for all s ≤ t. We assume

Ht−1, and will show Ht. Suppose first that t = 0. The LHS of Eq. (7) is equal to zero for

x0 = 0, and to u0/µ > w0/2δ for x0 = u0/µ. Moreover, the derivative of the LHS is

1− f ′(u0 − µx0)

δ
+ µx0

f ′′(u0 − µx0)

δ
,
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and is positive for x0 ≥ 0, since f ′(y) < δ and f ′′(y) > 0. (These properties follow from

the strict convexity of f , and from limy→∞ f ′(y) = δ.) Therefore, for x0 ≥ 0, Eq. (7) has

a unique solution, and this solution satisfies µx0 < u0. Therefore, H0 holds. For t > 0, we

use Eq. (8) and proceed as above.

We next show that the only equilibrium is the one given by Eqs. (7), (8), and (9). We

proceed by induction. The induction hypothesis, Ht, is that for all s ≤ t, xs and φs − φs+1

are given by Eqs. (7), (8), and (9), and moreover ws+1 = 2xsδ. We assume Ht−1, and will

show Ht. If φt−φt+1 = 0, then the financial constraint is xt ≤ wt/2δ. In that case, however,

u0 − µxt ≥ u0 − µ
wt

2δ
= u0 − µxt−1 > 0,

and thus

φt − φt+1 = f ′(u0 − µxt) > 0,

a contradiction. If φt−φt+1 < 0, we get a contradiction as in the case w0 ≥ w0. Therefore,

we must have φt−φt+1 > 0. The financial constraint is thus binding upwards, i.e., Eq. (35)

holds. We can write this equation as

wt = 2xtδ − 2xt(φt − φt+1). (36)

Combining Eq. (36) with Eq. (9), we get Eq. (7) for t = 0, and Eq. (8) for t > 0. Moreover,

Eq. (36) implies that

wt+1 = wt + 2xt(φt − φt+1) = 2xtδ.

Therefore, Ht holds, and the only equilibrium is the one given by Eqs. (7), (8), and (9). It

is easy to check that this is indeed an equilibrium. Q.E.D.

Proof to Lemma 2: Consider first the no-trade allocation. All investors are worse off

than under the equilibrium allocation because, when faced with the equilibrium prices, they

can always choose not to trade.

Consider next the no-constraint allocation. Since φt = 0 for all t, the arbitrageurs do not

realize any capital gains. Therefore, they are equally well off as under the no-trade alloca-

tion, and worse off than under the equilibrium allocation. Note that the arbitrageurs’ period

T wealth under the no-constraint allocation is w0, and under the equilibrium allocation is

w0 + 2
T−1
∑

t=0

xt(φt − φt+1) ≡ w0 + C.
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Since the arbitrageurs are better off under the equilibrium allocation, we must have E(C) ≥
0. The i-investors’ period T wealth under the equilibrium allocation is

wi,0 +
T−1
∑

t=0

yt(φt − φt+1) + (y0 + u0)δ1 +
T−1
∑

t=1

(yt + u1)δt

= wi,0 −
µ

2
C + (y0 + u0)δ1 +

T−1
∑

t=1

(yt + u1)δt.

The expected utility of receiving this wealth is smaller than that of receiving

wi,0 −
µ

2
C,

since δt is a mean-preserving spread. Moreover, the expected utility of receiving the latter

wealth is smaller than that of receiving wi,0, the wealth under the no-constraint allocation,

since E(C) ≥ 0. Q.E.D.

Proof to Proposition 2: Eq. (20) follows by differentiating Eq. (12) with respect to x0,

and ignoring the terms in dyt/dx0 since yt are unconstrained optima.

We next differentiate Eq. (15) with respect to x0, and get

E

[(

2(φ0 − φ1)R1 + 2
d(φ0 − φ1)

dx0

x0R1 + (w0 + 2x0(φ0 − φ1))
dR1

dx0

)

M

]

.

Eq. (21) will follow if we show that

(w0 + 2x0(φ0 − φ1))
dR1

dx0

= 2
T−1
∑

t=1

d(φt − φt+1)

dx0

xtRt. (37)

Eq. (10) implies that

dR1

dx0

=
d

dx0





T−1
∏

t=1

1

1− φt−φt+1

δ



 =
T−1
∑

t=1



R1

1

1− φt−φt+1

δ

d(φt − φt+1)

dx0

1

δ



 . (38)

Since the solution of the certainty case always applies for t ≥ 1, we can use Eq. (7) for

t = 1. Combining this equation with Eq. (8), we get

xt =
w1

2δ

t
∏

s=1

1

1− φs−φs+1

δ

. (39)

Eqs. (38) and (39) imply that

(w0 + 2x0(φ0 − φ1))
dR1

dx0

= w1

dR1

dx0

= 2
T−1
∑

t=1



xt
d(φt − φt+1)

dx0

T−1
∏

s=t

1

1− φs−φs+1

δ



 .

Combining this equation with Eq. (10), we get Eq. (37). Q.E.D.
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Proof to Proposition 3: The Proposition is a simple corollary of Proposition 5 (see proof

below). Q.E.D.

Proof to Lemma 3: Using Eq. (34), and the probability distribution of δt, we have

f ′(y) =
haδ sinh(αyδ) +

(

1

2
− ha

)

δ̂
√

h sinh(αyδ̂
√

h)

ha cosh(αyδ) +
(

1

2
− ha

)

cosh(αyδ̂
√

h)
,

where “sinh” and “cosh” denote hyperbolic sine and cosine, respectively. The Lemma

follows by noting that

lim
h→0

[

ha cosh(αyδ) +

(

1

2
− ha

)

cosh(αyδ̂
√

h)

]

=
1

2
,

lim
h→0

haδ sinh(αyδ)

h
= 0,

(since a > 1), and

lim
h→0

(

1

2
− ha

)

δ̂
√

h sinh(αyδ̂
√

h)

h
=

1

2
αδ̂2y.

Q.E.D.

Proof to Lemma 4: To prove the Lemma, we need to show that the functions (25) and

(26) solve the differential equations (23) and (24), with the initial conditions x0 = w0

2δ
and

φΘ = 0. This follows from simple algebra. Q.E.D.

Proof to Lemma 5: We assume that the Taylor expansion of φ0 − φh has the form given

by Eq. (27), and we determine Φ and Φ̂. To determine Φ, we consider the Taylor expansions

of φ0 and φh, separately, up to order
√

h. For φ0, the term of order 0 is φ∗0, and the term

of order
√

h is zero since it corresponds to the realization of the period 1 supply shock. For

φh, the term of order 0 is also φ∗0. The term of order
√

h is the same as that obtained by

evaluating

φ∗0 = δ log
q

1 + (q − 1)e−rΘ

at uh instead of u0 and

wh = w0 + 2x0(φ0 − φh) = w0 − 2x̃∗0Φ(uh − u0) + o
(√

h
)

instead of w0. (The discrepancy between φh, and φ∗0 evaluated at uh and wh, is of order h.)

It thus is
∂φ∗0
∂u0

(uh − u0) +
∂φ∗0
∂w0

[−2x̃∗0Φ(uh − u0)].
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The term of order
√

h in the Taylor expansion of φ0−φh has to equal the difference between

the corresponding terms for φ0 and φh. Therefore,

−Φ = −
[

∂φ∗0
∂u0

+
∂φ∗0
∂w0

(−2x̃∗0Φ)

]

⇒ Φ =

∂φ∗
0

∂u0

1 + 2x̃∗0
∂φ∗

0

∂w0

. (40)

We have

∂φ∗0
∂u0

= δ

[

∂q

∂u0

(

1

q
− e−rΘ

1 + (q − 1)e−rΘ

)

+
∂r

∂u0

(q − 1)Θe−rΘ

1 + (q − 1)e−rΘ

]

= δ

[

q

u0

(

1

q
− e−rΘ

1 + (q − 1)e−rΘ

)

+
r

u0

(q − 1)Θe−rΘ

1 + (q − 1)e−rΘ

]

=
δ

u0

1− e−rΘ + (q − 1)rΘe−rΘ

1 + (q − 1)e−rΘ
,

and

∂φ∗0
∂w0

= δ
∂q

∂w0

(

1

q
− e−rΘ

1 + (q − 1)e−rΘ

)

= −δ
q

w0

(

1

q
− e−rΘ

1 + (q − 1)e−rΘ

)

= − δ

w0

1− e−rΘ

1 + (q − 1)e−rΘ
.

Plugging in Eq. (40), and using the definition of s, we get Eq. (28).

To determine Φ̂, we use the optimality condition (13) of the i-investors. We first deter-

mine the Taylor expansion of the marginal utility of wealth, Mi, up to order
√

h. Recall

that

Mi = α exp [−α (wi,0 + k)] ,

where

k ≡
T−1
∑

t=0

yt(φt − φt+1)− f(y0 + u0)−
T−1
∑

t=1

f(yt + u1).

Therefore, if the Taylor expansion of k is

k = k∗ + K(uh − u0) + o
(√

h
)

,

then the Taylor expansion of Mi is

Mi = α exp [−α (wi,0 + k∗)] [1− αK(uh − u0)] + o
(√

h
)

. (41)

To determine k∗, we note that it is equal to the limit of

k1 ≡
T−1
∑

t=1

yt(φt − φt+1)−
T−1
∑

t=1

f(yt + u1)
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when h goes to zero. Using Lemmas 3 and 4, and Eqs. (23) and (24), we get

k∗ =

∫ Θ

0

(−µx∗θ)

(

−dφ∗θ
dθ

)

dθ −
∫ Θ

0

1

2
αδ̂2(u0 − µx∗θ)

2dθ

= −
∫ Θ

0

1

2
αδ̂2(u0 − µx∗θ)(u0 + µx∗θ)dθ

=

∫ Θ

0

1

2

(

u0

dφ∗θ
dθ

− µδ
dx∗θ
dθ

)

dθ

= −1

2
u0φ

∗
0 −

1

2
µδ(x∗Θ − x∗0)

= −1

2
u0φ

∗
0 −

µw0

4

(

e
φ∗
0

δ − 1

)

. (42)

To determine K, we note that the term of order
√

h in

y0(φ0 − φ1)− f(y0 + u0)

is

(−µx̃∗0)(−Φ)(uh − u0).

Moreover, the term of order
√

h in k1 is the same as that obtained by evaluating Eq. (42)

at uh instead of u0, wh instead of w0, and

φh = φ∗0 + Φ(uh − u0) + o
(√

h
)

instead of φ∗0. It thus is

∂k∗

∂u0

(uh − u0) +
∂k∗

∂w0

[−2x̃∗0Φ(uh − u0)] +
∂k∗

∂φ∗0
Φ(uh − u0).

Therefore,

K = µx̃∗0Φ +
∂k∗

∂u0

− 2x̃∗0Φ
∂k∗

∂w0

+ Φ
∂k∗

∂φ∗0
.

Plugging in this equation the partial derivatives of k∗, and using the definition of s, we get

K = −1

2

[

φ∗0 + Φu0

(

(

1− s

q

)

+ e
φ∗
0

δ
1

q
(1− s)

)]

.

Consider now the optimality condition (13) of the A-investors. We can write this equation,

in order h, as

E
[(

−Φ(uh − u0) + Φ̂h− αδ̂2(u0 − µx̃∗0)h
)

(1− αK(uh − u0))
]

= 0.

Solving for Φ̂, we get

Φ̂ = rδ

(

1− s

q

)

− αΦKû2, (43)
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i.e., Eq. (29). Q.E.D.

Proof to Lemma 6: Proceeding as in the proof of Lemma 5, the term of order
√

h in xθ

is
∂x∗θ
∂u0

(uh − u0) +
∂x∗θ
∂w0

[−2x̃∗0Φ(uh − u0)].

Therefore,

Xθ =
∂x∗θ
∂u0

− 2x̃∗0Φ
∂x∗θ
∂w0

. (44)

We have

∂x∗θ
∂u0

=
∂

∂u0

[

1

µ

u0

1 + (q − 1)e−rθ

]

=
1

µ

[

1

1 + (q − 1)e−rθ
− ∂q

∂u0

u0e
−rθ

(1 + (q − 1)e−rθ)2
+

∂r

∂u0

u0(q − 1)rθe−rθ

(1 + (q − 1)e−rθ)2

]

=
1

µ(1 + (q − 1)e−rθ)2

[

1− e−rθ + (q − 1)rθe−rθ
]

and

∂x∗θ
∂w0

=
∂

∂w0

[

1

µ

u0

1 + (q − 1)e−rθ

]

= − 1

µ

∂q

∂w0

u0e
−rθ

(1 + (q − 1)e−rθ)2

=
1

µ(1 + (q − 1)e−rθ)2
qe−rθu0

w0

. (45)

Plugging in Eq. (44), and using the definitions of s and Φ, we get Eq. (31).

The sign of Xθ is the same as that of the function

F (θ) ≡ erθ − 1 + (q − 1)rθ − sq
1− e−rΘ + (q − 1)rΘe−rΘ

(1− s)(1− e−rΘ) + qe−rΘ
.

This function is strictly increasing, and its value for θ = Θ is

F (Θ) = (1− e−rΘ + (q − 1)rΘe−rΘ)erΘ(1− s)(1 + (q − 1)e−rΘ).

Suppose now s ≤ 0. Then F (0) ≥ 0, and thus F (θ) > 0 for θ ∈ (0, Θ]. Suppose next

s ∈ (0, 1). Then F (0) < 0 and F (1) > 0. Therefore, F (θ) < 0 for θ ∈ [0, θ(s)) and F (θ) > 0

for θ ∈ (θ(s), Θ]. Moreover, since F (θ) decreases in s, θ(s) increases in s. Suppose finally

s = 1. Then F (1) = 0, and thus F (θ) < 0 for θ ∈ [0, Θ). Q.E.D.

Proof to Lemma 7: We first determine the Taylor expansion of the return, R1, on period

1 wealth, up to order
√

h. Recall that

R1 =
T−1
∏

t=1

1

1− φt−φt+1

δ

⇒ log(R1) = −
T−1
∑

t=1

log

(

1− φt − φt+1

δ

)

.
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The limit of log(R1) when h goes to zero is

−
∫ T

0

(

dφ∗θ
dθ

)

1

δ
dθ =

φ∗0
δ

.

Therefore, the term of order 0 in the Taylor expansion of R1 is e
φ∗
0

δ , and the term of order
√

h is

∂[e
φ∗
0

δ ]

∂φ∗0
Φ(uh − u0) = e

φ∗
0

δ
Φ

δ
(uh − u0).

We next determine the Taylor expansion of the marginal utility of wealth, M , up to

order
√

h. Recall that

M = U ′(wT ) = U ′(whRh),

(where we now denote R1 by Rh, using calendar time). Therefore, the term of order 0 is

U ′(w0e
φ∗
0

δ ), and the term of order
√

h is

∂[U ′(w0e
φ∗
0

δ )]

∂w0

[−2x̃∗0Φ(uh − u0)] +
∂[U ′(w0e

φ∗
0

δ )]

∂φ∗0
Φ(uh − u0)

= U ′′(w0e
φ∗
0

δ )w0e
φ∗
0

δ
Φ

δ
(1− s)(uh − u0)

= −U ′(w0e
φ∗
0

δ )γ
Φ

δ
(1− s)(uh − u0).

Consider now the derivative of the arbitrageurs’ expected utility, E[2(φ0 − φh)RhM ].

The sign of this derivative, in order h, is the same as that of

E

[

(

−Φ(uh − u0) + Φ̂h
)

(

1 +
Φ

δ
(uh − u0)

)(

1− γ
Φ

δ
(1− s)(uh − u0)

)]

=

[

Φ̂− Φ2

δ
û2(1− γ(1− s))

]

h,

i.e., that of g(s). The Lemma then follows from the arbitrageurs’ optimality conditions

(17)-(19). Q.E.D.

Proof to Lemma 8: Consider first the i-investors, and suppose that the Taylor expansion

of

`0 ≡
T−1
∑

t=0

d(φt − φt+1)

dx0

yt,

up to order h, is

L0(uh − u0) + L̂0h + o(h).

Then, combining this Taylor expansion with that of Mi, i.e., Eq. (41), we conclude that the

derivative of the i-investors’ expected utility has the form given in this Lemma, with

Ψi = α exp [−α (wi,0 + k∗)]
[

L̂0 − L0αKû2
]

. (46)
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To determine Ψi, we thus need to determine L0 and L̂0. The Taylor expansion of

d(φ0 − φ1)

dx0

y0

follows from Lemma 5, and is

ds

dx̃∗0

[

−dΦ

ds
(uh − u0) +

dΦ̂

ds
h + o(h)

]

(−µx̃∗0)

= µs
dΦ

ds
(uh − u0)− µs

dΦ̂

ds
h + o(h). (47)

To determine the Taylor expansion of

`1 ≡
T−1
∑

t=1

d(φt − φt+1)

dx0

yt,

we note that the effect of x0 on the equilibrium from period 1 on is through the arbitrageurs’

period 1 wealth. Therefore,

`1 =

[

T−1
∑

t=1

d(φt − φt+1)

dw1

yt

]

dw1

dx0

.

The Taylor expansion of

dw1

dx0

=
d

dx0

(w0 + 2x0(φ0 − φ1)) = 2(φ0 − φ1) + 2x0

d(φ0 − φ1)

dx0

follows from Lemma 5, and is

−2

(

Φ + s
dΦ

ds

)

(uh − u0) + 2

(

Φ̂ + s
dΦ̂

ds

)

h + o(h). (48)

The Taylor expansion of `1 will follow once we determine that of

`w ≡
T−1
∑

t=1

d(φt − φt+1)

dw1

yt,

up to order
√

h. We denote the latter Taylor expansion by

`∗w + Lw(uh − u0) + o
(√

h
)

. (49)

To determine `∗w, the limit of `w when h goes to zero, we first use Eq. (24), and get

`∗w =

∫ Θ

0

∂

∂w0

(

−dφ∗θ
dθ

)

(−µx∗θ)dθ

=

∫ Θ

0

∂

∂w0

(

αδ̂2(u0 − µx∗θ)
)

(−µx∗θ)dθ

= µ2αδ̂2

∫ Θ

0

∂x∗θ
∂w0

x∗θdθ.
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We next note that Eqs. (25) and (45) imply that

∂x∗θ
∂w0

=
q

w0r(q − 1)

dx∗θ
dθ

.

Therefore,

`∗w = µ2αδ̂2 q

w0r(q − 1)

1

2

(

(x∗Θ)2 − (x∗0)
2
)

=
µ

4

(1− e−rΘ)(q + 1 + (q − 1)e−rΘ)

(1 + (q − 1)e−rΘ)2
.

To determine Lw, we note that

Lw =
∂`∗w
∂u0

− 2x̃∗0Φ
∂`∗w
∂w0

.

Plugging into this equation the partial derivatives of `∗w, and using the definition of s, we

get

Lw =
µ

4

1

(1 + (q − 1)e−rΘ)3
q

u0

×
[

2rΘqe−rΘ +

(

1 + sΦ
u0

δ

)

(

1− e−rΘ
) (

1− (q + 2)e−rΘ − (q − 1)e−2rΘ
)

]

.

Combining the Taylor expansions (47)-(49), we finally get

L0 = µs
dΦ

ds
− 2

(

Φ + s
dΦ

ds

)

`∗w (50)

and

L̂0 = −µs
dΦ̂

ds
+ 2

(

Φ̂ + s
dΦ̂

ds

)

`∗w − 2

(

Φ + s
dΦ

ds

)

Lwû2. (51)

Consider next the arbitrageurs, and suppose that the Taylor expansion of

n0 ≡ 2(φ0 − φ1) + 2
d(φ0 − φ1)

dx0

x0 + 2
T−1
∑

t=1

d(φt − φt+1)

dx0

xt
Rt

R1

=

[

2(φ0 − φ1) + 2
d(φ0 − φ1)

dx0

x0

]

[

1 + 2
T−1
∑

t=1

d(φt − φt+1)

dw1

xt
Rt

R1

]

,

up to order h, is

N0(uh − u0) + N̂0h + o(h).

Then, combining this Taylor expansion with those of Rh and M , given in the proof of

Lemma 7, we conclude that the derivative of the arbitrageurs’ expected utility has the form

given in this Lemma, with

Ψ = U ′(w0e
φ∗
0

δ )e
φ∗
0

δ

[

N̂0 + N0

Φ

δ
û2(1− γ(1− s))

]

. (52)

44



To determine Ψ, we thus need to determine N0 and N̂0. These will follow once we determine

the Taylor expansion of

nw ≡ 2
T−1
∑

t=1

d(φt − φt+1)

dw1

xt
Rt

R1

,

up to order
√

h. We denote this Taylor expansion by

n∗w + Nw(uh − u0) + o
(√

h
)

. (53)

Since

log

(

Rt

R1

)

=
t−1
∑

s=1

log

(

1− φs − φs+1

δ

)

,

the limit of log(Rt/R1) when h goes to 0 (fixing a calendar time θ) is

∫ θ

0

(

dφ∗θ
dθ

)

=
φ∗θ − φ∗0

δ
.

Therefore,

n∗w = 2

∫ Θ

0

∂

∂w0

(

−dφ∗θ
dθ

)

x∗θe
φ∗

θ
−φ∗

0

δ dθ.

Proceeding as in the derivation of `∗w, we have

∂

∂w0

(

−dφ∗θ
dθ

)

= −µαδ̂2 ∂x∗θ
∂w0

= −µαδ̂2 q

w0r(q − 1)

dx∗θ
dθ

.

Moreover, Eqs. (25) and (26) imply that

x∗θe
φ∗

θ
−φ∗

0

δ =
w0

2δ
.

Therefore,

n∗w = −µαδ̂2 q

w0r(q − 1)

w0

2δ
(x∗Θ − x∗0) = − 1− e−rΘ

1 + (q − 1)e−rΘ
.

To determine Nw, we note that

Nw =
∂n∗w
∂u0

− 2x̃∗0Φ
∂n∗w
∂w0

.

Plugging into this equation the partial derivatives of n∗w, and using the definition of s, we

get

Nw = − e−rΘ

(1 + (q − 1)e−rΘ)2
q

u0

[

rΘ−
(

1 + sΦ
u0

δ

)

(

1− e−rΘ
)

]

.

Combining the Taylor expansions (48) and (53), we finally get

N0 = −2

(

Φ + s
dΦ

ds

)

(1 + n∗w) (54)

and

N̂0 = 2

(

Φ̂ + s
dΦ̂

ds

)

(1 + n∗w)− 2

(

Φ + s
dΦ

ds

)

Nwû2. (55)
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Q.E.D.

Proof to Proposition 4: The sign of Ψi is the same as that of L̂0 − L0αKû2. Eqs. (43)

and (51) imply that

L̂0 = rδ

[

µs
1

q
+ 2

(

1− 2s

q

)

`∗w

]

+α

[

µs
d(ΦK)

ds
− 2

(

ΦK + s
d(ΦK)

ds

)

`∗w

]

û2 − 2

(

Φ + s
dΦ

ds

)

Lwû2.

Eq. (50) implies that

L0αKû2 = α

[

µs
dΦ

ds
− 2

(

Φ + s
dΦ

ds

)

`∗w

]

Kû2.

Therefore,

L̂0−L0αKû2 = rδ

[

µs
1

q
+ 2

(

1− 2s

q

)

`∗w

]

+αs(µ−2`∗w)Φ
dK

ds
û2−2

(

Φ + s
dΦ

ds

)

Lwû2. (56)

In the certainty case, we have û = 0 and s = 1. Therefore,

L̂0 − L0αKû2 = rδ

[

µ
1

q
+ 2

(

1− 2

q

)

`∗w

]

.

Plugging in for `∗w, we find that this is equal to

µrδ
(q − 1) + 2e−rΘ + (q − 1)e−2rΘ

2(1 + (q − 1)e−rΘ)2
> 0.

The sign of Ψ is the same as that of N̂0 + N0(Φ/δ)û2(1− γ(1− s)). Eqs. (43), (54), and

(55), imply that

N̂0 + N0

Φ

δ
û2(1− γ(1− s)) = 2rδ

(

1− 2s

q

)

(1 + n∗w)

−2

(

Φ + s
dΦ

ds

)

(1 + n∗w)

[

αK +
Φ

δ
(1− γ(1− s))

]

û2

−2αsΦ
dK

ds
(1 + n∗w)û2 − 2

(

Φ + s
dΦ

ds

)

Nwû2. (57)

In the certainty case, we have

N̂0 + N0

Φ

δ
û2(1− γ(1− s)) = 2rδ

(

1− 2

q

)

(1 + n∗w) = 2rδ

(

1− 2

q

)

qe−rΘ

1 + (q − 1)e−rΘ
.

This is positive if q > 2, and negative if q < 2. Q.E.D.

Proof to Proposition 5: The sign of Ψi is the same as that of

L ≡ L̂0 − L0αKû2

Φû2
.
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Since the financial constraint is slack, we have g(s) = 0. Using Eqs. (32) and (43), we can

write the equation g(s) = 0 as

rδ

(

1− s

q

)

= Φû2

[

αK +
Φ

δ
(1− γ(1− s))

]

. (58)

Eq. (28) implies that

Φ + s
dΦ

ds
= Φ

1 + (q − 1)e−rΘ

(1− s)(1− e−rΘ) + qe−rΘ
. (59)

Combining Eqs. (56), (58), and (59), we get

L =
µs1

q
+ 2

(

1− 2s
q

)

`∗w

1− s
q

[

αK +
Φ

δ
(1− γ(1− s))

]

+αs(µ− 2`∗w)
dK

ds
− 2

1 + (q − 1)e−rΘ

(1− s)(1− e−rΘ) + qe−rΘ
Lw. (60)

The sign of Ψ is the same as that of

N ≡ N̂0 + N0(Φ/δ)û2(1− γ(1− s))

Φû2
.

Combining Eqs. (57), (58), and (59), we get

N = 2

[

1− 2s
q

1− s
q

− 1 + (q − 1)e−rΘ

(1− s)(1− e−rΘ) + qe−rΘ

]

(1 + n∗w)

[

αK +
Φ

δ
(1− γ(1− s))

]

−2αs
dK

ds
(1 + n∗w)− 2

1 + (q − 1)e−rΘ

(1− s)(1− e−rΘ) + qe−rΘ
Nw. (61)

In the rest of the proof, we will focus on the sign of L and N .

Case 1: Θ small. When Θ is close to 0, we have the following asymptotic behavior:

φ∗0 = δ
q − 1

q
rΘ + o(Θ), Φ =

δ

u0

rΘ + o(Θ), K = −δ

(

1− s

q

)

rΘ + o(Θ),

dK

ds
= δ

1

q
rΘ + o(Θ), `∗w =

µ

2

1

q
rΘ + o(Θ), Lw = o(Θ),

n∗w = −1

q
rΘ + o(Θ), and Nw = o(Θ).

Plugging into Eqs. (60) and (61), we get

L =
µs1

q

1− s
q

1

u0

(1− γ(1− s))rΘ + o(Θ),

and

N = −
2s1

q

1− s
q

1

u0

(1− γ(1− s))rΘ + o(Θ).
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Therefore, for small Θ, we have L > 0 and N < 0.

Case 2: Θ large and s close to 1. When Θ goes to ∞, we have the following limits:

φ0 = δ log(q), Φ =
δ

u0

1

1− s
, K = −1

2
δ

[

log(q) + 1 +
1− s

q

1− s

]

,

dK

ds
= −1

2
δ
q − 1

q

1

(1− s)2
, `∗w =

µ

4
(q + 1), and Lw =

µ

4

q

u0

1

1− s
.

Moreover, we have the following asymptotic behavior:

1 + n∗w = qe−rΘ(1 + o(1)) and Nw = −qe−rΘ

u0

[

rΘ− 1

1− s
+ o(1)

]

.

Plugging into Eqs. (60) and (61), we find that for s close to 1,

L =
1

(1− s)2
µ

2

q

u0

[

1

2
αδu0

(q − 1)2

q2
− 1

]

+ o

[

1

(1− s)2

]

and

N =
2

(1− s)2
qe−rΘ

u0

[

αδu0

q − 1

q
− 2 + rΘ(1− s) + o(1)

]

+ o

[

1

(1− s)2

]

.

Since the financial constraint is slack, the term in brackets in Eq. (33) is negative. For s

close to 1, this term is
1

1− s

1

u0

[

1

2
αδu0

q − 1

q
− 1

]

.

Therefore, for s close to 1, we have L < 0 and N < 0.

Case 3: Θ large and s close to 0. Plugging into Eq. (60), we find that for s = 0,

L =
µ

2

1

u0

[

1− (q + 1)

(

γ +
1

2
αδu0(log(q) + 2)

)]

.

This can be positive (for example, when α and γ are close to 0) or negative (for example,

when γ = 1). Plugging into Eq. (61), we find that for s = 0,

N =
2qe−rΘ

u0

(rΘ− 1 + o(1)).

Therefore, for s close to 0, we have N > 0, while L can have either sign. Q.E.D.
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