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1. Introduction

In the fight against climate change, the role of large institutional investors is widely debated. As

these investors hold diversified portfolios, they own shares of firms with high greenhouse gas (GHG)

emissions and thus contribute to global warming by financing polluting activities. A number of

private-sector initiatives have sought to promote net zero investment in recent years.1 Central

banks, through the Network for Greening the Financial System (NGFS), have also been reflecting

on greening their investment portfolios. Two broad approaches promoting green investment prevail.

Investors can divest from brown firms, or can influence the transition of brown firms to greener

operations by using their financial stakes to engage with firms’ management.

A key question that drives investors’ consideration of divestment versus engagement is whether

divestment raises the cost of capital of brown firms and thereby influences their future business

development. The impact of divestment on firms’ cost of capital is the subject of a growing theoret-

ical literature, starting with Heinkel, Kraus, and Zechner (2001). Papers in that literature assume

that green investors underweight brown firms, or exclude them from their portfolios altogether,

and overweight green firms. Taking the other side of green investors’ positions are investors with

purely financial objectives. The impact of divestment on stock prices depends on the relative size

of the two types of investors and on the aggregate size and return characteristics of brown firms. A

calibration by Berk and Van Binsbergen (2025) suggests that the effects of divestment on the cost

of capital are tiny, less than one basis point.

In this paper we study the impact of divestment on firms’ cost of capital in a model that

departs from previous literature in three important respects. First, we assume that not all non-

green investors trade actively against green investors. This is because a significant fraction of

non-green investors are passive funds, who track broad market indexes and hence do not buy the

brown stocks that green investors sell. Because of the passive investors, stock demand is significantly

less price-elastic than when all non-green investors are active, and the impact of green investors on

firms’ cost of capital is larger than in Berk and Van Binsbergen (2025) by an order of magnitude.

1These initiatives include the Net Zero Asset Managers (NZAM) Initiative, the Net Zero Asset Owner (NZAO)
Alliance, the Glasgow Financial Alliance for Net Zero (GFANZ), the Climate Action 100+, the Paris Aligned Asset
Owners (PAAO), the Institutional Investors Group on Climate Change (IIGCC).
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Second, we assume that exclusion is not one-off but occurs dynamically over time. This is because

green investors in our model follow net zero strategies whereby they exclude the firms with the

highest GHG emissions (or other decarbonization metric) first, the firms with the second-highest

emissions next, and so on, until a fixed fraction of the market is excluded. Exclusion is dynamic

also because the fraction of green investors can grow over time. We show that while more than

half of the price decline due to future exclusion is reflected into the current price of brown firms,

the future price decline until exclusion is significant. Third, we allow for a heavy right tail in firms’

emissions, which we identify with firms’ loadings on a climate transition risk factor. Because of

that right tail, the impact of divestment on the cost of capital differs across brown firms and is

particularly large for the brownest ones.

Our model, presented in Section 2, assumes continuous time, infinite horizon, a constant riskless

rate and multiple stocks. Stocks’ dividends load on a business-cycle and a climate transition risk

factor, and have additional variation that is idiosyncratic. Stocks are symmetric except possibly

on their dividends’ loadings on the climate factor. We model the random components of dividends

as square-root processes. As in Buffa, Vayanos, and Woolley (2022) and Jiang, Vayanos, and

Zheng (2025), the square-root specification allows for a tractable equilibrium where prices are affine

functions of dividends while also ensuring that prices and dividends are always positive. There are

three types of investors. Active investors can invest in the riskless asset and in the stocks without

constraints. Passive investors can invest in the riskless asset and in a capitalization-weighted index

that includes all firms. Green investors can invest in the riskless asset and in a capitalization-

weighted index that progressively excludes brown firms. The green index replicates the strategy of

a portfolio with a decreasing carbon footprint. Indexes excluding brown stocks progressively are

referred to as “net zero” or “Paris aligned”, and have been growing in popularity over time.2 All

investors maximize a mean-variance objective over infinitesimal changes in wealth.

The equilibrium, derived in Section 3, consists of a transition phase, during which brown stocks

2The rationale for excluding brown firms progressively is operational. Institutional investors aiming to decrease
the GHG footprint of their portfolios might be hesitant to implement rapid changes given their obligation to maintain
a tracking error relative to a benchmark. A gradual approach spreads the impact on tracking error over multiple
years while facilitating a swift reduction in GHG emissions for the overall portfolio through the early exclusion of the
brownest firms. MSCI and S&P have launched the MSCI Climate Paris Aligned Indexes family and the Paris Aligned
& Climate Transition Indexes family, respectively. Amundi, Lyxor, and iShares, among others, have launched ETFs
or funds based on Paris aligned indexes.
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are gradually excluded from the green index, and of a stochastic steady state that follows. During

the transition phase, the brown stocks sold by green investors are bought by active investors.

Passive investors keep holding the market portfolio throughout and do not add to their holdings of

brown stocks.

In Section 4 we calibrate the model without a climate risk factor. We assume that there are

500 stocks and that five stocks are excluded from the green index at the end of each year for the

first ten years, resulting in a cumulative exclusion of 50 stocks. This exclusion strategy can yield a

large reduction in portfolio emissions because a small fraction of firms generate a large fraction of

total emissions (Jondeau, Mojon, and Pereira Da Silva 2021). We calibrate stocks’ supply and the

parameters of the dividend processes based on moments of stock returns. We allow the fraction of

green investors to range from 5% to 15%, reflecting different estimates of the size of the sustainable

fund sector. We allow the fraction of passive investors to range from 50% to 90% of combined

active and passive. The lower end of our assumed range, 50%, reflects the current size of passive

and active. The upper end, 90%, reflects that many active investors track indexes closely because

of explicit or implicit constraints, or trade infrequently even in the absence of such constraints.

Estimates of demand elasticity for stocks suggest that the fraction of truly active investors could

be even less than 10% of combined active and passive, as we point out in Section 6, where we map

our results to the empirical literature on divestment.

When the ratio of green to active investors takes the lowest value implied by the ranges that we

assume in our calibration, exclusion from the green index raises the cost of capital of the brownest

firms by 1-2 basis points (bps), in line with Berk and Van Binsbergen (2025). When the ratio

takes its highest value, the effect rises to 18-24 bps, which is modest but larger than Berk and Van

Binsbergen (2025) by an order of magnitude. Moreover, the stock prices of the brownest firms drop

by 2.8-6.3%. If the fraction of green investors rises to 30%, then their effect on the cost of capital

rises to 41-49 bps and stock prices drop by 6.0-12.5%. Prices of non-excluded firms rise, but the

effect is only about 10% of that for excluded firms.

Future exclusion is anticipated in prices to a significant extent. The immediate price effect

from the anticipation of exclusion in ten years is approximately 70% of the effect in ten years. The

remaining 30% reflects a gradual price drop until the tenth year. Excluded stocks’ expected returns
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rise gradually before exclusion and discontinuously upon exclusion. When the measure of green

investors rises over time, the gradual drop in prices becomes larger relative to the immediate drop.

In Section 5 we calibrate the model with a climate risk factor. When climate shocks to dividends

are assumed to be small relative to business-cycle shocks—approximately 7% for the brownest firms

and 0.45% for the average firm—the effects of divestment are somewhat larger than without climate

risk: the cost of capital of the brownest firms rises by 22-30 bps and their stock prices drop by 4.5-

9.1% in the case where the ratio of green to active investors takes its highest value in our calibration.

When climate shocks to dividends are assumed four times larger, the effects of divestment become

significantly larger than without climate risk: the cost of capital rises by 93-136 bps and prices drop

by 10.8-13.6%. Intuitively, climate risk introduces additional comovement between brown stocks.

This raises the variance of the brown portfolio that active investors buy from green investors, and

hence the expected returns that they require to hold brown stocks.

In the presence of climate risk, expected returns differ across brown and green stocks not only

because of the price impact of green investors but also because brown stocks load more heavily on

the climate risk factor. Section 5 determines the relative strength of the two effects. The effect

of climate risk is comparable to that of divestment when climate shocks to dividends are small

relative to business-cycle shocks, and becomes dominant when climate shocks are larger. We draw

the implications of this result for empirical estimates of the effects of divestment in Section 6.

A growing theoretical literature studies how divestment affects firms’ stock prices and cost of

capital. In Merton (1987), each investor holds only a subset of stocks, and stocks held by few

investors earn high expected returns. Investors’ incomplete diversification is interpreted as arising

from lack of information but could alternatively arise from ethical preferences. In Heinkel, Kraus,

and Zechner (2001), green investors do not hold brown stocks, and the ensuing price impact can

incentivize brown firms to become greener. In Luo and Balvers (2017), exclusion of brown stocks by

green investors depresses the prices of other correlated stocks. In Pastor, Stambaugh, and Taylor

(2021), green stocks earn lower expected returns than brown stocks both because green investors

derive utility from holding them and because they outperform brown stocks following negative

climate news. Moreover, the cross-section of expected returns is described by a market and an

ESG factor. In Pedersen, Fitzgibbons, and Pomorski (2021), the cross-section of expected returns
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is described by a similar two-factor model. Moreover, portfolio optimization by green investors

who care about the ESG score of their portfolio in addition to financial returns is described by

a generalized portfolio frontier. In Zerbib (2022), the cross-section of expected returns includes

separate taste and exclusion premia arising from green investors’ taste for green stocks and exclusion

of brown stocks. A common theme across all these papers is that divestment drives up the cost of

capital. Some of these papers perform a calibration exercise, which is further developed in Berk

and Van Binsbergen (2025).

A large empirical literature provides estimates for the effects of divestment. Teoh, Welch, and

Wazzan (1999) find that divestment from firms doing business in South Africa, in the context of

the apartheid boycott, had weak effects on their stock prices. Hong and Kacperczyk (2009) find

instead large effects of exclusion: they estimate an expected return premium from holding sin

stocks (alcohol, tobacco and gaming) of 250 bps per year. Bolton and Kacperczyk; Bolton and

Kacperczyk (2021; 2021) find a similarly large expected return premium from holding brown stocks

using the level and growth rate of firms’ carbon emissions to measure brownness. Hsu, Li, and Tsou

(2023) report similar findings measuring brownness by firms’ toxic emissions intensity. Eskildsen

et al. (2024) estimate instead modest effects by combining information on a large number of ESG

measures and countries: annualized expected returns decrease by 30 bps per one standard deviation

increase in greenness. Pastor, Stambaugh, and Taylor (2022) find that green stocks outperformed

brown stocks by 174% cumulatively from 2012 to 2020 because of inflows into green strategies. In

a similar spirit, Van Der Beck (2023) finds that a $1 flow into ESG stocks raises their aggregate

market value by $0.7, implying a low demand elasticity, and Ardia et al. (2023) find that green

stocks outperform brown stocks on days with negative climate news.

The closest empirical counterpart to our model is Cenedese, Han, and Kacperczyk (2024),

who measure the expected time until a firm’s exclusion from a net zero portfolio. They find

that annualized expected returns decrease by 150 bps per one standard deviation increase in that

measure, which they term Distance-to-Exit. Moreover, exclusion renders net zero portfolios only

mildly under-diversified. Jondeau, Mojon, and Pereira Da Silva (2021), Bolton, Kacperczyk, and

Samama (2022) and Cheng, Jondeau, and Mojon (2022) develop methodologies to construct net

zero portfolios and benchmarks.
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2. Model

Time t is continuous and goes from zero to infinity. The riskless rate is exogenous and equal to

r > 0. There areK groups of N firms each. All firms in the same group have the same (unmodelled)

level of GHG emissions. Firms in group K, with the highest indices n = (K − 1)N + 1, ..,KN ,

have the highest emissions and are excluded from the index first. Firms in group K − 1, with the

second highest indices n = (K − 2)N + 1, .., (K − 1)N , have the second highest emissions and are

excluded second, and so on.

The stock of firm n = 1, ..,KN , referred to as stock n, pays dividend flow Dnt per share and is

in supply of ηn > 0 shares. The dividend flow of stock n is

Dnt = D̄n + bsnD
s
t + bcnD

c
t +Di

nt, (2.1)

where {D̄n, b
s
n, b

c
n}n=1,..,KN are constants and {Ds

t , D
c
t , D

i
nt}n=1,..,KN are stochastic processes. We

refer to D̄n as the constant component of the dividend flow, bsnD
s
t as the systematic component,

bcnD
c
t as the climate component andDi

nt as the idiosyncratic component. The systematic component

is the product of a factor Ds
t times a factor loading bsn ≥ 0. The factor Ds

t follows the square-root

process

dDs
t = κs

(
D̄s −Ds

t

)
dt+ σs

√
Ds

tdB
s
t , (2.2)

where {κs, D̄s, σs} are positive constants and Bs
t is a Brownian motion. The climate component

is the product of a factor Dc
t times a factor loading bcn ≥ 0. The factor Dc

t follows the square-root

process

dDc
t = κc

(
D̄c −Dc

t

)
dt+ σc

√
Dc

tdB
c
t , (2.3)

where {κc, D̄c, σc} are positive constants and Bc
t is a Brownian motion. We interpret the factor Ds

t

as a standard systematic risk factor corresponding to business-cycle risk. We interpret the factor

Dc
t , which is also systematic, as corresponding to climate transition risk. Climate transition risk
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refers to the uncertainty associated with the transition towards a low-carbon economy. It can arise

from policies to mitigate climate change and achieve environmental sustainability goals, and the

impact that these policies have on different firms. In Section 5, we equate firms’ exposure to climate

transition risk to their GHG emissions. The idiosyncratic component follows the square-root process

dDi
nt = κin

(
D̄i

n −Di
nt

)
dt+ σi

n

√
Di

ntdB
i
nt, (2.4)

where {κin, D̄i
n, σ

i
n}n=1,..,KN are positive constants and {Bi

nt}n=1,..,KN are Brownian motions. All

Brownian motions are independent. By possibly redefining factor loadings and the parameters of

the square-root processes (2.2) and (2.3), we set the long-run means D̄s and D̄c of the systematic

factors to one. By possibly redefining the supply ηn and the parameters of the square-root process

(2.4), we set the long-run mean D̄n + bsn + bcn + D̄i
n of the dividend flow of stock n to one for all n.

Our specification (2.1)-(2.4) for dividends differs from typical specifications in the asset-pricing

literature in two main respects. First, dividends are typically assumed to be non-stationary, while

our specification yields stationarity because the random components of dividends mean-revert.

Second, the volatility of dividends per share is typically assumed proportional to their level, while

under our specification volatility is proportional to the square root of the level. Both assumptions

are made for tractability and are not essential for our results. The square-root specification ensures

that two important properties of typical specifications carry through to our model: dividends are

always positive, and the volatility of dividends increases with their level. Jiang, Vayanos, and

Zheng (2025) provide further motivation and evidence for the square-root specification.

Denoting by Snt the price of stock n, the stock’s return per share in excess of the riskless rate

is

dRsh
nt ≡ Dntdt+ dSnt − rSntdt, (2.5)

and the stock’s return per dollar in excess of the riskless rate is

dRnt ≡
dRsh

nt

Snt
=

Dntdt+ dSnt

Snt
− rdt. (2.6)
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We refer to dRsh
t as excess share return. We refer to dRt as excess return, omitting that it is per

dollar. All return moments that we compute in our calibration in Sections 4 and 5 concern dRt.

Agents are competitive and form overlapping generations living over infinitesimal time intervals.

Each generation includes active investors, passive investors and green investors. Active investors

can invest in the riskless asset and in the stocks without constraints. Passive investors and green

investors can invest in the riskless asset and in a stock portfolio that tracks an index. The index is

a broad index for passive investors and a narrower one for green investors.

The broad index includes all firms. The green index includes a set Gt of firms that decreases with

time t. At t = 0, all firms are included. At t = T , firms n = (K − 1)N +1, ..,KN , i.e., in group K,

are dropped. At t = 2T , firms n = (K−2)N+1, .., (K−1)N , i.e., in group K−1, are also dropped.

The process continues until t = K ′T for K ′ < K, when firms n = (K−K ′)N +1, .., (K−K ′+1)N ,

i.e., in group K ′, are the last to be dropped. Times T , 2T , · · · , K ′T correspond to rebalancing

times for green investors.

The broad and the green indexes are capitalization-weighted, i.e., weigh firms according to their

market capitalization. Therefore, the number of shares ηInt that the broad index includes of any

firm n is proportional to the number of shares ηn issued by the firm. By possibly rescaling the

broad index, we set ηInt = ηn. Likewise, the number of shares ηGnt that the green index includes

of any firm n ∈ Gt is proportional to ηn. By possibly rescaling the green index, we set ηGnt = ηn

for n ∈ Gt. Since ηGnt = 0 for n /∈ Gt, we can write ηGnt for all n as 1n∈Gtηn.

We denote by WAt, WIt and WGt the wealth of an active investor, a passive investor and a

green investor, respectively, at time t, by zAnt, zInt and zGnt the number of shares of firm n that

these agents hold, and by µAt, µIt and µGt the measure of these agents. A passive investor holds

zInt = λItηn shares of firm n, and a green investor holds zGnt = λGtηGnt shares of the firm, where λIt

and λGt are proportionality coefficients that the agents choose optimally. We assume for tractability

that the coefficients (λIt, λGt) are independent of the dividend flows and are constant in each of the

intervals between rebalancing times [kT, (k+1)T ) for k = 0, ..,K ′−1 and [K ′T,∞). This assumption

can reflect that passive and green investors adjust their portfolios infrequently because they observe

less information or face higher transaction costs than active investors. We likewise assume that

the measures (µAt, µIt, µGt) are constant in each of the intervals [kT, (k + 1)T ) for k = 0, ..,K ′ − 1

8



and [K ′T,∞). Abusing notation, we denote the constant values of (λIt, λGt, µAt, µIt, µGt,Gt) in

the intervals [kT, (k + 1)T ) for k = 0, ..,K ′ − 1 and [K ′T,∞) by (λIk, λGk, µAk, µIk, µGk,Gk) for

k = 0, ..,K ′.

The budget constraint of agent type i = A, I,G is

dWit =

(
Wit −

KN∑
n=1

zintSnt

)
rdt+

KN∑
n=1

zint(Dntdt+ dSnt) = Witrdt+
KN∑
n=1

zintdR
sh
nt , (2.7)

where dWit is the infinitesimal change in wealth and dRsh
nt ≡ Dntdt + dSnt − rSntdt is the excess

share return of stock n in excess of the riskless rate. Agents have mean-variance preferences over

dWit. Active investors maximise the objective function

Et(dWAt)−
ρ

2
Vart(dWAt) (2.8)

over conditional mean and variance at time t. Passive and green investors maximise the objective

function

Eu
k(dWit)−

ρ

2
Varuk(dWit), (2.9)

for i = I,G, over unconditional mean and variance across dividend flows and times t in the interval

[kT, (k + 1)T ) for k = 0, ..,K ′ − 1 and [K ′T,∞) for k = K ′.

Figure 1 illustrates the portfolio flows between green and active investors. We assume four

groups of firms for this figure, which are shown in green, yellow, beige and brown, ranging from the

least to the most polluting. The green index progressively excludes the brown and beige firms, from

year 0 to year K ′. In year 0, active and green investors hold one quarter of their portfolio in each

of the four groups of firms. In year 1, green investors sell a fraction of their holdings of brown firms

to active investors, and rebalance their portfolio proportionally towards the other three groups.

In year 2, green investors sell a further fraction of their brown holdings to active investors. This

process continues until green investors hold no brown firms. They then start selling their beige

holdings. This process continues until year K ′ when green investors hold no beige firms either, and

their portfolio thus consists only of green and yellow firms.
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Figure 1: Asset exclusion and exchange between green investors and active investors

Alternative exclusion strategies to those assumed in our model and shown in Figure 1 could be

envisioned. For example, green investors could direct the proceeds from selling brown firms toward

the green firms only instead of rebalancing their portfolio proportionally towards all non-brown

groups. Such strategies would strengthen the price impact that we find.
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3. Equilibrium

We look for an equilibrium where the price Snt of stock n is

Snt =
D̄n

r
+ bsn [a

s
0t + as1tD

s
t ] + bcn [a

c
0t + ac1tD

c
t ] + ain0t + ain1tD

i
nt, (3.1)

for (as0t, a
s
1t, a

c
0t, a

c
1t, {ain0t, ain1t}n=1,..,KN ) positive functions of t. The price Snt is the sum of the

present value D̄n
r of dividends from the constant component, the present value bsn [a

s
0t + as1tD

s
t ]

of dividends from the systematic component, the present value bcn [a
c
0t + ac1tD

c
t ] of dividends from

the climate component, and the present value ain0t + ain1tD
i
nt of dividends from the idiosyncratic

component.

Using (2.2)-(2.4), (2.6) and Ito’s lemma, we can write the excess share return dRsh
nt of stock n

as

dRsh
nt = µntdt+

∑
j=s,c

bjnσ
jaj1t

√
Dj

tdB
j
t + σi

na
i
n1t

√
Di

ntdB
i
nt, (3.2)

where

µnt ≡
Et(dR

sh
nt)

dt
=
∑
j=s,c

bjn

[
Dj

t + κjaj1t(1−Dj
t ) +

daj0t
dt

+
daj1t
dt

Dj
t − r(aj0t + aj1tD

j
t )

]

+Di
nt + κina

i
n1t(D̄

i
n −Di

nt) +
dain0t
dt

+
dain1t
dt

Di
nt − r(ain0t + ain1tD

i
nt) (3.3)

is the instantaneous expected excess share return of stock n. Using (2.7) and (3.2), we can write

the objective function (2.8) of active investors as

KN∑
n=1

zAntµnt −
ρ

2

∑
j=s,c

(
KN∑
n=1

zAntb
j
n

)2 (
σjaj1t

)2
Dj

t +

KN∑
n=1

z2Ant

(
σi
na

i
n1t

)2
Di

nt

 . (3.4)

Using (2.7), (3.2), zInt = λIkηn and zGnt = λGkηn, we can likewise write the objective function
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(2.9) of passive investors as

KN∑
n=1

λIkηnµ
u
nk −

ρ

2
λ2
Ik

∑
j=s,c

(
KN∑
n=1

ηnb
j
n

)2

(σj)2Eu
k

[(
aj1t

)2
Dj

t

]
+

KN∑
n=1

η2n(σ
i
n)

2Eu
k

[(
ain1t

)2
Di

nt

] ,

(3.5)

and the objective function (2.9) of green investors as

KN∑
n=1

λGk1{n∈Gk}ηnµ
u
nk −

ρ

2
λ2
Gk

∑
j=s,c

(
KN∑
n=1

1{n∈Gk}ηnb
j
n

)2

(σj)2Eu
k

[(
aj1t

)2
Dj

t

]

+
KN∑
n=1

1{n∈Gk}η
2
n(σ

i
n)

2Eu
k

[(
ain1t

)2
Di

nt

]]
, (3.6)

where µu
nk ≡ Eu

k(dR
sh
nt)

dt = Eu
k(µnt). Active investors maximize (3.4) over positions {zAnt}n=1,..,KN .

Passive investors maximize (3.5) over λIk and green investors maximize (3.6) over λGk. Taking the

first-order condition in (3.4) and substituting µnt from (3.3) and {zAnt}n=1,..,KN from the market

clearing equation

µAtzAnt + µItλItηn + µGtλGt1n∈Gtηn = ηn, (3.7)

which requires that the demand of active investors, passive investors and green investors equals the

supply coming from the issuing firm, we find

µnt =
∑
j=s,c

bjn

[
Dj

t + κjaj1t(1−Dj
t ) +

daj0t
dt

+
daj1t
dt

Dj
t − r(aj0t + aj1tD

j
t )

]

+Di
nt + κina

i
n1t(D̄

i
n −Di

nt) +
dain0t
dt

+
dain1t
dt

Di
nt − r(ain0t + ain1tD

i
nt)

= ρ

∑
j=s,c

bjn

(
KN∑
m=1

1− µItλIt − µGtλGt1m∈Gt

µAt
ηmbjm

)(
σjaj1t

)2
Dj

t

+
1− µItλIt − µGtλGt1m∈Gt

µAt
ηn
(
σi
na

i
n1t

)2
Di

nt

]
. (3.8)

Equation (3.8) is affine in (Ds
t , D

c
t , D

i
nt). Identifying linear terms in Dj

t for j = s, c and recalling
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that (λIt, λGt, µAt, µIt, µGt) are constant in each of the intervals [kT, (k + 1)T ) for k = 0, ..,K ′ − 1

and [K ′T,∞) yields a Ricatti ordinary differential equation (ODE) in aj1t in each of these intervals.

The solution in the interval [K ′T,∞) is constant. The solution in each interval [kT, (k+1)T ) for k =

0, ..,K ′−1 is time-varying. Identifying linear terms in Di
nt yields an ODE of the same type in ai1nt.

Identifying constant terms yields a linear ODE in each interval. Substituting (as1t, a
c
1t, {ain1t}n=1,..,N )

into the first-order conditions of passive investors and green investors yields equations for (λIk, λGk)

for k = 0, ..,K ′. We solve the resulting system recursively, starting from the interval [K ′T,∞) and

rolling back. Proposition 3.1 characterizes the equilibrium. The proposition does not establish that

the equilibrium is unique, although our numerical analysis does not indicate existence of multiple

equilibria. The proposition’s proof is in Appendix A.

Proposition 3.1. The equilibrium price function has the form (3.1). The function aj1t for j = s, c

is given by aj1t = āj1K′ for t ∈ [K ′T,∞) and

aj1t =

āj1k

(
gjka

j
1,(k+1)T + 1

āj1k

)
e

(
gjkā

j
1k+

1

ā
j
1k

)
[(k+1)T−t]

− 1

āj1k

(
āj1k − aj1,(k+1)T

)
(
gjka

j
1,(k+1)T + 1

āj1k

)
e

(
gjkā

j
1k+

1

ā
j
1k

)
[(k+1)T−t]

+ gjk

(
āj1k − aj1,(k+1)T

) (3.9)

for t ∈ [kT, (k + 1)T ) and k = 0, ..,K ′ − 1, where

āj1k ≡ 2

r + κj +
√
(r + κj)2 + 4gjk

,

gjk ≡ ρ

(
KN∑
m=1

1− µIkλIk − µGkλGk1{m≤(K−k)N}

µAk
ηmbjm

)
(σj)2

for k = 0, ..,K ′. The function ai1nt is given by ain1t = āin1K′ for t ∈ [K ′T,∞) and

ain1t =
āin1k

(
ginka

i
n1,(k+1)T + 1

āin1k

)
e

(
ginkā

i
n1k+

1

āi
n1k

)
[(k+1)T−t]

− 1
āin1k

(
āin1k − ain1,(k+1)T

)
(
ginka

i
n1,(k+1)T + 1

āin1k

)
e

(
ginkā

i
n1k+

1

āi
n1k

)
[(k+1)T−t]

+ gink

(
āin1k − ain1,(k+1)T

) (3.10)

13



t ∈ [kT, (k + 1)T ) and k = 0, ..,K ′ − 1, where

āin1k ≡ 2

r + κin +
√

(r + κin)
2 + 4gink

,

gink ≡ ρ
1− µIkλIk − µGkλGk1{n≤(K−k)N}

µAk
ηn(σ

i
n)

2

for k = 0, ..,K ′. The function
∑

j=s,c b
j
na

j
0t + ain0t is given by

∑
j=s,c

bjna
j
0t + ain0t =

∑
j=s,c

bjnκ
j

∫ ∞

t
aj1t′e

−r(t′−t)dt′ + κinD̄
i
n

∫ ∞

t
ain1t′e

−r(t′−t)dt′. (3.11)

The values of (λIk, λGk) for k = 0, ..,K ′ are determined from the first-order conditions (A.4)-(A.7)

of passive and green investors in Appendix A.

From time K ′T onward, the price Snt of stock n is an affine function of (Ds
t , D

c
t , D

i
nt) with

time-independent coefficients. The affine coefficients depend on investor demand through the terms

(gsK′ , gcK′ , ginK′). An increase in the measures (µIK′ , µGK′) of passive or green investors or in their

investment (λIK′ , λGK′) in their respective indices from time K ′T onward lowers (gsK′ , gcK′ , ginK′)

and raises (ās1K′ , āc1K′ , āin1K′). Therefore, the price of stock n from time K ′T onward increases.

Likewise, if stock n is excluded from the green index at time K ′T , then ginK′ is higher and āin1K′

is lower than for a non-excluded stock n′ with identical other characteristics. Therefore, stock n

trades at a lower price than stock n′ from time K ′T onward. These effects are anticipated in the

price before time K ′T as well, through the recursive formulas (3.9) and (3.10). Indeed, higher

values of (ās1K′ , āc1K′ , āin1K′) imply higher values of (as1t, a
c
1t, a

i
n1t) for t ∈ [(K ′ − 1)T,K ′T ), which

imply higher values of (ās1,K′−1, ā
c
1,K′−1, ā

i
n1,K′−1), and so on.

The price Snt of stock n at a time t prior to K ′T is an affine function of (Ds
t , D

c
t , D

i
nt) with

time-dependent coefficients. The coefficients depend on current demand during the interval cor-

responding to time t, and on anticipated demand during all subsequent intervals (including from

time K ′T onward). Higher demand during an interval [kT, (k+ 1)T ) lowers (gsk, g
c
k, g

i
nk) and raises

(ās1k, ā
c
1k, ā

i
n1k) and (as1t, a

c
1t, a

i
n1t) for t ∈ [kT, (k + 1)T ). This raises prices during the interval

[kT, (k + 1)T ), as well as prices in all preceding intervals through the recursion.
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4. No Climate Risk

In this section we compute the equilibrium numerically when the loadings {bcn}n=1,..,KN on the

climate transition risk factor Dc
t are set to zero. This leaves Ds

t as the only systematic factor.

4.1 Parameter Values

The model parameters are the riskless rate r, the number K of groups of firms, the number N

of firms per group, the number K ′ of groups to be excluded, the time T between consecutive

exclusions, the parameters {κs, σs} and {D̄n, b
s
n, κ

i
n, D̄

i
n, σ

i
n}n=1,..,KN of the dividend processes, the

numbers {ηn}n=1,..,KN of shares, the measures {µAk, µIk, µGk}k=0,..,K′ of active, passive and green

investors during each of the intervals [K ′T,∞) and [kT, (k + 1)T ) for k = 0, ..,K ′ − 1, and the

investors’ risk-aversion coefficient ρ.

We assume that the total measure µAk+µIk+µGk of active, passive and green investors remains

constant over time. Changes to the measure of each investor group can thus only occur because of

investors switching groups. We set the total measure of investors to one. This is a normalization

because we can redefine the risk-aversion coefficient ρ. We set ρ to one. This is also a normalization

because we can redefine the numeraire in the units of which wealth is expressed. Since the dividend

flow is normalized by D̄n+bn+D̄i
n = 1, redefining the numeraire amounts to rescaling the numbers

of shares {ηn}n=1,..,KN . We set the riskless rate r to 3%.

We set the number K of groups to 100 and the number N of firms per group to five. This yields

a total of KN = 500 firms, allowing us to interpret the broad index as the S&P500. Group 1 of

firms is the least polluting and Group 100 is the most polluting. We set the number K ′ of groups

to be excluded to ten and the time T between consecutive exclusions to one. The horizon K ′T of

the decarbonization strategy is thus ten years. Firms in Group 100 are excluded from the green

index first, in year 1. Firms in Group 91 are excluded last, in year 10. All in all, K ′N = 50 firms

are excluded, which amount to 10% of all firms.

The calibration of the number of excluded firms aligns with recent empirical findings on the

cross-sectional characteristics of GHG emissions and net zero investment strategies. GHG emissions

exhibit a Pareto distribution with a heavy right tail. Jondeau, Mojon, and Pereira Da Silva (2021)
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estimate that the most polluting firms representing 1% of world market capitalization account for

15% of total carbon emissions. Moreover, a policy that reduces carbon emissions by 10% per year

over ten years—a cumulative reduction of 65% (= 1 − (1 − 10%)10)—requires excluding in total

the most polluting firms representing approximately 10% of market capitalization. Therefore, our

scheme of excluding 1% of the most polluting firms every year for ten years can yield a cumulative

65% reduction of portfolio emissions.3

Wemainly focus on the case where firms have identical characteristics {D̄n, b
s
n, κ

i
n, D̄

i
n, σ

i
n, ηn}n=1,..,KN ,

which we denote by {D̄, bs, κi, D̄i, σi, η}. In that case, firms have the same long-run average market

capitalization. They differ only in their level of GHG emissions, which are not modelled in this

section and are identified with loadings on the climate transition risk factor in Section 5. Allow-

ing firms to differ in size generates larger impact of green investors on large brown firms. This is

because active investors must be induced to hold large risk exposures in these firms when buying

them from green investors. We analyze briefly the effects of firm size at the end of Section 4.2.

We set the mean-reversion parameters κi and κs to a common value κ, which we take to be

0.04. Our analysis is not sensitive to the value of κ in the sense that the effects of changing κ on our

numerical results are similar to those of changing the other parameters. We set σi
√
D̄i

= σs
√
D̄s

= σs.

This assumption together with κs = κi ensure that the distributions of Ds
t and {Di

nt}n=1,..,KN are

the same when scaled by their long-run means:
Di

nt

D̄i has the same distribution as
Ds

t

D̄s = Ds
t . We

set D̄ to zero. Minimizing D̄ maximizes return variances, bringing them closer to their empirical

counterparts as we explain below. Our normalization D̄n + bsn + bcn + D̄i
n = 1 implies D̄i = 1− bs.

We calibrate bs and η based on stocks’ expected excess returns and CAPM R-squareds. We use

the unconditional versions of these moments, taking expectations with respect to the stationary

distribution of the stochastic processes Ds
t and {Di

nt}n=1,..,KN . We use as calibration targets the

values of the moments when there are no green investors. Without green investors, the moments

are the same for all stocks.

The supply η affects mainly stocks’ expected return: with higher η, investors bear more risk

and require higher expected return. We target expected excess return to be 6%. To assess the

3According to a widely cited report by CDP (formerly, Climate Disclosure Project) published in 2017, 70.6%
of global GHG emissions since 1988 are due to 100 companies. See https://www.cdp.net/en/press-releases/

new-report-shows-just-100-companies-are-source-of-over-70-of-emissions.
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sensitivity of our results to that target, we also report results for an alternative target of 4%.

The loading bs on the systematic factor (which is related to the long-run mean of the idiosyn-

cratic component of dividends through D̄i = 1− bs) affects mainly stocks’ CAPM R-squared: with

higher bs, systematic dividends are more important relative to idiosyncratic dividends, and CAPM

R-squared is higher. We target CAPM R-squared to be 25%, which approximates the average

CAPM R-squared of the stocks in the S&P500. We also report results for an alternative target of

20%.

We calibrate the volatility parameter σs of systematic dividends (which is related to the volatility

parameter σi of idiosyncratic dividends through σi
√
D̄i

= σs
√
D̄s

= σs) based on stocks’ unconditional

return volatility. Raising σs has two countervailing effects on return volatility. For given values

of Ds
t and {Di

nt}n=1,..,KN , return volatility rises. At the same time, the stationary distributions

of Ds
t and {Di

nt}n=1,..,KN shift weight towards very small or very large values, for which return

volatility is low under the square-root specification.4 The maximum return volatility that our

model generates remains bounded when σs goes to infinity because of the low volatility at the

extremes. The bound is approximately 25%. One approach is to set σs to a value that yields a

return volatility of approximately 20%, typical for S&P500 firms (Vuolteenaho 2002). That value,

however, yields prices that are overly low relative to the calibrated unconditional expected excess

return because of the time variation of the conditional expected return.5 Another approach is to

use a lower value for σs and obtain prices more in line with expected returns. We report results

under both approaches, to assess the sensitivity of our results to return volatility. Under the first

approach, we set σs = 1.5. The values of (bs, η) are (0.87, 0.00132) for a target expected excess

return of 6% and R-squared 25%. They become (0.825, 0.000643) when the target expected excess

4For small values of Ds
t and {Di

nt}n=1,..,KN , return volatility per share is small but share price does not converge
to zero because of the mean-reversion of Ds

t and {Di
nt}n=1,..,KN . (The price converges to S̄nt + bsna

s
0t + ai

n0t, as
shown in Proposition 3.1.) Therefore, return volatility converges to zero. For large values of Ds

t and {Di
nt}n=1,..,KN ,

return volatility converges to zero because return volatility per share is proportional to the square root of Ds
t and

{Di
nt}n=1,..,KN but share price is affine in these variables.
5The expected excess return is close to zero for small values of Ds

t and {Di
nt}n=1,..,KN because return volatility

converges to zero. It increases significantly away from zero, and the unconditional average of the price is primarily
determined by the expected return away from zero. For σs = 1.5, target expected excess return 6% and target
R-squared 25%, the unconditional average of the price of each stock is 5.76. In comparison, discounting average
dividends of one at the sum of the riskless rate of 3% plus the unconditional expected excess return of 6% yields
1

9%
= 11.11. The discrepancy between expected return and average price becomes smaller for σs = 0.5, as the average

price rises to 9.82.
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return is changed to 4% (and R-squared remains at 25%), and (0.8475, 0.00157) when the target

R-squared is changed to 20% (and expected excess return remains at 6%). Return volatility ranges

between 20.43% and 20.51% across these cases. Under the second approach, we set σs = 0.5.

The values of (bs, η) are (0.799, 0.0028) for a target expected excess return of 6% and R-squared

25%. They become (0.74, 0.00144) when the target expected excess return is changed to 4%, and

(0.78, 0.00339) when the target R-squared is changed to 20%. Return volatility ranges between

12.63% and 12.77% across these cases.

We consider multiple values for the measures (µAk, µIk, µGk) of active, passive and green in-

vestors. A simplifying property of our calibration is that holding constant the ratio of active to

green investors, the measure of passive investors has a negligible effect on prices. For example,

prices are almost the same when one-half of investors are passive, one-quarter are active and one-

quarter are green, as they are when one-half of investors are active, one-half are green and there

are no passive. Intuitively, active investors are the ones absorbing the flows that green investors

generate, as illustrated in Figure 1. Therefore, the price impact of green flows depends only on the

relative measures of green and active investors. The irrelevance of the measure of passive investors

is not an exact result because when exclusion from the green index takes place, the expected return

on the broad index changes and passive investors change their position λIk in that index. However,

because exclusion is limited to a small set of firms in our calibration (10% of firms), its effect on

the expected return of the broad index is small. Therefore, passive investors hold approximately

the per-capita supply of each stock before, during and after the exclusion phase.6

We calibrate the measure µGk of green investors based on the percentage of assets under man-

agement (AUM) of sustainable funds relative to total AUM. Morgan Stanley (2025) estimate that

AUM of all sustainable funds were $3.56 trillion at the end of 2024 and constituted 6.8% of total

global AUM. Morningstar estimate that at the end of 2024 there were 7510 sustainable funds with

combined AUM of $3.19 trillion. US SIF (2024) estimate instead AUM of sustainable funds at $6.5

trillion. Based on these estimates, we consider values of µGk ranging from 5% to 15%. We also

6Formally, the position λIk of passive investors remains close to one for all k. Moreover, when λIk ≈ 1, the values
of {gjk}j=s,c and gink for k = 0, ..,K′, defined in Proposition 3.1, are approximately the same for (µAk, µIk, µGk) and(

µAk
1−µIk

, 0, µGk
1−µIk

)
, as can be seen by dividing the numerator and denominator by 1 − µIk. Therefore, the price is

approximately independent of µIk and equal to its value for µIk = 0.
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consider the value 30% for µGk, which is twice the upper end of our assumed range, so that we

evaluate a scenario in which µGk rises gradually over time to that value.

A caveat to our calibration of µGk is that it is based on AUM of all sustainable funds and not

specifically of net-zero funds, which are the green investors in our model. AUM of net-zero funds are

significantly smaller than of all sustainable funds. Phenix Capital (2023) estimate that in February

2023 there were 729 net-zero aligned funds with combined AUM of $289 billion. A richer model

could account for the distinction between net-zero funds and other sustainable funds by allowing

for two types of green investors: net-zero green investors who exclude polluting firms gradually

over time, from t = T to t = K ′T , and conventional green investors who exclude all polluting firms

at the same time t = T . Our calibration results are informative about the price impact of green

investing in the alternative model as well. Indeed, the effects of green investors at the end of the

exclusion phase would be identical across the two models. Moreover, the anticipation of future

exclusion would affect current prices in the alternative model as well, especially if the measure of

conventional green investors is expected to grow over time.

Calibrating the measure µIk of passive investors (and deducing that of active investors by

µAk = 1 − µIk − µGk) is challenging because of three reasons. First, many active investors face

explicit or implicit constraints limiting their deviations from indexes. These tracking constraints

make them closer to passive investors than to the unconstrained active investors assumed in our

model. Second, while some active investors can deviate significantly from indexes, they may trade

infrequently and act as buy-and-hold investors. Third, some passive investors track green indexes

so they should be classified as green.

According to the ICI (2022), AUM of passive funds in the US equity market at the end of 2021

were 53% of the combined AUM of active and passive funds, and 16% of the US equity market.

Assuming that the same ratio applies to active and passive green funds, the ratio µIk
µAk+µIk

of the

measure of passive investors to the total measure of active and passive investors can be set to 53%.

This should be viewed, however, as a lower bound because of tracking constraints and buy-and-hold

behavior. An estimate of the effect of tracking constraints comes from Chinco and Sammon (2024),

who examine abnormal trading volumes around index additions and deletions. The implied share

of passive investors, derived as the fraction of investors who adjust their positions to track the
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index, is approximately twice the share of passive funds: it is 33.5% of the US equity market at

the end of 2021. To account for the effects of tracking constraints and buy-and-hold behavior, we

consider values of µIk
µAk+µIk

ranging from 50% to 90%. Table 1 summarizes the parameter values in

our main calibration.

4.2 Price Impact of Green Investors

We first examine the impact of green investors when the measures of the three types of investors

are constant over time. Figure 2 plots price and expected return information for the stocks in group

100, which are excluded from the green index in year 1, the stocks in group 91, which are excluded

in year 10, and the stocks in groups 1 to 90, which are never excluded. The top panel shows the

percentage change in the price in year 0, compared to the case without green investors. The bottom

panel shows the change in the expected return averaged across years 1 and 12 and expressed in

percentage points (100 bps), compared to the case without green investors. Both variables are

plotted as a function of the ratio µGk
µAk+µGk

of the measure of green investors to the total measure of

active and green investors. Since the measures of the three types of investors are assumed constant

over time, the ratio µGk
µAk+µGk

is independent of k. The percentage price change concerns the average

price, computed by setting Ds
t and {Di

nt}n=1,..,KN to their unconditional expectations. The brown

lines correspond to the stocks in group 100, the beige lines to the stocks in group 91, and the green

lines to the stocks in groups 1 to 90. In each case, the solid lines are drawn for σs = 1.5, target

expected excess return 6% and target R-squared 25%, and the dotted lines are drawn for σs = 0.5

instead of σs = 1.5. We set the measure µIk of passive investors to 50%, but as noted in Section

4.1, the lines are almost independent of µIk. We consider other values for µIk in our analysis below.

The impact (in absolute value) of green investors on stock prices and expected returns is an

increasing and convex function of µGk
µAk+µGk

. Thus, the impact is increasing the more green investors

there are relative to active investors, and the increase occurs at an increasing rate. The impact

is largest for the stocks in group 100, which are excluded from the green index first. The price of

these stocks drops the most, and their expected return rises the most. The impact is lower for the

stocks in group 91, which are excluded last, and is lowest for the stocks in groups 1 to 90. The

prices of the stocks in groups 1 to 90 rise and their expected returns drop because green investors
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Table 1: Parameter values in main calibration

Parameter Symbol Value Target

Investors’ risk-aversion
coefficient

ρ 1 Normalization

Riskless rate r 3%

Number of firm groups K 100

Broad index is S&P500
Number of firms per group N 5

Number of excluded groups K ′ 10
Green index excludes
eventually 10% of all firms

Time between
consecutive exclusions

T 1
At the end of each year
1% of all firms are excluded

Constant component
of dividends

D̄n 0

Long-run mean
of systematic factor

D̄s 1 Normalization

Mean-reversion
of systematic factor

κs 0.04

Volatility parameter
of systematic factor

σs 1.5
alt. 0.5

Return volatility 20%
alt. 13%

Loading of dividends
on systematic factor

bs
0.87

alt. 0.799
CAPM R-squared 25%

Long-run mean
of idiosyncratic dividends

D̄i
n 1− bs Normalization

Mean-reversion
of idiosyncratic dividends

κin κs Same distribution for
mean-adjusted
systematic and
idiosyncratic dividends

Volatility parameter
of idiosyncratic dividends fac-
tor

σi
n σs

√
D̄i

n

D̄s

Number of shares of each stock ηn
0.00132

alt. 0.0028
Expected excess return 6%

Measure of green investors µGk 5-15% AUM of green investors

Measure of active investors
relative to active plus passive

µAk
µAk+µIk

10-50%
AUM of active
and passive funds
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Figure 2: Price and expected return change for the stocks in group 100, which are excluded from
the green index in year 1, the stocks in group 91, which are excluded in year 10, and the stocks in
groups 1 to 90, which are never excluded, as a function of ratio µGk

µAk+µGk
of the measure of green

investors to the total measure of active and green investors
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flow into these stocks. All of the above effects are larger when return volatility is high (σs = 1.5)

than when it is low (σs = 0.5).

To assess the effects quantitatively, we consider the lowest and highest values of µGk
µAk+µGk

implied

by the ranges that we assume in our calibration. The lowest value of µGk
µAk+µGk

is 9.52%, achieved

for green investors being 5% of the market (µGk = 5%) and active investors being 50% of combined

active and passive, which is 47.5% of the market (µAt = 50% × (1 − 5%) = 47.5%). Under that

value of µGk
µAk+µGk

, the price impact of green investors for the stocks in group 100 ranges from 0.18%

when σs = 0.5 to 0.5% when σs = 1.5, and their impact on expected return ranges from 1 to 2

basis points (bps). The highest value of µGk
µAk+µGk

is 63.83%, achieved for green investors being 15%

of the market and active investors being 10% of combined active and passive, which is 8.5% of the

market. Under that value, the price impact of green investors for the stocks in group 100 ranges

from 2.75% when σs = 0.5 to 6.31% when σs = 1.5, and their effect on the expected return ranges

from 18 to 24 bps. If the measure of green investors rises further to 30% and the ratio of passive

to active remains 9:1, so that the measure of active investors drops to 7%, then µGk
µAk+µGk

rises to

81.08%. The price impact of green investors for the stocks in group 100 then rises to 6.01% when

σs = 0.5 and to 12.49% when σs = 1.5, and their effect on the expected return rises to 41-49 bps.

The impact on price and expected return for the stocks in group 91 is approximately 70% of that

for the stocks in group 100. The same impact for the stocks in groups 1 to 90 is approximately

10% of that for the stocks in group 100 for values of µGk
µAk+µGk

up to 80%, and rises to up to 40% for

higher values. Lowering the target expected excess return from 6% to 4% lowers the above effects

by approximately 30%. Lowering the R-squared from 25% to 20% raises them by approximately

30%.

The main takeaways from the above analysis are as follows. When the ratio µGk
µAk+µGk

of the

measure of green investors to the total measure of active and green investors takes its lowest value

in our calibration, the impact of green investors on stock prices and expected returns is negligible.

This result is in line with Berk and Van Binsbergen (2025), who take the fraction of green investors

to be 2% and assume no passive investors. When µGk
µAk+µGk

takes its highest value in our calibration,

the impact of green investors is modest, while also larger than Berk and Van Binsbergen (2025)

by an order of magnitude. The impact becomes large when green investors become a significantly
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larger fraction of the market than they currently are, e.g., twice the upper end of our assumed

range.

We next assess the extent to which future exclusion is reflected in current prices. We do so

for stocks in group 91, which are excluded from the green index last. The thick lines in Figure 3

show the percentage change in the average price of those stocks in year 0, compared to the case

where there are no green investors. This reflects the anticipation of future exclusion. The thin lines

show the percentage change in the stocks’ average price in year 10, compared to the case without

green investors. This reflects the exclusion. In each case, the solid lines are drawn for σs = 1.5,

target expected excess return 6% and target R-squared 25%, and the dotted lines are drawn for

σs = 0.5 instead of σs = 1.5. All variables are plotted as a function of the ratio µGk
µAk+µGk

of the

measure of green investors to the total measure of active and green investors. That ratio is assumed

independent of k. Figure 3 shows that the price effect arising in year 0 from the anticipation of

exclusion in year 10 is approximately 70% of the effect in year 10.

Figure 4 shows the full dynamic evolution of the prices and expected excess returns of the stocks

of all groups. The top panel shows the average price of the stocks in each group as a function of

time. The bottom panel shows the expected excess return of the stocks in each group as a function

of time. Each panel has eleven graphs arranged in three rows. The graph in the top row is for

groups 1 to 90, which are never excluded from the green index. The five graphs in the middle

row are for groups 100 to 96, which are excluded in years 1 to 5, respectively. The five graphs in

the bottom row are for groups 95 to 91, which are excluded in years 6 to 10, respectively. The

units in the x-axis are years. All graphs are drawn for σs = 1.5, target expected excess return 6%,

target R-squared 25% and measures µAk = 7% of active investors, µIk = 63% of index investors

and µGk = 30% of green investors. We use µGk = 30%, which is twice the upper end of our

assumed range, to facilitate the comparison with the case where the measure of green investors

grows gradually over time, studied below. This is because the steady state from year 10 onward is

the same across both cases. The red dot in each graph shows the price and expected excess return

in the absence of green investors. These are the same for all stocks.

Green investors cause the prices of stocks in groups 91 to 100 to drop and the prices of stocks

in groups 1 to 90 to rise. The price drop in year 0 is largest for the stocks in group 100, which

24



-30%

-25%

-20%

-15%

-10%

-5%

0%

0 0.2 0.4 0.6 0.8 1
mu_G/(mu_A+mu_G)

Price change (%)

σˢ=0.5, year 0 σˢ=1.5, year 0
σˢ=0.5, year 0-10 σˢ=1.5, year 0-10

Figure 3: Price change in years 0 and 10 for the stocks in group 91, which are excluded from the
green index in year 10, as a function of ratio µGk

µAk+µGk
of the measure of green investors to the total

measure of active and green investors

are the first to be excluded, second largest for the stocks in group 99, and so on. The prices of

the stocks in each group from 91 to 100 drop discontinuously in year 0 because of the anticipated

future exclusion, then drop gradually until the exclusion date, and then stabilize. In year 10, prices

are the same for all stocks in groups 91 to 100 because all these stocks are excluded by that year.

The prices of the stocks in groups 1 to 90 rise discontinuously in year 0 because of the anticipation

that green investors will be investing in these stocks as they drop the stocks in groups 91 to 100.

They continue rising gradually until year 10, when the exclusion process is completed.

Expected returns move in the opposite direction to prices. They drop discontinuously in year 0

for stocks in groups 1 to 90, as their prices rise, and keep dropping gradually until year 10, as their

prices rise further. They rise discontinuously in year 0 for stocks in each group from 91 to 100, as

their prices drop, rise further on the year of exclusion, and then stabilize.
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Top panel: Prices

Bottom panel: Expected excess returns

Figure 4: Prices and expected excess returns for all stock groups, as a function of time, for measures
µAk = 7% of active investors, µIk = 63% of index investors and µGk = 30% of green investors
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We next examine the impact of green investors when the measures of the three types of investors

change over time. When the measure of green investors grows gradually over time to a value µGK′

in year K ′, stocks in groups 92 to 100 drop in price less in year 0 and more between years 0 and 10,

compared to the case where the measure of green investors is equal to µGK′ for the entire period.

Likewise, the expected returns of these stocks rise less in year 0 and more during years 0 and 10,

including after their year of exclusion. We illustrate these properties in Appendix B, in an example

where the measure of green investors grows linearly from 10% in year 0 to 30% in year 10, and the

ratio µIk
µAk+µIk

of the measure of active investors to the total measure of active and passive investors

is kept constant at 10%.

We finally analyze the effects of firm size. We do so by allowing firms in group 100 to differ in

size, with one firm to have four times as many shares as in our main calibration and the remaining

four firms to have one-fourth times as many shares. The total number of shares of the firms in

group 100 thus remains the same as in our main calibration (4× η+4× (1/4)η = 5η). When green

investors are 15% of the market and active investors are 10% of combined active and passive, the

price impact of green investors for the largest firm in group 100 ranges from 7.44% when σs = 0.5

to 12.57% when σs = 1.5, while that for the four smaller firms ranges from 0.79% when σs = 0.5

to 2.13% when σs = 1.5. Thus, the price impact for the largest firm is 2-3 times larger than in our

main calibration (2.75% when σs = 0.5 to 6.31% when σs = 1.5) and for the smaller firms is 3-4

times smaller.

5. Climate Risk

In this section we compute the equilibrium numerically when the loadings {bcn}n=1,..,KN on the

climate transition risk factor Dc
t are positive.

5.1 Parameter Values

We choose values for (r,K,N,K ′, T, κs, σs, {D̄n, b
s
n, κ

i
n, D̄

i
n, σ

i
n, ηn}n=1,..,KN , {µAk, µIk, µGk}k=0,..,K′ , ρ)

as in Section 4.1 with minor modifications described at the end of this section. In the pres-

ence of climate risk, we need to choose additionally values for ({bcn}n=1,..,KN , κc, σc). We set the
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mean-reversion and volatility parameters (κc, σc) of the climate factor equal to their counterparts

(κs, σs) for the business-cycle factor. We set the loadings {bcn}n=1,..,KN on the climate factor to

bc

(100+α−⌈ n
K
⌉)

γ , where (bc, α, γ) are positive constants. Climate loadings are the same for all firms

in the same group because of the term ⌈ n
K ⌉, which is the group number, and increase as the group

number rises from 1 to 100. Climate loadings are thus highest for the firms in group 100, which

are the first to be excluded from the green index, second highest for the firms in group 99, and so

on. We assume this monotonicity property because we are identifying climate loadings with firms’

GHG emissions, which increase as the group number rises from 1 to 100.

Our specification for climate loadings has the additional property that the increase in loadings

with group number occurs at an increasing rate. This generates a heavy right tail in the distribu-

tion of climate loadings. We assume this convexity property because firms’ GHG emissions exhibit

a heavy right tail. Indeed, Jondeau, Mojon, and Pereira Da Silva (2021) estimate that the most

polluting firms representing 1% of world market capitalization account for 15% of total carbon

emissions. Moreover, a policy that reduces emissions by 10% per year over ten years—a cumula-

tive reduction of 65% (= 1 − (1 − 10%)10)—requires excluding in total the most polluting firms

representing approximately 10% of market capitalization. We calibrate α and γ based on these

percentages, requiring that the sum of climate loadings bcn across the firms in Group 100 is 15% of

the sum of climate loadings across all firms, and the sum of climate loadings across the firms in

Groups 91 to 100 is 65% of the sum of climate loadings across all firms. The values of (α, γ) are

(5.83, 1.87).

The parameter bc determines the size of climate loadings in absolute terms (rather than their

relative comparison across firms, which is determined by (α, γ)). We calibrate bc based on the

relative size of shocks to the climate factor and to the business-cycle factor. Empirical estimates

on these shocks are not available to the best of our knowledge, but we consider two values that

generate a wide enough range. Under the first value, which is 1.5, climate shocks to dividends are

small: they are approximately 7% of business-cycle shocks for firms in group 100, 1% for firms in

group 90, and 0.03% for firms in group 1. Under the second value, which is 6, climate shocks to

dividends are significantly larger: they are approximately 30% of business-cycle shocks for firms in

group 100, 5% for firms in group 90, and 0.14% for firms in group 1.

28



We make two modifications to the parameter values chosen in Section 4.1. First, because climate

loadings differ across firms, stock return moments differ across firms even in the absence of green

investors. The targets for expected excess return and R-squared in the absence of green investors

cannot thus concern a common value of these moments across firms, as they do in Section 4.1. We

assume instead that they concern the average of the moments across firms. Second, because climate

loadings are positive, our normalization D̄n + bsn + bcn + D̄i
n = 1 no longer implies bs = 1 − D̄i.

We maintain the assumption of Section 4.1 that {bsn, D̄i
n}n=1,..,KN are independent of n and denote

them without the subscript n. To ensure that D̄n+ bsn+ bcn+ D̄i
n = 1 holds for all n when bcn differs

across firms, we reintroduce the constant component D̄n and assume that its variation offsets the

variation in bcn. We minimize D̄n by setting it to zero for the firms with the highest climate loading,

which are in Group 100. As in Section 4.1, minimizing D̄n maximizes return variances.

We report results for σs = 0.5 and σs = 1.5, for a target expected excess return of 6% and for

a target R-squared of 25%. The values of (bs, η) are (0.778, 0.00397) for σs = 0.5 and bc = 1.5,

(0.843, 0.00212) for σs = 1.5 and bc = 1.5, (0.71, 0.0211) for σs = 0.5 and bc = 6, and (0.743, 0.0139)

for σs = 1.5 and bc = 6. The relative size of climate to business-cycle shocks follows from these

values. Indeed, since the climate factor follows a square-root process with the same parameters as

the business-cycle factor, the relative size of climate to business-cycle shocks for firm n is the ratio

of factor loadings, i.e.,

bcn
bsn

=
bc

bs
(
100 + α− ⌈ n

K ⌉
)γ . (5.1)

Substituting (K, bs, bc, α, γ) into (5.1), we find the ratio of factor loadings as function of n.

5.2 Price Impact of Green Investors

We begin with the case bc = 1.5. In the absence of green investors, expected returns differ across

stocks because firms load differently on the climate factor. The cross-sectional standard deviation

of expected returns ranges from 6 bps when σs = 0.5 to 16 bps when σs = 1.5. The expected return

of stocks in group 100 exceeds that of stocks in group 1 by 42 bps when σs = 0.5 and 110 bps

when σs = 1.5. The difference across extreme groups is significantly larger than the cross-sectional
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standard deviation because the heavy right tail of climate loadings generates a heavy right tail of

expected returns.

We next add green investors and assume that µGk
µAk+µGk

takes the highest value in our calibration:

green investors are 15% of the investor population and active investors are 10% of active plus passive.

The cross-sectional standard deviation of expected returns rises to 11 bps when σs = 0.5 and to 22

bps when σs = 1.5. The difference between the expected return of stocks in group 100 and of stocks

in group 1 rises to 64 bps when σs = 0.5 and to 141 bps when σs = 1.5. Green investors raise the

expected return of the most polluting stocks by 22-30 bps. (This is approximately the change in the

expected return difference between groups 100 and 1 because the expected return of stocks in group

1 stays approximately constant.) The effect of green investors on expected returns is somewhat

larger than the counterpart effect in the absence of climate risk, which is 18-24 bps. The same is

true for the effect of green investors on prices: stocks in group 100 drop by 4.53% in year 0 when

σs = 0.5 and by 9.14% when σs = 1.5, while they drop by 2.75% and 6.01%, respectively, in the

absence of climate risk. The intuition why green investors have larger price impact in the presence

of climate risk is that climate risk introduces additional comovement between brown stocks, thus

raising the variance of a brown portfolio. As a result, active investors require a higher expected

return to buy brown stocks from green investors.

We next turn to the case bc = 6. In the absence of green investors, the cross-sectional standard

deviation of expected returns ranges from 96 bps when σs = 0.5 to 141 bps when σs = 1.5. The

expected return of stocks in group 100 exceeds that of stocks in group 1 by 741 bps when σs = 0.5

and 1170 bps when σs = 1.5. These effects are 9-18 times larger than when bc = 1.5. When green

investors are 15% of the investor population and active investors are 10% of active plus passive,

the cross-sectional standard deviation of expected returns rises to 107 bps when σs = 0.5 and to

155 bps when σs = 1.5. Moreover, the difference between the expected return of stocks in group

100 and stocks in group 1 rises to 835 bps when σs = 0.5 and to 1307 bps when σs = 1.5. Green

investors raise the expected return of the most polluting stocks by 93-136 bps. These effects are

2-5 times larger than when bc = 1.5. The effect of green investors on expected returns is likewise

significantly larger than in the absence of climate risk. The same is true for the effect of green

investors on prices: stocks in group 100 drop by 10.78% in year 0 when σs = 0.5 and by 13.61%
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when σs = 1.5.

Our analysis of climate risk delivers two main takeaways. The first concerns the impact of

green investors on prices and expected returns. That impact can be significantly larger than in

the absence of climate risk. The second concerns the drivers of expected return variation across

green and brown stocks. In the presence of climate risk, expected returns differ not only because of

the impact of green investors but also because brown stocks load more heavily on the climate risk

factor. Our analysis of climate risk determines the relative strength of the two effects. The effect of

climate risk on the cross-sectional standard deviation of expected returns is comparable to that of

divestment when climate shocks to dividends are small relative to business-cycle shocks (bc = 1.5),

and becomes dominant when climate shocks are larger (bc = 6). We draw the implications of this

result for empirical estimates of the effects of divestment in Section 6.

6. Relationship to Empirical Findings

One strand of the empirical literature on divestment estimates the effect of ESG flows on prices. To

map our results to the empirical findings, we consider the price changes caused by green investors

in the version of our model without climate risk. Van Der Beck (2023) estimates that a $1 flow into

ESG stocks raises their aggregate market value by $0.7. The aggregate flow into green stocks in

our model is approximately equal to green investors’ aggregate flow out of brown stocks. Assuming

that green investors are 15% of all investors and recalling that they exclude 50 brown stocks by year

10, the aggregate flow into green stocks by year 10 is 15%× 50×V , where V is the average market

capitalization of each stock (which is the same across stocks in the absence of green investors and

climate risk). Since green investors keep 450 green stocks in their portfolio after year 10, the rise

in the aggregate market value of these stocks by that year is ∆E(Snt)
E(Snt)

× 450 × V , where ∆E(Snt)
E(Snt)

is

computed as the green line in Figure 2 for year 10 rather than year 0. The ratio of the rise in the

aggregate market value of green stocks to the aggregate flow into green stocks thus is 9
15%

∆E(Snt)
E(Snt)

.

When passive investors are 50% of combined active and passive, that ratio ranges from 0.039-0.10.

When passive investors are 90%, the ratio ranges from 0.20-0.53. Therefore, our results are closer

to the 0.7 estimate in Van Der Beck (2023) when using the 90% upper bound. The results in Van
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Der Beck (2023), as well as the evidence surveyed in Gabaix and Koijen (2021) that suggests an

inverse elasticity of one for individual stocks (rather than 0.7 as in Van Der Beck (2023)), indicate

that truly active investors could be even less than 10% of combined active and passive.

Another strand of the empirical literature on divestment estimates the difference in expected

returns between brown and green stocks. As shown in Pastor, Stambaugh, and Taylor (2021), the

expected returns of green stocks can be lower than of brown stocks because (i) some investors prefer

to hold green stocks and (ii) green stocks outperform brown stocks following negative climate news.

The risk effect is present in our model only in its version with a climate risk factor in Section 5. To

map our results to the empirical findings, we use that version and assume that green investors are

15% of all investors and passive investors are 90% of combined active and passive. Our model not

only quantifies the difference in expected returns between brown and green stocks as a function of

underlying parameters, but also determines the relative size of the price impact and risk effects.

Bolton and Kacperczyk (2021) find an expected return increase of 180 bps per one standard

deviation decrease in firms’ scope 1 carbon emissions, with the effect rising to 290 bps for scope

2 emissions and to 400 bps for scope 3 emissions. The counterpart quantity in our model is the

cross-sectional standard deviation of expected returns. This is because expected returns in our

model vary across stocks only because of greenness. Among the two cases analyzed in Section 5,

our results are closer to the estimates in Bolton and Kacperczyk (2021) when bc = 6, which is when

climate shocks are approximately 30% of business-cycle shocks for firms in group 100 and 0.45%

for the average firm. The cross-sectional standard deviation of expected returns in that case ranges

from 107-155 bps. Out of that standard deviation, 11-14 bps are caused by the price impact of

green investors and the remainder is caused by stocks’ different loadings on the climate risk factor.

Eskildsen et al. (2024) find an expected return increase of 30 bps per one standard deviation

decrease in firms’ green score. Among the two cases analyzed in Section 5, our results are closer

to the estimate in Eskildsen et al. (2024) when bc = 1.5, which is when climate shocks are ap-

proximately 7% of business-cycle shocks for firms in group 100 and 0.45% for the average firm.

The cross-sectional standard deviation of expected returns in that case ranges from 11-22 bps.

Out of that standard deviation, 5-6 bps are caused by the price impact of green investors and the

remainder is caused by firms’ different loadings on the climate risk factor.
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7. Conclusion

We study how green investors impact firms’ stock prices and cost of capital in a model where

they interact dynamically with active and passive investors. Green investors track a capitalization-

weighted index that progressively excludes the brownest firms. Active investors hold a mean-

variance efficient portfolio of all firms. Passive investors track a capitalization-weighted index that

includes all firms. Passive investors can be interpreted broadly to include investors who are classified

as active but track indexes closely because of explicit or implicit constraints or trade infrequently

even in the absence of such constraints.

The index tracked by green investors captures within our model the mechanics of “net zero”

or “Paris aligned” indexes. We assume that 1% of the most polluting firms are excluded from the

green index each year for ten years. This yields an average reduction rate of carbon emissions of

10% per year, given the heavy right tail of the distribution of emissions. Green portfolios need to

generate such a reduction rate to stay roughly on a net zero trajectory by 2050. Since exclusion is

based on the emissions of individual firms and not on whether they belong to a particular sector (no

sector is a priori excluded), green investors could engage in a best-in-class approach and help the

development of green technologies, including in the energy and electricity production industries.

The impact of green investors in our calibration is significantly larger than in previous ones.

This is because of the passive investors, who cause stock price elasticities to be low and in line with

empirical estimates (e.g., Gabaix and Koijen 2021; Van Der Beck 2023). When the fraction of green

investors is 15% and active investors constitute 10% of the remainder, exclusion from the green

index raises the cost of capital of the brownest firms by 18-24 bps and lowers their stock prices by

2.8%-6.3%. These effects become larger in the presence of climate risk, under the assumption that

firms’ loadings on that risk reflect their emissions. When climate shocks are 30% of business-cycle

shocks for the brownest firms and 2% for the average firm, exclusion from the green index raises

the cost of capital of the brownest firms by 93-136 bps and lowers their stock prices by 10.8-13.6%.

We assume perfect foresight regarding the timing of exclusion and the set of firms to be excluded.

Because of this assumption, a significant fraction of the price decline due to future exclusion is

anticipated in the current price—70% for the firms to be excluded after ten years. In practice,
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exclusion might not be perfectly predictable. This would attenuate the immediate effects and

strengthen the gradual subsequent effects. The ultimate effects (after ten years) would remain

the same. Because the effects of net zero investment on stock prices are gradual, a first-mover

advantage could arise among investors who consider greening their portfolio.

Our analysis focuses on the impact of green investors on stock prices and does not account

for linkages between stock prices and corporate investment. One linkage relates to incentives: in a

similar spirit to Heinkel, Kraus, and Zechner (2001), firms would seek to decarbonize faster to avoid

their exclusion from the green index. A meaningful analysis of incentives would require treating

the composition of the green index as endogenous. The composition of the green index might still

be deterministic in the equilibrium path, so our perfect foresight assumption regarding the timing

of exclusion and the set of firms to be excluded might hold.7 Another linkage is that the drop in

the stock prices of the brownest firms when they are excluded from the green index could force

them to cut down on investment, further accentuating the drop. This could strengthen incentives,

but could also result perversely in brown firms finding it costlier to invest in greening their business

model (Hartzmark and Shue 2024). Extending our analysis to incorporate real investment and its

two-way feedback with stock prices is a promising direction of future research.

7The following simple example illustrates why perfect foresight might hold in the presence of incentives. There
are only two firms, 1 and 2. Firm 2 is the brownest initially. Firms can become greener by making an investment,
with firm 1 deciding first and firm 2 deciding second after observing firm 1’s decision. The green index excludes the
firm that is the brownest after investments are made.

If investments are not possible (as in our model), then firm 2 is excluded from the green index because it is the
brownest initially. If investments are possible, then firm 2 is again excluded. Moreover, if firm 2 is not much browner
than firm 1 initially, then firm 1 makes the investment. Indeed, firm 1 knows that if it does not make the investment
then firm 2 will make it and become greener than firm 1, causing firm 1 to be excluded.
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Appendix – For Online Publication

A. Proof of Proposition 3.1

We first derive the first-order conditions of passive and green investors. Taking the first-order

condition in (3.5), we find

KN∑
n=1

ηnµ
u
nk−ρλIk

∑
j=s,c

(
KN∑
n=1

ηnb
j
n

)2

(σj)2Eu
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2Dj
t

]
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η2n(σ
i
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2Eu
k

[
(ain1t)

2Di
nt

] = 0. (A.2)

Using the definition of µu
nk and the first-order condition (3.8) of active investors, we can write (A.2)

as
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Rearranging (A.3) and taking (as1t, a
c
1t, {ain1t}n=1,..,N ) to be constant in [K ′T,∞), we find
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for [K ′T,∞). We likewise find
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for [kT, (k + 1)T ) and k = 0, ..,K ′ − 1. Following the same steps, we can write the first-order

condition of green investors as
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for [K ′T,∞), and
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for [kT, (k + 1)T ) and k = 0, ..,K ′ − 1.

We next determine aj1t for j = s, c. Identifying terms in Dj
t in (3.8) yields the ODE

1− (r + κj)aj1t − gjk(a
j
1t)

2 +
daj1t
dt

= 0. (A.8)

When k = 0, ..,K ′ − 1, (A.8) is defined over t ∈ [kT, (k + 1)T ), and when k = K ′, (A.8) is defined

over t ∈ [K ′T,∞). When k = K ′, we look for a constant solution of (A.8), corresponding to the

steady state. Such a solution āj1K′ must satisfy the quadratic equation

1− (r + κj)āj1K′ − gjK′(ā
j
1K′)

2 = 0. (A.9)
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Equation (A.9) has two solutions if

(r + κj)2 + 4gjK′ > 0,

which we assume. We focus on the smaller solution, which is the continuous extension of the

unique solution when gjK′ = 0, and is as in the proposition. When k = 0, ..,K ′ − 1, we solve (A.8)

recursively with terminal condition limt→(k+1)T aj1t = aj1,(k+1)T . We find
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−

gjk
gjka

j
1t +

1
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which yields (3.9).

We next determine ain1t. Identifying terms in Di
nt in (3.8) yields the ODE

1− (r + κin)a
i
n1t − gink(a

i
n1t)

2 +
dain1t
dt

= 0. (A.10)

When k = 0, ..,K ′−1, (A.10) is defined over t ∈ [kT, (k+1)T ), and when k = K ′, (A.10) is defined

over t ∈ [K ′T,∞). When k = K ′, we look for a constant solution of (A.10). Proceeding as for aj1t,

we find āin1K′ in the proposition. When k = 0, ..,K ′ − 1, we solve (A.10) recursively with terminal

condition limt→(k+1)T ain1t = ain1,(k+1)T . Proceeding as for aj1t, we find (3.10).
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Identifying the remaining terms yields the ODE
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For t ∈ [K ′T,∞), the solution is constant and equal to
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B. Alternative Calibration

Figure B.1 is the counterpart of Figure 4 when the measure of green investors grows linearly from

10% in year 0 to 30% in year 10, and the ratio µIk
µAk+µIk

of the measure of passive investors to the

total measure of active and passive investors is kept constant at 90%.
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Top panel: Prices

Bottom panel: Expected excess returns

Figure B.1: Prices and expected excess returns for all stock groups, as a function of time, for
σs = 1.5, target expected excess return 6%, target R-squared 25%, measure µGk of green investors
growing linearly from 10% in year 0 to 30% in year 10, and ratio µIk

µAk+µIk
of the measure of passive

investors to the total measure of active and passive investors kept constant at 90%
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