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Abstract

We study how passive investing affects asset prices. Flows into passive funds disproportion-

ately raise the stock prices of the economy’s largest firms, and especially those large firms in

high demand by noise traders. Because of this effect, the aggregate market can rise even when

flows are entirely due to investors switching from active to passive funds. Intuitively, passive

flows increase the idiosyncratic risk of large firms in high demand, which discourages investors

from correcting the flows’ effects on prices. Consistent with our theory, prices and idiosyncratic

volatilities of the largest S&P500 firms rise the most following flows into that index.
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1 Introduction

One of the most important capital-market developments of the past thirty years has been the

growth of passive investing. Passive funds track market indices and charge lower fees than active

funds. In 1993, passive funds invested in US stocks managed $23 billion of assets and accounted

for 0.44% of the US stock market. By 2021, passive assets had risen to $8.4 trillion and accounted

for 16% of the market.1 The growth of passive investing has been estimated to be more than twice

as high when accounting for the increasing tendency by actively managed mutual funds and other

institutional investors to stay close to their benchmark indices.2

The growth of passive investing has stimulated academic and policy interest in how it affects

asset prices and the real economy. One effect that has been emphasized, drawing on the literature on

rational expectations equilibria (REE) with asymmetric information (Grossman (1976), Grossman

and Stiglitz (1980)), is that with fewer active funds, individual stocks become less liquid and their

prices less informative. Another effect, drawing on the literature on index additions (Harris and

Gurel (1986), Shleifer (1986)), is that the prices of the stocks included in the indices tracked by

passive funds rise, while the prices of non-index stocks do not.

In this paper we show that the growth of passive investing disproportionately raises the stock

prices of the economy’s largest firms, and especially those large firms in high demand by noise

traders. Passive investing thus reduces primarily the financing costs of the largest firms and makes

the size distribution of firms more skewed. These effects are generated by a different mechanism

than in the REE and index-addition literatures because information in our model is symmetric and

the effects arise even when indices include all firms. We also show that the effects on the largest

firms can be sufficiently strong to cause the aggregate market to rise even when the growth of passive

funds comes entirely from investors switching from active funds (and not from new investors entering

into stocks). Passive investing thus biases the stock market towards overvaluation. Consistent with

1The data come from the 2022 Investment Company Institute (ICI) Factbook (Figure 2.9 and Tables 11 and 42)
and from https://data.worldbank.org/indicator/CM.MKT.LCAP.CD?locations=US. We identify passive funds with
index mutual funds and exchange-traded funds (ETFs), and identify more generally passive investing with indexing
throughout this paper.

2A measure of how far active funds stray from their benchmark indices is active share, defined in Cremers and
Petajisto (2009). Petajisto (2013) finds that active share has been declining over time. Chinco and Sammon (2024)
estimate that passive investing under its broader definition comprised 33.3% of the US stock market in 2021.
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our theory, we find that the prices of the largest firms in the S&P500 index rise the most following

flows into that index.

The intuition for our results can be conveyed through a stylized example. Consider a large firm

that is in such high demand by noise traders (e.g., retail investors) that active funds short-sell it in

equilibrium.3 A switch by some investors from active to passive funds generates additional demand

for the firm because passive funds hold the firm with its weight in the market index while active

funds hold it with negative weight. Active funds can accommodate the additional demand by scaling

up their short position. This renders them, however, more exposed to the firm’s idiosyncratic risk,

which is non-negligible because the firm is large. The firm’s stock price must then rise to induce

active funds to take on the additional risk. Crucially, because the stock price rises, the stock’s

idiosyncratic price movements become larger in absolute terms. This gives rise to an amplification

loop: the short position of active funds becomes even riskier, causing the stock’s price to rise even

further, and the stock’s idiosyncratic price movements to become even larger.

The amplification loop explains why passive flows have their largest effects on large firms in

high demand by noise traders. It also explains why the effects of passive flows on these firms can

be sufficiently strong so that a switch from active to passive causes the aggregate market to rise

even though other firms might drop. It further explains why passive flows raise the idiosyncratic

volatility of large firms more than of smaller firms, a result that we confirm empirically.

In our model, presented in Section 2, agents can invest in a constant riskless rate and in multiple

stocks, over an infinite horizon. Each stock’s dividend flow per share is the sum of a constant

component and of a systematic and an idiosyncratic component that follow independent square-

root processes. Some agents, the experts, can invest in all assets without constraints. They can be

interpreted as investors holding actively managed mutual funds and ETFs as well as hedge funds.

Other agents, the non-experts, can only invest in the riskless asset and in a capitalization-weighted

index. They can be interpreted as investors holding passive funds. Experts and non-experts

maximize a mean-variance objective over instantaneous changes in wealth. Noise traders can also

3Active funds in this example can be more naturally interpreted as hedge funds rather than as actively managed
mutual funds because the former can short-sell but the latter typically cannot. The interpretation can be broadened,
however, to actively managed mutual funds that must keep their deviations from market indexes within tracking-error
bounds. Indeed, because of the bounds, the mutual funds face a risk from underweighting large firms, and that risk
increases when firms’ stock prices rise.
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be present, and hold a number of shares of each stock that is constant over time.

In the equilibrium of the model, derived in Section 3, the price of a stock is the sum of the present

values of the constant, systematic and idiosyncratic dividends. The discount rate for idiosyncratic

dividends increases in the stock’s supply held by experts, and is approximately equal to the riskless

rate for all but the largest stocks. The discount rate for systematic dividends increases in the

aggregate supply of all stocks held by experts.

Section 4 shows analytically how stock prices respond to an increase in the measure of non-

experts. When the measure of experts is held constant in this exercise, passive flows are due to entry

by new investors into the stock market. When instead the measure of experts and non-experts is

held constant, passive flows are due to a switch from active to passive. In a CAPM world where the

index includes all stocks and noise traders are absent, a switch from active to passive leaves stock

prices unchanged because experts and non-experts hold the same portfolio. When instead passive

flows are not entirely due to a switch from active, their effect is an increasing function of CAPM

beta for all but the largest stocks, and exceeds that function for the largest stocks. Intuitively,

passive flows lower the market risk premium, and this lowers the discount rates for systematic and

idiosyncratic dividends. The effect on the largest stocks is disproportionately large because changes

to the idiosyncratic discount rate (i) are approximately equal to zero for all but the largest stocks

and (ii) have a larger effect on the present value of idiosyncratic dividends than equal changes to the

systematic discount rate have on the present value of systematic dividends due to the idiosyncratic

rate being lower than the systematic rate.

Section 5 calibrates the model using data on moments of stock returns and the size distribution

of firms. The calibration assumes approximately 1,700 firms sorted into five size groups based on

the aggregate dividends that firms pay to their shareholders. The assumed size distribution of

firms conforms to a power law with exponent one, consistent with the empirical evidence (Axtell

(2001)). We consider the case where the relative size of the systematic and idiosycratic components

of dividends is the same for all stocks, and the case where the systematic component decreases with

firm size in a way that generates the empirical negative relationship between size and CAPM beta

(Fama and French (1992)). Consistent with the analytical results of Section 4, passive flows have

disproportionately large effects on the firms in the largest size group. Furthermore, when noise
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traders are present, the effects of passive flows are strongest for those firms in the largest size group

that are in high demand by noise traders.

Section 6 presents tests of our theory and relates our results to empirical findings in the litera-

ture. We take the index to be the S&P500 and flows to be into index mutual funds and index ETFs

tracking it. Our flow data are quarterly from 1996 to 2020. During quarters when index funds

receive high inflows, the largest stocks in the index outperform the index. Following the same quar-

ters, the idiosyncratic return volatility of the largest stocks increases more than of smaller stocks.

In an additional test, we find that the largest stocks in the S&P600 index, which is made of small

stocks, do not outperform that index following passive flows into it. This aligns with our theoretical

results: passive flows into an index disproportionately raise the stock prices of the index’s largest

firms only when these firms are also the largest in the economy.

The effects of passive investing have mainly been analyzed within the framework proposed by

Grossman and Stiglitz (1980, GS), in which informed and uninformed investors trade with noise

traders. Informed and uninformed investors in GS can be interpreted as active and passive fund

managers, respectively. A switch from active to passive lowers informational efficiency and can

exacerbate the mispricing induced by noise traders.4 The interpretation of GS investors as fund

managers is developed in Garleanu and Pedersen (2018), in which investors search for informed

managers, and the efficiency of the search market for managers affects the efficiency of the asset

market. In Subrahmanyam (1991), the introduction of a market index facilitates passive investing

and lowers liquidity for the assets that comprise the index. A switch from active to passive exac-

erbates noise-trader mispricing in our model as well. Our main results, however, concern how the

effects of passive flows depend on stock size, and hold even in the absence of noise traders.5

4Pastor and Stambaugh (2012) and Stambaugh (2014) explain an increase in market efficiency, as reflected in a
decline in active funds’ expected returns, by the increase in the assets that active funds manage and by the decline
in noise trading, respectively.

5Some papers show that the rise in passive investing can raise informational efficiency for individual stocks. In
Bond and Garcia (2022), a decrease in the costs of index investing induces uninformed traders to switch to trading
the index from trading individual stocks, and this lowers informational efficiency for the index but raises it for
individual stocks. In Buss and Sundaresan (2023) passive investing can increase market efficiency when corporate
investment responds to stock prices. On the empirical side, Ben-David, Franzoni, and Moussawi (2018) and Da and
Shive (2018) find that the introduction of ETFs lowers informational efficiency for the underlying stocks because non-
fundamental demand shocks spill over across stocks. Brogaard, Ringgenberg, and Sovich (2018) likewise find that the
introduction of commodity indices results in worse production decisions by commodity firms. Ben-David, Franzoni,
Kim, and Moussawi (2022) find additionally that ETFs are often introduced to cater to investor sentiment. Bhojraj,
Mohanram, and Zhang (2020) find instead that the introduction of sector ETFs renders stock prices more responsive
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A different literature studies how constraints or incentives of fund managers to not deviate

from their benchmark indices affect asset prices. Brennan (1993), Kapur and Timmermann (2005),

Cuoco and Kaniel (2011) and Basak and Pavlova (2013) show that compensating managers based on

their performance relative to indices induces them to buy index assets, causing their prices to rise.

Davies (2024) shows that passive flows have their strongest positive effects on the prices of stocks

with high CAPM beta or in high demand by noise traders. Our model nests these results while

also yielding the effects for the largest stocks. Chabakauri and Rytchkov (2021) show that passive

flows cause market volatility to decrease when they are due to a switch from active to passive,

and to increase when they are due to entry by new investors into the stock market. Our model is

closest to Buffa, Vayanos, and Woolley (2022, BVW), who examine how constraints on managers’

deviations from indices affect asset prices. We depart from BVW by introducing systematic risk

and a size distribution of firms.

Our theory has implications for recent macroeconomic trends such as the rise in industry con-

centration and the decline in corporate investment. Autor, Dorn, Katz, Patterson, and van Reenen

(2020) show that the rise of superstar firms can account for the rise in concentration (Grullon,

Larkin, and Michaely (2019)) and the decline in the labor share (Elsby, Hobijn, and Sahin (2013),

Karabarbounis and Neiman (2014)). Our theory suggests that the growth of passive investing can

be one factor behind the rise of superstar firms, through the steeper decline of their financing costs.

Alexander and Eberly (2018) and Crouzet and Eberly (2023) attribute the decline in corporate

investment (Hall (2014)) to intangible capital, while Gutiérrez and Philippon (2017) and Covarru-

bias, Gutiérrez, and Philippon (2019) show that the rise in concentration and changes in corporate

governance are additional causes. Our theory suggests that the growth of passive investing may also

have played a role because large overvalued firms experience the steepest decline in their financing

costs but may not have the best investment projects.6

to sector-level fundamental information. Glosten, Nallareddy, and Zou (2020) likewise find that ETFs render stock
prices more responsive to economy-wide information, in the case of small stocks or stocks with low analyst coverage.
Antoniou, Li, Liu, Subrahmanyam, and Sun (2022) find that ETFs cause firms’ investment decisions to become more
tightly linked to stock prices. Coles, Heath, and Ringgenberg (2022) and Koijen, Richmond, and Yogo (2024) find
that the growth of passive investing does not have a significant impact on market efficiency. Haddad, Huebner, and
Loualiche (2025) find that the growth of passive investing is associated with less price-elastic asset demand curves.

6Gutiérrez and Philippon (2017) find that firms with a large share of ownership by passive funds invest less. They
emphasize governance-based explanations rather than valuation-based ones.
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2 Model

Time t is continuous and goes from zero to infinity. The riskless rate is exogenous and equal to

r > 0. There are N firms indexed by n = 1, .., N . The stock of firm n, also referred to as stock n,

pays dividend flow Dnt per share and is in supply of ηn > 0 shares. The dividend flow of stock n

is

Dnt = D̄n + bnD
s
t +Di

nt, (2.1)

the sum of a constant component D̄n ≥ 0, a systematic component bnD
s
t and an idiosyncratic

component Di
nt. The systematic component is the product of a systematic factor Ds

t times a factor

loading bn ≥ 0. The systematic factor follows the square-root process

dDs
t = κs

(
D̄s −Ds

t

)
dt+ σs

√
Ds

tdB
s
t , (2.2)

where (κs, D̄s, σs) are positive constants andBs
t is a Brownian motion. The idiosyncratic component

follows the square-root process

dDi
nt = κin

(
D̄i

n −Di
nt

)
dt+ σi

n

√
Di

ntdB
i
nt, (2.3)

where {κin, D̄i
n, σ

i
n}n=1,..,N are positive constants and {Bi

nt}n=1,..,N are Brownian motions that are

mutually independent and independent of Bs
t . By possibly redefining factor loadings and the

parameters of the square-root process (2.2), we set the long-run mean D̄s of the systematic factor

to one. By possibly redefining the supply ηn, the factor loading bn and the parameters of the

square-root process (2.3), we set the long-run mean D̄n + bn + D̄i
n of the dividend flow of stock n

to one for all n.

Our specification (2.1)-(2.3) for dividends differs from typical specifications in the asset-pricing

literature in two main respects. First, dividends are typically assumed to be non-stationary, while

our specification yields stationarity because the systematic and idiosyncratic components of divi-

dends mean-revert. Second, the volatility of dividends per share is typically assumed proportional
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to their level. That is the case, for example, when dividends follow a geometric Brownian motion.

Under our specification instead, the volatility of the systematic and idiosyncratic components of

dividends is proportional to the square root of their level.

Our model yields a non-stationary specification in the limit where the mean-reversion param-

eters (κs, {κin}n=1,..,N ) converge to zero. The analytical results shown in Section 4 carry through

to that limit. Moreover, the calibration results shown in Section 5 remain similar across different

values of (κs, {κin}n=1,..,N ). Thus, while stationarity yields a stochastic steady state in which we

can compute unconditional moments of returns, it does not seem important for our results.

We assume that the volatility of dividends per share is proportional to the square-root of their

level rather than to the level itself for tractability. The square-root specification preserves two

important properties of typical specifications. First, dividends always remain positive. This is

because when they converge to zero, their volatility converges to zero while their mean reversion

pulls them towards their positive long-run mean. Second, the volatility of dividends per share

increases in their level. This property is key for our results as we explain in Sections 3 and 4.

In Appendix C we show that the volatility of dividends per share of individual firms in the data

increases in the level of dividends per share. Moreover, the increase appears to be concave rather

than linear, consistent with a square-root specification. In Appendix D we show in a three-period

model that results when the volatility of dividends per share is proportional to their level or to the

square-root of their level are similar. We confine ourselves to three periods in Appendix D to ensure

that the analysis of the level specification remains tractable, and we eliminate the mean-reversion

so that the level specification becomes a geometric random walk.

Denoting by Snt the price of stock n, the stock’s return per share in excess of the riskless rate

is

dRsh
nt ≡ Dntdt+ dSnt − rSntdt, (2.4)

and the stock’s return per dollar in excess of the riskless rate is

dRnt ≡
dRsh

nt

Snt
=

Dntdt+ dSnt

Snt
− rdt. (2.5)
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We refer to dRsh
t as share excess return. We refer to dRt as excess return, omitting that it is per

dollar. All moments that we compute in our calibration in Section 5 concern dRt.

Agents are competitive and form overlapping generations living over infinitesimal time intervals.

We assume infinitesimal lifespans for tractability because they yield simple mean-variance prefer-

ences as we show below. Each generation of agents includes experts and non-experts. Experts can

invest in the riskless asset and in the stocks without constraints. These agents can be interpreted

as investors holding actively managed mutual funds and ETFs as well as hedge funds. Non-experts

can invest in the riskless asset and in a stock portfolio that tracks an index. These agents can be

interpreted as investors holding passive funds.7

In addition to experts and non-experts, noise traders can be present. These agents generate an

exogenous demand for each stock, which is smaller than the supply coming from the issuing firm.

For tractability, we take the demand by noise traders to be constant over time when expressed in

number of shares. A constant demand can capture slowly mean-reverting market sentiment. When

noise traders are absent, or when their demand is proportional to the firm-issued supply in the

cross-section of stocks, experts and non-experts hold the same portfolio of stocks in equilibrium.

The index includes all stocks or a subset of them. It is capitalization-weighted over the stocks

that it includes, i.e., weights them proportionately to their market capitalization. We refer to the

included and the non-included stocks as index and non-index stocks, respectively. We denote by

I the subset of index stocks, by Ic its complement and by η′n the number of shares of stock n

included in the index. Since the index is capitalization-weighted over the stocks that it includes,

η′n for n ∈ I is proportional to the number of shares ηn issued by firm n. By possibly rescaling the

index, we set η′n = ηn for n ∈ I. For n ∈ Ic, η′n = 0.

We denote by W1t and W2t the wealth of an expert and a non-expert, respectively, by z1nt and

z2nt the number of shares of stock n that these agents hold, and by µ1 and µ2 these agents’ measure.

A non-expert thus holds z2nt = λη′n shares of stock n, where λ is a proportionality coefficient that

the agent chooses optimally. We assume for tractability that non-experts choose λ once and for

all at time zero and under the unconditional distribution of dividends. We denote by un < ηn the

7Investors’ choice to invest in active or passive funds can result from trading off the superior returns on active
funds with their higher fees, in the spirit of Grossman and Stiglitz (1980).
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number of shares of stock n held by noise traders.

Experts and non-experts born at time t are endowed with wealth W . Their budget constraint

is

dWit =

(
W −

N∑
n=1

zintSnt

)
rdt+

N∑
n=1

zint(Dntdt+ dSnt) = Wrdt+
N∑

n=1

zintdR
sh
nt , (2.6)

where dWit is the infinitesimal change in wealth over their life, i = 1 for experts, and i = 2

for non-experts. They have mean-variance preferences over dWit. Given infinitesimal lifespans,

mean-variance preferences can be derived from any VNM utility u, using the second-order Taylor

expansion

u(W + dWit) = u(W ) + u′(W )dWit +
1

2
u′′(W )dW 2

it + o(dW 2
it). (2.7)

Experts maximize the conditional expectation of (2.7). This is equivalent to maximizing

Et(dW1t)−
ρ

2
Vart(dW1t) (2.8)

with ρ = −u′′(W )
u′(W ) , because infinitesimal dW1t implies that Et(dW

2
1t) is equal to Vart(dW1t) plus

smaller-order terms. Non-experts maximize the unconditional expectation of (2.7). This is equiva-

lent to maximizing

E(dW2t)−
ρ

2
Var(dW2t), (2.9)

because infinitesimal dW2t implies that E(dW 2
2t) is equal to Var(dW2t) plus smaller-order terms.

3 Equilibrium

We look for an equilibrium where the price Snt of stock n is

Snt = S̄n + bnS
s(Ds

t ) + Si
n(D

i
nt), (3.1)
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the sum of the present value S̄n of dividends from the constant component, the present value

bnS
s(Ds

t ) of dividends from the systematic component, and the present value Si
n(D

i
nt) of divi-

dends from the idiosyncratic component. Assuming that the functions (Ss(Ds
t ), S

i
n(D

i
nt)) are twice

continuously differentiable, we can write the share excess return dRsh
nt of stock n as

dRsh
nt = (D̄n + bnD

s
t +Di

nt)dt+ (bndS
s(Ds

t ) + dSi
n(D

i
nt))− r

(
S̄n + bnS

s(Ds
t ) + Si

n(D
i
nt)
)
dt

= µntdt+ bnσ
s
√

Ds
t (S

s)′(Ds
t )dB

s
t + σi

n

√
Di

nt(S
i
n)

′(Di
nt)dB

i
nt, (3.2)

where

µnt ≡
Et(dR

sh
nt)

dt
= D̄n − rS̄n

+ bn

[
Ds

t + κs(1−Ds
t )(S

s)′(Ds
t ) +

1

2
(σs)2Ds

t (S
s)′′(Ds

t )− rSs(Ds
t )

]
+Di

nt + κin(D̄
i
n −Di

nt)(S
i
n)

′(Di
nt) +

1

2
(σi

n)
2Di

nt(S
i
n)

′′(Di
nt)− rSi

n(D
i
nt) (3.3)

is the instantaneous expected share excess return on stock n, and the second step in (3.2) follows

from (2.2), (2.3) and Ito’s lemma.

Using (2.6) and (3.2), we can write the objective (2.8) of experts as

N∑
n=1

z1ntµnt −
ρ

2

( N∑
n=1

z1ntbn

)2

(σs)2Ds
t [(S

s)′(Ds
t )]

2 +

N∑
n=1

z21nt(σ
i
n)

2Di
nt[(S

i
n)

′(Di
nt)]

2

 . (3.4)

Using (2.6), (3.2) and z2nt = λη′n, we can likewise write the objective (2.9) of non-experts as

N∑
n=1

λη′nµn−
ρ

2
λ2

( N∑
n=1

η′nbn

)2

(σs)2E
[
Ds

t [(S
s)′(Ds

t )]
2
]
+

N∑
n=1

(
η′n
)2

(σi
n)

2E
[
Di

nt[(S
i
n)

′(Di
nt)]

2
] ,

(3.5)

where µn ≡ E(dRsh
nt)

dt = E(µnt). Experts maximize (3.4) over positions {z1nt}n=1,..,N . Non-experts

maximize (3.5) over λ. Taking the first-order condition in (3.4) and substituting {z1nt}n=1,..,N from
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the market clearing equation

µ1z1nt + µ2λη
′
n + un = ηn, (3.6)

which requires that the demand of experts, non-experts and noise traders equals the supply coming

from the issuing firm, we find

µnt = ρ

[
bn

(
N∑

m=1

ηm − µ2λη
′
m − um

µ1
bm

)
(σs)2Ds

t [(S
s)′(Ds

t )]
2 +

ηn − µ2λη
′
n − un

µ1
(σi

n)
2Di

nt[(S
i
n)

′(Di
nt)]

2

]
.

(3.7)

We look for functions (Ss(Ds
t ), S

i
n(D

i
nt)) that are affine in their arguments,

Ss(Ds
t ) = as0 + as1D

s
t , (3.8)

Si
n(D

i
nt) = ain0 + ain1D

i
nt, (3.9)

for positive constants (as0, a
s
1, {ain0, ain1}n=1,..,N ). Substituting (3.3), (3.8) and (3.9) into (3.7), we

can write (3.7) as

D̄n − rS̄n + bn [D
s
t + κsas1(1−Ds

t )− r(as0 + as1D
s
t )] +Di

nt + κina
i
n1(D̄

i
n −Di

nt)− r(ain0 + ain1D
i
nt)

= ρ

[
bn

(
N∑

m=1

ηm − µ2λη
′
m − um

µ1
bm

)
(σsas1)

2Ds
t +

ηn − µ2λη
′
n − un

µ1
(σi

na
i
n1)

2Di
nt

]
. (3.10)

Identifying terms in Ds
t yields a quadratic equation that determines as1. Identifying terms in Di

nt

yields a quadratic equation that determines ain1. Identifying the remaining terms yields S̄n +

bna
s
0 + ain0. Substituting (as1, {ain1}n=1,..,N ) into the first-order condition of non-experts yields an

equation for λ, whose solution completes our characterization of the equilibrium. Proposition 3.1

characterizes the equilibrium. The proposition’s proof is in Appendix A, where all proofs are

gathered.
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Proposition 3.1. In equilibrium, the price of stock n is

Snt =
D̄n

r
+ bna

s
1

(
κs

r
+Ds

t

)
+ ain1

(
κin
r
D̄i

n +Di
nt

)
, (3.11)

where

as1 =
2

r + κs +

√
(r + κs)2 + 4ρ

(∑N
m=1

ηm−µ2λη′m−um

µ1
bm

)
(σs)2

, (3.12)

ain1 =
2

r + κin +
√
(r + κin)

2 + 4ρηn−µ2λη′n−un

µ1
(σi

n)
2
, (3.13)

and λ > 0 solves

(
N∑

m=1

η′mbm

)(
N∑

m=1

(ηm − um)bm

)
(σsas1)

2 +
N∑

m=1

η′m(ηm − um)(σi
maim1)

2D̄i
m

= (µ1 + µ2)λ

( N∑
m=1

η′mbm

)2

(σsas1)
2 +

N∑
m=1

(
η′m
)2

(σi
maim1)

2D̄i
m

 . (3.14)

The price depends on (µ1, µ2, σ
s, {bm, σi

m, ηm, η′m, um}m=1,..,M ) only through
(∑N

m=1
ηm−µ2λη′m−um

µ1
bm

)
(σs)2

and ηn−µ2λη′n−un

µ1
(σi

n)
2, and is decreasing and convex in the latter two variables.

The present value S̄n of the dividends of stock n that come from the constant component is

D̄n
r . This is because constant dividends are discounted at the riskless rate r. The present value

bnS
s(Ds

t ) of dividends coming from the systematic component is bna
s
1

(
κs

r +Ds
t

)
, and the present

value of dividends coming from the idiosyncratic component is ain1

(
κi
nD̄

i
n

r +Di
nt

)
. The coefficients

as1 and ain1 are inversely proportional to the discount rates. Indeed, when Ds
t is equal to its long-

run mean of one and hence all future expected systematic dividends are equal to bn, the stream of

these dividends is multiplied by as1
(
κs

r + 1
)
and is thus discounted at the rate r

as1(κ
s+r) . Likewise,

when Di
nt is equal to its long-run mean of D̄i

n, the stream of expected idiosyncratic dividends D̄i
n

is discounted at the rate r
ain1(κ

i+r)
.

Supply affects the discount rate for systematic dividends through
(∑N

m=1
ηm−µ2λη′m−um

µ1
bm

)
(σs)2.

This is a risk-adjusted measure of the aggregate supply of stocks that each expert holds in equi-
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librium, and we refer to it as systematic supply. Supply affects the discount rate for idiosyncratic

dividends through ηn−µ2λη′n−un

µ1
(σi

n)
2. This is a risk-adjusted measure of the supply of stock n held

by each expert, and we refer to it as idiosyncratic supply. We calculate systematic and idiosyncratic

supply as follows. The supply of stock n held by all experts combined is equal to the supply ηn

coming from the issuing firm, minus the demand µ2λη
′
n and un coming from non-experts and noise

traders, respectively. We express it in per-expert terms by dividing by the measure µ1 of experts.

In the case of systematic supply, we risk-adjust by multiplying by the factor loading bn of stock n

and by the square of the diffusion parameter σs of the systematic factor, and we aggregate across

all stocks. In the case of idiosyncratic supply, we multiply by the square of the diffusion parameter

σi
n of the idiosyncratic component of the dividends of stock n.

A reduction in systematic or idiosyncratic supply lowers the discount rate of the corresponding

component of dividends. The present value of dividends goes up and its movements become larger

in absolute terms. Supply generates a positive relationship between price level and price volatility

because discounting for risk works multiplicatively. When supply drops, as1 and ain1 rise, and so do

price level and price volatility. Discounting is multiplicative in our model because the volatility of

dividends per share is assumed to increase in their level. By contrast, in CARA-normal models,

where the volatility of dividends per share is constant, discounting for risk works additively, by

discounting expected dividends at the riskless rate and subtracting a term. A reduction in supply

in those models raises the price level but does not affect price volatility. A CARA-normal version

of our model would generate none of our main results for that reason.8 Our assumption that the

volatility of dividends per share increases in their level is thus key.

4 Passive Flows and Stock Prices—Analytical Results

Passive flows in our model correspond to an increase in the measure µ2 of non-experts. These flows

can arise because of entry by new investors into the stock market, in which case the measure µ1 of

experts is not changing, or because of a switch by investors from active to passive, in which case µ1

8The effect of passive flows in such a model would depend only on CAPM beta, without any effect of size. Moreover,
a switch by investors from active to passive would leave the value of the index unchanged. Proofs of these results in
a two-period model are available upon request.
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decreases. We nest the two cases by assuming that when µ2 increases, µ1 decreases by an amount

equal to a fraction ϕ ∈ [0, 1] of the increase in µ2.

Proposition 4.1. Suppose that µ2 increases and µ1 decreases by an amount equal to a fraction

ϕ ∈ [0, 1] of the increase in µ2. The percentage change in the price of stock n is

1

Snt

dSnt

dµ2
=

ρ

µ1Snt

[
bn

(
N∑

m=1

∆mbm

)
(σsas1)

2

(
κs

r
+Ds

t

)
F s +∆n(σ

i
na

i
n1)

2

(
κin
r
D̄i

n +Di
nt

)
F i
n

]
,

(4.1)

where

∆n ≡ −µ1
d

dµ2

(
ηn − µ2λη

′
n − un

µ1

)
=

d(µ2λ)

dµ2
η′n + ϕ

µ2λη
′
n + un − ηn
µ1

, (4.2)

F s ≡ 1√
(r + κs)2 + 4ρ

(∑N
m=1

ηm−µ2λη′m−um

µ1
bm

)
(σs)2

, (4.3)

F i
n ≡ 1√

(r + κin)
2 + 4ρηn−µ2λη′n−un

µ1
(σi

n)
2
. (4.4)

To derive the implications of Proposition 4.1, we begin with a baseline case that corresponds

to the CAPM. We assume that the index includes all stocks and is thus the market portfolio, i.e.,

I = {1, .., N}. We also assume that noise traders hold the same fraction of shares of each stock,

i.e., #{um
ηm

: m ∈ {1, .., N}} = 1, and denote that fraction by û ∈ [0, 1). The latter assumption

includes as a special case the absence of noise traders, i.e., un = 0 for all n. Since non-experts

and noise traders hold the market portfolio, experts also hold the market portfolio and stocks are

priced according to the CAPM.

Simple CAPM logic suggests that the effect of passive flows on a stock’s price in the baseline

case should increase in the stock’s CAPM beta and should not depend on the stock’s size. To

present that logic and why it fails in our model, we begin with a simple example that is loosely

connected to our model but has the advantage of illustrating the generality of the mechanism. We

next show that the same mechanism operates within our model.

Consider a stock n that pays dividend flow Dnt per share, and suppose that the stock’s expected
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dividend D̄n, the stock’s CAPM beta βn and the market risk premium MRP are constant. Under

the CAPM, the stock’s price is Sn = D̄n
r+βnMRP . Since passive flows generate demand for the market

portfolio, they lower MRP. The percentage price change that they generate is thus proportional to

1

Sn

∂Sn

∂(−MRP)
=

D̄nβn
Sn(r + βnMRP)2

=
βn

r + βnMRP

in the cross-section. It increases in βn and it does not depend on the size of stock n. This is the

simple CAPM logic.

To explain why the above logic fails in our model, we next modify the example to account for

different components of dividends. Suppose that the dividend flow Dnt of stock n is the sum of

a constant component D̄n, a systematic component bnD
s
t and an idiosyncratic component Di

nt.

Suppose that the expected dividend D̄s from the systematic factor Ds
t and the factor’s CAPM beta

βs are constants, and normalize D̄s to one. Suppose also that the stock’s expected idiosyncratic

dividend D̄i
n and the CAPM beta βi

n of idiosyncratic dividends are constants, and βs > βi
n ≥ 0.

Under the CAPM, the stock’s price is Sn = bn
r+βsMRP + D̄i

n

r+βi
nMRP

. The percentage price change that

passive flows generate is proportional to

1

Sn

∂Sn

∂(−MRP)
=

bnβ
s

Sn(r + βsMRP)2
+

D̄i
nβ

i
n

Sn(r + βi
nMRP)2

= ws
n

βs

r + βsMRP
+ wi

n

βi
n

r + βi
nMRP

, (4.5)

where ws
n ≡ bn

Sn(r+βsMRP) is the fraction of the price accounted by the systematic component and

wi
n ≡ D̄i

n

Sn(r+βi
nMRP)

is the fraction accounted by the idiosyncratic component. Since the stock’s

CAPM beta is βn = ws
nβ

s + wi
nβ

i
n, we can write (4.5) as

1

Sn

∂Sn

∂(−MRP)
=

βn
r + βsMRP

+ wi
nβ

i
n

[
1

r + βi
nMRP

− 1

r + βsMRP

]
. (4.6)

For small stocks, βi
n is negligible. Therefore, the second term in (4.6) is negligible and the price

effect of passive flows increases in the stocks’ CAPM beta βn and does not depend on stock size.

For large stocks, however, βi
n is non-negligible because these stocks account for a non-negligible
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fraction of the market portfolio. Therefore, passive flows raise the prices of large stocks above

and beyond their effect through the stocks’ beta. Intuitively, the present value of idiosyncratic

dividends is more sensitive to a drop in MRP, per unit of idiosyncratic beta βi
n, than the present

value of systematic dividends is, per unit of systematic beta βs. This is because the discount rate

for idiosyncratic dividends is lower than for systematic dividends (βi
n < βs).

The same mechanism as in the above example operates within our model. Setting η′n = ηn

and un = ûηn for all n in (3.14), we find λ = 1−û
µ1+µ2

. Setting η′n = ηn and un = ûηn for all n

and λ = 1−û
µ1+µ2

in (4.2), we find ∆n = (1−ϕ)µ1(1−û)
(µ1+µ2)2

ηn. Therefore, (4.1) implies that the percentage

change in the price of stock n that passive flows generate is

1

Snt

dSnt

dµ2
=

(1− ϕ)ρ(1− û)

(µ1 + µ2)2Snt

[
bn

(
N∑

m=1

ηmbm

)
(σsas1)

2

(
κs

r
+Ds

t

)
F s + ηn(σ

i
na

i
n1)

2

(
κin
r
D̄i

n +Di
nt

)
F i
n

]
.

(4.7)

We next write (4.7) in terms of the CAPM beta of stock n and of the difference in discount rates

between systematic and idiosyncratic dividends. Using (3.2), (3.8) and (3.9), we find that the

conditional covariance between the return on stock n and the share return on the market portfolio

is

Covt

(
dRnt,

N∑
m=1

ηmdRsh
mt

)
=

1

Snt

[
bn

(
N∑

m=1

ηmbm

)
(σsas1)

2Ds
t + ηn(σ

i
na

i
n1)

2Di
nt

]
. (4.8)

Using (4.8), we can write (4.7) as

1

Snt

dSnt

dµ2
=

(1− ϕ)ρ(1− û)

(µ1 + µ2)2

[(
κs

rDs
t

+ 1

)
F sCovt

(
dRnt,

N∑
m=1

ηmdRsh
mt

)

+
ηn(σ

i
na

i
n1)

2

Snt

((
κin
r
D̄i

n +Di
nt

)
F i
n −

(
κs

rDs
t

+ 1

)
Di

ntF
s

)]
. (4.9)

Equation (4.9) is the counterpart within our model of (4.6), with the two terms inside the square

bracket in the right-hand side of (4.9) corresponding to the two terms in the right-hand side of

(4.6). Proposition 4.2 derives the implications of (4.9).
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Proposition 4.2. Suppose I = {1, .., N} and #{um
ηm

: m ∈ {1, .., N}} = 1. Suppose that µ2

increases and µ1 decreases by an amount equal to a fraction ϕ ∈ [0, 1] of the increase in µ2. When

ϕ = 1, stock prices do not change. When ϕ < 1, prices increase, with the following properties:

� Consider two small stocks n and n′ with ηn, ηn′ ≈ 0. Stock n experiences a larger percentage

price increase than stock n′ if βnt > βn′t.

� Consider a large stock n with ηn ̸≈ 0 and a small stock n′ with ηn′ ≈ 0, and suppose βnt ≥ βn′t.

Stock n experiences a larger percentage price increase than stock n′ if

(
κin
r
D̄i

n +Di
nt

)
F i
n >

(
κs

rDs
t

+ 1

)
Di

ntF
s. (4.10)

When passive flows are due to a pure switch from active to passive (ϕ = 1), stock prices do not

change. This is because in the baseline case experts and non-experts hold the market portfolio.

When instead passive flows are due, fully or partly, to entry by new investors into the stock market

(ϕ < 1), stock prices increase. For small stocks, the increase is fully described by CAPM beta

and does not depend on stock size. This is because (4.9) (and (4.6)) implies that holding CAPM

beta constant, size can have an effect only through idiosyncratic beta, but that beta is negligible

for small stocks. For large stocks instead, idiosyncratic beta is not negligible and passive flows

raise their prices above and beyond their effect through CAPM beta provided that (4.10) holds.

Condition (4.10) concerns the discount rates for systematic and idiosyncratic dividends. When

(Ds
t , D

i
nt) are equal to their long-run means, (3.12), (3.13), (4.3) and (4.4) imply that (4.10) is

equivalent to ain1
(
κs

r + 1
)
> as1

(
κs

r + 1
)
and thus to the discount rate for idiosyncratic dividends

being smaller than for systematic dividends.

We next turn to the case where the index does not include all stocks or where noise traders

hold different fractions of shares across stocks. Using (4.8), we can write (4.1) as

1

Snt

dSnt

dµ2
=

ρ

µ1

[∑N
m=1∆mbm∑N
m=1 ηmbm

(
κs

rDs
t

+ 1

)
F sCovt

(
dRnt,

N∑
m=1

ηmdRsh
mt

)
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+
(σi

na
i
n1)

2

Snt

(
∆n

(
κin
r
D̄i

n +Di
nt

)
F i
n −

∑N
m=1∆mbm∑N
m=1 ηmbm

ηn

(
κs

rDs
t

+ 1

)
Di

ntF
s

)]
,

(4.11)

which generalizes (4.9). Proposition 4.3 derives the implications of (4.11). One implication is

derived in the special case where noise-trader demand is independent from stocks’ other character-

istics. Assumption 4.1 defines this independence case.

Assumption 4.1. [Independence] The market consists of N = GL stocks, which belong to G

disjoint groups, each with cardinality L. The values of (D̄n, bn, κ
i
n, D̄

i
n, σ

i
n, ηn, η

′
n) are the same

across all stocks in any given group g = 1, .., G and are denoted by (D̄g, bg, κ
i
g, D̄

i
g, σ

i
g, ηg, η

′
g). The

values of un differ across those stocks and are {ηgûℓ}ℓ=1,..,L, where {ûℓ}ℓ=1,..,L are the same across

groups.

In the independence case, all stock characteristics except noise-trader demand are the same

across all stocks within each of a number of disjoint groups. The within-group distribution of the

fraction of shares that are held by noise traders is the same across groups. Our calibration is made

under Assumption 4.1, with the main difference between groups being stock size.

Proposition 4.3. Suppose I ⊊ {1, .., N} or #{um
ηm

: m ∈ {1, .., N}} > 1. Suppose that µ2 increases

and µ1 decreases by an amount equal to a fraction ϕ ∈ [0, 1] of the increase in µ2. The resulting

stock price changes have the following properties:

� There exists a non-empty interval [0, ϕ1) ⊂ [0, 1] such that for all ϕ ∈ [0, ϕ1), properties are

the same as in Proposition 4.2, except that large stock n must also satisfy n ∈ I.

� For all ϕ ∈ [0, 1], for any large stock n with ηn ̸≈ 0, n ∈ I and n ∈ argmaxm
um
ηm

, and for any

small stock n′ with ηn′ ≈ 0, stock n experiences a larger percentage price change than stock

n′ if βnt = βn′t and (4.10) holds.

� When Assumption 4.1 holds and I = {1, .., N}, there exists a non-empty interval (ϕ2, 1] ⊂

[0, 1] such that for all ϕ ∈ (ϕ2, 1] and for any two small stocks n and n′ with ηn, ηn′ ≈ 0,
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their prices decrease and stock n experiences a larger percentage price decrease than stock n′

if βnt > βn′t.

When passive flows are due, fully or mostly, to entry by new investors in the stock market

(ϕ ∈ [0, ϕ1)), the prices of all stocks increase. As in Proposition 4.2, the price increase for small

stocks is fully described by CAPM beta and is larger for higher beta stocks. Unlike in Proposition

4.2, passive flows do not necessarily raise the prices of large stocks above and beyond their effect

through beta. They do so, however, for those large stocks that are included in the index. Intuitively,

passive flows affect index and non-index stocks differently because of their effect on the present

value of idiosyncratic dividends. Only stocks that belong to the index experience an increase in

that present value because passive flows lower their idiosyncratic supply and thus the discount rate

for idiosyncratic dividends. The effect through idiosyncratic supply is negligible for small stocks

but non-negligible for large stocks.

When passive flows are due, fully or mostly, to a switch from active to passive (ϕ ∈ (ϕ2, 1]),

stock prices can increase or decrease. The price change for small stocks is fully described by CAPM

beta. Unlike in the case ϕ ∈ [0, ϕ1) and in Proposition 4.2, prices can decrease, in which case the

decrease is larger for higher beta stocks. Moreover, passive flows do not raise the price of all large

stocks above and beyond their effect through beta, but do so for those large stocks that are included

in the index and are in high demand by noise traders. The prices of other large stocks can rise

below the effect through beta and can even drop. Intuitively, a pure switch from active to passive

raises the idiosyncratic supply for stocks that are not in the index because they are sold by experts

but are not bought by non-experts. It also raises the idiosyncratic supply for stocks that are in low

demand by noise traders since experts hold them with a weight larger than in the market portfolio

while non-experts hold them with the market weight. As in the case where passive flows are due

to entry, the effect through idiosyncratic supply is negligible for small stocks but non-negligible for

large stocks.

Our calibrations indicate that the positive effect of passive flows on large stocks that are included

in a large-stock index and are in high demand by noise traders overtakes any negative effects on

other stocks. As a result, passive flows cause the aggregate market to rise even when they are purely
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due to a switch from active to passive. Proposition 4.3 does not examine how passive flows affect the

aggregate market. The equations in this section provide an intuition, however. Since the discount

rate for the idiosyncratic dividends of large stocks in high demand is small, the present value of

those stocks’ idiosyncratic dividends is highly sensitive to changes in the discount rate, generated

by passive flows. The high sensitivity is reflected in the term F i
n = 1√

(r+κi
n)

2+4ρ
ηn−µ2λη

′
n−un

µ1
(σi

n)
2

in

(4.1) being large because η′n is equal to ηn rather than to zero (stock n is included in the index) or

because un is large (stock n is in high demand by noise traders). The large positive effect of passive

flows on large stocks in high demand can be re-interpreted as the amplification effect described in

the Introduction.9

5 Calibration

5.1 Parameter Values

The model parameters are the riskless rate r, the number N of stocks, the parameters (κs, D̄s, σs)

and (bn, κ
i
n, D̄

i
n, σ

i
n)n=1,..,N of the dividend processes, the supply parameters (ηn, η

′
n, un)n=1,..,N , the

measures (µ1, µ2) of experts and non-experts, and the risk-aversion coefficient ρ.

We set the starting values of µ1 and µ2 so that their sum µ1+µ2 is one. This is a normalization

because we can redefine ρ. We set ρ to one. This is also a normalization because we can redefine the

numeraire in the units of which wealth is expressed. Since the dividend flow is normalized by D̄n+

bn+D̄i
n = 1, redefining the numeraire amounts to rescaling the numbers of shares (ηn, η

′
n, un)n=1,..,N .

We set the riskless rate r to 3%.

We set starting values µ1 = 0.9 and µ2 = 0.1, i.e., the measure of experts is nine times that

of non-experts. We examine how stock prices change when µ2 is raised to 0.6, i.e., the measure of

non-experts rises six-fold. We consider two polar cases for the measure of experts. The first case

is when flows into passive funds are entirely due to entry by new investors into the stock market

(ϕ = 0). In that case, the measure µ1 of experts remains equal to 0.9. The second case is when

9The amplification effect can be seen formally through (3.10). Passive flows lower the idiosyncratic supply
ηn−µ2λη

′
n−un

µ1
of a stock n in high demand. Holding constant ai

n1 in the right-hand side of (3.10), this raises ai
n1 in

the left-hand side. Transposing the rise in ai
n1 to the right-hand side generates a further rise in ai

n1 in the left-hand

side for a stock n that is in high demand and sold short by experts because
ηn−µ2λη

′
n−un

µ1
is negative, and so on.
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flows into passive funds are entirely due to a switch by investors from active to passive (ϕ = 1). In

that case, the total measure µ1 + µ2 of experts and non-experts remains equal to one.

We calibrate the number N of stocks and the number ηn of shares of each stock based on the

number and size distribution of publicly listed US firms. Axtell (2001) finds that the size distribu-

tion of all US firms, with size measured by sales or number of employees, is well approximated by

a power law with exponent one.10 Under that power law, if an interval [x, ϕx] with ϕ > 1 includes

a fraction f of firms and their average size is s, then the adjacent interval
[
ϕx, ϕ2x

]
includes a

fraction f
ϕ of firms and their average size is ϕs. Motivated by this scaling property, we set ϕ = 5

and assume five size groups. Size group 5, the top group, includes six stocks, each of which is issued

in 625 × η shares. Size group 4 includes 30 (= 5 × 6) stocks, each of which is issued in 125 × η

(= 1
5 × 625 × η) shares. Size group 3 includes 150 (= 5 × 30) stocks, each of which is issued in

25× η (= 1
5 × 125× η) shares. Size group 2 includes 750 (= 5× 150) stocks, each of which is issued

in 5× η (= 1
5 × 25× η) shares. Size group 1, the bottom group, includes 750 stocks, each of which

is issued in η (= 1
5 × 5× η) shares. We drop the scaling property for group 1 to better fit the data.

The five size groups in our calibration are defined based on the aggregate dividends that firms

pay to their shareholders. Indeed, since the long-run mean of the dividend flow per share is

normalized to one for each firm, the long-run mean of aggregate dividend flow for each firm is equal

to the firm’s number of shares. Market capitalization varies monotonically across size groups, with

its ratio between two stocks in consecutive groups being close to five, as is the case for the number

of shares. Constructing the market capitalization ratios in the data as in our calibration, we find

values close to five as well.11

We consider three cases for index composition. The baseline is when the index includes all

10For a survey on power laws and their relevance to Economics and Finance, see Gabaix (2016).
11As of 2 April 2024, average market capitalization was $2.175tn for the top six publicly listed US firms (Microsoft,

Apple, NVIDIA, Alphabet, Amazon, Meta), $379.2bn for the next 30 firms, $94.14bn for the next 150 firms, $16.06bn
for the next 750 firms and $2.887bn for the next 750 firms. The combined market capitalization of all 3,605 publicly
listed US firms was $53.54tn. The combined market capitalization of the 1,686 (=6+30+150+750+750) firms in
our size groups 1, 2, 3, 4 and 5 was $52.76tn. The market capitalization ratios were 5.74 (= 2175

379.2
) between size

groups 5 and 4, 4.03 (= 379.2
94.14

) between size groups 4 and 3, 5.86 (= 94.14
16.06

) between size groups 3 and 2, and 5.56
(= 16.06

2.887
) between size groups 2 and 1. The counterparts of these ratios generated by our model are 4.51, 4.86, 4.97

and 4.99 in the baseline of the constant-bn calibration, and 5.01, 5.30, 5.46 and 5.54 in the baseline of the varying-bn
calibration. If size group 1 is enlarged to include the remaining 1,919 (=3,605-1,686) publicly listed US firms, then
the ratio between size groups 2 and 1 in the data jumps up to 14.53. All market capitalization data come from
https://companiesmarketcap.com/usa/largest-companies-in-the-usa-by-market-cap/.
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stocks and is thus the true market portfolio, i.e., η′n = ηn for all n. The second case is when the

index includes only the stocks in our top three size groups, i.e., η′n = ηn for the 186 stocks in size

groups 3, 4 and 5, and η′n = 0 for the 1,500 stocks in size groups 1 and 2. That index can be

interpreted as a large-stock index such as the Russell 200 or the S&P500.12 The third case is when

the index includes only the stocks in our bottom three size groups, i.e., η′n = ηn for the 1,650 firms

in size groups 1, 2 and 3, and η′n = 0 for the 36 firms in size groups 4 and 5.

We consider two cases for noise-trader demand un. The baseline is when un is equal to zero

for all stocks and thus there are no noise traders. The second case is when un is equal to zero

for one-half of the stocks in each size group, and to 30% of the shares issued for the remaining

half (un = 30% × ηn). The former stocks are the low-demand ones and the latter stocks are the

high-demand ones.

We set the mean-reversion parameters κs and {κin}n=1,..,N to a common value κ. We set the

long-run means {D̄i
n}n=1,..,N and diffusion parameters {σi

n}n=1,..,N of the idiosyncratic components

to common values D̄i and σi, respectively. The stationary distribution of Di
nt generated by the

square-root process (2.3) is gamma with support (0,∞) and density

f(Di
nt) =

(βi)
αi

Γ(αi)
(Di

nt)
αi−1e−βiDi

nt , (5.1)

where αi ≡ 2κD̄i

(σi)2
, βi ≡ 2κ

(σi)2
and Γ is the Gamma function. The stationary distribution of Ds

t

generated by the square-root process (2.2) is also gamma, with density given by (5.1) in which Di
nt

is replaced by Ds
t , α

i by αs ≡ 2κD̄s

(σs)2
= 2κ

(σs)2
, and βi by βs ≡ 2κ

(σs)2
. We set σi

√
D̄i

= σs
√
D̄s

= σs. This

ensures that the distributions of Ds
t and Di

nt are the same when scaled by their long-run means:

Di
nt

D̄i has the same distribution as
Ds

t

D̄s = Ds
t .

We allow for correlation between size and the loading bn of dividends on the systematic factor.

We assume that for stocks in size group m = 1, .., 5, bn = b̄− (m− 3)∆b ≥ 0. Varying ∆b changes

the relationship between size and CAPM beta.

The parameters left to calibrate are (κ, D̄i, b̄,∆b, σs, η). We calibrate them based on stocks’

12While the S&P500 accounts for a larger fraction of market capitalization than an index made of the 186 stocks
in our size groups 3, 4 and 5, it leaves out a non-negligible fraction. As of 2 April 2024, the S&P500 accounted for
81.5% of the combined market capitalization of all publicly listed US firms. Our size groups 3, 4 and 5 accounted for
72.0%.
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unconditional expected excess returns, return variances, CAPM betas and CAPM R-squareds. We

use as calibration targets the values of these moments for the starting measures (µ1, µ2) = (0.9, 0.1)

and for the baseline where the index includes all stocks and there are no noise traders. The formulas

for the moments are in Appendix B. The values of the moments for (µ1, µ2) = (0.9, 0.1) and the

baseline are in Table 5.1.

The effects of changing κ on return moments and other numerical results are similar to those

of changing the other parameters. We set κ = 4%. The values of (D̄i, b̄,∆b) must satisfy b̄+ (m−

3)∆b + D̄i ≤ 1 for all m = 1, .., 5 because of D̄n ≥ 0 and the normalization D̄n + bn + D̄i = 1.

Inequality b̄+(m−3)∆b+ D̄i ≤ 1 for all m = 1, .., 5 is equivalent to b̄+2|∆b|+ D̄i ≤ 1. We assume

that the latter inequality holds as an equality. This minimizes the constant component D̄n ≥ 0,

which becomes zero for the largest-bn stocks. Minimizing D̄n maximizes return variances, bringing

them closer to their empirical counterparts as we explain below.

We consider two cases for ∆b. The first case is when ∆b = 0 and thus the loading bn of

dividends on the systematic factor is the same for all stocks. In this constant-bn case, CAPM

beta increases monotonically with size because the contribution of idiosyncratic dividends to beta

is larger for larger stocks. While a positive relationship between size and beta is counterfactual,

as the empirical relationship is negative (Fama and French (1992)), the constant-bn case serves as

a useful benchmark. Our assumption that the constant component of dividends is zero for the

largest-bn stocks implies that it is zero for all stocks in the constant-bn case, and thus plays no

role. The second case is when ∆b takes the positive value ∆b = 0.04 that generates a negative

relationship between size and beta approximating the empirical one. In this varying-bn case, beta

is 1.38 for the stocks in size group 1 and 0.96 for the stocks in size group 5. Constructing the same

size groups in the data as in our model, we find that average beta is 1.26 for size group 1 and 0.93

for size group 5 when stocks within groups are weighed according to their market capitalization.13

We calibrate the relative size of b̄ and D̄i based on CAPM R-squared. CAPM R-squared in

the data averages to 29.71% across the stocks in all size groups when they are weighted according

13In each quarter during the sample period of our empirical exercise in Section 6, we sort the 1,686 largest stocks
into five size groups as in our model. We regress the quarterly value-weighted excess returns on the resulting five
portfolios on the excess return on the market (CRSP index) to compute CAPM betas.
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to their market capitalization.14 In the constant-bn case, this R-squared is achieved by setting

b̄ = 0.75 and D̄i = 0.25. In the varying-bn case, this is achieved for b̄ = 0.725 and D̄i = 0.195.

We calibrate the supply parameter η based on stocks’ expected excess returns. We target

expected excess returns (in excess of the riskless rate) to average 4% across the stocks in all size

groups when they are weighted according to their market capitalization. In the constant-bn case,

this is achieved for η = 0.00004. In the varying-bn case, this is achieved for η = 0.00007.

We calibrate the diffusion parameter σs based on stocks’ return variances. Raising σs (and

σi through σi
√
D̄i

= σs) has a non-monotone effect on variances. For given values of Ds
t and

{Di
nt}n=1,..,N , variances rise. At the same time, the stationary distributions of Ds

t and {Di
nt}n=1,..,N

shift weight towards very small or very large values, for which conditional variances are low un-

der the square-root specification.15 One approach is to set σs to the value that maximizes return

variances. The resulting variances are comparable to their empirical counterparts for large firms

in the constant-bn case and are somewhat below them in the varying-bn case. The resulting prices

are overly low, however, relative to the calibrated expected returns. Another approach is to use a

lower value for σs, undershooting return variances, but obtaining prices more in line with expected

returns. The two approaches yield similar results for the effects of passive flows. We follow the

former approach in Appendix E.1, setting ss = 2.2, which is the value in the varying-bn case that

maximizes the average return variance across stocks in all size groups when they are weighted

according to their market capitalization. We follow the latter approach in the rest of this section,

setting ss = 0.5.16

Table 5.1 shows the unconditional average of the price and the unconditional return moments

14We construct the five size groups as in the CAPM beta exercise, compute R-squared for each stock from a
CAPM regression with monthly returns and a five-year lookback window, and average across stocks using market-
capitalization weights.

15For small values of Ds
t and {Di

nt}n=1,..,KN , return variances per share are small but share prices do not converge
to zero because of the mean-reversion of Ds

t and {Di
nt}n=1,..,KN . Therefore, return variances converge to zero. For

large values of Ds
t and {Di

nt}n=1,..,KN , return variances converge to zero because return variances per share are
proportional to Ds

t and {Di
nt}n=1,..,KN and share prices are affine in these variables.

16For ss = 2.2, the average price across the stocks in all size groups when they are weighted according to the
number of shares issued is 4.29 in the constant-bn case and 5.16 in the varying-bn case. In comparison, discounting
expected dividends of one at the sum of the riskless rate of 3% plus the average expected excess return of 4% yields
1
7%

= 14.29. The discrepancy arises because of the expected returns’ time-variation. For σs = 2.2, the stationary

distributions of Ds
t and {Di

nt}n=1,..,N give high weight to extreme values. Moreover, expected excess returns are
close to zero for small values of Ds

t and {Di
nt}n=1,..,N , but increase significantly away from zero, and average prices

are primarily determined by expected returns away from zero. The discrepancy is significantly smaller for ss = 0.5
because the average price is 12.39 in the constant-bn case and 12.61 in the varying-bn case.
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for (µ1, µ2) = (0.9, 0.1) and the baseline, in the constant-bn case (Panel A) and the varying-bn case

(Panel B). When moving from the smallest to the largest size group, expected excess return and

CAPM beta rise in the constant-bn case but decline in the varying-bn case. Stocks in size group

5 have the largest CAPM R-squared, even in the varying-bn case where their CAPM beta is the

smallest. This is because Proposition 3.1 implies that stock prices are less sensitive to idiosyncratic

dividend shocks when idiosyncratic supply is large.

Panel A: Constant-bn case

Size Group Price

Expected
Excess
Return
(%)

Return
Volatility

(%)

CAPM
Beta

CAPM
R2 (%)

1 (Smallest) 12.93 3.89 12.56 1.01 26.18

2 12.91 3.90 12.56 1.01 26.28

3 12.83 3.93 12.56 1.02 26.81

4 12.46 4.07 12.53 1.07 29.32

5 (Largest) 11.24 4.62 12.45 1.24 39.78

Panel B: Varying-bn case

Size Group Price

Expected
Excess
Return
(%)

Return
Volatility

(%)

CAPM
Beta

CAPM
R2 (%)

1 (Smallest) 10.42 5.34 12.51 1.38 28.82

2 11.54 4.65 11.09 1.19 27.46

3 12.59 4.11 9.93 1.04 26.41

4 13.35 3.76 8.88 0.96 27.52

5 (Largest) 13.37 3.72 7.64 0.96 37.04

Table 5.1: Price and Return Moments for (µ1, µ2) = (0.9, 0.1) and the Baseline.

5.2 Passive Flows and Stock Prices—Calibration Results

5.2.1 Baseline

Table 5.2 shows how flows into passive funds affect stock prices in the baseline. We compute

the percentage change of the unconditional average of the price. Computing instead the uncondi-
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tional average of the percentage change yields similar results. Since the price is linear in Ds
t and

Di
nt, we can compute its unconditional average by setting the systematic component Ds

t and the

idiosyncratic component Di
nt of dividends to their long-run means, D̄s = 1 and D̄i

n.

The second and third columns of Table 5.2 report the percentage price change when µ2 is raised

to 0.6 and µ1 is held equal to 0.9. Passive flows in these columns are due entirely to entry by new

investors into the stock market (ϕ = 0). The second column corresponds to the constant-bn case

and the third column to the varying-bn case. The fourth and fifth columns are counterparts of the

second and third columns when µ2 is raised to 0.6 and µ1 is lowered to 0.4. Passive flows in these

columns are due entirely to a switch by investors from active to passive (ϕ = 1).

Size Group

Entry into
the Stock Market

Switch from
Active to Passive

Constant-bn Varying-bn Constant-bn Varying-bn

1 (Smallest) 7.03 7.67 0 0

2 7.08 6.63 0 0

3 7.34 5.99 0 0

4 8.45 6.17 0 0

5 (Largest) 11.78 7.53 0 0

Table 5.2: Percentage Price Change Caused by Passive Flows in the Baseline.

Consistent with Proposition 4.1, passive flows do not affect stock prices when they are due to

a switch by investors from active to passive, and raise prices when they are due to entry by new

investors into the stock market. When passive flows are due to entry, the percentage price increase

that they generate is larger for larger stocks in the constant-bn case, and is a U -shaped function of

stock size in the varying-bn case. These results as well are consistent with Proposition 4.1. Indeed,

the proposition shows that when ϕ < 1, the effect of passive flows is increasing in CAPM beta and

is larger for large stocks holding beta constant. In the constant-bn case, beta increases with size, so

the two effects work in the same direction causing the effect of passive flows to increase with size.

In the variable-bn case, beta decreases with size. Therefore, the effect of passive flows decreases

with size for small stocks but can increase for large stocks. Table 5.2 shows that the effect of size

dominates that of beta for size groups 4 and especially 5.17

17For brevity, we report only price changes in Section 5 and not changes in expected returns. Changes in expected
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To illustrate why the effect of size can dominate that of beta, we return to (4.6) and (4.9).

When κs = κin = κ and (Ds
t , D

i
nt) are equal to their long-run means, we can write (4.9) as

1

Snt

dSnt

dµ2
=

(1− ϕ)ρ(1− û)(κ+ r)F s

(µ1 + µ2)2r
Covt

(
dRnt,

N∑
m=1

ηmdRsh
mt

)(
1 + γin

F i
n − F s

F s

)
, (5.2)

where

γin ≡
ηn(σi

na
i
n1)

2D̄i
n

Snt

Covt
(
dRnt,

∑N
m=1 ηmdRsh

mt

)
is the fraction of stock n’s CAPM beta that is driven by stock n’s idiosyncratic dividends. The

percentage price rise for stock n exceeds that for stock n′ if

1 + γin
F i
n−F s

F s

1 + γin′
F i
n′−F s

F s

>
Covt

(
dRn′t,

∑N
m=1 ηmdRsh

mt

)
Covt

(
dRnt,

∑N
m=1 ηmdRsh

mt

) . (5.3)

When stock n is larger than stock n′ and has smaller beta, the effect of size dominates that of beta

if the left-hand side of (5.3) exceeds the right-hand side, which exceeds one. In the varying-bn case,

the fraction γin of beta that is driven by idiosyncratic dividends is 8.04% for stocks in size group

5 and 2.43%, 0.53%, 0.10% and 0.02% for stocks in size groups 4, 3, 2 and 1, respectively. The

ratio
ain1
as1

of the discount rate for systematic dividends to that for idiosyncratic dividends takes the

values 5.15, 6.33, 6.72, 6.81 and 6.83 for stocks in size groups 5, 4, 3, 2 and 1, respectively. The

corresponding ratio F i
n−F s

F s takes the values 6.66, 9.92, 11.26, 11.59 and 11.66. Therefore, the term

γin
F i
n−F s

F s is 53.52% (=8.04%×6.66) for stocks in size group 5 and 24.06%, 5.94%, 1.20% and 0.23%

for stocks in size groups 4, 3, 2 and 1, respectively. The left-hand side of (5.3) for a stock n in size

group 5 and a stock n′ in size group 3 is thus 1.45 (=1+53.52%
1+5.94% ) and exceeds the ratio of betas of

stock n′ to stock n in the right-hand side.

returns follow broadly similar patterns to price changes. In Table 5.2, for example, expected returns drop when
passive flows are due to entry, with the drop being an increasing function of size in the constant-bn case and a
U -shaped function in the varying-bn case. The U -shape for expected returns is less pronounced relative to that for
prices for large firms. Indeed, because expected return in the varying-bn case is lower for large firms, a given price
rise for those firms is triggered by a smaller drop in expected return than for smaller firms. The drop in expected
return is 0.70% for size group 1, 0.57% for size group 2, 0.47% for size group 3, 0.44% for size group 4, and 0.49% for
size group 5. The drop in the market risk premium is 0.5%, and in the constant-bn case it is 0.6%.
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The effect of passive flows on the aggregate market in Table 5.2 translates into a demand

elasticity higher than in the literature. Suppose that the measure µ2 of non-experts increases from

0.1 to 0.6, holding the measure µ1 of experts equal to 0.9. In the constant-bn case, the aggregate

market rises by 8.48% and non-experts’ holdings (equal to µ2λ times the value of the market)

increase by 33.39% of the market’s initial value. The resulting elasticity is 3.93 (=33.39
8.48 ). In the

varying-bn case, the elasticity is 4.92. By contrast, Gabaix and Koijen (2021) estimate an elasticity

of 0.2 for the aggregate market, while the literature on index additions estimates elasticities ranging

from 0.4 to 4 for individual firms. Our model might be generating a high elasticity for two reasons.

First, the fraction of truly active investors might be smaller than in our calibration because many

active funds in practice have constraints limiting their deviations from benchmark indices. Second,

the elasticity estimates in the literature mostly concern short-run elasticities, while the elasticities

in our model are long-run.

5.2.2 Partial Index

Table 5.3 shows how flows into passive funds affect stock prices when the index includes only the

stocks in the top three size groups (Panel A) and when it includes only the stocks in the bottom

three size groups (Panel B). The columns are as in Table 5.2.

When passive flows are due to entry by new investors into the stock market, their effect on small

stocks is approximately independent of index composition and same as in the baseline. The effect

on large stocks, by contrast, depends significantly on index composition. Stocks in size group 4 and

especially 5 rise significantly more when the index includes only size groups 3, 4 and 5 than when

it includes only size groups 1, 2 and 3, with the baseline effect being in-between. The comparisons

to the baseline carry through to the case where passive flows are due to a switch from active to

passive. The effect on small stocks is approximately independent of index composition and equal

to zero, as in the baseline. By contrast, stocks in size group 4 and especially 5 rise significantly

when the index includes only size groups 3, 4 and 5, and drop significantly when it includes only

size groups 1, 2 and 3. These results reflect the result of Proposition 4.3 that the effects of passive

flows depend on index inclusion for large stocks but not for small stocks.

Table 5.3 yields two additional implications. First, passive flows have a disproportionately large
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Panel A: Index Includes Only Top Three Size Groups

Size Group

Entry into
the Stock Market

Switch from
Active to Passive

Constant-bn Varying-bn Constant-bn Varying-bn

1 (Smallest) 6.90 7.50 -0.42 -0.56

2 6.91 6.44 -0.60 -0.69

3 7.32 6.00 0.04 0.13

4 8.80 6.59 1.50 1.67

5 (Largest) 13.43 9.03 5.98 5.32

Panel B: Index Includes Only Bottom Three Size Groups

Size Group

Entry into
the Stock Market

Switch from
Active to Passive

Constant-bn Varying-bn Constant-bn Varying-bn

1 (Smallest) 7.02 7.66 -0.02 -0.01

2 7.11 6.67 0.15 0.17

3 7.56 6.21 0.97 0.93

4 7.29 5.09 -4.12 -3.64

5 (Largest) 8.13 4.80 -9.54 -6.58

Table 5.3: Percentage Price Change Caused by Passive Flows into a Partial Index.

effect (relative to simple CAPM logic) on the largest stocks in an index only when these stocks are

also the largest in the economy. Indeed, the rising part of the U -shape shown in Table 5.2 in the

varying-bn case does not arise among index stocks when the index includes only size groups 1, 2

and 3, but arises when the index includes only size groups 3, 4 and 5.

The second implication of Table 5.3 is that passive flows into an index that does not include

all stocks affect the valuation of the aggregate market even when the flows are a pure switch from

active to passive. A pure switch from active to the passive large-stock index raises the aggregate

market by 1.49% in the constant-bn case and 1.63% in the varying-bn case. A pure switch from

active to the passive small-stock index lowers the aggregate market by 2.75% in the constant-bn

case and 2.31% in the varying-bn case. These movements arise because the switch has negligible

effects on small stocks but significant effects on large stocks.
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5.2.3 Noise Traders

Table 5.4 shows how flows into passive funds affect stock prices when stocks differ in noise-trader

demand. There are ten groups of stocks: five size groups and two demand subgroups within each

size group. The columns are as in Table 5.2 with the addition of a column that indicates whether

a stock is in high or low demand.

Size Group
Noise-Trader

Demand

Entry into
the Stock Market

Switch from
Active to Passive

Constant-bn Varying-bn Constant-bn Varying-bn

1 (Smallest)
Low 7.27 7.95 -0.02 -0.02
High 7.27 7.95 -0.00 -0.01

2
Low 7.32 6.89 -0.04 -0.05
High 7.31 6.89 0.02 0.03

3
Low 7.54 6.20 -0.17 -0.18
High 7.52 6.18 0.15 0.16

4
Low 8.49 6.22 -0.68 -0.63
High 8.47 6.25 0.73 0.70

5 (Largest)
Low 11.31 7.24 -1.90 -1.38
High 11.71 7.78 2.59 2.03

Table 5.4: Percentage Price Change Caused by Passive Flows with Noise Traders.

The effects of passive flows are approximately independent of noise-trader demand for small

stocks. For large stocks instead, especially in size group 5, passive flows have larger effects on

high-demand stocks. These results reflect the result of Proposition 4.3 that the effects of passive

flows depend on noise-trader demand for large stocks but not for small stocks.

Table 5.4 implies additionally that passive flows in the presence of noise traders raise the aggre-

gate market even when they are a pure switch from active to passive. The positive effects on large

high-demand stocks thus exceed the negative effects on large low-demand stocks. Intuitively, be-

cause the discount rate for idiosyncratic dividends is lower for the high-demand stocks, the present

value of their idiosyncratic dividends is more sensitive to changes in the discount rate. The effects

on the aggregate market are smaller than in the case of a partial index: a pure switch from active

to passive raises the market by 0.09% in both the constant-bn and the varying-bn case.

The effects of passive flows on large high-demand stocks become particularly large and asym-
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metric when passive flows are into a large-stock index. This is shown in Table 5.5, in which the

index is assumed to include only the stocks in the top three size groups. The columns are as in

Table 5.4.

Size Group
Noise-Trader

Demand

Entry into
the Stock Market

Switch from
Active to Passive

Constant-bn Varying-bn Constant-bn Varying-bn

1 (Smallest)
Low 7.15 7.80 -0.43 -0.59
High 7.15 7.79 -0.42 -0.57

2
Low 7.16 6.72 -0.60 -0.71
High 7.16 6.71 -0.54 -0.64

3
Low 7.51 6.19 -0.21 -0.16
High 7.49 6.18 0.13 0.21

4
Low 8.76 6.55 0.40 0.57
High 8.77 6.61 2.08 2.28

5 (Largest)
Low 12.56 8.37 2.05 1.99
High 13.37 9.39 10.03 9.58

Table 5.5: Percentage Price Change Caused by Passive Flows into a Partial Index with Noise
Traders.

In both the constant-bn and the varying-bn case, a pure switch from active to passive has large

positive effects on high-demand stocks in size group 5, and significantly smaller effects on all other

stocks. Because of the asymmetrically large effects on the large high-demand stocks, the aggregate

market rises, by 1.47% in the constant-bn and 1.68% in the varying-bn case.

5.2.4 Return Volatility

Since passive flows raise the present value of the idiosyncratic component of dividends of large stocks

in high demand, they cause movements to that component to become larger. Those movements

also become larger relative to the stocks’ price provided that the price does not increase by as

much. When passive flows are due to a switch from active to passive, the change in the market

risk premium is small and so is the change in the present value of the systematic component

of dividends. Therefore, the idiosyncratic volatility of large stocks in high demand rises. When

instead passive flows are due to entry by new investors in the stock market, the present value of

the systematic component of dividends rises significantly, and idiosyncratic volatility can fall. In
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both cases, however, the idiosyncratic volatility of large stocks in high demand rises more (or falls

less) than for small stocks because passive flows do not affect the present value of the idiosyncratic

component of small stocks’ dividends.

Table 5.6 shows the effect of passive flows on idiosyncratic volatility when flows are due to a

switch from active to passive. The table confirms that the idiosyncratic volatility of large stocks

in high demand rises more than for other stocks, and especially so when the index is a large-stock

one. Idiosyncratic volatility averaged across size groups also rises more for large stocks. Table E.6

is the counterpart of Table 5.6 when flows are due to entry by new investors in the stock market.

Idiosyncratic volatility can rise or fall, but rises more (or falls less) for large stocks.

Size Group
Noise-Trader

Demand

All-Stock Index Large-Stock Index

Constant-bn Varying-bn Constant-bn Varying-bn

1 (Smallest)
Low 0.00 0.00 0.06 0.09
High 0.00 0.00 0.06 0.09

2
Low 0.00 0.00 0.05 0.06
High 0.00 0.00 0.05 0.06

3
Low 0.00 -0.01 0.07 0.07
High 0.00 0.01 0.08 0.10

4
Low -0.03 -0.05 0.10 0.12
High 0.03 0.05 0.16 0.24

5 (Largest)
Low -0.08 -0.12 0.18 0.24
High 0.11 0.16 0.43 0.73

Table 5.6: Change in Idiosyncratic Volatility Caused by Passive Flows from Active.

6 Empirical Evidence

In this section we present tests of our theory and relate our results to empirical findings in the

literature. We take the index to be the S&P500 and flows to be into US listed index mutual funds

and ETFs tracking it. The S&P500 index is the most widely tracked by passive funds invested in

US stocks: index mutual funds tracking the S&P500 account for 47% to 87% of the assets of all

index mutual funds invested in US stocks in our sample. We refer to index mutual funds and ETFs

tracking the S&P500 as S&P500 index funds. In an additional test, we repeat our analysis for the
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S&P600 index, which is made of small stocks.

6.1 Data and Descriptive Statistics

Our data on stock returns and market capitalization come from the Center for Research in Security

Prices (CRSP). Our data on the composition of the S&P500 index come from CRSP and on the

composition of the S&P600 index from Siblis Research. Our data on net assets of S&P500 index

mutual funds come from the Investment Company Institute (ICI). Our data on net assets of S&P500

index ETFs and of S&P600 index mutual funds and ETFs come from CRSP. We include in our

analysis only plain-vanilla ETFs, excluding alternative ETFs such as leveraged ETFs, inverse ETFs

and buffered ETFs. Our S&P500 index ETF sample consists of the SPDR S&P500 ETF Trust,

the iShares Core S&P500 ETF, and the Vanguard S&P500 Index Fund ETF, which collectively

account for almost all of the plain-vanilla S&P500 index ETF market. Our S&P500 sample begins

in the second quarter of 1996 and ends in the fourth quarter of 2020. Our S&P600 sample begins

in the fourth quarter of 2001 and ends in the fourth quarter of 2020.

Table 6.1 reports descriptive statistics. The descriptive statistics in Panel A concern aggregate

variables, measured at a quarterly frequency. The descriptive statistics in Panel B concern a firm-

level variable, measured at a quarterly frequency. All variables except V IX and log(V olIdio) are

multiplied by 100.

The first six rows in Panel A concern quarterly returns on portfolios of large stocks in the

S&P500 index in excess of the index return, and the seventh row concerns the index return. We

compute the excess return on the portfolio of the top 10 firms in the S&P500 according to market

capitalization, the top 50 firms, the top 100 firms, the top 150 firms and the top 200 firms. We

measure market capitalization at the end of the previous quarter. We compute value-weighted

returns except in the case of the top 50 firms where we also compute equally-weighted returns as

a robustness check.

The eighth row concerns flows into S&P500 index funds. We measure these flows in any given

quarter by the ratio of S&P500 index fund net assets to index market capitalization (i.e., combined
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Mean Std Dev 25th Pctl 50th Pctl 75th Pctl Skewness Exc Kurt N

Panel A: Aggregate Variables

RExc
Top10,SP500 -0.02 3.86 -2.04 -0.45 2.59 -0.04 0.39 99

RExc
Top50EW,SP500 -0.15 1.56 -1.07 -0.39 0.72 0.51 0.95 99

RExc
Top50,SP500 -0.17 1.86 -1.27 -0.20 1.09 -0.16 0.50 99

RExc
Top100,SP500 -0.17 1.28 -0.91 -0.23 0.60 -0.61 2.39 99

RExc
Top150,SP500 -0.19 0.95 -0.69 -0.19 0.42 -0.49 1.76 99

RExc
Top200,SP500 -0.17 0.78 -0.61 -0.19 0.37 -0.47 1.28 99

RSP500 2.68 8.50 -0.77 3.41 7.60 -0.56 0.55 99

PassiveF lowSP500 0.05 0.09 0.01 0.05 0.10 0.33 3.62 99

RExc
Top60EW,SP600 -0.05 3.41 -1.30 0.08 1.55 -0.044 2.49 77

RExc
Top60,SP600 -0.12 3.89 -1.68 0.27 1.97 -0.54 4.19 77

RSP600 3.14 9.97 -0.32 3.99 8.17 -0.63 1.35 77

PassiveF lowSP600 0.04 0.11 -0.01 0.03 0.09 -0.34 3.99 77

V IX 20.36 7.59 14.57 19.31 24.92 1.80 6.03 99

Panel B: Firm-Level Variables For All S&P500 Firms

log(V olIdio) -4.28 0.50 -4.64 -4.31 -3.95 0.34 0.40 45,737

Table 6.1: Descriptive Statistics.

capitalization of all S&P500 stocks) minus the same ratio in the previous quarter:

PassiveF lowSP500,t =
$S&P500IndexAssetst
$S&P500IndexCapt

− $S&P500IndexAssetst−1

$S&P500IndexCapt−1
.

The mean of passive flow is 0.05% quarterly. Cumulating over the 99 quarters of our sample, we

find that an extra 4.95% of market capitalization is held by S&P500 index funds at the end of our

sample relative to the beginning.

The ninth and tenth rows concern quarterly returns on the portfolio of the top 60 firms in the

S&P600 index in excess of the index return, and the eleventh row concerns the index return. We

compute both value- and equally-weighted returns on the portfolio of the top 60 firms. The top

60 firms in the S&P600 are the counterpart of the top 50 firms in the S&P500 in the sense of

constituting the top size decile. The twelfth row concerns flows into S&P600 index funds. The

thirteenth row concerns V IX, the CBOE volatility index.

The single row in Panel B concerns the natural logarithm of idiosyncratic volatility for all
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S&P500 stocks. We measure idiosyncratic volatility by the quarterly standard deviation of daily

residual stock returns from the Fama-French three-factor model.

6.2 Tests

Table 6.2 reports the results from regressing the excess returns on S&P500 large-stock portfolios

on passive flows into that index. Results in Panel A concern the portfolio of the top 50 firms,

value- and equally-weighted, with and without controls. Results in Panel B concern all large-stock

portfolios, value-weighted, with controls. Controls are the S&P500 return, the one-quarter lagged

S&P500 return and V IX.

For ease of interpretation, we standardize PassiveF lowSP500 to a mean of zero and a stan-

dard deviation of one. We denote the resulting variable with a hat, i.e., ̂PassiveF lowSP500.

The t-statistics, in parentheses, are based on Newey-West heteroskedasticity- and autocorrelation-

consistent standard errors with three lags. Our findings are robust to increasing the number of

lags.

Consistent with our model, the relationship between passive flows and excess returns on large

stocks is positive and significant economically and statistically. Panel A shows that an one-standard-

deviation increase in PassiveF lowSP500 is associated with an increase in the quarterly excess re-

turn on the top-50 firm portfolio by an amount ranging from 0.528% to 0.557%, depending on

whether returns are value- or equally-weighted and controls are added or not. This is approxi-

mately one-third of the quarterly standard deviation of excess returns in Table 6.1. The t-statistic

ranges from 3.65 to 4.19. Panel B shows that the effect of PassiveF lowSP500 becomes strongest

when limiting the large-stock portfolio to only the largest firms. A one-standard-deviation increase

in PassiveF lowSP500 is associated with an increase in the quarterly excess return on the value-

weighted portfolio of the top 200 firms by 0.145%, the top 150 firms by 0.208%, the top 100 firms

by 0.303%, the top 50 firms by 0.528% and the top 10 firms by 0.687%.

Converting our quarterly estimates to cumulative estimates over the length of our sample yields

large effects. Recall from Table 6.1 that the mean and standard deviation of PassiveF lowSP500

are 0.05% and 0.09%, respectively. Since our sample comprises 99 quarters, the cumulative effect

of PassiveF lowSP500 on the excess return on the value-weighted top-50 firm portfolio is 0.528%×
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Panel A: Top 50 Firms

Variables RExc
Top50EW,SP500 RExc

Top50,SP500 RExc
Top50EW,SP500 RExc

Top50,SP500

̂PassiveF lowSP500 0.00557 0.00553 0.00531 0.00528
(3.65) (3.69) (4.19) (3.66)

Constant -0.00150 -0.00168 -0.000253 -0.00137
(-0.92) (-0.80) (-0.12) (-0.54)

Observations 99 99 99 99

Controls N N Y Y

Adjusted R-squared 0.127 0.088 0.210 0.125

Panel B: All Large-Stock Portfolios

Variables RExc
Top10,SP500 RExc

Top50,SP500 RExc
Top100,SP500 RExc

Top150,SP500 RExc
Top200,SP500

̂PassiveF lowSP500 0.00687 0.00528 0.00303 0.00208 0.00145
(2.46) (3.66) (3.02) (2.28) (1.64)

Constant -0.00156 -0.00137 -0.00177 -0.00189 -0.00149
(-0.32) (-0.54) (-1.00) (-1.40) (-1.34)

Observations 99 99 99 99 99

Controls Y Y Y Y Y

Adjusted R2 0.049 0.125 0.105 0.124 0.125

Table 6.2: Passive Flows into the S&P500 and Excess Returns on S&P500 Large-Stock Portfolios.

0.05%
0.09% ×99 = 29.04%. According to this estimate, the rise in passive investing over the past 25 years

caused a firm that was in the top 50 of the S&P500 index during the entire period to rise by 29%

more than the index.

The estimated 29% effect of passive flows in Table 6.2 is larger than in our calibration. For

example, the difference between the return on size group 5 and the average return on size groups

3, 4 and 5 in Tables 5.2-5.5 ranges from zero (Table 5.2, switch from active to passive, all firms in

index) to 4% (Table 5.5, switch from active to passive, size groups 3-5 in index). The discrepancy

might be arising for the same two reasons mentioned in the context of elasticities in Section 5.2.

First, the fraction of truly active investors might be smaller than in our calibration. Second, the

30% estimate concerns a contemporaneous effect of passive flows, which can partly mean-revert.
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The finding in Table 6.2 that passive flows raise the stock prices of the largest firms the most

is consistent with other findings in the literature. Ben-David, Franzoni, and Moussawi (2018) find

that increases in a firm’s ownership by ETFs have significantly larger effects on the firms in the

S&P500 than on the smaller firms in the Russell 3000 (Table IV). Haddad, Huebner, and Loualiche

(2025) find that demand elasticities are smaller for large firms than for smaller firms (Figure 3),

implying that an increase in demand proportional to firms’ market capitalization causes the stocks

of large firms to rise the most.

We corroborate the findings in Table 6.2 through two robustness tests, reported in Appendix

E.3. First, we regress changes in S&P500 index concentration on passive flows into that index.

We use three measures of concentration: the combined portfolio weight of the stocks of the top 10

firms in the index, the standard deviation of index weights across all index firms, and the Herfindahl

index of index weights across all index firms. Consistent with our model, the relationship between

passive flows and changes in concentration is positive and significant economically and statistically.

Second, we use a beginning-of-month dummy as a proxy to capture exogenous variation in passive

flows. Since many US households invest a fraction of their monthly paychecks (together with the

contributions from their employers) in passive funds through retirement plans such as 401(K),

passive flows increase at the beginning of each month. Consistent with our model, the returns on

S&P500 large-stock portfolios rise more than the index at the beginning of each month, with the

effect becoming strongest when limiting the large-stock portfolio to only the largest firms.18

We test three additional predictions of our model. The first prediction is that passive flows

should raise the idiosyncratic return volatility of the largest firms in the economy more than of

smaller firms (Section 5.2.4). We test this prediction by performing panel regressions of the id-

iosyncratic volatility of all S&P500 firms on one-quarter lagged passive flows interacted with a

large firm indicator. The indicator is one if a firm belongs to the top 50 and zero otherwise. As

additional variables in the regressions we include the two constituents of the interaction term, the

one-quarter lagged index return, the logarithm of one-quarter lagged idiosyncratic volatility and

firm fixed effects. Alternatively, we introduce time fixed effects to absorb the time-series variation,

18Beginning-of-month passive flows can generate return predictability even though they themselves are predictable,
provided that agents are uncertain about their magnitude. Vayanos and Woolley (2013) show theoretically that
predictable flows generate return predictability in a rational model of return momentum and reversal.
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and drop lagged passive flows and index return. We conservatively double-cluster standard errors

by firm and time. The regression results are in Table 6.3.

log(V olIdio) log(V olIdio)

L.PassiveF lowSP500 × Top50 19.32 18.46
(2.53) (2.45)

L.PassiveF lowSP500 20.63
(1.21)

L.Top50 -0.0477 -0.0671
(-2.86) (-4.83)

Observations 45,737 45,737

Controls Y Y

Firm fixed effects Y Y

Time fixed effects N Y

Adjusted R2 0.601 0.712

Table 6.3: Passive Flows into the S&P500 and Idiosyncratic Return Volatility of S&P500 Stocks

Consistent with our model, passive flows impact more strongly the idiosyncratic return volatility

of the largest firms, and this effect is significant economically and statistically. An one-standard-

deviation increase in PassiveF lowSP500 is associated with an increase in idiosyncratic volatility

by 1.86% (=20.63 × 0.09%) for firms outside the top 50, and this effect approximately doubles to

3.60% (=(19.32+20.63)×0.09%) for firms in the top 50. Moreover, the incremental effect for large

firms is statistically significant while the effect for other firms is not.

The second prediction is that passive flows into an index can disproportionately raise the stock

prices of the index’s largest firms only when these firms are also the largest in the economy (Section

5.2.2). We test this prediction by repeating the analysis in Panel A of Table 6.2 for the S&P600.

The regression results are in Table 6.4. Consistent with our model, the relationship between passive

flows and excess returns on large stocks in the S&P600 is statistically insignificant.

The third prediction is that the idiosyncratic beta of large firms is positive and non-negligible

while that of smaller firms is negligible (Section 4). We test this prediction in Appendix E.3 by

regressing the cumulative abnormal return of S&P500 stocks around earnings announcements on
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Variables RExc
Top60EW,S&P600 RExc

Top60,S&P600 RExc
Top60EW,S&P600 RExc

Top60,S&P600

̂PassiveF lowS&P600 -0.00541 -0.00540 -0.00397 -0.00392
(-1.26) (-1.04) (-0.94) (-0.75)

Constant -0.000462 -0.00121 0.00245 0.00161
(-0.12) (-0.28) (0.67) (0.39)

Observations 77 77 76 76

Controls N N Y Y

Adjusted R-squared 0.025 0.019 0.197 0.164

Table 6.4: Passive Flows into the S&P600 and Excess Returns on S&P600 Large-Stock Portfolios.

the market return. We focus on earnings announcements because they can reflect shocks to the

idiosyncratic component of dividends, and we use the abnormal rather than the full return to better

isolate those shocks. The average idiosyncratic beta of the top 50 firms in the S&P500 ranges from

0.0821 to 0.0877 and is statistically significant. The average idiosyncratic beta of the bottom 50

firms is more than twenty times smaller and is statistically insignificant.

7 Conclusion

The growth of passive investing over the past thirty years and its effects on asset prices and the real

economy have attracted attention by academics and policy-makers. In this paper we show that flows

into passive funds disproportionately raise the prices of the economy’s largest firms. Large firms

are thus less liquid than small firms, in the sense that an increase in demand proportional to firms’

market capitalization causes large firms’ stock prices to rise the most. The effects of passive flows

that we show in our model arise even when the indices tracked by passive funds include all firms,

and can be sufficiently strong to cause the aggregate market to rise even when flows are entirely

due to investors switching from active to passive. Our model implies additionally that passive flows

raise the idiosyncratic return volatility of large firms more than of smaller firms. Consistent with

our theory, we find that the prices and idiosyncratic volatilities of the largest firms in the S&P500

index rise the most following flows into that index.

Our theory implies that passive investing reduces primarily the financing costs of the largest
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firms in the economy and makes the size distribution of firms more skewed. Quantifying these

effects is a natural extension of our research. A quantification exercise would also determine the

contribution of the rise in passive investing to recent macroeconomic trends such as the rise in

industry concentration and the decline in corporate investment. Some papers quantifying these

trends emphasize heterogeneity in financing costs, which they often model through borrowing con-

straints. Our theory links this heterogeneity to stock-market distortions, which can be a more

relevant channel for large firms.

An additional extension of our research concerns the design of indices. Passive funds in our

model track capitalization-weighted indices. While such indices are the most common in practice,

other types of indices, such as price-weighted or equal-weighted, also exist. It would be interesting

to determine how indices should be designed to achieve welfare objectives. If the growth of passive

funds reduces primarily the financing costs of the largest firms, and this leads to welfare-reducing

industry concentration or capital misallocation, then should capitalization-weighting be moderated?

Should upper bounds be imposed on weights, as is the case for some sovereign-bond indices? Is

capitalization-weighting the best solution despite its drawbacks?
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Appendix – For Online Publication

A Proofs

Proof of Proposition 3.1. The quadratic equation derived from (3.10) by identifying terms in

Ds
t is

ρ

(
N∑

m=1

ηm − µ2λη
′
m − um

µ1
bm

)
(σsas1)

2 + (r + κs)as1 − 1 = 0. (A.1)

The quadratic equation derived by identifying terms in Di
nt is

ρ
ηn − µ2λη

′
n − un

µ1
(σi

na
i
n1)

2 + (r + κin)a
i
n1 − 1 = 0. (A.2)

The equation derived by identifying the remaining terms is

D̄n − rS̄n + bn (κ
sas1 − ras0) + κina

i
n1D̄

i
n − rain0 = 0. (A.3)

When
∑N

m=1(ηm−µ2λη
′
m−um)bm ≥ 0, the left-hand side of (A.1) is increasing for positive values

of as1, and (A.1) has a unique positive solution, given by (3.12). When
∑N

n=1(ηm−µ2λη
′
m−um)bn <

0, the left-hand side of (A.1) is hump-shaped for positive values of as1, and (A.1) has either two

positive solutions (including one double positive solution) or no solution. When two solutions exist,

(3.12) gives the smaller of them, which is the continuous extension of the unique positive solution

when
∑N

m=1(ηm − µ2λη
′
m − um)bm > 0. Equation (3.13) gives the analogous solution of (A.2).

Equation (A.3) yields

S̄n + bna
s
0 + ain0 =

D̄n + bnκ
sas1 + κina

i
n1D̄

i
n

r
. (A.4)

Substituting (3.8), (3.9) and (A.4) into (3.1), we find (3.11).
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Substituting µn = E(µnt) and (3.7)-(3.9) into the first-order condition

N∑
n=1

η′nµn = ρλ

( N∑
n=1

η′nbn

)2

(σs)2E
[
Ds

t [(S
s)′(Ds

t )]
2
]
+

N∑
n=1

(
η′n
)2

(σi
n)

2E
[
Di

nt[(S
i
n)

′(Di
nt)]

2
]

(A.5)

of non-experts, we find
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which we can rewrite as (3.14). Since ηm > um for all m, (3.14) implies λ > 0.

Equations (3.11)-(3.13) imply that the price depends on (µ1, µ2, σ
s, {bm, σi

m, ηm, η′m, um}m=1,..,M )

only through
(∑N

m=1
ηm−µ2λη′m−um

µ1
bm

)
(σs)2 and ηn−µ2λη′n−un

µ1
(σi

n)
2. The price is decreasing and

convex in the latter two variables if as1 is decreasing and convex in
(∑N

m=1
ηm−µ2λη′m−um

µ1
bm

)
(σs)2,

and ain1 is decreasing and convex in ηn−µ2λη′n−un

µ1
(σi

n)
2. These properties hold if the function

Ψ(z) ≡ 1

A+
√
B + Cz

is decreasing and convex for z ≥ −B
C , where (A,B,C) are positive constants. The function Ψ(z) is

decreasing because its derivative

Ψ′(z) = − C

2
√
B + Cz

1(
A+

√
B + Cz

)2
is negative. Since, in addition, Ψ′(z) is increasing, Ψ(z) is convex.

An equilibrium exists if (A.6), in which as1 and {ain1}n=1,..,N are implicit functions of λ defined

by (3.12) and (3.13), respectively, has a solution. For all non-positive values of λ, both sides of (A.6)

are well-defined because the non-negativity of
∑N

m=1(ηm − µ2λη
′
m − um)bm and ηn − µ2λη

′
n − un

ensures that (3.12) and (3.13) have a solution for as1 and {ain1}n=1,..,N , respectively. Moreover,
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the left-hand side of (A.6) is positive, and exceeds the right-hand side which is non-positive. An

equilibrium exists if both sides of (A.6) remain well-defined for a sufficiently large positive value of

λ that renders them equal.

If an equilibrium exists, then it is unique. Indeed, since the function Ψ(z) is decreasing, (3.12)

and (3.13) imply that the right-hand side of (A.6) is increasing in λ for positive values of λ.

Equations (3.12) and (3.13) also imply that the left-hand side of (A.6) is decreasing in λ if the

function

Φ(z) ≡ z(
A+

√
B + Cz

)2
is increasing for z ≥ −B

C , where (A,B,C) are positive constants. Showing that Φ(z) is increasing

is equivalent to showing that

Φ̂(y) ≡ y2 −B

(A+ y)2

is increasing for y ≡
√
B + Cz ≥ 0. The latter property follows because the functions Φ̂1(y) ≡ y

A+y

and Φ̂2(y) ≡ − B
(A+y)2

are increasing for y ≥ 0. Since the left-hand side of (A.6) is decreasing in λ

and the right-hand side is increasing, a positive solution λ of (A.6) is unique.

Proof of Proposition 4.1. We first derive the second equality in (4.2). Differentiating ηn−µ2λη′n−un

µ1

with respect to µ2 and using dµ1

dµ2
= −ϕ, we find

− µ1
d

dµ2

(
ηn − µ2λη

′
n − un

µ1

)
= −µ1

[
d(µ2λ)

dµ2

∂

∂(µ2λ)

(
ηn − µ2λη

′
n − un

µ1

)
− ϕ

∂

∂µ1

(
ηn − µ2λη

′
n − un

µ1

)]
=

d(µ2λ)

dµ2
η′n + ϕ

µ2λη
′
n + un − ηn
µ1

.

We next derive (4.1). Differentiating (3.12) with respect to µ2, we find

das1
dµ2

=
d

dµ2

(
N∑

m=1

ηm − µ2λη
′
m − um

µ1
bm

)
∂as1

∂
(∑N

m=1
ηm−µ2λη′m−um

µ1
bm

)
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= −

(
N∑

m=1

d

dµ2

(
ηm − µ2λη

′
m − um

µ1

)
bm

)
ρ(σsas1)

2F s

=
ρ

µ1

(
N∑

m=1

∆mbm

)
(σsas1)

2F s, (A.7)

where the second step follows from (3.12) and (4.3), and the third step follows from (4.2). Differ-

entiating (3.13) with respect to µ2, we likewise find

dain1
dµ2

=
d

dµ2

(
ηn − µ2λη

′
n − un

µ1

)
∂ain1

∂
(
ηn−µ2λη′n−un

µ1

)
=

ρ

µ1
∆n(σ

i
na

i
n1)

2F i
n, (A.8)

where the second step follows from (3.12), (4.2) and (4.4). Differentiating (3.11) with respect to µ2

and using (A.7) and (A.8), we find (4.1).

Proof of Proposition 4.2. We first derive ∆n = (1−ϕ)µ1(1−û)
(µ1+µ2)2

ηn, which is used in the text before

the proposition’s statement to derive (4.7) from (4.1). When η′n = ηn and un = ûηn for all n, (3.14)

implies λ = 1−û
µ1+µ2

. Setting η′n = ηn and un = ûηn for all n and λ = 1−û
µ1+µ2

in (4.2), we find

∆n =
d
(
µ2(1−û)
µ1+µ2

)
dµ2

ηn + ϕ

µ2(1−û)
µ1+µ2

ηn + ûηn − ηn

µ1

=

∂
(

µ2

µ1+µ2

)
∂µ2

− ϕ
∂
(

µ2

µ1+µ2

)
∂µ1

 (1− û)ηn − ϕ

µ1 + µ2
(1− û)ηn

=
µ1 + ϕµ2

(µ1 + µ2)2
(1− û)ηn − ϕ(µ1 + µ2)

(µ1 + µ2)2
(1− û)ηn

=
(1− ϕ)µ1(1− û)

(µ1 + µ2)2
ηn.

The results in the proposition follow from (4.9). When ϕ = 1, the right-hand side of (4.9) is

zero and thus prices of all stocks do not change. When instead ϕ < 1, the right-hand side of (4.9) is

positive and thus prices of all stocks increase. Consider next small stocks n and n′ with ηn, ηn′ ≈ 0.

Since the second term inside the square bracket in the right-hand side of (4.9) is negligible, stock

n experiences a larger percentage price increase than stock n′ if Covt
(
dRnt,

∑N
m=1 ηmdRsh

mt

)
>
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Covt
(
dRn′t,

∑N
m=1 ηmdRsh

mt

)
, which is equivalent to βnt > βn′t. Consider next a large stock n with

ηn ̸≈ 0 and a small stock n′ with ηn′ ≈ 0. The second term inside the square bracket in the right-

hand side of (4.9) is negligible for stock n′ but non-negligible for stock n. Moreover, it is positive for

stock n if (4.10) holds. Therefore, if Covt
(
dRnt,

∑N
m=1 ηmdRsh

mt

)
≥ Covt

(
dRn′t,

∑N
m=1 ηmdRsh

mt

)
,

which is equivalent to βnt ≥ βn′t, then stock n experiences a larger percentage price increase than

stock n′.

Proof of Proposition 4.3. We first compute dλ
dµ2

. Differentiating (3.14) with respect to µ2 and

using dµ1

dµ2
= −ϕ, (A.7) and (A.8), we find

2ρ

µ1

[(
N∑

m=1

η′mbm

)(
N∑

m=1

(ηm − um)bm

)(
N∑

m=1

∆mbm

)
(σs)4(as1)

3F s

+
N∑

m=1

η′m(ηm − um)∆m(σi
m)4(ain1)

3D̄i
nF

i
n

]

= (µ1 + µ2)λ
2ρ

µ1

( N∑
m=1

η′mbm

)2( N∑
m=1

∆mbm

)
(σs)4(as1)

3F s +
N∑

m=1

(η′m)2∆m(σi
m)4(ain1)

3D̄i
nF

i
n


+

[
dλ

dµ2
(µ1 + µ2) + (1− ϕ)λ

]( N∑
m=1

η′mbm

)2

(σsas1)
2 +

N∑
m=1

(
η′m
)2

(σi
maim1)

2D̄i
m

 . (A.9)

Substituting ∆n by its value in (4.2) and grouping all terms in dλ
dµ2

separately from the remaining

terms, we find

dλ

dµ2
(D1 +D2 +D3) = N1 +N2 +N3, (A.10)

where

D1 ≡ (µ1 + µ2)

( N∑
m=1

η′mbm

)2

(σsas1)
2 +

N∑
m=1

(
η′m
)2

(σi
maim1)

2D̄i
m

 ,

D2 ≡
2µ2ρ

µ1

(
N∑

m=1

η′mbm

)2 [
(µ1 + µ2)λ

(
N∑

m=1

η′mbm

)
−

(
N∑

m=1

(ηm − um)bm

)]
(σs)4(as1)

3F s,

D3 ≡
2µ2ρ

µ1

N∑
m=1

(η′m)2
[
(µ1 + µ2)λη

′
m − (ηm − um)

]
(σi

m)4(ain1)
3D̄i

nF
i
n,
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N1 ≡ −(1− ϕ)λ

( N∑
m=1

η′mbm

)2

(σsas1)
2 +

N∑
m=1

(
η′m
)2

(σi
maim1)

2D̄i
m

 ,

N2 ≡ −2ρ

µ1

(
N∑

m=1

η′mbm

)[
(µ1 + µ2)λ

(
N∑

m=1

η′mbm

)
−

(
N∑

m=1

(ηm − um)bm

)](
N∑

m=1

∆′
mbm

)
(σs)4(as1)

3F s,

N3 ≡ −2ρ

µ1

N∑
m=1

η′m
[
(µ1 + µ2)λη

′
m − (ηm − um)

]
∆′

m(σi
m)4(ain1)

3D̄i
nF

i
n,

and

∆′
n ≡ λη′n + ϕ

µ2λη
′
n + un − ηn
µ1

= ∆n − µ2
dλ

dµ2
η′n. (A.11)

We next show that
∑N

m=1∆mbm is positive in a non-empty interval [0, ϕ1) ⊂ [0, 1], and is

negative in a non-empty interval (ϕ2, 1] ⊂ [0, 1] under Assumption 4.1 and I = {1, .., N}. Using

(A.10) and (A.11), we find

N∑
m=1

∆mbm = µ2
dλ

dµ2

N∑
m=1

η′mbm +
N∑

m=1

∆′
mbm

= µ2
N1 +N2 +N3

D1 +D2 +D3

N∑
m=1

η′mbm +
N∑

m=1

∆′
mbm

=
µ2 (N1 +N2 +N3)

(∑N
m=1 η

′
mbm

)
+ (D1 +D2 +D3)

(∑N
m=1∆

′
mbm

)
D1 +D2 +D3

=
µ2 (N1 +N3)

(∑N
m=1 η

′
mbm

)
+ (D1 +D3)

(∑N
m=1∆

′
mbm

)
D1 +D2 +D3

, (A.12)

where the last step follows because the definitions of D2 and N2 imply

µ2N2

(
N∑

m=1

η′mbm

)
+D2

(
N∑

m=1

∆′
mbm

)
= 0.

In the proof of Proposition 3.1 we show that the right-hand side of (A.6) increases in λ and the

left-hand side decreases in λ. Therefore, the difference between the right-hand and the left-hand

side increases in λ. Multiplying that difference by µ1 yields the difference between the right-hand

and the left-hand side of (A.6), which thus also increases in λ. Therefore, the denominator in (A.12)
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is positive and
∑N

m=1∆mbm has the same sign as the numerator. Using the definitions of D1, N1

and ∆′
n, we find

µ2N1

(
N∑

m=1

η′mbm

)
+D1

(
N∑

m=1

∆′
mbm

)

=

[
−(1− ϕ)µ2λ

(
N∑

m=1

η′mbm

)
+ (µ1 + µ2)

(
N∑

m=1

∆′
mbm

)]

×

( N∑
m=1

η′mbm

)2

(σsas1)
2 +

N∑
m=1

(
η′m
)2

(σi
maim1)

2D̄i
m


=

[[
µ1 + ϕµ2 +

ϕ(µ1 + µ2)µ2

µ1

]
λ

(
N∑

m=1

η′mbm

)
− ϕ(µ1 + µ2)

µ1

(
N∑

m=1

(ηm − um)bm

)]

×

( N∑
m=1

η′mbm

)2

(σsas1)
2 +

N∑
m=1

(
η′m
)2

(σi
maim1)

2D̄i
m


= (1− ϕ)µ1λ

(
N∑

m=1

η′mbm

)( N∑
m=1

η′mbm

)2

(σsas1)
2 +

N∑
m=1

(
η′m
)2

(σi
maim1)

2D̄i
m


+

ϕ(µ1 + µ2)

µ1

[
(µ1 + µ2)λ

(
N∑

m=1

η′mbm

)
−

(
N∑

m=1

(ηm − um)bm

)]

×

( N∑
m=1

η′mbm

)2

(σsas1)
2 +

N∑
m=1

(
η′m
)2

(σi
maim1)

2D̄i
m

 . (A.13)

Since (3.14) implies

[
(µ1 + µ2)λ

(
N∑

m=1

η′mbm

)
−

(
N∑

m=1

(ηm − um)bm

)]( N∑
m=1

η′mbm

)2

(σsas1)
2 +

N∑
m=1

(
η′m
)2

(σi
maim1)

2D̄i
m


=

(
N∑

m=1

η′mbm

)[(
N∑

m=1

(ηm − um)bm

)
(σsas1)

2 +
N∑

m=1

η′m(ηm − um)(σi
maim1)

2D̄i
m

]

−

(
N∑

m=1

(ηm − um)bm

)( N∑
m=1

η′mbm

)2

(σsas1)
2 +

N∑
m=1

(
η′m
)2

(σi
maim1)

2D̄i
m


=

N∑
m=1

η′m

[
(ηm − um)

(
N∑

m̂=1

η′m̂bm̂

)
− η′m

(
N∑

m̂=1

(ηm̂ − um̂)bm̂

)]
(σi

maim1)
2D̄i

m,
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we can write (A.13) as

µ2N1

(
N∑

m=1

η′mbm

)
+D1

(
N∑

m=1

∆′
mbm

)

= (1− ϕ)µ1λ

(
N∑

m=1

η′mbm

)( N∑
m=1

η′mbm

)2

(σsas1)
2 +

N∑
m=1

(
η′m
)2

(σi
maim1)

2D̄i
m


+

ϕ(µ1 + µ2)

µ1

N∑
m=1

η′m

[
(ηm − um)

(
N∑

m̂=1

η′m̂bm̂

)
− η′m

(
N∑

m̂=1

(ηm̂ − um̂)bm̂

)]
(σi

maim1)
2D̄i

m.

(A.14)

Using the definitions of D3, N3 and ∆′
n, we find

µ2N3

(
N∑

m=1

η′mbm

)
+D3

(
N∑

m=1

∆′
mbm

)

=
2µ2ρ

µ1

N∑
m=1

η′m

[
∆′

m

(
N∑

m̂=1

η′m̂bm̂

)
− η′m

(
N∑

m̂=1

∆′
m̂bm̂

)] [
ηm − um − (µ1 + µ2)λη

′
m

]
(σi

m)4(ain1)
3D̄i

nF
i
n

= −2ϕµ2ρ

µ2
1

N∑
m=1

η′m

[
(ηm − um)

(
N∑

m̂=1

η′m̂bm̂

)
− η′m

(
N∑

m̂=1

(ηm̂ − um̂)bm̂

)]

×
[
ηm − um − (µ1 + µ2)λη

′
m

]
(σi

m)4(ain1)
3D̄i

nF
i
n. (A.15)

Equations (A.14) and (A.15) imply that the numerator in (A.12) is equal to

(1− ϕ)µ1λ

(
N∑

m=1

η′mbm

)( N∑
m=1

η′mbm

)2

(σsas1)
2 +

N∑
m=1

(
η′m
)2

(σi
maim1)

2D̄i
m


+

ϕ

µ1

N∑
m=1

η′m

[
(ηm − um)

(
N∑

m̂=1

η′m̂bm̂

)
− η′m

(
N∑

m̂=1

(ηm̂ − um̂)bm̂

)]
(σi

maim1)
2D̄i

m

×
(
µ1 + µ2 −

2µ2ρ

µ1

[
ηm − um − (µ1 + µ2)λη

′
m

]
(σi

m)2ain1F
i
n

)
. (A.16)

When ϕ = 0, (A.16) becomes

µ1λ

(
N∑

m=1

η′mbm

)( N∑
m=1

η′mbm

)2

(σsas1)
2 +

N∑
m=1

(
η′m
)2

(σi
maim1)

2D̄i
m


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and is positive. Therefore,
∑N

m=1∆mbm is positive and remains positive by continuity in a non-

empty interval [0, ϕ1) ⊂ [0, 1]. When ϕ = 1, (A.16) becomes

1

µ1

N∑
m=1

η′m

[
(ηm − um)

(
N∑

m̂=1

η′m̂bm̂

)
− η′m

(
N∑

m̂=1

(ηm̂ − um̂)bm̂

)]
(σi

maim1)
2D̄i

m

×
(
µ1 + µ2 −

2µ2ρ

µ1

[
ηm − um − (µ1 + µ2)λη

′
m

]
(σi

m)2ain1F
i
n

)
,

which we can write under Assumption 4.1 and using (3.13) and (4.4) as

1

µ1

G∑
g=1

η′g

L∑
ℓ=1

AgℓBgℓ, (A.17)

where

Agℓ ≡ ηg(1− ûℓ)L

 G∑
ĝ=1

η′ĝbĝ

− η′g

 G∑
ĝ=1

ηĝbĝ

L∑
ℓ=1

(1− ûℓ)

 ,

Bgℓ ≡ C2
gℓD̄

i
g(µ1 + µ2 − Fgℓ),

Cgℓ ≡
2σi

g

r + κig +
√
(r + κig)

2 + 4ρ
ηg(1−ûℓ)−µ2λη′g

µ1
(σi

g)
2

,

Fgℓ ≡
4µ2ρ

ηg(1−ûℓ)−µ2λη′g
µ1

(σi
g)

2

r + κig +
√
(r + κig)

2 + 4ρ
ηg(1−ûℓ)−µ2λη′g

µ1
(σi

g)
2

1√
(r + κig)

2 + 4ρ
ηg(1−ûℓ)−µ2λη′g

µ1
(σi

g)
2

.

To show that (A.17) is negative under Assumption 4.1 and I = {1, .., N}, we show that
∑L

ℓ=1AgℓBgℓ

is negative for all g = 1, .., G. This property follows if we show (i)
∑L

ℓ=1Agℓ = 0, (ii) Agℓ decreases

in ûℓ, and (iii) Bgℓ is positive and increases in ûℓ. Indeed,

L∑
ℓ=1

AgℓBgℓ =

L∑
ℓ=1

(
Agℓ −

∑L
ℓ′=1Agℓ′

L

)
Bgℓ

=

L∑
ℓ=1

(
Agℓ −

∑L
ℓ′=1Agℓ′

L

)(
Bgℓ −

∑L
ℓ′=1Bgℓ′

L

)
< 0,

where the first step follows from (i) and the last step follows from (ii), (iii) and #{um
ηm

: m ∈
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{1, .., N}} > 1. Property (i) follows because

L∑
ℓ=1

ηg(1− ûℓ)L

 G∑
ĝ=1

η′ĝbĝ

− η′g

 G∑
ĝ=1

ηĝbĝ

L∑
ℓ=1

(1− ûℓ)


= L

ηg
 G∑

ĝ=1

η′ĝbĝ

− η′g

 G∑
ĝ=1

ηĝbĝ

 L∑
ℓ=1

(1− ûℓ)

= L

ηg
 G∑

ĝ=1

ηĝbĝ

− ηg

 G∑
ĝ=1

ηĝbĝ

 L∑
ℓ=1

(1− ûℓ) = 0,

where the last step follows from I = {1, .., N}. Property (ii) follows from the definition of Agℓ.

Property (iii) follows because Cgℓ and µ1 + µ2 − Fgℓ are positive and increasing in ûℓ. (The term

µ1 + µ2 − Fgℓ is positive because Fgℓ < µ2 and is increasing in ûℓ because Fgℓ is decreasing in ûℓ.)

Therefore,
∑N

m=1∆mbm is negative and remains negative by continuity in a non-empty interval

(ϕ2, 1] ⊂ [0, 1].

We next show that

∆̂ ≡ d(µ2λ)

dµ2
+ ϕ

µ2λ+maxm
um
ηm

− 1

µ1
(A.18)

is positive. For ϕ = 0, ∆̂ = d(µ2λ)
dµ2

. This is positive because
∑N

m=1∆mbm is positive and (4.2)

implies
∑N

m=1∆mbm = d(µ2λ)
dµ2

∑N
m=1 η

′
mbm. To show that ∆̂ is positive for ϕ > 0, we proceed by

contradiction and assume ∆̂ ≤ 0. For n ∈ I, (4.2) implies

∆n =

(
d(µ2λ)

dµ2
+ ϕ

µ2λ+ un
ηn

− 1

µ1

)
ηn ≤ ∆̂ηn ≤ 0,

with the first inequality being strict for n /∈ argmaxm
um
ηm

. For n /∈ I, (4.2) implies

∆n = ϕ
un − ηn

µ1
< 0.

Therefore, ∆n ≤ 0 for all n, with the inequality being strict for some n because I ⊊ {1, .., N}

or #{um
ηm

: m ∈ {1, .., N}} > 1. Combining this result with (4.2), (A.7), (A.8) and the function

Φ(z) being increasing, we find that the derivative of the left-hand side of (A.6) with respect to
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µ2 is positive. Combining the same result with (4.2), (A.7), (A.8) and the function Ψ(z) being

decreasing, we find that the derivative of the term in square brackets in the right-hand side of (A.6)

with respect to µ2 is negative. Therefore, (A.6) implies dλ
dµ2

> 0, in which case

∆̂− µ2
dλ

dµ2
< 0

⇒ λ+ ϕ
µ2λ+maxm

um
ηm

− 1

µ1
< 0

⇒ ϕλ+ ϕ
µ2λ+maxm

um
ηm

− 1

µ1
< 0

⇒ (µ1 + µ2)λ+max
m

um
ηm

− 1 < 0.

This yields a contradiction because (3.14) implies

(µ1 + µ2)λ ≥ 1−max
m

um
ηm

.

Therefore, ∆̂ > 0.

The results in the proposition follow from (4.11) and the signs of
∑N

m=1∆mbm and ∆̂. For

ϕ = 0, d(µ2λ)
dµ2

> 0 implies ∆n ≥ 0 for all n. Since, in addition,
∑N

m=1∆mbm > 0 for all ϕ in a

non-empty interval [0, ϕ1), (4.1) implies that prices increase for all stocks for ϕ = 0. The same is

true by continuity for all ϕ in a non-empty interval [0, ϕ′
1) ⊂ [0, 1]. Redefining ϕ1 as min{ϕ1, ϕ

′
1},

prices increase for all stocks for all ϕ ∈ [0, ϕ1).

Consider next small stocks n and n′ with ηn, ηn′ ≈ 0. Since
∑N

m=1∆mbm > 0 for all ϕ ∈ [0, ϕ1)

and since the second term inside the square bracket in the right-hand side of (4.11) is negligible,

stock n experiences a larger percentage price increase than stock n′ if Covt
(
dRnt,

∑N
m=1 ηmdRsh

mt

)
>

Covt
(
dRn′t,

∑N
m=1 ηmdRsh

mt

)
, which is equivalent to βnt > βn′t. Conversely, since

∑N
m=1∆mbm <

0 for all ϕ ∈ (ϕ2, 1] under Assumption 4.1 and I = {1, .., N}, stocks n and n′ experience a

price decrease. Moreover, stock n experiences a larger percentage price decrease than stock n′

if Covt
(
dRnt,

∑N
m=1 ηmdRsh

mt

)
> Covt

(
dRn′t,

∑N
m=1 ηmdRsh

mt

)
, which is equivalent to βnt > βn′t.

Consider finally a large stock n with ηn ̸≈ 0, n ∈ I and n ∈ argmaxm
um
ηm

, and a small stock

n′ with ηn′ ≈ 0. Since n ∈ I and n ∈ argmaxm
um
ηm

, (4.2) and (A.18) imply ∆n = ∆̂ηn. The
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second term inside the square bracket in the right-hand side of (4.11) is negligible for stock n′ but

non-negligible for stock n. It is positive for stock n if

∆n

(
κin
r
D̄i

n +Di
nt

)
F i
n −

∑N
m=1∆mbm∑N
m=1 ηmbm

ηn

(
κs

rDs
t

+ 1

)
Di

ntF
s > 0

⇔ ∆̂

(
κin
r
D̄i

n +Di
nt

)
F i
n −

∑N
m=1∆mbm∑N
m=1 ηmbm

(
κs

rDs
t

+ 1

)
Di

ntF
s > 0. (A.19)

Since ∆̂ > 0, (4.10) implies (A.19) if

∆̂ ≥
∑N

m=1∆mbm∑N
m=1 ηmbm

⇔
N∑

m=1

(∆̂ηm −∆m)bm ≥ 0. (A.20)

Equation (A.20) holds because ∆̂ηn ≥ ∆n for n ∈ I and ∆n < 0 for n /∈ I. Therefore, if

Covt
(
dRnt,

∑N
m=1 ηmdRsh

mt

)
= Covt

(
dRn′t,

∑N
m=1 ηmdRsh

mt

)
, which is equivalent to βnt = βn′t,

then stock n experiences a larger percentage price change than stock n′. The same result holds

when dropping the assumption n ∈ argmaxm
um
ηm

, provided that ϕ is close to zero. Indeed, (A.19) is

replaced by

∆n

ηn

(
κin
r
D̄i

n +Di
nt

)
F i
n −

∑N
m=1∆mbm∑N
m=1 ηmbm

(
κs

rDs
t

+ 1

)
Di

ntF
s > 0. (A.21)

For ϕ close to zero, ∆n
ηn

is positive because it is close to ∆̂. Therefore, (4.10) implies (A.21) if

∆n

ηn
≥
∑N

m=1∆mbm∑N
m=1 ηmbm

(A.22)

and even if (A.22) holds in the reverse direction but its two sides are close (because (4.10) is a strict

ineguality). For ϕ close to zero, (A.22) holds if I ⊊ {1, .., N} and holds in the reverse direction

with its two sides being close if I = {1, .., N}

56



B Return Moments

To compute conditional expected excess return, we divide the right-hand side of (3.10) by Snt.

Using (3.11), and dropping the subscript n from (κin, D̄
i
n, σ

i
n), we find

Et(dRnt)

dt
= ρr

[
bn

(∑N
m=1

ηm−µ2λη′m−um

µ1
bm

)
(σsas1)

2Ds
t +

ηn−µ2λη′n−un

µ1
(σi

na
i
n1)

2Di
nt

]
D̄n + bnas1(κ

s + rDs
t ) + ain1(κ

iD̄i + rDi
nt)

. (B.1)

Unconditional expected excess return is the expectation of (B.1)

E(dRnt)

dt
= ρrE


[
bn

(∑N
m=1

ηm−µ2λη′m−um

µ1
bm

)
(σsas1)

2Ds
t +

ηn−µ2λη′n−un

µ1
(σiain1)

2Di
nt

]
D̄n + bnas1(κ

s + rDs
t ) + ain1(κ

iD̄i + rDi
nt)

 . (B.2)

When the stationary distribution of (Ds
t , D

i
nt) is gamma, the expectation in (B.2) becomes

∫ ∞

Di
nt=0

∫ ∞

Ds
t=0

[
bn

(∑N
m=1

ηm−µ2λη′m−um

µ1
bm

)
(σsas1)

2Ds
t +

ηn−µ2λη′n−un

µ1
(σiain1)

2Di
nt

]
D̄n + bnas1(κ

s + rDs
t ) + ain1(κ

iD̄i + rDi
nt)

× (βs)
αs

Γ(αs)
(Ds

t )
αs−1e−βsDs

t
(βi)

αi

Γ(αi)
(Di

nt)
αi−1e−βiDi

ntdDs
tdD

i
nt. (B.3)

Because the functions (Ds
t )

αs−1 and (Di
nt)

αi−1 go to ∞ when Ds
t and Di

nt, respectively, go to zero,

the numerical calculation of the double integral in (B.3) becomes slow and inaccurate if the lower

bounds are close to zero. We instead use a fast and accurate method by writing the double integral

as a sum of four terms. We fix a small ϵ > 0 and a large M . The integration domain for the first

term is (Ds
t , D

i
nt) ∈ [ϵ,M ]× [ϵ,MD̄i], and we compute that term using Matlab’s double integration

routine. The integration domain for the second term is (Ds
t , D

i
nt) ∈ [0, ϵ]×[ϵ,MD̄i], and we compute

that term as

∫ MD̄i

Di
nt=ϵ

∫ ϵ

Ds
t=0

bn

(∑N
m=1

ηm−µ2λη′m−um

µ1
bm

)
(σsas1)

2Ds
t

D̄n + bnas1κ
s + ain1(κ

iD̄i + rDi
nt)

(βs)
αs

Γ(αs)
(Ds

t )
αs−1 (βi)

αi

Γ(αi)
(Di

nt)
αi−1e−βiDi

ntdDs
tdD

i
nt

+

∫ MD̄i

Di
nt=ϵ

∫ ϵ

Ds
t=0

ηn−µ2λη′n−un

µ1
(σiain1)

2Di
nt

D̄n + bnas1κ
s + ain1(κ

iD̄i + rDi
nt)

(βs)
αs

Γ(αs)
(Ds

t )
αs−1 (βi)

αi

Γ(αi)
(Di

nt)
αi−1e−βiDi

ntdDs
tdD

i
nt

=

∫ MD̄i

Di
nt=ϵ

bn

(∑N
m=1

ηm−µ2λη′m−um

µ1
bm

)
(σsas1)

2

D̄n + bnas1κ
s + ain1(κ

iD̄i + rDi
nt)

(βs)
αs

Γ(αs)

ϵα
s+1

αs + 1

(βi)
αi

Γ(αi)
(Di

nt)
αi−1e−βiDi

ntdDi
nt
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+

∫ MD̄i

Di
nt=ϵ

ηn−µ2λη′n−un

µ1
(σiain1)

2Di
nt

D̄n + bnas1κ
s + ain1(κ

iD̄i + rDi
nt)

(βs)
αs

Γ(αs)

ϵα
s

αs

(βi)
αi

Γ(αi)
(Di

nt)
αi−1e−βiDi

ntdDi
nt.

Thus, we approximate κs + rDs
t by κs and e−βsDs

t by one, then compute the exact integrals of

(Ds
t )

αs
and (Ds

t )
αs−1 over [0, ϵ], and then use Matlab’s integration routine to integrate with respect

to Di
nt over [ϵ,MD̄n]. The integration domain for the third term is (Ds

t , D
i
nt) ∈ [ϵ,M ]× [0, ϵ], and

we compute that term as

∫ ϵ

Di
nt=0

∫ M

Ds
t=ϵ

bn

(∑N
m=1

ηm−µ2λη′m−um

µ1
bm

)
(σsas1)

2Ds
t

D̄n + bnas1(κ
s + rDs

t ) + ain1κ
iD̄i

(βs)
αs

Γ(αs)
(Ds

t )
αs−1e−βsDs

t
(βi)

αi

Γ(αi)
(Di

nt)
αi−1dDs

tdD
i
nt

+

∫ ϵ

Di
nt=0

∫ M

Ds
t=ϵ

ηn−µ2λη′n−un

µ1
(σiain1)

2Di
nt

D̄n + bnas1(κ
s + rDs

t ) + ain1κ
iD̄i

(βs)
αs

Γ(αs)
(Ds

t )
αs−1e−βsDs

t
(βi)

αi

Γ(αi)
(Di

nt)
αi−1dDs

tdD
i
nt

=

∫ M

Ds
t=ϵ

bn

(∑N
m=1

ηm−µ2λη′m−um

µ1
bm

)
(σsas1)

2Ds
t

D̄n + bnas1(κ
s + rDs

t ) + ain1κ
iD̄i

(βs)
αs

Γ(αs)
(Ds

t )
αs−1e−βsDs

t
(βi)

αi

Γ(αi)

ϵα
i

αi
dDi

nt

+

∫ M

Ds
t=ϵ

ηn−µ2λη′n−un

µ1
(σiain1)

2

D̄n + bnas1(κ
s + rDs

t ) + ain1κ
iD̄i

(βs)
αs

Γ(αs)
(Ds

t )
αs−1e−βsDs

t
(βi)

αi

Γ(αi)

ϵα
i+1

αi + 1
dDi

nt.

Thus, we approximate κiD̄i + rDi
nt by κiD̄i and e−βiDi

nt by one, then compute the exact integrals

of (Di
nt)

αi
and (Di

nt)
αi−1 over [0, ϵ], and then use Matlab’s integration routine to integrate with

respect to Ds
t over [ϵ,M ]. The integration domain for the fourth term is (Ds

t , D
i
nt) ∈ [0, ϵ]× [0, ϵ],

and we compute that term as

∫ ϵ

Di
nt=0

∫ ϵ

Ds
t=0

bn

(∑N
m=1

ηm−µ2λη′m−um

µ1
bm

)
(σsas1)

2Ds
t

D̄n + bnas1κ
s + ain1κ

iD̄i

(βs)
αs

Γ(αs)
(Ds

t )
αs−1 (βi)

αi

Γ(αi)
(Di

nt)
αi−1dDs

tdD
i
nt

+

∫ ϵ

Di
nt=0

∫ ϵ

Ds
t=0

ηn−µ2λη′n−un

µ1
(σiain1)

2Di
nt

D̄n + bnas1κ
s + ain1κ

iD̄i

(βs)
αs

Γ(αs)
(Ds

t )
αs−1 (βi)

αi

Γ(αi)
(Di

nt)
αi−1dDs

tdD
i
nt

=
bn

(∑N
m=1

ηm−µ2λη′m−um

µ1
bm

)
(σsas1)

2

D̄n + bnas1κ
s + ain1κ

iD̄i

(βs)
αs

Γ(αs)

ϵα
s+1

αs + 1

(βi)
αi

Γ(αi)

ϵα
i

αi
dDi

nt

+

ηn−µ2λη′n−un

µ1
(σiain1)

2

D̄n + bnas1κ
s + ain1κ

iD̄i

(βs)
αs

Γ(αs)

ϵα
s

αs

(βi)
αi

Γ(αi)

ϵα
i+1

αi + 1
dDi

nt.

Thus, we approximate κs + rDs
t by κs, κiD̄i + rDi

nt by κiD̄i, and e−βsDs
t and e−βiDi

nt by one, and

then compute the exact integrals of (Ds
t )

αs
, (Ds

t )
αs−1, (Di

nt)
αi

and (Di
nt)

αi−1 over [0, ϵ]. The sum
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of the four terms is independent of ϵ for ϵ ranging from 0.00001 to 0.01. For larger values of ϵ

the approximations become inaccurate, and for smaller values of ϵ the Matlab integration routines

become inaccurate.

Equations (3.2), (3.8), (3.9) and (3.11) imply that conditional return volatility is

√
Vart(dRnt)

dt
=

√
b2n(σ

sas1)
2Ds

t + (σi
na

i
n1)

2Di
nt

D̄n+bnas1(κ
s+rDs

t )+ain1(κ
i
nD̄

i
n+rDi

nt)
r

. (B.4)

Conditional return variance is the square of (B.4). Unconditional return variance is the expectation

of conditional variance

Var(dRnt)

dt
= r2E

{
b2n(σ

sas1)
2Ds

t + (σiain1)
2Di

nt

[D̄n + bnas1(κ
s + rDs

t ) + ain1(κ
iD̄i + rDi

nt)]
2

}
, (B.5)

because infinitesimal dRnt implies that E(dR2
nt) and Et(dR

2
nt) are equal to Var(dRnt) and Vart(dRnt),

respectively, plus smaller-order terms. We calculate the expectation in (B.5) by writing the double

integral as a sum of four terms as in the case of expected excess return.

Unconditional CAPM beta is

βCAPM
nt =

Cov(dRnt,dRMt)
dt

Var(dRMt)
dt

, (B.6)

where dRMt denotes the excess return on the index. The numerator of (B.6) is

Cov(dRnt, dRMt)

dt
=

r2E

{
bn(
∑N

m=1 η
′
mbm)(σsas1)

2Ds
t + η′n(σ

iain1)
2Di

nt

[D̄n + bnas1(κ
s + rDs

t ) + ain1(κ
iD̄i + rDi

nt)][
∑N

m=1 η
′
m[D̄m + bmas1(κ

s + rDs
t ) + aim1(κ

iD̄i + rDi
mt)]

}
.

(B.7)

Computing the expectation in (B.7) requires integrating over (Ds
t , {Di

mt}m=1,..,N ), i.e., N+1 random

variables. To keep the integration manageable, we replace {Di
mt}m̸=n by their expectations D̄i, thus

applying the law of large numbers. We then calculate the expectation over (Ds
t , D

i
nt) by writing the

double integral as a sum of four terms, as in the case of expected excess return. The denominator
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of (B.6) is

Var(dRMt)

dt
= r2E

{
(
∑N

m=1 η
′
mbm)2(σsas1)

2Ds
t +

∑N
m=1(η

′
m)2(σiaim1)

2Di
mt

[
∑N

m=1 η
′
m[D̄m + bmas1(κ

s + rDs
t ) + aim1(κ

iD̄i + rDi
mt)]

2

}
. (B.8)

We replace {Di
mt}m=1,..,N by their expectations D̄i, and calculate the expectation over Ds

t by

writing the integral as a sum of two terms, with integration domains [0, ϵ] and [ϵ,M ]. We do not

distinguish between stock n and stocks m ̸= n because all stocks are symmetric in (B.8).

Unconditional CAPM R-squared is

R2,CAPM =

[
Cov(dRnt,dRMt)

dt

]2
Var(dRnt)

dt
Var(dRMt)

dt

=
(
βCAPM
nt

)2 Var(dRMt)
dt

Var(dRnt)
dt

and can be computed from the previous moments. Unconditional idiosyncratic variance is

Vari(dRnt)

dt
=

Var(dRnt)

dt
−
(
βCAPM
nt

)2 Var(dRMt)

dt
=

Var(dRnt)

dt

(
1−R2,CAPM

)
and can be computed from the previous moments.

C Volatility of Dividends Per Share

For each quarter and for each stock in the S&P500 index, we compute ordinary cash dividends

per share, adjusting for stock splits. We source dividends per share from the monthly CRSP file

and aggregate them to the quarterly frequency. We compute additionally the standard deviation

of quarterly changes in dividends per share, expressed in absolute rather than percentage terms,

over the next three years. We begin our sample in the first quarter of 1996. We end it in the

fourth quarter of 2017 because our main sample ends in the fourth quarter of 2020 and standard

deviation of dividend changes is computed three years ahead. In each quarter, we sort the S&P500

stocks into quintile portfolios based on dividends per share. We compute dividends per share and

volatility of dividends per share for each portfolio by averaging the stock-level variables. Table C.1

and Figure C.1 present the quintile averages.

The volatility of dividends per share increases in their level. Moreover, the increase is concave
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1 2 3 4 5

Dividend 0.051 0.128 0.212 0.321 0.780
σ(∆Dividend) 0.024 0.045 0.046 0.062 0.085

Table C.1: Dividends Per Share and their Volatility.

Figure C.1: Dividends Per Share and their Volatility. Dividends per share, computed at a
quarterly frequency, are on the x-axis. Volatility of dividends per share, computed as the standard
deviation of quarterly dividend changes in the next three years, is on the y-axis.

rather than linear. These findings are consistent with the square-root specification in our model,

with the caveat that they could be partly driven by variation across firms rather than across time

for a given firm.

D Three-Period Model

We assume that there are three periods 0, 1 and 2, and that stock n pays a single dividend

Dn = bnϵ
s
1ϵ

s
2 +Di

n0ϵ
i
n1ϵ

i
n2
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in period 2, where {bn, Di
n0}n=1,..,N are positive constants and (ϵs1, ϵ

s
2, {ϵin1, ϵin2}n=1,..,N ) are mu-

tually independent random variables. We consider two specifications. In the Geometric Random

Walk (GRW) specification, (ϵs1, ϵ
s
2) are normal with mean µs and variance (σs)2, and (ϵin1, ϵ

i
n2)

are normal with mean µi
n and variance (σi)2. In the Square Root (SR) specification (ϵs1, ϵ

s
2) are

normal with mean µs and variances
(
(σs)2, (σ

s)2

|ϵs1|

)
, and (ϵin1, ϵ

i
n2) are normal with mean µi

n and

variances
(
(σi)2

Di
n0

, (σi)2

Di
n0|ϵin1|

)
. For simplicity, we set µs and µi

n to one and the riskless rate r to zero.

We normalize the expected dividend to one by assuming

bn +Di
n0 = 1

Experts and non-experts maximize CARA utility over wealth in period 2 and start with wealth W

in period 0.

We limit our analysis to three periods because the analysis of the GRW specification becomes

intractable when adding more periods. We refer to the second specification as the SR specification

because the standard deviation of systematic dividends as of period 1 is

√
b2n(ϵ

s
1)

2
(σs)2

|ϵs1|
= bnσ

s
√

|ϵs1|

and of idiosyncratic dividends is

√
(Di

n0)
2(ϵin1)

2
(σi)2

|ϵin1|
= Di

n0σ
s
√

|ϵin1|.

They are proportional, respectively, to the square root of the expected systematic dividend bnϵ
s
1

as of period 1 provided that ϵs1 > 0, and to the square root of the expected idiosyncratic dividend

Di
n0ϵ

i
n1 provided that ϵin1 > 0.

D.1 GRW Specification

Proposition D.1 characterizes the equilibrium under the GRW specification. Before proving the

proposition, we prove a useful lemma.
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Lemma D.1. Let x be an n × 1 normal vector with mean zero and covariance matrix Σ, A a

scalar, B an n× 1 vector, C an n× n symmetric matrix, I the n× n identity matrix, and |M | the

determinant of a matrix M . Then,

Ex exp

{
−α

[
A+B′x+

1

2
x′Cx

]}
= exp

{
−α

[
A− 1

2
αB′Σ(I + αCΣ)−1B

]}
1√

|I + αCΣ|
. (D.1)

Proof of Lemma D.1. When C = 0, (D.1) gives the moment-generating function of the normal

distribution. We can always assume C = 0 by also assuming that x is a normal vector with mean

0 and covariance matrix Σ(I + αCΣ)−1.

Proposition D.1. Under the GRW specification, the price of stock n in period 1 is

Sn1 = bnϵ
s
1 +Di

n0ϵ
i
n1 − ρ

[
bn(ϵ

s
1)

2Gs + (Di
n0ϵ

i
n1)

2Gi
n

]
, (D.2)

and in period 0 is

Sn0 = 1−ρ

[
bnG

s

(
2 + ρGs

(1 + ρGs)2
+

(σs)2

1− (ρGs)2

)
+ (Di

n0)
2Gi

n

(
2 + ρDi

n0G
i
n

(1 + ρDi
n0G

i
n)

2
+

(σi
n)

2

1− (ρDi
n0G

i
n)

2

)]
,

(D.3)

where

Gs ≡

(
N∑

m=1

ηm − µ2λη
′
m − um

µ1
bm

)
(σs)2,

Gi
n ≡ ηn − µ2λη

′
n − un

µ1
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and
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2.

Proof of Proposition D.1. The expected utility of experts as of period 1 is
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where the last step follows from normality. Taking the first-order condition in (D.5) and substituting

{z1n1}n=1,..,N from the market-clearing equation

µ1z1n1 + µ2λη
′
n + un = ηn,

we find (D.2).
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where the third step follows from (D.5) by replacing (W, z1n1, Sn1) by (W11, z1n0, Sn0), and the

fourth step follows from Lemma D.1. Taking the first-order condition in (D.6), we find
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Substituting {z1n0}n=1,..,N from the market-clearing equation

µ1z1n0 + µ2λη
′
n + un = ηn

into (D.7) and using the normalization bn +Di
n0 = 1 and the definitions of (Gs, {Gi

n}n=1,..,N ), we

find (D.3).

The first-order condition of non-experts can be derived from (D.7) by replacing z1n0 by λη′n,

multiplying by η′n and summing over n. Using the definitions of (Hs, {H i
n}n=1,..,N ), we find
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Substituting {Sn0}n=1,..,N from (D.3) into (D.8) and using the normalization bn+Di
n0 = 1, we find

(D.4).

We calibrate the model as in Section 5. The values of (r,N, µ1, µ2, ρ), the size distribution of

firms as described by number of shares as function of η, the cases for index composition, and the

cases for noise-trader demand are as in Section 5. As in Section 5, we also set σi
n = σs for all

n and bn = b̄ − (m − 3)∆b for all stocks n in size group m. Since bn + D̄i
n = 1 for all n, the

parameters left to calibrate are (b̄,∆b, σs, η). We calibrate them based on stocks’ expected excess

returns, return variances, CAPM betas and CAPM R-squareds. We compute these moments for

the returns between period 0 and 2, expressing expected excess returns and return variances in per

period terms. As in Section 5, we target expected excess returns in the baseline to average to 4%

across all stocks and CAPM R-squareds to average to their empirical counterpart. We target return
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volatilities to average 30%. We consider only the varying-bn case and target the spread in CAPM

betas across size groups to march its empirical counterpart. CAPM beta decreases from 1.22 for

size group 1 to 0.92 for size group 5. The values of (b̄,∆b, σs, η) are (0.4, 0.04, 0.37, 0.00012).

Table D.1 shows how flows into passive funds affect stock prices in the baseline and when the

funds track a large-stock index in the absence of noise traders. The U -shape shown in Section 5

appears when passive flows are due to entry by new investors into the stock market. The increasing

part of the U -shape is small, however, because with only three periods the effect of different discount

rates for idiosyncratic and systematic dividends is small. We show below that the same result holds

under the SR specification with three periods.

Size Group

Entry into
the Stock Market

Switch from
Active to Passive

All Firms
in Index

Size Groups
3-5 in Index

All Firms
in Index

Size Groups
3-5 in Index

1 (Smallest) 3.00 2.91 0 -0.37

2 2.73 2.65 0 -0.34

3 2.47 2.40 0 -0.28

4 2.27 2.23 0 -0.15

5 (Largest) 2.32 2.42 0 0.43

Table D.1: Percentage Price Change Caused by Passive Flows – GRW specification.

Table D.2 repeats the analysis with noise traders. As in Section 5, a pure switch from active

to passive tracking a large-stock index has its largest positive effects on high-demand stocks in

size group 5. With only three periods, however, the effects on large high-demand stocks are not

sufficiently large to cause the aggregate market to rise. We show below that the same result holds

under the SR specification with three periods.

D.2 SR Specification

Proposition D.2 characterizes the equilibrium under the SR specification. For tractability, we ignore

negative values for (ϵs1, {ϵin1}n=1,..,N ), assuming that (σs, {σi
n}n=1,..,N ) are sufficiently small so that

negative values have low probability.
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Size Group
Noise-Trader

Demand

Entry into
the Stock Market

Switch from
Active to Passive

All Firms
in Index

Size Groups
3-5 in Index

All Firms
in Index

Size Groups
3-5 in Index

1 (Smallest)
Low 2.60 2.52 0.00 -0.31
High 2.60 2.52 0.00 -0.31

2
Low 2.37 2.30 0.00 -0.29
High 2.37 2.30 0.00 -0.29

3
Low 2.15 2.09 -0.01 -0.24
High 2.14 2.09 0.01 -0.23

4
Low 1.97 1.94 -0.04 -0.17
High 1.96 1.93 0.04 -0.09

5 (Largest)
Low 2.00 2.09 -0.22 0.14
High 2.00 2.09 0.22 0.59

Table D.2: Percentage Price Change Caused by Passive Flows with Noise Traders – GRW specifi-
cation.

Proposition D.2. Under the SR specification, the price of stock n in period 1 is
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Proof of Proposition D.2. The expected utility of experts as of period 1 is

− E1 exp

[
−ρ

(
W11 +

N∑
n=1

z1n1 (Dn − Sn1)

)]
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where the last step follows from normality and from (ϵs1, {ϵin1}n=1,..,N ) being positive. Taking the

first-order condition in (D.12) and substituting {z1n1}n=1,..,N from the market-clearing equation

µ1z1n1 + µ2λη
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n + un = ηn,

we find (D.9).
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where the third step follows from (D.12) by replacing (W, z1n1, Sn1) by (W11, z1n0, Sn0), and the

fourth step follows from normality and from (ϵs1, {ϵin1}n=1,..,N ) being positive. Taking the first-order

condition in (D.13), we find
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Substituting {z1n0}n=1,..,N from the market-clearing equation

µ1z1n0 + µ2λη
′
n + un = ηn

into (D.14) and using the normalization bn +Di
n0 = 1 and the definitions of (Gs, {Gi

n}n=1,..,N ), we

find (D.10).

The first-order condition of non-experts can be derived from (D.14) by replacing z1n0 by λη′n,

multiplying by η′n and summing over n. Using the definitions of (Hs, {H i
n}n=1,..,N ), we find
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Substituting {Sn0}n=1,..,N from (D.10) into (D.15) and using the normalization bn +Di
n0 = 1, we

find (D.11).

We calibrate the model as in Section D.1. CAPM beta decreases from 1.23 for size group 1 to
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0.92 for size group 5. The values of (b̄,∆b, σ, η) are (0.4, 0.041, 0.32, 0.00016).

Tables D.3 and D.4 are the counterparts of Tables D.1 and D.2 under the SR specification. As

in Table D.1, the U -shape appears when passive flows are due to entry by new investors into the

stock market. The increasing part of the U -shape is larger than in Table D.1, but remains small

relative to the decreasing part. As in Table D.2, a pure switch from active to passive tracking a

large-stock index has its largest positive effects on high-demand stocks in size group 5, but the

aggregate market drops. Overall, the effects in Tables D.3 and D.4 are similar in magnitude to

their counterparts in Tables D.1 and D.2.

Size Group

Entry into
the Stock Market

Switch from
Active to Passive

All Firms
in Index

Size Groups
3-5 in Index

All Firms
in Index

Size Groups
3-5 in Index

1 (Smallest) 3.08 2.96 0 -0.51

2 2.80 2.69 0 -0.47

3 2.54 2.44 0 -0.38

4 2.34 2.29 0 -0.20

5 (Largest) 2.49 2.63 0 0.58

Table D.3: Percentage Price Change Caused by Passive Flows – SR specification.

Size Group
Noise-Trader

Demand

Entry into
the Stock Market

Switch from
Active to Passive

All Firms
in Index

Size Groups
3-5 in Index

All Firms
in Index

Size Groups
3-5 in Index

1 (Smallest)
Low 2.64 2.53 0.00 -0.43
High 2.64 2.53 0.00 -0.43

2
Low 2.40 2.30 0.00 -0.40
High 2.40 2.30 0.00 -0.40

3
Low 2.17 2.10 -0.01 -0.33
High 2.17 2.09 0.01 -0.31

4
Low 2.01 1.97 -0.06 -0.22
High 2.00 1.96 0.06 -0.11

5 (Largest)
Low 2.13 2.25 -0.31 0.18
High 2.13 2.24 0.31 0.80

Table D.4: Percentage Price Change Caused by Passive Flows with Noise Traders – SR specification.
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E Additional Results

E.1 Alternative Calibration

We report calibration results for ss = 2.2. Table E.1 is the counterpart of Table 5.1. CAPM

beta and CAPM R-squared have the same properties as in Table 5.1. Prices are lower and return

volatilities are higher than in Table 5.1. Return volatilities are comparable to their empirical

counterparts for large firms in the constant-bn case and are somewhat below them in the varying-bn

case. For example, Vuolteenaho (2002) reports an average volatility of 20% for S&500 firms.

Panel A: Constant-bn case

Size Group Price

Expected
Excess
Return
(%)

Return
Volatility

(%)

CAPM
Beta

CAPM
R2 (%)

1 (Smallest) 4.79 3.79 21.77 0.89 24.85

2 4.76 3.80 21.77 0.89 25.08

3 4.64 3.85 21.76 0.91 26.14

4 4.22 4.05 21.74 0.98 30.45

5 (Largest) 3.43 4.53 21.72 1.16 42.85

Panel B: Varying-bn case

Size Group Price

Expected
Excess
Return
(%)

Return
Volatility

(%)

CAPM
Beta

CAPM
R2 (%)

1 (Smallest) 3.82 5.24 21.79 1.31 22.56

2 4.58 4.53 18.21 1.10 22.61

3 5.21 4.05 15.63 0.96 23.59

4 5.53 3.79 13.16 0.90 28.88

5 (Largest) 5.61 3.68 10.47 0.88 44.21

Table E.1: Price and Return Moments.

Table E.2 is the counterpart of Table 5.2. When passive flows are due to entry by new investors

into the stock market, the percentage price increase that they generate is larger for larger stocks in

the constant-bn case, and is a U -shaped function of stock size in the varying-bn case. When passive
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flows are due to a switch by investors from active to passive, they do not affect stock prices. These

results are as in Table 5.2.

Size Group

Entry into
the Stock Market

Switch from
Active to Passive

Constant-bn Varying-bn Constant-bn Varying-bn

1 (Smallest) 7.44 6.77 0 0

2 7.66 5.78 0 0

3 8.66 5.89 0 0

4 11.85 7.09 0 0

5 (Largest) 16.75 7.26 0 0

Table E.2: Percentage Price Change Caused by Passive Flows in the Baseline.

Table E.3 is the counterpart of Table 5.3. The effect of passive flows on small stocks is less

dependent on index composition than the effect on large stocks. This result is as in Table 5.3,

but the dependence on index composition is stronger. A pure switch from active to the passive

large-stock index raises the aggregate market, with the effect being stronger than in Table 5.3.

Table E.4 is the counterpart of Table 5.4. The effect of passive flows on small stocks is less

dependent on noise-trader demand than the effect on large stocks. This result is as in Table 5.3,

but the dependence on demand is stronger for large stocks than in Table 5.4. A pure switch from

active to passive raises the aggregate market, with the effect being stronger than in Table 5.4.

Table E.5 is the counterpart of Table 5.5. A pure switch from active to passive has large positive

effects on high-demand stocks in size group 5, and significantly smaller effects on all other stocks.

Moreover, the aggregate market rises. These effects are stronger than in Table 5.5.

E.2 Return Volatility

Table E.6 shows the effect of passive flows on idiosyncratic volatility when flows are due to entry

by new investors in the stock market. Idiosyncratic volatility can rise or fall, but rises more (or

falls less) for large stocks.
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Panel A: Index Includes Only Top Three Size Groups

Size Group

Entry into
the Stock Market

Switch from
Active to Passive

Constant-bn Varying-bn Constant-bn Varying-bn

1 (Smallest) 7.29 6.56 -0.51 -0.77

2 7.34 5.33 -1.24 -1.72

3 8.98 6.38 1.36 1.93

4 13.39 8.60 5.67 5.23

5 (Largest) 20.40 9.38 11.95 6.70

Panel B: Index Includes Only Bottom Three Size Groups

Size Group

Entry into
the Stock Market

Switch from
Active to Passive

Constant-bn Varying-bn Constant-bn Varying-bn

1 (Smallest) 7.46 6.82 0.11 0.23

2 7.85 6.07 0.82 1.24

3 9.65 7.11 4.30 5.26

4 8.44 4.26 -9.27 -6.66

5 (Largest) 10.48 4.07 -12.57 -5.75

Table E.3: Percentage Price Change Caused by Passive Flows into a Partial Index

Size Group
Noise-Trader

Demand

Entry into
the Stock Market

Switch from
Active to Passive

Constant-bn Varying-bn Constant-bn Varying-bn

1 (Smallest)
Low 7.79 7.11 -0.04 -0.08
High 7.79 7.11 0.01 0.04

2
Low 7.99 6.03 -0.15 -0.23
High 7.97 6.02 0.13 0.21

3
Low 8.85 5.96 -0.62 -0.73
High 8.82 6.00 0.64 0.81

4
Low 11.56 6.81 -1.81 -1.42
High 11.85 7.44 2.38 2.12

5 (Largest)
Low 15.75 6.85 -2.87 -1.41
High 17.56 8.35 5.06 2.80

Table E.4: Percentage Price Change Caused by Passive Flows with Noise Traders.
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Size Group
Noise-Trader

Demand

Entry into
the Stock Market

Switch from
Active to Passive

Constant-bn Varying-bn Constant-bn Varying-bn

1 (Smallest)
Low 7.66 6.91 -0.62 -1.02
High 7.65 6.91 -0.56 -0.91

2
Low 7.70 5.64 -1.33 -1.91
High 7.68 5.62 -1.07 -1.53

3
Low 9.09 6.33 0.26 0.43
High 9.08 6.43 1.72 2.43

4
Low 12.73 7.94 1.83 1.56
High 13.35 9.09 8.83 9.25

5 (Largest)
Low 18.32 8.33 3.55 1.80
High 22.16 11.47 29.81 22.15

Table E.5: Percentage Price Change Caused by Passive Flows into a Partial Index with Noise
Traders.

Size Group
Noise-Trader

Demand

All-Stock Index Small-Stock Index

Constant-bn Varying-bn Constant-bn Varying-bn

1 (Smallest)
Low -0.52 -0.54 -0.50 -0.52
High -0.52 -0.54 -0.50 -0.52

2
Low -0.52 -0.41 -0.50 -0.40
High -0.52 -0.41 -0.50 -0.40

3
Low -0.51 -0.31 -0.49 -0.29
High -0.51 -0.31 -0.49 -0.29

4
Low -0.48 -0.19 -0.44 -0.15
High -0.47 -0.19 -0.44 -0.14

5 (Largest)
Low -0.38 -0.01 -0.30 0.09
High -0.34 0.03 -0.26 0.16

Table E.6: Change in Idiosyncratic Volatility Caused by Passive Flows by New Investors Entering
the Stock Market.

E.3 Additional Empirical Tests

Table E.7 reports descriptive statistics for the additional variables used in this Appendix. The

descriptive statistics in Panel A concern aggregate variables, measured at a daily or a quarterly

frequency. The descriptive statistics in Panel B concern firm-level variables, measured at a daily

frequency. All variables are multiplied by 100.
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Mean Std Dev 25th Pctl 50th Pctl 75th Pctl Skewness Exc Kurt N

Panel A: Aggregate Variables

∆ log (wTop10) 0.51 3.87 -1.98 0.41 3.17 0.20 0.69 99

∆ log(Dispersion) 0.51 3.58 -1.90 0.45 2.37 0.41 1.23 99

∆ log(HHI) 0.81 5.61 -2.85 0.58 3.55 0.52 1.57 99

RExc
SP500 0.04 1.23 -0.49 0.06 1.62 0.05 9.68 29,214

Panel B: Firm-Level Variables For All S&P500 Firms

R 0.05 2.45 -0.96 0.02 1.04 0.47 41.66 2,974,228

CARCAPM 0.07 4.21 -1.29 0.01 1.36 0.91 30.86 29,214

CARFF3 0.06 4.13 -1.26 0.01 1.34 0.89 31.13 29,214

Table E.7: Descriptive Statistics for the Additional Variables.

The first three rows in Panel A concern the first difference of the natural logarithm of our three

measures of S&P500 index concentration: the combined portfolio weight of the stocks of the top 10

firms in the index, denoted by wTop10, the standard deviation of index weights across all index firms,

denoted by Dispersion, and the Herfindahl index of index weights across all index firms, denoted

by HHI. Index concentration has been growing during our sample period, by rates ranging from

0.51% to 0.81% per quarter.

The fourth row concerns the cumulative return on the S&P500 around earnings announcements

of S&P500 firms. For each quarterly earnings announcement from the second quarter of 1996 to the

fourth quarter of 2020, we compute the return on the S&P500 over the three-day window starting

on the day before the announcement and ending on the day after the announcement, and express

it on a daily basis.

The first row in Panel B concerns the daily return on all S&P500 stocks. The second and third

rows concern the cumulative abnormal return (CAR) on all S&P500 stocks over the three-day

window around all their earnings announcements. We compute the cumulative abnormal return

using the CAPM and the Fama-French three-factor model, and express it on a daily basis.

Table E.8 reports results from regressing changes in our three measures of S&P500 index con-

centration on passive flows. We standardize the three measures of concentration to a mean of

zero and a standard deviation of one, and denote them with hats. Results are shown with and

without controls. Controls are as in Table 6.2: the S&P500 return, the one-quarter lagged S&P500
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return and VIX. Also as in Table 6.2, the t-statistics, in parentheses, are based on Newey-West

heteroskedasticity- and autocorrelation-consistent standard errors with three lags. Our findings are

robust to increasing the number of lags.

Consistent with our model, the relationship between passive flows and changes in all three mea-

sures of concentration is positive and significant. An one-standard-deviation increase in PassiveF lowSP500

is associated with an increase in the concentration measures ranging from 0.224 to 0.244 standard

deviations, depending on the measure of concentration and on whether controls are added or not.

Table E.9 reports results from panel regressions of daily returns on S&P500 stocks on aMonthStart

indicator variable interacted with an indicator variable describing whether a stock is in an S&P500

large-stock portfolio. The MonthStart indicator is equal to one if a trading day is within the first

seven days of a month and to zero otherwise. The large-stock indicator is equal to one if a stock

is in the top 10, or the top 50, or the top 100, or the top 150, or the top 200. We include Firm

× Month and Month × MonthStart fixed effects. These absorb variation in stock returns across

months for each stock and variation in the constituents of the interaction term. Consistent with our

model, the coefficient of the interaction term is positive and significant for large-stock portfolios:

large firms experience higher returns than other firms at the beginning of each month.

Table E.10 reports results from regressing the CAR on S&P500 stocks around earnings an-

nouncements on the contemporaneous S&P500 return. The regression coefficient is a measure of

stocks’ idiosyncratic beta. The average idiosyncratic beta of the top 50 firms in the S&P500 ranges

from 0.0821 to 0.0877 and is statistically significant. The average idiosyncratic beta of the bot-

tom 50 firms ranges from -0.00390 to 0.00248 and is statistically insignificant. These findings are

consistent with our model.
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Variables Top 10 Top 50 Top 100 Top 150 Top 200

Top10 × MonthStart 0.0282
(2.28)

Top50 × MonthStart 0.0220
(2.82)

Top100 × MonthStart 0.0140
(2.10)

Top150 × MonthStart 0.00647
(1.07)

Top200 × MonthStart 0.000915
(0.16)

Observations 2,974,202 2,974,202 2,974,202 2,974,202 2,974,202

Firm × Month FE Y Y Y Y Y

Month × MonthStart FE Y Y Y Y Y

Adjusted R2 0.00656 0.00656 0.00656 0.00656 0.00655

Table E.9: Returns on Large Versus Small S&P500 Stocks at Beginning of Month

Top 50 Bottom 50

Variables CARCAPM CARFF3 CARCAPM CARFF3

RExc
SP500,Daily 0.0877 0.0821 -0.00390 0.00248

(2.99) (3.10) (-0.07) (0.05)

Constant 9.78e-05 0.000155 0.00122 0.00110
(0.41) (-0.80) (2.81) (2.54)

Observations 14,588 14,588 14,626 14,626

Adjusted R-squared 0.00143 0.00135 -6.76e-05 -6.80e-05

Table E.10: Idiosyncratic Beta of S&P500 Stocks.

79


	Introduction
	Model
	Equilibrium
	Passive Flows and Stock Prices—Analytical Results
	Calibration
	Parameter Values
	Passive Flows and Stock Prices—Calibration Results
	Baseline
	Partial Index
	Noise Traders
	Return Volatility


	Empirical Evidence
	Data and Descriptive Statistics
	Tests

	Conclusion
	Proofs
	Return Moments
	Volatility of Dividends Per Share
	Three-Period Model
	GRW Specification
	SR Specification

	Additional Results
	Alternative Calibration
	Return Volatility
	Additional Empirical Tests


