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Abstract

We survey the growing literature emphasizing the role that supply-and-demand
forces play in shaping the term structure of interest rates. Our starting point is the
Vayanos and Vilal (2009, 2021)) model of the term structure of default-free bond yields,
which we present in both discrete and continuous time. The key friction in the model
is that the bond market is partially segmented from other financial markets: the prices
of short-rate and bond supply risk are set by specialized bond arbitrageurs who must
absorb shocks to the supply and demand for bonds from other “preferred-habitat”
agents. We discuss extensions of this model in the context of default-free bonds and

other asset classes.
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1 Introduction

The past 15 years have witnessed a resurgence of interest in the role that supply-and-demand
forces play in shaping the term structure of interest rates. In part, this interest has been
driven by the widespread adoption of quantitative easing (QE) policies by major central
banks which, beginning in 2008, have sought to depress long-term interest rates by purchasing
vast quantities of long-term bonds. An enormous literature has demonstrated that large
shocks to the supply of long-term bonds—such as those stemming from QE—and shocks to
demand from investors such as pension funds exert significant effects on long-term interest
rates. For example, Gagnon et al. (2011)) report that the combined announcement effect of
U.S. QE policies between 2008 and 2010 was to reduce 10-year U.S. Treasury yields by 91
basis points. Similar effects have been documented in numerous other countries, including
the U.K, Japan, and the Eurozone.E]

The role of supply-and-demand forces in the term structure is puzzling, both from the
perspective of textbook macroeconomic theory and of traditional asset-pricing theory. In
textbook macroeconomic models with intergenerational risk sharing and non-distortionary
taxes, Ricardian equivalence holds. As a result, households’ consumption profiles and the
term structure of interest rates do not depend on whether the government finances its expen-
ditures using debt or taxes, or whether it borrows using short-term or long-term bonds. For
instance, consider a government that seeks to reduce long-term interest rates by buying back
long-term bonds and replacing them with short-term bonds—i.e., by pursuing a form of QE.
Because households sell long-term bonds to the government, they will realize smaller capital
losses if interest rates rise in the future. However, because the government’s outstanding
debt has become shorter term, households must pay higher taxes if interest rates rise. These
two effects exactly offset each other, leaving households’ consumption profiles and interest
rates unchanged. As a result, the maturity structure of the government’s debt is irrelevant.
Eggertsson and Woodford (2003) prove irrelevance propositions along these lines.

The role of supply-and-demand forces in the term structure is also puzzling from the
perspective of traditional asset-pricing theory, which assumes frictionless and fully integrated
financial markets. In models with fully integrated financial markets, changes in the net
supply of debt, whether short- or long-term, can only impact bond risk premia and yields
through their impact on the aggregate risks that highly diversified investors must bear in
equilibrium and only to the extent to which these risks are correlated with investors’ marginal
utility. But if global financial markets are fully integrated, even seemingly large supply shocks
such as those stemming from QE policies are a tiny drop in the ocean of global aggregate risk.
This explains why Federal Reserve chair Benjamin Bernanke once quipped “The problem
with Quantitative Easing (QE) is that it works in practice but not in theory” (Bernanke
2014).

!Table 1 in|[Wiliams) (2014) collects empirical estimates from studies of QE in the U.S. and other countries.



A more promising and natural approach to understanding how changes in the supply and
demand for bonds affect the term structure has been to assume that the investors who must
accommodate these changes are not the highly diversified investors envisioned by traditional
asset-pricing theory but instead are bond market specialists. For these specialized investors
to accommodate changes in the supply and demand for bonds, bond risk premia must adjust
to compensate them for the additional risk they are bearing. This approach to bond markets
was first proposed by [Tobin| (1958, 1969)). Modigliani and Sutchl (1966) later introduced the
notion that investors differ in their “preferred habitats” along the term structure, with some
investors preferring long maturities and some preferring shorter ones. This approach has
been modernized and substantially generalized by Vayanos and Vila (2009, 2021, hereafter
VV), generating a host of additional predictions.

In the VV model, the short-term interest rate, and hence the expectations hypothesis
(EH) component of longer-term bond yields, follows an exogenous stochastic process. The
key focus is on how bond risk premia—the expected excess returns on longer-term bonds over
the short rate—are shaped by supply and demand in equilibrium. The key friction in the
VV model is that the bond market is partially segmented from broader financial markets as
well as from the economy at large. Formally, the marginal investors in bonds—whom we call
“bond arbitrageurs”—are specialized traders who choose portfolios consisting of short- and
long-term bonds. Arbitrageurs have mean-variance preferences over next-period wealth and
accommodate changes in the supply and demand for bonds from other agents. Changes in
bond supply and demand can arise from government issuance, from central bank purchases,
or from other investors such as pension funds who have a demand for long-term bonds. We
refer to all bond market participants other than arbitrageurs as “preferred-habitat agents.”
We refer to the net supply coming from these preferred-habitat agents as “supply,” although
this should be understood as gross supply from issuers minus demand from preferred-habitat
investors. Since specialized bond arbitrageurs are risk-averse, they will only absorb supply
shocks from preferred-habitat agents if bond expected returns adjust in response.

Over the 15 years, the VV approach has become the standard model for understanding
the impact of large-scale bond purchases by central banks, as well as a host of other supply-
and-demand driven phenomena in bond markets. The VV model has also been extended
to make sense of similar supply-and-demand effects in other asset classes, including foreign
exchange, interest-rate derivatives, and credit instruments.

In this review, we present the VV model of the term structure and its applications and
extensions. While the original VV model was developed in continuous time, we begin by
presenting it in discrete time, as was first done by Hanson| (2014). We then present the
continuous-time version of the VV model in parallel, and briefly discuss a simplified version
in which there are only short-term bonds and a single class of perpetual long-term bonds.
Our goal is to present a set of workhorse models that researchers can adapt for use in other

settings and to sketch out a number of ways that researchers have already adapted the VV



model. We both draw out the key economic intuitions that emerge from these models and
present the “cookbook” for solving them.

We begin our analysis by studying a setting where the only risky assets are a set of
zero-coupon bonds that are present in constant and inelastic supply. Bond arbitrageurs
are risk averse and can flexibly allocate their wealth amongst bonds of different maturities.
Critically, “bad times” for specialized bond arbitrageurs need not coincide with bad times for
well-diversified investors or for the representative household. Specifically, under the natural
assumption that specialized bond arbitrageurs typically have a long position in long-term
bonds, periods of rising interest rates will be “bad times” for bond arbitrageurs, and long-
term bonds must offer a positive risk premium even though rising interest rates often imply
good news for well-diversified investors and the overall macroeconomy. Thus, in contrast to
traditional integrated-market theories, the VV approach makes it easy to understand why
bond term premia are usually positive and why the yield curve is typically upward sloping.
Specifically, if bond supply is positive, the yield curve is upward sloping on average, and its
average slope is proportional to the amount of dollar-duration risk that arbitrageurs must
bear, arbitrageur risk aversion, and the variance of short-rate shocks.

With a single risk factor, the effects that any supply shock has on the term structure
work through the shock’s contribution to dollar-duration risk. To illustrate the striking
implications of this result, we use Figure , first introduced by |Cochrane| (2008). Suppose
that there is an unanticipated and permanent supply shock consisting of an increase in the
supply of 10-year bonds and an equal dollar reduction in the supply of 3-year bonds. What
happens to the yield curve? A naive but incorrect intuition is that the effects are localized,
with 10-year yields rising and 3-year yields declining. But this intuition misses a central
insight from the model: with a single risk factor—i.e., the short-term interest rate—bond
returns are perfectly correlated across maturities. As a result, the net impact of this shock
depends solely on how it alters arbitrageurs’ overall exposure to the short rate. Specifically,
since the price of the 10-year bond is more sensitive to movements in the short rate than that
of the 3-year bond, the supply shock raises the dollar-duration risk that arbitrageurs must
bear, thereby pushing up the equilibrium price of short-rate risk. As a result, the supply
shock leads the entire yield curve to steepen. In summary, the single-factor VV model implies
that local supply-and-demand shocks have global effects on the yield curve.

We next study the case when the supply of zero-coupon bonds responds elastically to
bond prices. We consider the case where the supply curve is upward-sloping (in quantity-
price space) as well as the case where it is downward-sloping. Upward-sloping bond supply
could arise if the government and firms tend to issue more debt when interest rates are
low, or if bond demand from preferred-habitat investors is downward-sloping. We show that
upward-sloping bond supply implies that bond risk premia will be low when short rates
are high, leading long-term yields to underreact to movements in short rates relative to the

EH benchmark. Thus, when bond supply is upward-sloping, the VV model can match the



Effect of permanent, unanticipated supply shock on yield curve, yt(T)
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Figure 1: Effects of bond supply with one risk factor.

stylized facts from Fama/ (1984) |Campbell and Shiller| (1991) that a steeper yield curve is
associated with higher bond risk premia.

Perhaps surprisingly, at higher frequencies bond supply may be downward-sloping be-
cause of mortgage refinancing or extrapolative investors. We show that a downward-sloping
bond supply generates a term premium that is high when short rates are high, leading bond
yields to overreact to movements in short rates relative to the EH. As a result, VV models
with downward-sloping supply have been used to explain the finding that long-term rates
appear to be excessively sensitive to movements in short rates at higher frequencies.

We next modify the model to consider the case where there are random shocks to bond
supply from preferred-habitat agents as in |Greenwood and Vayanos (2014). Supply risk
creates an additional source of priced risk that is reflected in the term structure. A key
finding in this case is that the expected persistence of supply shocks determines their impact
on the term structure of interest rates. If supply shocks are highly persistent, then they will
have a monotonic effect on the yield curve, with the greatest effect being on long-term yields.
However, if supply shocks are more transient, then they will have a hump-shaped effect on
the yield curve, with the greatest effect being on intermediate-term yields.

The model we just described is developed in Section [2} In Section [3] we repeat a portion
of the analysis in continuous time. Wherever possible, we use identical notation so that
researchers can seamlessly switch between the two presentations. While our discrete-time
model relies on an approximation that becomes exact only in the continuous-time limit, the

derivations and formulas in the discrete-time model have perfect analogs in continuous time.



But, as we show, the model is straightforward to express in either setting, with the discrete-
time setting being simpler for some applications and the continuous-time setting for others.
The advantage of discrete time is that it may be easier to incorporate into other models.

The continuous-time version of the model turns out to be well suited, however, for describ-
ing the case where supply is both random and price-elastic. When supply is both random
and elastic, even permanent supply shocks can have hump-shaped effects. The intuition for
the hump shape is that because arbitrageurs sell bonds at a given maturity to accommodate
a decrease in supply, they become more willing to buy bonds at other maturities to keep
a similar risk profile. With elastic supply, the prices of these other bonds move only to
the extent that arbitrageurs actually buy them. Arbitrageurs are not willing to buy them
aggressively because, with random supply, bond returns are imperfectly correlated across
maturities.

Finally, in Section 4| we develop a simplified version of the VV model in which there are
only short-term bonds and a single class of perpetual long-term bonds. While this model
requires an additional approximation, it is very easy to solve. As a result, it may be useful
to macro-economists or macro-finance researchers who want to model the idea that supply-
and-demand effects play a role shaping long-term interest rates, but who are not interested
in modeling the full term structure of yields.

Since the first version of VV was circulated in 2007, the theoretical and empirical litera-
ture on supply-and-demand effects in the term structure has blossomed. In part, this growth
has been driven by the widespread interest in QE policies. In Section [5| we provide a brief
overview of empirical applications of the VV framework, with the objective of connecting the
findings to key economic ideas highlighted by the VV model. Most empirical applications
of the VV framework have either sought to isolate shocks to the supply or demand for long-
term bonds (such as QE or demand by pension funds), or alternately sought to construct
empirical proxies for arbitrageurs’ holdings of long-term bonds and risk aversion.

In Sections [6l and [7] we review several theoretical extensions of VV that have been de-
veloped in literature. Section [6] focuses on extensions that focus on the term structure
of default-free bond yields. The main extensions that we review are multiple supply fac-
tors (Vayanos and Vilal (2009, [2021))), forward guidance about short rates and bond supply
(Greenwood et al.| (2016)), the zero-lower bound on short rates (King (2019))), slow-moving
capital (Greenwood et al.| (2018))), arbitrageur wealth effects and balance-sheet frictions
(Kekre et al.| (2023),He et al.| (2022))/Hanson et al.| (2023)), convenience yields that arise
because government bonds have some of the valuable attributes of money (Krishnamurthy
and Vissing-Jorgensen (2012))), and real versus nominal yields (Campbell et al. (2009)).

Section discusses applications to other domains, including foreign exchange (Greenwood
et al| (2023), |Gourinchas et al. (2022))), defaultable corporate bonds (Greenwood et al.
(2018)) JCostain et al.|(2022)), and investor segmentation across markets. Section [§concludes,

with some remarks about directions for future research.



2 The VV Model in Discrete Time

2.1 Model

Time t is discrete and infinite. At each time ¢, there are zero-coupon, default-free bonds that
have face value one and mature in 7 = 1,2, ..., T periods. We refer to the bond maturing in
T periods as the 7-period bond. The price of the 7-period bond at time ¢ is denoted by

P = exp(—1y("), (1)

where ygT) denotes the bond’s continuously compounded yield to maturity. We denote the

log bond price by pgf) = 10g(Pt(T)) = —T?Jt(T)-

We refer to the yield of the 1-period bond as the short rate and denote it by r; = ylgl).

We take r; as exogenous and assume that it follows the AR(1) process

Tip1 =T + p'r(/rt — T) + Orrit+1, (2)

where p, € (0,1), 7, and o, > 0 are constants, and ¢,.;,; is a stochastic shock with E;[e, +11] =
0 and Var[e,+41] = 1. Recent papers endogenize r; as function of inflation in a VV model,
through a Taylor ruleE|

We denote the return on the 7-period bond between times ¢ and ¢ + 1 by Rgl)l =

Pt(ll_l) /P — 1, and the log return by frgr)l = log(1 + Rgi)l) = pgzl) — p{”. We denote
these returns by Rt(}r)l =1/ Pt(l) —1=R; and 7"154131 = —pgl) = 14, respectively, for the 1-period

bond. The return on the 7-period bond between times t and ¢t 4+ 1 can be approximated by
T T 1 T
R£+)1 ~ Tt(+)1 + §Vart [Tt(+)1]- (3)

The approximation becomes exact in the continuous-time limit of Section |3 as the time
between periods goes to zerof]

There are two types of agents, “bond arbitrageurs” and “preferred-habitat agents”. Ar-
bitrageurs are competitive and form a continuum with unit mass. They choose their bond

2Greenwood et al| (2023) introduce an exogenous inflation process and allow the real short rate to be
negatively correlated with it, as required by a Taylor rule. Ray| (2019), and Ray et al| (2023]) endogenize
both inflation and the real short rate within a New Keynesian model featuring a Taylor rule.

3This approximation follows from the second-order Taylor expansion

T T T 1 T T 1 T T T 2
1+ RE+)1 = eXP(Tt(+)1) ~ 1+ 7":S+)1 §(Tt(+)l)2 =1+ Tt(+)l ) ((Tt(+)1 — K, [Tt(+)1]) +E¢ [Tt(+)1]) )

and because, in the vicinity of the continuous-time limit, the term (7“151)1 - E, [rlgi)l])2 is close to Var, [7}(?1]7

and the terms 2(7",&)1 - E, [rg)l])Et [rt(?l] and (E; [rt(l)l])2 are small relative to Tg)l and Var, [rg)l]. Using
log returns plus a Jensen’s inequality adjustment to approximate simple net returns as in is a linearity-
generating modeling device that does not qualitatively impact any of our conclusions. Indeed, the formulae
we derive below are the exact discrete-time analogs of the formulae that arise in the continuous-time limit.



portfolios to trade off the mean and variance of their wealth 1-period ahead. Denoting by
Xt(T) the market value of arbitrageurs’ holdings of the 7-period bond at time ¢, arbitrageur
wealth evolves according to

T - T - -
Wenr = (W=D XA+ R)+Y X1+ R7)). (4)

The first term in (4)) is arbitrageurs’ return from investing in the short rate, and the second
term is the return from investing their remaining wealth in 7-period bonds for 7 > 2. Using

(3), we can approximate the evolution of arbitrageurs’ wealth by
Wipr = Wer = Wil +1)+ Y00 X008+ SVarfrffy] = o), (5)
We assume that arbitrageurs choose their bond holdings {Xt(T) T_, to maximize
B[ Wyr] — 5 Var (W) (6)

where a > 0 is arbitrageurs’ coefficient of risk aversion.

We use the term “preferred-habitat agents” to refer to all bond market participants other
than arbitrageurs, including the government and other players who issue bonds as well as
other investors who hold bonds. To clear the market, arbitrageurs must hold the net supply
of bonds coming from preferred-habitat agents. For simplicity, we refer to this net supply
as “supply.” However, it is worth bearing in mind that shifts in supply can stem either
from shifts in the amount of outstanding bonds—e.g., due to issuance by the government—
or from shifts in the holdings of other investors. We model supply in reduced from and
consider different specifications for it in Sections [2.2] to [2.4]

We end this section by deriving a general relationship between bond yields, short rates,
and bond excess returns that holds in all the equilibria that we derive in Sections to 2.4
The return on the 7- period bond between times ¢ and £+ 1 can be written as the sum of the
expected component Et[Rt +1] and the unexpected component Rt Ky [Rt +1] Using (3
can write the expected and unexpected components as

T T—1 T 1 T—1
= EMAH-VMMLJ Edply " — o7+ g Vardpi Ty, (7)

T 1 T T
rh o+ g Vanlr ] = w” = rh - ElD) = o5 — Bl (8)

respectively. Using , the fact that pgT) = —7y§7), and assuming that Var, [r,g +)1] is constant
over time as will be the case in the equilibrium of our model, we can write the expected
excess return over the short rate as

T T T— 1 T
p” ==y — (7 = DBy ) = e 5 Var®, (9)



where Var(™ denotes the constant value of Var, [rt(_?l]. Iterating @ forward, we find

() _ N~ AN~ () AN~ Ly
g =T ijo E; [rogg]) + 77" ijo Eelu " —regl =77 ijo QVM( ). (10)

N J/ N J/ N J/

TV TV Vv
Expected short rates Expected excess bond returns Convexity adjustment

The yield of the 7-period bond is equal to the sum of three terms. The first term is aver-
age expected short rates over the bond’s life. This term corresponds to the Expectations
Hypothesis (EH) component of the term structure. The second term is the average of the
bond’s 1-period expected returns in excess of the short rate over the bond’s life. We refer to
expected excess returns as risk premia from now on because in our model they arise purely
from risk. The third term is a convexity adjustment. Because zero-coupon bond prices are
convex functions of zero-coupon yields, uncertainty about the future bond yields pushes up
current bond prices, lowering current zero-coupon yields.

2.2 Constant Supply

In this section we assume that the supply coming from preferred-habitat agents, expressed
in market-value terms, is constant over timeﬁ Denoting the supply of the 7-period bond in
period ¢ by St(T), we assu)me

S = ¢ (11)

for a function ¢(7) that depends only on maturity 7.
We look for an equilibrium where bond yields are affine functions of the short rate. In

our conjectured equilibrium, the log price of the 7-period bond at time ¢ takes the form
p =y = = [AD(r, - 7) + 7], (12)

where the functions A7) and O™ depend only on maturity 7. The function A characterizes
the sensitivity of bond prices to the short rate factor r; as a function of bond maturity 7,
where we define factor sensitivity or dollar duration with respect to the factor as percentage
decline in price per unit increase in the factorﬂ

4We express supply in market-value terms throughout our analysis. Assuming that supply in market-
value terms is constant or linear in log price is key to the tractability of the exact version of the VV model,
derived in the continuous-time limit in Section The approximate version of the VV model, derived in
discrete time in Section [2] can be used to treat supply that is constant in face-value terms. This is because
we can then approximate supply in market-value terms using a constant plus a term that is linear in log price
as in below: when supply is constant in face-value terms, it is increasing in log price in market-value
terms. To be sure, this log-linear approximation for supply in market-value terms does not become exact in
the continuous-time limit. We start with the case where supply is constant in market-value terms because

this case is the simplest analytically and conceptually, even in the approximate version of the VV model.

5Since pET) = —Tyt(T), the duration of the T-period bond—i.e., its percentage decline in price per unit

increase in its yield—is trivially 7. However, from 7 the dollar duration of the T-period bond with respect



We solve for the equilibrium when supply is constant in Section Section [2.2.2
presents the key results and intuitions and is mostly self-contained. Thus, readers who want
to skip the mathematical derivations in Section [2.2.1] can skip ahead to Section [2.2.2]

2.2.1 Deriving the Equilibrium
Substituting into (7) and (§)), and using the assumed AR(1) dynamics for the short rate,

we can write the expected and unexpected components of the return of the 7-period bond
between times ¢t and t 4+ 1 as

T T — T— - T T— a T—

p = A (= 7) = AT Vpy(ry =)+ CO = OO L TATIR, (13)
T 1 T T T—

Tlg-i-)l + §Vart[7“§+)1] - Hg ) = —AT Vo,e, 0, (14)

respectively. Substituting and into arbitrageurs’ budget constraint , we can
write the arbitrageurs’ objective @ as

T

T T CW? T T T— 2
X7 =) = (X, XA ) (15)

T=2

Arbitrageurs maximize over their bond holdings {X\”}7_,. The arbitrageurs’ first-order
condition for their holdings of the 7-period bond, Xt(T), is

pi == AT, (16)

where .
At = ao? t(T)AgT_l) (17)

" =2
is the price of short-rate risk.

The first-order condition follows from the absence of arbitrage. Specifically, absence
of arbitrage requires that the ratio of a bond’s risk premium ,uET) — 1 to the bond’s sensitivity
ATV to the short-rate risk factor must be the same for all bonds. If the ratio differed
across bonds, then it would be possible to construct riskless arbitrage portfolios. However,
the absence of arbitrage alone imposes no restrictions on the price of short-rate risk /\r,tﬁ

We determine the equilibrium price of short-rate risk A, ; from market-clearing—i.e., from
the equilibrium interaction between arbitrageurs and preferred-habitat agents. Substituting

arbitrageurs’ position X\ from the market-clearing condition X\~ = ™ = ¢ into (17),

to the short rate r; is A,

6Technically, only follows approzimately from the absence of arbitrage since and only hold
approximately in discrete time. However, this equation follows strictly from the absence of arbitrage in the
model’s continuous-time limit since the continuous-time analogs to and hold exactly.



we find

T
Ap=acyy (DAY = A, (18)

The price of short-rate risk is proportional to arbitrageurs’ risk aversion a, the variance o2
of short-rate shocks, and the sensitivity ZZ:Q ¢ DAY of arbitrageurs’ bond portfolio to
the short-rate factor. The portfolio’s factor sensitivity or dollar duration with respect to the
short-rate factor is obtained by multiplying the arbitrageurs’ position ({7 in the 7-period
bond by the bond’s sensitivity Ayfl) to the factor and then summing across maturities.
The price of short-rate risk is constant over time and is denoted by A, because the constant
supply assumption implies that arbitrageurs’ bond positions are constant.

Substituting uET) from and A, from into , we obtain the equation

N

r

AD (1 =7) = AT D py(ry =) + 00 = C0D 4 AT =y = ATDA, (19)

which we use to solve for the functions A" and C™). Equation is affine in r, — 7.
Identifying linear terms in r, — 7, we find the difference equation

A — AT 1 =0. (20)

Identifying constant terms, we find the difference equation
o2
C — b 7 — ATV 4 ET[A,ET*U]? = 0. (21)

The terminal conditions for and are A” =0 and C© = 0, respectively, because
maturing bonds are worth their face value of one (i.e., Pt(o) =1).
The solution for A is

= (720 Etlress])

and the solution for C'(™ is

2
) = T TAG-D _ 9N (j—1)12
= \17—1”" * |:ij1 Ay } Ar 9 ijl[Ar J". (23)
ZT; E[T } ~ N - A ~ v v
j=0 ClTt+j Z;:_& E[Hii;]) —— Z;;& Var(T—3)

Note that 7-1C() is the yield of the 7-period bond when the short rate r, is equal to its
long-run mean 7. According to , that yield is equal to the sum of three terms which
correspond to those in the yield decomposition (10]). The first term, 7, is the average of the
expected short rates over the next 7 periods. The second term is the average of the risk

10



premia earned by the bond (and given by ) over the next 7 periods. The third term is
a convexity adjustment.

2.2.2 Results and Intuitions

In this section we examine how shocks to the short rate and to bond supply affect bond
yields. Equation implies that the effect of short-rate shocks on bond yields conforms
to the EH: a unit short-rate shock raises the yield of the 7-period bond by 8y§7) /or, =
1AM = -1 Z;;é (pr)—i.e., by the shock’s effect on the average of the expected short
rates over the next 7 periods.

(r
t

What is the intuition for this result? Holding bond expected returns pu ) fixed, a decline

in the short rate would raise ,ugT) — r; and, hence, arbitrageurs’ demand for longer-term
bonds. However, since the supply of bonds is fixed, the expected returns on bonds must
adjust in equilibrium so that bond risk premia u,@ — r; are not impacted by changes in the
short rate. Since the convexity adjustment terms also do not depend on the short rate, the
yield decomposition implies that the effect of short-rate shocks on yields works through
expected short rates only and conforms to the EH. By contrast, when the supply coming from
preferred-habitat agents is elastic, as we will assume in Section the effect of short-rate
shocks on yields does not conform to the EH.

Equation further implies that the sensitivity A" of bond prices to short-rate shocks
rises with bond maturity 7, and the sensitivity 7-'A{” of bond vields to short-rate shocks
declines with maturity. Moreover, the effect of short-rate shocks is stronger when the short
rate is more persistent (higher p,).

Consider next shocks to bond supply. In line with the constant supply assumption in
Section we take supply shocks to be unanticipated and permanent. We represent a
supply shock by a change A((™ in the supply of 7-period bonds for 7 = 1,2,...,T. Since

implies that A" does not change, , and imply that the yield for maturity
7 changes by

o ACT YT AP T 2) A(re
Ay} ) = == 17_ ac? ZTZQ ACT AT, (24)
A%

The supply shock affects yields because it changes the dollar duration of arbitrageurs’
portfolio with respect to the short rate. The dollar duration changes by ZZ:Q Al (T)Ag_l),
and the price of short-rate risk changes by A\, = ac? 23:2 AC @AY 1 portfolio dollar
duration increases, then yields for all maturities rise—even for maturities for which supply
decreases. This is illustrated in Figure 1 which shows the term structure response to an
unanticipated supply shock in which the supply of 3-year bonds drops and the supply of
10-year bonds rises by an equal amount. Because the change in the supply of 10-year bonds

raises portfolio dollar duration more than the change in the supply of 3-year bonds lowers
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it, yields for all maturities rise.

While changes in the supply of bonds of different maturities have different effects on
yields, they all have the exact same relative effect across maturities, generating a term-
structure response with the same shape. In other words, for any two maturities 75 > 7, the
ratio Ay™ /Ayt(ﬁ) is the same irrespective of the distribution of the supply shock A((7)
across maturities 7. In that sense, supply effects are fully global. By contrast, with random
supply shocks, assumed in Sections and [3| supply effects become partially localized:
the shape of the term structure response depends on the distribution of the supply shock
across maturities, and shifting that distribution towards longer maturities generates a term
structure response that is relatively stronger for longer maturities.

Equation also implies that the response of the term structure to supply shocks (of
any maturity) increases with maturity: long-term bonds are more impacted than short-term
bonds. Indeed, since Al s increasing in 7, so is 77! Z;—:I AU7D, Intuitively, an increase
in supply raises bond yields because it raises bond risk premia. Moreover, bond risk premia
rise more for longer-maturity bonds because their prices are more sensitive to the short rate
(AgT) increases in 7). Since supply changes are permanent, the average of the risk premia
earned by a bond over its life increases more for longer-maturity bonds. However, supply
shocks can instead have a hump-shaped effect on the term structure when they are random
and mean-reverting as in Section [2.4] or when they are random and the supply coming from
preferred-habitat agents is elastic as in Section [3]

An additional implication concerns the sign of bond risk premia and the average slope
of the yield curve over time. In frictionless asset-pricing models—e.g., consumption-based
models, bond risk premia are generally negative because short rates decline in “bad” eco-
nomic times, making bonds a valuable hedge for diversified investors. This logic breaks down
in our model of segmented markets, where the marginal investor in bonds is a specialized
arbitrageur who holds a long position in bonds—i.e., A, > 0 if ZZZZ ¢ @AY S 0. When
short rates fall, specialized bond arbitrageurs earn large profits even though low short rates
may correspond to bad times for the economy and for well-diversified investors. Thus, one
appeal of the VV model is that it provides a natural economic explanation for why bond

risk premia are typically positive and yield curves are upward-sloping on average.

2.3 Elastic Supply

In this section we assume that the supply coming from preferred-habitat agents responds
elastically to bond prices. For simplicity, we assume that the supply of the 7-period bond
depends only on the price of that bond and takes the form

ST = ¢ 4yl (25)
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for functions ({7 and 77 that depend only on 7. The function 1(™) is the sensitivity of the
supply of the 7-period bond to changes in its log price.

If ™ > 0, then bond supply is increasing in price. This could be because gross bond
supply increases with price—e.g., because the government and corporations issue more debt
when interest rates are low. It could also be because bond demand from other preferred-
habitat agents decreases with price—e.g., investors substitute away from bonds and towards
equities when interest rates are low, thereby reaching for yield across asset classes.

If n(7) < 0, then bond supply is decreasing in price. This could be because gross bond
supply decreases with price or bond demand from other preferred-habitat agents increases
with price. Perhaps surprisingly, the literature has explored a number of mechanisms that
can cause net bond supply to decrease with price. These include mortgage refinancing, asset-
liability hedging by insurers and pensions, investors who extrapolate recent changes in short
rates, and investors who reach for yield across the term structure (Hanson (2014)), Hanson
and Stein (2015), [Malkhozov et al.| (2016), Domanski et al.| (2017), Hanson et al.| (2021)),
Carboni and Ellison| (2022)).

If there were no arbitrageurs in the model with elastic supply, then yields would have
to adjust so that the net supply from preferred-habitat agents in (25) would equal to zero.
Equilibrium yields would be given by

(7)
" _ G
Ye ' = T (26)

As a result, yields would be constant over time and completely disconnected from changes in
short rates, giving rise to severe failures of the EH. The market for each individual maturity
would be completely segmented from that for other maturities, corresponding to an extreme
form of the preferred-habitat view (Culbertson| (1957), Modigliani and Sutch| (1966))).

2.3.1 Deriving the Equilibrium

The derivation of the equilibrium begins as in Section with constant supply. However,
with elastic supply, A, is not given by but by

T
Art = aaf Z _Q[C(T) + U(T)pgT)]AgT_l) = Aer (10 = T) + A, (27)
where
— N () 40 4(-1)
A = —ao; ZT:ﬂ AVATTY, (28)
— 2N ) _ (D)D) 4r-1)
A = ao? ZTZQ (¢ — ™™ AL (29)
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Substituting ut ) from and A, from into , we obtain a counterpart to 1)

[\

r

AD(r, —7) = AU Vp (ry —7) + CD — Y 4 %[AgT_l)]Q — 1y
= AU (e =) + 0] (30)

Identifying linear terms in r; — 7, we find

AT — AT (p, 4+ A\y) =1 =0, (31)

T

which is the counterpart of . Identifying constant terms, we find .

A complication when solving the difference equation for AL is that the coefficient
A depends on a sum involving A This gives rise to a fixed-point problem, which we solve
in two steps. First, we take p; = p, + A\, as given and solve as a difference equation
with constant coefficients. The solution is

1—(p9)"
Aff) - M (32)
L —pr
Second, we require that the solution (32)) is consistent with the definition of A, in (28)). This
gives rise to the following non-linear fixed-point condition in p;:

_ aO_Q Zn(r pi) 1= (pr)" 1 (33)
I- pr 1- p’r‘ .

Py can be interpreted as the short rate’s persistence under the risk-neutral measure.
Solving for C™) involves solving a similar fixed-point problem. Taking ), as given, the
solution of is . Substituting into leads to a linear equation in A, whose

solution is

a0t S, (€0 =07+ G LAY A
1+ ao? ST, (7, AVV] Al |

(34)

2.3.2 Results and Intuitions

When bond supply is elastic, short-rate shocks trigger an endogenous supply response from
preferred-habitat agents, shifting bond risk premia. As a result, bond yields under- or over-
react to short-rate shocks relative to the EH. Whether yields under- or over-react to the
short rate depends on whether bond supply from preferred-habitat agents is increasing or
decreasing in bond prices. When supply is upward-sloping (7™ > 0), bond risk premia are
decreasing in the short rate and bond yields under-react to the short rate relative to the EH.
The converse happens when supply is downward-sloping (7™ < 0).
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To understand the intuition for under- and over-reaction, consider the case where bond
supply is upward-sloping—i.e., where n(” > 0. Holding bond expected returns ,ugT) fixed, a
decline in the short rate raises HET) — r; and, hence, arbitrageurs’ demand for longer-term
bonds. When supply is upward-sloping, arbitrageurs’ buying pressure not only leads bond
prices to rise but also leads arbitrageurs to buy more bonds from preferred-habitat agents.
Because arbitrageurs hold more bonds when short rates fall, they become more exposed to
future movements in short rates, so the price A,; of short-rate risk rises. Since A, rises,
bond risk premia rise and bond yields under-react to declines in the short rate relative to
the EH baseline. Formally, when 1™ > 0, equation implies A, < 0, so equation 1}
implies that that A, rises when r, falls. As a result, when n(T) > 0 and A\, < 0, we have
Py = pr + Ay < pr—i.e., the persistence p} of the short rate under the risk-neutral measure
is smaller than the persistence p, under the physical measure.

When 0™ > 0, bond risk premia are positively related to the slope of the yield curve—
ie., to y,ET) — 1y for 7 > 2. Indeed, a low short rate implies both a steeper than average yield
curve and higher than average bond risk premia. As a result, a steep yield curve predicts
higher future excess returns on bonds. The positive relationship between the slope of the
yield curve and bond risk premia is one of the most widely documented empirical facts in
the term-structure literature, starting with Fama and Bliss (1987) and Campbell and Shiller
(1991).

Naturally, all of these results are reversed when n(™ < 0. Specifically, when the supply
from preferred-habitat agents is decreasing in bond prices, bond yields over-react to move-
ments in short rates relative to the EH. As a result, versions of the VV model in which
7™ < 0 have proven useful in understanding the “excess sensitivity” of long-term yields to
changes in short rates that has been documented at higher frequencies. See, for example,
Hanson| (2014)), Hanson and Stein| (2015), [Malkhozov et al. (2016]), Domanski et al.| (2017)),
Hanson et al.| (2021)), Carboni and Ellison| (2022).

2.4 Random Supply

In this section we allow the supply coming from preferred-habitat agents to fluctuate ran-
domly over time. We focus on the case where supply does not respond to bond prices. We
analyze the case where supply is both random and responds elastically to bond prices in
Section [3]

For simplicity, we assume that the random supply is driven by a single supply factor s;.
The supply of the 7-period bond is

S =™ o0, (35)

for functions (7 and #”) that depend only on 7. We parameterize the function #(”) so that
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an increase in s; raises the dollar duration of aggregate bond supply with respect to the short
rate—i.e., ZLQ A = 0. Dollar duration trivially increases in s; when bond supply
for all maturities increases in s;—i.e., 87 > 0 for all 7 > 2 We assume that the supply
factor s; follows the AR(1) process

St41 = PsSt + OsEs 11, (36)

where ps € (0,1) and o, > 0 are constants, and €541 is a stochastic shock with E;[es ;1] =0
and Var[e; ;1] = 1. Setting the long-run mean of the s; to zero is without loss of generality
because we can redefine ((7). For simplicity, we also assume Covi[ess11,6r111] = 0—i.e.,
supply shocks are uncorrelated with short-rate shocks—but this assumption can easily be
relaxed. (Greenwood and Vayanos| (2014) study the continuous-time version of this model.
We look for an equilibrium where bond yields are affine functions of the short rate and
the supply factor. In our conjectured equilibrium, the log price of the 7-period bond at time
t takes the form
) =y = [AD (ry —7) + ADs, + C7] | (37)

where the functions A\, A7) and O depend only on maturity 7.

2.4.1 Deriving the Equilibrium

Substituting into and , and using the assumed AR(1) dynamics for the short
rate and the supply factor, the expected and unexpected components of the return of the
T-period bond between times ¢ and £ + 1 are

—~

m = AD(ry = 7) = AT Vpu(ry = 7) + AT s, — AT Vps, + 0 = 00D (38)

A(T*l)]Q’

iy + 5 Van ) = i = AT Vo — AT Voe i, (39)

respectively. Substituting and into the arbitrageurs’ budget constraint and
using the assumption that supply shocks are uncorrelated with short-rate shocks, we can
write the arbitrageurs’ objective @ as

T T ao_? T T T— 2 ao—z T T T— 2
X" =) - 5 (Z X7 AC D) - (ZTZQ XA D) . (40)

T=2

T

T=2

7A more general condition ensuring that an increase in s; raises the dollar duration of aggregate bond
supply with respect to the short rate is (i) 23;2 6(") > 0 and (ii) there exists 7* € [1,T — 1] such that

0 <0 for 7 < 7 and 0(7) > 0 for 7 > 7*. Conditions (i) and (ii) imply ZZ:Q 0 AT > 0 because the

function A is positive and increasing in 7.
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The arbitrageurs’ first-order condition for Xt(T) is
,LLET) — Ty = AgT_l))\ﬁt + A((;’—l))\&t’ (41)

where the prices of factor risk are A, = a0} ST Xt(T)ASCT*l) for f = r,s. Using the market-

clearing condition Xt(T) = St(T) = (D 49 s,, the equilibrium prices of factor risk are

T .
Af,t = CLO'?- ZT:Q [C(T) + Q(T)St} A‘(f b == )\fSSt + )\fa (42)
where
T
Aps = aafc 27:2 0(7)A§7_1)7 (43)
T .
Aj = ao} 27:2 C(T)A; b, (44)

Substituting ,ugT) from and g, from into , we find the equation
AD(ry —7) = AU Vp(r, —7) + A s, — AU Vs, + O — 0D

2
P4 ZATIE < = AT s+ A+ AT s+ A, (49)

which is affine in r; and s;. Identifying linear terms in r, — 7, we find from Section .
Identifying linear terms in s;, we find

AT — AT (g, + N,) — ATYN = 0. (46)

S S

Identifying constant terms, we find

[\

2
C — 0D 7 — AUV — ATDA 4 %[AY*”]Q + %[A(T*”]Q = 0. (47)

The solution for AL is from Section . Solving for Al entails a similar fixed-point
problem as in Section . Taking s as given, the solution of is AV =0 and for 7 > 2

T7—1
1) (i 1 1—(p;)" 1—p]
AgT) = Ars Z (p:)(] Y A7(~T = Ars ( e =) > 0, (48)
= Ps—pr \ L=ps  1—pr

where \,, = ac? 2322 G(T)Ag*l) > 0 and p} = ps + A satisfies the following fixed-point
condition:

*\7—1 T—1
* 2 T () 1 1_(ps) _1_107"
Py = ps +aois [ E L 0 ) (49)

Ps = Pr 1= L—=pr
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The parameter p} can be interpreted as the persistence of the supply factor under the
risk-neutral measure. Given our assumptions on (") any solution p’ of satisfies pi > ps.
The solution for C7) is

T 2 T

T T 2
CW =77+ 3 ATIN £ D ATIA = TR T[AGI - S [AGTL (50)
j=1

2.4.2 Results and Intuitions

We first examine how shocks to bond supply affect bond yields and how the effect depends
on the shocks’ persistence. Recall from Section that an unanticipated and permanent
shock to the supply of bonds of any maturity has a larger effect on long-term yields than
on short-term yields. Our results in this section imply that a mean-reverting supply shock
can instead have a hump-shaped effect on the yield curve, which is largest for intermediate-
maturity bonds. Formally, (37) and imply that a unit shock to the supply factor s;
raises the yield for maturity 7 by

1-(p3)” 1—p7

T T s _ T—1 «\J ; T—1
R e = D Wy 0 D WS S
P ‘

(51)

05y T T Pt — pr T = PP T

<

When p! > 1, the positive sequence ¢ is increasing in j. Since 8yt(T) /0s, is an average of an
increasing sequence of numbers, it is increasing in 7. Therefore, the effect of a supply shock
on the term structure increases with maturity. When instead p: < 1, the positive sequence
©U) is hump-shaped and converges to zero when 7 goes to infinity. Therefore, 8y§7) /0sy
is a hump-shaped function in 7, so supply shocks have a hump-shaped effect on the term
structure. The condition p} < 1 is met when p, is small—i.e., the supply shock is transitory.

The intuition for the hump shape follows from the decomposition . A supply shock
raises bond yields because it raises the average of the risk premia earned by a bond over
its life. Risk premia earned at any given time after the shock rise more for longer-term
bonds because their prices are more sensitive to the short rate and to supplyﬁ However,
risk premia are expected to decline over time following a supply shock because the shock
is transitory, so risk premia are expected to remain elevated over a smaller fraction of the
life of a longer-term bond. If supply shocks are sufficiently transitory, then their maximum
impact will be on intermediate-term yields.

The existence of random supply shocks reinforces the positive relationship between risk
premia and the slope of the yield curve that arises in Section when supply is upward-
sloping. An elevated supply from preferred-habitat agents implies that bond risk premia

8Formally, equations (41) and (42) and the facts that A, > 0 and A,; > 0 imply that the risk premium
u,gT) — r of 7-period bonds is increasing in s;. Moreover, this effect becomes stronger for larger 7 because

Ag,r—l) and AgT_l) are increasing in 7.
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are higher than average because arbitrageurs must be induced to hold that supply. Holding
short rates fixed, this means that long-term yields and the slope of the yield curve—i.e.,
yt(T) — 1y for 7 > 2, are higher than average.

We next show that with random supply, the effects of supply are not fully global as in
Section [2.2] but become instead partially localized. The relative effect of a supply shock
on yields of different maturities depends on the distribution of the shock across maturities.
In particular, the rise in long-term yields relative to the rise in short-term yields stemming
from an increase in supply is greater when that increase concerns the supply of long-term
bonds than when it concerns the supply of short-term bonds.

To explain the intuition for partial localization, consider an unanticipated and permanent
change AC() in the supply of 7-period bonds for 7 = 1,2, ...T. Since and imply
A" and A do not change, and imply that the yield for maturity 7 changes by

r T (-1 4 (G-1)
_ AC( ) _ Zj:l Ay A)\r + ijl As

T T

Ay

AN, (52)

where A)y = aa? ZLQ AC(T)A;T_U for f = r, s are the changes in the prices of short-rate
and supply risk. Partial localization means that Ay!™ / Ay{™ for any two maturities 7, > 7
is higher when the supply shock A¢(™) originates at longer maturities. Key to partial local-
ization is that AgT) /A7(«T) is increasing in maturity 7—i.e., supply shocks are a more important
driver of long-term yields whereas short-rate shocks are a more important driver of short-term
yields. Indeed, when A% /A7(~T) is increasing in 7, an increase AC(™) in the supply of long-term
bonds results in a larger increase in the price of supply risk relative to the price of short-rate

risk—i.e., a larger A\;/AM\,, compared to a same-sized increase in the supply of short-term
bonds. Since, in addition, (Y272, AY™V) /(X272 AYY) > (371, AVTY) /(7 AYTY) for

J =
To > T1, implies that Ayim)/ Ayin) is higher when A((™) originates at longer maturities.

3 The VV Model in Continuous Time

Our analysis of random supply shocks so far assumes that supply does not respond elastically
to bond prices. In this section, we develop the continuous-time version of the VV model and
use it to analyze the case where supply is both random and elastic. As we show below, in

this case, even permanent shocks can have hump-shaped effects.

3.1 Model

Time t is continuous and infinite. At each time ¢, there is a continuum of zero-coupon,
default-free bonds that have face value one and mature at time ¢ + 7 where 7 € (0,7]. We
denote the time-t price of the bond that matures at ¢t + 7 by Pt(T), and define the bond’s
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yield to maturity yfT) and log price p,gT) as in Section . Taking the unit of time to be years,

we refer to the bond with maturity 7 as the 7-year bond.
The short rate r; is the limit of the yield yt(T) as 7 goes to zero. We take r; as exogenous

and assume that it follows the Orstein-Uhlenbeck process
dry = —k.(ry — T)dt + 0,dB,, (53)

where k, > 0, 7 and o, > 0 are constants, and B, is a Brownian motion. The process
is the continuous-time counterpart of . The persistence parameter p, of the discrete-time
AR(1) process maps to exp(—+,At), where At is the time between discrete periods.
The instantaneous change in the price and log price of the 7-year bond at time t are de-
noted by dPt(T) and dpy)7 respectively. This differential accounts for the change in maturity—
le., dPt(T) = Pt(l;tdt) — Pt(T). Ito’s lemma implies
d Pt(T)
Pt(T )

T 1 T
= dp{” + 5 Var,[dp}"). (54)

Equation is the continuous-time counterpart of , but holds exactly whereas

is only an approximation.
Arbitrageurs choose a bond portfolio to trade off the mean and variance of the instanta-
neous changes in their wealth W;. The continuous-time counterpart of the budget constraint

s }
r dP"
AW, = Wrdt + / x" ( Ly, |dr (55)
0

RE(T)
Arbitrageurs choose their bond holdings {X,S(T)}TG(QT] to maximize
E, [dW,] — gVart [dW,]. (56)

3.2 Elastic and Random Supply

We assume that the supply coming from preferred-habitat agents both fluctuates randomly
over time and responds elastically to bond prices. The supply of the 7-year bond is

S = ¢ 40D s, +yplD (57)

for functions (7, 87 and 1 that depend only on 7. We assume that the supply factor s,
follows the Ornstein-Uhlenbeck (OU) process

ds; = —KsSidt + 05dBs , (58)
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where kg > 0 and oy > 0 are constants and B, is a Brownian motion. For simplicity, we
assume that B;, is independent of B,;—i.e., supply shocks are independent of short-rate
shocks, but this assumption can easily be relaxed.

We look for an equilibrium where bond yields are affine functions of the short rate and
the supply factor—i.e., where the log price of the 7-year bond at time ¢ takes the form ([37))
in Section 2.4l

3.2.1 Deriving the Equilibrium

Applying Ito’s lemma to P\” = exp(—=[A7 (r, — 7) + As, + CV]) and using the OU
processes for the short rate and the supply factor, the instantaneous return of the 7-period

bond at time ¢ is
dp”

P = u"dt — A o,dB,, — AT o,dB,,, (59)
where
o dAT _dAY dco) () A 07 [ 4121 %5 [ 402
p = = () s A (=) AT kst [AD] 2 [AD] (60)

denotes the instantaneous expected return. Equation can also be derived from (54))

together with , and .

Substituting into the arbitrageurs’ budget constraint and using the indepen-

dence between short-rate and supply shocks, we can write the arbitrageurs’ objective (56))

/OTXt(T)(ME —r, dT——[ (/ x A(T)dT) + 02 (/ x4 d7>]. (61)

Arbitrageurs maximize over their bond holdings {Xt(T)}TE(O,T]' Their first-order condi-
tion for Xt(T) is

as

) == AN+ AT, (62

where the prices of factor risk are
T
At = aaj%/ Xt(T)A}T)dT (63)
0

for f = r,s. Using the market-clearing condition X\~ = S\ = ¢® 4+ 605, + n™p{" we
find that the equilibrium prices of factor risk are

T
Ao = ao} / €7+ 0T s, + npVJAT AT = Mg = T) + Agesi 4+ s, (64)
0
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where

T
e = —aof [ A ADar, (65)
0
T
Aps = ao / [07) — @A) AT dr, (66)
0
T
Af = aaj%/ [Q(T) — r,](T)C(T)] Agf)dr. (67)
0

Substituting M,ET) from and Ay, from into , we find an affine equation in r; and

s;. Identifying linear terms in r; — 7, linear terms in s; and constant terms, we find

dA™

—+ A (k= Ny) — ADN, — 1 =0, (68)

-

dAl

—+ AT (kg — Ags) — AN, =0, (69)
dC™) o 2 o2 2

7= ADN — AN+ 2 [AD) s [AMT =
dT r T T s 5+2[7’]+2|:s:| O’ (70)

respectively. Equations — constitute a system of three ordinary differential equations
(ODEs). They must be solved with the terminal conditions A = A{” = ¢ = 0.

The system of equations — reduces to solving one ODE at a time when supply is
inelastic (7™ = 0) or non-random (o, = 0). In either case \,, = 0, so the term in A drops
from and that ODE involves only A" Given its solution AV), 1@} can be solved for
A and given the solutions A and A, can be solved for C(7). Sections [2.2] to
use this recursive structure in discrete time. Specifically, when (™ = 0 or o, = 0, we have
the following cases in continuous time, which map to Sections to 2.4k

e When 7™ =0 and o, = 0, the solution for A is

T 1_ _
A = / exp(—ripj)dj — L PET), (71)
0

Koy

[\

-~

% (fOT E, [Tt+j]dj)

The reaction of bond yields to changes in the short rate conforms to the EH. Equation
(71)) is the precise continuous-time analog of .

e When {7 # 0 and o, = 0, the solution for A7 s

A0 1 — exp(—kiT)

r

o , (72)

T

where k) = Kk, — A, the short rate’s mean reversion parameter under the risk-neutral
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measure, satisfies the fixed-point condition

T 2
1 _ ¥
K=K, + aaf/ 7™ < expE K’"T)) dr. (73)
0 K

T

Equation implies x* > x, when (™ > 0 (long-term yields under-react to the short
rate relative to the EH) and x* < , when 7™ < 0 (long-term yields over-react to the
short rate relative to the EH). Equations and are the precise continuous-time

analogs of and .
e When 1™ = 0 and o, > 0, the solution for Al s and the solution for A is

A 5, 1 (1 —exp(—kiT)1— exp(—/ﬁﬂ'))’

Kr — K} Ky Ky
TV

JT exp(—r2)AT g5

(74)

where \,, = ac? fOT 0 A7 dr > 0 and KY = ks — s satisfies the fixed-point condition

r 1 1— —KT) 1 — —
Ky = Kg — )\maag/ o) ( exXp(= A7) exp( KJTT)) dr. (75)
0 K

r— K& K Ky

The function A\ is always increasing in 7 while the function 7-'A{” is increasing in
7 when £} < 0 and is hump-shaped in 7 when &% > 0. Equations and are the
precise continuous-time analogs of and .

solved as a system. Given the solution A and A7 of that system, ([70) can be solved for
C7). To solve the system of and , we write it in vector form

When supply is both random and elastic, Ay is non-zero, and and must be
(70

dA”) ()
r A 1
dr M r _

where
M = Ry — )\rr _)\sr
_>\rs Rs — )‘ss

The system involves a fixed-point problem analogous to that in Sections [2.3] and [2.4] because
the matrix M depends on integrals involving A and AT, We can solve the fixed-point
problem in two steps, as in Sections and [2.4] The first step is to take M as given and

s

KE =)
= " o 77
[ _)\rs /{* ] ( )
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solve (68) and as a linear ODE system with constant coefficients. The solutions are

A = 1 —exp(=17) Vs — K] (1 —exp(—v7) 11— eXp(—VrT)) | (78)
vy Vp — Vs Vs Uy
A AL 1 (1 —exp(—vs7) 1 eXp(—VTT)) | (79)
Vp — Vs Vs Uy
where
s * % __ e%)2 AN M\ s * *_ * g*)2 ANgr Mg
L A O e ond o, — Tt s = V(s = w2 (80)

2 2

are the eigenvalues of M. The second step is to compute the integrals in M (i.e., to compute
Arrs Asry Ars, and Agg) given the solution Agf) and AgT), and require that they are consistent
with the value of M used to compute A" and A7), This problem amounts to solving a non-
linear system of four scalar equations in the four elements of M. When supply is inelastic
or non-random, only one non-linear scalar equation needs to be solved—i.e., when A, = 0,

v, = Ky and v, = /{';ﬂ

3.2.2 Results and Intuitions

We illustrate supply effects in a calibrated version of the model. We consider an unanticipated
negative shock AC(™ to bond supply St(T). We allow the shock to be permanent or transitory,
to illustrate the effect of the shock’s persistence. All calibrated parameters except for the
shock’s persistence are as in Figure 3 of Vayanos and Vila (2021). The decrease in supply
corresponds to QE purchases worth 12% of GDP.

Figure [2] plots the supply shock’s effects on the term structure of yields. The left panel
assumes that the shock is permanent. The right panel assumes that the shock reverts
deterministically to zero at the rate x, = 0.15, implying a half-life of 4.62 years. In each
panel the red, green, light blue, blue, and black solid lines assume that the shock exclusively

9Two alternative approaches to solving this fixed-point problem have been proposed. One approach,
developed in Hayashi| (2018]), uses the discrete-time version of the model and expresses the fixed-point
problem as a system of 27 quadratic equations in the 27 unknowns Ag) and AgT) for 7 = 1,..,T. The
unknowns are treated as functions of the arbitrageurs’ risk aversion a, and an ODE in a is derived by
differentiating implicitly the system with respect to a. The initial condition for the ODE is for the value
a = 0, for which the system can easily be solved in closed form.

Another approach, developed in [Vayanos and Vilal (2021)), uses the continuous-time version of the model
and assumes that 7 is infinite and the functions (™) and 1(”) are exponentials or linear combination of
exponentials. The integrals in M then become Laplace transforms of the functions AST) and AgT) and of
their squares and product. Taking Laplace transforms of both sides of the ODE system , yields scalar
equations in the Laplace transforms. These equations reduce to a non-linear system of four scalar equations.
Relative to the approach of diagonalizing M, the advantage of the Laplace transforms approach is that the
fixed-point problem can be formulated and solved without needing to distinguish cases depending on whether
the eigenvalues of M are real or complex.
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Figure 2: Effects of QE for the main calibration in VV.

alters the supply of 2-, 5-, 10-, 20- and 30-year bonds, respectively. The black dashed line
assumes that the shock alters the supply of a basket of Treasury maturities whose composition
matches the maturities purchased by the Fed during the first round of QE from March 2009
to March 2010—i.e., QEl—as reported in [D’Amico and King (2013). Yield changes in the
y-axis are in percent points—e.g., 2% is 200 basis points.

Figure |2 shows that supply effects exhibit some localization. Consistent with the dollar-
duration intuition described in Section 2.2 a decrease in the supply of bonds with longer
maturities generates a larger downward shift in the yield curve. For example, there is a
larger downward shift when the negative supply shock is concentrated in 30-year bonds than
when it is concentrated in 2-year bonds. That downward shift, however, is not larger for all
maturities: yields on 1- to 3-year bonds are more sensitive to a decrease in supply of 2-year
bonds than of 30-year bonds.

Figure [2| further shows that even permanent supply shocks can have hump-shaped effects
on the yield curve. For example, a permanent decrease in the supply of 2-year bonds has
its maximum effect on 10-year yields. Permanent shocks can have hump-shaped effects only
when the supply coming from preferred-habitat agents is both random and elastic. Indeed,
with a non-random or an inelastic supply, the effects are always increasing in maturity, as
shown in Sections and [2.4] respectively. The intuition for the hump shape is that because
arbitrageurs sell bonds at the given maturity to accommodate the decrease in supply, they
become more willing to buy bonds at other maturities to keep a similar risk profile. With
elastic supply, the prices of those other bonds move only to the extent that arbitrageurs
actually buy them. With two (or more) risk factors, bond returns are not perfectly corre-
lated across maturities, so arbitrageurs are not willing to substitute as aggressively across
maturities because doing so exposes them to additional risk. As a result, supply effects are
partially concentrated around the maturities where the supply shocks land. Hump-shaped
effects become more pronounced when supply is more elastic. They also become more pro-
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nounced when supply shocks are transitory, as can be seen by comparing the right panel of
Figure [2] to the left panel.

4 Perpetuities

For some applications, particularly in macroeconomics, the researcher may want to model the
effects of supply and demand on long-term interest rates without modeling the entire yield
curve. In this section, we replace the ladder of zero-coupon bonds with a single long-term
bond, namely a coupon-bearing perpetual bond. Because coupons introduce nonlinearities,
we linearize the perpetuity’s return following Campbell and Shiller| (1988). The resulting
model is highly tractable and captures many of the insights in the previous sections. Sim-
plified VV models of this type have been used in (Greenwood et al. (2018), Hanson et al.
(2021)), \Greenwood et al.,| (2023)), and Hanson et al. (2023). This simple model is not a
suitable framework for numerical calibration.

There are only two assets. The first is a 1-period bond. We refer to its yield, r;, as
the short rate and assume it follows the exogenous AR(1) process (2). The second asset
is a perpetuity that has a face value of one and pays a coupon of K > 0 in each period.
We denote the perpetuity’s price and log price at time ¢ by Pt(L) and ng), respectively. We
denote the perpetuity’s return and log gross return between times ¢ and ¢ + 1 by Rgﬂ =
(K + Pt(ﬂ) / P —1 and rt(ﬂ, respectively.

As in Section [2], we approximate the perpetuity’s return between times ¢ and ¢ + 1 by

L L 1 L
Rt(+)1 ~ Tt(-s-)l + §Val"t [Tt(-s-)l] (81)

Following Campbell and Shiller| (1988]), we further approximate the perpetuity’s log return as
a linear function of its continuously compounded yield y,fL) . We carry out this approximation
around the point where the perpetuity is trading at par—i.e., at a price equal to its face
value of one. Specifically, we approximate the log return on the perpetuity from ¢ to t +1 as

(L
Tt

1w 0 (1) _ (L) L) (L)
+ t

) B )
1R TS T TS = 1—_(5(yt+1 — Y ), (82)
where 6 = 1/(1+ K) € (0, 1) is a constant of the linearization. The perpetuity’s return is the
sum of a “carry” component, y;, which investors earn if yields do not change and a capital
gain component, —(3/(1 — 6))(y¢11 — ¥t), due to changes in yields[]

Bond arbitrageurs choose portfolios consisting of 1-period bonds and perpetuities. They

have mean-variance preferences over wealth 1-period ahead, with risk aversion a. Denoting

10This log linear approximation dates back to Shiller, Campbell, and Schoenholtz (1983) and is discussed
in Campbell (2018). To derive it, recall that the gross return on the perpetuity from ¢ to t +11is 1+ Rgi)l =

(K + Pt(ﬂ)/Pt(L). Letting Y;(L) = exp(yt(f_)) — 1 denote the perpetuity’s ordinary yield, the price of the
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by Xt(L) the market value of arbitrageurs’ holdings of the perpetuity at time ¢, arbitrageur
wealth evolves according to

Wips = (Wi — X (1 + R) + XP (1 + BRE). (83)

Using the approximation for the return of the 1-period bond, and for the return of

the perpetuity, we can approximate the evolution of arbitrageurs’ wealth by
. 1
Wt+1 ~ Wt+1 = Wt(l + Tt) + Xt(L) (Tg:)l + évart[Tgi)l] — T't). (84)

(L

Arbitrageurs choose their holdings of the perpetuity X, (L)

) to maximize @ Defining p; 7/ =
Eq[r, +)1] + tVar, [Tt(ﬂ]) this is equivalent to maximizing

L a L
(1" = r) XE = GVar[ri) (X7 (85)
The arbitrageurs’ first-order condition for Xt(L) is

) == aVar [ri] X", (86)
We assume that the supply of the perpetuity coming from preferred-habitat agents is
L L
S = 45—y, (87)

where ¢ and 7 are constants, and s; follows the AR(1) process in equation (35)).
We look for an equilibrium where the yield of the perpetuity is an affine function of the

short rate r; and the supply factor s;. The yield takes the form

y\" = B,(r, — 7) + Bys, + B, (88)

perpetuity is Pt(L) = K/Yt(L) = K/(exp(ygL)) —1). Thus, the log return on the perpetuity from ¢ to ¢t + 1 is

K+ P K K
r£+)1 log T)Hl = log K—i—T — log — o |-
Py eXP(yt-H) 1 exp(y; ") — 1

Linearizing this equation about the point where the perpetuity is trading at par at times t and t + 1—i.e.,

about the point where yt(+)1 = ygL) log(1 + K), we find

1+ K () )
K Yt K Yey1s

L L 1+ K / (1
B i) - LK (1

1+ K
v —log(1+ K) ) + —— (" -

log(1 + K))
which coincides with . Equation can be generalized to allow the perpetuity to be self-amortizing,
enabling a modeler to control the value of §. In each period, a self-amoritizing perpetuity pays the coupon
K and a fraction 1 — X of its face value, and leaves the owner with A units of the same perpetuity, where

A € [0,1]. (The standard perpetuity corresponds to A = 1.) The linearization constant for a self-amortizing
perpetuity is § = A/(1 + K). See |Greenwood et al.| (2023).
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for constants B,, By and B. This conjecture and the approximation imply that the
conditional variance of 1-period perpetuity returns is constant over time and given by

5 2
Van[riy] = Var? = (ﬁ) (Broy + Bioy) > 0. (89)

To solve the model, we substitute Xt(L) from the market-clearing condition Xt(L) = St(L)
into the arbitrageurs’ first-order condition |@D Using the definition of uiL), the approxi-
mations and , the conjectured form of yields and the AR(1) dynamics for the
short rate and the supply factor, we find the equation

My Tt
T—op, 1— 6p, 1 )
TgBT(rt —7)+ Té_szst + B+ §Var(L) -1y
— gVar® (C+ st —n|[B.(ry —T) + Bssy + B]), (90)

which is affine in r, — 7 and s;. Identifying linear terms in r; — 7, linear terms in s; and

constant terms, we find

1-6

B, = 10 >0, 91
1+ 11;;; naVar(®) (91)
—11}5 aVar")
By = ——F& >0, 92
14 11—?523 naVar(®) (92)
aVar (¢ — n(F — Ltvar® 1
B=7+ (C=nT— 3 ) _lyuo (93)
1 4+ naVar(h) 2

respectively. Equations — are the counterparts of the difference and differential equa-
tions for A,(f), AS) and C(7) derived in Sections [2| and . They are scalar equations, which
makes the perpetuity model simpler to solve.

Because B, and B, depend on Var®) and Var™ depends on B, and B,, a fixed-point
problem analogous to that in Sections 2] and 3| arises. We can reduce the fixed-point problem

to a scalar equation in Var(’), as can be seen by combining , , and :

2 1-6 2 1-§ (L) 2
Varl) = 0 1—=dpr o2 + 1—0ps aVar o2
1-9¢ 1+ 2 naVar® " 1+ ll_gf)gnaVar(L) B

dpr

When supply is constant and inelastic (02 = n = 0), the fixed-point problem is degenerate
and there is a unique equilibrium. When instead ¢ > 0 or n # 0, the fixed-point problem
is non-degenerate because the risk of holding perpetuities depends on how their prices react
to shocks, and vice-versa. Furthermore, when o2 > 0 or n < 0, the fixed-point problem can
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have multiple solutions. Researchers typically focus on the unique equilibrium that is stable
and does not explode in the limit where o2 and 7 go to zero.

Many—but not all—of the qualitative implications of the VV model can be illustrated
in the perpetuity model. For example, as in Section [2.3| above, the sign of  determines how
changes in the short rate impact bond risk premia and, thus, whether long-term yields under-
or over-react to the short rate relative to the EH. When n = 0, the reaction of long-term
yields to changes in the short rate conforms to the EH—i.e., 8(;@9 —r¢)/0ry = 0 and bond
risk premia do not depend on short rates, so

0 o0
Brza_rt(l_é)z

j=

1—90
1—4dp,

0 5jEt [Tt+j] =

When 7 > 0, long-term yields to under-react to movements in the short rate relative to the
EH because a(ﬂff) —ry)/0ry < 0, and B, < (1 —9)/(1 — dp,). Long-term yields instead
over-react to movements in the short rate relative to the EH when n < 0. Similarly, as in
Section [2.4] when 1 = 0, the impact of random supply shocks on long-term yields is greater
when p; is larger and supply shocks are more persistent.

5 Empirical applications of the VV framework

Empirical applications of the VV framework have sought to either isolate shocks to the
supply or demand for long-term bonds, or alternately have sought to construct empirical
proxies for arbitrageurs’ holdings of long-term bonds and risk aversion. Several papers have
further argued that some agents in bond markets trade in a “rate-amplifying” fashion in the
short-run, causing long rates to over-react to movements in the short rate relative to the
EH at high frequencies (Hanson et al|(2021)). Our goal in this section is not to provide an
exhaustive treatment of the empirical literature on supply-and-demand effects in the term
structure. Instead, we seek to connect some of the main findings in this growing empirical

literature to concepts emphasized in the VV model.

5.1 Variation in bond supply

Garbade and Rutherford (2007) and Greenwood and Vayanos| (2010) study the effects of
a significant shift in the supply of long-term bonds: the U.S. Treasury’s 2000—2001 debt
buyback program. In early 2000, the U.S. Treasury, which at the time was running budget
surpluses, announced that it would begin repurchasing long-term bonds. Between March
2000 and December 2001, the Treasury repurchased a significant fraction of outstanding debt
maturing in more than 10 years. Consistent with the idea of preferred-habitat, Garbade and
Rutherford| (2007)) and |Greenwood and Vayanos (2010)) find that the announcement of these
debt repurchases was associated with a large drop in 30-year yields relative to 10-year yields.
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Greenwood and Vayanos (2014) conduct a more systematic historical examination of
how the supply and maturity structure of government debt impacts long-term yields in the
U.S. To do so, they compute the maturity-weighted debt-to-GDP ratio, which is roughly
the product of the debt-to-GDP ratio times the weighted-average-maturity of government
debt, analogous to the dollar duration concept in . Greenwood and Vayanos| (2014) then
regress long-term yields and the future excess returns on long-term bonds on this duration
supply variable, controlling for the level of short rates. They find that duration supply is
positively related to current yield spreads relative to the short rate and predicts future excess
returns on long-term bonds.

Many papers have studied the impact of central bank QE policies on bond yields. |Gagnon
et al.| (2011) report that the combined impact of U.S. QE announcement events between
2008 and 2010 was to reduce 10-year U.S. Treasury yields by 91 basis points and and 10-
year agency yields by 156 basis points. Similar effects have been documented in other
countries, including the U.K. and the Eurozone (Joyce et al.|(2011)), Fratzscher et al.| (2018)).
Although most studies focus on the overall steepening of the yield curve, D’ Amico and King
(2013) document local effects in the spirit of the version of the model discussed in Section
3. Bhattarai and Neely| (2022)) provide a comprehensive review of the empirical literature on
unconventional monetary policy.

Moving beyond government bonds, Hanson| (2014)) and Malkhozov et al.| (2016]) argue that
mortgage refinancing waves in the U.S. are associated with significant shifts in the effective
supply of long-term bonds that must be held by arbitrageurs. Most home mortgages in the
U.S. are 30-year fixed-rate loans with a no-penalty prepayment option. When long-term
interest rates decline, more households are expected to refinance their mortgages in the near
term, so the ensuing refinancing waves cause the effective maturity of outstanding mortgages
to shrink. As a result, mortgage refinancing waves lead to large shifts in the total dollar
quantity of interest rate risk that U.S. fixed-income investors must bear in equilibrium.
Both papers build VV-style models that feature endogenous mortgage refinancing waves. In
reduced form, both models are similar to assuming that n < 0—i.e., that the net supply of
long-term bonds is downward-sloping and thus increasing in the level of long-term yields.

Empirically, Hanson (2014) and Malkhozov et al.| (2016) show that the effective or
“option-adjusted” duration of outstanding mortgage-backed securities is a strong and pos-
itive predictor of the future excess returns on long-term bonds and this effect is increasing
in bond maturity. Furthermore, they find that increases in effective mortgage duration are
short-lived in nature and that consistent with the intuition on the effects of transitory supply
shocks developedin Section [2.4] that a rise in effective mortgage duration has a hump-shaped
effect on the yield curve, with its maximum impact being felt on intermediate maturities.
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5.2 Variation in bond demand

Greenwood and Vayanos| (2010) study a large shock to the demand for long-term bonds
stemming from the 2004 reforms to pension regulation in the U.K. These reforms increased
the incentives of pension funds to hold long-term U.K. government bonds, especially long-
term inflation-protected securities. Consistent with the VV framework, this increase in
demand for long-term bonds was associated with an inversion of the yield curve and an
especially large effect on the long end: long-term U.K. yields (e.g., 30-year yields) declined
significantly relative to intermediate-term yields (10-year yields). Because of these ‘local’
effects, the empirical results are best understood in the context of the version of the model
with elastic and random supply.

Greenwood and Vissing-Jorgensen| (2018) conduct a more systematic cross-country exam-
ination of how the demand for long-term bonds from pension funds and insurance companies
affects the long end of the yield curve. Specifically, using data from 26 countries, they find
that the spread between 30-year and 10-year government bond yields is negatively related to
the ratio of pension and life insurance assets to GDP. This finding suggests that preferred-
habitat demand from pensions and insurers for long-term bonds plays an important role in
shaping the long end of the yield curve. Exploiting regulatory changes in several European
countries from 2008 and 2013, Greenwood and Vissing-Jorgensen (2018)) provide event-study
evidence on the effect, further supporting the idea that pension and insurance demand im-
pacted the long end of the yield curve. In particular, they argue that pension and insurance
demand is partially driven by hedging linked to the regulatory discount curves. When regula-
tors reduce the dependence of the regulatory discount curve on a particular security, pension
and insurance demand for the security falls and its yield increases. Similar to|Greenwood and
Vayanos| (2010)), Greenwood and Vissing-Jorgensen| (2018) provide several examples whereby
demand shocks have local effects. In this way, they are best interpreted as an illustration of
the VV model with elastic and random supply.

Ray et al.| (2023) use news about demand revealed during Treasury auctions to measure
how shocks transmit through the term structure. Their empirical strategy is based on the
idea that all supply information is known before the close of each auction. Therefore, they
argue, the release of the auction results reveals unexpected shifts in demand. By utilizing high
frequency changes in Treasury yields around the close of Treasury auctions, they document
that demand shocks are large and persistent, with effects on yields that last for many weeks
following the auction. They extrapolate their findings to understand the impact of QE.

Domanski et al. (2017) point to a rate-amplification (or convexity-driven) mechanism
stemming from the desire of pensions and insurers to dynamically match the duration of
their assets and liabilities. Specifically, since the convexity of their liabilities exceeds that of
their assets, pensions and insurers tend to purchase additional long-term bonds when long-

term interest rates fall, to dynamically manage their interest-rate exposure. Empirically,
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Domanski et al. (2017)) examine the portfolio rebalancing behavior of German insurers and
argue that their convexity-driven portfolio rebalancing contributed to the large decline in
long-term interest rates in the Eurozone in late 2014. As above, these findings could be
explained in a VV-style model where 1 < 0.

Hanson and Stein| (2015]) provide further empirical evidence for a negative n in the VV
model. They show that long-term real yields on U.S. Treasury bonds are surprisingly sensitive
to unexpected movements in short-term nominal interest rates driven by central bank policy
announcements. They also propose a different institutional explanation for why n might be
negative. The idea is that some investors care about the current yield on their portfolio as
opposed to the portfolio’s expected return. When short-term yields decline, EH logic implies
that long-term yields decline by less, causing the term structure to steepen. This boosts
the demand for long-term bonds from yield-seeking investors—i.e., these investors “reach
for yield” and buy more long-term bonds when rates drop, pushing down the risk premium
component of long-term yields.

5.3 Variation in arbitrageur risk tolerance

Although the VV model specifies the first-order condition of arbitrageurs, it is silent on who
the relevant arbitrageurs are. [Haddad and Sraer (2020) suggest that banks are marginal
investors in fixed-income markets (through lending decisions, willingness to hold Treasury
and Agency bonds, and so on), and that, therefore, the amount of interest-rate risk that
banks are holding should determine bond risk premia and future excess returns. [Haddad
and Sraer| (2020)) measure bond risk premia through banks’ average “income gap” computed
as bank assets that reprice within one year, minus liabilities that mature or reprice within
one year. The lower the income gap is, the higher is the interest-rate risk that banks must
bear. [Haddad and Sraer| (2020) show that the income gap forecasts excess bond returns over
the next four quarters, with increasing magnitudes for bonds of longer maturities.

6 Extensions to models of default-free government bonds

In this section, we discuss extensions to the baseline VV model that have been developed in
the context of default-free bonds. We sketch the key formal elements of each extension and
its relationship to the analysis in Sections [2] and [3]

6.1 Multiple supply factors

In Sections [2] and [3], random supply arises from a single supply factor. In practice, however, a
variety of supply factors may operate at different maturities. For example, a factor reflecting
the demand of mutual-fund managers may shift the (net) supply of short-term bonds, and a
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factor reflecting the demand of pension funds and insurance companies may shift the (net)
supply of long-term bonds.

We can generalize the model for K > 1 supply factors by assuming that the supply of
T-period bonds at time t is

T T K T
S = ¢ Y 07 s (94)

for functions ¢(”) and {9,(;)}521 that depend only on 7, and for supply factors {s;,} ,. Each
supply factor follows an AR(1) process of the form in discrete time, or an OU process of
the form in continuous time. In either case, equilibrium bond yields are affine functions
of the short rate and the K supply factors.

The model can be solved following the steps outlined in Sections [2] and [3] First, we
compute ugT) using the conjectured bond yields, short-rate dynamics and supply-factor dy-
namics. Second, we derive the arbitrageurs’ first-order condition for Xt(T). For example,
assuming that time is discrete and the short rate and the K supply factors are all mutually

independent, we find
M = AT+ 3 AT (95)
lut t T Tt k=1 Sk Skt

where the prices of risk are Ay, = ao? ST Xt(T)ASffl) for f = r {sp}<,, and A is the
sensitivity of bond prices to supply factor s;. Third, we determine the equilibrium prices of
risk by imposing market clearing, X\~ = S\, where S\ is given by . This yields an
affine equation in the short rate and the supply factors that we use to construct a system of
difference equations in discrete time or a system of ODEs in continuous time. As in Sections
and [3] that system can be solved by first treating it as system with constant coefficients
and then requiring that (some of) these coefficients satisfy a fixed-point condition.

With multiple supply factors, the effects of supply shocks are more localized than with a
single supply factor. Intuitively, supply effects become more localized because the arbitrage
trades required to spread and smooth their effects globally are risky for arbitrageurs and
hence are not undertaken aggressively in equilibrium. A model with multiple supply factors,
including a supply factor that acts primarily on longer-term bonds, helps further understand
the finding from Greenwood and Vayanos (2010) and Greenwood and Vissing-Jorgensen
(2018)) that shifts in the demand for long-term bonds from pensions and insurers can drive
down 30-year yields relative to 10-year yields.

6.2 Forward guidance

In Sections[2]and 3] expectations about future short rates and bond supply change only when
the current values of these variables change. This is because the variables follow AR(1) or OU
processes. In practice, however, expectations about future short rates and bond supply can
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change even when the current values of these variables do not change. For example, central
banks engage in forward guidance, conveying their intentions about the future path of short
rates, without necessarily moving current short rates. Likewise, central banks have typically
conducted QE by announcing a future path of bond purchases rather than by changing bond
supply upon announcement.

We can introduce shocks to expected future short rates and bond supply by allowing the
short rate and the supply factor to revert to a time-varying mean. For example, in discrete
time, we can assume that factor f for f = r, s evolves according to

fer = Fo+pe(fr = Fo) + €01, (96)

where the time-varying mean f, evolves according to

?t-i—l =+ Pf(?t - ?) +E€F 141 (97)

A natural assumption under this specification is that shocks to a factor’s time-varying mean
are more persistent than shocks to the factor’s current value (0 < py < py < 1),

Greenwood et al. (2016) model forward guidance on short rates and bond supply using
the specification and . Equilibrium bond yields are affine functions of the short
rate, the supply factor, and their time-varying means.

Shocks to expected future short rates have a hump-shaped effect on the yield curve
because investors expect the shocks to be temporary. The location of the hump depends on
the shocks’ persistence. For example and in line with the EH, if investors expect short rates
to rise and reach their maximum value in five years, then the hump will be located at a
longer maturity than if investors expect short rates to reach their maximum in three years.

Shocks to expected future supply have a hump-shaped or an increasing effect on the yield
curve. Moreover, the hump is located at a longer maturity compared to shocks to expected
future short rates with the same persistence (pr = ps). This is because shocks to expected
future supply affect bond yields through expected future bond risk premia, and risk premia
primarily affect longer-term bonds.

6.3 Effective lower bound

Under the AR(1) and OU processes in Sections [2] and [3] the short rate can take arbitrarily
low negative values. King| (2019) incorporates an effective lower bound (ELB) on the short
rate into the VV framework. The short rate is assumed to be r; = max[b, 7], where 7; is a
“shadow” short rate that follows an OU process and b is a lower bound, which can be set to
Zero.

In the presence of an ELB, equilibrium bond yields become nonlinear functions of the

short rate and bond supply, and the model must be solved numerically. The nonlinearities
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give rise to three key insights concerning behavior close to the ELB. First, forward guidance
that future short rates will be kept low—i.e., news that 7; has fallen—lowers uncertainty
about future short rates and bond yields. This is because future short rates will be close to
the ELB, and thus will exhibit little variation. Second, forward guidance that future short
rates will be low reduces bond risk premia, holding bond supply fixed, because of the lower
uncertainty. Third, QE purchases have a smaller effect on bond yields close to the ELB.
This is because short-rate volatility is low close to the ELB, so arbitrageurs do not bear as
much short-rate risk per unit of supply as they would have to bear away from the ELB.

6.4 Slow-moving capital

Greenwood et al. (2018)) and Hanson et al.| (2021) add a slow-moving arbitrage response
to the VV model. Specifically, following Dufhe (2010), these papers assume that some
fraction of arbitrageurs are slow-moving and only periodically rebalance their portfolios.
This assumption implies that arbitrageurs’ short-run demand curve is less price-elastic than
their long-run demand curve. Hence, the short-run effect of supply shocks on bond yields
exceeds the shocks’ long-run effect.

These models generate a distinction between “stock” and “flow” effects. In the baseline
VV model, there is no distinction because (i) flows are simply changes in stocks and (ii) the
slope of arbitrageurs’ demand curve is not horizon-dependent. As a result, the current stock
of supply fully characterizes bond risk premia. However, once the slopes of arbitrageurs’
short- and long-run demand curves differ, the path of supply shocks matters: a jump in
supply has a larger (temporary) effect on bond yields than a gradual increase in supply of

the same cumulative magnitude.

6.5 Wealth effects and balance-sheet constraints

The risk aversion of arbitrageurs in the baseline VV model can be viewed as a reduced form
that arises from contracting frictions between specialized bond arbitrageurs and the highly
diversified investors who ultimately provide these arbitrageurs with capital. Specifically, due
to moral hazard problems, specialized bond arbitrageurs can only raise capital from more
diversified investors if arbitrageurs’ compensation is tightly linked to the returns on their
bond portfolios. Arbitrageur risk aversion can also be viewed as a reduced form for the
constraints that regulators impose on arbitrageurs. Researchers have extended VV in two
directions to account more explicitly for how contracting frictions and regulatory constraints
affect arbitrageurs’ demand and the term structure.

Kekre et al.| (2023)) assume that the risk aversion of arbitrageurs is inversely proportional
to their wealth, instead of being a constant as in VV. Risk aversion that decreases in wealth
can be a better reduced form for contracting frictions than constant risk aversion because
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it captures the notion that arbitrageurs become more constrained following losses. Risk
aversion that is inversely proportional to wealth also results from intertemporal optimization
of arbitrageurs who have log utility over their consumption.

With wealth-dependent risk aversion, the model can be solved analytically only in discrete
time and with 1- and 2-period bonds. Otherwise, arbitrageur wealth becomes a state variable
and only numerical solutions are possible. A key insight is that when arbitrageurs hold bond
portfolios with positive duration, an unexpected drop in the short rate revalues wealth in
their favor, lowering bond risk premia, and causing long rates to over-react relative to the
EH. Wealth effects thus provide an alternative explanation to a downward-sloping supply
curve (Section for the over-reaction of long rates to the short rate.

He et al| (2022), Hanson et al. (2023)) and |Greenwood et al.| (2023) maintain the VV
assumption that arbitrageur risk aversion is constant but introduce balance-sheet costs,
which further limit arbitrageurs’ willingness to absorb supply shocks. These costs often
stem from regulations and, importantly, can apply even to completely riskless trades. For
example, since the 2008 Global Financial Crisis, large dealer banks have been subject to a
non-risk-based equity capital requirement called the Supplemental Leverage Ratio (SLR).
When the SLR binds, banks are required to finance even riskless trades using some amount
of equity capital, which banks perceive as being costly.

In |He et al.| (2022), shocks to bond supply can be absorbed by two types of arbitrageurs:
dealer banks, which are subject to non-risk-based equity capital requirements, and hedge
funds, which are not. However, hedge funds must finance their bond positions by borrowing
from banks on a short-term, collateralized basis in the repo market. Banks’ balance-sheet
costs limit banks’” willingness to hold bonds and to lend to hedge funds in the repo market.
In the presence of balance-sheet costs, shocks to bond supply push the spread between long
and short rates and the spread between Treasury and overnight-index swap (OIS) yields—a
failure of the Law of One Price that reflects bank balance-sheet costs—in the same direction.
Balance-sheet costs also steepen the aggregate demand curve for short-rate risk, amplifying
the impact of bond supply shocks on bond risk premia and yields. He et al| (2022) use the
model to explain the sharp rise in long rates and the rise in Treasury yields relative to OIS
yields during the COVID-19-induced “dash for cash” in March 2020.

A simple way to introduce balance-sheet costs in the model of Sections [2 and [3| and
capture the key insights in |He et al.| (2022), is to assume that arbitrageurs are homogeneous
and that balance-sheet costs enter directly into their objective function. Suppose that the
arbitrageurs’ objective function is

EWia] — SVan[Ien] — (B, (98)

where E; is equity capital and 1) > 0 is a constant that captures the notion that equity
capital is costly for banks. Suppose additionally that arbitrageurs are subject to a binding
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equity capital requirement of the form

T T
Bi=ky  IX7, (99)

where k£ > 0 is a constant. The constraint requires that arbitrageurs hold equity capital
against their bond positions for maturities 2 to 7. We are excluding maturity 1 from the
constraint , interpreting the one-period interest rate as a swap rate. Under current
regulatory capital rules, interest-rate swaps indeed barely impact the amount of required
equity capital. The absolute value in captures the notion that banks are required to
hold the same amount of equity capital against long and short positions in bonds. The
constant k is approximately equal to 6% for U.S. banks.

For simplicity, we focus on the case of random and inelastic supply. We assume addition-
ally that supply is always positive—i.e., Xt(T) = St(T) > 0 for all ¢ and 7. This assumption
ensures that arbitrageurs hold always long positions in all bonds in equilibrium and that
the absolute-value constraint in becomes linearm We finally parameterize the function
6" so an increase in the supply factor s, raises aggregate bond supply for maturities 2 to
T—ie, Sr_, 00 > 0.

Arbitrageurs’ first-order condition for 7-period bonds is

W0 == ot AT AT (100)
where ¢; is the marginal cost of equity capital, given by ¢; = ©¥k? ZZZQ(C (m) 4+ H(T)st), and
Are for f =1, s are the prices of factor risk, given by . Equation shows that in the
presence of balance-sheet costs, expected excess bond returns reflect not only a compensation
for risk but also a time-varying cost of equity capital ¢; for arbitrageurs. An increase in ¢;
raises the expected returns on all bonds by the same amount irrespective of their maturity
and, hence, of their risk.

Supply shocks have larger effects on bond yields in the presence of balance-sheet costs.
This is because the shocks raise the marginal cost ¢; of equity capital, thus raising expected
bond returns and yields. Because the effect of supply shocks on bond yields is larger in the
presence of balance-sheet costs, supply risk is also larger, and so is the persistence p? of the
supply factor under the risk-neutral measure. As a result, the effect of supply shocks in the
presence of balance-sheet costs may be more pronounced for longer-term bonds. Countering
this effect is the fact that, not being risk-based, shifts in balance-sheet costs can have large
effects on short-term bonds. As a result, the effects of supply shocks on short-term yields
can be more pronounced than those on long-term yields when supply shocks are transient.

The simple model presented above can also capture the effect of supply shocks on the

U Supply is always positive if the shocks €s,¢ to the supply factor s; are drawn from a distribution with
bounded support and the function (7 is sufficiently positive.
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spread between bond yields and swap rates. We treat swaps as if they require zero equity
capital, which is a good approximation of current regulatory capital rules. While swaps
do not entail balance-sheet costs, they still expose arbitrageurs to interest-rate risk. If
arbitrageurs hold no swaps in equilibrium, then the equilibrium swap curve can be obtained
by recomputing the equilibrium with ¢; = 0. Thus, the model predicts that swap yields
will be below government bond yields with the same maturity—i.e., swap spreads will be
negative. Moreover, if dealers are required to absorb a large supply shock, as they arguably
were during the March 2020 dash for cash, then the model predicts that both swap and
Treasury yields will rise, but that Treasury yields will rise more.

Jappelli et al.| (2023) further extend the VV model by introducing frictions in the repo
market. They show that supply shocks affect bond yields through a direct quantity channel as
in VV—i.e., by altering the prices of factor risk—and through an indirect channel that works
through repo rates. The two effects reinforce each other. For example, QE purchases reduce
bond yields through the direct effect and this effect is amplified because QE purchases reduce
repo rates—i.e., there is a rise in “repo specialness”—which further reduces bond yields.

Hanson et al.| (2023) build a supply-and-demand driven model of swap spreads in the
VV tradition where there are separate shocks to arbitrageurs’ capital and to the supply of
interest rate swaps that arbitrageurs must hold in equilibrium. The baseline model in that
paper is affine, but the authors show how the theory can be extended to deal with the non-
linearities that stem from balance-sheet constraints that bind only occasionally and from
arbitrageur swap positions that switch sign over time.

Using transaction-level data on interest rate swaps, |[Khetan et al. (2023)) find that pension
funds and insurers use these derivative contracts to add duration—i.e., to synthetically buy
long-term bonds—whereas banks and corporations use swaps to reduce duration. Consis-
tent with preferred-habitat logic, they also find that these demands manifest themselves at
different maturities and are intermediated by dealers and hedge funds, who correspond to
the arbitrageurs in the VV model. Calibrating a VV-style model of the interest-rate swap
market, Khetan et al.| (2023) find that demand imbalances play a more important role in

driving swap spreads spreads than fluctuations in arbitrageurs’ funding costs.

6.6 Convenience yields

Starting with Krishnamurthy and Vissing-Jorgensen| (2012)), a large literature over the past
decade has shown that U.S. government bonds and other safe securities may command a non-
risk-based convenience yield. Convenience yields are straightforward to incorporate into the
VV framework by adding non-pecuniary benefits of holding safe securities to the objective

function of arbitrageurs. Suppose that the arbitrageurs’ objective function is

A a ~
Et[WtJrl] — §Vart[Wt+1] —+ m(Xt), (101)
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where m(X;) is a convenience benefit from holding an aggregate value X; = ZZZQ Xt(T) of
government bonds with maturities 2 to 7. We interpret the one-period interest rate as a
swap rate as in Section [6.5] and assume that swaps carry no convenience benefits. We assume
that the function m(X}) is increasing and concave. For simplicity, we adopt the quadratic
specification m(X;) = a,, Xy — (B /2) X2

As in Section 6.5 we focus on the case of random and inelastic supply. We assume that
the aggregate supply S; = ZZ:Q St(T) for maturities 2 to T is always smaller than «,,/,,, so
that the marginal convenience benefit m/(X;) = m/(S;) > 0 is always positive in equilibrium.

Arbitrageurs’ first-order condition for 7-period bonds is
NET) —ri=—my+ AT N, + ATV, (102)

where m; is the marginal convenience benefit, given by m; = a,, — O Zfzz((’ (M) 49 s,),
and Ay, for f =, s are the prices of factor risk, given by .

Convenience benefits and balance-sheet costs have opposite implications for the average
level of yields but identical implications for the response of yields to supply shocks. Conve-
nience benefits push bond yields down, while balance-sheet costs push yields up. However,
both convenience benefits and balance-sheet costs lead supply shocks to have larger effects
on bond yields than they otherwise would. And, both lead bond supply shocks to have
larger effects on bond yields than on like-maturity swap rates. In the presence of balance
sheet costs, this is because supply shocks raise the marginal cost ¢; of equity capital. In
the presence of convenience benefits, this is because supply shocks lower the marginal con-
venience benefit m;. Formally, the function Al is the same in Sections and when
Yk? = 3,,—i.e., when supply shocks raise ¢; by the same amount as they lower m,. However,

convenience benefits and balance-sheet costs have opposite effects the function C(7),

6.7 Real versus nominal yields

Many developed countries issue both nominal and inflation-indexed bonds. |Greenwood et al.
(2023) show how the VV framework can be extended to model both nominal and real yield
curves. Specifically, one would assume that there are separate, but potentially correlated,
exogenous processes for the short-term real interest rate and for inflation. The process for
the real rate can be correlated with the process for inflation, following a standard Taylor
rule. The model is closed by adding separate but potentially correlated shocks to the net
supply of nominal and real bonds.

In such a model, the so-called break-even inflation rate—i.e., the difference between the
yield on duration-matched nominal and real bonds—reflects both expected future inflation
and the difference in risk premia between nominal and real bonds—i.e., an inflation risk

premium. The inflation risk premium responds to differential net supply shocks between
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nominal and real bonds. For instance, holding expected inflation fixed, if the net supply of
real bonds increases relative to the net supply of nominal bonds, this increases long-term real
yields relative to nominal yields, pushing down break-even inflation. Such a model might
prove useful in understanding the disruptions to the TIPS market that often seem to occur
during periods of significant macro-financial distress such as the Fall of 2008 and March 2020
(see|/Campbell et al. (2009))). In both periods, long-term real yields rose dramatically relative
to long-term nominal yields, leading the break-even inflation rate to plummet. Practitioner
accounts suggest that these dynamics were driven by acute supply-demand imbalances in
the TIPS markets, rather than a collapse in expected future inflation.

7 Other applications

In this section, we describe a number of further extensions that apply the VV framework
beyond the domain of default-free bonds.

7.1 Foreign exchange

To study foreign exchange rates, (Gourinchas et al.| (2022)) and Greenwood et al.| (2023)) both
extend the VV framework to a two-country setting, say the U.S. and the Eurozone. There are
short- and longer-term bonds in both countries as well as an exchange rate between the two
countries’ currencies. The short rate in each country follows an exogenous AR(1) processes
and the two short rates can be correlated. As in VV, specialized bond arbitrageurs must
absorb random shocks to the supply of long-term bonds in each country as well as random
shocks to the supply of foreign exchange. |Gourinchas et al.| (2022)) work in continuous time
and consider a continuum of long-term bonds in each country. Greenwood et al.| (2023) work
in discrete time and consider a single class of perpetual long-term bonds in each country.
However, the underlying economics is similar.

These models predict that shifts in the supply of long-term bonds impact not only bond
term premia, but also the expected returns on the foreign exchange (FX) trade that borrows
in dollars and lends in euro. For example, an increase in the supply of long-term U.S. bonds
raises both the expected excess return on long-term U.S. bonds and the expected return on
the FX trade, leading to a depreciation of the euro versus the dollar. Conversely, reductions
in the supply of long-term U.S. bonds, such as those that result from quantitative easing,
will lead the dollar to depreciate against the euro, matching recent evidence in Bauer and
Neely| (2014), Neely| (2015), Swanson (2017), and Bhattarai and Neely| (2022).

The intuition for this result is that long-term U.S. bonds and the borrow-in-dollar lend-
in-euro FX trade have similar exposures to U.S. short-rate risk. Specifically, when the U.S.
short rate rises unexpectedly, (i) EH logic implies that yields on long-term U.S. bonds rise and
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their prices fall and (ii) uncovered-interest-rate-parity logic implies that the euro depreciates
against the dollar so the borrow-in-dollar lend-in-euro FX trade also suffers losses.

Consider now the effect of an increase in the net supply of long-term U.S. bonds. Follow-
ing this supply shift, bond arbitrageurs become more exposed to future shocks to the U.S.
short rate. As a result, the price of bearing U.S. short-rate risk rises. Since long-term U.S.
bonds are exposed to U.S. short-rate risk, this leads to a rise in the risk-premium component
of long-term U.S. yields. It also leads to a rise in the risk premium on the borrow-in-dollar
lend-in-euro FX trade, which is similarly exposed to U.S. short-rate risk. As a result, the
euro depreciates against the dollar and is expected to appreciate going forward.

These models make several additional predictions. First, bond supply shocks should
have a larger impact on the bilateral exchange rate when the correlation between the two
countries’ short rates is lower. For example, the JPY-USD exchange rate should be more
responsive to U.S. QE than the EUR-USD exchange rate because Japanese short rates are
less correlated with U.S. short rates than are Euro short rates. Second, these models match
the otherwise puzzling finding in Lustig et al. (2019)) that the return to the FX trade declines
if one borrows long-term in one currency to lends long-term in the other. This pattern arises
because the “long-term” FX trade has offsetting exposures to short-rate shocks, making it
less risky for arbitrageurs than the standard FX trade involving short-term bonds. Third,
if one assumes that the supply of bonds and the supply of foreign exchange are increasing
in their price, these models offer a unified explanation that links the predictability of FX
returns documented by [Fama) (1984)—i.e., a larger short-rate differential predicts higher FX
returns—with the predictability of long-term bond returns documented by [Fama and Bliss
(1987) and |Campbell and Shiller| (1991)—i.e., a steeper yield curve predicts higher bond
excess returns.

7.2 Credit risk

There are several ways to introduce credit risk into VV-style models. Greenwood et al.| (2018))
develop an approach that is appropriate for modelling a diversified portfolio of defaultable
bonds where it is reasonable to assume that portfolio-level default losses follow an AR(1)
process in discrete time or an OU process in continuous time. However, their approach is not
appropriate for modelling the term structure of yields for an individual corporate or sovereign
borrower where default is a binary event. |Costain et al.| (2022) outline an approach that
is appropriate for individual borrowers where a binary default event arrives at some hazard
rate. Focusing on the Eurozone, they model the term structures of two sovereigns that are
subject to the same movements in riskless short rates—i.e., from the European Central Bank.

However, the term structure for one sovereign is free of default risk, while the term structure
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for the other is subject to the arrival of Poisson default events[™ In both frameworks, both
default-free and defaultable bonds are exposed to short-rate shocks, but only defaultable
bonds are exposed to default losses. Thus, shocks to the supply of either default-free or
defaultable bonds will shift the market price of short-rate risk. However, only shocks to the
supply of defaultable bonds will shift the market price of default risk. |Gilchrist et al.| (2021))

study the impact of the Federal Reserve’s purchases of corporate bonds.

7.3 Further market segmentation

There is segmentation in the VV model in the sense that the marginal investors in bonds are
specialized bond arbitrageurs. However, further segmentation is possible—particularly seg-
mentation across different asset classes within fixed-income markets—which has implications
for how supply shocks impact prices. Segmentation of this sort is explored in |Greenwood
et al.| (2018) and (Greenwood et al.| (2023)).

Suppose there are two classes of long-term bonds—say, government bonds that are free
of default risk and corporate bonds that are exposed to default risk. Suppose that not
all bond arbitrageurs are able and willing to substitute between all assets. Specifically, a
fraction 7 of bond arbitrageurs are highly specialized. Of these specialists, a fraction ¢
specialize in government bonds and only substitute between short-term and longer-term
government bonds, and a fraction 1 — ¢ specialize in corporate bonds and only substitute
between short-term government bonds and longer-term corporate bonds. Fraction 1 — 7w of
bond arbitrageurs are generalists who substitute between short-term government bonds and
both types of long-term bonds.

When 7 = 1 the government and corporate bond markets are completely segmented, when
m = 0 they are fully integrated, and when 7 € (0, 1) they are partially segmented. In this
setting, one can show that own-market price impact—i.e., the impact of a shock to the supply
of an asset class on prices of that asset class—is greatest when markets are highly segmented
(approaching m = 1) and declines as markets become more highly integrated (approaching
m = 0). Cross-market spillovers of supply shocks—e.g., the way that corporate bonds react
to shocks to the supply of government bonds—depend on two key factors. First, on the
degree of fundamental substitutability between the two asset classes as captured by their
covariance. Second, on the degree of segmentation between the two markets. Specifically,
spillovers are greatest when the markets are tightly integrated and all arbitrageurs are able
and willing to substitute between the two asset classes (approaching = = 0). Spillovers
decline if some arbitrageurs do not substitute between the two asset classes (increasing 7).

12The default hazard rate can evolve deterministically over time. It cannot evolve stochastically if the
model is to remain affine.
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8 Conclusion

In this review, we develop a model of the term structure based on supply and demand.
After laying out the main results and intuitions, we show that the model can help explain
a number of empirical findings. In addition, the model can be adapted to handle a number
of extensions, including forward guidance, wealth effects, convenience yields, exchange rates
and credit risk. Our hope is that this presentation can help researchers adapt the VV model,
or ones similar to it, in other settings.

While the VV approach has been widely adopted in finance settings, it has made more
limited inroads into macroeconomics. Consider the question of how QE affects the real
economy, as noted by Woodford| (2016)). The VV approach can rationalize why a reduction
in net bond supply held by the public leads to a flattening of the yield curve. But it is
another step to go from the impact on long-term bond yields to an account of how QE
impacts firm investment, household consumption, and the broader real economy. Similarly,
consider the case of QE by the European Central Bank leading to depreciation of the Euro
relative to the dollar, as noted by Gourinchas et al,| (2022) and Greenwood et al.| (2023)).
What are the corresponding implications for exports and total output, and what are the
feedback loops into bond prices? Ray| (2019) and Ray et al.| (2023) make progress on some
of these questions by embedding a VV segmented bond markets block into a New Keynesian
model. Macroeconomic models with bond market segmentation also include Andres et al.
(2004) and |Sims et al.| (2023). Much more remains to be done, both in characterizing
how financial shocks affect the macroeconomy when capital markets are segmented, and in
deriving optimal monetary and fiscal policy in these settings.
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