
Appendix B

A. Proof of Proposition 1

We first show that the function (18) solves the Bellman equation

V (M `−1, d`−1, ∆e`−1, e`−1, s`−1) =

sup
c`−1,x`(p`)

{

−exp(−αc`−1)h + E`−1V (M `, d`, ∆e`, e`, s`)exp(−βh)
}

, (B1)

for the demand

x`(p`) = B

(

h

1− e−rh
d` − p`

)

−Aee`−1 −Ass`−1 −∆e`−1 (B2)

and the optimal consumption. We then show that the demand in equation (B2) and the

optimal consumption satisfy the transversality condition (A6). These results will imply

that the demand in equation (B2) solves (P ) and the function (18) is the value function.

The demand in equation (B2) is equal to the demand in equation (5) minus ∆e`−1, and

produces the trade x` + u` −∆e`−1. The two demands are equal along the optimal path.

Indeed, equation (9) implies that if x`(p`) = x` + u` −∆e`−1 then ∆e` = 0.

Bellman Equation

We proceed in 3 steps. First, we show that the optimality conditions are sufficient for

the demand in equation (B2) to maximize the RHS of the Bellman equation (B1). (This

is why we refer to these conditions as “optimality conditions”.) Second, we compute the

expectation of the RHS conditional on period ` − 1 information. Finally, we show that

the Bellman conditions are sufficient for the function (18) to satisfy the Bellman equation.

(This is why we refer to these conditions as “Bellman conditions”.)

Step 1: Optimal Demand

We define the vector v`−1 by

v`−1 =













∆e`−1

e`−1

s`−1













.

A market maker chooses his demand x`(p`) to maximize the expectation of the period `

value function w.r.t. ζ`. Using the budget constraint (A3) and equation (A5), we can write
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this expectation as

−Eζ`
exp(−α(

1− e−rh

h
erh(M `−1 + d`−1(e`−1 + ∆e`−1)h− c`−1h)− 1− e−rh

h
p`x`(p`)

+d`(e`−1+∆e`−1+x`(p`))+F (Q, N(v`−1+













x`(p`)− (ζ` + ass`−1 − aee`−1)

0

0













)+nζ`)+q)),

(B3)

where p` is given by equation (A4). The market maker can condition his trade x` on ζ`,

since he can infer ζ` from the price. Therefore, his problem is the same as choosing a trade

x` to maximize equation (B3) without the expectation sign. The first-order condition is

−1− e−rh

h
p` +d` +(1, 0, 0)Q(N(v`−1 +













x` − (ζ` + ass`−1 − aee`−1)

0

0













)+nζ`) = 0. (B4)

The first-order condition determines a maximum since Q1,1 < 0. Denoting by G the row

vector formed by the LHS of equations (A11), (A12), and (A13), we can write the first-order

condition as

G













e`−1

s`−1

ζ`













+ Q1,1(x` − (ζ` + ass`−1 − aee`−1 −∆e`−1)) = 0.

Therefore, the optimal trade is

x` = ζ` + ass`−1 − aee`−1 −∆e`−1. (B5)

The demand in equation (B2) is optimal since it produces the optimal trade. Substituting

p` from equation (A4), and using the definition of Q
′
, we can write equation (B3), evaluated

for the optimal trade, as

−Eζ`
exp(−α(

1− e−rh

h
erh(M `−1 + d`−1(e`−1 + ∆e`−1)h− c`−1h)

+d`(e`−1 + ∆e`−1) + F (Q
′
,





v`−1

ζ`



) + q)). (B6)

Step 2: Computing the Expectation

2



We have to compute the expectation of equation (B6) conditional on period `− 1 infor-

mation, i.e. w.r.t. δ` and ζ`. Computing the expectation w.r.t. δ` is straightforward. We

get

−Eζ`
exp(−α(

1− e−rh

h
erh(M `−1 − c`−1h) + erhd`−1(e`−1 + ∆e`−1)

−1

2
ασ2h(e`−1 + ∆e`−1)

2 + F (Q
′
,





v`−1

ζ`



) + q)). (B7)

To compute the expectation w.r.t. ζ`, we use the formula

E(exp(−α(ax +
1

2
bx2))) = exp(−α(−1

2
αΣ2(1 + αΣ2b)−1a2 +

1

2α
log(1 + αΣ2b))), (B8)

where x is normal with mean 0 and variance Σ2, and a and b are constants. (Equation

(B8) gives simply the moment generating function of the normal distribution for b = 0.

We can always assume b = 0 by also assuming that x is normal with mean 0 and variance

Σ2(1 + αΣ2b)−1.)

We set x = ζ`, Σ2 = a2
e(Σ

2
e + σ2

eh) + σ2
uh, a = Q

′
{4},{1,2,3}v`−1, and b = Q

′
4,4. Using the

definitions of R and R
′
, we can write equation (B7) as

−exp(−α(
1− e−rh

h
erh(M `−1 − c`−1h) + erhd`−1(e`−1 + ∆e`−1)

−1

2
ασ2h(e`−1 + ∆e`−1)

2 + F (Q
′
{1,2,3} −R

′
, v`−1) +

1

2α
log(R) + q)).

Finally, using the definition of P , we can rewrite this equation as

−exp(−α(
1− e−rh

h
erh(M `−1−c`−1h)+erhd`−1(e`−1+∆e`−1)+erhF (P , v`−1)+

1

2α
log(R)+q)).

Step 3: Bellman Equation

To compute the RHS of the Bellman equation, we have to maximize w.r.t. c`−1

−exp(−αc`−1)h− exp(−α(
1− e−rh

h
erh(M `−1 − c`−1h) + erhd`−1(e`−1 + ∆e`−1)

+erhF (P , v`−1) +
1

2α
log(R) + q)− βh). (B9)

Simple calculations show that the maximum is

−exp(−α(
1− e−rh

h
M `−1 + d`−1(e`−1 + ∆e`−1) + F (P , v`−1)

+
1

2α
log(R)e−rh + qe−rh +

(βe−rh − r)h

α
− 1

α
(1− e−rh)log(

h

erh − 1
))). (B10)

This is equal to the period `− 1 value function from equations (A14) and (A15).
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Transversality Condition

It is easy to check that, by substituting the optimal c`−1 in the second term of equation

(B9), we find equation (B10) times e−rh. Therefore, the expectation of the period ` value

function in period `− 1, is the period `− 1 value function times e−rh. Recursive use of this

equation implies equation (A6). Q.E.D.

B. Proof of Proposition 2

We show that the function (20) solves the Bellman equation for the market order in equation

(4) and the optimal consumption. The proof that the market order in equation (4) and the

optimal consumption satisfy the transversality condition (A22) is as in Section A.

We proceed in 4 steps. First, we compute the expectation of the RHS of the Bellman

equation w.r.t. u`. Second, we use the optimality conditions to show that the market order

in equation (4) maximizes the RHS. Third, we compute the expectation of the RHS w.r.t.

the remaining information revealed in period ` , i.e. δ` and ε`. Finally, we use the Bellman

conditions to show that the function (20) satisfies the Bellman equation. Notice that we

take expectations w.r.t. u` before determining the optimal market order. This is because

the large trader does not know u` and, unlike the market makers, cannot condition his order

on price.

Step 1: Expectation w.r.t. u`

We have to compute the expectation of the period ` value function w.r.t. u`. Using the

budget constraint (19), equations (12) and (A21), and the vector v`−1 defined by equation

(A34), we have to compute

−Eu`
exp(−α(

1− e−rh

h
erh(M`−1 + d`−1e`−1h− c`−1h) +

1− e−rh

h
p`x`

+d`(e`−1 − x`) + F (Q, Nv`−1 + nu` + n̂∆x`) + q)),

where p` and x` are given by equations (A20) and (A19), respectively. The term inside the

exponential is a quadratic function of u`. The coefficient of u2
`/2 is ntQn, and equations

(A19) and (A20) imply that the coefficient of u` is

Qu





v`−1

∆x`



 .
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To compute the expectation, we use equation (B8) and set x = u`, Σ2 = σ2
uh, a the

coefficient of u`, and b the coefficient of u2
`/2. The expectation is

−exp(−α(
1− e−rh

h
erh(M`−1 + d`−1e`−1h− c`−1h) +

1− e−rh

h
p`x` + d`(e`−1 − x`)

+F (Q, Nv`−1 + n̂∆x`)− F (R′
u,





v`−1

∆x`



) +
1

2α
log(Ru) + q)), (B11)

where p` is evaluated for u` = 0.

Step 2: Optimal Market Order

The large trader chooses ∆x` to maximize equation (B11). Since dp`/d∆x` = −1/B

and dx`/d∆x` = 1, the first-order condition is

1− e−rh

h

(

p` −
1

B
x`

)

− d` + n̂tQ (Nv`−1 + n̂∆x`)− (R′
u){4},{1,2,3,4}





v`−1

∆x`



 = 0. (B12)

The first-order condition determines a maximum because of equation (A31). Denoting by G

the LHS of equation (A30) and by G the LHS of equation (A31), we can write the first-order

condition as

Gv`−1 + G∆x` = 0.

Therefore, ∆x` = 0, i.e. the market order in equation (4) is optimal. Substituting p` and

x` from equations (A20) and (A19), and using the definition of Q′, we can write equation

(B11), evaluated for ∆x` = 0, as

−exp(−α(
1− e−rh

h
erh(M`−1 +d`−1e`−1h− c`−1h)+d`e`−1 +F (Q′, v`−1)+

1

2α
log(Ru)+ q)).

(B13)

Step 3: Expectation w.r.t. δ` and ε`

We have to compute the expectation of equation (B13) w.r.t. δ` and ε`. Computing

the expectation w.r.t. δ` is straightforward. To compute the expectation w.r.t. ε`, we use

equation (B8) and set x = ε`, Σ2 = σ2
eh,

a = Q′
{1},{1,2,3}













e`−1 − s`−1

s`−1

e`−1













,

and b = Q′
1,1. Proceeding as in Section A, and using the definitions of R, R′, and P , we get

−exp(−α(
1− e−rh

h
erh(M`−1 − c`−1h) + erhd`−1e`−1
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+erhF (P,













e`−1 − s`−1

s`−1

e`−1













) +
1

2α
log(RuR) + q)).

Step 4: Bellman Equation

We proceed as in Section A. Q.E.D.

C. Proof of Theorem 1

We prove Theorem 1 in Sections C.1, C.2, and C.3. In Section C.1 we replace (S) by an

equivalent system, (S ′), which is easier to solve. In Section C.2 we show that for σ2
e = 0,

(S′) collapses to (s), and that (s) has a solution. In Section C.3 we extend the solution of

(S′) for small σ2
e .

C.1. The Equivalent System

To form the system (S ′), we replace the Bellman conditions (A32) of the large trader’s

optimization problem, by a new set of conditions, the “envelope conditions”. Under both

the Bellman and the envelope conditions, the matrix Q can be interpreted as a matrix of

marginal benefits. The coefficient Q1,2, for instance, is the marginal benefit of increasing

e` − s`, the “first” state variable, when s`, the “second” state variable is 1 and the other

state variables are 0. The Bellman conditions compute this marginal benefit under the

assumption that the large trader changes his strategy in response to the change in e` − s`,

while the envelope conditions assume that the large trader does not change his strategy.

The Bellman and the envelope conditions are of course equivalent, when the large trader’s

strategy is optimal, i.e. when the optimality conditions hold. We use the envelope conditions

instead of the Bellman conditions because they are much easier to solve.

To state the envelope conditions, we define the matrix Ne by

Ne =













1 as(1 + g) −ae(1 + g)

0 1− as(1 + g) ae(1 + g)

0 0 1












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and the matrix Q̂′ by

Q̂′ = −1− e−rh

h













0

As−as

B

Ae+ae

B













(ae, as,−ae) + N t
eQN − (R′

u){1,2,3} +













ae

as

−ae













(R′
u){4},{1,2,3}.

(B14)

We also define the scalar R̂ and the matrices R̂′ and P̂ by proceeding as in Section B and

using Q̂′ instead of Q′. The envelope conditions are Q = P̂ . Notice that the matrices Q̂′

and P̂ are not symmetric a priori. Therefore, the system (S)′ consists of 23 equations (since

there are nine envelope conditions) and 23 unknowns (since the matrix Q is not symmetric

a priori). We first show that the solution of (S ′) produces a symmetric matrix Q. We then

show that the solution of (S ′) satisfies the Bellman conditions, and is thus the solution of

(S).

The Matrix Q is Symmetric

We use the vector v`−1 defined by equation (A34). We define the vector a by

a =













ae

as

−ae













. (B15)

Finally, we denote by p` and x` those given by equations (A20) and (A19) for u` = ∆x` = 0.

We will show that Q = Qt. Using the envelope conditions and the fact that R̂′ is

symmetric, we get

Q−Qt = (Q̂′ − (Q̂′)t)e−rh.

Using the definition of Q̂′ and noting that atv`−1 = x`, we get

Q̂′v`−1 = −1− e−rh

h













0

As−as

B

Ae+ae

B













x` + N t
eQNv`−1 − (R′

u){1,2,3}v`−1 + a(R′
u){4},{1,2,3}v`−1.

(B16)

Equations (A20) and (A19) imply that

−As − as

B
s`−1 −

Ae + ae

B
e`−1 = p` +

x`

B
− h

1− e−rh
d`.

Using this fact we get

(Q̂′)tv`−1 = a

(

1− e−rh

h

(

p` +
1

B
x`

)

− d`

)

+N tQtNev`−1−(R′
u)t
{1,2,3}v`−1+(R′

u){1,2,3},{4}x`.

(B17)
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Since the first-order condition (B12) holds for ∆x` = 0, we have

1− e−rh

h

(

p` −
1

B
x`

)

− d` + n̂tQNv`−1 − (R′
u){4},{1,2,3}v`−1 = 0. (B18)

We subtract equation (B17) from equation (B16), add the transpose of equation (A30)

times x`, and subtract equation (B18) times a. Noting that the matrix R′
u is symmetric,

and that

Ne + n̂at = N, (B19)

we get

(Q̂′ − (Q̂′)t)v`−1 = N t(Q−Qt)Nv`−1.

Since this holds for all v`−1, we get

Q−Qt = (Q̂′ − (Q̂′)t)e−rh = N t(Q−Qt)Ne−rh.

It is easy to check that this equation produces a system of three linear equations in Q1,2 −

Q2,1, Q1,3 − Q3,1, and Q2,3 − Q3,2. Moreover, the solution of this system is zero provided

that 1− ae(1 + g) and 1− as − ae ∈ [0, 1). In Section C.2 we will show that the solution of

(S′) indeed satisfies 1− ae(1 + g) and 1− as − ae ∈ [0, 1).

The Bellman Conditions Hold

We only need to show that Q′ = Q̂′. We subtract equation (B14) from equation (A26),

and add the vector a times equation (A30). Using equation (B19), we get Q′ = Q̂′.

C.2. The Solution for σ
2
e = 0

We first assume that (s) has a solution as, ae, g, and Σ
2
e, such that 1−ae(1+g), 1−as(1+g),

and 1 − as − ae ∈ (0, 1). (We define ae by equation (25).) Starting from this solution, we

construct a solution of (S ′). We then show that (s) has a solution with the above properties.

The Solution of (S ′)

We proceed in three steps. First, we use the equations of the market makers’ optimiza-

tion problem to solve for Ae, As, B, and Q. Second, we use the envelope conditions of the

large trader’s problem to solve for Q. Finally, we show that the optimality conditions of

the large trader’s problem are satisfied.

Step 1: The Market Makers’ Problem

We first use the Bellman conditions to solve for Q, as a function of Ae, As, and B. We

then plug Q1,2 and Q1,3 into the optimality conditions, and solve for Ae, As, and B.
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For σ2
e = 0, R

′
= 0. Therefore, the Bellman conditions (A14) become

Q = (Q
′
{1,2,3} − ασ2hΓ)e−rh.

The equation for Q1,1 is Q1,1 = −ασ2he−rh < 0. The equations for Q1,2 and Q1,3 are

Q1,2 = −1− e−rh

h

Ae

B
e−rh − ασ2he−rh (B20)

and

Q1,3 = −1− e−rh

h

As

B
e−rh, (B21)

respectively. The equations for Q2,2, Q2,3, and Q3,3 form a system of three linear equations.

We omit the solution of this system, since we do not use it in what follows.

Plugging Q1,2 and Q1,3 into the optimality conditions (A11) and (A12), we get a system

of two linear equations in Ae/B and As/B. Solving this system, we get

As

B
=

asασ2h2e−rh

(1− e−rh)2D1
, (B22)

where

D1 = 1− (1− as − ae)e
−rh.

We omit Ae/B since we do not use it in what follows. To determine 1/B, we multiply

the optimality condition (A13) by as, and subtract it from the optimality condition (A12).

Plugging Q1,3 in the resulting equation, we get

As − as

B
= (1− as(1 + g))

As

B
e−rh. (B23)

Combining equations (B22) and (B23), we get

1

B
=

D2ασ2h2e−rh

(1− e−rh)2D1
, (B24)

where

D2 = 1− (1− as(1 + g))e−rh.

Step 2: The Envelope Conditions

For σ2
e = 0, R′

u and R′ are equal to 0. Therefore, the envelope conditions become

Q = (Q̂− ασ2hΓ)e−rh = (−1− e−rh

h













0

As−as

B

Ae+ae

B













(ae, as,−ae) + N t
eQN − ασ2hΓ)e−rh.

(B25)
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Equation (B25) produces a system of nine linear equations in the elements of the matrix Q.

We will “break” this system into three subsystems of three equations each. To obtain the

first subsystem, we multiply equation (B25) from the left by the vector (−1, 1, 0). We get

(−1, 1, 0)Q = (−1− e−rh

h

As − as

B
(ae, as,−ae) + (1− as(1 + g))(−1, 1, 0)QN)e−rh, (B26)

i.e. a system in Q2,1 −Q1,1, Q2,2 −Q1,2, and Q2,3 −Q1,3. The solution of this system is

Q2,1 −Q1,1 = −1− e−rh

h

As − as

B

ae(1− (1− as(1 + g))2e−rh)e−rh

D3D4
, (B27)

Q2,2 −Q1,2 = −1− e−rh

h

As − as

B

ase
−rh

D3
, (B28)

and

Q2,3 −Q1,3 =
1− e−rh

h

As − as

B

aee
−rh

D3
, (B29)

where

D3 = 1− (1− as(1 + g))(1− as − ae)e
−rh

and

D4 = 1− (1− as(1 + g))(1− ae(1 + g))e−rh.

To obtain the second and third subsystems, we multiply equation (B25) from the left by

the vectors (1, 0, 0) and (0, 0, 1), respectively. The second subsystem is in Q1,1, Q1,2, and

Q1,3. The third subsystem is in Q3,1, Q3,2, and Q3,3, and in Q2,1 − Q1,1, Q2,2 − Q1,2, and

Q2,3−Q1,3 that we already have determined. We omit the solutions of the second and third

subsystems, since we do not use them in what follows.

Step 3: The Optimality Conditions

We proceed in three steps. First, we show that the equations of (S ′) imply the market

maker and large trader equations (26) and (27). Second, we show that the three optimality

conditions (A30) are satisfied. Finally, we show that equation (A31) is satisfied.

Step 3.1: The Market Maker and Large Trader Equations

We first derive the market maker equation (26). Plugging the optimal trade of equation

(B5) into the first-order condition (B4), and using equation (A5), we get

−1− e−rh

h
p` + d` + (1, 0, 0)Q













0

e`

s`













= −1− e−rh

h
p` + d` +

(

Q1,2e` + Q1,3s`

)

= 0. (B30)
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Substituting Q1,2 and Q1,3 from equations (B20) and (B21) into equation (B30), we get

−1− e−rh

h
p` + d` − ασ2he−rhe` −

1− e−rh

h

(

Ae

B
e` +

As

B
s`

)

e−rh = 0. (B31)

Equation (A4) implies that

E`p`+1 = E`

(

h

1− e−rh
d`+1 −

Ae

B
e` −

As

B
s` −

1

B
ζ`+1

)

=
h

1− e−rh
d`−

Ae

B
e`−

As

B
s`. (B32)

Combining equations (B31) and (B32), we get equation (26).

We next derive the large trader equation (27). We use the vectors v`−1 and a defined by

equations (A34) and (B15), respectively. We denote by p`, x`, and (e`, s`, e`) those given

by equations (A20), (A19), and (A21) for u` = ∆x` = 0. Finally. we denote by p`+1 and

x`+1 those given by equations (A20) and (A19) for u`+1 = ∆x`+1 = 0.

For σ2
e = 0, R′

u = 0. Since the first-order condition (B12) holds for ∆x` = 0, we have

1− e−rh

h

(

p` −
1

B
x`

)

− d` + n̂tQNv`−1 = 0. (B33)

Equation (B25) implies that

n̂tQNv`−1 = n̂t(−1− e−rh

h













0

As−as

B

Ae+ae

B













at + N t
eQN − ασ2hΓ)e−rhNv`−1. (B34)

Combining equation (B33) with equation (B34), and noting that

atNv`−1 = atE`v` = E`a
tv` = E`x`+1,

n̂tN t
e = n̂t − (gas − ae)(1 + g)(−1, 1, 0),

and

n̂tΓNv`−1 = −(1, 1, 0)Nv`−1 = −e`,

we get

1− e−rh

h

(

p` −
1

B
x`

)

− d` −
1− e−rh

h

(

g
As − as

B
+

Ae + ae

B

)

E`x`+1e
−rh

+
(

n̂t − (gas − ae)(1 + g)(−1, 1, 0)
)

QN2v`−1e
−rh + ασ2he`e

−rh = 0. (B35)

Noting that E`v` = Nv`−1, we can write the expectation in period `, of equation (B33) in

period ` + 1, as

1− e−rh

h

(

E`p`+1 −
1

B
E`x`+1

)

− d` + n̂tQN2v`−1 = 0. (B36)
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We multiply equation (B36) by e−rh and subtract it from equation (B35). To simplify the

resulting equation, we use two facts. The first fact is

1

B
− g

As − as

B
− Ae + ae

B
= (gas − ae)(1 + g)

As − as

B

1

1− as(1 + g)
.

To derive this fact, we multiply the optimality conditions (A11), (A12), and (A13) by −1,

−g and 1 + gas − ae, respectively, and add them up. We then use equations (B21) and

(B23). The second fact is

(−1, 1, 0)QNv`−1 = (−1− e−rh

h

As − as

B
E`x`+1 + (1− as(1 + g))(−1, 1, 0)QN 2v`−1)e

−rh.

(B37)

To derive this fact, we multiply equation (B26) by Nv`−1. Using these two facts, we get

1− e−rh

h

(

p` −
1

B
x` − d`h− E`p`+1e

−rh

)

+ ασ2he`e
−rh

−(gas − ae)(1 + g)

1− as(1 + g)
(−1, 1, 0)QNv`−1 = 0. (B38)

Combining equations (B37) and (B38), and noting that E`v` = Nv`−1, we get equation

(27).

Step 3.2: The Three Optimality Conditions (A30)

We will show that the three optimality conditions (A30) are equivalent to equations

(21), (22), and (25), which are satisfied. To show the equivalence, we first show that

G(1−Ne−rh)v`−1 = (αe` − αe`)σ
2he−rh +

1− e−rh

h

(

E`p`+1 − E`p`+1

)

e−rh

−1− e−rh

h

1

B
x` −

(gas − ae)(1 + g)

1− as(1 + g)
(−1, 1, 0)QNv`−1, (B39)

where G is the row vector formed by the LHS of the three optimality conditions (A30), E` is

the expectation w.r.t. the market makers’ information, and E` is the expectation w.r.t. the

large trader’s information. In Section B we wrote the LHS of the first-order condition (B12)

as Gv`−1 +G∆x`. Therefore, the LHS of equation (B33) is equal to Gv`−1. Moreover, since

E`v` = Nv`−1, the LHS of equation (B36) is equal to GNv`−1, and the LHS of equation

(B38) is equal to the LHS of equation (B39). The LHS of equation (B38) is also equal to

the RHS of equation (B39). This follows by substituting the price p` from equation (26)

into the LHS of equation (B38).
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We next evaluate the RHS of equation (B39) for three values of v`−1, the column vectors

of the matrix

N̂ =













1 0 0

0 1 ae

1−e−rh

0 0 as

1−e−rh













.

We divide the result by σ2he−rh/(1−e−rh), and denote it by Ĝe for the first column vector,

Gs for the second, and Ge for the third. We have

G(1−Ne−rh)N̂ =
σ2he−rh

1− e−rh
(Ĝe, Gs, Ge).

Since 1− ae(1 + g) and 1− as − ae ∈ (0, 1), the matrices 1−Ne−rh and N̂ are invertible.

Therefore, the three optimality conditions (A30), i.e. G = 0, are equivalent to Ĝe = Gs =

Ge = 0. We will show that Gs = 0 and Ge = 0 are equations (22) and (25), respectively.

Moreover, we will show that Ĝe = keGe + ksGs + keGe, where Ge is the LHS of equation

(21), and ke 6= 0. Therefore, the three optimality conditions (A30) will be equivalent to

equations (21), (22), and (25).

We first compute Ge. Equation (A19) implies that x` = 0. Equation (A21) implies that













e` − s`

s`

e`













= Nv`−1 =













0

ae

1−e−rh

as

1−e−rh













.

Equations (A20) and (B32) imply that

E`p`+1 − E`p`+1 =
1

B
ae(e` − s`) = 0. (B40)

Plugging into equation (B38), we find that Ge is the LHS of equation (25).

We next compute Gs. Equation (A19) implies that x` = as. Equation (A21) implies

that (e` − s`, s`, e`) = (0, 1 − as, as). Equation (B40) implies that E`p`+1 − E`p`+1 = 0.

Equations (B22), (B23), (B28), and (B29), imply that

(1− as)(Q2,2 −Q1,2) + as(Q2,3 −Q1,3) = −(1− as(1 + g))
a2

s(1− as − ae)ασ2he−3rh

(1− e−rh)D1D3
.

Plugging into equation (B38), we get

Gs = (α(1− as)− αas)(1− e−rh)− asD2α

D1
+ (gas − ae)(1 + g)

a2
s(1− as − ae)αe−2rh

D1D3
.

It is easy to check that Gs is in fact the LHS of equation (22).
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We finally compute Ĝe. Equation (A19) implies that x` = ae. Equation (A21) implies

that (e`−s`, s`, e`) = (1−ae(1+g), gae, ae). Equation (B40) implies that E`p`+1−E`p`+1 =

ae(1− ae(1 + g))/B. Plugging into equation (B38), we get

Ĝe = (α(1− ae)− αae)(1− e−rh) +
ae(1− ae(1 + g))D2αe−rh

D1
− aeD2α

D1

+(gas − ae)(1 + g)asae
(1− ae(1 + g))D3 + gas − ae

D1D3D4
αe−2rh.

Setting

ke = − D2D6

D1D4(1− as − ae)
,

ks = − 1

D1D4



(gas − ae)(1 + g)aee
−rh +

(

α
α
− g

)

D3ae(1− (1− ae(1 + g))e−rh)

1− as − ae



 ,

ke =
1

D1D4

[

ae(1 + g)(1− e−rh)D2 +
ae(1− (1− ae(1 + g))e−rh)

1− as − ae

k̂e

]

,

k̂e =
α

α
D5 + (1− e−rh)

(

α

α
− g

)

D3 − (1− as − ae)(1− e−rh)(1 + g),

D5 = 1− (1− as(1 + g)(2− as − ae))e
−rh,

and

D6 = 1− (1− ae(1 + g))(1− as − ae)e
−rh,

we have the identity Ĝe = keGe + ksGs + keGe. The proof of this identity is omitted, and

is available from the author upon request. For the solution of (s), we have 1 − ae(1 + g),

1− as(1 + g), and 1− as − ae ∈ (0, 1). Therefore, ke = −D2D6/D1D4(1− as − ae) < 0.

Step 3.3: Equation (A31)

We use the vector b defined by equation (A34). We also define the vector b̂ by

b̂ =













0

1

−1













. (B41)

We can write the first of the three optimality conditions (A30) as

−1− e−rh

h

2ae

B
+ n̂tQ(aen̂ + b) = 0.

Therefore, equation (A31) is equivalent to n̂tQb > 0, or, since Q is symmetric, btQn̂ > 0.

Using the envelope conditions (B25), we get

btQn̂ = bt(Q̂′ − ασ2hΓ)e−rhn̂ = (btQNn̂ + ασ2h)e−rh
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= (btQ((1− ae(1 + g))n̂ + (ae − gas)b̂) + ασ2h)e−rh.

Therefore,

btQn̂ =

(

(ae − gas)b
tQb̂ + ασ2h

)

e−rh

1− (1− ae(1 + g))e−rh
.

Using the envelope conditions again, we get

btQb̂ = ((1− as − ae)b
tQb̂− ασ2h)e−rh.

Therefore, btQb̂ = −ασ2h/D1, and

btQn̂ =
D2ασ2h

D1(1− (1− ae(1 + g))e−rh)
> 0.

The Solution of (s)

We proceed in three steps. First, we use equations (23) and (24) to solve for g and Σ
2
e,

as functions of ae ∈ (0, 1). Second, we use equation (22) to solve for as as a function of g.

Finally, we plug as and g into equation (21), obtain an equation only in ae, and show that

this equation has a solution ae ∈ (0, 1).

Step 1: Determination of g and Σ
2
e

We define the function f(ae) by

f(ae) =
2σ2

u − aeσ
2
u + ae

2(1− ae)
,

and the function F (x, ae) by

F (x, ae) = x2 + 2f(ae)x− σ2
u.

Since ae ∈ (0, 1), we have f(ae) > 0 and f ′(ae) > 0. Moreover, equation F (x, ae) = 0 has a

unique positive solution, that we denote by x(ae).

We can write equation (24) as

F

(

aeΣ
2
e

(1− ae)h
, ae

)

= 0 ⇒ Σ
2
e =

(1− ae)hx(ae)

ae
.

Dividing equation (23) by equation (24), we get

g =
aeΣ

2
e

(1− ae)hσ2
u

⇒ g =
x(ae)

σ2
u

.

We will show that 0 > dg/dae > −(1 + g)/ae, a fact that we will use in step 3. Differ-

entiating equation F (x(ae), ae) = 0, we get

dg

dae
=

1

σ2
u

dx(ae)

dae
= − f ′(ae)x(ae)

σ2
u(x(ae) + f(ae))

= − f ′(ae)g

x(ae) + f(ae)
< 0.
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To show that dg/dae > −(1 + g)/ae we will show that

1 + g

ae
+

dg

dae
=

1

ae
+ g

(

1

ae
− f ′(ae)

x(ae) + f(ae)

)

> 0.

Since F (x(ae), ae) = 0, we have x(ae) < σ2
u/2f(ae), i.e. g < 1/2f(ae) Therefore, it suffices

to show that
1

ae
+

1

2f(ae)

(

1

ae
− f ′(ae)

f(ae)

)

> 0.

Noting that f ′(ae)/f(ae) < 1/ae(1− ae), it is easy to show this result.

Step 2: Determination of as

We can write equation (22) as

Gs(as, g) ≡ −as
D5

D3
α + (α(1− as)− αas)(1− e−rh) = 0, (B42)

where D3 and D5 were defined in Section C.2, and ae = asα/α. For as ∈ (0, α/(α + α)),

1 − as − ae ∈ (0, 1) and D3 > 0. The function Gs(as, g)D3 is a third-order polynomial in

as, which is strictly positive for as = 0, strictly negative for as = α/(α + α), and goes to ∞

when as goes to ∞. Therefore, equation (B42) has a solution as ∈ (0, α/(α + α)), which is

unique in (0, α/(α + α)). Moreover, at the solution we have ∂Gs(as, g)/∂as < 0.

We will show that das/dg < 0, a fact that we will use in step 3. Noting that

Gs(as, g) = −as



1 +
as

(

g − α
α

)

e−rh

D3



α + (α(1− as)− αas)(1− e−rh), (B43)

we get

∂Gs(as, g)

∂g
= −a2

s

1− (1− as

(

1 + α
α

)

)2e−rh

(D3)2
αe−rh < 0. (B44)

Differentiating equation Gs(as, g) = 0, we get das/dg < 0.

We will also show that for g > α/α and 1 − as(1 + g) ∈ [0, 1), we have das/dg >

−as/(1 + g). Using equation (B43) and noting that

∂

∂as

a2
s

D3
=

as

(D3)2
(2− (2− as

(

2 + g +
α

α

)

)e−rh) > 0,

we get ∂Gs(as, g)/∂as < −α. Using equation (B44) and noting that

D3 > 1− (1− as

(

1 +
α

α

)

)2e−rh > 0,

and D3 > as(1 + g)e−rh, we get ∂Gs(as, g)/∂g > −asα/(1 + g). Differentiating equation

Gs(as, g) = 0, we get das/dg > −as/(1 + g).
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Step 3: Determination of ae

We denote by Ge(ae, as, g) the LHS of equation (21), and by Ge(ae) the LHS when we

plug g and as as functions of ae. The function Ge(ae) is continuous in ae ∈ (0, 1). When

ae goes to 0, g goes to a limit g(0) > 0, and as goes to a limit as(0) ∈ (0, α/(α + α)). The

function Ge(ae) goes to

−(1− as(0)

(

1 +
α

α

)

)(1− e−rh)α < 0.

When ae goes to 1, g goes to 0, and as goes to a limit as(1) ∈ (0, α/(α + α)). The function

Ge(ae) goes to

(1− as(1))α > 0.

Therefore, equation (21) has a solution ae ∈ (0, 1). Since as ∈ (0, α/(α + α)), we have

1− as − ae ∈ (0, 1). Equation (23) implies that g < (1− ae)/ae. Therefore, 1− ae(1 + g) ∈

(0, 1). Finally, equation (21) implies that 1−as(1+g) > 0. Therefore, 1−as(1+g) ∈ (0, 1).

We will show that at the solution ae, we have dGe(ae)/dae > 0. This fact implies that

the solution is unique and, as we show in Section C.3, allows us to use the implicit function

theorem. We have

dGe(ae)

dae
=

∂Ge(ae, as, g)

∂ae
+

(

∂Ge(ae, as, g)

∂g
+

∂Ge(ae, as, g)

∂as

das

dg

)

dg

dae
.

Since ∂Ge(ae, as, g)/∂ae > 0 and 0 > dg/dae > −(1 + g)/ae, we have dG(ae)/dae > 0 if

∂Ge(ae, as, g)

∂ae
−
(

∂Ge(ae, as, g)

∂g
+

∂Ge(ae, as, g)

∂as

das

dg

)

1 + g

ae
> 0.

We have

∂Ge(ae, as, g)

∂ae
− ∂Ge(ae, as, g)

∂g

1 + g

ae
= (1− (1− ae(1 + g))e−rh)α,

and

∂Ge(ae, as, g)

∂as
= −ae(1− (1−ae(1+g))e−rh)(1+g)α+(1−ae(1+g))

(

1 +
α

α

)

(1− e−rh)α.

Using equation (21), we can write ∂Ge(ae, as, g)/∂as as

−ae(1− (1− ae(1 + g))e−rh)α

1− as

(

1 + α
α

)

(

g − α

α

)

.

Therefore, we have dGe(ae)/dae > 0 if

1 +
(1 + g)

(

g − α
α

)

1− as

(

1 + α
α

)

das

dg
> 0.

If g ≤ α/α, this condition is satisfied, since das/dg < 0. If g > α/α, this condition is

satisfied since das/dg > −as/(1 + g).
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C.3. The Solution for Small σ
2
e

We first prove Lemma 1. To state the lemma, we use the following notation. Consider a

function F (x, y), where x is a 1×N vector, y a 1×M vector, and F a K × 1 vector. We

denote by JxF (x, y) the K × N matrix of partial derivatives of F (x, y) w.r.t. x, i.e. the

Jacobian matrix of F (x, y) w.r.t. x.

Lemma 1 Consider a function

F (x, y) =





F1(x, y)

F2(x, y)



 ,

where x is a 1 × N vector, y a 1 × M vector, F1(x, y) a N × 1 vector, and F2(x, y) a

M × 1 vector. Suppose that (i) there exists a function y(x) such that F2(x, y(x)) = 0, (ii)

JyF2(x, y) is invertible, and (iii) JxF1(x, y(x)) is invertible. Then Jx,yF (x, y) is invertible

for y = y(x).

In words, Lemma 1 says that the Jacobian matrix of F (x, y) w.r.t. (x, y) is invertible

if (i) we can solve equation F2(x, y) = 0 for y, and (ii) the Jacobian matrix of the function

F1(x, y(x)), that we obtain by plugging y(x) in the function F1(x, y), is invertible. Lemma

1 allows us to “eliminate” the function F2(x, y) and consider a smaller Jacobian matrix.

Proof: We have

Jx,yF (x, y) =





JxF1(x, y) JyF1(x, y)

JxF2(x, y) JyF2(x, y)



 .

The matrix Jx,yF (x, y) is invertible if the matrix obtained by multiplying the last M columns

by JyF2(x, y)−1JxF2(x, y) and subtracting them from the first N , is invertible. This matrix

is




JxF1(x, y)− JyF1(x, y)JyF2(x, y)−1JxF2(x, y) JyF1(x, y)

0 JyF2(x, y)



 ,

and is invertible if the matrix

JxF1(x, y)− JyF1(x, y)JyF2(x, y)−1JxF2(x, y)

is invertible. We will show that for y = y(x), this matrix is JxF1(x, y(x)). Differentiating

F2(x, y(x)) = 0, we get

JxF2(x, y(x)) + JyF2(x, y(x))Jxy(x) = 0 ⇒ Jxy(x) = −JyF2(x, y(x))−1JxF2(x, y(x)).
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Therefore,

JxF1(x, y(x)) = JxF1(x, y(x)) + JyF1(x, y(x))Jxy(x)

= JxF1(x, y(x))− JyF1(x, y(x))JyF2(x, y(x))−1JxF2(x, y(x)).

Q.E.D.

To extend the solution of (S ′) for small σ2
e , we use the implicit function theorem. We

denote by z the 1 × 23 vector of unknowns ae, as, ae, g, Σ
2
e, Ae/B, As/B, 1/B, Q, and

Q. We denote by K(z, σ2
e) = 0 the 23 × 1 vector of optimality conditions of the large

trader’s problem, equations (23) and (24) of the recursive filtering problem, equations of

the market makers’ problem, and envelope conditions of the large trader’s problem. Finally,

we denote by z0 the solution of (S ′) for σ2
e = 0. The function K(z, σ2

e) is C1 at (z0, 0), and

K(z0, 0) = 0. The implicit function theorem applies if the matrix JzK(z, 0) is invertible for

z = z0.

To show that JzK(z, 0) is invertible, we use Lemma 1. We set (x, y) = z and F (x, y) =

K(z, 0), denote by y the 1 × 15 vector of unknowns Ae/B, As/B, 1/B, Q, and Q, and by

F2(x, y) = 0 the 15 × 1 vector of equations of the market makers’ problem and envelope

conditions of the large trader’s problem. In Section C.2 we solved equation F2(x, y) = 0

for y. Since F2(x, y) is linear in y, and since we could solve for y, the matrix JyF2(x, y) is

invertible. Lemma 1 implies that JzK(z, 0) is invertible if JxF1(x, y(x)) is invertible.

In Section C.2 we showed that the optimality conditions of the large trader’s problem

are connected to equations (21), (22), and (25), though an invertible linear transformation.

Therefore, we can assume that F1(x, y(x)) = 0 consists of equations (21), (22), (25), (23),

and (24).

To show that JxF1(x, y(x)) is invertible, we use Lemma 1 for the function F1(x, y(x)).

The “new” (x, y) is the “old” x, the new F (x, y) is F1(x, y(x)), the new y is the 1×4 vector

of unknowns as, ae, g, and Σ
2
e, and the new F2(x, y) = 0 is the 4 × 1 vector of equations

(22), (25), (23), and (24). In Section C.2 we solved F2(x, y) = 0 for y. Using the results of

this section, it is easy to check that the matrix JyF2(x, y) is invertible. Lemma 1 implies

that Jx,yF (x, y) is invertible if JxF1(x, y(x)) is invertible. Using the notation of Section

(25), JxF1(x, y(x)) = dGe(ae)/dae > 0. Q.E.D.
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D. Proofs of Propositions 3, 5, and 6

Proof of Proposition 3: We denote by a∗e and a∗s, the ae and as that solve (S). We will

show that a∗e > a∗s for σ2
e = 0, and conclude by continuity. We proceed by contradiction

and assume that a∗e ≤ a∗s. As in Section C.2, we fix ae ∈ (0, 1) and define g and Σ
2
e from

equations (23) and (24), and as from equation (22). Since as < α/(α + α) < 1, there exists

ae ≥ a∗e such that ae = as. For this ae we have Ge(ae) ≥ 0, since equation Ge(ae) = 0 has

a unique solution a∗e ∈ (0, 1), and the function Ge(ae) goes to a strictly positive limit when

ae goes to 1.

Noting that as = ae and ae = asα/α, we have

Ge(ae) = (1− ae(1 + g))
(

ae(1− (1− ae(1 + g))e−rh)α− (α(1− ae)− αae)(1− e−rh)
)

.

Using equation (22), we get

Ge(ae) = (1− ae(1 + g))aeαF,

where

F = 1− (1− ae(1 + g))e−rh −
1− (1− ae(1 + g)(2− ae

(

1 + α
α

)

))e−rh

1− (1− ae(1 + g))(1− ae

(

1 + α
α

)

)e−rh
.

= −(1− ae

(

1 +
α

α

)

)e−rh 1− (1− ae(1 + g))2e−rh

1− (1− ae(1 + g))(1− ae

(

1 + α
α

)

)e−rh
.

Since 1−ae(1+α/α) = 1−as(1+α/α) ∈ (0, 1) and 1−ae(1+g) ∈ (0, 1), we have Ge(ae) < 0,

a contradiction. Q.E.D.

Proof of Proposition 5: We first show that if gas − ae ≥ 0, the large trader’s stock

holdings decrease over time. Since ae > as, we have

ae(1 + g)− as − ae > gas − ae ≥ 0.

The coefficients of (1−as−ae)
`′−` and (1−ae(1+g))`′−` in equation (30) are thus positive,

and stock holdings decrease over time.

We next show that if gas− ae < 0, stock holdings decrease and then increase over time.

Stock holdings are equal to 1 for `′ = `, and go to ae/(as + ae) < 1 when `′ goes to ∞.

Their derivative w.r.t. `′ changes sign at most once. Therefore, stock holdings decrease

and then increase over time if they increase for large `′. We distinguish two cases. If

ae(1 + g)− as − ae > 0, then 1− as − ae > 1− ae(1 + g). Stock holdings are approximately

ae

as + ae

+
ae(gas − ae)

(ae(1 + g)− as − ae)(as + ae)
(1− as − ae)

`′−`

20



for large `′, and they increase. If ae(1 + g)− as − ae < 0, stock holdings are approximately

ae

as + ae

+
ae − as

ae(1 + g)− as − ae

(1− ae(1 + g))`′−`,

and they also increase.

We next show that if gas − ae ≥ 0, the trading rate decreases over time. The trading

rate is
x`′

∑

`′′≥`′ x`′′
=

x`′

e`′−1 − e∞
.

Equation (A37) implies that

x`′ = ae(e`′−1 − s`′−1) + ass`′−1 − aee`′−1

=
ae(gas − ae)

ae(1 + g)− as − ae

(1− as − ae)
`′−` +

ae(1 + g)(ae − as)

ae(1 + g)− as − ae

(1− ae(1 + g))`′−`. (B45)

Using equations (30) and (B45), we can write the trading rate as

gas − ae + (1 + g)(ae − as)f(`′)
gas−ae

as+ae

+ ae−as

ae
f(`′)

,

where

f(`′) =
(1− ae(1 + g))`′−`

(1− as − ae)`′−`
.

Using the inequalities ae > as and ae(1 + g) − as − ae > 0, it is easy to check that the

trading rate increases in f(`′), and that f(`′) decreases in `′. Therefore, the trading rate

decreases over time.

We finally show that if gas−ae ≥ 0, the price impact decreases over time. We can write

the expected price change, p`′−1 − p`′ , successively as

(

h

1− e−rh
Q1,2 +

Ae

B

)

e`′−1 +

(

h

1− e−rh
Q1,3 +

As

B

)

s`′−1 +
ae

B
(e`′−1 − s`′−1)

=
h

1− e−rh
(Q1,3 −Q1,2)(ass`′−1 − aee`′−1) +

ae

B
(e`′−1 − s`′−1)

=
h

1− e−rh
(Q1,3 −Q1,2)

ae(gas − ae)

ae(1 + g)− as − ae
(1− as − ae)

`′−`

+

(

− h

1− e−rh
(Q1,3 −Q1,2)

ae(gas − ae)

ae(1 + g)− as − ae
+

ae

B

)

(1− ae(1 + g))`′−`. (B46)

For the first equality we use equation (8) for p`′ and equation (B30) for p`′−1, for the second

equality we use the optimality conditions (A11) and (A12), and for the third equality we

use equation (A37). Using equations (B45) and (B46), we can write the price impact as

h
1−e−rh (Q1,3 −Q1,2)(gas − ae) +

(

− h
1−e−rh (Q1,3 −Q1,2)(gas − ae) + ae(1+g)−as−ae

B

)

f(`′)

gas − ae + (1 + g)(ae − as)f(`′)
.
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The function f(`′) decreases in `′. Therefore, the price impact decreases over time if it

increases in f(`′). It is easy to check that the price impact increases in f(`′) if and only if

1

B
− h

1− e−rh
(Q1,3 −Q1,2) > 0. (B47)

Substituting 1/B from the optimality condition (A13), we can write inequality (B47) as

h

1− e−rh
(1 + g)Q1,3 < 0.

This inequality holds as long as Q1,3 < 0. Equations (B21) and (B22) imply that for σ2
e = 0,

Q1,3 < 0. Therefore, for small σ2
e , Q1,3 < 0. Our numerical solutions confirm that Q1,3 < 0

for large σ2
e . Q.E.D.

Proof of Proposition 6: We replace (S ′) by an equivalent system (S ′c), that we obtain as

follows. We set ae = φe

√
h, as = φsh, ae = φeh, and Σ

2
e = φΣ

√
h, and replace the unknowns

ae, as, ae, and Σ
2
e, by φe, φs, φe, and φΣ. We divide the Bellman conditions of the market

makers’ problem by h, the envelope conditions of the large trader’s problem by
√

h if they

correspond to Q1,1, Q2,1, and Q3,1, and by h otherwise, and equation (24) of the recursive

filtering problem by h. Finally, we multiply the optimality conditions of the large trader’s

problem by the invertible matrix

(1−Ne−rh)N̂
1− e−rh

σ2h2e−rh













ke 0 0

ks 1 0

ke 0 1













−1

.

For σ2
e = 0, we get equations Ge/h = Gs/h = Ge/h = 0. We denote by z the vector of

unknowns of (S ′c) and by K(z, σ2
e , h) = 0 the vector of equations.

We will use the implicit function theorem for σ2
e = h = 0. It is easy to check the

following. First, the function K(z, σ2
e , h) can be extended by continuity for h = 0, and

is C1. (We use the fact that the matrices R
′
, R′

u, and R′, are “of order” h.) Second,

for σ2
e = h = 0, the optimality conditions of the market makers’ problem, the equations

obtained from the Bellman conditions of the market makers’ problem, and the equations

obtained from the envelope conditions of the large trader’s problem, are linear in Ae/B,

As/B, 1/B, Q, and Q, and can be solved in these unknowns. Third, for σ2
e = h = 0, the

equations obtained from the optimality conditions of the large trader’s problem, equation

(23), and the equation obtained from equation (24), become

(φe)
2(1 + g)α− rα = 0,
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−φs
r + 2φs(1 + g)

r + φs(2 + g) + φe
α + rα = 0,

φeα− φsα = 0,

g − φeφΣ

σ2
u

= 0,

and

(φeφΣ)2 + 2σ2
uφeφΣ − σ2

u = 0,

respectively. Fourth, the φe, φs, φe, and g0 of the Proposition solve these equations. There-

fore, for σ2
e = h = 0, we have a solution, z0, to K(z, σ2

e , h) = 0. To show that the matrix

JzK(z, 0, 0) is invertible for z = z0, we proceed as in Section C.3. Q.E.D.
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