Appendix B

A. Proof of Proposition 1

We first show that the function (18) solves the Bellman equation
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and the optimal consumption. We then show that the demand in equation (B2) and the
optimal consumption satisfy the transversality condition (A6). These results will imply
that the demand in equation (B2) solves (P) and the function (18) is the value function.
The demand in equation (B2) is equal to the demand in equation (5) minus Ag,_1, and
produces the trade zp + upy — A€y_1. The two demands are equal along the optimal path.

Indeed, equation (9) implies that if Ty(ps) = xy + uy — A€p_1 then Aey = 0.

Bellman Equation

We proceed in 3 steps. First, we show that the optimality conditions are sufficient for
the demand in equation (B2) to maximize the RHS of the Bellman equation (B1). (This
is why we refer to these conditions as “optimality conditions”.) Second, we compute the
expectation of the RHS conditional on period ¢ — 1 information. Finally, we show that
the Bellman conditions are sufficient for the function (18) to satisfy the Bellman equation.

(This is why we refer to these conditions as “Bellman conditions”.)

Step 1: Optimal Demand
We define the vector vy_1 by

Aey_q

Vg1 = €r—1

Se—1

A market maker chooses his demand Z,(p;) to maximize the expectation of the period ¢

value function w.r.t. {,. Using the budget constraint (A3) and equation (A5), we can write



this expectation as
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where py is given by equation (A4). The market maker can condition his trade T, on (y,
since he can infer (, from the price. Therefore, his problem is the same as choosing a trade

Ty to maximize equation (B3) without the expectation sign. The first-order condition is

Ty — (Co + asse—1 — ag€r—1)
pe+de+(1,0,0)Q(N (vp_1 + 0 )+n¢) =0. (B4)
0
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The first-order condition determines a maximum since Ql,l < 0. Denoting by G the row
vector formed by the LHS of equations (A11), (A12), and (A13), we can write the first-order

condition as

G Se—1 + Ql,l(ff - (Cf + asSp—1 — Gg€p—1 — Aég,l)) = 0.

Therefore, the optimal trade is
Ty = (¢ + assp—1 — agy—1 — Aep_1. (B5)

The demand in equation (B2) is optimal since it produces the optimal trade. Substituting
pe from equation (A4), and using the definition of @/, we can write equation (B3), evaluated

for the optimal trade, as
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Step 2: Computing the Expectation



We have to compute the expectation of equation (B6) conditional on period £ — 1 infor-
mation, i.e. w.r.t. dy and (y. Computing the expectation w.r.t. J, is straightforward. We

get
—rh

—Ecéeﬁp(—a(Terh(Mg_l - Eg_lh) + 6Thdg_1(€g_1 + Aég_l)

Lot +ae 2 F@, [ T )+, (B7)
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To compute the expectation w.r.t. {y, we use the formula
1 1 1
E(exp(—a(ax + 5()3:2))) = exp(—a(—5622(1 +ax?b)la? + 2—_l0g(1 +ax?))), (BS)
@

where z is normal with mean 0 and variance ¥2, and a and b are constants. (Equation
(B8) gives simply the moment generating function of the normal distribution for b = 0.
We can always assume b = 0 by also assuming that x is normal with mean 0 and variance
Y2(1 +ax?p)~1)

We set = (y, 32 = a2(X2 + 02h) + 02h, a = @{{4}7{172,3}6371, and b = @;’4. Using the
definitions of R and R, we can write equation (B7) as

1— efrh
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1 — — 1 —
—550%(@4 + AT 1)’ + F(Qpuagy — B 1) + 2= l09(R) +7)).

Finally, using the definition of P, we can rewrite this equation as

1— e—rh

. _ 1 _
—exp(—@(Terh(Mg,1—nglh)—i-erhdg,l(égfl—i-Aég,l)—‘reth(P,Wg,l)—i-ﬁlog(R)—i-Q)).
Step 3: Bellman Equation

To compute the RHS of the Bellman equation, we have to maximize w.r.t. ¢y_;

1— efrh 7
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Simple calculations show that the maximum is
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This is equal to the period ¢ — 1 value function from equations (A14) and (A15).



Transversality Condition

It is easy to check that, by substituting the optimal ¢,_; in the second term of equation
(B9), we find equation (B10) times e~"™. Therefore, the expectation of the period ¢ value
function in period £ — 1, is the period £ — 1 value function times e~"™. Recursive use of this

equation implies equation (A6). Q.E.D.

B. Proof of Proposition 2

We show that the function (20) solves the Bellman equation for the market order in equation
(4) and the optimal consumption. The proof that the market order in equation (4) and the
optimal consumption satisfy the transversality condition (A22) is as in Section A.

We proceed in 4 steps. First, we compute the expectation of the RHS of the Bellman
equation w.r.t. uy. Second, we use the optimality conditions to show that the market order
in equation (4) maximizes the RHS. Third, we compute the expectation of the RHS w.r.t.
the remaining information revealed in period £ , i.e. J; and €y. Finally, we use the Bellman
conditions to show that the function (20) satisfies the Bellman equation. Notice that we
take expectations w.r.t. uy before determining the optimal market order. This is because
the large trader does not know u, and, unlike the market makers, cannot condition his order

on price.

Step 1: Expectation w.r.t. uy

We have to compute the expectation of the period ¢ value function w.r.t. uy. Using the
budget constraint (19), equations (12) and (A21), and the vector vy_; defined by equation
(A34), we have to compute

—rh N 1— e—rh
e’ (Mgfl + dzflegflh — Cgflh) + T

1—e

—Ewexp(—a(T Doy

+do(eg—1 — z¢) + F(Q, Nvg_1 + nug + nlAxzy) + q)),

where py and z, are given by equations (A20) and (A19), respectively. The term inside the
exponential is a quadratic function of uy. The coefficient of u? /2 is n'Qn, and equations

(A19) and (A20) imply that the coefficient of uy is

Ou ( Ve—1 ) .
Axy



To compute the expectation, we use equation (B8) and set x = uy, X2 = 02h, a the

coefficient of uy, and b the coefficient of u?/2. The expectation is

l—eT 1—e™
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where py is evaluated for u, = 0.

Step 2: Optimal Market Order
The large trader chooses Az, to maximize equation (B11). Since dpy/dAxy = —1/B
and dxy/dAxy = 1, the first-order condition is

1— 6—rh
h
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1 ~ A
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The first-order condition determines a maximum because of equation (A31). Denoting by G
the LHS of equation (A30) and by G the LHS of equation (A31), we can write the first-order
condition as

Gup_1 + GAxy, = 0.

Therefore, Azy = 0, i.e. the market order in equation (4) is optimal. Substituting p, and
xp from equations (A20) and (A19), and using the definition of @', we can write equation
(B11), evaluated for Az, =0, as

1— e—rh

—exp(—a(———
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Step 3: Expectation w.r.t. §, and ¢
We have to compute the expectation of equation (B13) w.r.t. d; and ¢y. Computing
the expectation w.r.t. §; is straightforward. To compute the expectation w.r.t. €y, we use

equation (B8) and set x = ¢, ¥.2 = 02h,

a= Q123 S0_1 :

and b = ’171. Proceeding as in Section A, and using the definitions of R, R’, and P, we get

1— —rh

h €rh(Mg_1 — Cg_lh) + €rhd5_1€g_1



€e—1 — Se-1 .
+e™F(P, Se-1 )+ 5-log(RuR) + ).

Step 4: Bellman Equation
We proceed as in Section A. Q.E.D.

C. Proof of Theorem 1

We prove Theorem 1 in Sections C.1, C.2, and C.3. In Section C.1 we replace (S) by an
equivalent system, (S’), which is easier to solve. In Section C.2 we show that for o2 = 0,
(S") collapses to (s), and that (s) has a solution. In Section C.3 we extend the solution of

(') for small 2.

C.1. The Equivalent System

To form the system (S’), we replace the Bellman conditions (A32) of the large trader’s
optimization problem, by a new set of conditions, the “envelope conditions”. Under both
the Bellman and the envelope conditions, the matrix () can be interpreted as a matrix of
marginal benefits. The coefficient ()12, for instance, is the marginal benefit of increasing
ey — Sy, the “first” state variable, when sy, the “second” state variable is 1 and the other
state variables are 0. The Bellman conditions compute this marginal benefit under the
assumption that the large trader changes his strategy in response to the change in ey — sy,
while the envelope conditions assume that the large trader does not change his strategy.
The Bellman and the envelope conditions are of course equivalent, when the large trader’s
strategy is optimal, i.e. when the optimality conditions hold. We use the envelope conditions
instead of the Bellman conditions because they are much easier to solve.

To state the envelope conditions, we define the matrix N, by

L as(l+g) —az(1+9)
Ne: 0 1—(13(1 —I—g) ag(1+g)
0 0 1



and the matrix Q' by

0 a
A/ 1- eirh A.— t / ' /
Q = - | T (ae,as, —ag) + NoQN — (R) 123 + | as | (Bu){4y.41,2,3)-
Agg(lg _ag

(B14)
We also define the scalar R and the matrices R’ and P by proceeding as in Section B and
using @’ instead of Q'. The envelope conditions are Q = P. Notice that the matrices ¢’
and P are not symmetric a priori. Therefore, the system (S)’ consists of 23 equations (since
there are nine envelope conditions) and 23 unknowns (since the matrix @ is not symmetric
a priori). We first show that the solution of (S”) produces a symmetric matrix Q). We then

show that the solution of (S’) satisfies the Bellman conditions, and is thus the solution of

(5)-

The Matrix @ is Symmetric
We use the vector v,_; defined by equation (A34). We define the vector a by
Qe
a=| as |- (B15)
—as
Finally, we denote by p; and z, those given by equations (A20) and (A19) for uy = Az, = 0.

We will show that Q = Q. Using the envelope conditions and the fact that R is

symmetric, we get
Q-Q =(@Q — (@)™

Using the definition of Q’ and noting that a'v,_; = x4, we get

0
Ay 1—e ™ A t / /
Qv = T ST“S ¢+ N, QNvp_1 — (Ru){m,g}v[_l + a(Ru){4}7{172’3}v5_1.
Ag-f—ag
B
(B16)
Equations (A20) and (A19) imply that
Ag —as Az + as_ n Xy h d
— Sp—1 — Cyp—1 = — — ————Qay.
5 St 5 e-1=pt g e

Using this fact we get

N 1— e—rh
Qv =a (T <pe + —w) - dz) +NtQtNeW—1—(R;)t{1,2,3}Wfl"‘(R;){17273}»{4}x5'
(B17)



Since the first-order condition (B12) holds for Az, = 0, we have

1—e P 1 .
— (pz - sz) —dp+'QNvg—1 — (R,,) {4y {1,2,34ve—1 = 0. (B18)

We subtract equation (B17) from equation (B16), add the transpose of equation (A30)
times xy, and subtract equation (B18) times a. Noting that the matrix R is symmetric,
and that

N, + na' = N, (B19)

we get
(@ = (@))ve1 = NY(Q — Q)Nug_y.

Since this holds for all vy_1, we get
Q-Q'=(Q —(@)e™=N(Q-Q)Ne™.

It is easy to check that this equation produces a system of three linear equations in Q12 —
Q2,1, Q13 — Q3,1, and Q23 — Q32. Moreover, the solution of this system is zero provided
that 1 —ae(14g¢g) and 1 —as —ag € [0,1). In Section C.2 we will show that the solution of
(97) indeed satisfies 1 —a.(1+¢) and 1 —as — ag € [0,1).

The Bellman Conditions Hold
We only need to show that Q" = Q’. We subtract equation (B14) from equation (A26),
and add the vector a times equation (A30). Using equation (B19), we get Q' = Q'.

C.2. The Solution for ¢ =0

We first assume that (s) has a solution as, ae, g, and ii, such that 1—a.(1+g), 1—as(1+g),
and 1 —as —ag € (0,1). (We define ag by equation (25).) Starting from this solution, we

construct a solution of (S"). We then show that (s) has a solution with the above properties.

The Solution of (57)

We proceed in three steps. First, we use the equations of the market makers’ optimiza-
tion problem to solve for Az, A, B, and Q. Second, we use the envelope conditions of the
large trader’s problem to solve for (). Finally, we show that the optimality conditions of

the large trader’s problem are satisfied.

Step 1: The Market Makers’ Problem
We first use the Bellman conditions to solve for @, as a function of Az, A, and B. We

then plug @172 and @173 into the optimality conditions, and solve for Az, A, and B.



For 02 = 0, R = 0. Therefore, the Bellman conditions (A14) become
Q= (@,{1,2,3} —ao?hl)e ™.

The equation for @171 is @171 = —ac?he™™ < 0. The equations for @172 and @173 are

o 1— —rh A=
Q= fTeEee_rh — a@o’he™™ (B20)

)

and
— 1-— €7T‘h As h
—__ - I8er B21
Ql,-?) h B € ’ ( )

respectively. The equations for @272, @273, and 6373 form a system of three linear equations.
We omit the solution of this system, since we do not use it in what follows.
Plugging Q; , and @ 3 into the optimality conditions (A11) and (A12), we get a system
of two linear equations in Az/B and A,/B. Solving this system, we get
— 212 —rh
% - % (B22)
where

D1 =1- (1 — Qg — a5>6irh.

We omit Ag/B since we do not use it in what follows. To determine 1/B, we multiply
the optimality condition (A13) by as, and subtract it from the optimality condition (A12).
Plugging @173 in the resulting equation, we get

As — asg
B

= (1 a1 g) e (B23)

Combining equations (B22) and (B23), we get
= 212 —rh
i: Doaio“h“e , (B24)
B~ (1-em)2D;
where

Dy=1—(1—-as(1+g)e ™

Step 2: The Envelope Conditions

For 02 =0, R, and R’ are equal to 0. Therefore, the envelope conditions become

0
(A _ 2 —rh __ _1_67Th As—a P t o 2 —rh
Q=(Q—ac”hl)e™™ = ( — | (Ge, a5, —az) + NQN — ac”hI)e ™.
Aztag
B

(B25)



Equation (B25) produces a system of nine linear equations in the elements of the matrix Q.
We will “break” this system into three subsystems of three equations each. To obtain the
first subsystem, we multiply equation (B25) from the left by the vector (—1,1,0). We get

l—e ™A, —a,
h B

(-1,1,0)Q = (— (ae, a5, —ag) + (1 — as(1+¢))(—=1,1,0)0QN)e™ ", (B26)

i.e. asystem in Q21 — Q1,1, Q2,2 — @1,2, and Q2.3 — Q1,3. The solution of this system is

1—e™ A, —asac.(1 — (1 —as(1+g))2e™)e "

_ - _ B27
Q21— Q1.1 5 B DsDy ) ( )
1—e ™A, —agae™™
B _ B2
Q2.2 — Q1,2 5 B Dy (B28)
and
1—e ™A, — agage™™
_ — B2
Q23— Q13 . 5 D, (B29)
where
Ds=1—-(1-as(14+g9))(1—as— ag)e_rh
and

Dy=1—-(1-a,(1+g)(1—a.(1+g)e™

To obtain the second and third subsystems, we multiply equation (B25) from the left by
the vectors (1,0,0) and (0,0, 1), respectively. The second subsystem is in Q11, Q1,2, and
Q13- The third subsystem is in @31, 32, and @33, and in Q21 — Q1,1, Q22 — @1,2, and
Q2,3 — Q1,3 that we already have determined. We omit the solutions of the second and third

subsystems, since we do not use them in what follows.

Step 3: The Optimality Conditions

We proceed in three steps. First, we show that the equations of (S’) imply the market
maker and large trader equations (26) and (27). Second, we show that the three optimality
conditions (A30) are satisfied. Finally, we show that equation (A31) is satisfied.

Step 3.1: The Market Maker and Large Trader Equations
We first derive the market maker equation (26). Plugging the optimal trade of equation
(B5) into the first-order condition (B4), and using equation (A5), we get

1—e"h — ! 1—eTh __ _
—TW +d¢+ (17 0, O)Q €y - _TW +do+ (Q1,25£ + Q1,334) =0. (B30)
Sy
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Substituting Q; , and Q; 3 from equations (B20) and (B21) into equation (B30), we get

1_ e Th 1—e " /A Ag
_7; pe + dy — aohe e, — 7; (EQ + ESE) e =0. (B31)

Equation (A4) implies that

h A A, 1 )_ h A A,
1—eTh B B

Epei1 = Ey (md@rl —pee— Fse— EQH dy——7e——sy. (B32)
Combining equations (B31) and (B32), we get equation (26).

We next derive the large trader equation (27). We use the vectors vy_1 and a defined by
equations (A34) and (B15), respectively. We denote by py, x¢, and (eg, s¢,€;) those given
by equations (A20), (A19), and (A21) for uy = Azy = 0. Finally. we denote by psy; and
x¢4+1 those given by equations (A20) and (A19) for upr; = Axppq = 0.

For 02 = 0, R/, = 0. Since the first-order condition (B12) holds for Az, = 0, we have

1— e—rh

1 .
3 <pg — El‘g) —dy + ntQNUg_l =0. (B33)

Equation (B25) implies that

1— efrh 0
A'QNvg_y = ﬁt(—T Aszas | g' + NJQN — ac®hl)e " Nug_y. (B34)
Aztag
B

Combining equation (B33) with equation (B34), and noting that
a'Nvy_1 = a'Epvy = Epalvy = Eyxoqq,

ﬁtN:it = ﬁ‘t - (gas - aE)(l + g)<_17 170)a

and

AT Nve_y = —(1,1,0)Nvg_y = —ey,

we get

1—eTh 1 1—e ™/ Ay — Az + az
7; (Pe - Bw) —dy — ; (9 SB %y e];r ae) Eyrppqe”""

+ (ﬁt — (gas —ag)(1+¢g)(—1,1, O)) QN?vy_1e7™ 4+ ao?hee™™ = 0. (B35)
Noting that Eyu; = Nvy_1, we can write the expectation in period ¢, of equation (B33) in
period £+ 1, as

1—eTh
h

1

(EKPZ-H -3

Eg$g+1> —dy+ thQN2Ug_1 =0. (B36)
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T

We multiply equation (B36) by e~ and subtract it from equation (B35). To simplify the

resulting equation, we use two facts. The first fact is

1 As —as Az + az

B 9B B

Ay — ag 1
B 1—(13(1-}-9)'

= (g9as — ag)(1 +g)

To derive this fact, we multiply the optimality conditions (A11), (A12), and (A13) by —1,
—g and 1 + gas — ag, respectively, and add them up. We then use equations (B21) and
(B23). The second fact is

l—e ™A, —a

(—1,1,0)0QNvp—1 = (— A B

*Eyxoi1 + (1—as(149))(—1, l,O)QNQUg,l)e_rh.
(B37)

To derive this fact, we multiply equation (B26) by Nwv,_1. Using these two facts, we get

1—e"h 1 h 5 B
T (pg — Exg —doh — Egpg_;.l@ir > + ac”hege™"

(9as — az)(1 +g) _
_ el i) (-1,1,0)0QNv;—1 = 0. (B38)

Combining equations (B37) and (B38), and noting that Eyv, = Nuvy_1, we get equation
(27).

Step 3.2: The Three Optimality Conditions (A30)
We will show that the three optimality conditions (A30) are equivalent to equations
(21), (22), and (25), which are satisfied. To show the equivalence, we first show that

_ - _ L—e™ _
G(1— Ne Th)W—l = (aep — 0466)02h6 4 o (EEPZ+1 - Ezpfﬂ) e "

l-e™1 0 (gas —ag)(1+9)
h B 1—as(1+4g9g)

(_17 170)QNUZ—17 (ng)

where G is the row vector formed by the LHS of the three optimality conditions (A30), Ey is
the expectation w.r.t. the market makers’ information, and E, is the expectation w.r.t. the
large trader’s information. In Section B we wrote the LHS of the first-order condition (B12)
as Gug_1 + GAxy. Therefore, the LHS of equation (B33) is equal to Gv,_1. Moreover, since
Eyvy = Nvy_q, the LHS of equation (B36) is equal to GNwv,_1, and the LHS of equation
(B38) is equal to the LHS of equation (B39). The LHS of equation (B38) is also equal to
the RHS of equation (B39). This follows by substituting the price p, from equation (26)
into the LHS of equation (B38).

12



We next evaluate the RHS of equation (B39) for three values of vy_1, the column vectors

of the matrix

10 0
- .
N - 0 1 1_67rh

0 0 =

We divide the result by o2he="™"/(1—e~""), and denote it by G, for the first column vector,
G for the second, and Gz for the third. We have

. 2h -rh
G(1— Neo™N = %(Ge, Gs,Gz).

Since 1 — ac(1 +g) and 1 — a5 — az € (0,1), the matrices 1 — Ne™™" and N are invertible.
Therefore, the three optimality conditions (A30), i.e. G = 0, are equivalent to G, = G =
Gz = 0. We will show that G5 = 0 and Gg = 0 are equations (22) and (25), respectively.
Moreover, we will show that Ge = keGe + ksGs + kzGe, where G, is the LHS of equation
(21), and ke # 0. Therefore, the three optimality conditions (A30) will be equivalent to
equations (21), (22), and (25).

We first compute Gg. Equation (A19) implies that xy = 0. Equation (A21) implies that

ey — Sy 0
Sy = NUZ 1= 1_(;E_Th
- a
62 1_6irh

Equations (A20) and (B32) imply that

_ 1
Epri1 — Epeyr = Eae(ez —59) = 0. (B40)

Plugging into equation (B38), we find that G is the LHS of equation (25).

We next compute G5. Equation (A19) implies that zy = as. Equation (A21) implies
that (e, — s¢,s0,80) = (0,1 — as,as). Equation (B40) implies that Eypsy1 — Eppes1 = O.
Equations (B22), (B23), (B28), and (B29), imply that

a(1 — as — ag)ao

2h6—3rh
(1 - as)(QQ,Z - Ql,Z) =+ as(QQ,S - Q1,3) = *(1 - as(l + 9)) s (1 _ ei"h)Dng

Plugging into equation (B38), we get

asDot a(1 — as — ag)me 2"

—a=)(1 S
D1 + (ga’s a’e)( + g) D1D3

Gs = (a(1 — as) —aas)(1 — e_rh) -

It is easy to check that Gy is in fact the LHS of equation (22).

13



We finally compute G,. Equation (A19) implies that 2y = a.. Equation (A21) implies
that (eg— sy, 5¢,21) = (1 —ae(1+9), gae, ac). Equation (B40) implies that Eypyy1 — Eppey1 =
ae(1 —ac(1+ g))/B. Plugging into equation (B38), we get

3 1-— 1 Doa —rh Do
Ge = (a(1 —ae) —@ac)(1—e ™) + ae(1 —ac(1+g))Doae _ aeDya
D D,

1—ae(l+g))Ds+gas—as_ _
+(gas — ag)(1 —I—g)asae( e(1+9))Ds + gas Cae2h,

D1D3D,
Setting
b D4 Dg
© D1Ds(1 —as—az)’
a —rh
| (2 - 9) Dsac(1 = (1 - ac(1+g))e™)
k I _ _ 1 —T‘h
s D1Ds (gas ae)( + g)aee + 1—as — as ’
1 _ ae(l — (1 —ae(1+g))e™™) -
- = 1 1—e ™D = = =
= DDy | 9l meTDe ¢ 1—as—az °p
ks = gD5 +(1—eh (g - g> D3 —(1—as—ag)(1—e™)(1+g),
Ds=1-(1-as(1+9)(2—as— ag))efrh,
and

Dg=1—(1—ac(1+9))(1—as— ag)e_rh,

we have the identity Ge = k.Ge + ksGs + kzGes. The proof of this identity is omitted, and
is available from the author upon request. For the solution of (s), we have 1 — a.(1 + g),
1—as(l+g),and 1 —as — ag € (0,1). Therefore, k. = —DyDg/D1D4(1 — a5 — ag) < 0.
Step 3.3: Equation (A31)
We use the vector b defined by equation (A34). We also define the vector b by

b= 1 |. (B41)

We can write the first of the three optimality conditions (A30) as

1—e " 2q,
h B

+7'Q(ach +b) = 0.

Therefore, equation (A31) is equivalent to 2!Qb > 0, or, since Q is symmetric, b!Qn > 0.

Using the envelope conditions (B25), we get
b Qi = b'(Q' — ac®hD)e ™ h = (B'QNn + ao?h)e™™"

14



= (b'Q((1 — ac(1 4 9))A + (az — gas)b) + ac®h)e™"™".
Therefore,
((ag — gas)btQb + a02h> e h
1—(1—ae(l+g))e

Using the envelope conditions again, we get

b'Qn =

b Qb = ((1 — as — ag)b'Qb — ac®h)e ™.

Therefore, b'Qb = —ao2h/Dy, and

Dyao®h
b'Qn = > 0.
= A= A= a(itg)e ™

The Solution of (s)

We proceed in three steps. First, we use equations (23) and (24) to solve for g and ii,
as functions of a. € (0,1). Second, we use equation (22) to solve for as as a function of g.
Finally, we plug as and ¢ into equation (21), obtain an equation only in a., and show that

this equation has a solution a. € (0,1).

Step 1: Determination of g and iz
We define the function f(a.) by

262 — 402 + ae
2(1—a.)

flae) =
and the function F(x,a.) by

F(z,a.) = 2° + 2f(ac)r — 5~

;.
Since a. € (0,1), we have f(ae) > 0 and f'(a.) > 0. Moreover, equation F(x,a.) = 0 has a
unique positive solution, that we denote by x(ae).

We can write equation (24) as

aeii W)= <2 (1 —ae)hz(ac)
F(—( W’ e)—OéZ——

1—ae € Qe ’

Dividing equation (23) by equation (24), we get

=2

aed, x(ae)

= = = —_—¥
g (1 — ae)ho? g G2

We will show that 0 > dg/da. > —(1 + g)/a., a fact that we will use in step 3. Differ-
entiating equation F(z(ae),a.) = 0, we get

dg idx(ae) _ f'(ae)z(ac) ['(ae)g

do. ~ 72 daw © 2(alan) + )~ wlad) + flag) O
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To show that dg/dae > —(1 + g)/a. we will show that

l+g dg 1 1 fae)
* * (ae :v(ae)Jrf(ae)) >0

Qe dae  ae
Since F(z(ae),ae) = 0, we have x(a.) < 72/2f(ae), i.e. g < 1/2f(a.) Therefore, it suffices

to show that
1 1 ( 1 f’(ae))
~ + — > 0.
Qe 2f(ae> Qe f(ae)
Noting that f'(ac)/f(ae) < 1/ac(1 — ae), it is easy to show this result.

Step 2: Determination of a,
We can write equation (22) as

Gs(as,g9) = —as%@+ (a1 — as) — @as)(1 —e ™) =0, (B42)
3

where D3 and D5 were defined in Section C.2, and az = asa/a. For as € (0,a/(a + @)),
1—as—ag € (0,1) and D3 > 0. The function Gs(as, g)Ds3 is a third-order polynomial in
as, which is strictly positive for as = 0, strictly negative for a; = a/(a + @), and goes to 0o
when ags goes to co. Therefore, equation (B42) has a solution as € (0,«/(a + @)), which is
unique in (0, /(e + @)). Moreover, at the solution we have 0G(as,g)/0as < 0.

We will show that das/dg < 0, a fact that we will use in step 3. Noting that

as(9-%) e _ o
Gs(a579) =—as |1+ D a+(a(1_as)_aas)(1_e " )7 (B43)
3
we get,
a\\2,—rh
0Gylang) 1 - —a(1+E)Pe
99 = —aZ (D3 )2 ae " <0. (B44)

Differentiating equation G(as,g) = 0, we get das/dg < 0.
We will also show that for ¢ > @/a and 1 — as(1 + g) € [0,1), we have das/dg >
—as/(1+ g). Using equation (B43) and noting that

0 a_g_ as
das D3 (D3)?

(2— (2 — as (2 +9+ 9))«;”) > 0,
a
we get 0Gs(as, g)/0as < —a. Using equation (B44) and noting that
a 2 —rh
Dy>1—(1—a, <1+—>) e >0,
a

and D3 > as(1 + g)e™™", we get 0G4(as,g)/0g > —asa/(1 + g). Differentiating equation
Gs(as,g) =0, we get das/dg > —as/(1+ g).
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Step 3: Determination of a.

We denote by G.(ae,as, g) the LHS of equation (21), and by G(a.) the LHS when we
plug g and as as functions of a.. The function G.(a.) is continuous in a. € (0,1). When
ae goes to 0, g goes to a limit g(0) > 0, and as goes to a limit as(0) € (0,/(a + @)). The

function Ge(ae) goes to

(1 ay(0) (1 + g>)(1 — e < 0.

When a, goes to 1, g goes to 0, and as goes to a limit as(1) € (0,a/(a + @)). The function
Ge(ae) goes to
(1 —as(1))a > 0.

Therefore, equation (21) has a solution a. € (0,1). Since a5 € (0,a/(a + @)), we have
1 —as—ag € (0,1). Equation (23) implies that g < (1 — a¢)/ae. Therefore, 1 —a.(1+ g) €
(0,1). Finally, equation (21) implies that 1 —as(1+¢g) > 0. Therefore, 1 —as(1+g) € (0,1).

We will show that at the solution a., we have dG¢(ac)/da. > 0. This fact implies that
the solution is unique and, as we show in Section C.3, allows us to use the implicit function

theorem. We have

dGe(ae) . aGe(a€7a87g) + (8Ge(ae7asag) + 8G@(ae,a5,g) das) dg

da. Oa. dg Oas dg ) da.

Since 0G,(ae, as,g)/0ae > 0 and 0 > dg/da. > —(1 + g)/a., we have dG(a.)/dae > 0 if

8Ge(ae;asag) _ <8Ge(aeaa5,g) I 8G6<ae7asag) %) 1 +g >0
aCLe ag 8(15 dg Qe :
We have
OGe(te,as,9)  0Ge(ae,as,9)1+g o
— — 1_ 1_ e 1 s ,
dae dg e (1-(1—-ac(l+g))e ™)
and
aGe €y sy _r o o .
W = —ac(1—(1-ac(1+g))e ™) (1 +g)a+ (1 -ac(1+9)) (1 + g) (1—e ).
S

Using equation (21), we can write 0G.(ae, as, g)/0as as
Cae(l— (1 —ac(l+g))e™)a (g B a)
1—ag (1 + %) .
Therefore, we have dG.(ac)/da. > 0 if
(1+9) (g - g) dag
— > 0.
1—a,(142) dg

1+

If ¢ < @/a, this condition is satisfied, since das/dg < 0. If g > @/a, this condition is
satisfied since das/dg > —as/(1 + g).
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C.3. The Solution for Small o2

We first prove Lemma 1. To state the lemma, we use the following notation. Consider a
function F'(z,y), where z is a 1 x N vector, y a 1 x M vector, and F' a K x 1 vector. We
denote by J,F(x,y) the K x N matrix of partial derivatives of F(x,y) w.r.t. z, i.e. the

Jacobian matrix of F(z,y) w.r.t. x.

Lemma 1 Consider a function

Fl (LU, y)
F(z,y) = ;
FQ(xa y)
where x is a 1 x N wector, y a 1 x M wvector, Fi(x,y) a N x 1 vector, and F2(x,y) a
M x 1 vector. Suppose that (1) there exists a function y(x) such that Fa(x,y(z)) =0, (ii)

JyFo(x,y) is invertible, and (i11) J,F1(z,y(x)) is invertible. Then J, ,F(x,y) is invertible

fory =y(x).

In words, Lemma 1 says that the Jacobian matrix of F(x,y) w.r.t. (z,y) is invertible
if (i) we can solve equation Fy(z,y) = 0 for y, and (ii) the Jacobian matrix of the function
Fi(x,y(x)), that we obtain by plugging y(z) in the function Fj(x,y), is invertible. Lemma

1 allows us to “eliminate” the function F5(z,y) and consider a smaller Jacobian matrix.

Proof: We have
Je P (x,y)  JyFi(x,y)
JJ:F2(:1:7y) JyFQ('r7y)

The matrix J, , F'(x,y) is invertible if the matrix obtained by multiplying the last M columns

Jx,yF(zay) = (

by JyFa(z,y) ' J, Fo(x,y) and subtracting them from the first IV, is invertible. This matrix
is
( JoFi(@,y) = JyFi(e,9) Ty Fa(a,y) " oFa(a,y) JyFia,y) )
0 JyFa(a,y) )

and is invertible if the matrix
JmFl(x7 y) - JyFl(x7 y)JyFQ(xa y)_IJxF2(x7 y)

is invertible. We will show that for y = y(x), this matrix is J,Fi(z,y(x)). Differentiating
F2(x7y(x)) - 07 we get

ToFo(a,y(x)) + JyFa(,y(2)) Joy(x) = 0 = Joy(x) = =Ty Fa(w, y(2)) " o Fa (@, y(2)).
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Therefore,

JxFl(ﬂﬁ,y(ﬂf)) = JxFl(x’ y(fU)) + JyF1($7y(x))ny(x)
= TP (z,y(2)) — JyFi (2, y(2) JyFa(z,y(z)) " TPz, y(2)).

Q.E.D.

To extend the solution of (S’) for small 02, we use the implicit function theorem. We

e
denote by z the 1 x 23 vector of unknowns a., as, azg, ¢, ii, Az/B, As/B, 1/B, Q, and
Q. We denote by K(z,02) = 0 the 23 x 1 vector of optimality conditions of the large
trader’s problem, equations (23) and (24) of the recursive filtering problem, equations of
the market makers’ problem, and envelope conditions of the large trader’s problem. Finally,
we denote by 2o the solution of (S’) for 62 = 0. The function K(z,02) is C! at (20,0), and
K(20,0) = 0. The implicit function theorem applies if the matrix J, K (z,0) is invertible for
z = 2.

To show that J,K(z,0) is invertible, we use Lemma 1. We set (z,y) = z and F(z,y) =
K (z,0), denote by y the 1 x 15 vector of unknowns Az/B, As/B, 1/B, Q, and Q, and by
Fy(xz,y) = 0 the 15 x 1 vector of equations of the market makers’ problem and envelope
conditions of the large trader’s problem. In Section C.2 we solved equation Fs(x,y) = 0
for y. Since Fy(z,y) is linear in y, and since we could solve for y, the matrix J,Fs(z,y) is
invertible. Lemma 1 implies that J,K(z,0) is invertible if J, F}(z,y(x)) is invertible.

In Section C.2 we showed that the optimality conditions of the large trader’s problem
are connected to equations (21), (22), and (25), though an invertible linear transformation.
Therefore, we can assume that F(z,y(z)) = 0 consists of equations (21), (22), (25), (23),
and (24).

To show that J,Fi(z,y(x)) is invertible, we use Lemma 1 for the function Fi(z,y(x)).

The “new” (z,y) is the “old” z, the new F(z,y) is Fi(z,y(x)), the new y is the 1 x 4 vector
2

e’

(22), (25), (23), and (24). In Section C.2 we solved Fy(z,y) = 0 for y. Using the results of

of unknowns as, az, g, and ¥, and the new Fy(x,y) = 0 is the 4 x 1 vector of equations

this section, it is easy to check that the matrix J,Fa(x,y) is invertible. Lemma 1 implies

that J,,F(z,y) is invertible if J,Fi(x,y(x)) is invertible. Using the notation of Section
(25), JoF1(z,y(z)) = dGe(ae)/dae > 0. Q.E.D.
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D. Proofs of Propositions 3, 5, and 6

Proof of Proposition 3: We denote by a’ and af, the a. and as that solve (5). We will
show that a} > a® for 02 = 0, and conclude by continuity. We proceed by contradiction
and assume that a} < a. As in Section C.2, we fix a. € (0,1) and define g and ii from
equations (23) and (24), and as from equation (22). Since as < a/(a + @) < 1, there exists
ae > a’ such that a. = as. For this a. we have G.(a.) > 0, since equation G¢(ae.) = 0 has
a unique solution a’ € (0, 1), and the function G.(a.) goes to a strictly positive limit when
ae goes to 1.

Noting that as = a. and ag = asa/«, we have
Ge(ae) = (1 —ae(1+g)) (ae(l — (1 —ac(1+g))e™a— (a(l —a.) — aa)(1 — efrh)) :

Using equation (22), we get

Ge(ae) = (1 — ae(1 4+ g))acaF,
where
1= (1= ac(1+9)2—ac (1+2))e
1= (1= ac(1+9)(1 —ac(1+2))e

= _ _ 2 —rh

=—(1-a. <1+g))e—rh 1—(1—ac(l+g))e _ ‘

a 1= (1= ac(1+9))(1 —ac (1+2))e
Since 1 —a.(1+a/a) = 1—as(1+a/a) € (0,1) and 1—a.(1+g) € (0,1), we have G.(a.) < 0,
a contradiction. Q.E.D.

F=1-(1-ac(l+g))e "™~

Proof of Proposition 5: We first show that if gas — ag > 0, the large trader’s stock

holdings decrease over time. Since a. > as, we have
ae(l+g) —as —ag > gas — ag > 0.

The coefficients of (1 —as—ag)? ¢ and (1 —ae(14¢))* ¢ in equation (30) are thus positive,
and stock holdings decrease over time.

We next show that if gas — ag < 0, stock holdings decrease and then increase over time.
Stock holdings are equal to 1 for ¢ = ¢, and go to ag/(as + ag) < 1 when ¢’ goes to oo.
Their derivative w.r.t. ¢’ changes sign at most once. Therefore, stock holdings decrease
and then increase over time if they increase for large ¢/. We distinguish two cases. If
ae(l14+g) —as—ag > 0, then 1 —ags —ag > 1 —a.(1+ g). Stock holdings are approximately

ag ac(gas — ag)

+ 1—a,—ag)’ "
as+az  (ac(1+g) — as —ag)(as+a5)( )
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for large ¢', and they increase. If a.(1+ g) — as — az < 0, stock holdings are approximately

e Qe — Qg

+ 1—ac(1+9)" ",
as + ag ae(1+g) — Qs _CLE( 6( g))

and they also increase.
We next show that if gas; — ag > 0, the trading rate decreases over time. The trading

rate is
1'[/ :L‘[/

Zﬁ”Zf’ ZTyr €pr_1 — €xo '
Equation (A37) implies that

Tp = ac(ep—1 — Sp—1) + asSp_1 — agCp_1

ac(gas — az)

— -0 ae(1+g)(ae _Gs) (
ac(l+g) —as — ag

1—a.(1 U=t (B45
a1+ g)—as—az ac(1+g9)) (B45)

(1—as—ag)
Using equations (30) and (B45), we can write the trading rate as

gas — az + (1 + g)(ac — as) f(¢)
9as—dg 4 Mf(g/) ’

astag Qe

where )
(1 —ac(1+g)""
(1—as—ag)!~t "

Using the inequalities a. > a5 and a.(1 4+ g) — as — ag > 0, it is easy to check that the

f) =

trading rate increases in f(¢'), and that f(¢') decreases in ¢'. Therefore, the trading rate
decreases over time.
We finally show that if gas —az > 0, the price impact decreases over time. We can write

the expected price change, py_1 — pyr, successively as

h — Az h = A a
(m@m + —e) €p—1 + (QO + —S> sp_1+ —(ep_1 — sp_1)

B B B
h — — _ a
= 1_76_%(@1,3 —Q12)(assp 1 — agep_1) + Ee(ee’—l — 5p_1)
h ae(gas — ag)

= ﬁ(@w —Q12) )é/_g

. (1 —as—ag

ac(1+9g)—as —ag

R ae(gas — ag) Qe -t
+ <_W(Ql’3 - Q1,2)ae(1 Y 9) —as —az E) (I —ac(l4g))" " (B46)

For the first equality we use equation (8) for py and equation (B30) for py_1, for the second
equality we use the optimality conditions (A11) and (A12), and for the third equality we
use equation (A37). Using equations (B45) and (B46), we can write the price impact as

HL—M(QLIS — Q12)(9as — ag) + (‘1_6%(@1,3 - @1,2)(9% —ag) + %) F&)
gas — az + (1 + g)(ac — as) f(¢') '
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The function f(¢') decreases in ¢'. Therefore, the price impact decreases over time if it

increases in f(¢'). It is easy to check that the price impact increases in f(¢') if and only if

1 h

5 m(@m - Q1) >0. (B47)

Substituting 1/B from the optimality condition (A13), we can write inequality (B47) as

h _
m(l +9)Q13 <O0.

This inequality holds as long as @173 < 0. Equations (B21) and (B22) imply that for 2 = 0,
@173 < 0. Therefore, for small o2, @173 < 0. Our numerical solutions confirm that @173 <0

for large o2. Q.E.D.

Proof of Proposition 6: We replace (S’) by an equivalent system (S7), that we obtain as
follows. We set a, = gi)e\/ﬁ, as = ¢sh, ag = ¢eh, and ii = ¢y \/E, and replace the unknowns
Ge, Qs, Az, and ii, by ¢e, ¢s, ¢z, and ¢y. We divide the Bellman conditions of the market
makers’ problem by h, the envelope conditions of the large trader’s problem by /A if they
correspond to Q1,1, Q2,1, and Q3 1, and by h otherwise, and equation (24) of the recursive
filtering problem by h. Finally, we multiply the optimality conditions of the large trader’s

problem by the invertible matrix

-1

ke 0 0

., Al_e—rh
(1 - Ne h)NW ks 1 0
ke 0 1

For 02 = 0, we get equations G./h = Gs/h = Gz/h = 0. We denote by z the vector of
unknowns of (S) and by K(z,02,h) = 0 the vector of equations.

We will use the implicit function theorem for 02 = h = 0. It is easy to check the
following. First, the function K(z,02,h) can be extended by continuity for h = 0, and
is C1. (We use the fact that the matrices R, R!,, and R/, are “of order” h.) Second,
for 02 = h = 0, the optimality conditions of the market makers’ problem, the equations
obtained from the Bellman conditions of the market makers’ problem, and the equations
obtained from the envelope conditions of the large trader’s problem, are linear in Ag/B,
As/B, 1/B, @, and Q, and can be solved in these unknowns. Third, for 02 = h = 0, the
equations obtained from the optimality conditions of the large trader’s problem, equation

(23), and the equation obtained from equation (24), become
(¢e)2(1 + g)a —ra =0,
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r+2¢s(1+ g)

- a+ra=0,
“r+¢s(2+9g) + ¢z
v — ps0 = 0,
¢e by
_ -0
o2 ’

u

and
(pepx)? + 2620y, — 72 = 0,

respectively. Fourth, the ¢., ¢s, ¢e, and gy of the Proposition solve these equations. There-
fore, for 02 = h = 0, we have a solution, zg, to K(z,02,h) = 0. To show that the matrix

J.K(z,0,0) is invertible for z = zy, we proceed as in Section C.3. Q.E.D.
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