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1 Introduction

Why do some assets have a narrow and some a broad investor base? Do assets with a broad base

have different expected returns than assets with a narrow base? Two influential theories characterize

the breadth of ownership and its relationship to expected returns, and yield opposite predictions.

The first theory, formulated by Merton (1987) as the investor-recognition hypothesis, emphasizes

costs of entering asset markets. According to that theory, an asset for which entry costs are high

attracts few investors and trades at a deep discount because of imperfect risk-sharing. Hence, a

narrow investor base indicates an undervalued asset with high expected return. The second theory,

formulated by Miller (1977) and Harrison and Kreps (1978), and further developed by Chen, Hong,

and Stein (2002, CHS), Scheinkman and Xiong (2003), Hong and Stein (2007) and Hong and Sraer

(2016), emphasizes differences in beliefs across investors, combined with short-sale constraints.

According to that theory, large disagreements across investors about an asset’s payoff result in the

asset being held only by the most optimistic investors. Since optimists push the asset price up, a

narrow investor base indicates an overvaluated asset with low expected return.

Some empirical findings are consistent with the entry-cost theory. For example, Hong and

Kacperczyk (2009) find that social norms prevent some institutional investors from holding stocks

in “sin industries” (alcohol, gaming and tobacco), and this raises the stocks’ expected returns. Lou

(2014) finds that increased advertising by firms brings in more investors, raises their stock prices

and lowers their expected returns. Other findings support the differences-in-beliefs theory. CHS

find that stocks with a narrow investor base earn low expected returns in the cross-section. Diether,

Malloy, and Scherbina (2002, DMS) find that stocks for which financial analysts disagree the most

earn low expected returns.

In this paper we show that neither the entry-cost theory nor existing formulations of the

differences-in-beliefs theory can explain the empirical relationship between breadth of ownership

and expected returns. We propose a richer formulation of the differences-in-beliefs theory that

provides an explanation, and argue that existing formulations may overlook the most empirically

relevant dimension of differences in beliefs. We provide direct evidence for our explanation by test-

ing not only for the relationship between breadth and expected returns but also for that between

each of the two variables and investor beliefs.

We show that the empirical relationship between breadth and expected returns changes sign

depending on stock size. For large stocks, a narrow investor base predicts low future returns, con-

sistent with the differences-in-beliefs theory and the findings of CHS. For small stocks, by contrast,

a narrow base predicts high future returns, consistent with the entry-cost theory. Moreover, this

relationship is stronger in absolute value than for large stocks. Our findings for small stocks are
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puzzling for the differences-in-beliefs theory especially because that theory should be more relevant

for small stocks. Indeed, since optimists are better able to absorb a smaller supply, the overval-

uation that they generate should be more severe for small stocks (Hong, Scheinkman, and Xiong

(2006)).

One could argue for a hybrid explanation of the puzzle: the breadth-return relationship is

explained by the differences-in-beliefs theory for large stocks and by the entry-cost theory for small

stocks. We propose instead an explanation that is based only on differences in beliefs. In CHS

and most other papers in the literature, the distribution of investor beliefs is described only by

the intensity of disagreement, as measured by the difference between the beliefs of optimists and

pessimists. We describe the distribution of beliefs by an additional dimension, which we show

is more relevant empirically. This is the extent to which beliefs are polarized, as measured by

the number of optimists and pessimists relative to investors with moderate beliefs. We show that

polarization moves breadth in opposite directions for small and large stocks, and that this causes the

sign of the breadth-return relationship to change with size. Our explanation is more parsimonious

than the hybrid explanation. It is also supported by the direct evidence that we present on the

relationship that investor beliefs have with breadth and expected returns.

In our model, presented in Section 2, there are multiple stocks and a continuum of investors

with different beliefs and short-sale constraints. Beliefs for each stock are described by a general

distribution with finite support. The intensity of disagreement maps to the range of the distri-

bution. The extent of polarization maps to the distribution’s kurtosis. Holding range constant,

higher kurtosis indicates fewer optimists and pessimists relative to moderates. Stocks differ in their

range and kurtosis, as well as in their size, idiosyncratic variance, and exposure to systematic risk.

Only differences in kurtosis and size across stocks suffice, however, to generate our main empirical

hypotheses.

Stocks’ expected returns in equilibrium are negatively related to range and positively to kurtosis.

The effect of range follows the same logic as in CHS and DMS. Stocks for which the range is high

exhibit more disagreement: more extreme positive beliefs by optimists and negative beliefs by

pessimists. Therefore, when short-sale constraints keep pessimists out of the market, optimists

render the prices of these stocks higher than of otherwise identical stocks with less extreme beliefs.

The effect of kurtosis follows a different logic. Stocks for which the kurtosis is low exhibit more

polarization: more optimists and pessimists, and fewer moderates. Therefore, when pessimists

drop out of the market, optimists push the prices of these stocks higher than of otherwise identical

stocks with fewer optimists.

Following CHS, we measure breadth of ownership by the fraction of investors holding a stock.

Breadth is negatively related to range. Indeed, stocks are held only by optimists when optimistic
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beliefs are extreme, and by both optimists and moderates when beliefs are less extreme. The effect

of kurtosis changes sign with size. For small stocks, breadth is negatively related to kurtosis because

these stocks are held only by optimists, and high kurtosis indicates few optimists. For large stocks

instead, breadth is positively related to kurtosis, because these stocks are held by both optimists

and moderates, and high kurtosis indicates few pessimists, who are the only investors not holding

the stocks.

Our theoretical results yield three main empirical hypotheses. Hypothesis 1 concerns the re-

lationship between investor beliefs and expected returns. Expected returns should be negatively

related to range holding kurtosis constant, and positively related to kurtosis holding range constant.

Hypothesis 2 concerns the relationship between investor beliefs and breadth. Holding kurtosis con-

stant, breadth should be negatively related to range. Holding range constant, breadth should be

negatively related to kurtosis for small stocks and positively for large stocks. Hypothesis 3 follows

from Hypotheses 1 and 2, and concerns the relationship between breadth and expected returns.

For large stocks, the effects of range and kurtosis reinforce each other, generating a positive rela-

tionship. For small stocks instead, the effects work in opposite directions, and the relationship is

negative if the effect of kurtosis dominates.

We test the three hypotheses using CRSP data on US stock prices and returns, Thompson

Reuters data on holdings by 13-F institutional investors, and I/B/E/S data on analyst forecasts.

We proxy ownership patterns by those within 13-F investors, computing breadth as the number of

13-F investors holding a stock, divided by the total number of 13-F investors. We proxy investor

beliefs by analyst forecasts, and compute the range and kurtosis of the distribution of forecasts

across analysts. We describe our dataset and empirical measures in Section 3.

Section 4 presents our empirical findings on Hypothesis 3. We perform two related tests, in

which, following CHS, we use the first difference ∆B of breadth rather than the level to account

for the high autocorrelation of breadth and its correlation with size. One test is to regress future

returns on ∆B, its interaction with size, and various controls. The other test is to double-sort

stocks into portfolios based on size and ∆B, and compare the returns and alphas of the high-

relative to the low-∆B portfolio across size groups. Both tests paint a consistent picture: ∆B

predicts negatively the returns of small stocks and positively those of large stocks, with the effect

of ∆B for small stocks being larger in absolute value than the effect for large stocks.

Our findings on Hypothesis 3, shown for annual returns, weaken in statistical significance for

quarterly returns but strengthen for return horizons ranging from two to five years, with the regres-

sion coefficients increasing approximately linearly with horizon. Our findings weaken somewhat in

the first half of the sample. They hold when measuring breadth by the Herfindahl index rather

than by the fraction of investors holding a stock.
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Section 5 presents our empirical findings on Hypotheses 1 and 2. When regressing breadth on

range, kurtosis and the interaction of kurtosis with size, we find that range is negatively related

to breadth and that kurtosis is negatively related to breadth for small stocks and positively for

large stocks. When regressing future returns on range and kurtosis, we find that range predicts

returns negatively and kurtosis predicts them positively. Moreover, the coefficient of kurtosis is

significant for return horizons ranging from one quarter to five years, and increases approximately

linearly with horizon, while the coefficient of range becomes insignificant at horizons of one year

and longer. The effect of kurtosis on expected returns thus seems to dominate that of range at

horizons of one year and longer, a finding that is consistent with the breadth-return relationship

turning negative for small stocks.

Our findings on Hypotheses 1 and 2 remain almost identical when replacing range by standard

deviation, as a measure of the intensity of disagreement. They also remain similar when replacing

kurtosis by a ratio of the number of moderate to extreme forecasts. Range and kurtosis thus appear

to be robust measures of the intensity of disagreement and the extent of polarization, respectively.

Our findings also hold, somewhat more weakly, when truncating the distribution of forecasts by

removing one forecast from each of the two extremes. They also hold when adding the skewness of

the distribution alongside range and kurtosis in the regressions.

A final robustness test, in Section 6, is to perform the analysis at the level of investment styles

rather than individual investors. Our model can be applied to styles by assuming that each style

is held by a disjoint group of investors. The findings in Section 4 become stronger at the level of

styles. This rules out alternative explanations for the relationship between breadth of ownership

and expected returns that apply to the level of investors but not to styles, such as monitoring or

rent extraction by large shareholders, and asymmetric information by corporate insiders.

Our paper is most closely related to CHS. CHS describe the distribution of investor beliefs by

the intensity of disagreement, and find that breadth is positively related to expected returns. We

find instead a negative relationship for small stocks and a weaker positive one for large stocks, and

explain this finding by describing investor beliefs by the intensity of disagreement and the extent of

polarization. Our finding that breadth is negatively related to expected return for small stocks is

consistent with CHS. This is because CHS bunch small stocks together with mid-cap stocks, which

makes the negative relationship for small stocks hard to detect.

DMS examine empirically how the intensity of disagreement relates to expected returns, thus

adopting the same one-dimensional description of beliefs as CHS. Proxying investor beliefs by

analyst forecasts, they find that stocks for which disagreement is large earn low returns. We show

that the effects of the intensity of disagreement on expected returns weaken rapidly as horizon

increases while the effects of the extent of polarization—the new dimension that we introduce—
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remain strong.

Cen, Lu, and Yang (2013, CLY) show theoretically and empirically that the relationship between

breadth and expected returns turns negative during periods when investor sentiment is volatile.

Sentiment in their model is driven by irrational investors who trade with rational arbitrageurs.

During periods when irrational investors become optimistic, breadth increases and expected return

decreases. The variation in the number of optimists is central to our model as well, in the cross-

section rather than the time-series.1

While our model is based on differences in beliefs, it is related to the alternative theory based

on entry costs (Merton (1987)). Small stocks in our model are held only by the optimists, and

variation in the number of optimists could arise from greater awareness about a stock due to lower

entry costs. We take the distribution of investor beliefs as exogenous and do not examine how it

could be affected by entry costs.

Barberis and Shleifer (2003) show that style investing affects asset prices and returns through

the flows of funds across styles. Flows in their model generate return predictability in the form of

momentum, reversal and lead-lag effects. Similar mechanisms are at play with rational investors

in Vayanos and Woolley (2013). Our style-level findings indicate that variables associated to styles

predict stock returns over horizons longer than those of momentum and lead-lag effects. Moreover,

the direction of the predictability switches sign as stock size increases.

2 Theory

We derive our empirical hypotheses from a model in which investors disagree about stocks’ payoffs

and there are short-sale constraints. Stocks can differ in size, riskiness and the distribution of

investor beliefs. Our model’s main results characterize how the distribution of beliefs relates to

expected stock returns and the breadth of ownership, and how these relationships change with

stock size and riskiness.

2.1 Model

There are two periods 0 and 1. There are I + 1 assets, indexed by i = 0, 1, .., I, which pay off in

period 1. Asset 0 is riskless. We take it as the numeraire and set its price in period 0 and its payoff

in period 1 to one. Assets 1, .., I are risky and we refer to them as stocks. Stock i = 1, .., I is in

1Additional papers that find a non-monotone relationship between breadth and expected returns include Choi,
Jin, and Yan (2012) and Cao and Wu (2022). The former paper finds that breadth is positively related to expected
returns when measured based on the holdings of institutional investors, but is negatively related for retail investors.
The latter paper finds an inverted U -shaped relationship between changes in breadth and expected returns.
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supply of θi > 0 shares, trades at price Si per share in period 0, and pays dividend

biD +Di (2.1)

per share in period 1. The term biD is a systematic component, equal to the product of a factor D

that is common to all stocks, times stock i’s sensitivity bi to the factor. The term Di is an idiosyn-

cratic component specific to stock i. The factor D and the idiosyncratic components {Di}i=1,..,I

are given by

D = D̄ + η, (2.2)

Di = D̄i + ηi, (2.3)

where (D̄, {D̄i}i=1,..,I) are positive constants and (η, {ηi}i=1,..,I) are independent, normally dis-

tributed random variables with mean zero and variances (σ2, {σ2i }i=1,..,I). Setting the means of

(η, {ηi}i=1,..,I) to zero is without loss of generality because we can redefine (D̄, {D̄i}i=1,..,I). We

assume that (D̄, {D̄i}i=1,..,I) are large enough so that equilibrium prices are always positive. We

define the return of stock i as biD+Di−Si
Si

and the stock’s expected return as biD̄+D̄i−Si
Si

.

There is a mass one continuum of competitive investors indexed by n ∈ [0, 1]. All investors have

CARA utility with risk-aversion coefficient a. Different investors hold different opinions about the

dividends of each stock. We assume that investors agree on the systematic component but disagree

on the idiosyncratic component. Investor n believes that the mean of the idiosyncratic component

for stock i is D̄i + ϵi(n) instead of the true value D̄i. We assume that the function n → ϵi(n) is

measurable and refer to ϵi(n) as the belief of investor n for stock i. We refer to investors with

ϵi(n) > 0 as optimists for stock i and to investors with ϵi(n) < 0 as pessimists. We denote by xi(n)

the number of shares of stock i held by investor n. Investors are subject to short-sale constraints:

xi(n) must be non-negative.

2.2 Equilibrium

Using CARA utility, the dividends’ one-factor structure (2.1)-(2.3), and the dividends’ normality,

we can write the maximization problem of investor n in the mean-variance form

max
{xi(n)}i=1,..,I

xi(n)≥0

I∑
i=1

(
biD̄ + D̄i + ϵi(n)− Si

)
xi(n)−

a

2

σ2( I∑
i=1

bixi(n)

)2

+
I∑
i=1

σ2i xi(n)
2

 .
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The first-order condition for stock i is

biD̄ + D̄i + ϵi(n)− Si − biλ(n)− aσ2i xi(n) = 0 if xi(n) > 0, (2.4)

biD̄ + D̄i + ϵi(n)− Si − biλ(n)− aσ2i xi(n) ≤ 0 if xi(n) = 0, (2.5)

where λ(n) ≡ aσ2
∑I

j=1 bjxj(n). Using (2.4) and (2.5), we can write the investor’s demand for

stock i as

xi(n) = max

{
biD̄ + D̄i + ϵi(n)− Si − biλ(n)

aσ2i
, 0

}
. (2.6)

Demand is positive if the investor’s expectation biD̄ + D̄i + ϵi(n) of the stock’s dividend, minus a

premium biλ(n) for systematic risk, exceeds the stock’s price Si. The premium for systematic risk

is the product of the stock’s sensitivity bi to the factor, times a factor premium λ(n). The factor

premium λ(n) is investor-specific and equal to the product of the investor’s risk aversion a, times

the variance σ2 of the factor, times the investor’s portfolio sensitivity
∑I

j=1 bjxj(n) to the factor.

Aggregating across investors and using market clearing∫ 1

0
xi(n)dn = θi, (2.7)

we find that the equilibrium price Si of stock i solves∫ 1

0
max

{
biD̄ + D̄i + ϵi(n)− Si − biλ(n)

aθiσ2i
, 0

}
dn = 1. (2.8)

Solving for equilibrium amounts to solving for stock prices {Si}i=1,..,I and factor premia {λ(n)}n∈[0,1].

We solve for the equilibrium assuming that the factor premia {λ(n)}n∈[0,1] are equal across

investors. Equality of the factor premia simplifies the equilibrium considerably because the holdings

of a stock i by an investor n depend only on the investor’s belief ϵi(n) for that stock and not on

the beliefs for the other stocks. This rules out situations such as a stock being held mostly by its

pessimists because its optimists hold larger average positions across the other stocks.

The factor premia {λ(n)}n∈[0,1] differ across investors if investors differ in their average optimism

across stocks. This is because investors with higher average optimism hold larger average positions

in stocks relative to less optimistic investors. Even if investors have the same average optimism,

factor premia differ across investors if investors differ in the correlation, in the cross-section of

stocks, between their optimism and that of other investors. This is because investors who are

optimists for stocks for which most other investors are pessimists hold larger average positions

relative to investors whose optimism correlates positively with that of other investors. In both
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cases (differences in average optimism or in optimism correlation) investors holding larger average

positions are more exposed to the factor and have larger factor premia λ(n). Therefore, they hold

smaller positions in a given stock i relative to investors with smaller average positions but same

belief for stock i.

Proposition 2.1 characterizes the equilibrium when the factor premia {λ(n)}n=1,..,N are equal

across investors. In Appendix A, which contains the proof of Proposition 2.1 and of all subsequent

theoretical results, we show that factor premia are equal across investors under either one of two

sufficient conditions. The first condition is that investors can trade an additional asset I + 1

whose payoff in period 1 is the factor D. Asset I + 1 is in zero supply, can be traded without

short-sale constraints, and can be interpreted as a futures contract on an aggregate market index.

Because investors hold the same belief on the factor, trading the factor equalizes factor premia

across investors. The second condition is that investors are symmetric in their beliefs across stocks

in the sense that (i) for each stock i the function n → ϵi(n) takes values in a finite set and (ii) for

each permutation within that set there exists one stock i′ that shares the same other characteristics

(θi, bi, σi) as stock i and is such that the function n → ϵi′(n) is obtained from n → ϵi(n) through

that permutation. Symmetry ensures that investors are identical in their average optimism across

stocks and in the correlation between their optimism and that of other investors.

Proposition 2.1. Suppose that in equilibrium the factor premia {λ(n)}n=1,..,N are equal across

investors. The price Si of stock i is

Si = biD̄ + D̄i − aσ2bi

I∑
j=1

bjθj + aθiσ
2
i ϕi, (2.9)

where ϕi is the unique solution of∫ 1

0
max

{
ϵi(n)

aθiσ2i
− ϕi, 0

}
dn = 1. (2.10)

Holdings for stock i depend only on investor beliefs for that stock, and are given by

xi(n) = max

{
ϵi(n)

aσ2i
− θiϕi, 0

}
(2.11)

for investor n.

The equilibrium price Si of stock i is equal to the stock’s expected dividend, minus a pre-

mium aσ2bi
∑I

j=1 bjθj for systematic risk, plus a term aθiσ
2
i ϕi that captures the joint effects of

investor disagreement and idiosyncratic risk. The premium for systematic risk is the product of the

8



stock’s sensitivity bi to the factor, times the common value of the investor-specific factor premia

{λ(n)}n∈[0,1]. The common value of {λ(n)}n∈[0,1] is derived by multiplying investor risk aversion a,

times factor variance σ2, times portfolio sensitivity to factor risk. Portfolio sensitivity is
∑I

j=1 bjθj ,

the same as if each investor in the mass one continuum were holding the supply of each stock.

The term aθiσ
2
i ϕi, which captures how investor disagreement and idiosyncratic risk impact the

price of stock i, is central to our analysis. We determine how it depends on the distribution of

investor beliefs in Section 2.3. Using aθiσ
2
i ϕi, we also determine how the distribution of beliefs

impacts the breadth of ownership of stock i.

2.3 Expected Returns and Breadth of Ownership

We perform two comparative statics on the distribution of investor beliefs. Comparative static (I)

concerns the Intensity of investor disagreement, which we measure by the range of the distribution

of analysts’ forecasts in our empirical analysis. Comparative static (P) concerns the extent to which

beliefs are Polarized, which we measure by the kurtosis of the distribution of analysts’ forecasts.

We describe the distribution of investor beliefs for stock i by its cumulative distribution function

Fi(ϵ) ≡ L{n : ϵi(n) ≤ ϵ},

where L is the Lebesgue measure on the set R of real numbers. We denote the mean of that

distribution by µi. For both comparative statics, we compare two stocks i and i′ that differ in the

distribution of investor beliefs but share the same mean µi of that distribution and the same other

characteristics (θi, bi, D̄i, σi). For comparative static (I), we assume that the distribution for stock

i′ is derived from the distribution for stock i by spreading the latter uniformly around its mean by

a factor χ > 1. This amounts to assuming

Fi′(ϵ+∆ϵ)− Fi′(ϵ) = Fi

(
µi +

1

χ
(ϵ+∆ϵ− µi)

)
− Fi

(
µi +

1

χ
(ϵ− µi)

)
(2.12)

for all ϵ and ∆ϵ > 0. Intensity of disagreement is larger for stock i′ than for stock i. For comparative

static (P), we assume that the distribution for stock i′ is derived from the distribution for stock i

by reducing probability mass uniformly for all values by a factor ψ ∈ (0, 1) and adding mass ψ to

the mean µi as an atom. This amounts to assuming

Fi′(ϵ+∆ϵ)− Fi′(ϵ) = ψ [Fi(ϵ+∆ϵ)− Fi(ϵ)] (2.13)

for all ϵ and ∆ϵ > 0 such that ϵ > µi or ϵ+∆ϵ < µi. Polarization of beliefs is smaller for stock i′

than for stock i.
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Lemma 2.1 determines how the range, standard deviation and kurtosis of the distribution of

investor beliefs for stock i′ compare to their counterparts for stock i. We assume that the distribu-

tion for stock i has finite support, so that the range is finite. This assumption also ensures finite

standard deviation and kurtosis.

Lemma 2.1. Suppose that the distribution of investor beliefs for stock i has finite support.

� Under comparative static (I), the range and standard deviation of the distribution of investor

beliefs for stock i′ are equal to χ times their counterparts for stock i. The kurtosis for stock

i′ is equal to that for stock i.

� Under comparative static (P), the range of the distribution of investor beliefs for stock i′

is equal to that for stock i. The standard deviation for stock i′ is equal to
√
ψ times its

counterpart for stock i, and the kurtosis for stock i′ is equal to 1
ψ times its counterpart for

stock i.

Under comparative static (I), the distribution of investor beliefs for stock i′ has higher range and

standard deviation than the distribution for stock i because it is derived by spreading out the latter

around its mean. Since the spreading is uniform, the kurtosis is equal across the two distributions.

Under comparative static (P), the distribution for stock i′ has lower standard deviation than the

distribution for stock i because probability mass shifts to the mean. Since the probability of all

values other than the mean decreases by the same percentage, the variance and the fourth central

moment decrease by that percentage. Since kurtosis is the ratio of the fourth central moment to

the square of the variance, it is higher for the stock i′ distribution than for the stock i one. The

range is equal across the two distributions because they have the same support.

Because comparative static (I) changes the range but not the kurtosis, while comparative static

(P) changes the kurtosis but not the range, we identify the former with the range and the latter

with the kurtosis in our empirical analysis. Thus, an increase in the intensity of disagreement, as

when switching from stock i to stock i′ under comparative static (I), corresponds to an increase in

the range holding the kurtosis constant. Conversely, a decrease in the extent to which beliefs are

polarized, as when switching from stock i to stock i′ under comparative static (P), corresponds to

an increase in the kurtosis holding the range constant. We do not use the standard deviation in

our empirical analysis because it changes under both comparative statics and could thus reflect the

effect of both.

Proposition 2.2 determines how the price and expected return of stock i′ compare to their coun-

terparts for stock i. We denote the supremum and the infimum of the support of the distribution
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of investor beliefs for stock i by ϵi and ϵi, respectively.

Proposition 2.2. Suppose that in equilibrium the premia {λ(n)}n=1,..,N are equal across investors,

and that the distribution of investor beliefs for stock i has finite support.

� Under comparative static (I), stock i′ trades at a higher price and earns lower expected return

than stock i when

µi − ϵi′

aθiσ2i
> 1. (2.14)

When instead (2.14) is violated, price and expected return are equal across the two stocks.

� Under comparative static (P), stock i′ trades at a lower price and earns higher expected return

than stock i when (2.14) holds. When instead (2.14) is violated, price and expected return are

equal across the two stocks.

Under comparative static (I), stock i′ trades at a higher price and earns lower expected return

than stock i, except when the short-sale constraint for the two stocks does not bind for any investor,

in which case price and expected return are equal across the two stocks. Thus, when the constraint

binds, an increase in the range of the distribution of investor beliefs, holding the kurtosis constant,

raises stock prices and lowers stock expected returns. As in Miller (1977), Harrison and Kreps

(1978), CHS, Scheinkman and Xiong (2003), Hong and Stein (2007) and Hong and Sraer (2016),

when investor beliefs about a stock become more spread out, some pessimists drop out, and the

stock’s price rises because it is driven by the optimists to a larger extent.

Under comparative static (P), stock i′ trades at a lower price and earns higher expected return

than stock i, except when the short-sale constraint for the two stocks does not bind for any investor,

in which case price and expected return are equal across the two stocks. Thus, when the constraint

binds, an increase in the kurtosis of the distribution of investor beliefs, holding the range constant,

lowers stock prices and raises stock expected returns. The intuition is that when investor beliefs

about a stock become less polarized, the stock’s price drops because it is driven by the optimists

to a smaller extent.

Condition (2.14) ensures that the short-sale constraint for stock i′ binds for some investors. To

derive that condition, we note that when the short-sale constraint for stock i′ does not bind for any

investor, (2.10) implies

∫ 1

0

(
ϵi

aθiσ2i
− ϕi′

)
dn = 1 ⇒ µi

aθiσ2i
− ϕi′ = 1 ⇒ ϕi′ =

µi
aθiσ2i

− 1. (2.15)

11



The short-sale constraint for stock i′ does not bind for any investor if it does not bind for the

stock’s most pessimistic investors. Substituting (2.15) into (2.11) for ϵi(n) = ϵi, we find that the

latter condition becomes

ϵi′

aθiσ2i
− ϕi ≥ 0 ⇔ ϵi′

aθiσ2i
−
(

µi
aθiσ2i

− 1

)
≥ 0 ⇔ µi − ϵi′

aθiσ2i
≤ 1, (2.16)

which is the opposite to (2.14). If (2.16) holds, then the short-sale constraint does not bind for

both stocks i and i′ (i.e., not only for stock i′) because the range of the distribution of investor

beliefs for stock i′ is higher than or equal to that for stock i.

The intuition for (2.14) is that the most pessimistic investors for stock i′ drop out of that stock

if the difference between their belief ϵi′ and the average belief µi is sufficiently large relative to the

stock’s supply θi and idiosyncratic variance σ2i . The pessimists’ reward from holding the stock is

the premium from bearing the stock’s idiosyncratic risk. When (2.14) holds, that reward is small

relative to their pessimistic belief.

Proposition 2.3 determines how the breadth of ownership of stock i′ compares to its counterpart

for stock i. We define breadth as the fraction of investors holding a stock. The breadth for stock i

is

Bi ≡ L{n : xi(n) > 0}. (2.17)

Proposition 2.3. Suppose that in equilibrium the premia {λ(n)}n=1,..,N are equal across investors,

and that the distribution of investor beliefs for stock i has finite support.

� Under comparative static (I), the breadth of ownership of stock i′ is not larger than the breadth

of stock i when (2.14) holds, and is strictly smaller when in addition Fi(ϵ) increases in ϵ ∈
[ϵi, ϵi]. When instead (2.14) is violated, breadth is equal across the two stocks.

� Under comparative static (P), stock i′ has smaller breadth of ownership than stock i when

ϕi′ ≥
µi

aθiσ2i
, (2.18)

(2.14) holds, and Fi(ϵ) has a density fi(ϵ) in [µi, ϵi] that is positive and non-decreasing in ϵ.

When instead

ϕi <
µi

aθiσ2i
, (2.19)

and (2.14) holds, stock i′ has larger breadth than stock i. When finally (2.14) is violated,
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breadth is equal across the two stocks. Moreover, there exist thresholds Θ∗
ψ < Θ∗

1 such that

(2.18) holds for θiσ
2
i ≤ Θ∗

ψ and (2.19) holds for θiσ
2
i > Θ∗

1.

Under comparative static (I), stock i′ has smaller breadth of ownership than stock i, except

when (i) the short-sale constraint for the two stocks is not binding for any investor, in which case

breadth is equal across the two stocks, or (ii) the distribution of investor beliefs has gaps (zero-

probability intervals) in [ϵi, ϵi], in which case equality can also hold. Thus, barring the equality

cases, an increase in the range of the distribution of investor beliefs, holding the kurtosis constant,

lowers breadth of ownership. As in Miller (1977), Harrison and Kreps (1978), CHS, Scheinkman

and Xiong (2003), Hong and Stein (2007) and Hong and Sraer (2016), when the distribution of

investor beliefs about a stock becomes more spread out, some pessimists drop out and breadth

decreases.

Under comparative static (P), the comparison between the breadth of ownership of stocks i and

i′ depends on their size. If the stocks are large (large number of shares θi), then the breadth of stock

i′ exceeds that of stock i. If instead the stocks are small (small θi), then the comparison reverses

under the sufficient condition that the distribution of investor beliefs has a density in [µi, ϵi] that

is positive and non-decreasing. Both comparisons require that the short-sale constraint binds for

some investors, otherwise breadth is equal across the two stocks. Thus, when the constraint binds,

an increase in the kurtosis of the distribution of investor beliefs, holding the range constant, has a

non-monotone effect on breadth: breadth decreases for small stocks and increases for large stocks.

The non-monotonicity result is central to our theory and empirical analysis.

The intuition for the non-monotonicity is as follows. An increase in the kurtosis, holding the

range constant, corresponds to an increase in the fraction of investors with moderate beliefs and a

corresponding decrease in the fraction of optimists and pessimists. Small stocks are held only by

optimists because the pessimists’ reward from bearing the stocks’ idiosyncratic risk is small relative

to their pessimistic belief. Since the fraction of optimists is larger for a small stock i than for a

stock i′ with less polarized beliefs and same other characteristics, stock i has higher breadth. By

contrast, large stocks are held by both optimists and moderates. Since the fraction of pessimists is

larger for a large stock i than for a stock i′ with less polarized beliefs and same other characteristics,

stock i has a smaller combined fraction of optimists and moderates, and thus has lower breadth.

Condition (2.19) ensures that “perfect” moderates, with beliefs right at the mean µi of the

distribution, hold stock i. The condition follows by setting ϵi(n) = µi in (2.11). It ensures that

perfect moderates hold stock i′ (as well as stock i). This is because Proposition 2.2 implies that

stock i′ is cheaper than stock i due to its less polarized distribution of beliefs. Condition (2.19)

holds when stocks i and i′ are large (large θi) or have high idiosyncratic variance (large σ2i ). In
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both cases, the reward from bearing the stocks’ idiosyncratic risk is sufficiently large to induce the

moderates to hold the stocks.

Condition (2.18) conversely ensures that perfect moderates do not hold stock i′. Since Propo-

sition 2.2 implies that stock i′ is cheaper than stock i, Condition (2.18) also ensures that perfect

moderates do not hold stock i. Condition (2.18) holds when stocks i and i′ are small (small θi) or

have low idiosyncratic variance (small σ2i ). For Condition (2.18) to imply larger breadth for a small

stock with more polarized beliefs, an additional condition on the distribution of investor beliefs

is required. Intuitively, a stock with more polarized beliefs has a larger fraction of optimists, but

because it trades at a higher price, some of the non-extreme optimists drop out. The first effect

dominates, causing breadth to increase, when the distribution of investor beliefs has a density in

ϵ ∈ [µi, ϵi] that is non-decreasing in ϵ, ensuring that there are sufficient extreme optimists relative

to non-extreme ones. The condition on the density can be dispensed with when stocks i and i′ are

so small so that they are held only by extreme optimists.

Proposition 2.4 examines how breadth depends on size. The breadth of a stock i is compared to

that of a stock i′ that is in larger number of shares θi′ > θi and has the same other characteristics

(bi, D̄i, σi, Fi(ϵ)).

Proposition 2.4. Suppose that in equilibrium the premia {λ(n)}n=1,..,N are equal across investors,

and that the distribution of investor beliefs for stock i has finite support. The breadth of ownership of

stock i′ that is in larger number of shares θi′ > θi than stock i and has the same other characteristics

(bi, D̄i, σi, Fi(ϵ)) is not smaller than the breadth of stock i when

µi − ϵi
aθiσ2i

> 1 (2.20)

holds, and is strictly larger when in addition Fi(ϵ) increases in ϵ ∈ [ϵi, ϵi]. When instead (2.20) is

violated, breadth is equal across the two stocks.

Stock i′ has larger breadth than stock i, except when (i) the short-sale constraint for the two

stocks is not binding for any investor, in which case breadth is equal across the two stocks, or (ii)

the distribution of investor beliefs has gaps in [ϵi, ϵi], in which case equality can also hold. Thus,

barring the equality cases, breadth is larger for larger stocks. This is because the reward from

bearing idiosyncratic risk is larger for larger stocks, and thus investors with a wider set of beliefs

are drawn to hold them.

Using Propositions 2.2-2.4, we derive our empirical hypotheses. Our first hypothesis follows

from Proposition 2.2 and concerns the relationship that range and kurtosis have with expected
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returns.

Hypothesis 1 (Investor beliefs and expected returns). Expected returns are predictable from

the range and the kurtosis of the distribution of investor beliefs as follows:

� Expected returns are negatively related to range.

� Expected returns are positively related to kurtosis.

Our second hypothesis follows from Proposition 2.3 and concerns the relationship that range

and kurtosis have with breadth.

Hypothesis 2 (Investor beliefs and breadth of ownership). Breadth of ownership is related

to the range and the kurtosis of the distribution of investor beliefs as follows:

� Breadth is negatively related to range.

� Breadth is negatively related to kurtosis for small stocks. The relationship turns positive for

large stocks.

Our third hypothesis, which we term Hypothesis 2a because it relates to Hypothesis 2, concerns

the relationship between stock size and breadth. The monotonicity of this relationship follows from

Proposition 2.4. The cross-effect with kurtosis follows from Hypothesis 2.

Hypothesis 2a (Stock size and breadth of ownership). Breadth of ownership is increasing in

stock size. The effect of size on breadth is stronger for stocks with a high kurtosis of the distribution

of investor beliefs.

Our final hypothesis concerns the relationship between breadth and expected returns. Variation

in the range of the distribution of investor beliefs generates a positive relationship between breadth

and expected returns, as in CHS. This is because range is negatively related to breadth (Hypothesis

2) and to expected returns (Hypothesis 1). Variation in the kurtosis of the distribution of investor

beliefs generates a negative relationship between breadth and expected returns for small stocks and

a positive relationship for large stocks. This is because kurtosis is negatively related to breadth for

small stocks and positively related to it for large stocks (Hypothesis 2) and is positively related to

expected returns (Hypothesis 1). The effects of range and kurtosis reinforce each other for large

stocks, generating a positive relationship between breadth and expected returns. The effects work
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in opposite directions for small stocks. Assuming that the effect of kurtosis dominates that of range,

the relationship between breadth and expected returns is negative for small stocks.

Hypothesis 3 (Breadth of ownership and expected returns). Expected returns are pre-

dictable from the breadth of ownership as follows:

� Expected returns are negatively related to breadth for small stocks.

� Expected returns are positively related to breadth for large stocks.

3 Data Sources and Variables

Our sample consists of common stocks (codes 10 and 11 of CRSP) trading on NYSE, NASDAQ

and AMEX between the first quarter of 1980 and the fourth quarter of 2018. The frequency of

the sample is quarterly. The length and frequency of the sample are driven by the availability of

the ownership data. Ownership data pertaining to investment styles are available only between

the first quarter of 1997 and the fourth quarter of 2015, so our analysis of style-level ownership is

limited accordingly.

3.1 Stock Returns

We source data on stock prices, stock returns including dividends, trading volume, and number of

outstanding shares from CRSP. We calculate a stock’s return over any given horizon by compound-

ing the stock’s monthly returns during that horizon. We measure a stock’s size in any given quarter

by market capitalization, which we calculate by multiplying the stock’s share price at the end of

the quarter times the number of outstanding shares on the same day. We define small stocks as

those with size below the 30th percentile of our sample, mid-cap stocks as those with size between

the 30th and the 70th percentile, and large stocks as those with size above the 70th percentile.

We construct a number of stock-level variables that we use as controls. These include idiosyn-

cratic volatility, market beta, book-to-market ratio, momentum and turnover. We calculate market

beta and idiosyncratic volatility in any given quarter using a within-quarter time-series regression

of daily excess stock returns over the riskless rate on the daily market excess return. Idiosyncratic

volatility is the standard deviation of the regression residuals. If more than ten observations are

missing within the quarter, then we treat the market beta and idiosyncratic volatility observations

as missing. We source the riskless rate and the market return from Kenneth French’s website.

We source the ratio of book value of equity to market value from the Financial Ratios Suite of

WRDS. WRDS calculates the book-to-market ratio on a quarterly basis and lags all observations
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by two months to ensure no look-ahead biases. We construct our momentum variable in any given

quarter by compounding monthly returns during the nine-month period ending at the end of the

quarter. We construct turnover in any given month by dividing the number of shares traded in

that month by the total outstanding shares in the same month. Because reported share volume

is estimated differently by NYSE/AMEX and NASDAQ (Atkins and Dyl (1997)), with the latter

roughly double-counting, we divide NASDAQ share volume by two (Nagel (2005)).

3.2 Institutional Ownership

We source data on institutional ownership from Thomson Reuters (TR). That data are derived

from institutional investors’ 13-F filings. Institutional investors with more than $100 million in

assets are required to report their stock-level holdings to the SEC on a quarterly basis, within 45

days from the end of the quarter.

We use two different databases of TR. From the first database, TR Stock Ownership, available

in WRDS, we source the number of 13-F institutional investors who hold any given stock, the

total number of 13-F investors, the fraction of the stock held by all 13-F investors, and the stock’s

Herfindahl indexH. The fraction of the stock held by all 13-F investors, which we term institutional

ownership (IO), is calculated by dividing the number of shares held by all 13-F investors by the total

number of outstanding shares of the stock. The Herfindahl index H is calculated by dividing the

number of shares held by a given 13-F investor by the number of shares held by all 13-F investors,

squaring that fraction, and summing across investors. We use H as an alternative measure of

breadth of ownership in robustness tests.

The second database, Thomson Eikon, groups 13-F institutional investors into investment styles

based on their portfolio characteristics and/or their business type. From that database, we source

the number of investment styles that hold any given stock and the fraction of the stock held by each

style. In our sample, stocks are held by 32 different styles. The 32 styles include seventeen general

styles (e.g. aggressive growth, core growth, core value, deep value, index, etc) and fifteen hedge

fund styles. Appendix B provides more details on the styles and the TR classification procedure.

We construct Breadth B and Herfindahl index H at the investor and at the style level. The

investor-level variables are calculated as follows. Breadth for stock i and quarter t is the number of

13-F investors who hold the stock in that quarter, divided by the total number of 13-F investors in

the same quarter. Herfindahl Index for stock i in quarter t is calculated by TR as described above.

The style-level variables are calculated as follows. Breadth for stock i and quarter t is the number

of different styles that hold the stock in that quarter. (We do not divide by the total number of

styles as it is constant over time in our sample.) The Herfindahl Index for stock i and quarter t is
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calculated by dividing the number of shares of the stock held by any given style by the number of

shares held by all styles, squaring that fraction, and summing across styles.

In some of our tests we use changes in Breadth B and Herfindahl index H, rather than levels.

We calculate the change ∆B in Breadth for stock i and quarter t as the percentage change in the

number of 13-F investors who hold the stock in quarter t − 1 and in quarter t, considering only

investors present in the TR database in both quarters. This calculation follows CHS. We calculate

analogously the change ∆H in Herfindahl index.

3.3 Analyst Forecasts

We source data on analyst forecasts from the Detail History file of the I/B/E/S database, which

is provided by TR. The data cover the period between the second quarter of 1982 and the fourth

quarter of 2018. We use analyst forecasts for earnings per share (EPS) one fiscal year ahead (FY1).

Following DMS, we consider a forecast as active during its publication month and all subsequent

months until a revision is published by the same analyst or the earnings data are released. We use

the forecast in the last month of any given quarter as the quarterly value of the forecast.

Following DMS, we standardize forecasts for any given stock and quarter by dividing them by the

absolute value of the mean forecast at the end of the quarter. This allows us to express the dispersion

in forecasts in relative terms: a given dispersion in dollar terms is more significant economically

when EPS is low. It also helps us avoid omitted variable problems: not standardizing can confound

the effects of range and kurtosis with the effect of the level of earnings, while standardizing by

lagged price can confound the same effects with the effect of the earnings-to-price ratio.

We calculate the range, standard deviation, skewness and kurtosis of the standardized forecasts.

We calculate the range as the maximum minus the minimum. We calculate the standard deviation,

skewness and kurtosis with finite sample corrections to avoid a mechanical relationship between

them and the number of analysts.2 The finite sample corrections require a sample size of at least

four (two for standard deviation, three for skewness and four for kurtosis). We thus include in our

2We calculate standard deviation as
√

n
n−1

√
m2, skewness as√

n(n− 1)

n− 2

m3

m
3
2
2

(https://www.mathworks.com/help/stats/skewness.html) and kurtosis as

n− 1

(n− 2)(n− 3)

[
(n+ 1)

m4

m2
2

− 3(n− 1)

]
+ 3

(https://www.mathworks.com/help/stats/kurtosis.html), where n is the sample size (number of analysts), m2 is
the sample variance, m3 is the sample third central moment and m4 is the sample fourth central moment. Without
the finite sample corrections, standard deviation is

√
m2, skewness is

m3

m
3
2
2

and kurtosis is m4

m2
2
.
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analysis only stock/quarter observations with at least four analysts. Not applying the finite sample

corrections strengthens our results.

Dividing forecasts by the absolute value of the mean forecast can generate inflated standardized

forecasts, and thus an inflated value of the range and standard deviation, when the mean forecast

is close to zero. We mitigate the effects of inflated values by mapping observations into deciles.

Following Nagel (2005), we transform range, standard deviation, skewness and kurtosis into deciles

across the population of stocks in any given quarter, and normalize the units so that the smallest

decile corresponds to zero and the largest to one. We perform the same transformation for most

other variables in our regressions. The decile transformation removes any time trends from our

regression results.

We update the values of range, standard deviation, skewness and kurtosis each quarter. We do

the same for the ownership variables B, H and IO, and for the changes ∆B, ∆H and ∆IO, as

well as for momentum. For size, share price, idiosyncratic volatility, market beta, book-to-market

ratio and turnover, we update the values at the end of the second quarter of each year. Our results

remain similar when updating the values of these variables quarterly rather than annually.

3.4 Sample Size

The full sample includes stock/quarters for which the following criteria are met. There should be

data on the return, size and IO of the stock during the quarter. There should additionally be data

on the breadth B of the stock during the quarter and the previous quarter, so that we can compute

the change ∆B. Finally, the IO of the stock during any of the five quarters surrounding quarter t

(quarters t−2, t−1, t, t+1 and t+2) should not exceed 100%. These criteria leave us with a total

of 19311 stocks, 621688 stock/quarters, and an average of 4117 stocks per quarter. When using

additional controls, the number of stock/quarters drops to a minimum of 520719 and the average

number of stocks per quarter drops to a minimum of 3448.

We additionally report results for a more restricted sample in which we include a stock/quarter

if the IO of the stock during the quarter, the two previous quarters and the two subsequent

quarters is larger or equal than 30%. We impose this criterion because we measure B as the

fraction of 13-F investors holding a stock, and that fraction can become an imprecise measure of

how widely the stock is held across all investors (including non-13-F ones) for low values of IO.

Imposing the IO ≥ 30% criterion reduces our sample to 265296 stock/quarters, and an average of

1757 stocks per quarter. When using additional controls, the number of stock/quarters drops to a

minimum of 245779 and the average number of stocks per quarter drops to a minimum of 1628. The

excluded stock/quarters with the IO ≥ 30% criterion constitute 91% of the total stock/quarters

19



corresponding to small stocks, 59% of those corresponding to mid-cap stocks, and 24% of those

corresponding to large stocks. The results for the IO ≥ 30% sample are generally similar to those

for the main sample.

In Section 5, where we use data on analyst forecasts, the sample is reduced to 183215 stock/quarters

(147034 for IO ≥ 30%). This is because we exclude stock/quarters with fewer than four analysts.

The excluded stock/quarters constitute 99% of the total stock/quarters corresponding to small

stocks, 81% of those corresponding to mid-cap stocks, and 30% of those corresponding to large

stocks. When using additional controls, the number of stock/quarters drops to a minimum of

176574 (143191 for IO ≥ 30%).

3.5 Descriptive Statistics

Table I presents descriptive statistics of breadth B, the change ∆B in breadth, the range of the

distribution of analyst forecasts, the kurtosis of that distribution, and the number of analysts. We

report statistics over the full sample and over the subsamples of stock/quarters involving small,

mid-cap and large stocks. The mean of B across the full sample is 4.55%, meaning that the

average stock is held by only 4.55% of 13-F investors. Consistent with Hypothesis 2a, there is a

strong positive relationship between B and size. The mean of B for small stocks is 0.50%, for

mid-cap stocks is 2.06% and for large stocks is 11.55%. In the subsample of stock/quarters where

institutional ownership IO exceeds 30%, the mean of B rises to 8.55%, reflecting the higher fraction

of large stocks in that subsample.

4 Breadth of Ownership and Expected Returns

In this section we test Hypothesis 3, which concerns the relationship between breadth B and

expected returns. The tests in this section provide only indirect evidence on how investor beliefs

and disagreement affect breadth and expected returns. They do not require, however, proxies of

beliefs, which can be noisy.

4.1 Main Results

Tables II and III present our main tests of Hypothesis 3. In these tables we use the change ∆B

in B, rather than the level. This is because B is highly autocorrelated (first-order autocorrelation

is 0.997) and highly correlated with size (correlation of breadth and size deciles is 0.904). Hence,

using levels may confound the effects of B on returns with the effects of size. CHS use ∆B rather

than B for similar reasons. In robustness tests in Table V we report results using B rather than
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Table I: Descriptive statistics of breadth, range and kurtosis

Panel A: Full Sample Panel B: IO ≥ 30%

Full Small Mid-cap Large Full Small Mid-cap Large

Breadth (B)

mean 4.55% 0.50% 2.06% 11.55% 8.55% 1.06% 3.02% 13.24%

stdev 7.54% 0.41% 1.36% 10.43% 9.60% 0.55% 1.28% 10.77%

∆B

mean 0.06% 0.01% 0.05% 0.12% 0.10% 0.02% 0.06% 0.13%

stdev 0.59% 0.20% 0.36% 0.96% 0.67% 0.19% 0.37% 0.85%

Range

mean 45.16% 82.32% 63.44% 38.40% 41.15% 83.27% 59.10% 35.74%

stdev 123.28% 164.95% 152.34% 110.05% 116.04% 165.87% 146.06% 104.83%

Kurtosis

mean 4.16 3.54 3.73 4.32 4.23 3.54 3.75 4.38

stdev 3.07 2.68 2.70 3.17 3.11 2.57 2.67 3.21

Number of analysts

mean 9.53 4.67 5.64 10.93 10.04 4.78 5.78 11.30

stdev 5.91 1.11 2.13 6.19 6.09 1.15 2.18 6.29

Number of observations

B/∆B 621688 178971 250215 192502 265296 16272 102398 146626

Range/Kurt. 183215 1694 46496 135025 147034 754 32547 113733

Note: Mean and standard deviation of breadth B, the change ∆B in B, the range of the distribution of analyst
forecasts, the kurtosis of that distribution, and the number of analysts. Panel A reports statistics for the full sample,
broken down by size. Panel B reports statistics for the subsample where institutional ownership IO exceeds 30%.

∆B.

Table II presents results from pooled OLS regressions of stock returns in the year formed by

quarters t + 1 to t + 4 on ∆B in quarter t and on its interaction with size in the same quarter.

As controls we include size, IO, and quarterly dummies to control for time fixed effects. In the

specifications termed “Extra controls” we additionally include share price, idiosyncratic volatility,

market beta, book-to-market ratio, momentum and turnover. In the specifications termed “Con-

temp. ∆IO” we additionally include ∆IO in quarters t+ 1 to t+ 4 (four variables). The variable

∆IO is contemporaneous with returns. Controlling for it, as is done also in CHS, removes a re-

lationship between ∆B and expected returns that arises if ∆B predicts changes in IO, and these

changes affect returns.

As described in Section 3.3, we transform ∆B, size, IO, share price, idiosyncratic volatility,

market beta, book-to-market ratio, momentum and turnover into deciles across the population of
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Table II: Returns on breadth

Panel A: Full Sample Panel B: IO ≥ 30%

(1) (2) (3) (4) (1) (2) (3) (4)

∆B
-0.078***

(-3.56)

-0.079***

(-4.30)

-0.195***

(-8.24)

-0.175***

(-8.93)

-0.077**

(-1.96)

-0.063**

(-2.36)

-0.206***

(-5.29)

-0.171***

(-6.54)

∆B × size
0.124***

(5.66)

0.125***

(5.31)

0.260***

(10.71)

0.260***

(9.99)

0.101***

(2.59)

0.093***

(2.74)

0.254***

(6.61)

0.233***

(7.05)

size
-0.205***

(-7.66)

-0.083***

(-4.70)

-0.343***

(-11.00)

-0.215***

(-11.29)

-0.123***

(-3.59)

-0.069***

(-3.02)

-0.240***

(-6.62)

-0.169***

(-7.05)

IO
0.080***

(6.23)

0.076***

(4.72)

0.135***

(10.65)

0.147***

(9.39)

-0.051***

(-3.41)

-0.054***

(-2.94)

0.064***

(4.60)

0.073***

(4.59)

Extra
controls

No Yes No Yes No Yes No Yes

Contemp.
∆IO

No No Yes Yes No No Yes Yes

Note: Pooled OLS regressions of stock returns in the year formed by quarters t + 1 to t + 4 on the change ∆B in
breadth in quarter t and on its interaction with size in the same quarter. The regressions include as controls size,
IO, and quarterly dummies. The regressions under “Extra controls” additionally include share price, idiosyncratic
volatility, market beta, book-to-market ratio, momentum and turnover. The regressions under “Contemp. ∆IO”
additionally include ∆IO in quarters t + 1 to t + 4. Size, share price, idiosyncratic volatility, market beta, book-
to-market ratio and turnover are measured at the end of the last June. ∆B, IO and momentum are measured at
the end of quarter t. Both sets of variables are transformed into deciles across the population of stocks at the time
when each variable is measured, and the units are normalized so that the smallest decile corresponds to zero and the
largest to one. The t-statistics, in parentheses, are computed using robust standard errors double-clustered by stock
and by quarter. In this and all subsequent tables, three asterisks (***) denote statistical significance at the 1% level,
two asterisks (**) at the 5% level, and one asterisk (*) at 10% level.

stocks, and normalize the units so that the smallest decile corresponds to zero and the largest to

one. Thus, the coefficient of ∆B measures the relationship between ∆B and return for stocks in the

bottom size decile. Moreover, the sum of that coefficient and of the coefficient of the interaction with

size measures the relationship between ∆B and return for stocks in the top decile. The t-statistics

are calculated using robust standard errors double-clustered by stock to address autocorrelation

at the stock level (Petersen (2009)) and by quarter to address contemporaneous correlation across

stocks. We double-cluster by stock and quarter in all subsequent tables as well, except Table III.

Fama and MacBeth (1973) regressions for this and subsequent tables yield broadly similar

conclusions regarding statistical significance, even after adjusting for autocorrelation using Newey-

West standard errors. Conclusions are similar also when using non-overlapping returns to address

the autocorrelation.

The findings in Table II are consistent with Hypothesis 3. Consider small stocks first. The

coefficient of ∆B, which measures the effect of ∆B on expected returns for stocks in the bottom

size decile, is negative. Thus, ∆B predicts the returns of small stocks negatively.
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Consider large stocks next. The coefficient of the interaction with size is positive, meaning that

the negative effect of ∆B on expected returns weakens as size increases. Moreover, the sum of

the interaction coefficient and of the coefficient of ∆B is positive, meaning that ∆B and expected

returns are positively related for stocks in the top size decile. Thus, ∆B predicts the returns of

large stocks positively.

The negative effect of ∆B on expected returns is significant at the 1% level for size deciles 1-4

in the full sample with extra controls (second column in Panel A), which we take as our baseline

specification. The positive effect of ∆B is significant at the 1% level for size deciles 8-10 in the

baseline specification.

Turning to economic significance, the coefficient -0.079 on ∆B in the baseline specification

means that within the smallest size decile, a stock in the top ∆B decile (∆B = 1) earns 7.9%

lower annual expected return than a stock in the bottom ∆B decile (∆B = 0). The sum of that

coefficient and that of the interaction term is 0.046, meaning that within the largest size decile, a

stock in the top ∆B decile earns 4.6% higher annual expected return than a stock in the bottom

∆B decile. The negative predictive effect of ∆B for small stocks is larger than the positive effect

for large stocks.

The effects remain comparable in magnitude in the subsample IO ≥ 30%. They become

about twice as large when controlling for ∆IO. Thus, the indirect relationship between ∆B and

expected returns that arises because ∆B predicts changes in IO, and these changes affect returns,

is quantitatively important. Moreover, that relationship works in the opposite direction than the

direct relationship arising in our model.

Table III complements Table II by presenting results from portfolio sorts. We construct nine

portfolios based on a 3× 3 double sort, first on size and then on ∆B. As described in Section 3.1,

we define small stocks as those with size below the 30th percentile of our sample, mid-cap stocks as

those with size between the 30th and the 70th percentile, and large stocks as those with size above

the 70th percentile. Within each size group, we define low ∆B stocks as those with ∆B below the

20th percentile, mid ∆B stocks as those between the 20th and the 80th percentile, and high ∆B

stocks as those above the 80th percentile.3

Panel A reports the returns of the nine portfolios. The portfolios are formed at the end of

quarter t. Annual returns are measured in the subsequent year, in the year beginning one month

after the end of quarter t, and in the year beginning two months after the end of quarter t. The

average of the entire series of annual returns is calculated. Portfolio returns are the equally weighted

3Our classification procedure leaves some ∆B portfolios empty for small stocks in 22 quarters in the early part of
our sample. In those quarters we use a different rule to allocate small stocks into ∆B portfolios: we define low ∆B
stocks as those with ∆B < 0, mid ∆B stocks as those with ∆B = 0, and high ∆B stocks as those with ∆B > 0.
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Table III: Portfolio double-sorts on size and changes in breadth

Panel A: Average returns of nine size - ∆B portfolios

Panel A1: Full Sample Panel A2: IO ≥ 30%

Small Mid-cap Large Small Mid-cap Large

Low ∆B
22.03%

(6.71)

13.61%

(5.55)

12.31%

(7.20)

28.51%

(8.47)

15.63%

(6.53)

13.33%

(7.84)

Mid ∆B
18.91%

(8.10)

13.57%

(7.66)

13.26%

(9.47)

19.39%

(8.49)

15.70%

(8.69)

14.11%

(10.02)

High ∆B
15.98%

(6.53)

13.87%

(7.21)

13.85%

(9.19)

23.25%

(7.62)

15.39%

(8.32)

13.98%

(9.58)

Panel B: High ∆B minus Low ∆B

Panel B1: Full Sample Panel B2: IO > 30%

Small Mid-cap Large

Large

minus

Small

Small Mid-cap Large

Large

minus

Small

Average returns
-6.05%***

(-3.86)

0.25%

(0.18)

1.55%

(1.48)

7.60%***

(6.41)

-5.26%*

(-1.89)

-0.24%

(-0.16)

0.65%

(0.64)

5.90%**

(2.22)

CAPM alpha
-3.74%***

(-3.23)

1.36%

(1.32)

1.83%*

(1.65)

5.57%***

(5.52)

-4.85%**

(-2.02)

0.98%

(0.77)

1.01%

(0.95)

5.87%**

(2.24)

Carhart-4 alpha
-7.17%***

(-4.63)

-1.80%

(-1.20)

-0.69%

(-0.70)

6.48%***

(4.58)

-10.64%***

(-3.25)

-2.25%

(-1.44)

-1.31%

(-1.39)

9.33%***

(3.10)

FF-5 & UMD

alpha

-7.21%***

(-4.35)

-1.75%

(-1.06)

0.34%

(0.31)

7.55%***

(4.58)

-11.65%***

(-3.04)

-0.07%

(-0.04)

-0.14%

(-0.13)

11.51%***

(3.11)

Note: Average returns of nine portfolios formed by a 3 × 3 double sort, first on size and then on the change ∆B
in breadth in quarter t. We define small stocks as those with size below the 30th percentile of our sample, mid-cap
stocks as those with size between the 30th and the 70th percentile, and large stocks as those with size above the 70th
percentile. Within each size group, we define low ∆B stocks as those with ∆B below the 20th percentile, mid ∆B
stocks as those between the 20th and the 80th percentile, and high ∆B stocks as those above the 80th percentile.
Panel A reports the returns of the nine portfolios. The portfolios are formed at the end of quarter t. Annual returns
are measured in the subsequent year, in the year beginning one month after the end of quarter t, and in the year
beginning two months after the end of quarter t. The average of the entire series of annual returns is calculated.
Portfolio returns are the equally weighted averages of the returns of the stocks in the portfolio. Panel B reports
average annual returns and alphas for long-short strategies that go long in the high ∆B portfolio and short in the
low ∆B portfolio. Alphas are computed using the CAPM, the Carhart (1997) four-factor model, and the Fama and
French (2015) five-factor model augmented by the Carhart (1997) momentum factor. The t-statistics, in parentheses,
are computed using Newey-West standard errors with two lags.

averages of the returns of the stocks in the portfolio. Results for value-weighted averages are similar.

Panel B reports average annual returns and alphas for long-short strategies that go long in the high

∆B portfolio and short in the low ∆B portfolio. Alphas are computed using the CAPM, the

Carhart (1997) four-factor model, and the Fama and French (2015) five-factor model augmented

by the Carhart (1997) momentum factor. The t-statistics are computed using Newey-West standard
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errors with two lags, to address the serial correlation induced by the overlap of the annual returns.

Panel A shows that for small stocks there is a clear decreasing pattern in average return when

moving from the low ∆B to the high ∆B portfolio. The average annual return drops from 22.03%

for low ∆B to 15.98% for high ∆B. Going long in the high ∆B portfolio and short in the low ∆B

portfolio yields an average annual return of -6.05%, with t-statistic -3.86. The strategy’s CAPM,

four-factor and five-factor alphas are similar to its average return.

For mid-cap stocks, there is no clear pattern in average return across the ∆B portfolios. For

large stocks, a pattern reappears in the full sample and is the opposite to that for small stocks, but

is insignificant. The change in the long-short strategies’ returns when moving from small to large

stocks is significant, however. Going long in the large-stock long-short ∆B portfolio and short in

the small-stock long-short ∆B portfolio (Panel B) yields an average annual return of 7.60%, with

t-statistic 6.41.

Tables II and III paint a consistent picture. ∆B predicts negatively the returns of small stocks

and positively those of large stocks. The effect of ∆B for small stocks is significant. It is also larger

in absolute value than the effect for large stocks, which is insignificant in some specifications. The

change in the effect of ∆B from small to large stocks is significant.

The results in Tables II and III differ from CHS. CHS find a relationship between breadth

and expected returns that is nonlinear in size. The relationship on annual returns is negative and

insignificant for size quintile 1, becomes positive and significant for size quintiles 2 and 3, and

becomes weaker positive and significant for size quintiles 4 and 5. Our results differ from CHS

mainly because CHS use the NYSE size breakpoints, while we use size breakpoints based on all

NYSE, NASDAQ, and AMEX stocks. Because NYSE stocks are larger on average than NASDAQ

and AMEX stocks, NYSE size breakpoints bunch small stocks together with mid-cap stocks and

spread out large stocks more thinly. For example, CHS size quintile 1 consists of all stocks in

our size deciles 1-4, and of 99.45%, 84.27% and 17.26% of the stocks in our size deciles 5, 6 and

7, respectively. Likewise, CHS size quintile 3 consists of 45.71% and 50% of the stocks in our

size deciles 8 and 9, respectively. Because CHS bunch small stocks together with mid-cap stocks,

a negative relationship between breadth and expected returns for small stocks is hard to detect.

CHS’s nonlinear effect of size on the relationship between breadth and expected returns can also be

reconciled with our results. Indeed, while our regression specification in Table II can only capture

a linear effect, the portfolio results in Table III are consistent with a non-linear effect. This is

because the returns of high ∆B relative to low ∆B portfolios increase sharply when moving from

small to mid-cap stocks, but not when moving from mid-cap to large stocks.

Table IV presents results for return horizons other than one year. The regressions are the same
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as in the second and fourth columns of Panel A of Table II. We evaluate returns from quarter t+1

to t+ k and consider horizons of one quarter (k = 1), two years (k = 8), three years (k = 12), four

years (k = 16) and five years (k = 20). We do not express stock returns in annualized terms, but

leave them as cumulative returns. As in Table II, we compute t-statistics using robust standard

errors double-clustered by stock and by quarter. Using Newey-West standard errors with k−1 lags,

corresponding to the overlap between the periods over which returns are evaluated, yields similar

standard errors.

The findings in Table IV are consistent with Hypothesis 3. As in Table II, ∆B predicts returns

of small stocks negatively. Moreover, the effect weakens when moving from small to large stocks,

and becomes positive for large stocks. The coefficients of ∆B and of the interaction term scale up

approximately linearly with horizon, indicating a long-lived effect of breadth on expected returns.

The coefficients are significant at the 1% level at all horizons, except at the one-quarter horizon

when not controlling for ∆IO. Their sum is significant at the 1% level at all horizons.

4.2 Robustness

Tables V and VI present robustness tests for the results in Section 4.1. In column groups (1) and

(2) of Table V the sample period is split into two sub-periods. In column groups (3) and (4) the

sample is split into two sub-samples depending on whether the absolute value of changes in the

Baker and Wurgler (2006) market-wide sentiment index is below or above its 90th percentile. This

allows us to relate our analysis to CLY, who use the same variable and cutoff, and find that the

relationship between breadth and expected returns is positive when the variable is below the cutoff

and negative when the variable is above. We source the sentiment index from Jeffrey Wurgler’s

website. In column group (5) the level of B is used rather than the change ∆B. In column group

(6) the one-quarter lagged level of B is used as an additional control. The regressions are the same

as in the second and fourth columns of Panel A of Table II.

The results in the two sub-periods are consistent with Hypothesis 3: the coefficient of ∆B is

negative, the coefficient of the interaction term is positive, and the sum of the two coefficients is

positive. The coefficients of ∆B and of the interaction term, as well as their sum, are significant at

the 1% level, except for the coefficient of ∆B in the first sub-period when not controlling for ∆IO,

which is insignificant.

The results in the low sentiment-variation sub-sample are consistent with Hypothesis 3. The

coefficients of ∆B and of the interaction term, as well as their sum, are significant at the 1% level.

The positive relationship between breadth and expected return for stocks in the larger size deciles

is consistent with CLY. This is because CLY limit their sample to stocks in NYSE size quintiles
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2-5. In the high sentiment-variation sub-sample, the coefficients of ∆B and of the interaction term

change sign but are insignificant. The sum of the two coefficients changes sign as well, implying

a negative relationship between breadth and expected return for the larger size deciles, consistent

with CLY. It is insignificant as well, however. Controlling for ∆IO reverses all signs, rendering

them consistent with Hypothesis 3. Moreover, the coefficients of ∆B and of the interaction term

become significant at the 5% level. Splitting the sample based on whether the absolute value of

changes in sentiment is below or above its median (rather than the 90th percentile) yields results

consistent with Hypothesis 3 in each sub-sample.

The results using the level of B rather than the change ∆B are consistent with Hypothesis 3

when controlling for ∆IO. When not controlling for ∆IO, the coefficient of the interaction term is

positive, consistent with Hypothesis 3, but the coefficient of B is positive, at odds with Hypothesis

3. The results using the one-quarter lagged level of B as an additional control are consistent with

Hypothesis 3. Unreported results using book equity rather than market capitalization to measure

size are also consistent with Hypothesis 3.

Table VI presents results using the Herfindahl index H instead of B as a measure of breadth

of ownership. Column group (1) presents results from the main regressions with annual returns.

In column groups (2) and (3), the sample period is split into two sub-periods. In column group

(4), the level of H is used rather than the change ∆H. The regressions in each column group are

analogous to those in the second and fourth columns of Panel A of Table II.

Since B and H are negatively related, Hypothesis 3 implies that the coefficient of ∆H or H

should be positive, the coefficient of the interaction with size should be negative, and the sum of

the two coefficients should be negative. These predictions are borne out in the main regressions

with annual returns and in the second sub-period. In the first sub-period and in the regressions

with the level of H rather than the change ∆H, the signs are consistent with Hypothesis 3, but

some of the coefficients are insignificant.

5 Analyst Forecasts

In this section we test Hypotheses 1 and 2, which concern the relationship between expected return

and breadth on one hand and the distribution of investor beliefs on the other. We proxy investor

beliefs by the forecasts made by financial analysts.
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Table VI: Robustness tests: Herfindahl index

(1): ∆H

(2): ∆H - First part

of sample

(2Q-1980 to 4Q-1997)

(3): ∆H - Second part

of sample

(1Q-1998 to 4Q-2017)

(4): Level of H

∆H
0.030***

(3.13)

0.047***

(4.66)

0.001

(0.09)

0.010

(1.00)

0.040***

(3.09)

0.062***

(4.53)

∆H*size
-0.054***

(-3.51)

-0.070***

(-4.38)

-0.022

(-1.27)

-0.029*

(-1.71)

-0.055**

(-2.45)

-0.075***

(-3.13)

H
0.037

(1.48)

0.192***

(7.24)

H*size
-0.175***

(-5.18)

-0.354***

(-9.63)

Extra controls Yes Yes Yes Yes Yes Yes Yes Yes

Contemp. ∆IO No Yes No Yes No Yes No Yes

Note: Column group (1) presents results from the main regressions with annual returns, with the change ∆H in the
Herfindahl index rather than the change ∆B in breadth. In column groups (2) and (3), the sample period is split
into two sub-periods. In column group (4), the level of H is used rather than the change ∆H. All columns present
results from pooled OLS regressions of stock returns from end of quarter t to end of quarter t + 1 or t + 4 on H or
∆H in quarter t and the interaction between H or ∆H and size in the same quarter. The regressions additionally
include size, IO, quarterly dummies and the extra controls in Table II. The regressions are run with or without ∆IO,
as indicated. Variables are transformed into deciles and normalized, as described in Table II. The t-statistics, in
parentheses, are computed using robust standard errors double-clustered by stock and by quarter.

5.1 Analyst Forecasts and Expected Returns

Table VII presents results from pooled OLS regressions of stock returns in quarter t + 1 and in

the k = 1, .., 5 years formed by quarters t to t + 4k on the range and kurtosis of the distribution

of analyst forecasts in quarter t. We include as additional independent variables size, quarterly

dummies, IO, share price, idiosyncratic volatility, market beta, book-to-market ratio, momentum

and turnover. We transform range, kurtosis, size, IO, share price, idiosyncratic volatility, market

beta, book-to-market ratio, momentum and turnover into deciles across the population of stocks,

and normalize the units so that the smallest decile corresponds to zero and the largest to one.

We report results for the full sample of stocks and for two size sub-samples constructed using the

median of the NYSE size distribution as cut-off.

The findings in Table VII are consistent with Hypothesis 1, except for the significance of the

coefficient of range at horizons of one year and longer. According to Hypothesis 1, the coefficient of

range should be negative and the coefficient of kurtosis should be positive. The coefficient of range is

indeed negative, is significant at the 5% level at the one-quarter horizon, but becomes insignificant

at horizons of one year and longer. The coefficient of kurtosis is positive, scales approximately

linearly with horizon, and is significant at the 5% level at all horizons.

Turning to economic significance, the coefficient -0.014 on range at the one-quarter horizon
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Table VII: Returns on range and kurtosis of analyst forecasts

1Q 4Q 8Q 12Q 16Q 20Q

range
-0.014**

(-1.98)

-0.012

(-0.61)

-0.022

(-0.70)

-0.036

(-0.88)

-0.050

(-0.98)

-0.047

(-0.70)

kurtosis
0.005**

(2.24)

0.010**

(2.20)

0.018**

(1.99)

0.026**

(2.00)

0.034*

(1.92)

0.069**

(2.41)

Extra controls Yes Yes Yes Yes Yes Yes

Note: Pooled OLS regressions of stock returns in quarter t + 1 and in the k = 1, .., 5 years formed by quarters t to
t+ 4k on the range and the kurtosis of the distribution of analyst forecasts in quarter t. The regressions include as
additional independent variables size, quarterly dummies, IO, share price, idiosyncratic volatility, market beta, book-
to-market ratio, momentum and turnover. Size, share price, idiosyncratic volatility, market beta, book-to-market
ratio and turnover are measured at the end of the last June. Range, kurtosis, IO and momentum are measured at
the end of quarter t. Variables are transformed into deciles and normalized, as described in Table II. The t-statistics,
in parentheses, are computed using robust standard errors double-clustered by stock and by quarter.

means that the expected return difference between lowest and highest range decile is 1.4% (0.014)

per quarter. Likewise, the coefficient 0.005 on kurtosis means that the expected return difference

between highest and lowest kurtosis decile is 0.5% (0.005) per quarter.

Since the coefficient of range loses its significance at horizons of one year and longer, while the

coefficient of kurtosis remains significant, the effect of kurtosis on expected returns appears longer-

lived than that of range. This finding is consistent with the breadth-return relationship turning

negative for small stocks, especially at horizons of one year and longer (Tables II and IV). Indeed,

a negative relationship between breadth and expected returns arises when the effect of kurtosis

dominates that of range.

The effect of range on expected returns in Table VII is weaker than in DMS. DMS find that

expected returns of stocks in the lowest disagreement quintile exceed those in the highest quintile

by 0.79% per month. We find a difference between lowest and highest range decile of 1.4% (0.014)

per quarter. The implied difference between lowest and highest range quintile is 1.26% (=1.4% ×
0.9) per quarter, or 0.42% (=1.26%/3) per month, which is about one-half of the effect in DMS.

Our results differ from DMS because they forecast monthly returns while we forecast returns

at horizons from one quarter to five years, and because the effect of range on expected returns

appears to be short lived. Unreported regressions as in Table VII for returns at the one-month

horizon yield similar results as in DMS. The difference in expected returns between lowest and

highest range decile is 1% per month, and is significant at the 1% level. The implied difference

between lowest and highest range quintile is 0.9% (=1% × 0.9), which is almost the same as the

effect in DMS. An additional reason why our results differ from DMS is that we restrict our sample

to stock/quarters with four or more analysts, so that we can calculate the kurtosis, while DMS
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Table VIII: Breadth on range and kurtosis of analyst forecasts

(1): Full sample (2): IO ≥ 30%

range
-0.024***

(-6.28)

-0.022***

(-7.95)

kurtosis
-0.007

(-1.64)

-0.006*

(-1.74)

kurtosis*size
0.016***

(2.99)

0.016***

(3.79)

size
0.727***

(82.17)

0.763***

(114.38)

Note: Contemporaneous pooled OLS regressions of breadth B on the range of the distribution of analyst forecasts, the
kurtosis of that distribution, size, IO, the interaction of kurtosis with size, and quarterly dummies. Size is measured
at the end of the last June. Range, kurtosis and IO are measured at the end of quarter t. Variables are transformed
into deciles and normalized, as described in Table II. The t-statistics, in parentheses, are computed using robust
standard errors double-clustered by stock and by quarter.

allow for two or more analysts. This excludes primarily stock/quarters involving small stocks, for

which DMS find stronger effects of range.

5.2 Analyst Forecasts and Breadth of Ownership

Table VIII presents results from contemporaneous pooled OLS regressions of breadth B on the range

of the distribution of analyst forecasts, the kurtosis of that distribution, size, IO, the interaction of

kurtosis with size, and quarterly dummies. We transform range, kurtosis, size, and IO into deciles

across the population of stocks, and normalize the units so that the smallest decile corresponds to

zero and the largest to one.

The findings in Table VIII are consistent with Hypothesis 2. According to Hypothesis 2, the

coefficient of range should be negative, the coefficient of kurtosis should be negative because it

measures the effect of kurtosis on B for stocks in the bottom size decile, and the sum of the

interaction coefficient and the coefficient of kurtosis should be positive because it measures the

effect of kurtosis on B for stocks in the top size decile. The coefficient of range is indeed negative,

and is significant at the 1% level. The coefficient of kurtosis is negative, is significant at the 10%

level for the subsample IO ≥ 30%, and is at the threhold of 10% significance for the full sample.

The sum of that coefficient and of the coefficient of the interaction term is positive, and is significant

at the 1% level.

The findings in Table VIII are consistent with Hypothesis 2a as well. The positive relationship

between B and size is stronger for high kurtosis stocks because the coefficient of the interaction
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term is positive. That coefficient is significant at the 1% level.

When augmenting Table VIII with an interaction term between range and size, we find that the

coefficient of range is positive and significant and the coefficient of the interaction term is negative

and significant (with their sum being negative and significant, consistent with the negative sign of

range in Table VIII). The positive coefficient of range is at odds with our model because range in our

model is negatively related to B for any size group. A positive coefficient could arise because stocks

for which disagreement is high attract more attention in the press, triggering greater awareness by

investors. The entry costs in Merton (1987) could thus be lower for those stocks.

5.3 Robustness

Table IX presents robustness tests for the results in Sections 5.1 and 5.2. Panel A concerns expected

returns. The regressions are the same as in Table VII for quarterly returns. Panel B concerns

breadth B. The regressions are the same as in Table VIII. In column (1) of each panel, range is

replaced by standard deviation. In column (2), range and kurtosis are computed for a truncated

distribution of forecasts derived by dropping one forecast from each of the two extremes of the

distribution. This requires restricting the sample to stock/quarters with at least six analysts. In

column (3), kurtosis is replaced by a ratio of the number of moderate to extreme forecasts. The

numerator of that ratio is the number of forecasts that lie in an interval centered at the average of

the minimum and the maximum forecast, with length on each side equal to 25% of the range. The

denominator is the number of remaining forecasts.4 We term the ratio polar25 because it measures

the extent to which beliefs are Polarized with a 25% cutoff. A decrease in polarization corresponds

to an increase in both kurtosis and polar25. In column (4), the skewness of the distribution of

forecasts is included as an additional variable.

Replacing range by standard deviation yields almost identical results to those in Sections 5.1 and

5.2. Thus, range and standard deviation seem to be almost equivalent in measuring the intensity

of disagreement. Truncating the distribution of forecasts renders the effect of range on expected

returns insignificant, but preserves the significance of the effect of range on B and of the effects

of kurtosis on expected returns and B. Truncation can reduce significance because the sample

becomes restricted to stock/quarters with at least six rather than four analysts.

Replacing kurtosis by polar25 yields almost identical results to those in Section 5.1 for expected

returns and stronger results than those in Section 5.2 for B. Thus, kurtosis and polar25 seem to

be similar measures of (the lack of) belief polarization. Unreported results using cutoffs for polar

4The numerator of polar is the number of forecasts that lie within the interval (ϵ + 0.25(ϵ − ϵ), ϵ − 0.25(ϵ − ϵ)),
where ϵ is the minimum forecast and ϵ is the maximum forecast. The denominator of polar is the number of forecasts
that lie within the union of the intervals [ϵ, ϵ+ 0.25(ϵ− ϵ)] and [ϵ− 0.25(ϵ− ϵ), ϵ].
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Table IX: Robustness tests: Standard deviation, truncation, polar, skewness

Panel A: Returns - 1Q

(1) (2) (3) (4)

range
-0.007

(-1.16)

-0.014*

(-1.90)

-0.014**

(-2.00)

st.dev.
-0.015**

(-2.07)

kurtosis
0.004**

(1.97)

0.005**

(1.97)

0.005**

(2.28)

polar25
0.005*

(1.89)

skewness
0.006*

(1.75)

Extra controls Yes Yes Yes Yes

Panel B: Breadth

(1) (2) (3) (4)

range
-0.021***

(-6.58)

-0.024***

(-6.46)

-0.024***

(-6.27)

st.dev.
-0.031***

(-8.01)

kurtosis
-0.006

(-1.38)

-0.033***

(-3.77)

-0.007

(-1.64)

kurtosis*size
0.014**

(2.56)

0.053***

(5.26)

0.016***

(2.98)

polar25
-0.038***

(-6.23)

polar25*size
0.068***

(8.76)

skewness
-0.000

(-0.44)

Note: In column (1) of each panel, range is replaced by standard deviation. In column (2), range and kurtosis are
computed for a truncated distribution of forecasts derived by dropping one forecast from each of the two extremes of
the distribution. In column (3), kurtosis is replaced a ratio of moderate to extreme forecasts. The numerator of that
ratio is the number of forecasts that lie in an interval centered at the average of the minimum and the maximum
forecast, with length on each side equal to 25% of the range. The denominator is the number of remaining forecasts.
In column (4), the skewness of the distribution of forecasts is included as an additional variable. All columns in
Panel A present results from pooled OLS regressions of stock returns in quarter t+ 1 on the range and the kurtosis
of the distribution of analyst forecasts in quarter t, or on the alternative variables to range and kurtosis described
above. The regressions additionally include size, quarterly dummies, and the extra controls in Table VII. All columns
in Panel B present results from pooled OLS regressions of breadth B on the range of the distribution of analyst
forecasts, the kurtosis of that distribution, and the interaction of kurtosis with size, or on the alternative variables to
range and kurtosis described above. The regressions additionally include size, IO, and quarterly dummies. Variables
are transformed into deciles and normalized, as described in Table II. The t-statistics, in parentheses, are computed
using robust standard errors double-clustered by stock and by quarter.

34



ranging from 15% to 35% render the effects of polar on expected returns insignificant for some

cutoffs. The effects are significant for all cutoffs, however, when annual instead of quarterly returns

are used. The effects of polar on B remain significant for all cutoffs.

Adding skewness to the regression yields almost identical results to those in Sections 5.1 and

5.2 for range and kurtosis. Thus, skewness seems to capture an economically different aspect of

the distribution of investor beliefs. Skewness has an insignificant effect of breadth but its effect on

expected returns is significant at the 10% level.

In unreported regressions we do not use the decile transformation for range and kurtosis, but

instead express them in logs to reduce the importance of extreme values. The results are similar

to those in Sections 5.1 and 5.2.

6 Ownership at the Style Level

In this section we extend the analysis in Section 4 to the level of investment styles. Investors can

adopt different styles, such as value and growth, because of different preferences or beliefs. Assuming

that different styles are adopted by disjoint groups of investors, we can map each style to an investor

group and interpret the investors in our model as styles. With that interpretation, we can test the

model using measures of ownership computed at the style rather than the investor level. The style-

level analysis can be viewed as an additional robustness test. It can also help rule out alternative

explanations of our findings on the relationship between breadth of ownership and expected returns

that apply to the level of individual investors but not to aggregate styles. Examples are explanations

based on monitoring or rent extraction by large shareholders (e.g., Admati, Pfleiderer, and Zechner

(1994), Burkart, Gromb, and Panunzi (1997), Bolton and Von Thadden (1998)) and on asymmetric

information by corporate insiders (e.g., Kyle (1985)).

Breadth is correlated at the investor and at the style level, with a correlation of 0.50. This

correlation is driven partly by size, but remains important even within size groups. The correlation

within the groups of small, mid-cap and large stocks is 0.64, 0.60 and 0.28, respectively. Given the

positive correlation between breadth at the investor and at the style level, we expect our findings

to extend to styles.

Table X presents descriptive statistics of B and ∆B at the style level. We denote B at the

style level by Bstyle. Consistent with Hypothesis 2a and the findings in Table I, there is a positive

relationship between Bstyle and size. The mean of Bstyle for small stocks is 5.73, meaning that the

average small stock is held by 5.73 out of the 29 styles in our data. The mean of Bstyle rises to 9.28

for mid-cap stocks and to 11.90 for large stocks.
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Table X: Descriptive statistics of style-level breadth

Panel A: Full Sample Panel B: IO ≥ 30%

Full Small Mid-cap Large Full Small Mid-cap Large

Breadth of Styles (B-styles)

mean 9.18 5.73 9.28 11.90 11.17 8.35 10.48 12.18

stdev 3.69 2.82 2.96 2.64 2.62 2.33 2.25 2.44

∆B-style

mean 0.08 0.09 0.10 0.06 0.06 0.08 0.07 0.05

stdev 0.97 0.92 1.00 0.97 0.95 0.84 0.98 0.95

Number of Observations

Obs. 261596 70444 105434 85718 150210 11215 63809 75186

Note: Mean and standard deviation of style-level breadth Bstyle and of its first difference ∆Bstyle. Panel A reports
statistics for the full sample, broken down by stock size. Panel B reports statistics for the subsample where institu-
tional ownership IO exceeds 30%. The statistics are based on pooled cross-sectional and time-series samples.

Table XI presents results using style-level measures of ownership. Column group (1) presents

results from the main regressions with annual returns. In column groups (2) and (3), returns are

quarterly and bi-annual, respectively. In column group (4), the level of Bstyle is used rather than

the first difference ∆Bstyle. In column group (5), the first difference ∆Hstyle of the style-level

Herfindahl index is used instead of ∆Bstyle. The regressions in each column group are analogous

to those in the second and fourth columns of Panel A of Table II. We do not consider sub-periods

because ownership data pertaining to investment styles are available only from 1997 to 2015.

Results using style-level measures of ownership provide strong support for Hypothesis 3. In

all regressions, the coefficients of Bstyle, ∆Bstyle or ∆Hstyle, and of the interaction term with size,

have signs consistent with Hypothesis 3. These coefficients are significant except for two cases, and

their sum has sign consistent with Hypothesis 3 except for one case.

7 Conclusion

We study the relationship between the distribution of investor beliefs, the breadth of ownership

and expected returns. The distribution of beliefs in our model is described by two dimensions:

the intensity of disagreement, as measured by the difference between the beliefs of optimists and

pessimists, and the extent to which beliefs are polarized, as measured by the number of optimists

and pessimists relative to moderates. We map these dimensions to the range and the kurtosis of the

distribution of beliefs. When the effect of kurtosis dominates that of range, our two-dimensional

description of beliefs generates the empirical relationship between breadth and expected returns:

36



T
ab

le
X
I:
R
e
tu

rn
s
o
n

st
y
le
-l
e
v
e
l
m
e
a
su

re
s
o
f
o
w
n
e
rs
h
ip

(1
):

∆
B
-s
ty
le

-
4
Q

(2
):

∆
B
-s
ty
le

-
1Q

(3
):

∆
B
-s
ty
le

-
8Q

(4
):

L
ev
el

of
B
-s
ty
le

(5
):

∆
H
-s
ty
le

∆
B
-s
ty
le

-0
.0
60

*
**

(-
3.
73

)

-0
.0
90

*
*
*

(-
5
.1
4)

-0
.0
10

(-
1.
35

)

-0
.0
17

**

(-
2.
39

)

-0
.1
23

**
*

(-
5.
63

)

-0
.1
74

**
*

(-
7.
45

)

∆
B
-s
ty
le
*s
iz
e

0.
08

1
**

*

(3
.0
8
)

0.
11

3
*
**

(3
.9
8)

0.
02

1*

(1
.8
3)

0.
02

6*
*

(2
.3
0)

0.
16

4*
**

(5
.8
8)

0.
22

4*
**

(7
.2
8)

B
-s
ty
le

-0
.0
40

(-
0.
86

)

-0
.2
26

**
*

(-
5.
18

)

B
-s
ty
le
*
si
ze

0.
13

7*
*

(2
.4
4)

0.
33

9*
**

(5
.9
5)

∆
H
-s
ty
le

0.
03

5*
**

(3
.0
9)

0.
04

6*
**

(4
.0
3)

∆
H
-s
ty
le
*s
iz
e

-0
.0
43

**

(-
2.
30

)

-0
.0
44

**

(-
2.
41

)

E
x
tr
a
co
n
tr
ol
s

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

C
o
n
te
m
p
.
∆
I
O

N
o

Y
es

N
o

Y
es

N
o

Y
es

N
o

Y
es

N
o

Y
es

N
o
te
:
C
o
lu
m
n
g
ro
u
p
(1
)
p
re
se
n
ts

re
su
lt
s
fr
o
m

th
e
m
a
in

re
g
re
ss
io
n
s
w
it
h
a
n
n
u
a
l
re
tu
rn
s,

w
it
h
th
e
fi
rs
t
d
iff
er
en

ce
∆
B

s
ty

le
o
f
st
y
le
-l
ev
el

b
re
a
d
th

ra
th
er

th
a
n
∆
B
.

In
co
lu
m
n
g
ro
u
p
s
(2
)
a
n
d
(3
),

re
tu
rn
s
a
re

q
u
a
rt
er
ly

a
n
d
b
i-
a
n
n
u
a
l,
re
sp

ec
ti
v
el
y.

In
co
lu
m
n
g
ro
u
p
(4
),

th
e
le
v
el

o
f
B

s
ty

le
is

u
se
d
ra
th
er

th
a
n
th
e
fi
rs
t
d
iff
er
en

ce
∆
B

s
ty

le
.
In

co
lu
m
n
g
ro
u
p
(5
),

th
e
fi
rs
t
d
iff
er
en

ce
∆
H

s
ty

le
o
f
th
e
st
y
le
-l
ev
el

H
er
fi
n
d
a
h
l
in
d
ex

is
u
se
d
in
st
ea
d
o
f
∆
B

s
ty

le
.
A
ll
co
lu
m
n
s
p
re
se
n
t
re
su
lt
s
fr
o
m

p
o
o
le
d

O
L
S
re
g
re
ss
io
n
s
o
f
st
o
ck

re
tu
rn
s
fr
o
m

en
d
o
f
q
u
a
rt
er

t
to

en
d
o
f
q
u
a
rt
er

t
+

1
o
r
t
+

4
o
n
B

s
ty

le
,
∆
B

s
ty

le
o
r
∆
H

s
ty

le
in

q
u
a
rt
er

t
a
n
d
th
e
in
te
ra
ct
io
n
b
et
w
ee
n

B
s
ty

le
,
∆
B

s
ty

le
o
r
∆
H

s
ty

le
w
it
h
st
o
ck

si
ze

in
th
e
sa
m
e
q
u
a
rt
er
.
T
h
e
re
g
re
ss
io
n
s
a
d
d
it
io
n
a
ll
y
in
cl
u
d
e
si
ze
,
I
O
,
q
u
a
rt
er
ly

d
u
m
m
ie
s
a
n
d
th
e
ex
tr
a
co
n
tr
o
ls

in
T
a
b
le

II
.
T
h
e
re
g
re
ss
io
n
s
a
re

ru
n
w
it
h
o
r
w
it
h
o
u
t
∆
I
O
,
a
s
in
d
ic
a
te
d
.
V
a
ri
a
b
le
s
a
re

tr
a
n
sf
o
rm

ed
in
to

d
ec
il
es

a
n
d
n
o
rm

a
li
ze
d
,
a
s
d
es
cr
ib
ed

in
T
a
b
le

II
.
T
h
e
t-
st
a
ti
st
ic
s,

in
p
a
re
n
th
es
es
,
a
re

co
m
p
u
te
d
u
si
n
g
ro
b
u
st

st
a
n
d
a
rd

er
ro
rs

d
o
u
b
le
-c
lu
st
er
ed

b
y
st
o
ck

a
n
d
b
y
q
u
a
rt
er
.

37



positive for large stocks and negative for small stocks. That relationship cannot arise when beliefs

are described only by the intensity of disagreement, as is common in the literature.

Besides testing for the relationship between breadth and expected returns, we test for the

relationship that each of the two dimensions of beliefs should have with each of breadth and

expected returns. The size-dependent breadth-return relationship in our model arises because

stocks for which beliefs are more polarized should (i) earn lower expected returns and (ii) have a

broader investor base if they are small and a narrower base if they are large. Proxying investor

beliefs by analyst forecasts, we find empirical support for both predictions. We also find that the

effect of kurtosis on expected returns dominates that of range at horizons of one year and longer.

That finding is consistent with the empirical breadth-return relationship turning negative for small

stocks.

Our finding that range has a short-lived effect on expected returns while kurtosis has a signif-

icantly more persistent effect is intriguing. A difference between the effects of range and kurtosis

might arise if polarization is a more persistent characteristic of beliefs than the intensity of dis-

agreement. Beliefs in our model are exogenous and our model is static. Modelling the dynamics

of beliefs and relating them to the different effects of range and kurtosis that we find seems an

interesting direction for future research.
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Appendix

A Proofs

Proof of Proposition 2.1. Suppose λ(n) = λ for all n. Setting

Si ≡ biD̄ + D̄i − biλ+ aθiσ
2
i ϕi, (A.1)

we can write (2.8) as (2.10). Equation (2.10) has a unique solution because when the integrand

is positive, it is decreasing in ϕi. Integrating λ(n) = aσ2
∑I

j=1 bjxj(n) over n and using (2.7) and

λ(n) = λ for all n, we find

λ = aσ2
I∑
j=1

bjθj . (A.2)

Substituting (A.2) into (A.1), we find (2.9). Substituting (A.1) into (2.6) and using λ(n) = λ for

all n, we find (2.11).

Proposition A.1 derives conditions for the factor premia {λ(n)}n∈[0,1] to be equal across investors

Proposition A.1. The factor premia {λ(n)}n∈[0,1] are equal across investors under either one of

the following sufficient conditions:

(A) In addition to trading assets i = 0, 1, .., I, investors can trade an asset I + 1 that is in zero

supply and pays dividend D per share in period 1. Agents can trade asset I + 1 without

short-sale constraints.

(B) For each stock i, the following conditions hold:

(i) The function n→ ϵi(n) takes values in a finite set Zi = {zi1, .., ziki}.

(ii) For each permutation P of the set {1, .., ki}, there exists one stock i′ such that (θi, bi, σi) =

(θi′ , bi′ , σi′) and {n ∈ [0, 1] : ϵi(n) = zik} = {n ∈ [0, 1] : ϵi′(n) = ziP (k)}.

Proof of Proposition A.1. Under Condition (A), we can write the maximization problem of
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investor n as

max
{xi(n)}i=1,..,I ,x(n)

xi(n)≥0

I∑
i=1

(
biD̄ + D̄i + ϵi(n)− Si

)
xi(n) + (D̄ − S)x(n)

− a

2

σ2( I∑
i=1

bixi(n) + x(n)

)2

+
I∑
i=1

σ2i xi(n)
2

 ,
where S denotes the price of asset I + 1 and x(n) denotes the number of shares of the asset

that the investor holds. The first-order condition for stock i is (2.4) and (2.5), where λ(n) ≡
aσ2

(∑I
j=1 bjxj(n) + x(n)

)
. The first-order condition for asset I + 1 is

D̄ − S − λ(n) = 0

and implies that λ(n) is equal to the common value D̄ − S for all n. Following the same steps as

in Proposition 2.1 and using that asset I + 1 is in zero supply, we can then show that equilibrium

prices of stocks i = 1, .., I are given by (2.9) and equilibrium holdings of these stocks by investors

are given by (2.11).

Under Condition (B), (2.6) and λ(n) = a
∑I

i=1 bixi(n) imply

λ(n) =

I∑
i=1

bj max

{
biD̄ + D̄i + ϵi(n)− Si − biλ(n)

σ2i
, 0

}
=
∑
I

∑
i∈I

bimax

{
biD̄ + D̄i + ϵi(n)− Si − biλ(n)

σ2i
, 0

}
, (A.3)

where I denotes a set formed all stocks i with the same characteristics (θi, bi, σ
2
i ). Suppose that

Si is given by (2.9) for all i = 1, .., I, in which case Condition (B) implies that D̄i − Si is equal

across i ∈ I. Suppose also, proceeding by contradiction, that λ(n) > λ(n′) for some n, n′ ∈ [0, 1].

Condition (B), equality of D̄i − Si across i ∈ I, and bi ≥ 0 for all i ∈ I, imply

∑
i∈I

bimax

{
biD̄ + D̄i + ϵi(n)− Si − biλ(n)

σ2i
, 0

}
≤
∑
i∈I

bimax

{
biD̄ + D̄i + ϵi(n

′)− Si − biλ(n
′)

σ2i
, 0

}
.

(A.4)

Summing (A.4) over I and using (A.3), we find λ(n) ≤ λ(n′), which contradicts λ(n) > λ(n′).

Therefore, λ(n) is equal across n.

Proof of Lemma 2.1. We denote the supremum and the infimum of the support of the distribu-

tion of investor beliefs for stock i by ϵi and ϵi, respectively. We first consider comparative static
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(I). Setting ϵ such that

ϵi = µi +
1

χ
(ϵ− µi) ⇔ ϵ = µi + χ(ϵi − µi)

in (2.12), we find that the supremum of the support of the distribution for stock i′ is not larger

than µi + χ(ϵi − µi). Setting ϵ+∆ϵ such that

ϵi = µi +
1

χ
(ϵ+∆ϵ− µi) ⇔ ϵ+∆ϵ = µi + χ(ϵi − µi)

in (2.12), we find that the supremum is not smaller than µi+χ(ϵi− µi). Therefore, the supremum

is µi + χ(ϵi − µi). The same argument implies that the infimum of the support of the distribution

for stock i′ is µi + χ(ϵi − µi). Therefore, the range for stock i′ is χ(ϵi − ϵi), which is χ times the

range ϵi − ϵi for stock i. The variance for stock i′ is

∫ µi+χ(ϵi−µi)

µi+χ(ϵi−µi)
(ϵ− µi)

2dFi′(ϵ).

Using (2.12) and then making the change of variable ϵ̂ = µi+
1
χ(ϵ−µi), we can write that variance

as ∫ µi+χ(ϵi−µi)

µi+χ(ϵi−µi)
(ϵ− µi)

2dFi

(
µi +

1

χ
(ϵ− µi)

)
= χ2

∫ ϵi

ϵi

(ϵ̂− µi)
2dFi (ϵ̂) ,

which is χ2 times the variance for stock i. Therefore, the standard deviation for stock i′ is χ times

that for stock i. The kurtosis for stock i′ is∫ µi+χ(ϵi−µi)
µi+χ(ϵi−µi)

(ϵ− µi)
4dFi′(ϵ)[∫ µi+χ(ϵi−µi)

µi+χ(ϵi−µi)
(ϵ− µi)2dFi′(ϵ)

]2 .
Using (2.12) and then making the change of variable ϵ̂ = µi+

1
χ(ϵ− µi), we can write that kurtosis

as

χ4
∫ ϵi
ϵi
(ϵ̂− µi)

4dFi (ϵ̂)[
χ2
∫ ϵi
ϵi
(ϵ̂− µi)2dFi (ϵ̂)

]2 =

∫ ϵi
ϵi
(ϵ̂− µi)

4dFi (ϵ̂)[∫ ϵi
ϵi
(ϵ̂− µi)2dFi (ϵ̂)

]2 ,
which is the kurtosis for stock i.

We next consider comparative static (P). The same argument as for comparative static (I)

implies that the supremum of the support of the distribution for stock i′ is ϵi and the infimum is
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ϵi. Therefore, the range for stock i′ is ϵi − ϵi, which is the range for stock i. Using (2.13), we can

write the variance for stock i′ as

ψ

∫ ϵi

ϵi

(ϵ− µi)
2dFi(ϵ),

which is ψ times the variance for stock i. Therefore, the standard deviation for stock i′ is
√
ψ times

that for stock i. Using (2.13), we can write the kurtosis for stock i′ as

ψ
∫ ϵi
ϵi
(ϵ− µi)

4dFi(ϵ)[
ψ
∫ ϵi
ϵi
(ϵ− µi)2dFi(ϵ)

]2 =
1

ψ

∫ ϵi
ϵi
(ϵ− µi)

4dFi(ϵ)[∫ ϵi
ϵi
(ϵ− µi)2dFi(ϵ)

]2 ,
which is 1

ψ times the kurtosis for stock i.

Proof of Proposition 2.2. We first consider comparative static (I). When (2.14) is violated, the

argument that follows the proposition’s statement implies that the short-sale constraint for stock

i′ is not binding for any investor, and the unique solution of (2.10) for stock i′ satisfies

ϕi′ =
µi

aθiσ2i
− 1.

When instead (2.14) holds, the short-sale constraint for stock i′ is binding for some investors, and

the unique solution of (2.10) for stock i′ satisfies

ϕi′ >
µi

aθiσ2i
− 1

and is given by∫ ϵi′

aθiσ2
i ϕi′

(
ϵ

aθiσ2i
− ϕi′

)
dFi′(ϵ) = 1. (A.5)

Using (2.12) and then making the change of variable ϵ̂ = µi +
1
χ(ϵ− µi), we can write (A.5) as

∫ ϵi′

aθiσ2
i ϕi′

(
ϵ

aθiσ2i
− ϕi′

)
dFi

(
µi +

1

χ
(ϵ− µi)

)
= 1

=

∫ ϵi

µi+
1
χ
(aθiσ2

i ϕi′−µi)

(
µi + χ(ϵ̂− µi)

aθiσ2i
− ϕi′

)
dFi (ϵ̂) = 1. (A.6)
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Differentiating implicitly (A.6) with respect to χ holding (µi, θi, bi, σi, ϵi, ϵi) constant, we find

∫ ϵi

µi+
1
χ
(aθiσ2

i ϕi′−µi)

(
ϵ̂− µi
aθiσ2i

− ∂ϕi′

∂χ

)
dFi (ϵ̂) = 0

⇒ ∂ϕi′

∂χ
=

∫ ϵi
µi+

1
χ
(aθiσ2

i ϕi′−µi)
ϵ̂−µi
aθiσ2

i
dFi (ϵ̂)∫ ϵi

µi+
1
χ
(aθiσ2

i ϕi′−µi)
dFi (ϵ̂)

=
1

aθiσ2i

[
E
(
ϵ̂|ϵ̂ ∈

[
µi +

1

χ
(aθiσ

2
i ϕi′ − µi), ϵi

])
− µi

]
> 0,

(A.7)

where the positive sign follows because µi+
1
χ(aθiσ

2
i ϕi′−µi) > ϵi. Therefore, ϕi′ , viewed as function

of χ holding (µi, θi, bi, σi, ϵi, ϵi) constant, increases in χ when (2.14) holds and is independent of χ

when (2.14) is violated. Since there exists a threshold χ∗ such that (2.14), viewed as function of

χ holding (µi, θi, bi, σi, ϵi, ϵi) constant, holds for all χ > χ∗ and is violated for all χ ≤ χ∗, ϕi′ > ϕi

when (2.14) holds and ϕi′ = ϕi when (2.14) is violated. The statement in the proposition for

comparative static (I) then follows from (2.9) and because expected return biD̄+D̄−Si
Si

is decreasing

in the price.

We next consider comparative static (P). The same argument as for comparative static (I)

implies that when (2.14) is violated, the short-sale constraint for stock i′ is not binding for any

investor, and ϕi′ =
µi

aθiσ2
i
− 1. When instead (2.14) holds, the short-sale constraint for stock i′ is

binding for some investors, and ϕi′ satisfies

ϕi′ >
µi

aθiσ2i
− 1

and is given by∫ ϵi

aθiσ2
i ϕi′

(
ϵ

aθiσ2i
− ϕi′

)
dFi′(ϵ) = 1. (A.8)

Using (2.13), we can write (A.8) as

ψ

∫ ϵi

aθiσ2
i ϕi′

(
ϵ

aθiσ2i
− ϕi′

)
dFi(ϵ) + (1− ψ)

(
µi

aθiσ2i
− ϕi′

)
= 1 (A.9)

when ϕi′ <
µi

aθiσ2
i
, and as

ψ

∫ ϵi

aθiσ2
i ϕi′

(
ϵ

aθiσ2i
− ϕi′

)
dFi(ϵ) = 1 (A.10)

when ϕi′ ≥ µi
aθiσ2

i
. Differentiating implicitly (A.9) with respect to ψ holding (µi, θi, bi, σi, ϵi, ϵi)
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constant, we find

∫ ϵi

aθiσ2
i ϕi′

(
ϵ

aθiσ2i
− ϕi′

)
dFi(ϵ)−

(
µi

aθiσ2i
− ϕi′

)
− ∂ϕi′

∂ψ

(
ψ

∫ ϵi′

aθiσ2
i ϕi′

dFi(ϵ) + (1− ψ)

)
= 0

⇒ ∂ϕi′

∂ψ
= −

∫ aθiσ2
i ϕi′

ϵi

(
ϵ

aθiσ2
i
− ϕi′

)
dFi(ϵ)

ψ
∫ ϵi′
aθiσ2

i ϕi′
dFi(ϵ) + (1− ψ)

> 0. (A.11)

Differentiating implicitly (A.10) with respect to ψ holding (µi, θi, bi, σi, ϵi, ϵi) constant, we find

∫ ϵi

aθiσ2
i ϕi′

(
ϵ

aθiσ2i
− ϕi′

)
dFi(ϵ)−

∂ϕi′

∂ψ
ψ

∫ ϵi′

aθiσ2
i ϕi′

dFi(ϵ) = 0

⇒ ∂ϕi′

∂ψ
=

∫ ϵi
aθiσ2

i ϕi′

(
ϵ

aθiσ2
i
− ϕi′

)
dFi(ϵ)

ψ
∫ ϵi′
aθiσ2

i ϕi′
dFi(ϵ)

> 0. (A.12)

Therefore, ϕi′ , viewed as function of ψ holding (µi, θi, bi, σi, ϵi, ϵi) constant, increases in ψ when

(2.14) holds and is independent of ψ when (2.14) is violated. Since (2.14), viewed as function of ψ

holding (µi, θi, bi, σi, ϵi, ϵi) constant, is independent of ψ, ϕi′ < ϕi when (2.14) holds and ϕi′ = ϕi

when (2.14) is violated. The statement in the proposition for comparative static (P) then follows

from (2.9) and because expected return is decreasing in the price.

Proof of Proposition 2.3. We first consider comparative static (I). When (2.14) is violated, the

argument that follows the statement of Proposition 2.2 implies that the short-sale constraint for

stock i′ is not binding for any investor. Therefore, Bi′ = 1. When instead (2.14) holds, the

short-sale constraint for stock i′ is binding for some investors and

Bi′ =

∫ ϵi′

aθiσ2
i ϕi′

dFi′(ϵ)

= Fi′(ϵi′)− Fi′
(
aθiσ

2
i ϕi′

)
= Fi(ϵi)− Fi

(
µi +

1

χ

(
aθiσ

2
i ϕi′ − µi

))
= 1− Fi

(
µi +

1

χ

(
aθiσ

2
i ϕi′ − µi

))
, (A.13)

where the third step follows from (2.12) and ϵi′ = µi+χ(ϵi−µi). Differentiating µi+
1
χ

(
aθiσ

2
i ϕi′ − µi

)
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with respect to χ holding (µi, θi, bi, σi, ϵi, ϵi) constant, and using (A.7), we find

∂

∂χ

(
µi +

1

χ

(
aθiσ

2
i ϕi′ − µi

))
=

1

χ

(
− 1

χ

(
aθiσ

2
i ϕi′ − µi

)
+

[
E
(
ϵ̂|ϵ̂ ∈

[
µi +

1

χ
(aθiσ

2
i ϕi′ − µi), ϵi

])
− µi

])
>

1

χ

(
− 1

χ

(
aθiσ

2
i ϕi′ − µi

)
+

[[
µi +

1

χ
(aθiσ

2
i ϕi′ − µi), ϵi

]
− µi

])
= 0,

where the inequality is strict because (A.13) implies µi +
1
χ

(
aθiσ

2
i ϕi′ − µi

)
< ϵi. Therefore,

µi +
1
χ

(
aθiσ

2
i ϕi′ − µi

)
increases in χ and (A.13) implies that Bi′ , viewed as function of χ hold-

ing (µi, θi, bi, σi, ϵi, ϵi) constant, is non-increasing in χ. Since Bi′ is non-increasing in χ when (2.14)

holds and is independent of χ when (2.14) is violated, and since there exists a threshold χ∗ such

that (2.14) holds for all χ > χ∗ and is violated for all χ ≤ χ∗, Bi′ ≤ Bi when (2.14) holds and

Bi′ = Bi when (2.14) is violated. When Fi(ϵ) increases in ϵ, (A.13) implies that Bi′ decreases in χ.

Therefore, Bi′ < Bi when (2.14) holds and Bi′ = Bi when (2.14) is violated.

We next consider comparative static (P). When (2.14) is violated, the argument that follows

the statement of Proposition 2.2 implies that the short-sale constraint for stock i′ is not binding for

any investor. Therefore, Bi′ = 1. Since (2.14), viewed as function of ψ holding (µi, θi, bi, σi, ϵi, ϵi)

constant, is independent of ψ, Bi′ = Bi. When instead (2.14) holds, the short-sale constraint for

stock i′ is binding for some investors and

Bi′ =

∫ ϵi′

aθiσ2
i ϕi′

dFi′(ϵ) = Fi′(ϵi′)− Fi′
(
aθiσ

2
i ϕi′

)
. (A.14)

Using (2.13) and ϵi′ = ϵi, we can write (A.14) as

Bi′ = ψ
[
Fi(ϵi)− Fi

(
aθiσ

2
i ϕi′

)]
+ (1− ψ) = 1− ψFi

(
aθiσ

2
i ϕi′

)
(A.15)

when (2.18) is violated, and as

Bi′ = ψ
[
Fi(ϵi)− Fi

(
aθiσ

2
i ϕi′

)]
= ψ

[
1− Fi

(
aθiσ

2
i ϕi′

)]
(A.16)

when (2.18) holds. We first consider the case where (2.19) holds. Since (A.11) implies that ϕi′

increases in ψ, (2.18) is violated for all ψ̂ ∈ [ψ, 1] and (A.15) implies that Bi′ , viewed as function of

ψ holding (µi, θi, bi, σi, ϵi, ϵi) constant, decreases in ψ. Therefore, Bi′ > Bi. We next consider the

case where (2.18) holds and Fi(ϵ) has a density fi(ϵ) in [µi, ϵi] that is positive and non-decreasing in

ϵ. Differentiating (A.16) with respect to ψ holding (µi, θi, bi, σi, ϵi, ϵi) constant, and using (A.12),
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we find

∂Bi′

∂ψ
= 1− Fi

(
aθiσ

2
i ϕi′

)
− ψaθiσ

2
i fi
(
aθiσ

2
i ϕi′

) ∫ ϵiaθiσ2
i ϕi′

(
ϵ

aθiσ2
i
− ϕi′

)
dFi(ϵ)

ψ
∫ ϵi′
aθiσ2

i ϕi′
dFi(ϵ)

= 1− Fi
(
aθiσ

2
i ϕi′

)
−

aθiσ
2
i fi
(
aθiσ

2
i ϕi′

)
ψ
[
1− Fi

(
aθiσ2i ϕi′

)]
≥ 1− Fi

(
aθiσ

2
i ϕi′

)
− aθiσ

2
i

ψ
(
ϵi − aθiσ2i ϕi′

)
=

aθiσ
2
i

ψ
(
ϵi − aθiσ2i ϕi′

) [ψ( ϵi
aθiσ2i

− ϕi′

)[
1− Fi

(
aθiσ

2
i ϕi′

)]
− 1

]
>

aθiσ
2
i

ψ
(
ϵi − aθiσ2i ϕi′

) [ψ ∫ ϵi

aθiσ2
i ϕi′

(
ϵ

aθiσ2i
− ϕi′

)
dFi(ϵ)− 1

]
= 0,

where the second step follows from (A.10), the third step because fi(ϵ) is non-decreasing in ϵ, the

fifth step because the positive density fi(ϵ) implies that Fi(ϵ) increases in ϵ ∈ [µi, ϵi], and the sixth

step from (A.10). Therefore, Bi′ increases in ψ. Since (A.11) implies that ϕi′ increases in ψ, (2.18)

holds for all ψ̂ ∈ [ψ, 1], and Bi′ < Bi.

Writing (A.8) as

∫ ϵi

aθiσ2
i ϕi′

(
ϵ− aθiσ

2
i ϕi′

)
dFi′(ϵ) = aθiσ

2
i ,

and differentiating implicitly with respect to θiσ
2
i holding (µi, bi, ϵi, ϵi) constant, we find

−a
∂
(
θiσ

2
i ϕi′

)
∂
(
θiσ2i

) ∫ ϵi

aθiσ2
i ϕi′

dFi′(ϵ) = a.

Therefore, θiσ
2
i ϕi′ decreases in θiσ

2
i . Since (2.18) can be written as

θiσ
2
i ϕi′ ≥

µi
a
,

there exists a threshold Θ∗
ψ such that (2.14) holds for θiσ

2
i ≤ Θ∗

ψ. Likewise, since (2.19) can be

written as

θiσ
2
i ϕi <

µi
a
,

there exists a threshold Θ∗
1 such that (2.14) holds for θiσ

2
i > Θ∗

1. Since ϕi′ < ϕi, these thresholds

satisfy Θ∗
ψ < Θ∗

1.
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Proof of Proposition 2.4. When

µi − ϵi
aθi′σ

2
i

> 1 (A.17)

is violated, the argument that follows the statement of Proposition 2.2 implies that the short-sale

constraint for stock i′ is not binding for any investor. Therefore, Bi′ = 1. When instead (A.17)

holds, the short-sale constraint for stock i′ is binding for some investors and

Bi′ =

∫ ϵi

aθi′σ
2
i ϕi′

dFi(ϵ)

= Fi(ϵi)− Fi
(
aθi′σ

2
i ϕi′

)
= 1− Fi

(
aθi′σ

2
i ϕi′

)
. (A.18)

Since θi′σ
2
i ϕi′ decreases in θi′σ

2
i , as shown in the proof of Proposition 2.3, (A.18) implies that Bi′ ,

viewed as function of θi′ holding (bi, D̄i, σi, Fi(ϵ)) constant is non-decreasing in θi′ . Since Bi′ is

non-decreasing in θi′ when (A.17) holds and is independent of θi′ when (A.17) is violated, and since

there exists a threshold θ∗ such that (A.17) holds for all θi′ < θ∗ and is violated for all θi′ ≥ θ∗,

Bi′ ≥ Bi when (2.20) holds and Bi′ = Bi when (2.20) is violated. When Fi(ϵ) increases in ϵ, (A.18)

implies that Bi′ increases in θi′ . Therefore, Bi′ > Bi when (2.20) holds and Bi′ = Bi when (2.20)

is violated.

B Investment Styles of 13-F Investors by Thomson Reuters

Table B.I presents the 32 investment styles in which Thompson Reuters (TR) classifies 13-F in-

vestors.

TR classifies 13-F investors into styles based on the characteristics of the stocks that they hold,

their historical investment behavior, their current transactions and their general business type. TR

first classifies each stock into a certain group or style based on its price-earnings ratio, dividend

yield, and the three- to five-year projected earnings-per-share growth relative to the corresponding

S&P500 or sector averages. For each 13-F investor, TR then calculates the weights of the different

groups or styles of stocks. The group with the biggest weight generally characterizes the investor’s

style.

Some classifications are more mechanical. 13-F investors whose portfolios follow the composi-

tion of certain indices (e.g. S&P 500, Russell 1000/2000/3000, etc) are classified into the Index

style. Styles such as “Broker Dealer,” “Hedge Funds” and “VC/Private Equity” are assigned

mainly based on the business type of the corresponding investors. Finally, some 13-F investors
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Table B.I: The 32 investment styles in which Thomson Reuters classifies 13-F investors.

General Styles Hedge Fund Styles

Aggressive Growth, Broker Dealer, Core Growth,

Core Value, Deep Value, Emerging Markets,

GARP(Growth at Reasonable Price), Growth,

Hedge Fund, Income Value, Index, Mixed Style,

Momentum, Sector Specific, Specialty,

VC(Venture Capital)/Private Equity, Yield

Capital Structure Arbitrage, Convertible Arbitrage,

CTA(Commodity Trading Advisors) Managed

Futures, Distressed Securities, Emerging Markets

(Hedge), Equity Hedge, Event Driven (Merger/

Risk Arbitrage), Fixed Income Arbitrage,

Funds of Funds, Global Macro, Long Bias,

Long-Short, Market Neutral, Multi-Strategy

(Hedge), Quantitative/Statistical Arbitrage

Note: The 32 investment styles in which Thompson Reuters (TR) classifies 13-F investors. The left column reports
the seventeen general styles and the right column reports the fifteen hedge fund styles. The styles are reported
alphabetically in each column. The information is available on http://banker.thomsonib.com/ta/help/webhelp/

Ownership_Glossary.htm

are classified into hedge-fund styles depending on their exact investment strategy (e.g. “Convert-

ible Arbitrage,” “Quantitative-Statistical Arbitrage,” “Emerging Markets,” “Fund of funds”). The

relative importance of hedge-fund styles is small.

The pie chart in Figure B.1 shows the size of each of the 32 styles in our sample, defined as the

asset value attributed to the style over the total asset value of all styles. There are twelve styles

with size above 1%. The combined size of the remaining twenty styles is 1.34%.
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Figure B.1: Mean share of stock ownership by style

Note: Mean percentage shares in our sample of the 32 investment styles in which Thompson Reuters (TR) classifies
13-F investors. The average shares above 1% are reported separately (twelve styles) and the average shares below
1% are reported together as “other” (twenty styles).
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