
LINEAR PROGRAMMING
AND CIRCUIT IMBALANCES

László Végh

IPCO Summer School
Georgia Tech, May 2021

Slides available at
https://personal.lse.ac.uk/veghl/ipco

Linear programming
min 𝑐!𝑥
𝐴𝑥 = 𝑏
𝑥 ≥ 0

LP Operations
Research

Integer
Prog-

ramming

Combinatorics
Geometry

Analysis

Game
theory

Convex
optimization

Discrete
§ Basic solutions

§ Polyhedral
combinatorics

§ Exact solution

Facets of linear programming

Continuous
§ Continuous

solutions

§ Convex program

§ Approximate
solution

Linear programming algorithms

§ 𝑛 variables, 𝑚 constraints

§ L: total bit-complexity of the rational input (𝐴, 𝑏, 𝑐)

§ Simplex method: Dantzig, 1947

§ Weakly polynomial algorithms: poly(L) running time
§ Ellipsoid method: Khachiyan, 1979

§ Interior point method: Karmarkar, 1984

min 𝑐!𝑥
𝐴𝑥 = 𝑏
𝑥 ≥ 0

Weakly vs strongly polynomial
algorithms for LP
§ 𝑛 variables, 𝑚 constraints, total encoding L.

§ Strongly polynomial algorithm:

§ poly(𝑛,𝑚) elementary arithmetic operations
(+,−,×,÷,≥), independent of L.

§ PSPACE: The bit-length of numbers during the
algorithm remain polynomially bounded in the size of
the input.

§ Can also be defined in the real model of computation

min 𝑐!𝑥
𝐴𝑥 = 𝑏
𝑥 ≥ 0

Is there a strongly polynomial
algorithm for Linear

Programming?

Smale’s 9th question

Strongly polynomial algorithms for some
classes of Linear Programs

§ Systems of linear inequalities with at most two
nonzero variables per inequality: Megiddo ’83

§ Network flow problems

§ Maximum flow: Edmonds-Karp-Dinitz ’70-72, …

§ Min-cost flow: Tardos ’85, Fujishige ’86,
Goldberg-Tarjan ’89, Orlin ’93, …

§ Generalized flow: V ’17, Olver-V ’20

§ Discounted Markov Decision Processes:
Ye ’05, Ye ’11, …

Dependence on the constraint matrix only

§ Algorithms with running time dependent only on 𝐴, but
not on 𝑏 and 𝑐.

§ Combinatorial LP’s: integer matrix 𝐴 ∈ ℤ!×#.
Δ$ = max{| det 𝐵 |: 𝐵 submatrix of 𝐴}

Tardos ’86: poly 𝑛,𝑚, log Δ$ black box LP algorithm

§ Layered-least-squares (LLS) Interior Point Method
Vavasis-Ye ’96: poly 𝑛,𝑚, log �̅�$ LP algorithm in the
real model of computation
�̅�$: condition number

§ Dadush-Huiberts-Natura-V ’20: poly 𝑛,𝑚, log �̅�$∗
�̅�$∗ : optimized version of �̅�$

min 𝑐!𝑥, 𝐴𝑥 = 𝑏 𝑥 ≥ 0

Outline of the lectures

1. Tardos’s algorithm for min-cost flows

2. The circuit imbalance measure 𝜅" and the
condition measure �̅�"

3. Solving LPs: from approximate to exact

4. Optimizing circuit imbalances

5. Interior point methods: basic concepts

6. Layered-least-squares interior point methods

§ Dadush-Huiberts-Natura-V ’20: A scaling-invariant algorithm
for linear programming whose running time depends only on
the constraint matrix

§ Dadush-Natura-V ’20: Revisiting Tardos’s framework for linear
programming: Faster exact solutions using approximate
solvers

Part 1
Tardos’s algorithm for min-cost flows
circuits, proximity, and variable fixing

§ Directed graph 𝐺 = (𝑉, 𝐸), node demands 𝑏: 𝑉 → ℝ with
𝑏 𝑉 = 0, costs 𝑐: 𝐸 → ℝ.

min 𝑐!𝑥

s. t. 7
"#∈%! #

𝑥"# − 7
#"∈%"(#)

𝑥#" = 𝑏# ∀𝑖 ∈ 𝑉

𝑥 ≥ 0

§ Form with arc capacities can be reduced to this form.

§ Constraint matrix is totally unimodular (TU)

The minimum-cost flow problem

𝑖
𝛿! 𝑖

𝛿" 𝑖

𝑖

𝑗

𝑖𝑗

−1

1
nodes

arcs

§ Directed graph 𝐺 = (𝑉, 𝐸), node demands 𝑏: 𝑉 → ℝ with
𝑏 𝑉 = 0, costs 𝑐: 𝐸 → ℝ.

min 𝑐!𝑥

s. t. 7
(",#)∈%! #

𝑥"# − 7
(#,")∈%"(#)

𝑥#" = 𝑏# ∀𝑖 ∈ 𝑉

𝑥 ≥ 0

§ Dual program:
max𝑏!𝜋

s. t. 𝜋" − 𝜋# ≤ 𝑐#" ∀𝑖𝑗 ∈ 𝐸

§ Optimality: 𝑓#" > 0 ⟹ 𝜋"−𝜋# = 𝑐#"

The minimum-cost flow problem:
optimality

𝑖
𝛿! 𝑖

𝛿" 𝑖

§ Dual program: max cost feasible
potential

max 𝑏!𝜋
s. t. 𝜋" − 𝜋# ≤ 𝑐#" ∀𝑖𝑗 ∈ 𝐸

§ Residual cost:
𝑐#"$ = 𝑐#" + 𝜋# − 𝜋" ≥ 0

§ Residual graph:
𝐸% = 𝐸 ∪ 𝑗, 𝑖 : 𝑓#" > 0
𝑐"# = −𝑐#"

Dual solutions: potentials

-2

-1

0

1

2

3

4

5

6

0 2 4 6

-3 3

1

-1

LEMMA: The primal feasible f is optimal ⟺
∃𝜋: 𝑐+,- ≥ 0 for all 𝑖, 𝑗 ∈ 𝐸 and 𝑐+,- = 0 if 𝑓+, > 0 ⟺
∃𝜋: 𝑐+,- ≥ 0 for all 𝑖, 𝑗 ∈ 𝐸.

𝜋#

Variable fixing by proximity
§ If for some (𝑖, 𝑗) ∈ 𝐸 we can show that 𝑓+,∗ = 0 in every

optimal solution, then we can remove (𝑖, 𝑗) from the
graph.

§ Overall goal: in strongly polynomial number of steps,
guarantee that we can infer this for at least one arc.

PROXIMITY THEOREM: Let Q𝜋 be the
optimal dual potential for costs �̃�, and 𝑓∗
an optimal primal solution for the original
costs 𝑐. Then,

𝑐+,
/- > 𝑉 ⋅ 𝑐 − �̃� 0 ⇒ 𝑓+,∗ = 0

§ For the node-arc incidence matrix 𝐴, ker 𝐴 ⊆ ℝ) is the set of
circulations:

in-flow=out-flow

§ LEMMA: every circulation 𝑓 ≥ 0 can be decomposed as

𝑓 =7
#

𝜆#𝜒*# , 𝜆# ≥ 0

for directed cycles 𝐶#

2 2+3

2+3

3

2+1

1

1

Circulations and cycle decompositions

§ LEMMA: Let 𝑓 and 𝑓+ be two feasible flows for the same
demand vector 𝑏. Then, we can write

𝑓′ = 𝑓 +7
#

𝜆#𝜒*# , 𝜆# ≥ 0

for sign-consistent directed cycles 𝐶# in 𝐸:

§ If 𝑓#"+ > 𝑓#" then cycles may only contain 𝑖𝑗 but not 𝑗𝑖.

§ If 𝑓#" > 𝑓#"+ then cycles may only contain 𝑗𝑖 but not 𝑖𝑗.

§ If 𝑓#" = 𝑓#"+ then no cycle contains 𝑖𝑗 or 𝑗𝑖.

Every cycle is moving from 𝑓 towards 𝑓′.

Circulations and cycle decompositions

PROOF:

PROXIMITY THEOREM: Let R𝜋 be the optimal dual
potential for costs �̃�, and 𝑓∗ an optimal primal
solution for the original costs 𝑐. Then,

𝑐#"-. > 𝑉 ⋅ 𝑐 − �̃� / ⇒ 𝑓#"∗ = 0

Rounding the costs
§ Rescale 𝑐 such that 𝑐 0 = 𝑉 |𝐸|

§ Round costs as �̃�+, = ⌊𝑐+,⌋

§ For �̃� we can find optimal primal and dual solutions
in strongly polynomial time, e.g. the Out-of-Kilter
method by Ford and Fulkerson 1962.

§ For the optimal dual Q𝜋, fix all arcs to 0 that have

𝑐+,
/- > 𝑉 > 𝑉 ⋅ 𝑐 − �̃� 0

§ QUESTION: Why would such an arc exist?

Minimum-norm projections
§ Residual cost:

𝑐#". = 𝑐#" + 𝜋# − 𝜋" ≥ 0

§ The cost vectors
𝑈 = {𝑐.: 𝜋 ∈ ℝ0} ⊂ ℝ)

form an affine subspace.

§ For any feasible flow 𝑓 and any residual cost 𝑐.,
𝑐. !𝑓 = 𝑐!𝑓 + 𝑏!𝜋

§ Solving the problem for 𝑐 and 𝑐. is equivalent.

§ If 0 ∈ 𝑈, i.e. ∃𝜋: c. ≡ 0, then every feasible flow is optimal

§ IDEA: Replace the input 𝑐 by the min norm projection to the
affine subspace 𝑈:

𝑐. = arg min
.∈ℝ$

𝑐. 2 𝑐#

Rounding the costs
§ Assume 𝒄 is chosen as a min norm projection:

𝒄𝝅 𝟐 ≥ 𝒄 𝟐 ∀𝝅 ∈ ℝ𝑽

§ Rescale 𝑐 such that 𝑐 / = 𝑉 |𝐸|

§ Round costs as �̃�#" = ⌊𝑐#"⌋

§ For the optimal dual R𝜋, fix all arcs to 0 that have
𝑐#"
-. > 𝑉 > 𝑉 ⋅ 𝑐 − �̃� /

§ LEMMA: There exist at least one such arc.
PROOF:

𝑐-. / ≥
𝑐-. 2

𝐸
≥

𝑐 2

𝐸
≥

𝑐 /

𝐸
= 𝑉

Also note that
𝑐#"
-. ≥ �̃�#"

-. ≥ 0

Summary of Tardos’s algorithm
§ Variable fixing based on proximity that can be shown by

cycle decomposition.

§ Replace the input cost by an equivalent min-cost projection

§ Round to small integer costs �̃�

§ Find optimal dual R𝜋 for �̃� with simple classical method

§ Identify a variable 𝑓#"∗ = 0 as one where 𝑐#"-. is large and
remove all such arcs.

§ Iterate

Outline of the lectures

1. Tardos’s algorithm for min-cost flows

2. The circuit imbalance measure 𝜅" and the
condition measure �̅�"

3. Solving LPs: from approximate to exact

4. Optimizing circuit imbalances

5. Interior point methods: basic concepts

6. Layered-least-squares interior point methods

Part 2
The circuit imbalance measure 𝜅!
and the condition measure �̅�!

The circuit imbalance measure
§ The matrix 𝐴 ∈ ℝ!×# defines a linear matroid on

𝑛 = {1,2, … , 𝑛}: a set 𝐼 ⊆ [𝑛] is independent if
the columns {𝑎$: 𝑖 ∈ 𝐼} are linearly independent.

§ 𝐶 ⊆ [𝑛] is a circuit if 𝑎$: 𝑖 ∈ 𝐶 is a linearly dependent set
minimal for containment.

§ For a circuit 𝐶, there exists a vector 𝑔% ∈ ℝ% unique up to a
scalar multiplier such that

5
$∈%

𝑔$%𝑎$ = 0

§ 𝒞' : set of all circuits.

§ The circuit imbalance measure is defined as

𝜅' = max
𝑔(%

𝑔$
% : 𝐶 ∈ 𝒞', 𝑖, 𝑗 ∈ 𝐶

5 2.4 -3 -1

Properties of 𝜅!
𝜅6 = max

𝑔"*

𝑔#
* : 𝐶 ∈ 𝒞6, 𝑖, 𝑗 ∈ 𝐶

§ This measure depends only on the linear subspace
𝑊 = ker 𝐴 : if ker 𝐴 = ker(𝐵) then 𝜅6 = 𝜅7

§ We will use 𝜅8 = 𝜅6 for 𝑊 = ker 𝐴

Connection to subdeterminants:

§ For an integer matrix 𝐴 ∈ ℤ9×;,
Δ6 = max{| det 𝐵 |: 𝐵 submatrix of 𝐴}

§ For a circuit 𝐶 ∈ 𝒞6, with 𝐶 = 𝑡 let 𝐷 = 𝐴<,* ∈ ℝ(=>?)×= be a
submatrix with linearly independent rows.

𝐴𝐷

𝐶
𝐷(#) ∈ ℝ(=>?)×(=>?) remove the 𝑖-th column
from 𝐷. By Cramer’s rule
𝑔* = det 𝐷 ? , det 𝐷 2 , … , det 𝐷 =

Properties of 𝜅!
§ LEMMA: For an integer matrix 𝐴 ∈ ℤ9×;,

𝜅6 ≤ Δ6
For a totally unimodular matrix 𝐴, 𝜅6 = 1

§ EXERCISE:
i. If 𝐴 is the node-edge incidence matrix of

an undirected graph, then 𝜅6 ∈ 1,2
ii. For the incidence matrix of a complete

undirected graph on 𝑛 nodes,

Δ6 ≥ 2
%
&

Circuit imbalance and TU matrices

PROOF (Ekbatani & Natura):

THEOREM (Cederbaum, 1958): If 𝐴 ∈ ℤ!×# is a TU-
matrix, then 𝜅$ = 1. Conversely, if 𝜅5 = 1 for a linear
subspace 𝑊 ⊂ ℝ# then there exists a TU-matrix 𝐴 such
that 𝑊 = ker 𝐴 .

Duality of circuit imbalances

THEOREM: For every linear subspace
𝑊 ⊂ ℝ#, we have

𝜅5 = 𝜅5)

Circuits in optimization
§ Appear in various LP algorithms directly or indirectly

§ IPCO summer school 2020: Laura Sanità’s lectures
discussed circuit augmentation algorithms and
circuit diameter

§ Integer programming: 𝜅 has a natural integer
variant that is related to Graver bases

§ …

The condition number �̅�!
�̅�6 = sup 𝐴! 𝐴𝐷𝐴! >?𝐴𝐷 :𝐷 is positive diagonal matrix

§ Measures the norm of oblique projections

§ Introduced by Dikin 1967, Stewart 1989, Todd 1990

§ THEOREM (Vavasis-Ye 1996): There exists a poly 𝑛,𝑚, log �̅�6
LP algorithm for min 𝑐!𝑥 , 𝐴𝑥 = 𝑏, 𝑥 ≥ 0, 𝐴 ∈ ℝ9×;

§ LEMMA
i. If 𝐴 is an integer matrix with bit encoding length 𝐿, then

�̅�6 ≤ 2@(A)

ii. �̅�6 = max 𝐵>?𝐴 :𝐵 nonsingular 𝑚×𝑚 submatrix of 𝐴
iii. �̅�6 only depends on the subspace 𝑊 = ker(𝐴)
iv. �̅�8 = �̅�8'

The lifting operator
§ For a linear subspace 𝑊 ⊂ ℝ# and index set 𝐼 ⊆ 𝑛 , we let

𝜋*: ℝ# → ℝ*

denote the coordinate projection, and
𝜋* 𝑊 = {𝑥*: 𝑥 ∈ 𝑊}

§ The lifting operator 𝐿*+: ℝ* → ℝ# is defined as
𝐿*+ 𝑧 = argmin 𝑥 ,: 𝑥 ∈ 𝑊, 𝑥* = 𝑧

§ This is a linear operator; we can efficiently compute a projection
matrix 𝐻 ∈ ℝ#×* such that 𝐿*+ 𝑧 = 𝐻𝑧.

§ LEMMA:

�̅�' = max
*⊆[#]

𝐿*+ = max
𝐿*+ 𝑧 ,
𝑧 ,

: 𝐼 ⊆ 𝑛 , 𝑧 ∈ 𝜋* 𝑊 ∖ {0}

The lifting operator

𝐿65 𝑧 = argmin 𝑥 7: 𝑥 ∈ 𝑊, 𝑥6 = 𝑧

The lifting operator
LEMMA:

𝜅6 = max
𝐿B8 𝑧 /
𝑧 ?

: 𝐼 ⊆ 𝑛 , 𝑧 ∈ 𝜋B 𝑊 ∖ 0

PROOF:

The condition numbers 𝜅! and �̅�!

Approximability of 𝜿𝑨 and e𝝌𝑨:

LEMMA (Tunçel 1999): It is NP-hard to approximate e𝝌𝑨
by a factor better than 29:;<(>?@A($))

THEOREM: For every matrix 𝐴 ∈ ℝ!×#, 𝑛 ≥ 2
1 + 𝜅$7 ≤ �̅�$ ≤ 𝑛𝜅$

Recap from Lecture 1

§ Overall goal: solving LPs exactly and “as strongly
polynomially as possible”

§ One can reduce the dependence to the constraint
matrix only:
§ Tardos ’86: poly 𝑛,𝑚, log Δ& black box LP algorithm
§ Vavasis-Ye ’96 Layered-least-squares Interior Point Method

poly 𝑛,𝑚, log �̅�&
§ The crucial parameter of the constraint matrix is

the circuit imbalance measure, a nice geometric
parameter associated with the subspace ker(𝐴)

Updated slides available at
https://personal.lse.ac.uk/veghl/ipco

Recap from Lecture 1
§ Tardos’s algorithm for min. cost generalized flows:

circuits, proximity, and variable fixing

§ Circuit imbalance measure: matrix 𝐴 ∈ ℝ9×;
circuit: a set 𝐶 ⊆ [𝑛] if 𝑎#: 𝑖 ∈ 𝐶 is a linearly dependent set minimal
for containment. ∃𝑔* ∈ ℝ* unique up to a scalar multiplication:

7
#∈*

𝑔#*𝑎# = 0

§ The circuit imbalance measure is defined as

𝜅6 = max
𝑔"*

𝑔#*
: 𝐶 ∈ 𝒞6, 𝑖, 𝑗 ∈ 𝐶

§ Properties: TU⇒ 𝜅6 = 1; and 𝜅6 can be used to bound the lifting cost

5 2.4 -3 -1

Outline of the lectures

1. Tardos’s algorithm for min-cost flows

2. The circuit imbalance measure 𝜅" and the
condition measure �̅�"

3. Solving LPs: from approximate to exact

4. Optimizing circuit imbalances

5. Interior point methods: basic concepts

6. Layered-least-squares interior point methods

Part 3
Solving LPs:
from approximate to exact

Fast approximate LP algorithms

§ 𝜀-approximate solution:

§ Approximately feasible: 𝐴𝑥 − 𝑏 ≤ 𝜀(𝐴 C𝑅 + 𝑏)

§ Approximately optimal: 𝑐!𝑥 ≤ OPT + 𝜀 𝑐 𝑅

§ Finding an approximate solution with log ?
D

running time
dependence implies a weakly polynomial exact algorithm.

min 𝑐!𝑥
𝐴𝑥 = 𝑏
𝑥 ≥ 0

§ 𝑛 variables, 𝑚 equality constraints, Randomized vs. Deterministic
§ Significant recent progress:

§ R 𝑂 nnz 𝐴 + 𝑚(𝑚 log) * 𝑛 log +
,

Lee–Sidford ’13–’19

§ R 𝑂 𝑛- log) * 𝑛 log +
,

Cohen, Lee, Song ’19

§ D 𝑂 𝑛- log(𝑛 log +
,

van den Brand ’20

§ R 𝑂 𝑚𝑛 +𝑚. log) * 𝑛 log +
,

van den Brand, Lee, Sidford, Song ’20

§ R 𝑂 𝑚𝑛 +𝑚(.0 log) * 𝑛 log +
,

van den Brand, Lee, Liu, Saranurak, Sidford, Song, Wang ’21

Some important techniques:
§ weighted and stochastic central paths
§ fast approximate linear algebra
§ efficient data structures

min 𝑐!𝑥 𝐴𝑥 = 𝑏 𝑥 ≥ 0
Fast approximate LP algorithms

Fast exact LP algorithms
with 𝜅! dependence

§ 𝑛 variables, 𝑚 equality constraints

THEOREM (Dadush, Natura, V. ‘20) There exists a
poly(𝑛,𝑚, log 𝜅6) algorithm for solving LP exactly.
§ Feasibility: m calls to an approximate solver
§ Optimization: mn calls to an approximate solver
with 𝜀 = 1/(poly 𝑛, 𝜅6). Using van den Brand ’20, this gives a

deterministic exact 𝑂 𝑚𝑛EF? log2 𝑛 log(𝜅6+𝑛) time LP optimization
algorithm

§ Generalization of Tardos ’86 for real constraint matrices and with directly
working with approximate solvers.

§ Main difference: arguments in Tardos ’86 heavily rely on integrality
assumptions

min 𝑐!𝑥
𝐴𝑥 = 𝑏
𝑥 ≥ 0

Hoffman’s proximity theorem
Polyhedron 𝑃 = 𝑥 ∈ ℝ;: 𝐴𝑥 ≤ 𝑏 , point 𝑥G ∉ 𝑃, norms . H, . I

THEOREM (Hoffman, 1952): There exists a constant 𝐻H,I(𝐴) such that

∃𝑥 ∈ 𝑃: 𝑥 − 𝑥G H ≤ 𝐻H,I(𝐴) 𝐴𝑥G − 𝑏 F
I

𝑃

𝑥$

𝑥

Alan J. Hoffman
1924-2021

Proximity theorem with 𝜅!
THEOREM: For 𝐴 ∈ ℝ9×;, 𝑑 ∈ ℝ;, consider the system

𝐴𝑥 = 𝐴𝑑, 𝑥 ≥ 0.

If feasible, then there exists a feasible solution 𝑥 such that
𝑥 − 𝑑 / ≤ 𝜅6 𝑑> ?

PROOF:

Linear feasibility algorithm
Linear feasibility problem

𝐴𝑥 = 𝐴𝑑, 𝑥 ≥ 0.
§ Recursive algorithm using a stronger problem formulation:

𝐴𝑥 = 𝐴𝑑, 𝑥 ≥ 0.
𝑥 − 𝑑 / ≤ 𝐶′𝜅62 𝑑> ?

§ Variable fixing: conclude 𝑥# > 0 and project out 𝑥#
§ Black box oracle for 𝜀 = 1/(poly 𝑛, 𝜅6)

𝐴𝑥 = 𝐴𝑑
𝑥 − 𝑑 % ≤ 𝐶𝜅& 𝑑! '
𝑥! % ≤ 𝜀 𝑑! '

proximity
error

The lifting operator

𝐿65 𝑧 = argmin 𝑥 7: 𝑥 ∈ 𝑊, 𝑥6 = 𝑧

𝑊 = ker(𝐴)

LEMMA: 𝜅& = max
(!
") #
) $

: 𝐼 ⊆ 𝑛 , 𝑧 ∈ 𝜋* 𝑊 ∖ {0}

For every 𝑧 ∈ 𝜋*(𝑊), 𝑥 = 𝐿*+ 𝑧 ∈ 𝑊 = ker(𝐴) s.t.

𝑥* = 𝑧, and 𝑥 % ≤ 𝜅& 𝑧 '

The linear feasibility algorithm

1. Call the black box solver to find a solution
𝑧 for 𝜀 = 1/ 𝜅6𝑛 J

2. Set 𝐽 = {𝑖 ∈ 𝑛 : 𝑧# < 𝜅6 𝑑> ?};
assume 𝐽 ≠ [𝑛].

3. Recursively obtain R𝑥 ∈ ℝF
< from

ℱ(𝜋<(ker(𝐴)), 𝑧<)

4. Return 𝑥 = 𝑧 + 𝐿<8(R𝑥 − 𝑧<)

𝐴𝑧 = 𝐴𝑑
𝑧 − 𝑑 % ≤ 𝐶𝜅& 𝑑! '
𝑧! % ≤ 𝜀 𝑑! '

𝐴𝑥 = 𝐴𝑑
𝑥 − 𝑑 % ≤ 𝐶′𝜅&, 𝑑! '

𝑥 ≥ 0

Problem ℱ(ker(𝐴), 𝑑)

J

𝜅& 𝑑! '

𝑊 = ker(𝐴)

1. Call the black box solver to find a solution
𝑧 for 𝜀 = 1/ 𝜅6𝑛 J

2. Set 𝐽 = {𝑖 ∈ 𝑛 : 𝑧# < 𝜅6 𝑑> ?};
assume 𝐽 ≠ [𝑛].

3. Recursively obtain R𝑥 ∈ ℝF
< from

ℱ(𝜋<(ker(𝐴)), 𝑧<)

4. Return 𝑥 = 𝑧 + 𝐿<8(R𝑥 − 𝑧<)

𝐴𝑧 = 𝐴𝑑
𝑧 − 𝑑 % ≤ 𝐶𝜅& 𝑑! '
𝑧! % ≤ 𝜀 𝑑! '

𝐴𝑧 = 𝐴𝑑
𝑥 − 𝑑 % ≤ 𝐶′𝜅&, 𝑑! '

𝑥 ≥ 0

Problem ℱ(ker(𝐴), 𝑑)

J

𝜅+ 𝑑! '

𝑊 = ker(𝐴)

𝐽 = {𝑖 ∈ 𝑛 : 𝑧+ < 𝜅$ 𝑑b c};

§ If 𝐽 = [𝑛], then we replace 𝑑 by its projection to 𝑊d = im 𝐴e

§ Bound 𝑛 on the number of recursive calls; can be decreased
to 𝑚

§ 𝑂(𝑚𝑛fgh c log(𝜅5 + 𝑛)) feasibility algorithm using
van den Brand '20.

The linear feasibility algorithm

Certification

§ In case of infeasibility we return an exact Farkas certificate

§ 𝜅6 is hard to approximate within 2@ ; Tunçel 1999

§ We use an estimate 𝑀 in the algorithm

§ The algorithm may fail if 𝐿<8(R𝑥 − 𝑧<) /
> 𝑀 R𝑥 − 𝑧< ?

§ In this case, we restart with

max 𝑀2,
𝐿<8(R𝑥 − 𝑧<) /
R𝑥 − 𝑧< ?

§ Our estimate never overshoots 𝜅6 by much, but can be
significantly better.

Proximity for optimization

THEOREM: Let 𝐴e𝑦 + 𝑠 = 𝑐, 𝑠 ≥ 0 be a feasible dual
solution, and assume the primal is also feasible. Then
there exists a primal optimal 𝐴𝑥∗ = 𝐴𝑑, 𝑥∗ ≥ 0 such
that

𝑥∗ − 𝑑 0 ≤ 𝜅$ 𝑑b c + 𝑑ij99 k c
.

min 𝑐e𝑥
𝐴𝑥 = 𝐴𝑑
𝑥 ≥ 0

max 𝑏e𝑦
𝐴e𝑦 + 𝑠 = 𝑐

𝑠 ≥ 0

Optimization algorithm

§ 𝑛𝑚 calls to the black box solver

§ ≤ 𝑛 Outer Loops, each comprising ≤ 𝑚 Inner Loops

§ Each Outer Loop finds �𝑑 with 𝑑 − �𝑑 "small", and (𝑥, 𝑠)
primal and dual optimal solutions to

min 𝑐!𝑥 𝑠. 𝑡. 𝐴𝑥 = 𝐴 �𝑑, 𝑑 ≥ 0

§ Using proximity, we can use this to conclude 𝑥B > 0 for a
certain variable set 𝐼 ⊆ 𝑛 and recurse.

min 𝑐e𝑥
𝐴𝑥 = 𝐴𝑑
𝑥 ≥ 0

max 𝑏e𝑦
𝐴e𝑦 + 𝑠 = 𝑐

𝑠 ≥ 0

Outline of the lectures

1. Tardos’s algorithm for min-cost flows

2. The circuit imbalance measure 𝜅" and the
condition measure �̅�"

3. Solving LPs: from approximate to exact

4. Optimizing circuit imbalances

5. Interior point methods: basic concepts

6. Layered-least-squares interior point methods

Part 4
Optimizing circuit imbalances

Diagonal rescaling of LP

Positive diagonal matrix 𝐷 ∈ ℝ#×#

min 𝑐e𝑥
𝐴𝑥 = 𝑏
𝑥 ≥ 0

max 𝑏e𝑦
𝐴e𝑦 + 𝑠 = 𝑐

𝑠 ≥ 0

min (𝐷𝑐)e𝑥′
𝐴𝐷𝑥′ = 𝑏
𝑥′ ≥ 0

max 𝑏e𝑦′
(𝐴𝐷)e𝑦′ + 𝑠′ = 𝐷𝑐

𝑠′ ≥ 0

Mapping between solutions:
𝑥l = 𝐷bc𝑥, 𝑦l = 𝑦, 𝑠l = 𝐷𝑠

Diagonal rescaling of LP
Positive diagonal matrix 𝐷 ∈ ℝ#×#

min (𝐷𝑐)e𝑥′
𝐴𝐷𝑥′ = 𝑏
𝑥′ ≥ 0

max 𝑏e𝑦′
(𝐴𝐷)e𝑦′ + 𝑠′ = 𝐷𝑐

𝑠′ ≥ 0

Mapping between solutions:
𝑥l = 𝐷bc𝑥, 𝑦l = 𝑦, 𝑠l = 𝐷𝑠

§ Natural symmetry of LPs and many LP algorithms.

§ The Central Path is invariant under diagonal scaling.

§ Most “standard” interior point methods are invariant.

Dependence on the constraint matrix only

§ Algorithms with running time dependent only on 𝐴, but
not on 𝑏 and 𝑐.

§ Combinatorial LP’s: integer matrix 𝐴 ∈ ℤ!×#.
Δ$ = max{| det 𝐵 |: 𝐵 submatrix of 𝐴}

Tardos ’86: poly 𝑛,𝑚, log Δ$ LP algorithm

§ Layered-least-squares (LLS) Interior Point Method
Vavasis-Ye ’96: poly 𝑛,𝑚, log �̅�$ LP algorithm in the
real model of computation
�̅�$: condition number

§ Dadush-Huiberts-Natura-V ’20: poly 𝑛,𝑚, log �̅�$∗
�̅�$∗ : optimized version of �̅�$

min 𝑐!𝑥, 𝐴𝑥 = 𝑏 𝑥 ≥ 0

❌

❌

✔

Optimizing 𝜅' and �̅�' by rescaling
𝒟 = set of 𝑛×𝑛 positive diagonal matrices

𝜅6∗ = inf{𝜅6K: 𝐷 ∈𝒟}
�̅�6∗ = inf{�̅�6K: 𝐷 ∈𝒟}

§ A scaling invariant algorithm with �̅�6 dependence automatically
yields �̅�6∗ dependence.

§ Recall 1 + 𝜅62 ≤ �̅�6 ≤ 𝑛𝜅6.

THEOREM (Tunçel 1999): It is NP-hard to approximate �̅�$
(and thus 𝜅$) by a factor better than 29:;<(>?@A($))

THEOREM (Dadush-Huiberts-Natura-V ’20): Given 𝐴 ∈
ℝ!×#, in 𝑂(𝑛7𝑚7 + 𝑛m) time, one can
• approximate the value 𝜅$ within a factor 𝜅$∗ 7, and
• compute a rescaling D ∈ 𝒟 satisfying 𝜅$n ≤ 𝜅$∗ m.

Approximating 𝜅!∗

𝒟 = set of 𝑛×𝑛 positive diagonal matrices
𝜅$∗ = inf{𝜅$n: 𝐷 ∈𝒟}

§ EXAMPLE: Let ker 𝐴 = span(0,1,1,M , (1,0,M, 1))

Pairwise circuit imbalances
§ For a circuit 𝐶, there exists a vector 𝑔o ∈ ℝo unique

up to a scalar multiplier such that

x
+∈o

𝑔+o𝑎+ = 0

§ 𝒞$: set of all circuits.

§ For any 𝑖, 𝑗 ∈ [𝑛],

𝜅+, = max
𝑔,o

𝑔+
o : 𝐶 ∈ 𝒞$, s. t. 𝑖, 𝑗 ∈ 𝐶

§ The circuit imbalance measure is
𝜅$ = max

+,,∈[#]
𝜅+,

Cycles are invariant under scaling

LEMMA For any directed cycle 𝐻 on {1,2, … , 𝑛}

𝜅6∗ |M| ≥ �
#," ∈M

𝜅#"

1

12

1
23

1

34

1

45

1
56

1

61

d1

12
d2
d1

d2
23

d3
d2

d3

34
d4
d3

d4

45
d5
d4

d5
56

d6
d5 d6

61
d1
d6

Circuit imbalance min-max formula

PROOF:

THEOREM (Dadush-Huiberts-Natura-V ’20):

𝜅6∗ = max �
#," ∈M

𝜅#"
?/|M|

: 𝐻 directed cycle on {1,2, … , 𝑛}

Circuit imbalance min-max formula

§ BUT: Computing the 𝜅#" values is NP-complete…

§ LEMMA: For any circuit 𝐶 ∈ 𝒞6 s.t. 𝑖, 𝑗 ∈ 𝐶,
𝑔"*

𝑔#*
≥

𝜅#"
𝜅8∗ 2

THEOREM (Dadush-Huiberts-Natura-V ’20):

𝜅6∗ = max �
#," ∈M

𝜅#"
?/|M|

: 𝐻 directed cycle on {1,2, … , 𝑛}

Outline of the lectures

1. Tardos’s algorithm for min-cost flows

2. The circuit imbalance measure 𝜅" and the
condition measure �̅�"

3. Solving LPs: from approximate to exact

4. Optimizing circuit imbalances

5. Interior point methods: basic concepts

6. Layered-least-squares interior point methods

Part 5
Interior point methods:
basic concepts

Primal and dual LP
§ 𝐴 ∈ ℝ!×#, 𝑐, 𝑑 ∈ ℝ!

§ Complementary slackness: Primal and dual
solutions (𝑥, 𝑠) are optimal if 𝑥e𝑠 = 0: for each 𝑖 ∈
[𝑛], either 𝑥+ = 0 or 𝑠+ = 0.

§ Optimality gap:
𝑐e𝑥 − 𝑏e𝑦 = 𝑥e𝑠.

min 𝑐e𝑥
𝐴𝑥 = 𝐴𝑑
𝑥 ≥ 0

max 𝑏e𝑦
𝐴e𝑦 + 𝑠 = 𝑐

𝑠 ≥ 0

The central path
§ For each 𝜇 > 0, there exists a unique

solution 𝑤(𝜇) = (𝑥(𝜇), 𝑦(𝜇), 𝑠(𝜇)) such
that

𝑥 𝜇 #𝑠 𝜇 # = 𝜇 ∀𝑖 ∈ 𝑛
the central path element for 𝜇.

§ The central path is the algebraic curve
formed by {𝑤(𝜇): 𝜇 > 0}

§ For 𝜇 → 0, the central path converges to
an optimal solution 𝑤∗ = (𝑥∗, 𝑦∗, 𝑠∗).

§ The optimality gap is 𝑠 𝜇 !𝑥(𝜇) = 𝑛𝜇.

§ Interior point algorithms: walk down along
the central path with 𝜇 decreasing
geometrically.

The Mizuno-Todd-Ye
Predictor-Corrector Algorithm

§ Start from point 𝑤G = (𝑥G, 𝑦G, 𝑠G) 'near'
the central path at some 𝜇G > 0.

§ Alternate between
§ Predictor steps: 'shoot down' the

central path, decreasing 𝜇 by a
factor at least 1 − 𝛽/𝑛.
May move slightly 'farther' from the
central path.

§ Corrector steps: do not change
parameter 𝜇, but move back 'closer'
to the central path.

Within 𝑂(𝑛) iterations, 𝜇 decreases by a
factor 2.

The predictor step
§ Step direction Δ𝑤 = (Δ𝑥, Δ𝑦, Δ𝑠)

§ Pick the largest 𝛼 ∈ [0,1] such that 𝑤′
is still “close enough” to the central path
𝑤l = 𝑤 + 𝛼Δ𝑤 = 𝑥 + 𝛼Δ𝑥, 𝑦 + 𝛼Δ𝑦, 𝑠 + 𝛼Δ𝑠

§ Long step: |Δ𝑥+Δ𝑠+| small for every 𝑖 ∈ [𝑛]
§ New optimality gap is 1 − 𝛼 𝜇.

𝐴Δ𝑥 = 0
𝐴eΔ𝑦 + Δ𝑠 = 0

𝑠+Δ𝑥+ + 𝑥+Δ𝑠+ = −𝑥+𝑠+ ∀𝑖 ∈ [𝑛]

The predictor step
least squares view

§ Assume the current point 𝑤 = (𝑥, 𝑦, 𝑠) is on the central
path. The steps can be found as minimum norm
projections in the (⁄' () and (⁄')) rescaled norms

Δ𝑥 = argminx
+rc

#
𝑥+ + Δ𝑥+
𝑥+

7
s. t. 𝐴Δ𝑥 = 0

Δ𝑠 = argminx
+rc

#
𝑠+ + Δ𝑠+
𝑠+

7

s. t. 𝐴eΔ𝑦 + Δ𝑠 = 0

𝐴Δ𝑥 = 0
𝐴eΔ𝑦 + Δ𝑠 = 0

𝑠+Δ𝑥+ + 𝑥+Δ𝑠+ = −𝑥+𝑠+ ∀𝑖 ∈ [𝑛]

Some recent progress on
interior point methods
§ Tremendous recent progress on fast approximate

variants LS’14–’19,
CLS’19,vdB’20,vdBLSS’20,vdBLLSSSW’21

§ Fast approximate algorithms for combinatorial
problems flows, matching and MDPs:
DS’08, M’13, M’16, CMSV’17, AMV’20,
vdBLNPTSSW’20, vdBLLSSSW’21

Outline of the lectures

1. Tardos’s algorithm for min-cost flows

2. The circuit imbalance measure 𝜅" and the
condition measure �̅�"

3. Solving LPs: from approximate to exact

4. Optimizing circuit imbalances

5. Interior point methods: basic concepts

6. Layered-least-squares interior point methods

Part 6
Layered-least-squares interior point
methods

Layered-least-squares (LLS) Interior Point
Methods:
Dependence on the constraint matrix only

�̅�$∗ = inf{�̅�$n: 𝐷 ∈𝒟}

§ Vavasis-Ye ’96: O 𝑛m.t log(�̅�$ + 𝑛) iterations

§ Monteiro-Tsuchiya ’03 O(
)

𝑛m.t log(�̅�$∗ + 𝑛) +
𝑛7 log log 1/𝜀 iterations

§ Lan-Monteiro-Tsuchiya ‘09 O 𝑛m.t log(�̅�$∗ + 𝑛)
iterations, but the running time of the iterations
depends on b and c

§ Dadush-Huiberts-Natura-V ’20: scaling invariant LLS
method with O 𝑛7.t log(𝑛) log(�̅�$∗ + 𝑛) iterations

Near monotonicity of the
central path

LEMMA For 𝑤 = (𝑥, 𝑦, 𝑠) on the central path, and for any solution
𝑤+ = (𝑥+, 𝑦+, 𝑠+) s.t. 𝑥+ !𝑠+ ≤ 𝑥!𝑠, we have

7
#O?

;
𝑥#+

𝑥#
+
𝑠#+

𝑠#
≤ 2𝑛

IPM learns gradually improved upper bounds on the optimal solution.

Variable fixing…—or not?
LEMMA After every iteration, there exists variables 𝑥# and 𝑠" such that

1
𝑂 𝑛

≤
𝑥#
𝑥#∗
,
𝑠"
𝑠"∗
≤ 𝑂 𝑛

For the optimal 𝑥∗, 𝑦∗, 𝑠∗ . Thus, 𝑥# and 𝑠" have “converged” to their
final values.

§ PROOF: Can be shown using the form of the predictor step:

Δ𝑥 = argmin7
#O?

;
𝑥# + Δ𝑥#
𝑥#

2
s. t. 𝐴Δ𝑥 = 0

Δ𝑠 = argmin7
#O?

;
𝑠# + Δ𝑠#
𝑠#

2

s. t. 𝐴!Δ𝑦 + Δ𝑠 = 0

and bounds on the stepsize.

Variable fixing…—or not?
LEMMA After every iteration, there exists variables 𝑥# and 𝑠" such that

1
𝑂 𝑛

≤
𝑥#
𝑥#∗
,
𝑠"
𝑠"∗
≤ 𝑂 𝑛

For the optimal 𝑥∗, 𝑦∗, 𝑠∗ . Thus, 𝑥# and 𝑠" have “converged” to their
final values.

We cannot identify these indices,
just show their existence 🤔

Layered least squares methods
§ Instead of the standard predictor step, split the

variables into layers.

§ Variables on different layers “behave almost like
separate LPs”

§ Force new primal and dual variables that must have
converged.

Recap: the lifting operator and 𝜅!
§ For a linear subspace 𝑊 ⊂ ℝ; and index set 𝐼 ⊆ 𝑛 , we let

𝜋B: ℝ; → ℝB

denote the coordinate projection, and

𝜋B 𝑊 = {𝑥B: 𝑥 ∈ 𝑊}

§ The lifting operator 𝐿B8: ℝB → ℝ; is defined as

𝐿B8 𝑧 = argmin 𝑥 2: 𝑥 ∈ 𝑊, 𝑥B = 𝑧

§ LEMMA: 𝜅6 = max
A1
2 P 3
P 4

: 𝐼 ⊆ 𝑛 , 𝑧 ∈ 𝜋B 𝑊 ∖ {0}

§ For every 𝑧 ∈ 𝜋B(𝑊), 𝑥 = 𝐿B8 𝑧 ∈ 𝑊 = ker(𝐴) s.t.

𝑥B = 𝑧, and 𝑥 / ≤ 𝜅6 𝑧 ?

𝑊 = ker(𝐴)

Motivating the layering idea:
final rounding step in standard IPM

min 𝑐e𝑥
𝐴𝑥 = 𝑏
𝑥 ≥ 0

max 𝑏e𝑦
𝐴e𝑦 + 𝑠 = 𝑐

s≥ 0
§ Limit optimal solution 𝑥∗, 𝑦∗, 𝑠∗ , and

optimal partition 𝑛 = 𝐵 ∪ 𝑁 s.t. 𝐵 =
supp 𝑥∗ , 𝑁 = supp 𝑠∗ .

§ Given (𝑥, 𝑦, 𝑠) near central path with
‘small enough’ 𝜇 = 𝑠!𝑥/𝑛 such that for
every 𝑖 ∈ [𝑛], either
𝑥# or 𝑠# very small.

§ Assume that we can correctly guess
𝐵 = 𝑖: 𝑥# > 𝑀 𝜇 , 𝑁 = {𝑖: 𝑠# > 𝑀 𝜇}

§ Assume we have a partition 𝐵,𝑁, we have
𝑖 ∈ 𝐵: 𝑥# > 𝑀 𝜇, 𝑠# < 𝜇/𝑀
𝑖 ∈ 𝑁: 𝑥# < 𝜇/𝑀, 𝑠# > 𝑀 𝜇

§ Goal: move to �̅� = 𝑥 + Δ𝑥, �𝑦 = 𝑦 + Δ𝑦, �̅� = 𝑠 + Δ𝑠
s.t. supp �̅� ⊆ 𝐵, supp �̅� ⊆ 𝑁. Then, �̅�!�̅� = 0: optimal solution.

§ Choice:
Δ𝑥 = −𝐿Q8 𝑥Q , Δ𝑠 = −𝐿78 𝑠7

Layered-least-squares step
Assume we have a partition 𝐵,𝑁,
with
𝑖 ∈ 𝐵: 𝑥# > 𝑀 𝜇, 𝑠# < 𝜇/𝑀
𝑖 ∈ 𝑁: 𝑥# < 𝜇/𝑀, 𝑠# > 𝑀 𝜇

Standard primal predictor step:

Δ𝑥 = argmin 7
#O?

;
𝑥# + Δ𝑥#
𝑥#

2

s. t. 𝐴Δ𝑥 = 0

Vavasis-Ye LLS step with layers
(𝑩,𝑵):

Δ𝑥Q = argmin7
#∈Q

𝑥# + Δ𝑥#
𝑥#

2

s. t. 𝐴Δ𝑥 = 0

Δ𝑥7 = argmin7
#∈7

𝑥# + Δ𝑥#
𝑥#

2

s. t. 𝐴 Δ𝑥7, Δ𝑥Q = 0

Layered-least-squares step
Vavasis-Ye ‘96

§ Order variables decreasingly as 𝑥? ≥ 𝑥2 ≥ ⋯ ≥ 𝑥;
§ Arrange variables into layers (𝐽?, 𝐽2, … , 𝐽=); start a new layer when

𝑥# > 𝑂 𝑛R �̅�6𝑥#F?
§ Primal step direction by least squares problems from backwards, layer-

by-layer

§ Lifting costs from lower layers low

§ Dual step in the opposite direction

Not scaling invariant!

Progress measure: crossover events
Vavasis-Ye’96

§ DEFINITION: The variables 𝑥# and 𝑥" cross over between 𝜇 and 𝜇+,
𝜇 > 𝜇+, if
§ 𝑂 𝑛R �̅�6 ; 𝑥" 𝜇 ≥ 𝑥# 𝜇
§ 𝑂 𝑛R �̅�6 ; 𝑥" 𝜇′′ < 𝑥# 𝜇′′ for any 𝜇++ ≤ 𝜇′

§ LEMMA: In the Vavasis-Ye algorithm, a crossover event happens every
𝑂(𝑛?.T log(�̅�6 + 𝑛)) iterations, totalling to 𝑂(𝑛U.T log(�̅�6 + 𝑛)).

Scaling invariant layering
DNHV’20
§ Instead of the ratios 𝑥#/𝑥", we consider the rescaled circuit

imbalance measures 𝜅#"𝑥#/𝑥"
§ Layers: strongly connected components of the arcs

𝑖, 𝑗 :
𝜅#"𝑥#
𝑥"

>
1

𝑝𝑜𝑙𝑦 𝑛

The 𝜅#" values are not
known: increasingly
improving estimates.

Scaling invariant crossover events
Vavasis-Ye’96

§ DEFINITION: The variables 𝑥# and 𝑥" cross over between 𝜇 and 𝜇+,
𝜇 > 𝜇+, if
§ 𝑂 𝑛R �̅�6 ; 𝑥" 𝜇 ≥ 𝜅#"𝑥# 𝜇
§ 𝑂 𝑛R �̅�6 ; 𝑥" 𝜇′′ < 𝜅#"𝑥# 𝜇′′ for any 𝜇++ ≤ 𝜇′

§ Amortized analysis, resulting in improved 𝑂(𝑛2.T log(𝑛) log(�̅�6 + 𝑛))
iteration bound.

Limitation of IPMs

§ THEOREM (Allamigeon–Benchimol–Gaubert–Joswig ‘18): No
standard path following method can be strongly polynomial.

§ Proof using tropical geometry: studies the tropical limit of a
family of parametrized linear programs.

Future directions
§ Circuit imbalance measure: key parameter for strongly

polynomial solvability.

§ LP classes with existence of strongly polynomial algorithms
open:
§ LPs with 2 nonzeros per column in the constraint matrix,

equivalently: min cost generalized flows
§ Undiscounted Markov Decision Processes

§ Extend the theory of circuit imbalances more generally, to
convex programming and integer programming.

Thank you!

Postdoc position open

Application deadline: 5 June

