LINEAR PROGRAMMING AND CIRCUIT IMBALANCES

László Végh

$\longleftarrow \begin{aligned} & \text { the LONDON SChool } \\ & \text { of ECONOMICS and } \\ & \text { Political ScIENCE ■ }\end{aligned}$
IPCO Summer School
Georgia Tech, May 2021

Slides available at https://personal.Ise.ac.uk/veghl/ipco

Linear programming

$$
\begin{gathered}
\min c^{\top} x \\
A x=b \\
x \geq 0
\end{gathered}
$$

Facets of linear programming

Discrete

- Basic solutions
- Polyhedral combinatorics
- Exact solution

Continuous

- Continuous solutions
- Convex program
- Approximate solution

Linear programming algorithms

- n variables, m constraints

$$
x \geq 0
$$

- L: total bit-complexity of the rational input (A, b, c)
- Simplex method: Dantzig, 1947
- Weakly polynomial algorithms: poly(L) running time
- Ellipsoid method: Khachiyan, 1979
- Interior point method: Karmarkar, 1984

Weakly vs strongly polynomial algorithms for LP
 - n variables, m constraints, total encoding L.

- Strongly polynomial algorithm:
- poly (n, m) elementary arithmetic operations $(+,-, \times, \div, \geq)$, independent of L.
- PSPACE: The bit-length of numbers during the algorithm remain polynomially bounded in the size of the input.
- Can also be defined in the real model of computation

Is there a strongly polynomial algorithm for Linear Programming?

Smale's $9^{\text {th }}$ question

Strongly polynomial algorithms for some classes of Linear Programs

- Systems of linear inequalities with at most two nonzero variables per inequality: Megiddo '83
- Network flow problems
- Maximum flow: Edmonds-Karp-Dinitz '70-72, ...
- Min-cost flow: Tardos '85, Fujishige '86,
Goldberg-Tarjan '89, Orlin '93, ...
- Generalized flow: V '17, Olver-V '20
- Discounted Markov Decision Processes: Ye '05, Ye '11, ...

Dependence on the constraint matrix only

$$
\min c^{\top} x, A x=b x \geq 0
$$

- Algorithms with running time dependent only on A, but not on b and c.
- Combinatorial LP's: integer matrix $A \in \mathbb{Z}^{m \times n}$.

$$
\Delta_{A}=\max \{|\operatorname{det}(B)|: B \text { submatrix of } A\}
$$

Tardos '86: poly $\left(n, m, \log \Delta_{A}\right)$ black box LP algorithm

- Layered-least-squares (LLS) Interior Point Method Vavasis-Ye '96: $\operatorname{poly}\left(n, m, \log \bar{\chi}_{A}\right)$ LP algorithm in the real model of computation
$\bar{\chi}_{A}$: condition number
- Dadush-Huiberts-Natura-V '20: $\operatorname{poly}\left(n, m, \log \bar{\chi}_{A}^{*}\right)$ $\bar{\chi}_{A}^{*}$: optimized version of $\bar{\chi}_{A}$

Outline of the lectures

1. Tardos's algorithm for min-cost flows
2. The circuit imbalance measure κ_{A} and the condition measure $\bar{\chi}_{A}$
3. Solving LPs: from approximate to exact
4. Optimizing circuit imbalances
5. Interior point methods: basic concepts
6. Layered-least-squares interior point methods

- Dadush-Huiberts-Natura-V '20: A scaling-invariant algorithm for linear programming whose running time depends only on the constraint matrix
- Dadush-Natura-V '20: Revisiting Tardos's framework for linear programming: Faster exact solutions using approximate solvers

Part 1

Tardos's algorithm for min-cost flows
 circuits, proximity, and variable fixing

The minimum-cost flow problem

- Directed graph $G=(V, E)$, node demands $b: V \rightarrow \mathbb{R}$ with $b(V)=0$, costs $c: E \rightarrow \mathbb{R}$. $\min c^{\top} x$

$$
\begin{aligned}
& \text { s.t. } \sum_{\substack{j i \in \delta^{-}(i) \\
x \geq 0}} x_{j i}-\sum_{i j \in \delta^{+}(i)} x_{i j}=b_{i} \quad \forall i \in V \\
&
\end{aligned}
$$

- Form with arc capacities can be reduced to this form.
- Constraint matrix is totally unimodular (TU)

The minimum-cost flow problem: optimality

- Directed graph $G=(V, E)$, node demands $b: V \rightarrow \mathbb{R}$ with $b(V)=0$, costs $c: E \rightarrow \mathbb{R}$.

$$
\text { s. t. } \sum_{(j, i) \in \delta^{-}(i)} x_{j i}-\sum_{\substack{(i, j) \in \delta^{+}(i) \\ x \geq 0}} x_{i j}=b_{i} \quad \forall i \in V
$$

- Dual program:

$$
\begin{gathered}
\max b^{\top} \pi \\
\text { s. t. } \pi_{j}-\pi_{i} \leq c_{i j} \quad \forall i j \in E
\end{gathered}
$$

- Optimality: $f_{i j}>0 \quad \Longrightarrow \quad \pi_{j}-\pi_{i}=c_{i j}$

Dual solutions: potentials

- Dual program: max cost feasible potential

$$
\begin{aligned}
& \max b^{\top} \pi \\
& \text { s.t. } \pi_{j}-\pi_{i} \leq c_{i j} \quad \forall i j \in E
\end{aligned}
$$

- Residual cost:

$$
c_{i j}^{\pi}=c_{i j}+\pi_{i}-\pi_{j} \geq 0
$$

- Residual graph:

$$
\begin{aligned}
E_{f} & =E \cup\left\{(j, i): f_{i j}>0\right\} \\
c_{j i} & =-c_{i j}
\end{aligned}
$$

Variable fixing by proximity

- If for some $(i, j) \in E$ we can show that $f_{i j}^{*}=0$ in every optimal solution, then we can remove (i, j) from the graph.
- Overall goal: in strongly polynomial number of steps, guarantee that we can infer this for at least one arc.

PROXIMITY THEOREM: Let $\tilde{\pi}$ be the optimal dual potential for costs \tilde{c}, and f^{*} an optimal primal solution for the original costs c. Then,

$$
c_{i j}^{\tilde{\pi}}>|V| \cdot\|c-\tilde{c}\|_{\infty} \Rightarrow f_{i j}^{*}=0
$$

Circulations and cycle decompositions

- For the node-arc incidence matrix $A, \operatorname{ker}(A) \subseteq \mathbb{R}^{E}$ is the set of circulations:
in-flow=out-flow
- LEMMA: every circulation $f \geq 0$ can be decomposed as

$$
f=\sum_{i} \lambda_{i} \chi_{C_{i}}, \quad \lambda_{i} \geq 0
$$

for directed cycles C_{i}

Circulations and cycle decompositions

- LEMMA: Let f and f^{\prime} be two feasible flows for the same demand vector b. Then, we can write

$$
f^{\prime}=f+\sum_{i} \lambda_{i} \chi_{C_{i}}, \quad \lambda_{i} \geq 0
$$

for sign-consistent directed cycles C_{i} in \overleftrightarrow{E} :

- If $f_{i j}^{\prime}>f_{i j}$ then cycles may only contain $i j$ but not $j i$.
- If $f_{i j}>f_{i j}^{\prime}$ then cycles may only contain $j i$ but not $i j$.
- If $f_{i j}=f_{i j}^{\prime}$ then no cycle contains $i j$ or $j i$.

Every cycle is moving from f towards f^{\prime}.

PROXIMITY THEOREM: Let $\tilde{\pi}$ be the optimal dual potential for costs \tilde{c}, and f^{*} an optimal primal solution for the original costs c. Then,

$$
c_{i j}^{\tilde{\pi}}>|V| \cdot\|c-\tilde{c}\|_{\infty} \Rightarrow f_{i j}^{*}=0
$$

Rounding the costs

- Rescale c such that $\|c\|_{\infty}=|V| \sqrt{|E|}$
- Round costs as $\tilde{c}_{i j}=\left\lfloor c_{i j}\right\rfloor$
- For \tilde{c} we can find optimal primal and dual solutions in strongly polynomial time, e.g. the Out-of-Kilter method by Ford and Fulkerson 1962.
- For the optimal dual $\tilde{\pi}$, fix all arcs to 0 that have

$$
c_{i j}^{\tilde{\pi}}>|V|>|V| \cdot\|c-\tilde{c}\|_{\infty}
$$

- QUESTION: Why would such an arc exist?

Minimum-norm projections

- Residual cost:

$$
c_{i j}^{\pi}=c_{i j}+\pi_{i}-\pi_{j} \geq 0
$$

- The cost vectors

$$
U=\left\{c^{\pi}: \pi \in \mathbb{R}^{V}\right\} \subset \mathbb{R}^{E}
$$

form an affine subspace.

- For any feasible flow f and any residual cost c^{π},

$$
\left(c^{\pi}\right)^{\top} f=c^{\top} f+b^{\top} \pi
$$

- Solving the problem for c and c^{π} is equivalent.
- If $0 \in U$, i.e. $\exists \pi: c^{\pi} \equiv 0$, then every feasible flow is optimal
- IDEA: Replace the input c by the min norm projection to the affine subspace U :

$$
c^{\pi}=\arg \min _{\pi \in \mathbb{R}^{V}}\left\|c^{\pi}\right\|_{2}
$$

Rounding the costs

- Assume \boldsymbol{c} is chosen as a min norm projection:

$$
\left\|c^{\pi}\right\|_{2} \geq\|c\|_{2} \forall \pi \in \mathbb{R}^{V}
$$

- Rescale c such that $\|c\|_{\infty}=|V| \sqrt{|E|}$
- Round costs as $\tilde{c}_{i j}=\left\lfloor c_{i j}\right\rfloor$
- For the optimal dual $\tilde{\pi}$, fix all arcs to 0 that have

$$
c_{i j}^{\widetilde{\pi}}>|V|>|V| \cdot\|c-\tilde{c}\|_{\infty}
$$

- LEMMA: There exist at least one such arc. PROOF:

$$
\left\|c^{\tilde{r}}\right\|_{\infty} \geq \frac{\left\|c^{\tilde{\pi}}\right\|_{2}}{\sqrt{|E|}} \geq \frac{\|c\|_{2}}{\sqrt{|E|}} \geq \frac{\|c\|_{\infty}}{\sqrt{|E|}}=|V|
$$

Also note that

$$
c_{i j}^{\widetilde{\pi}} \geq \tilde{c}_{i j}^{\tilde{\pi}} \geq 0
$$

Summary of Tardos's algorithm

- Variable fixing based on proximity that can be shown by cycle decomposition.
- Replace the input cost by an equivalent min-cost projection
- Round to small integer costs \tilde{c}
- Find optimal dual $\tilde{\pi}$ for \tilde{c} with simple classical method
- Identify a variable $f_{i j}^{*}=0$ as one where $c_{i j}^{\widetilde{\pi}}$ is large and remove all such arcs.
- Iterate

Outline of the lectures

1. Tardos's algorithm for min-cost flows
2. The circuit imbalance measure κ_{A} and the condition measure $\bar{\chi}_{A}$
3. Solving LPs: from approximate to exact
4. Optimizing circuit imbalances
5. Interior point methods: basic concepts
6. Layered-least-squares interior point methods

Part 2
 The circuit imbalance measure κ_{A} and the condition measure $\bar{\chi}_{A}$

The circuit imbalance measure

- The matrix $A \in \mathbb{R}^{m \times n}$ defines a linear matroid on $[n]=\{1,2, \ldots, n\}$: a set $I \subseteq[n]$ is independent if the columns $\left\{a_{i}: i \in I\right\}$ are linearly independent.
- $C \subseteq[n]$ is a circuit if $\left\{a_{i}: i \in C\right\}$ is a linearly dependent set minimal for containment.
- For a circuit C, there exists a vector $g^{C} \in \mathbb{R}^{C}$ unique up to a scalar multiplier such that

$$
\sum_{i \in C} g_{i}^{C} a_{i}=0
$$

- \mathcal{C}_{A} : set of all circuits.

- The circuit imbalance measure is defined as

$$
\kappa_{A}=\max \left\{\frac{\left|g_{j}^{C}\right|}{\left|g_{i}^{C}\right|}: C \in \mathcal{C}_{A}, i, j \in C\right\}
$$

Properties of κ_{A}

$$
\kappa_{A}=\max \left\{\frac{\left|g_{j}^{C}\right|}{\left|g_{i}^{C}\right|}: C \in \mathcal{C}_{A}, i, j \in C\right\}
$$

- This measure depends only on the linear subspace $W=\operatorname{ker}(A)$: if $\operatorname{ker}(A)=\operatorname{ker}(B)$ then $\kappa_{A}=\kappa_{B}$
- We will use $\kappa_{W}=\kappa_{A}$ for $W=\operatorname{ker}(A)$

Connection to subdeterminants:

- For an integer matrix $A \in \mathbb{Z}^{m \times n}$,

$$
\Delta_{A}=\max \{|\operatorname{det}(B)|: B \text { submatrix of } A\}
$$

- For a circuit $C \in \mathcal{C}_{A}$, with $|C|=t$ let $D=A_{J, C} \in \mathbb{R}^{(t-1) \times t}$ be a submatrix with linearly independent rows.

$D^{(i)} \in \mathbb{R}^{(t-1) \times(t-1)}$ remove the i-th column from D. By Cramer's rule

$$
g^{C}=\left(\operatorname{det}\left(D^{(1)}\right), \operatorname{det}\left(D^{(2)}\right), \ldots, \operatorname{det}\left(D^{(t)}\right)\right)
$$

Properties of κ_{A}

- LEMMA: For an integer matrix $A \in \mathbb{Z}^{m \times n}$,

$$
\kappa_{A} \leq \Delta_{A}
$$

For a totally unimodular matrix $A, \kappa_{A}=1$

- EXERCISE:
i. If A is the node-edge incidence matrix of an undirected graph, then $\kappa_{A} \in\{1,2\}$
ii. For the incidence matrix of a complete undirected graph on n nodes,

$$
\Delta_{A} \geq 2^{\left\lfloor\frac{n}{3}\right\rfloor}
$$

Circuit imbalance and TU matrices

THEOREM (Cederbaum, 1958): If $A \in \mathbb{Z}^{m \times n}$ is a TUmatrix, then $\kappa_{A}=1$. Conversely, if $\kappa_{W}=1$ for a linear subspace $W \subset \mathbb{R}^{n}$ then there exists a TU-matrix A such that $W=\operatorname{ker}(A)$.

PROOF (Ekbatani \& Natura):

Duality of circuit imbalances

THEOREM: For every linear subspace $W \subset \mathbb{R}^{n}$, we have

$$
\kappa_{W}=\kappa_{W^{\perp}}
$$

Circuits in optimization

- Appear in various LP algorithms directly or indirectly
- IPCO summer school 2020: Laura Sanità's lectures discussed circuit augmentation algorithms and circuit diameter
- Integer programming: κ has a natural integer variant that is related to Graver bases

The condition number $\bar{\chi}_{A}$

$\bar{\chi}_{A}=\sup \left\{\left\|A^{\top}\left(A D A^{\top}\right)^{-1} A D\right\|: D\right.$ is positive diagonal matrix $\}$

- Measures the norm of oblique projections
- Introduced by Dikin 1967, Stewart 1989, Todd 1990
- THEOREM (Vavasis-Ye 1996): There exists a poly $\left(n, m, \log \bar{\chi}_{A}\right)$

LP algorithm for $\min c^{\top} x, A x=b, x \geq 0, A \in \mathbb{R}^{m \times n}$

- LEMMA
i. If A is an integer matrix with bit encoding length L, then $\bar{\chi}_{A} \leq 2^{O(L)}$
ii. $\quad \bar{\chi}_{A}=\max \left\{\left\|B^{-1} A\right\|: B\right.$ nonsingular $m \times m$ submatrix of $\left.A\right\}$
iii. $\quad \bar{\chi}_{A}$ only depends on the subspace $W=\operatorname{ker}(A)$
iv. $\bar{\chi}_{W}=\bar{\chi}_{W^{\perp}}$

The lifting operator

- For a linear subspace $W \subset \mathbb{R}^{n}$ and index set $I \subseteq[n]$, we let

$$
\pi_{I}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{I}
$$

denote the coordinate projection, and

$$
\pi_{I}(W)=\left\{x_{I}: x \in W\right\}
$$

- The lifting operator $L_{I}^{W}: \mathbb{R}^{I} \rightarrow \mathbb{R}^{n}$ is defined as

$$
L_{I}^{W}(z)=\arg \min \left\{\|x\|_{2}: x \in W, x_{I}=z\right\}
$$

- This is a linear operator; we can efficiently compute a projection matrix $H \in \mathbb{R}^{n \times I}$ such that $L_{I}^{W}(z)=H z$.
- LEMMA:

$$
\bar{\chi}_{A}=\max _{I \subseteq[n]}\left\|L_{I}^{W}\right\|=\max \left\{\frac{\left\|L_{I}^{W}(z)\right\|_{2}}{\|z\|_{2}}: I \subseteq[n], z \in \pi_{I}(W) \backslash\{0\}\right\}
$$

The lifting operator

$$
L_{I}^{W}(z)=\arg \min \left\{\|x\|_{2}: x \in W, x_{I}=z\right\}
$$

The lifting operator

LEMMA:

$$
\kappa_{A}=\max \left\{\frac{\left\|L_{I}^{W}(z)\right\|_{\infty}}{\|z\|_{1}}: I \subseteq[n], z \in \pi_{I}(W) \backslash\{0\}\right\}
$$

PROOF:

The condition numbers κ_{A} and $\bar{\chi}_{A}$

THEOREM: For every matrix $A \in \mathbb{R}^{m \times n}, n \geq 2$

$$
\sqrt{1+\kappa_{A}^{2}} \leq \bar{\chi}_{A} \leq n \kappa_{A}
$$

Approximability of κ_{A} and $\bar{\chi}_{A}$:

LEMMA (Tunçel 1999): It is NP-hard to approximate $\bar{\chi}_{\boldsymbol{A}}$ by a factor better than $2^{\text {poly }(\operatorname{rank}(A))}$

Recap from Lecture 1

- Overall goal: solving LPs exactly and "as strongly polynomially as possible"
- One can reduce the dependence to the constraint matrix only:
- Tardos '86: poly $\left(n, m, \log \Delta_{A}\right)$ black box LP algorithm
- Vavasis-Ye '96 Layered-least-squares Interior Point Method $\operatorname{poly}\left(n, m, \log \bar{\chi}_{A}\right)$
- The crucial parameter of the constraint matrix is the circuit imbalance measure, a nice geometric parameter associated with the subspace $\operatorname{ker}(A)$

Recap from Lecture 1

- Tardos's algorithm for min. cost generalized flows: circuits, proximity, and variable fixing
- Circuit imbalance measure: matrix $A \in \mathbb{R}^{m \times n}$ circuit: a set $C \subseteq[n]$ if $\left\{a_{i}: i \in C\right\}$ is a linearly dependent set minimal for containment. $\exists g^{C} \in \mathbb{R}^{C}$ unique up to a scalar multiplication:

$$
\sum_{i \in C} g_{i}^{C} a_{i}=0
$$

- The circuit imbalance measure is defined as

$$
\kappa_{A}=\max \left\{\frac{\left|g_{j}^{C}\right|}{\left|g_{i}^{C}\right|}: C \in \mathcal{C}_{A}, i, j \in C\right\}
$$

- Properties: $\mathrm{TU} \Rightarrow \kappa_{A}=1$; and κ_{A} can be used to bound the lifting cost

Outline of the lectures

1. Tardos's algorithm for min-cost flows
2. The circuit imbalance measure κ_{A} and the condition measure $\bar{\chi}_{A}$
3. Solving LPs: from approximate to exact
4. Optimizing circuit imbalances
5. Interior point methods: basic concepts
6. Layered-least-squares interior point methods

Part 3
 Solving LPs:
 from approximate to exact

Fast approximate LP algorithms

$$
\begin{gathered}
\min c^{\top} x \\
A x=b \\
x \geq 0
\end{gathered}
$$

- ε-approximate solution:
- Approximately feasible: $\|A x-b\| \leq \varepsilon\left(\|A\|_{F} R+\|b\|\right)$
- Approximately optimal: $c^{\top} x \leq \mathrm{OPT}+\varepsilon\|c\| R$
- Finding an approximate solution with $\log \left(\frac{1}{\varepsilon}\right)$ running time dependence implies a weakly polynomial exact algorithm.

Fast approximate LP algorithms $\min c^{\top} x \quad A x=b \quad x \geq 0$

- n variables, m equality constraints, Randomized vs. Deterministic
- Significant recent progress:
- R $O\left(\left(\mathrm{nnz}(A)+m^{2}\right) \sqrt{m} \log ^{O(1)}(n) \log \left(\frac{n}{\varepsilon}\right)\right)$ Lee-Sidford '13-'19
- $\mathrm{R} O\left(n^{\omega} \log ^{O(1)}(n) \log \left(\frac{n}{\varepsilon}\right)\right)$ Cohen, Lee, Song '19
- D $O\left(n^{\omega} \log ^{2}(n) \log \left(\frac{n}{\varepsilon}\right)\right)$ van den Brand '20
- R $O\left(\left(m n+m^{3}\right) \log ^{O(1)}(n) \log \left(\frac{n}{\varepsilon}\right)\right)$ van den Brand, Lee, Sidford, Song '20
- $\mathrm{R} O\left(\left(m n+m^{2.5}\right) \log ^{O(1)}(n) \log \left(\frac{n}{\varepsilon}\right)\right)$
van den Brand, Lee, Liu, Saranurak, Sidford, Song, Wang '21

Some important techniques:

- weighted and stochastic central paths
- fast approximate linear algebra
- efficient data structures

Fast exact LP algorithms with κ_{A} dependence

- n variables, m equality constraints

THEOREM (Dadush, Natura, V. '20) There exists a poly $\left(n, m, \log \kappa_{A}\right)$ algorithm for solving LP exactly.

- Feasibility: m calls to an approximate solver
- Optimization: mn calls to an approximate solver with $\varepsilon=1 /\left(\operatorname{poly}\left(n, \kappa_{A}\right)\right)$. Using van den Brand '20, this gives a deterministic exact $O\left(m n^{\omega+1} \log ^{2}(n) \log \left(\kappa_{A}+n\right)\right)$ time LP optimization algorithm
- Generalization of Tardos '86 for real constraint matrices and with directly working with approximate solvers.
- Main difference: arguments in Tardos '86 heavily rely on integrality assumptions

Hoffman's proximity theorem

Polyhedron $P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$, point $x_{0} \notin P$, norms $\|.\|_{\alpha},\|.\|_{\beta}$
THEOREM (Hoffman, 1952): There exists a constant $H_{\alpha, \beta}(A)$ such that

$$
\exists x \in P:\left\|x-x_{0}\right\|_{\alpha} \leq H_{\alpha, \beta}(A)\left\|\left(A x_{0}-b\right)^{+}\right\|_{\beta}
$$

Alan J. Hoffman 1924-2021

Proximity theorem with κ_{A}

THEOREM: For $A \in \mathbb{R}^{m \times n}, d \in \mathbb{R}^{n}$, consider the system

$$
A x=A d, \quad x \geq 0 .
$$

If feasible, then there exists a feasible solution x such that

$$
\|x-d\|_{\infty} \leq \kappa_{A}\left\|d^{-}\right\|_{1}
$$

PROOF:

Linear feasibility algorithm

Linear feasibility problem

$$
A x=A d, \quad x \geq 0
$$

- Recursive algorithm using a stronger problem formulation:

$$
\begin{gathered}
A x=A d, \quad x \geq 0 \\
\|x-d\|_{\infty} \leq C^{\prime} \kappa_{A}^{2}\left\|d^{-}\right\|_{1}
\end{gathered}
$$

- Variable fixing: conclude $x_{i}>0$ and project out x_{i}
- Black box oracle for $\varepsilon=1 /\left(\operatorname{poly}\left(n, \kappa_{A}\right)\right)$

The lifting operator

$$
\begin{aligned}
& L_{I}^{W}(z)=\arg \min \left\{\|x\|_{2}: x \in W, x_{I}=z\right\} \\
& \text { For every } z \in \pi_{I}(W), x=L_{I}^{W}(z) \in W=\operatorname{ker}(A) \\
& x_{I}=z, \operatorname{and}\|x\|_{\infty} \leq \kappa_{A}\|z\|_{1}
\end{aligned}
$$

The linear feasibility algorithm

Problem $\mathcal{F}(\operatorname{ker}(A), d)$

1. Call the black box solver to find a solution z for $\varepsilon=1 /\left(\kappa_{A} n\right)^{4}$

$$
\begin{aligned}
A z & =A d \\
\|z-d\|_{\infty} & \leq C \kappa_{A}\left\|d^{-}\right\|_{1} \\
\left\|z^{-}\right\|_{\infty} & \leq \varepsilon\left\|d^{-}\right\|_{1}
\end{aligned}
$$

2. Set $J=\left\{i \in[n]: z_{i}<\kappa_{A}\left\|d^{-}\right\|_{1}\right\}$; assume $J \neq[n]$.
3. Recursively obtain $\tilde{x} \in \mathbb{R}_{+}^{J}$ from $\mathcal{F}\left(\pi_{J}(\operatorname{ker}(A)), z_{J}\right)$
4. Return $x=z+L_{J}^{W}\left(\tilde{x}-z_{J}\right)$

5. Call the black box solver to find a solution z for $\varepsilon=1 /\left(\kappa_{A} n\right)^{4}$

$$
\begin{aligned}
A z & =A d \\
\|z-d\|_{\infty} & \leq C \kappa_{A}\left\|d^{-}\right\|_{1} \\
\left\|z^{-}\right\|_{\infty} & \leq \varepsilon\left\|d^{-}\right\|_{1}
\end{aligned}
$$

2. Set $J=\left\{i \in[n]: z_{i}<\kappa_{A}\left\|d^{-}\right\|_{1}\right\}$; assume $J \neq[n]$.
3. Recursively obtain $\tilde{x} \in \mathbb{R}_{+}^{J}$ from $\mathcal{F}\left(\pi_{J}(\operatorname{ker}(A)), z_{J}\right)$
4. Return $x=z+L_{J}^{W}\left(\tilde{x}-z_{J}\right)$
$W=\operatorname{ker}(A)$
Problem $\mathcal{F}(\operatorname{ker}(A), d)$

$$
\begin{aligned}
A z & =A d \\
\|x-d\|_{\infty} & \leq C^{\prime} \kappa_{A}^{2}\left\|d^{-}\right\|_{1} \\
x & \geq 0
\end{aligned}
$$

The linear feasibility algorithm

$$
J=\left\{i \in[n]: z_{i}<\kappa_{A}\left\|d^{-}\right\|_{1}\right\} ;
$$

- If $J=[n]$, then we replace d by its projection to $W^{\perp}=\operatorname{im}\left(A^{\top}\right)$
- Bound n on the number of recursive calls; can be decreased to m
- $O\left(m n^{\omega+o(1)} \log \left(\kappa_{W}+n\right)\right)$ feasibility algorithm using van den Brand '20.

Certification

- In case of infeasibility we return an exact Farkas certificate
- κ_{A} is hard to approximate within $2^{O(n)}$ Tunçel 1999
- We use an estimate M in the algorithm
- The algorithm may fail if $\left\|L_{J}^{W}\left(\tilde{x}-z_{J}\right)\right\|_{\infty}>M\left\|\tilde{x}-z_{J}\right\|_{1}$
- In this case, we restart with

$$
\max \left\{M^{2}, \frac{\left\|L_{J}^{W}\left(\tilde{x}-z_{J}\right)\right\|_{\infty}}{\left\|\tilde{x}-z_{J}\right\|_{1}}\right\}
$$

- Our estimate never overshoots κ_{A} by much, but can be significantly better.

Proximity for optimization

$$
\begin{gathered}
\min c^{\top} x \\
A x=A d \\
x \geq 0
\end{gathered}
$$

$$
\begin{gathered}
\max b^{\top} y \\
A^{\top} y+s=c \\
s \geq 0
\end{gathered}
$$

THEOREM: Let $A^{\top} y+s=c, s \geq 0$ be a feasible dual solution, and assume the primal is also feasible. Then there exists a primal optimal $A x^{*}=A d, x^{*} \geq 0$ such that

$$
\left\|x^{*}-d\right\|_{\infty} \leq \kappa_{A}\left(\left\|d^{-}\right\|_{1}+\left\|d_{\operatorname{supp}(s)}\right\|_{1}\right)
$$

Optimization algorithm

$$
\begin{gathered}
\min c^{\top} x \\
A x=A d \\
x \geq 0
\end{gathered}
$$

$$
\begin{gathered}
\max b^{\top} y \\
A^{\top} y+s=c \\
s \geq 0
\end{gathered}
$$

- $n m$ calls to the black box solver
- $\leq n$ Outer Loops, each comprising $\leq m$ Inner Loops
- Each Outer Loop finds \tilde{d} with $\|d-\tilde{d}\|$ "small", and (x, s) primal and dual optimal solutions to

$$
\min c^{\top} x \text { s.t. } A x=A \tilde{d}, d \geq 0
$$

- Using proximity, we can use this to conclude $x_{I}>0$ for a certain variable set $I \subseteq n$ and recurse.

Outline of the lectures

1. Tardos's algorithm for min-cost flows
2. The circuit imbalance measure κ_{A} and the condition measure $\bar{\chi}_{A}$
3. Solving LPs: from approximate to exact
4. Optimizing circuit imbalances
5. Interior point methods: basic concepts
6. Layered-least-squares interior point methods

Part 4
Optimizing circuit imbalances

Diagonal rescaling of LP

$$
\begin{gathered}
\min c^{\top} x \\
A x=b \\
x \geq 0
\end{gathered}
$$

$$
\begin{gathered}
\max b^{\top} y \\
A^{\top} y+s=c \\
s \geq 0
\end{gathered}
$$

Positive diagonal matrix $D \in \mathbb{R}^{n \times n}$

$$
\begin{array}{cc}
\min (D c)^{\top} x^{\prime} & \max b^{\top} y^{\prime} \\
A D x^{\prime}=b & (A D)^{\top} y^{\prime}+s^{\prime}=D c \\
x^{\prime} \geq 0 & s^{\prime} \geq 0
\end{array}
$$

Mapping between solutions:

$$
x^{\prime}=D^{-1} x, \quad y^{\prime}=y, \quad s^{\prime}=D s
$$

Diagonal rescaling of LP

Positive diagonal matrix $D \in \mathbb{R}^{n \times n}$

$$
\begin{array}{cc}
\min (D c)^{\top} x^{\prime} & \max b^{\top} y^{\prime} \\
A D x^{\prime}=b & (A D)^{\top} y^{\prime}+s^{\prime}=D c \\
x^{\prime} \geq 0 & s^{\prime} \geq 0
\end{array}
$$

Mapping between solutions:

$$
x^{\prime}=D^{-1} x, \quad y^{\prime}=y, \quad s^{\prime}=D s
$$

- Natural symmetry of LPs and many LP algorithms.
- The Central Path is invariant under diagonal scaling.
- Most "standard" interior point methods are invariant.

Dependence on the constraint matrix only

$$
\min c^{\top} x, A x=b x \geq 0
$$

- Algorithms with running time dependent only on A, but not on b and c.
- Combinatorial LP's: integer matrix $A \in \mathbb{Z}^{m \times n}$.

$$
\Delta_{A}=\max \{|\operatorname{det}(B)|: B \text { submatrix of } A\}
$$

Tardos '86: poly $\left(n, m, \log \Delta_{A}\right)$ LP algorithm

- Layered-least-squares (LLS) Interior Point Method Vavasis-Ye '96: $\operatorname{poly}\left(n, m, \log \bar{\chi}_{A}\right)$ LP algorithm in the real model of computation $\bar{\chi}_{A}$: condition number
- Dadush-Huiberts-Natura-V '20: $\operatorname{poly}\left(n, m, \log \bar{\chi}_{A}^{*}\right)$ $\bar{\chi}_{A}^{*}$: optimized version of $\bar{\chi}_{A}$

Optimizing κ_{A} and $\bar{\chi}_{A}$ by rescaling

$\mathcal{D}=$ set of $n \times n$ positive diagonal matrices

$$
\begin{aligned}
& \kappa_{A}^{*}=\inf \left\{\kappa_{A D}: D \in \mathcal{D}\right\} \\
& \bar{\chi}_{A}^{*}=\inf \left\{\bar{\chi}_{A D}: D \in \mathcal{D}\right\}
\end{aligned}
$$

- A scaling invariant algorithm with $\bar{\chi}_{A}$ dependence automatically yields $\bar{\chi}_{A}^{*}$ dependence.
- Recall $\sqrt{1+\kappa_{A}^{2}} \leq \bar{\chi}_{A} \leq n \kappa_{A}$.

THEOREM (Dadush-Huiberts-Natura-V '20): Given $A \in$ $\mathbb{R}^{m \times n}$, in $O\left(n^{2} m^{2}+n^{3}\right)$ time, one can

- approximate the value κ_{A} within a factor $\left(\kappa_{A}^{*}\right)^{2}$, and
- compute a rescaling $\mathrm{D} \in \mathcal{D}$ satisfying $\kappa_{A D} \leq\left(\kappa_{A}^{*}\right)^{3}$.

THEOREM (Tunçel 1999): It is NP-hard to approximate $\bar{\chi}_{A}$ (and thus κ_{A}) by a factor better than $2^{\text {poly }(\operatorname{rank}(A))}$

Approximating κ_{A}^{*}

$\mathcal{D}=$ set of $n \times n$ positive diagonal matrices

$$
\kappa_{A}^{*}=\inf \left\{\kappa_{A D}: D \in \mathcal{D}\right\}
$$

- EXAMPLE: Let $\operatorname{ker}(A)=\operatorname{span}((0,1,1, \mathrm{M}),(1,0, \mathrm{M}, 1))$

Pairwise circuit imbalances

- For a circuit C, there exists a vector $g^{C} \in \mathbb{R}^{C}$ unique up to a scalar multiplier such that

$$
\sum_{i \in C} g_{i}^{C} a_{i}=0
$$

- \mathcal{C}_{A} : set of all circuits.
- For any $i, j \in[n]$,

$$
\kappa_{i j}=\max \left\{\frac{\left|g_{j}^{C}\right|}{\left|g_{i}^{C}\right|}: C \in \mathcal{C}_{A} \text {, s. t. } i, j \in C\right\}
$$

- The circuit imbalance measure is

$$
\kappa_{A}=\max _{i, j \in[n]} \kappa_{i j}
$$

Cycles are invariant under scaling

LEMMA For any directed cycle H on $\{1,2, \ldots, n\}$

$$
\left(\kappa_{A}^{*}\right)^{|H|} \geq \prod_{(i, j) \in H} \kappa_{i j}
$$

Circuit imbalance min-max formula

THEOREM (Dadush-Huiberts-Natura-V '20):

$$
\kappa_{A}^{*}=\max \left\{\left(\prod_{(i, j) \in H} \kappa_{i j}\right)^{1 /|H|}: H \text { directed cycle on }\{1,2, \ldots, n\}\right\}
$$

PROOF:

Circuit imbalance min-max formula

THEOREM (Dadush-Huiberts-Natura-V '20):

$$
\kappa_{A}^{*}=\max \left\{\left(\prod_{(i, j) \in H} \kappa_{i j}\right)^{1 /|H|}: H \text { directed cycle on }\{1,2, \ldots, n\}\right\}
$$

- BUT: Computing the $\kappa_{i j}$ values is NP-complete...
- LEMMA: For any circuit $C \in \mathcal{C}_{A}$ s.t. $i, j \in C$,

$$
\frac{\left|g_{j}^{C}\right|}{\left|g_{i}^{C}\right|} \geq \frac{\kappa_{i j}}{\left(\kappa_{W}^{*}\right)^{2}}
$$

Outline of the lectures

1. Tardos's algorithm for min-cost flows
2. The circuit imbalance measure κ_{A} and the condition measure $\bar{\chi}_{A}$
3. Solving LPs: from approximate to exact
4. Optimizing circuit imbalances
5. Interior point methods: basic concepts
6. Layered-least-squares interior point methods

Part 5

Interior point methods: basic concepts

Primal and dual LP

- $A \in \mathbb{R}^{m \times n}, c, d \in \mathbb{R}^{m}$

$$
\begin{gathered}
\min c^{\top} x \\
A x=A d \\
x \geq 0
\end{gathered}
$$

$$
\begin{gathered}
\max b^{\top} y \\
A^{\top} y+s=c \\
s \geq 0
\end{gathered}
$$

- Complementary slackness: Primal and dual solutions (x, s) are optimal if $x^{\top} s=0$: for each $i \in$ $[n]$, either $x_{i}=0$ or $s_{i}=0$.
- Optimality gap:

$$
c^{\top} x-b^{\top} y=x^{\top} s .
$$

The central path

- For each $\mu>0$, there exists a unique solution $w(\mu)=(x(\mu), y(\mu), s(\mu))$ such that

$$
x(\mu)_{i} s(\mu)_{i}=\mu \quad \forall i \in[n]
$$

the central path element for μ.

- The central path is the algebraic curve formed by $\{w(\mu): \mu>0\}$
- For $\mu \rightarrow 0$, the central path converges to an optimal solution $w^{*}=\left(x^{*}, y^{*}, s^{*}\right)$.
- The optimality gap is $s(\mu)^{\top} x(\mu)=n \mu$.
- Interior point algorithms: walk down along the central path with μ decreasing geometrically.

The Mizuno-Todd-Ye Predictor-Corrector Algorithm

- Start from point $w_{0}=\left(x_{0}, y_{0}, s_{0}\right)$ 'near' the central path at some $\mu_{0}>0$.
- Alternate between
- Predictor steps: 'shoot down' the central path, decreasing μ by a factor at least $1-\beta / n$. May move slightly 'farther' from the central path.
- Corrector steps: do not change parameter μ, but move back 'closer' to the central path.
Within $O(n)$ iterations, μ decreases by a

$-\cdots$ Simplex solution path
\sim Central path
$----\rightarrow$ Predictor factor 2.

The predictor step

- Step direction $\Delta w=(\Delta x, \Delta y, \Delta s)$

$$
\begin{gathered}
A \Delta x=0 \\
A^{\top} \Delta y+\Delta s=0 \\
s_{i} \Delta x_{i}+x_{i} \Delta s_{i}=-x_{i} s_{i} \forall i \in[n]
\end{gathered}
$$

- Pick the largest $\alpha \in[0,1]$ such that w^{\prime} is still "close enough" to the central path $w^{\prime}=w+\alpha \Delta w=(x+\alpha \Delta x, y+\alpha \Delta y, s+\alpha \Delta s)$
- Long step: $\left|\Delta x_{i} \Delta s_{i}\right|$ small for every $i \in[n]$
- New optimality gap is $(1-\alpha) \mu$.

The predictor step least squares view

$$
\begin{gathered}
A \Delta x=0 \\
A^{\top} \Delta y+\Delta s=0 \\
s_{i} \Delta x_{i}+x_{i} \Delta s_{i}=-x_{i} s_{i} \forall i \in[n]
\end{gathered}
$$

- Assume the current point $w=(x, y, s)$ is on the central path. The steps can be found as minimum norm projections in the $\left(\frac{1}{n} x\right)$ and $(1 / s)$ rescaled norms

$$
\begin{gathered}
\Delta x=\arg \min \sum_{i=1}^{n}\left(\frac{x_{i}+\Delta x_{i}}{x_{i}}\right)^{2} \text { s.t. } A \Delta x=0 \\
\Delta s=\arg \min \sum_{i=1}^{n}\left(\frac{s_{i}+\Delta s_{i}}{s_{i}}\right)^{2} \\
\text { s.t. } A^{\top} \Delta y+\Delta s=0
\end{gathered}
$$

Some recent progress on interior point methods

- Tremendous recent progress on fast approximate variants LS'14-'19, CLS'19,vdB'20,vdBLSS'20,vdBLLSSSW'21
- Fast approximate algorithms for combinatorial problems flows, matching and MDPs: DS'08, M'13, M'16, CMSV'17, AMV'20, vdBLNPTSSW'20, vdBLLSSSW'21

Outline of the lectures

1. Tardos's algorithm for min-cost flows
2. The circuit imbalance measure κ_{A} and the condition measure $\bar{\chi}_{A}$
3. Solving LPs: from approximate to exact
4. Optimizing circuit imbalances
5. Interior point methods: basic concepts
6. Layered-least-squares interior point methods

Part 6

 Layered-least-squares interior point methods

Layered-least-squares (LLS) Interior Point Methods:
Dependence on the constraint matrix only

$$
\bar{\chi}_{A}^{*}=\inf \left\{\bar{\chi}_{A D}: D \in \mathcal{D}\right\}
$$

- Vavasis-Ye '96: $0\left(n^{3.5} \log \left(\bar{\chi}_{A}+n\right)\right)$ iterations
- Monteiro-Tsuchiya '03 O $\left(n^{3.5} \log \left(\bar{\chi}_{A}^{*}+n\right)+\right.$ $\left.n^{2} \log \log 1 / \varepsilon\right)$ iterations
- Lan-Monteiro-Tsuchiya ‘09 O($\left.n^{3.5} \log \left(\bar{\chi}_{A}^{*}+n\right)\right)$ iterations, but the running time of the iterations depends on b and c
- Dadush-Huiberts-Natura-V '20: scaling invariant LLS method with $\mathrm{O}\left(n^{2.5} \log (n) \log \left(\bar{\chi}_{A}^{*}+n\right)\right)$ iterations

Near monotonicity of the central path

IPM learns gradually improved upper bounds on the optimal solution.

LEMMA For $w=(x, y, s)$ on the central path, and for any solution $w^{\prime}=\left(x^{\prime}, y^{\prime}, s^{\prime}\right)$ s.t. $\left(x^{\prime}\right)^{\top} s^{\prime} \leq x^{\top} s$, we have

$$
\sum_{i=1}^{n} \frac{x_{i}^{\prime}}{x_{i}}+\frac{s_{i}^{\prime}}{s_{i}} \leq 2 n
$$

Variable fixing...-or not?

LEMMA After every iteration, there exists variables x_{i} and s_{j} such that

$$
\frac{1}{O(n)} \leq \frac{x_{i}}{x_{i}^{*}}, \frac{s_{j}}{s_{j}^{*}} \leq O(n)
$$

For the optimal $\left(x^{*}, y^{*}, s^{*}\right)$. Thus, x_{i} and s_{j} have "converged" to their final values.

- PROOF: Can be shown using the form of the predictor step:

$$
\begin{gathered}
\Delta x=\arg \min \sum_{i=1}^{n}\left(\frac{x_{i}+\Delta x_{i}}{x_{i}}\right)^{2} \text { s.t. } A \Delta x=0 \\
\Delta s=\arg \min \sum_{i=1}^{n}\left(\frac{s_{i}+\Delta s_{i}}{s_{i}}\right)^{2} \quad \text { s.t. } A^{\top} \Delta y+\Delta s=0
\end{gathered}
$$

and bounds on the stepsize.

Variable fixing...-or not?

LEMMA After every iteration, there exists variables x_{i} and s_{j} such that

$$
\frac{1}{O(n)} \leq \frac{x_{i}}{x_{i}^{*}}, \frac{s_{j}}{s_{j}^{*}} \leq O(n)
$$

For the optimal $\left(x^{*}, y^{*}, s^{*}\right)$. Thus, x_{i} and s_{j} have "converged" to their final values.

We cannot identify these indices, just show their existence

Layered least squares methods

- Instead of the standard predictor step, split the variables into layers.
- Variables on different layers "behave almost like separate LPs"
- Force new primal and dual variables that must have converged.

Recap: the lifting operator and κ_{A}

- For a linear subspace $W \subset \mathbb{R}^{n}$ and index set $I \subseteq[n]$, we let

$$
\pi_{I}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{I}
$$

denote the coordinate projection, and

$$
\begin{equation*}
\pi_{I}(W)=\left\{x_{I}: x \in W\right\} \tag{ker}
\end{equation*}
$$

- The lifting operator $L_{I}^{W}: \mathbb{R}^{I} \rightarrow \mathbb{R}^{n}$ is defined as

$$
L_{I}^{W}(z)=\arg \min \left\{\|x\|_{2}: x \in W, x_{I}=z\right\}
$$

- LEMMA: $\kappa_{A}=\max \left\{\frac{\left\|L_{I}^{W}(z)\right\|_{\infty}}{\|z\|_{1}}: I \subseteq[n], z \in \pi_{I}(W) \backslash\{0\}\right\}$
- For every $z \in \pi_{I}(W), x=L_{I}^{W}(z) \in W=\operatorname{ker}(A)$ s.t.

$$
x_{I}=z \text {, and }\|x\|_{\infty} \leq \kappa_{A}\|z\|_{1}
$$

Motivating the layering idea:

 final rounding step in standard IPM$$
\begin{gathered}
\min c^{\top} x \\
A x=b \\
x \geq 0
\end{gathered}
$$

$$
\begin{gathered}
\max b^{\top} y \\
A^{\top} y+s=c \\
s \geq 0
\end{gathered}
$$

- Limit optimal solution $\left(x^{*}, y^{*}, s^{*}\right)$, and optimal partition $[n]=B \cup N$ s.t. $B=$ $\operatorname{supp}\left(x^{*}\right), N=\operatorname{supp}\left(s^{*}\right)$.
- Given (x, y, s) near central path with
 every $i \in[n]$, either x_{i} or s_{i} very small.
- Assume that we can correctly guess
$B=\left\{i: x_{i}>M \sqrt{\mu}\right\}$,
$N=\left\{i: s_{i}>M \sqrt{\mu}\right\}$
- Assume we have a partition B, N, we have

$$
\begin{array}{lrl}
i \in B: x_{i}>M \sqrt{\mu}, & & s_{i}<\sqrt{\mu} / M \\
i \in N: x_{i}<\sqrt{\mu} / M, & & s_{i}>M \sqrt{\mu}
\end{array}
$$

- Goal: move to $\bar{x}=x+\Delta x, \quad \bar{y}=y+\Delta y, \bar{s}=s+\Delta s$ s.t. $\operatorname{supp}(\bar{x}) \subseteq B, \operatorname{supp}(\bar{s}) \subseteq N$. Then, $\bar{x}^{\top} \bar{s}=0$: optimal solution.
- Choice:

$$
\Delta x=-L_{N}^{W}\left(x_{N}\right), \quad \Delta s=-L_{B}^{W}\left(s_{B}\right)
$$

Layered-least-squares step

Assume we have a partition B, N, with $i \in B: x_{i}>M \sqrt{\mu}, \quad s_{i}<\sqrt{\mu} / M$ $i \in N: x_{i}<\sqrt{\mu} / M, \quad s_{i}>M \sqrt{\mu}$

Standard primal predictor step:
$\Delta x=\arg \min \sum_{i=1}^{n}\left(\frac{x_{i}+\Delta x_{i}}{x_{i}}\right)^{2}$
s.t. $A \Delta x=0$

Vavasis-Ye LLS step with layers (B, N):
$\Delta x_{N}=\arg \min \sum_{i \in N}\left(\frac{x_{i}+\Delta x_{i}}{x_{i}}\right)^{2}$
s.t. $A \Delta x=0$
$\Delta x_{B}=\arg \min \sum_{i \in B}\left(\frac{x_{i}+\Delta x_{i}}{x_{i}}\right)^{2}$
s.t. $A\left(\Delta x_{B}, \Delta x_{N}\right)=0$

Layered-least-squares step Vavasis-Ye ‘96

- Order variables decreasingly as $x_{1} \geq x_{2} \geq \cdots \geq x_{n}$
- Arrange variables into layers $\left(J_{1}, J_{2}, \ldots, J_{t}\right)$; start a new layer when

$$
x_{i}>0\left(n^{c}\right) \bar{\chi}_{A} x_{i+1}
$$

- Primal step direction by least squares problems from backwards, layer-by-layer
- Lifting costs from lower layers low
- Dual step in the opposite direction

Not scaling invariant!

Progress measure: crossover events Vavasis-Ye'96

- DEFINITION: The variables x_{i} and x_{j} cross over between μ and μ^{\prime}, $\mu>\mu^{\prime}$, if
- $O\left(n^{c}\right)\left(\bar{x}_{A}\right)^{n} x_{j}(\mu) \geq x_{i}(\mu)$
- $O\left(n^{c}\right)\left(\bar{\chi}_{A}\right)^{n} x_{j}\left(\mu^{\prime \prime}\right)<x_{i}\left(\mu^{\prime \prime}\right)$ for any $\mu^{\prime \prime} \leq \mu^{\prime}$
- LEMMA: In the Vavasis-Ye algorithm, a crossover event happens every $O\left(n^{1.5} \log \left(\bar{\chi}_{A}+n\right)\right)$ iterations, totalling to $O\left(n^{3.5} \log \left(\bar{\chi}_{A}+n\right)\right)$.

Scaling invariant layering DNHV'20

- Instead of the ratios x_{i} / x_{j}, we consider the rescaled circuit imbalance measures $\kappa_{i j} x_{i} / x_{j}$
- Layers: strongly connected components of the arcs

$$
(i, j): \frac{\kappa_{i j} x_{i}}{x_{j}}>\frac{1}{\operatorname{poly}(n)}
$$

The $\kappa_{i j}$ values are not known: increasingly improving estimates.

Scaling invariant crossover events Vavasis-Ye'96

- DEFINITION: The variables x_{i} and x_{j} cross over between μ and μ^{\prime}, $\mu>\mu^{\prime}$, if
- $O\left(n^{c}\right)\left(\bar{\chi}_{A}\right)^{n} x_{j}(\mu) \geq \kappa_{i j} x_{i}(\mu)$
- $O\left(n^{c}\right)\left(\bar{\chi}_{A}\right)^{n} x_{j}\left(\mu^{\prime \prime}\right)<\kappa_{i j} x_{i}\left(\mu^{\prime \prime}\right)$ for any $\mu^{\prime \prime} \leq \mu^{\prime}$
- Amortized analysis, resulting in improved $O\left(n^{2.5} \log (n) \log \left(\bar{\chi}_{A}+n\right)\right)$ iteration bound.

Limitation of IPMs

- THEOREM (Allamigeon-Benchimol-Gaubert-Joswig "18): No standard path following method can be strongly polynomial.
- Proof using tropical geometry: studies the tropical limit of a family of parametrized linear programs.

Future directions

- Circuit imbalance measure: key parameter for strongly polynomial solvability.
- LP classes with existence of strongly polynomial algorithms open:
- LPs with 2 nonzeros per column in the constraint matrix, equivalently: min cost generalized flows
- Undiscounted Markov Decision Processes
- Extend the theory of circuit imbalances more generally, to convex programming and integer programming.

Thank you!

Postdoc position open

ISt
 the London School of ECONOMICS and Political Science ■

Application deadline: 5 June

