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Abstract

We study the equilibrium computation problem in the Fisher market model with constrained
piecewise linear concave (PLC) utilities. This general class captures many well-studied special cases,
including markets with PLC utilities, markets with satiation, and matching markets. For the special
case of PLC utilities, although the problem is PPAD-hard, Devanur and Kannan (FOCS 2008) gave
a polynomial-time algorithm when the number of goods is constant. Our main result is a fixed
parameter approximation scheme for computing an approximate equilibrium, where the parameters
are the number of agents and the approximation accuracy. This provides an answer to an open
question by Devanur and Kannan for PLC utilities, and gives a simpler and faster algorithm for
matching markets as the one by Alaei, Jalaly and Tardos (EC 2017).

The main technical idea is to work with the stronger concept of thrifty equilibria, and
approximating the input utility functions by ‘robust’ utilities that have favorable marginal properties.
With some restrictions, the results also extend to the Arrow–Debreu exchange market model.

1 Introduction

Market equilibrium is one of the most fundamental solution concepts in economics, where prices and
allocations are such that demand meets supply when each agent gets her most preferred and affordable
bundle of goods. Due to the remarkable fairness and efficiency guarantees of equilibrium allocation, it is
also one of the preferred solutions for fair division problems even though there may be no money involved
in the latter case. A prominent example is competitive equilibrium with equal incomes (CEEI) [35],
where a market is created by giving one dollar of virtual money to every agent.

In this paper, we focus on markets with divisible goods. Extensive work in theoretical computer
science over the last two decades has led to a deep understanding of the computational complexity of
equilibria for the classical models of Fisher and exchange markets, introduced by Fisher [4] and Walras [40]
respectively in the late nineteenth century. In a Fisher market, agents have fixed budgets to spend on
goods according to their preferences given by utility functions over bundles of goods. CEEI is a special
case of this model, where each agent has a budget of one dollar. In the exchange (also known as Arrow–
Debreu) market model, the goods are brought to the market by the agents, who can spend their revenue
from selling their initial endowments.

Prevalent assumptions on the utility functions in the literature are (a) monotonicity, i.e., getting
a bundle containing more of each good may not decrease the utility, and (b) local non-satiation, i.e.,
for every bundle of goods, an arbitrary neighborhood contains a bundle with strictly higher utility. A
prominent example where these assumptions do not hold is the one-sided matching market problem, where
each agent needs to be assigned exactly one unit of fractional goods in total. Hylland and Zeckhauser [26]
introduced an elegant mechanism based on CEEI for the one-sided matching markets. However, more
general allocation constraints remain largely unexplored.

In this paper, we consider the equilibrium computation problem when agents have constrained
piecewise linear concave (PLC) utility functions, defined as follows.
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Definition 1.1. The utility function ui : Rm+ → R ∪ {−∞} of agent i is constrained PLC if it is given
in the following form. For some pi, ri ∈ N, let Ai ∈ Rpi×m, Bi ∈ Rpi×ri , qi ∈ Rm, si ∈ Rri ,

ui(xi) =

{
maxti q

>
i xi + s>i ti s.t. Aixi +Biti ≤ bi if ∃ti : Aixi +Biti ≤ bi ,

−∞ otherwise.

This general model includes the following well-studied examples:

• Matching markets [1, 26, 38] in the form ui(xi) =
∑
j aijxij if

∑
j xij = 1, and −∞ otherwise.

• PLC utility functions (see e.g., [14, 21, 22]) ui(xi) = min`{
∑
j a

l
ijxij + bli} can be modeled as

ui(xi) = max t s.t. t ≤
∑
j a

l
ijxij + bli, ∀`. This includes Leontief utilities as a special case.

• Markets with satiation, where an agent may either have the maximum utility limit [3, 11] or
consumption constraints [30], which can be easily captured through constrained PLC functions in
most cases.

For the special case of PLC utilities, although the problem is PPAD-hard [8]1, Devanur and Kannan [14]
and Kakade, Kearns, and Ortiz [29] gave polynomial-time algorithms for computing exact and approxi-
mate equilibria, respectively, when the number of goods is a constant. However, the other significant case
of constantly many agents turns out to be much more challenging. In [14] an algorithm is given for fixed
number of agents with separable PLC utilities, but the case with non-separable PLC utilities remained
open. Moreover, apart from theoretical interest, designing simpler and faster algorithms for these cases
is crucial for their applications.

1.1 Our contributions Our main result is a fixed parameter approximation scheme for computing
an approximate equilibrium in Fisher model under constrained PLC utilities, where the parameters are
the number of agents and the approximation accuracy. The main technical ideas are to use the stronger
concept of thrifty equilibria and to approximate the input utility functions by robust utilities that have
favorable marginal properties.

Before reviewing our algorithm for fixed number of agents, let us start with an easier algorithm for
fixed number of goods. In this case, a fairly simple grid search works over all possible price combinations
with a small stepsize. This is applicable to the even more general class of regular concave utilities
(Theorem 3.1). For each price combination, we compute the maximum utility of each agent at these
prices, and check whether these utilities can be approximately attained by a feasible allocation also
respecting the budget constraints. The existence of an equilibrium guarantees that we find a suitable
solution for at least one price combination. This is similar to the grid search approaches used in [26,
Appendix B] for matching markets, and for other markets in, e.g., [13, 29, 32].

The natural starting point for fixed number of agents is to perform a grid search over all possible
combinations of utility values with a small stepsize. However, even after fixing the desired utility values
for each agent, we need to find both allocations and prices, a significantly more challenging task. Our
approach is to (I) first find an allocation of the goods that meet the utility requirements of each agent,
and then (II) compute prices for which these allocations form a market equilibrium.

Consider an equilibrium with allocations x∗ = {x∗ij}i,j , prices p∗ = {p∗j}j and utility values
u∗ = {u∗i }i. For such a two-stage grid search approach to work, a necessary requirement is that given
approximate utility values u∗i − δ ≤ ũi ≤ u∗i , (x, p∗) must form an approximate market equilibrium for
every allocation x such that ui(xi) ≥ ũi for each agent i. This is not true for arbitrary utility functions:
not only that x may be very far from x∗, but more importantly, the approximate utility value ũi could
be obtained by paying much less than p>x∗i .

To address this problem, we make further assumptions both on the utility functions ui as well as
on the equilibrium (x∗, p∗). We require robust utility functions, where the change in the utility value is
bounded by the change of the budget in a certain critical range of budgets. We then show that every
constrained PLC utility function ui can be approximated by a ξ-robust constrained-PLC utility uξi for any

ξ > 0. We run the algorithm for uξi ; the resulting approximate equilibrium will also be an approximate

1We note that even the subcases of PLC such as separable PLC is already PPAD-hard for both Fisher [8] and Arrow-
Debreu models [6], and Leontief is PPAD-hard for the Arrow-Debreu model [10].
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equilibrium for the original ui with a slightly worse accuracy. The construction of the uξi ’s relies on using
perspective functions of the ui’s.

Robustness on its own however does not suffice. A curious phenomenon for constrained utilities is that
an agent may not need to spend their entire budget to obtain their most preferred bundle. For example,
if the most favored good has price less than 1 in a matching market, the optimal choice of the agent is
to purchase the full unit of this good. We will need to require that (x∗, p∗) is a thrifty equilibrium: the
agents do not only get their most preferred bundle of goods, but purchase such a bundle at the cheapest
possible costs. (In the matching market example, if there is a tie among most preferred goods, all priced
less than 1, the agent is only allowed to purchase the cheapest one.) Fortunately, thriftiness can always be
assumed (Theorem 2.1): we show that a thrifty equilibrium always exists in the Fisher model for regular
concave utilities mentioned above. The proof uses Kakutani’s fixed point theorem. To the extent of our
knowledge, existence of (even a non-thrifty) equilibrium is not implied by previous results for constrained
PLC utilities.2

Let us now describe the algorithm for robust utilities. In stage (I), we can find allocations delivering
the utility guesses by solving a linear program. In stage (II), the goal is to find prices p that form
an approximate equilibrium with x. The most challenging part is to ensure that the maximum utility
profile available at p is close to the guess ũi for each agent i. This is achieved by considering the dual of
the utility maximizing linear program, and applying a variable transformation. After these reductions,
suitable prices can be found by linear programming (Theorem 4.2).

In the above algorithm, we assume that empty allocation is feasible, i.e., ui(0) = 0. However, this is
no longer true in matching markets where ui(0) = −∞, and hence the above algorithm does not directly
apply here. We proceed with the natural approach by relaxing the matching constraints to

∑
j xij ≤ 1

for every i. For this relaxation to work, we need to add the requirement on both exact and approximate
equilibria that the minimum price is 0. This can be ensured by exploiting a natural price transformation
in the problem. We show that this approach works even for a more general model of PLC matching
markets with ui(xi) = min`{

∑
j a

l
ijxij + bli} if

∑
j xij = 1 and −∞ otherwise (Theorems 5.2 and 5.3).

The papers [14] and [1] give polynomial-time algorithms for computing exact equilibria for the special
cases mentioned earlier using a cell decomposition technique. Note that in both PLC and matching
markets, it is possible that all equilibria are irrational [18, 38]; exact equilibria in these works are
represented as roots of polynomials. The cell decomposition arguments partition the parameter space
by polynomial surfaces such that in each cell it is easy to decide whether a solution in the particular
configuration exists; the number of cells can be bounded using results from algebraic geometry. While
the number of cells is polynomial, the results for fixed number of agents (for separable PLC in [14] and
for matching markets in [1]) require solving mpoly(n) subproblems and thus may not be practical. In
contrast, our algorithm is a fixed parameter scheme in n and the accuracy ε; we need to solve O((n/ε2)n)
polynomial-size linear programs.3 Hence, the complexity of finding an approximate equilibrium is much
lower.

For matching markets, we also show that the set of equilibria is non-convex by a simple example of
3 agents and 3 goods with tri-valued utility values aij ∈ {0, 1, 2}. To the best of our knowledge, this
is the first proof of the non-convexity of equilibria in matching markets.4 Moreover, our example is the
simplest one can hope for as for both the bi-valued utility values and two agents case, the set of equilibria
is convex; see e.g., [23].

Finally, we show that our algorithms also extend to the more general case of the Arrow-Debreu
model under PLC utilities. The additional challenge here is to handle budgets that now depend on the
prices. For both cases of fixed number of agents and fixed number of goods, we approximate the utilities
by robust utilities. This can be done in a simpler way using the special form of the utilities, and in
particular it guarantees a lower bound on the minimum price. We refer the reader to the full version for
the Arrow-Debreu model and its results.

2We note that [36] shows NP-hardness of checking equilibrium existence in Fisher model under separable PLC utilities,
which seems to require two conditions: first, the sum of prices must equal the sum of budgets, and second, they implicitly

assume that the agents are thrifty. Hence, there is no contradiction.
3We note that ε ≤ 1/(cn) is needed for a meaningful approximate equilibrium.
4We note that [37] presents an example to show non-convexity of equilibria in matching markets. However, their latest

version [38] does not contain that example, which seems to have only one equilibrium.
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1.2 Related work Market equilibrium is an intensely studied concept with a variety of applications,
so we briefly mention further relevant results. For the classical Fisher model, polynomial-time algorithms
are obtained when agents have linear [15, 31, 39], weak gross substitutes [9], and homogeneous utility
functions [19]. For separable PLC utilities, the problem is PPAD-hard [8].

For the constrained Fisher model, the most famous problem is the Hylland-Zeckhauser scheme for
the one-sided matching markets, for which [26] shows the existence of equilibrium, which is recently
simplified [5]. For matching markets, polynomial-time algorithms are obtained for special cases of
constantly many agents (or goods) [1] and dichotomous utilities [38]. Settling its exact complexity is
currently open.

Very recently, [28] considers Fisher markets with additional linear constraints, which includes
matching markets but not the PLC utilities studied in this paper. It gives a simple fixed-point iterative
scheme that converges to an equilibrium in numerical experiments, among other structural results. In
particular, it provides a non-convexity example with additional linear utilities, which we note is not a
matching market example.

For the classical Arrow-Debreu model, polynomial-time algorithms are obtained when agents have
linear [16, 17, 24, 27, 41] and weak gross substitutes [2, 9, 20] utilities, and beyond that, the problem is
essentially PPAD-hard [6, 7, 10, 22].

For the constrained Arrow-Debreu model, an exact equilibrium may not exist even in the case of
matching markets [26]. For this, [23] gives the existence of an approximate equilibrium and a polynomial-
time algorithm for computing it under dichotomous utilities.

Overview The rest of the paper is organized as follows. Section 2 defines all models and definitions.
Section 3 presents an algorithm for computing an approximate Fisher equilibrium under regular concave
utilities for a fixed number of goods. Section 4 gives an algorithm for computing an approximate Fisher
equilibrium under constrained PLC utilities for a fixed number of agents. Section 5 extends algorithms
to PLC matching markets and presents an example showing the non-convexity of equilibria.

2 Models and definitions

Consider a market with n agents and m divisible goods. We assume without loss of generality that there
is a unit supply of each good. Each agent i has a concave utility function ui : Rm+ → R ∪ {−∞}.

Definition 2.1. We say that the utility function ui : Rm+ → R ∪ {−∞} is regular, if

• The function ui is concave and the domain Ki = {xi ∈ Rm+ : ui(xi) > −∞} is closed.

• ui restricted to Ki is Lipschitz continuous, i.e. |ui(xi)− ui(yi)| ≤ L‖xi − yi‖2 for xi, yi ∈ Ki.

• ui(0) = 0.

We assume that the Lipschitz constant L is the same for all utility functions and is known a priori.
This will be relevant for the computational complexity of (approximately) solving convex programs with
objective ui. The main requirement in the assumption ui(0) = 0 is that 0 ∈ Ki, i.e., the empty allocation
is feasible. If that holds, we can shift the utility function to ui(0) = 0. Our main focus will be on the
constrained PLC utilities defined in the introduction.

Lemma 2.1. Every constrained PLC utility function ui (Definition 1.1) with ui(0) = 0 is regular. For
the Lipschitz parameter L, logL is polynomially bounded in the bit-complexity of the input.

Proof. The first property is immediate, and the Lipschitz bound follows by [34, Corollary 3.2a and
Theorem 10.5].

For prices p ∈ Rm+ and a budget wi, we define the optimal utility value

Vi(p, wi) = max
xi∈Rm+

{
ui(xi) : p>xi ≤ wi

}
,

and the demand correspondence as the set of utility maximizing bundles that can be purchased at the
given budget:

Di(p, wi) = arg max
xi∈Rm+

{
ui(xi) : p>xi ≤ wi

}
,
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Let
V max
i = max

xi∈[0,1]m
ui(xi) .

be the maximum utility value achievable by purchasing at most 1 unit from each good. Clearly,
V max
i ≥ ui(0) = 0. Throughout, we make the following normalization assumption:

(2.1) V max
i ≤ 1 for each agent i.

Let
Ci(p, wi) = min

xi∈Rm+

{
p>xi : xi ∈ Di(p, wi)

}
be the minimum cost of an optimal bundle; we call this the thrifty cost. If the market satisfies non-
satiation, then Ci(p, wi) = wi, but it can be strictly less otherwise. Note that if Ci(p, wi) < wi, then
Vi(p, wi) = maxxi∈Rm+ ui(xi). We define the thrifty demand correspondence as the set of cheapest optimal
bundles.

Dt
i(p, wi) = arg min

xi∈Rm+

{
p>xi : xi ∈ Di(p, wi)

}
.

Finally, we let
Cmin
i (p) = min

xi∈Rm+

{
p>xi : xi ∈ Rm, ui(xi) ≥ V max

i

}
denote the minimum cost to achieve V max

i at prices p. Note that we also allow bundles here that are not
in [0, 1]m, i.e., may use more than one unit of an good.

2.1 The Fisher market model In the Fisher market model, we are given n agents and m divisible
goods of unit supply each. Each agent has a budget wi and a regular utility function ui : Rm+ → R∪{−∞}.
We assume

(2.2) V max
i > 0 for each agent i.

If V max
i = 0, then by concavity we must have ui(xi) ≤ 0 for all xi ∈ Rm+ . We can remove such agents, as

they can always be allocated xi = 0 at equilibrium.

Definition 2.2. (Fisher equilibrium) In a Fisher market with utilities {ui}i and budgets {wi}i, the
allocations and prices ({xi}i, {pj}j) form a market equilibrium if

• xi ∈ Di(p, wi) for each agent i, i.e., each agent buys an optimal bundle subject to budget constraint;

• the market clears, i.e.,
∑
i xij ≤ 1, and

∑
i xij = 1 if pj > 0 for every good j.

Further, ({xi}i, {pj}j) is a thrifty market equilibrium if we require the stronger xi ∈ Dt
i(p, wi) for each

agent i.

We prove the following theorem in the full version, which shows that regular utilities suffice for the
existence of an equilibrium.

Theorem 2.1. If all agents’ utility functions are regular, then a thrifty market equilibrium always exists.

Definition 2.3. (approximate Fisher equilibrium) In a Fisher market with utilities {ui}i and
budgets {wi}i that satisfies assumption (2.1), the allocations and prices ({xi}i, {pj}j) form a (σ, λ)-
approximate market equilibrium if

• ui(xi) ≥ Vi(p, wi)− λ ;

• p>xi ≤ wi + σ
∑
i wi;

•
∑
i xij ≤ 1, and

∑
j pj(1−

∑
i xij) ≤ σ

∑
i wi.

Similarly, a (σ, λ)-approximate thrifty market equilibrium satisfies p>xi ≤ Ci(p, wi) + σ
∑
i wi instead

of the second constraint. A (σ, σ)-approximate (thrifty) market equilibrium will be also referred to as a
σ-approximate (thrifty) market equilibrium.

Note that, in order to get a meaningful approximate equilibrium solution, one needs to select
σ < 1/(cn) for some constant c, since the error term is σ

∑
i wi.
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3 Approximate Fisher equilibrium for fixed number of goods

As a warm-up, we give a simple algorithm for finding an ε-approximate thrifty market equilibrium in
Fisher markets for a fixed number of goods. The algorithm amounts to approximately solving O(n

(
m
ε

)m
)

convex programs. This is similar to the grid search approaches used, e.g., in [13, 26, 29, 32].
We assume that the utility functions ui(xi) are represented by value oracles. For given prices p,

the maximum utility Vi(p, wi) and the thrifty cost Ci(p, wi) can be obtained as the optimal solution to
convex programs. Using a convex programming algorithm such as the ellipsoid method, we can compute
a ε-approximate optimal solutions in oracle-polynomial time in n, m, the bit-complexity of the vector p,
wi, logL, and log(1/ε) [25].

Further, we define the function F : Rm+ → R as the optimal solution to the following convex program
in the variables {xi}i.

(3.3)

F (p) = min δ

ui(xi) ≥ Vi(p, wi)− δ, ∀i∑
i

xij ≤ 1, ∀j∑
j

xijpj ≤ Ci(p, wi) + δ
∑
i

wi, ∀i

∑
j

pj

(
1−

∑
i

xij

)
≤ δ

∑
i

wi

x, δ ≥ 0,

To compute a ε-approximate solution for given prices p, we first find (ε/2)-approximate values for Vi(p, wi)
for all i and (ε

∑
i wi/2)-approximate values for Ci(p, wi); then, we again use a convex programming

algorithm to find a (ε/2)-approximate solution to the resulting program.

Lemma 3.1. If F (p) ≤ σ, then the prices p and allocations xi give a σ-approximate thrifty market
equilibrium. If (p∗, x∗) forms an exact thrifty market equilibrium, and prices p ∈ Rm satisfy p∗j ≤ pj ≤
p∗j + σ

m

∑
i wi, then F (p) ≤ σ.

Proof. The first claim is immediate by the definition of an approximate thrifty market equilibrium. For
the second claim, F (p∗) = 0 with the optimal solution x∗. We show that (x∗, σ) is feasible to (3.3),
showing that F (p) ≤ σ. Since p ≥ p∗, we have Vi(p, wi) ≤ Vi(p∗, wi), verifying the first constraint.

To verify the third constraint, we first show that Ci(p, wi) ≥ Ci(p
∗, wi). This is immediate if

Ci(p, wi) = wi. If Ci(p, wi) < wi, then Vi(p, wi) = maxx∈Rm Vi(x), the maximum utility without budget
constraint; consequently, Vi(p

∗, wi) = maxx∈Rm Vi(x). Purchasing such a maximum utility bundle cannot
be cheaper at prices p, since p ≥ p∗. Hence,

∑
j

pjx
∗
ij ≤

∑
j

p∗jx
∗
ij +

∑
j

x∗ij

 σ

m

(∑
i

wi

)
≤ Ci(p∗, wi) + σ

∑
i

wi ≤ Ci(p, wi) + σ
∑
i

wi .

The last constraint in (3.3) follows by
∑
j pj

∑
i x
∗
ij ≥

∑
j p
∗
j

∑
i x
∗
ij , and

∑
j pj ≤

∑
j p
∗
j + σ (

∑
i wi).

Theorem 3.1. Given a Fisher market with n agents, m goods, and regular concave utility functions
ui given by oracle access, we can compute a ε-approximate thrifty market equilibrium by approximately
solving O(n

(
m
ε

)m
) convex programs, each in oracle-polynomial time in in n, m, the bit-complexity of the

wi’s, logL, and log(1/ε).5

Proof. We enumerate all price vectors pj = kj
ε

2m

∑
i wi for all integers ki such that 0 ≤ kj ≤ 2m

ε + 1.
For each price vector p, we find a (ε/2)-approximate solution to (3.3). We output any price vector p for
which a solution (x, δ) with δ ≤ ε is found. Theorem 2.1 and Lemma 3.1 guarantee the existence of such
a solution.

5This is essentially (0, ε)-approximate equilibrium if we can solve the convex program (3.3) exactly; otherwise, we can
get (λ, ε)-approximate equilibrium for arbitrary λ at an additional log (1/λ) factor.
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4 Approximate Fisher equilibrium for fixed number of agents

In this section, we design a polynomial-time algorithm to compute an approximate equilibrium with
constant number of agents for constrained PLC utility functions. Recall that V max

i is the maximum
utility achievable on [0, 1]m, and Cmin

i (p) is the minimum cost for achieving utility V max
i at prices p. Also

recall assumptions (2.1) and (2.2), that V max
i ∈ (0, 1] for all agents; we make this assumption throughout.

The following class of utility functions plays a key role:

Definition 4.1. (ξ-robust utility function) A regular utility function ui is ξ-robust, if for any
bundle xi ∈ Rm+ , prices p ∈ Rm+ and σ > 0 such that p>xi ≤ Cmin

i (p) − σ, there exists a bundle y ∈ Rm+
such that p>y ≤ p>xi + σ and ui(y) ≥ ui(xi) + σξ∑

j pj
.

For this class of utility functions, in Section 4.1, we show how to compute an approximate thrifty
market equilibrium. However, not all regular utilities are ξ-robust for some ξ > 0. For example, ui(xi) = 0
is not ξ-robust for any positive ξ, while ui(xi) = ε

∑
j xij is εm-robust for ε > 0. In Section 4.2, we show

how to approximate any regular utilities by robust utilities.
In the overall algorithm, we approximate the regular utility functions by ξ-robust utility functions.

Then, we can calculate an approximate thrifty market equilibrium for these ξ-robust utility functions.
Finally, we show that the approximate market equilibrium we calculated will also be the approximate
market equilibrium for the original utility functions (but not necessarily a thrifty one).

4.1 Approximate equilibria for ξ-robust utilities By Theorem 2.1, we know there exists a thrifty
market equilibrium for ξ-robust utilities. Let (x∗, p∗) denote a thrifty market equilibrium and let u∗i
denote the utility achieved by agent i at the equilibrium.

The algorithm has two steps: first, guess each agent’s utility at equilibrium and compute a feasible
allocation giving each agent at least the guessed utility, and second, compute the prices that, together with
the calculated allocation, give an approximate market equilibrium. In Theorem 4.1, we give a (nδ/ξ, 2δ)-
approximate thrifty equilibrium for some parameter δ > 0. This is achieved by solving O(1/δn) convex
programs.

4.1.1 Guessing utilities and computing the allocation We first guess agents’ utilities at
equilibrium by enumerating all possible utilities of each agent, ũi = kiδ, for 0 ≤ ki ≤ d 1δ e+ 1. Then, we
compute a feasible allocation x = (x1, . . . , xn) giving ũi utility to agent i using the following program:

(4.4)

ui(xi) ≥ ũi , ∀i∑
i

xij ≤ 1 , ∀j

x ≥ 0

If (4.4) is infeasible, we move to the next utility profile. The following lemma shows that if we have a
right guess on the utilities, then, with the equilibrium price p∗, the spending of agent i at xi should be
similar to that at x∗i .

Lemma 4.1. Assume the utility functions are ξ-robust, u∗i − δ < ũi ≤ u∗i , and {xi}i is a feasible solution
to (4.4). Then,

(i) (p∗)>x∗i −
δ
∑
i wi
ξ

≤ (p∗)>xi ≤ (p∗)>x∗i +
δn
∑
i wi
ξ

, and

(ii)
∑
j

p∗j

(
1−

∑
i

xij

)
≤
nδ
∑
i wi
ξ

.

Proof. We first consider the lower bound in (i). Let us denote σ = δ
∑
i wi/ξ. For a contradiction, assume

(p∗)>x∗i − σ > (p∗)>xi. Since this is a thrifty equilibrium, (p∗)>x∗i = Ci(p
∗, wi) ≤ Cmin

i (p∗), since the
optimal bundle x∗i in [0, 1]m.

By the ξ-robustness property, there exists a bundle y such that (p∗)>y ≤ (p∗)>xi+σ < (p∗)>x∗i ≤ wi
and

ui(y) ≥ ui(xi) +
σξ∑
j p
∗
j

≥ ui(xi) +
δ
∑
i wi∑
j p
∗
j

> u∗i (xi)− δ + δ = u∗i (xi) ,
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a contradiction since u∗i (xi) is the maximum utility at budget wi. The third inequality uses that all goods
with p∗j > 0 are fully sold, and therefore the sum of the prices is at most the sum of the budgets.

For the upper bound, note that p∗j = 0 if
∑
i x
∗
ij < 1. Therefore,

∑
j p
∗
j

(∑
i x
∗
ij

)
≥
∑
j p
∗
j (
∑
i xij).

Additionally, the lower bound give
∑
j p
∗
jxij ≥

∑
j p
∗
jx
∗
ij −

δ
∑
i wi
ξ for each i, which completes the proof.

Part (ii) is immediate by summing up the lower bounds in part (i) for all i.

4.1.2 Computing the prices Assume that for the guesses {ũi}i, we found an allocation x that
satisfies (4.4), i.e., and allocation of the goods that provides at least ũi amount of utility to each i. In
what follows, our goal is to find prices p that form an approximate equilibrium with x. This is the most
challenging part of the algorithm. The prices have to satisfy the following three conditions.

First condition: utility upper bound If the guesses {ũi}i were approximately correct, then the
maximum utility Vi(p, wi) achievable at prices p should be close to ũi for each agent i.

Since the utility functions are constrained PLC, we can compute Vi(p, wi) as

max q>i zi + s>i ti

s.t. Aizi +Biti ≤ bi
p>zi ≤ wi

zi ≥ 0

The dual of this program is as follows, using variables γi and βi for the first two constraints, respectively.

(4.5)

min b>i γi + wiβi

s.t. A>i γi + βip ≥ qi
B>i γi = si

γi, βi ≥ 0

For every feasible dual solution, the objective value provides an upper bound on the optimal utility agent
i can get. Therefore, Vi(p, wi) ≤ ũi + δ if and only if there exists a feasible solution (γi, βi) to (4.5) such
that γ>i bi + βiwi ≤ ũi + δ.

However, if we also consider the prices p as variables, the program is not linear anymore. For this
reason, we use a variable substitution, by letting

1

βi
, βi and

γi
βi

, γi

be the variables and we set a lower bound on 1
βi

such that the optimal solution of (4.5) doesn’t change
much.

Lemma 4.2. For δ ∈ (0, 1), consider a feasible solution (γi, βi, p) to following program,

(4.6)

b>i γi + wi ≤ βi(ũi + 2δ)

Ai
>γi + p ≥ βiqi

Bi
>γi = βisi

wi ≤ βi
Then, the optimal utility for agent i to achieve with price p is at most ũi + 2δ. Additionally, if
u∗i − δ < ũi ≤ u∗i , then there exist γi and βi such that (γi, βi, p

∗) is a solution to this program.

Proof. First, if (γi, βi, p) is a feasible solution to (4.6), then (βi = 1
βi
, γi = γi

βi
, p) is a feasible solution to

(4.5). Therefore, the optimal utility one can get at price p is at most b>i γi+βiwi = 1
βi

(b>i γi+wi) ≤ ũi+2δ.

For the second part, consider the optimal solution (γi, βi) to (4.5) with the price p∗. Then, clearly,
b>i γi + βiwi = ui(x

∗
i ) and (γi, βi) is also a feasible solution with price p∗ and wi = 0, which implies

b>i γi ≥ ui(0) = 0. Combining with the fact that b>i γi + βiwi = ui(x
∗
i ) ≤ 1, we get βi ≤ 1

wi
. Therefore,

if we consider the solution γi = γi
max{βi, δwi }

, βi = 1
max{βi, δwi }

, then it satisfies all conditions in (4.6) as

b>i γi + βiwi = ui(x
∗
i ) < ũi + δ.
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We note that this is the only part in the algorithm where we rely on the particular form of constrained
PLC utilities; all other arguments work more generally, for regular utilities.

Second condition: budget constraint The cost of the allocation at prices p must not violate the
budget constraints by much:

p>xi ≤ wi +
nδ
∑
i wi
ξ

, ∀i .(4.7)

Third condition: market clearing The market needs to approximately clear:

∑
j

pj

(
1−

∑
i

xij

)
≤
nδ
∑
i wi
ξ

.(4.8)

Lemma 4.1 implies the following:

Lemma 4.3. Assume that the utility functions are ξ-robust. If for all agents i, u∗i − δ < ũi ≤ u∗i , then
for any allocation x for which (4.4) holds, the optimal prices p∗ satisfy (4.7) and (4.8).

Note that (4.6), (4.7), and (4.8) are linear in p, β, and γ. Combining Lemmas 4.2 and 4.3, we have
the following:

Theorem 4.1. Suppose the utility functions are ξ-robust. For any ũi, x and p such that (4.4), (4.6),
(4.7), and (4.8) holds, (x, p) is a (nδ/ξ, 2δ)-approximate market equilibrium. Additionally, let (x∗, p∗) be
any thrifty market equilibrium. If ui(x

∗
i )− δ < ũi ≤ ui(x∗i ) for all i, then for any x such that (4.4) holds,

p∗ is a solution to (4.6), (4.7), and (4.8).

4.2 Approximating regular utilities by ξ-robust utilities We introduce an approach to approx-
imate regular utilities by ξ-robust utilities. The construction works for the general class of regular
functions; for constrained PLC utilities, we show that this operation yields a constrained PLC utility.

Consider a regular utility function ui : Rm+ → R ∪ {−∞}, and define the perspective function with

domain Rm+1
+ ; see [33, Chapter 5].

ûi(x, α) =

{
αui

(
x
α

)
, if α > 0 ,

limα→0 αui
(
x
α

)
, if α = 0 .

If ui is concave and upper semicontinuous (that hold for regular utilities), then so is ûi [12, Proposition

2.3(ii)]. Also note that ui is positively homogeneous. For given ξ > 0, we define uξi : Rm+ → R ∪ {−∞},
where

uξi (xi) = max ûi(x
′, α) + ûi(x

′′, 1− α) + (1− α)ξ

s.t. ûi(x
′′, 1− α) ≥ (1− α)V max

i

x′ + x′′ = xi

0 ≤ α ≤ 1

x′, x′′ ≥ 0 .

Note that the maximum exists as the objective is convex over a compact domain.

Lemma 4.4. For every regular utility function ui and ξ > 0, the following hold for uξi :

(i) ui(xi) ≤ uξi (xi) ≤ ui(xi) + ξ.

(ii) We have maxx∈[0,1]m u
ξ
i (x) = V max + ξ. For any price vector p, the minimum cost of achieving

utility V max
i + ξ for uξi is the same as the minimum cost Cmin

i (p) of achieving utility V max
i for ui.

Proof. Part (i): The lower bound ui(xi) ≤ uξi (xi) holds since x′ = xi, x
′′ = 0, α = 1 is a feasible solution

in the definition of uξi (xi). The upper bound follows by the concavity of ûi. For any x′ + x′′ = xi and
α ∈ [0, 1], we have

ûi(x
′, α) + ûi(x

′′, 1− α) + (1− α)ξ ≤ ûi
(
xi
2
,

1

2

)
+ (1− α)ξ ≤ ui(xi) + ξ .
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Part (ii): By the previous part, maxx∈[0,1]m u
ξ
i (x) ≤ V max + ξ. Equality is achieved for any xi ∈ [0, 1]m

for which ui(xi) = V max
i with the choice x′ = 0, x′′ = x, α = 0. For the second part, consider any price

vector p. Note that the set {xi | uξi (xi) ≥ V ∗i + ξ} is the same as {xi | ui(xi) ≥ V ∗i }, which completes
the proof.

The next lemma asserts the key property for ξ-robustness:

Lemma 4.5. Given prices p ∈ Rm+ and σ > 0, let xi ∈ Rm+ be a bundle such that p>xi ≤ Cmin
i (p) − σ.

Then, there exists a bundle y ∈ Rm+ such that p>y ≤ p>xi + σ, and uξi (y) ≥ uξi (xi) + σξ∑
j pj

.

Proof. Let us use the notation C = Cmin
i (p); by Lemma 4.4(ii), this is the minimum cost of a bundle of

utility V max
i + ξ. Let us use the combination xi = x′i + x′′i and α ∈ [0, 1] that gives the value of uξi (xi),

that is,
uξi (xi) = ûi(x

′, α) + ûi(x
′′, 1− α) + (1− α)ξ,

such that ûi(x
′′, 1−α) ≥ (1−α)V max

i . By definition, p>x′′ ≥ C. Thus, αp>x′+(1−α)C ≤ p>xi ≤ C−σ,
implying

α ≥ σ

C
≥ σ∑

j pj
,

where the last inequality uses C is the cost of a bundle in [0, 1]m. Let z ∈ [0, 1]m be a bundle such that
ui(z) = V max

i and p>z = C; such a bundle exists since [0, 1]m is a compact domain. Let

β =
σ∑
j pj

, y′ =
α− β
α
· x′ , y′′ = x′′ + βz , and y = y′ + y′′ .

Note that

p>y < p>x+ βp>z = p>x+
σC∑
j pj
≤ p>x+ σ ,

satisfying the required bound on the cost. The rest of the proof amounts to showing uξi (y) ≥ uξi (xi)+
σξ∑
j pj

.

Claim 4.1. ûi(y
′′, 1− α+ β) ≥ ûi(x′′, 1− α) + βV max

i ≥ (1− α+ β)V max
i .

Proof. By the homogeneity and concavity of ûi,

ûi(y
′′, 1− α+ β) = 2ûi

(
y′′

2
,

1− α+ β

2

)
≥ ûi(x′′, 1− α) + ûi(βz, β) ≥ ûi(x′′, 1− α) + βV max

i .

The last inequality in the claim follows by noting that also ûi(x
′′, 1− α) ≥ (1− α)V max

i .

Claim 4.2. ûi(y
′, α− β) = α−β

α ûi(x
′, α) > ûi(x

′, α)− βV max
i .

Proof. The first inequality is by definition of ûi. The second inequality is equivalent to ûi (x′, α) < αV max
i .

Assume for a contradiction ûi (x′, α) ≥ αV max
i . Then, replacing x′′ by x′ + x′′ and α by 0 results in a

better combination using the concavity of ûi as in the previous claim.

By Claim 4.1, y = y′+y′′ is a feasible decomposition in the definition of uξi with coefficient α−β. Further,

note that ûi(y
′, α− β) = α−β

α ûi(x
′, α) We get

uξi (y) ≥ ûi(y′, α− β) + ûi(y
′′, 1− α+ β) + (1− α+ β)ξ

≥ ûi(y′, α− β) + ûi(x
′′, 1− α) + βV max

i + (1− α+ β)ξ

≥ ûi(x′, α) + ûi(x
′′, 1− α) + (1− α+ β)ξ

≥ uξi (xi) + βξ = uξi (xi) +
σξ∑
j pj

,

as required. The second inequality used Claim 4.1 and the third inequality used Claim 4.2.

Let us now turn to constrained PLC utilities.
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Lemma 4.6. Let ui be a constrained PLC utility with ui(0) = 0 and V max
i > 0, and ξ > 0. Then, uξi is

also a constrained PLC utility, and is ξ-robust. The bit-length of the LP description of uξi is polynomial
in the LP description of ui and of log ξ.

Proof. Recall the form of the constrained PLC utility as

ui(xi) = max
ti

q>i xi + s>i ti s.t. Aixi +Biti ≤ bi ,

where the value is −∞ if the problem is infeasible. It is easy to verify that the following linear program
gives an equivalent description of uξi :

(4.9)

uξi (x) = q>i xi + s>i ti + (1− α)ξ

Aix
′
i +Bit

′
i ≤ αbi

Aix
′′
i +Bit

′′
i ≤ (1− α)bi

q>i x
′′
i + s>i t

′′
i ≥ (1− α)V max

i

x′i + x′′i = xi

t′i + t′′i = ti

x′i, x
′′
i ≥ 0

1 ≥ α ≥ 0

Hence, uξi is also constrained PLC. If it is regular, then it is ξ-robust by Lemma 4.5. By Lemma 2.1,

regularity only requires uξi (0) = 0 in this case. This follows by Lemma 4.4(i) and the assumptions
ui(0) = 0 < V max

i . Finally, the statement on bit-complexity follows since V max
i is the optimum value of

a linear program formed by the LP defining ui and a box constraint. Therefore, V max
i is polynomially

bounded in the input.

Theorem 4.2. In a Fisher market with n agents, m goods and regular constrained PLC utility functions
and σ < 1, we can find a σ-approximate market equilibrium by solving O

((
n
σ2

)n)
linear programs, each

polynomially bounded in the input size.

Proof. Let us set δ = σ2/(2n) and ξ = σ/2. We first replace the utility functions ui by uξi as in Lemma 4.6.
Then, we guess all combinations ũi = kiδ, for 0 ≤ ki ≤ d1δ e + 1. We calculate the allocations x as in
(4.4); if no such allocation exists, we proceed to the next guess. If x is feasible to (4.4), then we check
if prices p satisfying (4.6), (4.7), and (4.8) exist. Theorem 4.1 guarantees the existence both x and p for

at least one choice of the ũi’s. This gives a (nδ/ξ, 2δ)-approximate equilibrium for the utilities uξi , and
by Lemma 4.4(i), a (nδ/ξ, 2δ + ξ)-approximate equilibrium for the original utilities ui. By the choice of
δ and ξ, this is a σ-approximate equilibrium.

5 PLC Matching Markets

In the Hylland-Zeckhauser matching market equilibrium [26], agents have unit budgets and linear utilities
with the additional restriction that every agent has to purchase exactly one unit of good. We now consider
the following generalization with PLC utilities for nonnegative values alij , b

l
i ≥ 0.

ui(xi) =

{
minl

{∑
j a

l
ijxij + bli

}
, if

∑
j xij = 1 ,

−∞ otherwise.
(5.10)

Throughout this section, we assume wi = 1 for all agents, as standard in the matching market model. We
also assume n ≤ m, i.e., there are at least as many goods as agents that is necessary for feasibility. 6 We
refer to this problem as the PLC matching market problem. Let Ṽi = maxxi∈Rm+ ui(xi) be the maximum

achievable utility of agent i; the matching constraint guarantees this is finite. Similarly to (2.1), without
loss of generality we can apply affine transformations to the utilities so that

(5.11) Ṽi ≤ 1 and min
l
bli = 0 for each agent i.

6Here we assume each good has exactly one copy. Note that our method can be generalized to the case that goods have
multiple copies. In this case, we assume n ≤

∑
j sj , where sj is the number of copies of good j.
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Note that, even though this utility function is constrained PLC, it is not regular : ui(0) = −∞. For
this reason, we cannot directly apply the results in Sections 3 and 4. The existence of an equilibrium is
also not covered by Theorem 2.1. A key tool to tackle this model is the following price transformation
with strong invariance properties that enables us to restrict our attention to (approximate) equilibria
where minj pj = 0.

Lemma 5.1. ([38]) For a PLC matching market model, let p ∈ Rm+ , and r > 0 such that p′j =
1 + r(pj − 1) ≥ 0 for all goods j. Then, Di(p, 1) = Di(p

′, 1) for every agent i. Consequently, if there
exists a market equilibrium ({x∗i }i, {p∗j}j), then there exists one with minj pj = 0.

Proof. BothDi(p, 1) andDi(p
′, 1) only contain bundles xi with

∑
j xij = 1. Since 1−(p′)>xi = r(1−p>xi)

for such a bundle, the price of a bundle satisfies p>xi ≤ 1 if and only if it satisfies (p′)>xi ≤ 1. This
implies Di(p, 1) = Di(p

′, 1). For the second part, consider any market equilibrium ({x∗i }i, {p∗j}j). If there
exists a good at price p∗j < 1, then we can select the largest r value such that this transformation gives
minj p

′
j = 0. The first part guarantees that ({x∗i }i, {p′j}j) is also a market equilibrium. Otherwise, p∗j = 1

for all j. In this case, setting pj = 0 for all j will also be a matching market equilibrium.

In light of this transformation, we note that the (σ, λ)-approximate (thrifty) equilibrium concept as
in Definition 2.3 is unsatisfactory. Assume n = m, i.e., the number of goods is the same as the number
of agents. Let ({xi}i, {pj}j) be a (σ, λ)-approximate equilibrium. Then, for any choice of 0 < σ′ ≤ σ,
we can select r > 0 such that ({xi}i, {p′j}j) will be a (σ′, λ)-approximate (thrifty) equilibrium. This is

because (p′)>xi becomes arbitrarily close to 1, and the third constraint is satisfied since
∑
i xij = 1 for

all j follows if n = m.
In accordance with Lemma 5.1, we will look for approximate (thrifty) equilibria with the additional

requirement that minj pj = 0. In Section 5.1, we show that approximate equilibrium results can be
obtained by reducing to an associated partial matching market. In Section 5.2, we give a simple
counterexample showing that the set of equilibria is non-convex already for the standard matching market
model with three agents and three goods.

5.1 From partial to perfect matchings Both for showing the existence of equilibria, as well as for
the algorithms, we relax the perfect matching requirement

∑
j xij = 1 to the partial matching constraint∑

j xij ≤ 1. That is, for the same parameters alij , b
l
i, we let

u′i(xi) =

{
minl

{∑
j a

l
ijxij + bli

}
, if

∑
j xij ≤ 1 ,

−∞ otherwise.
(5.12)

Using the assumption (5.11), u′i(0) = 0, and therefore the u′i’s are regular utilities. For a PLC matching
market with utilities ui as in (5.10), we will refer to the market that replaces the ui’s by the u′i’s as the
associated PLC partial matching market.

The next two lemmas show the close relationship between equilibria in these markets. In the proofs,
we use Vi(p, 1) for the optimal utility for ui and Ci(p, 1) the minimum price of an optimal bundle; we let
V ′i (p, 1) and C ′i(p, 1) denote the same for u′i. Clearly, V ′i (p, 1) ≥ Vi(p, 1).

Lemma 5.2. Let ({xi}i, {pj}j) be a thrifty PLC matching market equilibrium with minj pj = 0. Then,
({xi}i, {pj}j) is also a thrifty market equilibrium in the associated PLC partial matching market.

Proof. Using that pk = 0 for some good k, for every x′i with
∑
j x
′
ij ≤ 1 there exists a bundle x̃i ≥ x′i

with
∑
j x̃ij = 1 that has the same cost and ui(x̃i) ≥ u′i(x

′
i). Consequently, V ′i (p, 1) = Vi(p, 1), and by

the same token, Ci(p, 1) = C ′i(p, 1). The statement follows.

In the other direction, we show that approximate (thrifty) equilibria in the associated PLC partial
matching market have minj pj = 0, then this can be extended to the original PLC matching market. This
also applies to exact equilibria with σ = λ = 0.

Lemma 5.3. For a PLC matching market, consider a (σ, λ)-approximate (thrifty) equilibrium
({x′i}i, {p′j}j) in the associated PLC partial matching market, and assume minj p

′
j = 0. Then, in O(m)

time we can construct a (2σ, λ)-approximate (thrifty) matching equilibrium ({xi}i, {p′j}j) in the original
market.
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Proof. Given ({x′i}i, {p′j}j), we arbitrarily assign those goods which are not fully allocated to those agents
such that

∑
j x
′
ij < 1; this can be easily done in O(m) time (recall m ≥ n). Let {xi}i denote the resulting

allocations with
∑
j xij = 1.

Recalling that all wi = 1, the approximate equilibrium means p>xi ≤ 1+nσ and
∑
j p
′
j(1−

∑
i x
′
ij) ≤

σ
∑
i wi = nσ. Hence, the spending for each agent (after assignment) can be at most 2nσ + 1. As in

the previous proof, minj pj = 0 guarantees that Vi(p, 1) = V ′i (p, 1) and Ci(p, wi) = C ′i(p, wi). The utility
requirement follows since Vi(p, 1)− λ = V ′i (p, 1)− λ ≤ u′i(x

′
i) ≤ ui(xi). Further, if ({x′i}i, {p′j}j) was an

approximate thrifty market equilibrium, then thriftiness for ({xi}i, {pj}j) follows since the spending can
only be increased by nσ.

We can now derive the existence of an equilibrium, as well as algorithms for approximate equilibria,
by making use of the results for PLC partial matchings that are regular utilities.

Theorem 5.1. In every PLC matching market, there exists a thrifty market equilibrium ({xi}i, {pj}j)
with minj pj = 0.

Proof. For the u′i utilities in the associated PLC partial matching market, Theorem 2.1 guarantees the
existence of an equilibrium ({x′i}i, {p′j}j). If minj p

′
j = 0, then Lemma 5.3 for σ = λ = 0 gives an

equilibrium in the PLC matching market with the ui’s. If minj p
′
j > 0, then all goods must be fully sold,

hence
∑
i,j x

′
ij = m ≥ n. This cannot happen if m > n; and if m = n this implies that all agents are

getting one unit in x′, i.e.,
∑
j x
′
ij = 1 for all i. Consequently, ({x′i}i, {p′j}j) is already an equilibrium in

the PLC matching market. By Lemma 5.1, this can be transformed to one with minj pj = 0.

For fixed number of goods, we can thus use the algorithm in Section 3 for u′i, and transform it using
Lemma 5.3 for ui. In order to find an approximate thrifty equilibrium for the u′i’s with minj pj = 0;
we only enumerate over price combinations where one of the prices is 0. Theorem 5.1 and Lemma 5.2
guarantee the existence of such a solution.

Theorem 5.2. (thrifty PLC matching market equilibrium with fixed number of goods)
Given a PLC matching market with n agents, m goods, and PLC utilities {ui}i, we can compute an
ε-approximate thrifty PLC matching market equilibrium by solving O(n

(
m
ε

)m
) linear programs, each in

polynomial time in the input size.

Similarly, for fixed number of agents, we can use the results in Section 4 for u′i in conjunction with
Lemma 5.3 to compute an approximate PLC matching market equilibrium (but not necessarily a thrifty
one). The only modification needed is that we fix the price of some good to pj = 0; this results in an
additional factor m in the running time.

Theorem 5.3. (PLC matching market equilibrium with fixed number of agents) Given a
PLC matching market with n agents, m goods, and PLC utilities {ui}i, we can compute a σ-approximate
PLC matching market equilibrium by solving O

(
m
(
n
σ2

)n)
linear programs, each in polynomial time in

the input size.

Finally, for the original Hylland-Zeckhauser model with linear utilities, we show that the stronger concept
of an approximate thrifty equilibrium can also be computed, by exploiting the simpler structure in this
case.

Theorem 5.4. (thrifty matching market equilibrium with fixed number of agents) Given
a matching market with n agents, m goods, and linear utility function

ui(xi) =

{∑
j aijxij , if

∑
j xij = 1 ,

−∞ otherwise.

we can compute a σ-approximate thrifty market equilibrium by solving O
(
m
(
n
σ2

)n)
linear programs, each

in polynomial time in the input size.

Proof. Similar to the PLC case, we first calculate a thrifty approximate equilibrium for the associated
partial matching market such that minj pj = 0 and then transform it into a thrifty approximate matching
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market equilibrium. The transformed ξ-robust utility u′i
ξ
(xi) used in the algorithm (see (4.9)) can be

written in the following simpler form. Let J = arg maxj aij , and

u′i
ξ
(xi) =

{∑
j /∈J aijxij +

∑
j∈J(aij + ξ)xij , if

∑
j xij ≤ 1 ,

−∞ otherwise.
(5.13)

Let us calculate an approximate thrifty market equilibrium ({xi}i, {pj}j) for u′i
ξ

as in Section 4.1
with two slight modifications.

We first enumerate all possible ũi for ũi = δki for 0 ≤ ki ≤ d 1+ξδ e + 1 and one j such that pj = 0;
then, we calculate {xi}i by (4.4); and finally, we calculate the price {pj}j . When calculating the price,
in addition to (4.6), (4.7), and (4.8), we add constraints pj = 0 and

(5.14) p>xi ≤ pj′ +
n2δ

ξ
∀j′ ∈ J .

Recall that n2δ
ξ = nδ

ξ

∑
i wi by the assumption that all budgets are 1. This additional last inequality

makes the difference compared to the general PLC algorithm. We exploit this in the following claim.

Claim 5.1. If p>xi ≤ pj′ + nδ
ξ

∑
i wi for j′ ∈ J ; and p>xi ≤ 1 + n2δ

ξ , then p>xi ≤ Ci(p, 1) + n2δ
ξ .

Additionally, let ({x∗i }i, {p∗j}j) be any thrifty market equilibrium. If u∗i − δ < ũi ≤ u∗i for all i, then for
any {xi}i such that (4.4) holds, (5.14) is also valid for p∗.

Proof. The first part follows as Ci(p, 1) = min{1,minj∈J pj}. The second part is true because, for j′ ∈ J ,

p∗>xi ≤ p∗>x∗i +
n2δ

ξ
(by Lemma 4.1)

≤ p∗j′ +
n2δ

ξ
. (as p∗>x∗i = Ci(p

∗, 1) ≤ p′j)

Combining this observation with Theorem 4.1, Lemma 5.2, and Theorem 5.1, this procedure will
output a (δn/ξ, ξ + 2δ)-approximate thrifty equilibrium for the associated partial matching market.

Finally, by Lemma 5.3, we construct an approximate matching market equilibrium from the
approximate Fisher market equilibrium. The theorem follows by choosing δ = σ2/(4n) and ξ = σ/2.

5.2 Non-convexity example In this section, we give a simple example which shows that the sets of
allocations and prices are non-convex. The example consists of three agents, three goods and the utilities
are linear for these agents: ui(xi) =

∑
j aijxij . Each agent has a budget of 1 dollar.

good 1 good 2 good 3
agent 1 1 1 2
agent 2 0 1 2
agent 3 1 1 2

Table 1: Utility matrix (aij)

Given the utility functions, the following prices and allocations are two of the equilibria of the
matching market.

The following two lemmas show that neither the set of allocations nor the set of prices is convex.

Lemma 5.4. p(1)+p(2)

2 is not an equilibrium price.

Proof. Note that p(1)+p(2)

2 = (0, 0.5, 2.5). In this case, both agent 1 and agent 3 will not be interested in
good 2. This implies agent 2 will get good 2 fully. However, given the price, agent 2 will buy some of
good 3, which provides a contradiction.

Copyright © 2022
Copyright for this paper is retained by authors2282

D
ow

nl
oa

de
d 

05
/0

3/
22

 to
 1

58
.1

43
.2

02
.2

48
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



good 1 good 2 good 3
agent 1 0.5 0 0.5
agent 2 0 1 0
agent 3 0.5 0 0.5

price 0 1 2

Table 2: Price 1 (p(1)) and Allocation 1 (x(1))

good 1 good 2 good 3
agent 1 2/3 0 1/3
agent 2 0 2/3 1/3
agent 3 1/3 1/3 1/3

price 0 0 3

Table 3: Price 2 (p(2)) and Allocation 2 (x(2))

Lemma 5.5. x(1)+x(2)

2 is not an equilibrium allocation.

Proof. Note that in any equilibrium, the price of good 3 should be strictly larger than 1. This implies all
agents will spend out all their budgets. Let the price of good 3 be 1+α for some α > 0. Since agent 1 get
7/12 of good 1 and 5/12 of good 3, the price of good 1 is 1− 5

7α. Similarly, since agent 2 get 5/6 of good
2 and 1/6 of good 3, the price of good 2 is 1− 1

5α. Since α > 0, given the price (1− 5
7α, 1−

1
5α, 1 + α),

agent 3 will not buy good 2, which contradicts allocation x(1)+x(2)

2 .
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