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Abstract. In their seminal paper, Frank and Jordán [1995] show that a large class of optimization

problems, including certain directed graph augmentation, fall into the class of covering supermodular

functions over pairs of sets. They also give an algorithm for such problems, however, it relies on

the ellipsoid method. Prior to our result, combinatorial algorithms existed only for the 0–1 valued

problem. Our key result is a combinatorial algorithm for the general problem that includes directed

vertex or S−T connectivity augmentation. The algorithm is based on Benczúr’s previous algorithm

for the 0–1 valued case [Benczúr 2003].

Our algorithm uses a primal-dual scheme for finding covers of partially ordered sets that satisfy

natural abstract properties as in Frank and Jordán. For an initial (possibly greedy) cover, the algorithm

searches for witnesses for the necessity of each element in the cover. If no two (weighted) witnesses

have a common cover, the solution is optimal. As long as this is not the case, the witnesses are gradually

exchanged for smaller ones. Each witness change defines an appropriate change in the solution; these
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1. Introduction

Connectivity augmentation problems form a subclass of survivable network design

[Goemans and Williamson 1997] where one is interested in the minimum number

of edges needed to be added to a graph to satisfy certain connectivity prescriptions.

Algorithms for various augmentation problems have a large and expanding literature

[e.g., Benczúr 1999; Benczúr and Karger 2000; Cai and Sun 1989; Frank 1992;

Frank and Jordán 1995; Gabow 1994; Jordán 1993, 1995].

In this article, we give a combinatorial algorithm for the general problem of

covering supermodular functions over pairs of sets introduced by Frank and Jordán

[1995] as a generalization for directed vertex and edge connectivity augmenta-

tion problems. They also give an algorithm for this problem using the ellipsoid

method. Previously, combinatorial algorithms existed only for special problems

[Frank 1999a, 1999b] and for increasing connectivity by one [Benczúr 2003; Frank

2003]. For the problem of increasing directed vertex connectivity to target value

k, the best previous combinatorial algorithm has running time polynomial in n but

exponential in k [Frank and Jordán 1999]. The running time of our algorithm can

be bounded by O(n7).

The central example of covering supermodular functions over pairs of sets is

finding the minimum number of directed edges that make a directed graph G
k-vertex-connected. We consider all cuts of G with less than k vertices as set

pairs (X−, X+) of the vertex set, where X− is the sink and X+ is the source side

of the cut (recall the graph is directed). For a directed cut with sides X− and

X+, let

p(X−, X+) = max{0, k − (|V | − |X−| − |X+|)}
denote the number of vertices ‘missing’ for a k-connected graph; for all other pairs

X−, X+ with X− ∩ X+ = ∅, let p(X−, X+) = 0. The graph becomes k-connected

if and only if for all X−, X+ with X− ∩ X+ = ∅, we add at least p(X−, X+) edges

that lead from X− to X+.

Our algorithm works for the generalization of the a forementioned demand func-

tion p to arbitrary crossing supermodular functions; for the general covering prob-

lem, our algorithm is weakly polynomial in the sense that the running time depends

on the maximal value of the function p. A demand function p is called cross-
ing supermodular if for all X− ∩ Y − �= ∅, X+ ∩ Y + �= ∅ and p(X−, X+) > 0,

p(Y −, Y +) > 0,

p(X− ∩ Y −, X+ ∪ Y +) + p(X− ∪ Y −, X+ ∩ Y +) ≥ p(X−, X+) + p(Y −, Y +).

Another problem that falls into the class of covering set pairs is increasing directed

S−T vertex or edge connectivity to target value k by adding a minimum number

of edges between S and T [Frank and Jordán 1995]. For two possibly overlapping

vertex sets S and T , the S−T connectivity is the maximum number of directed

vertex (or edge) disjoint paths that connect vertices in S to vertices in T . Yet

another remarkable problem of this class is Győri’s rectangle cover problem [Győri

1984; Franzblau and Kleitman 1986; Benczúr et al. 1999].

At the heart of most results related to covering problems over set pairs, we find

Dilworth’s theorem stating that the minimum number of chains that cover a partially

ordered set is equal to the maximum number of pairwise incomparable elements of

the set. Both the noncombinatorial algorithm [Frank and Jordán 1995] and certain
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combinatorial ones [Frank 1999a, 1999b, 2003; Benczúr et al. 1999] start with a

reduction to chain covers as in Dilworth’s theorem.

Similar to most results related to covering problems over set pairs [Frank and

Jordán 1995; Frank 1999a, 1999b, 2003; Benczúr et al. 1999], we find Dilworth’s

chain cover theorem at the heart of our new combinatorial algorithm. However, we

circumvent the reduction to Dilworth’s theorem; instead we give a more general

algorithm that resembles the folklore Dilworth algorithm as described in Frank

[1976]. The relation between supermodular functions over set pairs and Dilworth’s

chain covers is based on the following observation. We say that a directed edge

xy covers the pair (X−, X+), if x ∈ X− and y ∈ X+. It is easy to see that there

is a pair (X−
min, X+

min) covered by xy with X−
min minimum and X+

min maximum and

another pair (X−
max, X+

max) covered by xy with X−
max maximum and X+

max minimum.

A pair (X−, X+) is covered by xy if and only if X−
min ⊆ X− ⊆ X−

max and X+
min ⊇

X+ ⊇ X+
max. For the partial ordered set of the set pairs with this ‘skew’ containment

relation, we get the problem of covering a special partial ordered set by intervals

similar to Dilworth’s problem of covering a poset by chains.

Our algorithm is based on that of Benczúr [2003] for the simpler case where p may

only take values 0 and 1. This algorithm directly generalizes a Dilworth algorithm;

for a crossing supermodular p that may take arbitrary nonnegative integer values,

we start out with a multichain version of Dilworth’s problem where poset elements

have weights, and the total number of chains containing an element must be at

least its weight. We consider multiple copies of the same chain instead of weighted

chains; our algorithm is pseudopolynomial in this sense.

We construct an optimum interval cover by starting with an arbitrary (possibly

greedy) cover and gradually improve it in a primal-dual augmenting path manner

that mimics standard Dilworth algorithms, as described in Frank [1976].

In the bulk of this article, we describe our algorithm that solves certain directed

edge augmentation problems via a reduction to covering a poset by weighted

intervals where poset elements are weighted by a supermodular function p. As

shown in Section 2, this covering problem is equivalent to that considered by Frank

and Jordán [1995]. Thus our algorithm applies to the task (among others) of in-

creasing directed vertex connectivity or directed S–T edge connectivity to a target

value.

The rest of the article, is organized as follows. In Section 2, we give the main

definitions and state the equivalence of our theorem with that of Frank and Jordán

[1995]. In Section 3, we first give an overview of the primal-dual procedure, then in

separate sections show the key procedures PUSHDOWN and REDUCE and in separate

sections show their correctness. Finally in Sections 4 and 5, we briefly elaborate

on the running times for the augmentation problems.

2. Poset Properties of the Frank–Jordán Set Pairs

Frank and Jordán [1995] introduce systems of set pairs closed under a certain skew
intersection operation defined next. Let two members (X−, X+) and (Y −, Y +) be

called dependent if both X− ∩ Y − and X+ ∩ Y + are nonempty; otherwise they are

independent. Observe that (X−, X+) and (Y −, Y +) are independent if and only if

they cannot be covered by the same edge. Then for all dependent pairs,

(X− ∩ Y −, X+ ∪ Y +), (X− ∪ Y −, X+ ∩ Y +) (1)
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are also members of the set system. A function p over the system of set pairs satisfies

the crossing supermodular property if for all dependent (X−, X+) and (Y −, Y +)

with p(X−, X+) > 0 and p(Y −, Y +) > 0,

p(X− ∩ Y −, X+ ∪ Y +) + p(X− ∪ Y −, X+ ∩ Y +) ≥ p(X−, X+) + p(Y −, Y +).

They prove the following theorem:

THEOREM 2.1. [Frank and Jordán 1995]. Let p be a crossing supermodular
function over a system of set pairs closed under the operations (1). The minimum
cardinality of an edge multiset {e = (v1, v2)}, such that, for all (X−, X+), there
exist p(X−, X+) edges with v1 ∈ X−, v2 ∈ X+, is equal to the maximum sum of
p-values for pairwise independent elements in the system of set pairs.

We give an alternate proof of an equivalent form of this theorem stated as a poset

covering problem. The proof is via a combinatorial algorithm.

Definition 2.2. Consider a poset (P, ≤). We say that, for a minimal element m
and a maximal element M , the set {z : m ≤ z ≤ M} is the interval [m, M]. Let

x, y ∈ P be called dependent if there exists an interval [m, M] with x, y ∈ [m, M];

otherwise they are called independent.
We say that (P, ≤) satisfies the strong interval property, if the following hold.

(1) For all dependent x, y ∈ P , the operations x ∨ y = min{z : z ≥ x, z ≥ y} and

x ∧ y = max{z : z ≤ x, z ≤ y} are uniquely defined.

(2) For every interval [m, M],

x ∧ y ∈ [m, M] implies x ∈ [m, M] or y ∈ [m, M],

and the same holds with x ∧ y replaced by x ∨ y.

The notion of a crossing supermodular function p over the poset follows, similar

to set pairs: for all dependent x and y with p(x) > 0 and p(y) > 0, we require

p(x ∨ y) + p(x ∧ y) ≥ p(x) + p(y).

Consider a multiset of intervals I. We say that I covers the function p or I is a

cover of p if for every x , at least p(x) intervals in I contain x . An element v is

called tight if it is contained in exactly p(x) intervals in I.

Given the notion of the cover problem for a poset with the strong interval property,

we next show its equivalence to the Frank and Jordán set pair cover problem. First

we show the equivalence of the poset properties as seen in Figure 1.

THEOREM 2.3. For two sets X−,X+, let P ⊆ {(X−, X+) : X− ⊆ X−, X+ ⊆
X+} such that for all dependent x = (X−, X+) and y = (Y −, Y +),

x ∧ y = (X− ∩ Y −, X+ ∪ Y +) ∈ P,

x ∨ y = (X− ∪ Y −, X+ ∩ Y +) ∈ P.

For any x = (X−, X+) and y = (Y −, Y +), let x ≤ y if and only if X− ⊆ Y − and
X+ ⊇ Y +. Then (P, ≤) with operations ∨, ∧ satisfies the strong interval property.
Furthermore subfamilies

Iv1,v2
= {(X−, X+) : v1 ∈ X−, v2 ∈ X+}
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FIG. 1. The correspondence between set pairs and poset elements. The four pairs on the left side can

be covered by one edge, and the corresponding four elements are contained in one interval.

for pairs v1 ∈ X−, v2 ∈ X+ are either intervals themselves or contained by some
intervals of P . Furthermore, for all intervals of P , there exist v1 and v2 such that
the interval can be given in such a form.

PROOF. Property (1) of Definition 2.2 follows directly from the properties of

set union, intersection, and containment.

To show the relation of intervals and subfamilies defined by pairs of vertices,

consider Iv1,v2
first. Since all set pairs {(X−, X+) : v1 ∈ X−, v2 ∈ X+} of Iv1,v2

are

dependent, we may define u = ∧
Iv1,v2

and v = ∨
Iv1,v2

and choose a minimal

m ≤ u and maximal M ≥ v to prove Iv1,v2
⊆ [m, M].

Now we show that a pair v1, v2 exist for all intervals [m, M] =
[(m−, m+), (M−, M+)]. We take an arbitrary pair v1 ∈ m− and v2 ∈ M+, and

we show that this is an appropriate selection. If z = (Z−, Z+) ∈ [m, M], then

m− ⊆ Z− and M+ ⊆ Z+, hence v1 ∈ Z− and v2 ∈ Z+. Assume now we have

some z of this form with z �∈ [m, M], that is, either m �≤ z or z �≤ M . z is dependent

on both m and M since v1 ∈ z− ∩ m− ∩ M− and v2 ∈ z+ ∩ m+ ∩ M+, thus z ∧ m
and z ∨ M exists. In the first case, z ∧ m < m, in the second case, z ∨ M > M ,

both contradicting the extremity of m or M .

To show Property (2) of Definition 2.2, we take a pair v1, v2 as defined for

the interval [m, M]. It suffices to show that the graph edge v1v2 covers either

x = (X−, X+) or y = (Y −, Y +). Notice v1 ∈ X− ∩ Y − and v2 ∈ X+ ∪ Y +. The

former implies v1 ∈ X− and v1 ∈ Y −, while the latter implies v2 ∈ X+ or v2 ∈ Y +.

The same holds with x ∧ y replaced by x ∨ y, hence the claim follows.

Before giving our algorithm, we state our main result as a min-max formula.

THEOREM 2.4. For a poset (P, ≤) with the strong interval property and a cross-
ing supermodular function p, the minimum number of intervals coveringP is equal
to the maximum of the sum of p values for pairwise independent elements of P .

Theorem 2.3 implies that Theorem 2.1 is a special case of this theorem. Now

we show that Theorem 2.1 implies Theorem 2.4 as well, hence they are equivalent.

Given a poset P with the strong interval property, let us define a representative

element ϕ(x) for every minimal or maximal element x . For a ∈ P, let us define the
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pair δ(a) = (a−, a+) so that

a− = {ϕ(m) : m ≤ a, m ∈ P minimal}; a+ = {ϕ(M) : M ≥ a, M ∈ P maximal}.
It is easy to show that the function δ is a homomorphism for ∨, ∧ and ≤, and

that the function defined by p′(X−, X+) := max{p(a) : δ(a) = (X−, X+)} is

crossing supermodular. Hence applying Theorem 2.1 for p′ on the pairs of sets

implies Theorem 2.4.

We conclude the section by showing some basic properties of the tight elements.

LEMMA 2.5. If x and y are two dependent tight elements with p(x) > 0, p(y) >
0, then both x ∨ y and x ∧ y are tight.

PROOF. Let g(x) denote the number of intervals covering element x . By the

strong interval property, all intervals that cover x ∨ y or x ∧ y also cover x or y, and,

if they cover both, then they cover all four, hence g(x)+g(y) ≥ g(x ∨ y)+g(x ∧ y).

The proof is completed by

g(x ∨ y) + g(x ∧ y) ≥ p(x ∨ y) + p(x ∧ y)

≥ p(x) + p(y) = g(x) + g(y) ≥ g(x ∨ y) + g(x ∧ y), (2)

implying equality everywhere. Here the first inequality follows since we have a

cover; the second is the definition of crossing supermodularity; and the equality

follows by the tightness of x and y.

The following easy corollary will be used throughout the article.

COROLLARY 2.6. For a cover I, every I ∈ I has a unique minimal and a
unique maximal tight element.

LEMMA 2.7. If x and y are two dependent tight elements with p(x) > 0,
p(y) > 0 and the interval [m, M] ∈ I contains x, then it contains at least one of
x ∨ y and x ∧ y or, equivalently, y ≤ M or m ≤ y.

PROOF. Recall that by the proof of Lemma 2.5, we have equality everywhere

in (2); the last inequality hence turns to g(x) + g(y) = g(x ∨ y) + g(x ∧ y). By

the strong interval property all intervals that cover x ∨ y or x ∧ y also cover x or

y and, if they cover both, then they cover all four. Hence the equality implies the

claim.

3. The Algorithm

We give a brief overview of our algorithm for the 0–1 valued case first. The al-

gorithm starts out with a (possible greedy) interval cover I = {I1, . . ., Ik}. In

Algorithm PUSHDOWN-REDUCE, we maintain a tight element ui ∈ Ii for each in-

terval Ii as a witness for the necessity of Ii in the cover. A long as the set of

witnesses are nonindependent or, in other words, they do not form a dual solution,

in Procedure PUSHDOWN we replace certain ui by smaller elements. By such steps,

we aim to arrive at an independent system of witnesses. If witnesses are indeed

pairwise independent, they form a dual solution with the same value as the primal

cover solution, thus showing both primal and dual optimality. Otherwise in Pro-

cedure PUSHDOWN, the Procedure REDUCE, a procedure that exchanges interval

endpoints so that we get an interval cover of size one less, is called.

ACM Transactions on Algorithms, Vol. 4, No. 2, Article 20, Publication date: May 2008.
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In order to handle weighted posets, technically we need to consider multisets of

intervals and witnesses in our algorithm. We assume I = {I1, . . ., Ik} may contain

the same interval more than once and the same may happen to the set of witnesses.

The next lemma shows that if the witnesses are pairwise independent as a weighted

set instead of a multiset, then the solution is optimal.

LEMMA 3.1. Consider a cover I = {I1, . . ., Ik} and a tight element ui ∈ Ii
for every i . If ui and u j are either independent or ui = u j for every i, j , then
the elements {u1, . . ., uk} give a dual-optimal solution, and hence I is an optimal
cover.

PROOF. It suffices to show that, if for a poset element y, there exists an i with

y = ui , then there exist exactly p(y) such intervals I j with y = u j . Since y = ui
is tight, there are exactly p(y) intervals I j with y ∈ I j . Consider such an u j now:

ui and u j are either independent or ui = u j , but the first case is impossible since

both of them are covered by I j . Hence u j = ui for all p(y) values of j .

3.1. THE PUSHDOWN STEP. Our Algorithm PUSHDOWN-REDUCE tries to push

witnesses down along their intervals in iterations t = 1, 2, . . . until they satisfy

the requirements of Lemma 3.1, that is, witnesses are superscripted by the iteration

value (t). Initial witnesses u(1)

j are maximum tight; their existence follows from

Corollary 2.6.

Algorithm PUSHDOWN-REDUCE(I)

for j = 1, . . ., k do
if I j has no tight elements then

return reduced cover {Ii : i = 1, . . ., j − 1, j + 1, . . ., k}
u(1)

j ← maximal tight element of I j

t ← 1

do
for j = 1, . . ., k do

u(t+1)

j ← PUSHDOWN( j, t, I)

t ← t + 1

while exist j such that u(t)
j < u(t−1)

j

return dual optimal solution {u(t)
1 , . . ., u(t)

k }

Procedure PUSHDOWN( j, t, I)

V ← {x : m j ≤ x ≤ u(t)
j , x tight and ∀i = 1, . . . , k, u(t)

i may not push x down}
if V = ∅ then

t∗ ← t ;
return REDUCE( j, t∗, I)

else return the maximal x ∈ V

Given two intervals Ii = [mi , Mi ] and I j = [m j , M j ] and two tight elements

u ∈ Ii and v ∈ I j , we say that u may push v down with respect to Ii if u and v are

dependent and v �≤ Mi . If the case set V of Procedure PUSHDOWN is nonempty, we

will push v down, that is, replace it by the maximal element of V strictly below v .

Notice that the definition depends on the choice of the interval Ii with u ∈ Ii ; it

is possible that v may push u down with respect to certain Ii and not with others.

In the following, when it is clear from the context, we will omit mentioning Ii .

Different scenarios when u may push v down are shown in Figure 2.
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20:8 L. A. VÉGH AND A. A. BENCZÚR

FIG. 2. Different cases when u may push v down. By Lemma 2.7, mi ≤ v , and there are three

possible cases: (a) m j �≤ u ≤ M j , (b) m j ≤ u �≤ M j , and (c) m j ≤ u ≤ M j .

In what follows, we motivate which element replaces a given v when v gets

pushed down. When selecting u(t+1)

j , our aim is to replace u(t)
j by the maximal such

tight element x ∈ I j which satisfies x ≤ u(t)
j , and no u(t)

i may push x down. As the

motivation of pushing u(t)
j down by u(t)

i , we give the following claim as a relatively

easy consequence of Lemma 3.6; we omit the proof as it is not used elsewhere.

If u(t)
i can push u(t)

j down, then for all subsequent t ′ > t of the WHILE loop of

Algorithm PUSHDOWN-REDUCE, if the witnesses u(t ′)
j and u(t ′)

i are dependent, then

they must be equal. This will be the main reason why all nonequal dependent pairs

of witnesses gradually disappear from the system.

While the this motivation considers the dual solution, namely, it shows that the

set of witnesses will satisfy the optimality requirements, we may also give a primal

motivation of pushing v down by u. If u is maximum tight in Ii , then we hope that,

by replacing [mi , Mi ] by [mi , M j ], we still get a cover. In the examples of Figure 2,

this holds for cases (a) and (c). In this cover, v is contained in the new interval,

while it was not contained in the old, thus it may be replaced by a smaller witness.

While in cases (a) and (c) of Figure 2 one could prove that, if u pushes v down,

then u ≤ M j (as in Benczúr [2003] for the case of increasing connectivity by one),

in case (b), the argument fails since we may have u /∈ [mi , M j ], and the actual

proof of correctness will use a slightly more complicated argument. This is the

main reason why the analysis is significantly harder than in the case of unweighted

poset covers. While the argument for replacing [mi , Mi ] by [mi , M j ] fails, we still

push v down and proceed with the algorithm. Then we use a backward analysis as

in Benczúr [2003]. In the weighted case it turns out that, while this fails to hold in

general, if a particular interval exchange is performed corresponding to a pushdown

step, then the exchange is valid, and, in particular, we have u ≤ M j . We prove this

later in Lemma 3.9.

The next properties of elements where one pushes the other down are required

both for the definition of the algorithm and later for the proof of correctness.

LEMMA 3.2. If u, u′ ∈ Ii and v ∈ I j are tight with u′ ≤ u and u may push v
down, then u′ may also push v down.
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PROOF. We only have to show that u′ and v are dependent. v �≤ Mi , since u
may push v down. Now by Lemma 2.7, we have mi ≤ v . Hence the dependence

of u′ and v follows: a common lower bound is mi , and a common upper bound is

u ∨ v .

LEMMA 3.3. Suppose u ∈ Ii , v ∈ I j , v ′ ∈ Ih are tight elements and v and v ′
are dependent. If u may push v ∨ v ′ down, then it may also push either v or v ′
down.

PROOF. Since u may push v ∨ v ′ down, we have v ∨ v ′ �≤ Mi , hence by

Lemma 2.7, we have mi ≤ v ∨ v ′. By the strong interval property, either mi ≤ v
or mi ≤ v ′. By symmetry, let us consider the first case; in this case, v and u are

also dependent since their common lower bound is mi , and their common upper

bound is u ∨ (v ∨ v ′). If v �≤ Mi , then u may push v down. Suppose now mi ≤
v ≤ Mi . Since u may push v ∨ v ′ down, we have v ∨ v ′ �≤ Mi and thus v ′ �≤ Mi .

Then by applying Lemma 2.7 for v , v ′ and [mi , Mi ], it follows that mi ≤ v ′,
hence u and v ′ are dependent. Finally by v ′ �≤ Mi we get that u may push v ′
down.

The actual change of a witness u(t)
j is performed in Procedure PUSHDOWN. We

select all tight elements x ∈ I j , x ≤ u(t)
j into a set V that cannot be pushed down

with elements u(t)
i . If V is nonempty, we next show that it has a unique maximal

element; we use this element as the new witness u(t+1)

j .

LEMMA 3.4. In Procedure PUSHDOWN, either V = ∅ or else it has a unique
maximal element.

PROOF. It suffices to show that if x, x ′ ∈ V , then so is x ∨ x ′ ∈ V . Obviously,

x ∨ x ′ is tight and m j ≤ x ∨ x ′ ≤ u(t)
j . Suppose now that some u(t)

i may push

x ∨ x ′ down. By Lemma 3.3, u(t)
i may push either x or x ′ down, contradicting

x, x ′ ∈ V .

If we find no dependent pair of witnesses such that one pushes the other down,

then we will show that the witnesses are pairwise independent or equal and thus the

solution is optimal. As long as we find pairs such that one pushes the other down,

in the main loop of Algorithm PUSHDOWN-REDUCE we record a possible interval

endpoint change by pushing one witness lower in its interval; these changes are

then unwound to a smaller cover as shown in Section 3.3.

3.2. PROOF FOR TERMINATION WITHOUT REDUCE. We turn to the first key step

in proving the correctness. We show that, if the algorithm terminates without calling

Procedure REDUCE, then u(t)
i are pairwise independent or equal. In other words, if

none of them can be pushed down by another, then the solution is optimal.

THEOREM 3.5. If the algorithm terminates without calling Procedure REDUCE,
then u(t)

i and u(t)
j dependent implies u(t)

i = u(t)
j .

The theorem is an immediate consequence of the next lemma. Notice that if the

algorithm terminates without calling Procedure REDUCE, then in a last iteration the

while condition of Algorithm PUSHDOWN-REDUCE fails. However, then there are

no pairs i and j such that u(t)
i may push u(t)

j down.
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LEMMA 3.6. Assume that t1 ≤ t2 and u(t2)

i and u(t1)

j are dependent and u(t1)

j may
not push u(t2)

i down. Then u(t2)

i ≤ u(t1)

j .

This lemma is used not only for proving Theorem 3.5 but also in showing the

correctness of Procedure REDUCE in Section 3.3 via the next immediate corollary.

COROLLARY 3.7. If u(t)
j and u(t+1)

i are dependent, then u(t+1)

i ≤ u(t)
j .

In the proof of Lemma 3.6, we need to characterize elements that cause witness

u j to move below a certain tight element y. Assume that, for some tight y ∈ I j and

t , we have y �≤ u(t)
j . Since u(1)

j is maximal tight, we may select the unique t0 with

y ≤ u(t0)

j but y �≤ u(t0+1)

j . In step PUSHDOWN( j, t0, I), we must have an u(t0)

d that

pushes y down. We will use this in the following special case.

LEMMA 3.8. Assume that z is tight and dependent with u(t)
j . Assume furthermore

that z �≤ u(t)
j and z ≤ M j . Then there exists t0 < t and d such that u(t0)

d may push
u(t)

j ∨ z down. In addition, u(t0)

d may also push z down.

PROOF. We apply these observations for y = u(t)
j ∨ z ∈ I j . Since y is tight,

y ≤ u(1)

j . And since z �≤ u(t)
j , we get y = u(t)

j ∨ z �≤ u(t)
j . We select t0 with y ≤ u(t0)

j

but y �≤ u(t0+1)

j ; then in step PUSHDOWN( j, t0, I), we must have an u(t0)

d that may

push y down.

For the second part of the claim, observe that by Lemma 3.3, u(t0)

d may push

either u(t)
j or z down. The first choice is impossible since then u(t−1)

d could also

push u(t)
j down by Lemma 3.2, and t − 1 ≥ t0. This latter contradicts the choice

of u(t)
j as the maximum tight element that may not be pushed down in PUSHDOWN

( j, t − 1, I).

PROOF OF LEMMA 3.6. u(t2)

i ≤ M j since u(t1)

j may not push u(t2)

i down. If

u(t2)

i �≤ u(t1)

j , then the conditions of Lemma 3.8 hold with z = u(t2)

i and t = t1.

Thus we have some t0 < t1 and d such that u(t0)

d may push z = u(t2)

i down. But

then u(t2−1)

d may also push u(t2)

i down by Lemma 3.2. This latter contradicts the

choice of u(t2)

i as the maximum tight element that may not be pushed down in

PUSHDOWN(i, t2 − 1, I).

3.3. THE REDUCE STEP. So far, we have proved that if REDUCE is not called,

then the initial primal solution is optimal, and the algorithm finds a dual-optimum

proof of this fact. Now we turn to the second scenario when Procedure REDUCE is

called. In this case, the solution is not optimal since Procedure REDUCE is called

from Procedure PUSHDOWN when V = ∅. This means u(t)
j /∈ V , and thus there

exists an i such that u(t)
i may push u(t)

j down.

Procedure REDUCE is called when one witness disappears from the dual solution.

In this case, we unwind the steps to find a cover of size one less in Procedure REDUCE

based on interval exchanges at certain pairs of tight poset elements.

Procedure REDUCE-ONESTEP( j, 1, I)

j1 ← j ;

q ← minimal tight element in [m j1 , M j1 ]

j2 ← minimum value � �= j1 such that u(1)

� may push q down

return reduced cover {[mi , Mi ] : 1 ≤ i ≤ k, i �= j1, j2} ∪ {[m j2 , M j1 ]}.
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FIG. 3. Procedure REDUCE called with t∗ = 1. The two upright intervals are the original ones with

their tight elements shaded. These two intervals will be replaced by the single bold interval. The new

interval contains all tight elements of the old ones since u(1)

j2
≤ M j1 by Lemma 3.9. Remember that

the intervals need not to be disjoint.

To illustrate the idea of Procedure REDUCE, first we discuss the simplest case

t∗ = 1; the general case will then be reduced to this case by a special induc-

tion. We summarize Procedure REDUCE-ONESTEP for this particular scenario with

the steps shown in Figure 3. Since t∗=1, we have some 1 ≤ j1 ≤ k such that

Procedure REDUCE is called within Procedure PUSHDOWN( j1, 1, I). This means

that

V = {
x : m j1 ≤ x ≤ u(1)

j1
, x tight and ∀� = 1, . . . , k, u(1)

� may not push x down
}

is empty. By Corollary 2.6, [m j1, M j1 ] has a unique minimal tight element q. Since

q /∈ V , we must have some � = j2 such that u(1)

� may push q down. Given an

ordering over the intervals, the algorithm selects j2 as the minimal such � and

returns a reduced interval system

I − [m j1, M j1 ] − [m j2, M j2 ] + [m j2, M j1 ]. (3)

In the proof of case t∗=1, we use the following general lemma for h = j1, � = j2,

u = u(1)

j2
.
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LEMMA 3.9. Let q be the minimal tight element of Ih. If u ∈ I� may push q
down, then u ≤ Mh. Furthermore, for all tight v ∈ Ih, we have that u may push v
down with respect to I�.

PROOF. Suppose by contradiction that u �≤ Mh . Since u and q are dependent,

by Lemma 2.7, u ∧ q ∈ Ih . Since q is the minimal tight in Ih , we have q ≤ u ∧ q,

hence q ≤ u ≤ M�, contradicting that u may push q down. For the second part of

the claim, consider a tight element v ∈ Ih . Elements u and v are dependent since

common lower and upper bounds are u ∧ q and Mh , respectively. By q ≤ v and

q �≤ M�, the required v �≤ M� follows.

LEMMA 3.10. If t∗ = 1, Procedure REDUCE( j1, t∗, I) returns an interval cover.

PROOF. It suffices to show that [m j2, M j1 ] contains all tight elements of both

[m j1, M j1 ] and [m j2, M j2 ]; furthermore, there is no common tight element in

[m j1, M j1 ] and [m j2, M j2 ]. In this case, we may replace the intervals [m j1, M j1 ]

and [m j2, M j2 ] by [m j2, M j1 ] since, if a tight element is contained by exactly one of

[m j1, M j1 ] and [m j2, M j2 ], then it is contained by the new interval and containment

by both is excluded.

To prove this, first let x ∈ [m j2, M j2 ] be tight; x ≤ u(1)

j2
by maximality. When

applying Lemma 3.9 for h = j1, � = j2, u = u(1)

j2
, we get u(1)

j2
≤ M j1 . This implies

m j2 ≤ x ≤ u(1)

j2
≤ M j1 as required.

Next let x ∈ [m j1, M j1 ] be tight; q ≤ x for the minimal tight q of [m j1, M j1 ].

By the second part of Lemma 3.9 applied with � = j2, we have that u(1)

j2
may

push q down. By Lemma 2.7, m j2 ≤ q, thus we get m j2 ≤ q ≤ x ≤ M j1 as

required.

Finally assume that a common tight element x ∈ [m j1, M j1 ] ∩ [m j2, M j2 ] exists;

now q ≤ x ≤ M j2 , contradicting the fact that u(1)

j2
may push q down.

Procedure REDUCE( j, t∗, I)

j1 ← j ;

for t = t∗, . . ., 1 do
s ← t∗ + 1 − t
q ← minimal tight element in [m js , M js ]

js+1 ← minimum value � �= js such that u(t)
� may push q down

m js ← m js+1

return reduced cover {[mi , Mi ] : 1 ≤ i ≤ k, i �= jt∗+1}.

Our aim in Procedure REDUCE is to repeatedly pick an interval [m js , M js ] and

try to find another interval [m js+1
, M js+1

] such that if we replace [m js , M js ] by

[m js+1
, M js ], then, after the switch, the minimum tight element of [m js+1

, M js+1
]

increases. We ensure this by defining

js+1 ← minimum value � �= js such that u(t)
� may push q down,

where q is the minimum tight element of [m js , M js ] after the intervals change and

t = t∗ + 1 − s. Applying Lemma 3.9 for h = js , � = js+1, u = u(t)
js+1

, we get

u(t)
js+1

≤ M js . Thus when replacing [m js , M js ] by [m js+1
, M js ], the tight elements x
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FIG. 4. Procedure REDUCE called with t∗ = 2. The three upright intervals are the original ones with

their tight elements shaded. The original three intervals will be replaced by the two bold intervals

using the marked witnesses. Note that the two new intervals contain all tight elements of the old ones.

While the number of intervals covering certain nontight elements (x in the example) may decrease,

we prove that they remain covered. Note that the original intervals may not be disjoint.

in [m js+1
, M js+1

] with x ≤ u(t)
js+1

will no longer be tight after the switch. The overall

idea is seen in Figure 4.

While the first step of the procedure is well-defined since we call Procedure RE-

DUCE exactly when the minimal tight q ∈ I j for j = j1 is pushed down by certain

other u(t∗)

� , the existence of such an � is by no means obvious for all the other itera-

tions of the main loop as switches among the intervals could completely rearrange

the set of the tight elements.

The existence of all further � in Procedure REDUCE as well as the correctness

of the algorithm is proved by ‘rewinding’ the algorithm after the first iteration

of Procedure REDUCE and showing that each step is repeated identically up to

iteration t∗ − 1. The intuition behind rewinding is based on the resemblance of

Procedure REDUCE to an augmenting path algorithm. In this terminology, instead

of directly proving augmenting path properties, we use a special induction by

executing the main loop of the procedure step-by-step and, after each iteration,

rewinding the main algorithm. In the analogy of network flow algorithms, this may

correspond to analyzing an augmenting path algorithm by choosing path edges

starting at the source, changing the flow along this edge to a preflow, and, at each

step, proving that the remaining path augments the flow.

The key Theorem that follows will show, by induction on the value t∗ of t
at the termination of the main loop of Algorithm PUSHDOWN-REDUCE, that the

intermediate modified interval sets are covers for t∗, t∗ − 1, . . ., 1. Finally, when
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applied for t∗ = 1, we get that Procedure REDUCE finds an interval cover of

size one less than before by Lemma 3.10. This completes the correctness analysis

of Procedure REDUCE. Before stating the Theorem, we define the intermediate

modified interval set I ′ and show it is a cover.

LEMMA 3.11. Let

I ′ = I − [m j1, M j1 ] + [m j2, M j1 ] (4)

be the set of intervals after the first iteration of Procedure REDUCE. Then I ′ is a
cover.

PROOF. Since u(1)

j2
may push q down, q �≤ M j2 , thus, by Claim 2.7, m j2 ≤ q

and so [m j2, M j1 ] contains all tight elements of [m j1, M j1 ].

THEOREM 3.12. For t∗ > 1, Algorithm PUSHDOWN-REDUCE performs the ex-
act same steps with inputs I and I ′ of Lemma 3.11 until iteration t∗ − 1 when
REDUCE( j2, t∗ − 1, I ′) is called. Hence compared to I, the main loop of Algo-
rithm PUSHDOWN-REDUCE terminates one step earlier with t = t∗ − 1 when run
with I ′.

To prove Theorem 3.12, we now define elements that are no longer tight and

elements that become tight in the new cover:

LEMMA 3.13. Let

Z1 = {x tight in I and x not tight in I ′},
Z2 = {x not tight in I and x tight in I ′}.

Then
Z1 ⊆ {x : x ∈ [m j2, M j1 ], x �≥ m j1} (5)

Z2 ⊆ {x : x ∈ [m j1, M j1 ], x �≥ m j2}. (6)

Hence the same elements are tight in I j1 for I as in [m j2, M j1 ] for I ′.

PROOF. We get I ′ from I by removing [m j1, M j1 ] and adding [m j2, M j1 ] in-

stead. Hence the elements of Z1 should be contained in the latter but not in the

former, and similarly the elements of Z2 should be in the former but not in the latter

interval.

Next we show that the algorithm proceeds identically for I and I ′ for t < t∗.

The proof is based on the fact that the key elements used in defining u(t)
i do not

belong to Z1 ∪ Z2.

LEMMA 3.14. Let u′(t)
i denote elements selected by Algorithm PUSHDOWN-

REDUCE with input I ′ with the convention that u′(t)
j1

belongs to the modified interval

I ′
j1

= [m j2, M j1 ]. Then for all t < t∗, we have u(t)
i = u′(t)

i .

PROOF. By induction on t ≤ t∗ − 1, we will show ui ′(t) = u(t)
i . We prove the

inductive hypothesis in three steps: we show for i = 1, . . . , k that

(i) u(t)
i /∈ Z1;

(ii) u′(t)
i exists; and

(iii) u′(t)
i /∈ Z2.
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These three statements imply u′(t)
i = u(t)

i as follows. For t = 1, the maximal tight

elements are identical for i �= j1 by (i) and (iii), since u′(1)

i tight in I implies

u′(1)

i ≤ u(1)

i , and we have the opposite inequality when exchanging the role of the

two elements. Also u′(1)

j1
= u(1)

j1
since, by Lemma 3.13, the tight elements of I j1

in I are the same as the tight elements of I ′
j1

in I ′. For general t by induction on

the step of defining u′(t)
i , one can observe that element u(t)

i belongs to the set V of

Procedure PUSHDOWN(i − 1, t, I ′), and the same holds when exchanging the role

of u′(t)
i and u(t)

i . Thus the two elements must be equal.

Now we prove (i–iii). First of all, for i = j1, the tight elements of I j1 in I are

the same as those of I ′
j1

in I ′ by Lemma 3.13, yielding (i–iii). Hence we assume

i �= j1 next.

PROOF OF (I). Assume u(t)
i ∈ Z1. By Lemma 3.13, m j2 ≤ u(t)

i ≤ M j1 and

m j1 �≤ u(t)
i . Furthermore, since m j2 ≤ u(t∗)

j1
≤ u(t+1)

j1
≤ M j1 , we have u(t)

i and u(t+1)

j1
dependent. Using Corollary 3.7, u(t+1)

j1
≤ u(t)

i , thus m j1 ≤ u(t)
i , a contradiction.

PROOF OF (II). We show that u′(t)
i exists and mi ≤ u(t)

i ≤ u′(t)
i . We proved that

u(t)
i /∈ Z1 and hence u(t)

i remains tight in I ′. This immediately gives the result for

t = 1. And for t > 1, we use the consequence of the inductive hypothesis that

u(t−1)

h = u′(t−1)

h for all h. This yields u(t)
i ∈ V for PUSHDOWN(i, t − 1, I ′) that, in

turn, implies that u′(t)
i exists and u(t)

i ≤ u′(t)
i .

PROOF OF (III). Assume u′(t)
i ∈ Z2. By Lemma 3.13, m j1 ≤ u′(t)

i ≤ M j1 , thus

u′(t)
i and u(t+1)

j1
are dependent. Observe furthermore that u(t+1)

j1
/∈ Z1, thus also tight

in I ′. Hence by applying Lemma 2.7 for I ′, we get that either u(t+1)

j1
≤ Mi or

mi ≤ u(t+1)

j1
. In both cases, we derive a contradiction with the definition of u(t+1)

j1
in

Procedure PUSHDOWN( j1, t, I) by showing that certain u(t)
d may push u(t+1)

j1
down.

Case 1. u(t+1)

j1
≤ Mi . By Lemma 3.13, we also get m j2 �≤ u′(t)

i , which, in turn,

implies u(t+1)

j1
�≤ u′(t)

i since m j2 ≤ u(t+1)

j1
. Because u(t+1)

j1
is tight in I ′ and u(t+1)

j1
≤

Mi , we apply Lemma 3.8 for I ′, u′(t)
i and z = u(t+1)

j1
. By the Lemma, there exists

t0 < t and 1 ≤ d ≤ k such that the element u′(t0)

d may push u(t+1)

j1
down. By

induction u(t0)

d = u′(t0)

d and by Lemma 3.2, u(t)
d may also push u(t+1)

j1
down.

Case 2. mi ≤ u(t+1)

j1
and u(t+1)

j1
�≤ Mi . As we have shown, mi ≤ u(t)

i ≤ u′(t)
i . Thus

u(t+1)

j1
and u(t)

i are dependent since their common lower and upper bounds are mi

and M j1 , respectively. Hence, in this case, we have d = i : element u(t)
i may push

u(t+1)

j1
down. The proof is complete.

We complete the proof of Theorem 3.12 by the following lemma.

LEMMA 3.15. When run with input I ′, Procedure REDUCE is called in iteration
t∗ − 1 with j = j2.
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PROOF. By Lemma 3.14, Procedure REDUCE cannot be called for I ′ before

iteration t∗ − 1. Two things are left to prove: (i) in iteration t∗ − 1, REDUCE(h, t∗ −
1, I ′) is not called for any h < j2 and (ii) REDUCE( j2, t∗ − 1, I ′) is called.

To prove (i), assume by contradiction that REDUCE(h, t∗ − 1, I ′) is called for

some h < j2, or equivalently, V = ∅ in PROCEDURE(h, t∗ − 1, I ′). We show that

u(t∗)

h ∈ Z1. Indeed, by Lemma 3.14, u(t∗−1)

h = u′(t∗−1)

h for all h. Since no u(t∗−1)

h

may push u(t∗)

j2
down, this yields that, if u(t∗)

h /∈ Z1, then u(t∗)

h ∈ V , contradicting the

assumption V = ∅.

By Lemma 3.13, m j2 ≤ u(t∗)

h ≤ M j1 , thus q and u(t∗)

h are dependent. Element u(t∗)

h
may not push q down because it would contradict the fact that � = j2 is minimal

in a fixed ordering of the intervals so that u(t∗)

� may push q down. This means that

q ≤ Mh . In addition, q �≤ u(t∗)

h since m j1 ≤ q and m j1 �≤ u(t∗)

h by u(t∗)

h ∈ Z1. We can

apply Lemma 3.8 for u(t∗)

h and z = q, which implies the existence of some t0 < t∗

and 1 ≤ d ≤ k so that u(t0)

d may push q down. By the second part of Lemma 3.9,

u(t0)

d may also push u(t0+1)

j1
down, a contradiction.

For (ii), suppose by contradiction that u′(t∗)

j2
exists. Since u′(t∗)

j2
≥ m j2 , by

Lemma 3.13, u′(t∗)

j2
/∈ Z2, hence u′(t∗)

j2
is also tight in I. We use again that by

Lemma 3.14, u(t∗−1)

h = u′(t∗−1)

h for all h. This yields u′(t∗)

j2
∈ V for PUSHDOWN( j2, t∗−

1, I), implying u′(t∗)

j2
≤ u(t∗)

j2
. By making use of Lemma 3.9, u′(t∗)

j2
≤ u(t∗)

j2
≤ M j1 .

We claim that u′(t∗)

j2
∈ Z1, contradicting the fact that u′(t∗)

j2
is tight in I ′. As

m j2 ≤ u′(t∗)

j2
≤ M j1 and u′(t∗)

j2
is tight in I, all we need to show is m j1 �≤ u′(t∗)

j2
.

Assume m j1 ≤ u′(t∗)

j2
. This implies m j1 ≤ u′(t∗)

j2
≤ M j1 , thus q ≤ u(t∗)

j2
as q is the

minimal tight element of [m j1, M j1 ] in I. In this case, u(t∗)

j2
may not push q down,

contradicting the selection of j2 in Procedure REDUCE( j, t∗, I).

4. Connectivity Augmentation

In this section, we give a reformulation of the previous general algorithm which is

applicable for the problem of directed vertex connectivity augmentation. The main

difficulty is that we typically have an exponential size poset implicitly given as a

set of (directed) cuts. We may either select an appropriate poset representation or

implement the steps of the algorithm with direct reference to the underlying graph

problem. We follow the second approach. We will show how all nontrival steps

of the algorithm can be reduced to determining maximal tight elements in certain

interval covers, which can be implemented as a sequence of BFS computations

using some initial flow computations.

The key step in implementing Procedure PUSHDOWN for the underlying graph

problems is the following reformulation of the main algorithm. We replace Pro-

cedure PUSHDOWN by an iterative method Procedure ALTERNATE-PUSHDOWN that

selects a strictly descending sequence of tight elements y0 > y1 > · · · > y� with

y0 = u(t)
j and y� = u(t+1)

j or terminates by Procedure REDUCE( j, t∗, I). In the im-

plementation for graph augmentation problems, it is key to notice that, in a single

iteration of Procedure ALTERNATE-PUSHDOWN, we only consider elements that

may be pushed down by u(t)
i for a single value of i .
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Procedure ALTERNATE-PUSHDOWN( j, t, I)

y0 ← u(t)
j ; h ← 0;

while exists i such that u(t)
i may push yh down do

Vh ← {x : m j ≤ x ≤ yh , x tight and u(t)
i may not push x down}

if Vh = ∅ then
t∗ ← t ;
return REDUCE( j, t∗, I)

else
yh+1 ← maximal x ∈ Vh ;

h ← h + 1

return yh

LEMMA 4.1. Procedure ALTERNATE-PUSHDOWN returns the same output as
Procedure PUSHDOWN.

PROOF. It follows straightforward from Lemma 3.3 that if Vh �= ∅, then it has

a unique maximal element, hence yh for h ≥ 1 is well defined.

If Procedure ALTERNATE-PUSHDOWN terminates by returning yh for some h,

then yh ∈ V for V as in Procedure PUSHDOWN. Thus yh ≤ u(t+1)

j . This shows that

if Procedure PUSHDOWN terminates by calling Procedure REDUCE, then so does

Procedure ALTERNATE-PUSHDOWN.

Consider now the case when V �= ∅ in Procedure PUSHDOWN. We show that

yh ≥ u(t+1)

j for each h ≥ 0. By contradiction, choose the smallest h with yh �≥ u(t+1)

j ;

thus yh−1 ≥ yh ∨ u(t+1)

j > yh . By the definition of Vh−1, u(t)
i may push yh ∨ u(t+1)

j

down for some i . Using Lemma 3.3 again, it may push either yh or u(t+1)

j down,

both leading to contradiction. Now we can conclude that if Procedure ALTERNATE-

PUSHDOWN terminates by returning yh , then both yh ≤ u(t+1)

j and yh ≥ u(t+1)

j hold,

thus they are equal.

To compute yh consider the set of intervals J j,i = I − [mi , Mi ]+ [mi , M j ] with

i as in Procedure ALTERNATE-PUSHDOWN. While J j,i is not necessarily a cover of

the entire poset, the following lemmas still hold.

LEMMA 4.2. All x ∈ Vh are tight in J j,i .

PROOF. Notice x is either contained in both intervals [mi , Mi ] and [mi , M j ] or

in neither of them: if mi ≤ x , then x and u(t)
i are dependent because mi is a common

lower and u(t)
i ∨ yh a common upper bound. Hence x ≤ Mi , since u(t)

i may not push

x down.

LEMMA 4.3. Suppose u(t)
i may push yh down. The set of intervalsJ j,i covers all

elements of I j , furthermore, yh+1 = yh ∧ Q, where Q is the maximal tight element
of I j in J j,i .

PROOF. For all x ∈ I j , we have x ∈ [mi , M j ] if x ∈ [mi , Mi ], hence the

number of intervals covering x cannot be less in J j,i than in I, thus J j,i covers all

elements of I j .
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For the second part, we first show that if I j has any tight elements for J j,i , then

there is a unique maximal among them. We cannot apply Lemma 2.5 directly since

J j,i is not a cover, but the claim holds for any x, y ∈ Ii since x , y, x ∨ y, and x ∧ y
are all covered by J j,i . Hence the existence of the unique maximal tight element

follows. Since any element of Ii is covered in J j,i by at least as many intervals as

in I, Q is also tight in I.

Finally we let z = yh ∧ Q and show z = yh+1. Notice that z is tight in I as it

is an intersection of two tight elements in I. As yh+1 ≤ yh and yh is tight in J j,i
by Lemma 4.2, we get yh+1 ≤ Q, and thus yh+1 ≤ yh ∧ Q = z. For z ≤ yh+1, we

have to prove that u(t)
i may not push z down. Indeed, suppose that u(t)

i may push z
down. Then mi ≤ z �≤ Mi , hence by z ≤ Q follows Q ∈ [mi , M j ]. As Q is tight

in J j,i , this implies that Q ∈ [mi , Mi ], thus z ≤ Q ≤ Mi , a contradiction.

By the lemma, the basic step of Procedure ALTERNATE-PUSHDOWN consists of

computing the maximum tight element of an interval for a certain set of covering

intervals. Furthermore, at the beginning of the algorithm, u(1)

j is the maximum tight

element of I j . Now we turn our attention to the implementation of the steps of the

algorithm for connectivity augmentation. We use the reduction of vertex connec-

tivity augmentation to poset covering as in Theorem 2.3. The minimal elements

correspond to set pairs having a singleton tail and all the other vertices as head;

maximal elements are found by exchanging the role of tails and heads. For each

interval I = [mi , Mi ] ∈ I, we augment the graph by an edge si ti with si corre-

sponding to mi and ti corresponding to Mi as in the previous reduction. If I covers

all poset elements in [mi , Mi ], then the minimum si –ti cut in the augmented graph

has value at least k.

Algorithm PUSHDOWN-REDUCE(I) will first be applied for a greedy cover I
(e.g., including all possible intervals), and then subsequently for covers of decreas-

ing cardinality, until we finally reach an optimal cover. We initialize PUSHDOWN-

REDUCE(I) by computing |I| maximum flows, one corresponding to each interval

in I. For interval [m j , M j ], we compute a maximum s j –t j flow. Since I is a cover,

the maximum flow value is at least k. If the s j –t j flow value is more than k, then

[m j , M j ] contains no tight elements, and thus can be removed from the cover, and

the iteration PUSHDOWN-REDUCE(I) is finished. Otherwise u(1)

j is the set pair corre-

sponding to the value k cut with maximal tail that can be obtained by a breadth-first

search from t j on the graph obtainded from the standard auxiliary graph in the

Ford-Fulkerson algorithm by reverting the edges.

LEMMA 4.4. Consider the task of finding the maximum tight element of an
interval I j = [m j , M j ] for a certain set of intervals J j,i (e.g., in Proce-
dure ALTERNATE-PUSHDOWN) that cover I j . Using the maximum s j –t j flow com-
puted at the initialization for I j , this step requires O(1) breadth-first search (BFS)

computations.

PROOF. Consider the maximum s j –t j flow computed at the initialization. We

add an edge si t j to the graph and remove the edge si ti . If the flow contains the

removed edge, then we remove the single flow path containing it. We augment the

resulting flow to a maximum flow by a single BFS computation. By another BFS

starting from t j , we either obtain the maximum tight element or deduce that there

are no tight elements and Procedure REDUCE can be called.
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For implementing REDUCE, we need to find minimal tight elements of certain

intervals and a sequence of changes in the interval cover by adding an interval and

removing an other. The first step can be preformed by a BFS computation from the

corresponding si ; for the second step, we need to update the flows corresponding

to the intervals [m j , M j ] ∈ I. For each [m j , M j ] in iteration s, we consider the

maximum s j –t j flow, add an edge s js+1
t js to the graph and remove the edge s js t js .

Again, if the flow contains the removed edge, then we remove the single flow path

containing it and augment the flow by a BFS computation.

5. Running Times

To estimate the running time, we need bounds for the number of intervals j and

the length of a longest chain � in the poset. At the initialization of PUSHDOWN-

REDUCE, we preform j max-flow computations, then the dominating steps are

finding elements yh in Procedure ALTERNATE-PUSHDOWN. Since computing meets

∨ and intersections ∧ of elements as well as checking whether u ∈ Ii may push v
down can be done in O(1) time, this step is dominated by O(1) BFS computations

by Lemma 4.4.

Between two calls to Procedure REDUCE the total number of iterations in all calls

to ALTERNATE-PUSHDOWN that compute certain yh can be bounded by j · � since

in each step we find a strictly smaller element of certain interval. This totals to

O( j ·�) BFS computations. For an iteration of REDUCE, we also have to do O( j ·�)

BFS computations. The total number of calls to Algorithm PUSHDOWN-REDUCE is

bounded by j since the number of intervals decreases in each iteration. Hence we

have O( j2) maximum flow and O( j2 · �) BFS computations.

For vertex connectivity augmentation problems � = O(n) and j = O(n2) since

adding a complete digraph surely gives an (n − 1)-connected digraph. Thus by the

previous estimations, the running time is dominated by O(n5) BFS computations

and O(n4) Max Flow Computations. As a BFS can be computed in time O(n2) and

a Max Flow in time O(n3), the total running time can be bounded by O(n7).

6. Conclusion

We have given a combinatorial algorithm for covering posets satisfying a special

property by the minimal number of intervals of the poset. As noted by Frank and

Jordán [1995], the result can be applied for certain directed edge augmentation

problems. While we have given a detailed algorithm only for the directed vertex

connectivity augmentation, the other known applications (e.g., S−T -edge or ver-

tex connectivity augmentation) can be implemented similarly. The existence of

a strongly polynomial combinatorial algorithm, however, remains open. Another

major open problem regards the complexity of undirected augmentation; the best

known result is a polynomial algorithm which finds an optimal solution for every

fixed k [Jackson and Jordán 2005].

One may wonder how strong the generalizational power of the interval covering

problem is. Two algorithmically equivalent problems, Dilworth’s chain cover and

bipartite matching, are special cases of interval covers; our algorithm generalizes the

standard augmenting path-matching algorithm. One may ask whether the network

flow problem as different algorithmic generalization of matchings could also fit
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into our framework. Or, extending the question of Karger and Levine [1998], can

we at least tell the hierarchy of hardness of the interval cover, Dilworth, (bipartite)

matching and maximum flow problems? We might also hope that ideas such as

capacity scaling, distance labeling, and preflows [R.K. Ahuja and Orlin 1993] that

give polynomial algorithms for network flows can be used in the construction of a

strongly polynomial algorithm for the interval covering problem.

Finally one may be interested in the efficiency of our algorithm for the particular

problems that can be handled. Here particular implementations and good oracle

choices are needed. We may want to reduce the number of mincut computations

needed by polynomial size poset representations. One might also be able to give

improvements in the sense of the Hopcroft–Karp matching algorithm [1973].
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Algo. 37, 1, 2–36.

CAI, G.-P. AND SUN, Y.-G. 1989. The minimum augmentation of any graph to a k-edge-connected graph.

Netw. 19, 151–172.

FRANK, A. 1976. Combinatorial algorithms, algorithmic proofs. Ph.D. thesis, Eötvös University, Bu-
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GYŐRI, E. 1984. A min-max theorem on intervals. J. Comb. Theory Ser. B 37, 1–9.

HOPCROFT, J. E. AND KARP, R. M. 1973. An n5/2 algorithm for maximum matching in bipartite graphs.

SIAM J. Comp. 2, 225–231.
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