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We give a constructive characterization for (k,�)-edge-connected digraphs, proving a con-
jecture of Frank.

1. Introduction

By constructive characterization of a certain class H of graphs, we mean
a set of construction steps and a set of basic instances in H satisfying the
following. Every graph constructed by a sequence of such steps starting
from one of the basic instances is in H and moreover all graphs in H can be
obtained this way. For example, a graph is connected if and only if it can be
obtained from a single vertex by adding new edges between old vertices or
adding a new edge between an old and a new vertex. The well-known ear-
decomposition gives a constructive characterization for 2-connected graphs.
A survey on constructive characterizations can be found in [8].

A digraph is called k-edge-connected if deleting any k− 1 edges leaves
it strongly connected. By Menger’s well-known theorem, this is equivalent
to the property that there are k edge-disjoint paths from any vertex to any
other. A classical constructive characterization is Mader’s theorem for k-
edge-connected digraphs.
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Theorem 1.1 (Mader [9]). A directed graph is k-edge-connected if and
only if it can be obtained from a single vertex by the iterative application
of the following two operations:

(i) add a new edge (possibly a loop),
(ii) subdivide k existing edges and identify the subdividing vertices with a

single vertex z.

Operation (ii) will be called pinching k edges with z. By pinching 0 edges
we simply mean the addition of a new vertex of degree 0.

A digraph G = (V,E) is called (k,�)-edge-connected for some integers
0 ≤ � ≤ k, if G has a root vertex s and for each vertex z �= s, there ex-
ist k edge-disjoint sz paths and � edge-disjoint zs paths. Note that (k,k)-
edge-connectivity with arbitrary root coincides with k-edge-connectivity and
(k,0)-edge-connectivity means by Edmonds’ disjoint arborescences theo-
rem [1] that there are k disjoint spanning arborescences rooted in s.

A related concept for undirected graphs is the following. An undirected
graph is called (k,�)-partition-connected if for any partition of the vertices
into t ≥ 2 classes, there are at least k(t− 1) + � edges connecting differ-
ent classes. Note that (k,0)-partition-connectivity is by Tutte’s theorem [10]
equivalent to having k disjoint spanning arborescences. The link between
these concepts for directed and undirected graphs is established by the fol-
lowing theorem:

Theorem 1.2 (Frank [2]). For integers 0≤ �≤ k, an undirected graph G
has a (k,�)-edge-connected orientation if and only if G is (k,�)-partition-
connected.

The following theorem is the main result of the paper. It was conjectured
by Frank ([6], Conjecture 5.6., and [4], Conjecture 5.1):

Theorem 1.3. For 0≤�≤k−1, a directed graph is (k,�)-edge-connected if
and only if it can be built up from the single vertex s by the following two
operations:

(i) add a new edge,
(ii) for some i with �≤ i≤k−1, pinch i existing edges with a new vertex z,

and add k− i new edges from old vertices to z.

Using Theorem 1.2, the following undirected counterpart is a straightfor-
ward consequence.

Corollary 1.4. For 0 ≤ � ≤ k− 1, an undirected graph is (k,�)-partition-
connected if and only if it can be built up from the single vertex s by the
following two operations:
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(i) add a new edge,
(ii) for some i with �≤ i≤k−1, pinch i existing edges with a new vertex z,

and add k− i new edges between z and some old vertices.

The special case of Theorem 1.3 for �= 0 was shown by Frank [3] and
for �=1 by Frank and Szegő [6], while for �=k−1 it was proved by Frank
and Király in [5]. In all cases of this theorem and also in Theorem 1.1,
it is straightforward that all graphs constructed by operations (i) and (ii)
are (k,�)-edge-connected, so the nontrivial part is the reverse direction. The
reverse operation of (i) is deleting an edge, hence we may focus our attention
to minimally (k,�)-edge-connected graphs in the sense that deleting any edge
would destroy (k,�)-edge-connectivity.

An exceedingly important tool is Mader’s splitting off theorem. In a di-
graph G = (V,E), we mean by splitting off two edges e = xz, f = zy the
operation of deleting e and f and adding the new edge xy. Let ρ(X) =
ρG(X)= ρE(X) and δ(X)= δG(X)= δE(X) denote the in- and out-degrees
of the set X, respectively. Let ρ(z) and δ(z) denote the in- and out degrees of
the vertex z. If ρ(z)=δ(z), by a complete splitting at z we mean a sequence
of splitting off operations of all edges incident to z and finally removing z.
We say that a digraph G=(U+z,E) is k-edge-connected in U if there exist
k-edge-disjoint paths between any two vertices in U (the paths may possibly
use z).

Theorem 1.5 (Mader [9]). Let G=(U +z,E) be a digraph, which is k-
edge-connected in U and ρ(z)=δ(z). Then there exists a complete splitting
at z resulting in a k-edge-connected graph.

Let us sketch the proof of Theorem 1.1. If a digraph is not minimally k-
edge-connected, we can leave an edge as the reverse of operation of step (i)
and continue by induction. For minimally k-edge-connected digraphs, the
existence of a vertex z having both in- and out-degree k can be proved.
Then Theorem 1.5 can be used since the reverse of operation (ii) is exactly
a complete splitting at a vertex z with ρ(z) = δ(z). An easy consequence
of Theorem 1.5 can be used to derive the constructive characterization of
(k,0)-edge-connected graphs. However, for the cases �=1 and �= k−1 the
following nontrivial generalization of this theorem is needed. We say that
the digraph G=(U+z,E) is (k,�)-edge-connected in U for a root node s∈U ,
if for every vertex x∈U there are k-edge-disjoint paths from s to x and �
edge-disjoint paths from x to s.

Theorem 1.6 (Frank [3]). Let G = (U + z,E) be a digraph (k,�)-edge-
connected in U and ρ(z)=δ(z). Then there exists a complete splitting at z
resulting in a (k,�)-edge-connected graph.
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The reason why the proof is more difficult in case of �=1 and �= k−1
than for �= 0 and �= k is due to the following reason. In the latter cases
it was enough to find a vertex satisfying certain conditions for the in- and
outdegrees, and one could always perform a complete splitting at such a
vertex. However, for � = 1 and �= k− 1 the conditions for the degrees do
not suffice and a more thorough analysis of the structure of minimally (k,�)-
edge-connected graphs is needed.

To give some motivation of our proof, we sketch the proof for �=k−1 by
Frank and Király [5]. Consider a minimally (k,k−1)-edge-connected graph.
The reverse operation of (ii) may be applied at a vertex z with in-degree k
and out-degree k−1. We call such vertices special. If for a special vertex z
we manage to find an edge uz so that G−uz is (k,k−1)-edge-connected in
U =V −z, then Theorem 1.6 may be used for G′=(U+z,E−uz) giving a
(k,k− 1)-edge-connected graph G′′ on U . Then we can get G from G′′ by
applying step (ii) with pinching those k−1 edges with z which were resulted
by the splitting off and finally adding the edge uz.

However, not every special vertex z admits an edge uz as above (and
it is already nontrivial to find a special vertex). The proof uses an indirect
argument: assume that every edge xy ∈ E satisfies one of the following
conditions. On the one hand, if y is special, then we assume that G−xy is
not (k,k−1)-edge-connected in V −y. On the other hand, if y is not special,
we use that G is minimally (k,k−1)-edge-connected, and thus G−xy is not
(k,k−1)-edge-connected. One can define a notion of tight sets so that each
edge will be “blocked” by a tight set. Then the uncrossing method may be
used for these tight sets to derive a final contradiction.

Our proof is motivated by this argument, but for general �, severe new
difficulties arise. Starting from a minimally (k,�)-edge-connected digraph,
we call a vertex z special if �≤ δ(z)≤ k−1 and ρ(z) = k. This means that
according to its in- and out-degree, it might be the result of operation (ii)
in Theorem 1.3. We say that a subset F of edges entering a special vertex z
is locally admissible at z, if G− F is (k,�)-edge-connected in V − z and
|F | ≤ k− δ(z). F is called sufficient at z if |F |= k− δ(z). Once a sufficient
locally admissible F is found, Theorem 1.6 may be applied to G−F and z
and the proof finishes as for �=k−1.

Thus our aim is to find a special vertex z and a sufficient locally ad-
missible set F at z. It is easy to characterize the maximal size of a locally
admissible set for a given special z, however, this size may be strictly smaller
than k−δ(z). The main difficulty is how to handle together the locally ad-
missible sets belonging to different special vertices. The notion of globally
admissible edge sets in Definition 2.3 is introduced for this purpose. For a
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globally admissible edge set and an arbitrary special vertex z, the subset
Fz⊆F of edges entering z is locally admissible at z. However, the converse
is not true in the sense that the union of locally admissible edge sets belong-
ing to different special vertices will not necessarily be globally admissible.
We say that a globally admissible edge set F is sufficient, if for some spe-
cial z, Fz is sufficient; otherwise it is called insufficient. What we prove is
the existence of a sufficient globally admissible edge set. Unfortunately, it is
not true that every maximal globally admissible set is sufficient, as it will
be shown by an example in Section 6.

Among other methods, splitting off techniques will be used also in the
proof of the existence of a sufficient globally admissible set. However, The-
orem 1.6 turns out to be too weak for our aims. Actually, Theorem 1.6 is
a special case of an abstract theorem of Frank [3] for covering positively
crossing supermodular functions by a digraph. This theorem is presented
in Section 4 where we formulate a generalization which will enable us to
use a complete splitting operation preserving a property stronger than the
(k,�)-edge-connectivity.

The way we handle tight sets also differs from the standard uncrossing
methods. A set is called tight with respect to a globally admissible set F
if the inequality concerning this set in the definition of global admissibility
holds with equality. As in the proof for � = k− 1, for a maximal F there
is a tight set “blocking” each edge in E−F . However, it is not possible to
apply the uncrossing method to arbitrary tight sets for an arbitrary globally
admissible F . The intersection and union of two tight sets will be tight
only under the assumption that F is maximal and insufficient. It turns out
interestingly that under this assumption, some basic types of tight sets do
not occur at all. This will be discussed in Section 5.

The paper is organized as follows. In Section 2, the precise definitions
are given and some basic properties are exhibited. We also give the proof
of Theorem 1.3 here based on the main technical tool Theorem 2.1. This
is a special case of the stronger Theorem 2.7 also stated in this section,
and proved in Section 3 relying on three basic lemmata. Section 4 de-
scribes the general splitting-off theorem and the proof of the first basic
lemma, while Section 5 contains a sequence of technical claims and the
proof of the other two basic lemmata. Finally, in Section 6 we describe
the structure of locally admissible sets and present a polynomial algo-
rithm for finding a sufficient locally admissible set F at a special vertex z.
We also show an example of an insufficient maximal globally admissible
edge set.
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2. Basic concepts and the Proof of Theorem 1.3

Let G=(V,E) be a (k,�)-edge-connected directed graph with root s∈V . For
X⊆V , let γ(X)=k if s /∈X and γ(X)=� if s∈X. For two sets X,Y ⊆V and
an edge set H, by δH(X,Y ) we mean the number of directed edges in the
edge set H from X−Y to Y −X. Let dH(X,Y )=δH (X,Y )+δH(Y,X) and
d̄H(X,Y )=dH(X,V −Y ). Let Δin

H (X) and Δout
H (X) denote the set of edges

in H entering and leaving the set X, respectively. Whenever the index H is
omitted in these concepts then it corresponds to the edge set E. X and Y are
said to be crossing, if X∩Y �=∅, X∪Y �=V and neither of X and Y contains
the other. Sometimes we will use x in the sense of {x}; A+x (resp. A−x)
will denote A∪{x} (resp. A−{x}). For a real number α, let α+=max(0,α)
denote its positive part.

For completeness, we repeat some definitions from the Introductions.
A vertex v∈V is called special, if ρ(v)=k, �≤δ(v)≤k−1. Let S denote the
set of special vertices (S �= ∅ is not assumed). If X ⊆S then we say that X
is a special set. Observe that s /∈ S as δ(s)≥ k. For a z ∈ S, a subset F of
edges entering z is locally admissible at z, if G−F is (k,�)-edge-connected
in V −z and |F |≤k−δ(z). A locally admissible F will be called sufficient if
|F |=k−δ(z). Theorem 1.3 will be an easy consequence of the following.

Theorem 2.1. In a minimally (k,�)-edge-connected digraph G = (V,E)
there exists a special vertex z with a sufficient locally admissible set at z.

Let us see how Theorem 1.3 follows from this.

Proof of Theorem 1.3. First let us show that the operations (i) and (ii)
preserve (k,�)-edge-connectivity. This is straightforward in case of (i).
For (ii), let G′ = (V + z,E′) denote the digraph resulting from the (k,�)-
edge-connected digraph G=(V,E) by applying (ii). For every v∈V −s, the
k edge-disjoint paths from s to v and the � edge-disjoint paths from v to s
in G naturally give the same number of paths in G′. Thus the only problem
could be if there are too few paths from s to z or from z to s.

In this case, by Menger’s theorem we have a subset X of V+z with s /∈X,
z ∈X, and either ρ(X) < k or δ(X) < �. Since G′ is (k,�)-edge-connected
in V , the only possibility is X={z}. However, ρ(z)=k and δ(z)≥ � gives a
contradiction.

For the other direction, if G is not minimally (k,�)-edge-connected, then
an edge can be deleted preserving (k,�)-edge-connectivity. Otherwise, Theo-
rem 2.1 is applicable. Consider the special vertex z and the sufficient locally
admissible F . G−F is (k,�)-edge-connected in V −z and ρ(z)=δ(z), satisfy-
ing the conditions of Theorem 1.6. For the graph G′ resulting by a complete
splitting at z, operation (ii) can be applyied to get G.
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The locally admissible edge sets are characterized by the following claim.

Claim 2.2. F ⊆Δin(z) is locally admissible at z if and only if |F |≤k−δ(z)
and for each ∅ �=X�V , X �={z},

(1) ρE−F (X) ≥ γ(X).

Proof. If F is locally admissible then for X �= V − z, (1) is the necessary
cut condition as G−F is (k,�)-edge-connected in V −z. If X =V −z then
it is equivalent to δE−F (z)≥ �, which follows since δF (z)= 0. The converse
direction follows by Menger’s theorem.

It is easy to check in polynomial time whether a set of edges entering z is
locally admissible. Furthermore these edge sets have a nice structure: they
form a matroid. A consequence is that a building sequence can be found in
polynomial time for a (k,�)-edge-connected graph G. This will be discussed
in Section 6.

Consider now an arbitrary edge set F ⊆E. Let Fv denote the subset of F
entering vertex v. Let μ(X)=δF (V −S−X,X), and let t(X)=min{δF (V −
S−X,v) : v ∈X}. A v giving the minimum value in the definition of t(X)
is called a seed of X. Let T (X)=max{ρFv (X) : v∈X}, and a v giving the
maximum value is called a sprout of X. Note that a set may have multiple
seeds and sprouts.

Definition 2.3. In a digraph G=(V,E) with special vertices S⊆V , we say
that F ⊆E is globally admissible, if

ρ(X) ≥ γ(X) + ρF (X), if X − S �= ∅,X � V,(2a)

ρ(X) ≥ k + T (X), if X is special, |X| ≥ 2,(2b)

ρ(X) ≥ γ(X) + μ(X)− t(X), for every ∅ �= X � V,(2c)

|Fv| ≤ k − δ(v), for every special vertex v, and(2d)

Fv = ∅, if v /∈ S.(2e)

Note that if X is not special then all vertices in X −S are seeds of X
and t(X)=0, and thus (2a) implies (2c). For a special set X, we have two
conditions. In the right hand side of (2c), we consider only the edges coming
from vertices not in S, however, not all such edges are taken into account.
The importance of (2b) is clear from the following claim.

Claim 2.4. If F is globally admissible, then for each v ∈ S, Fv is locally
admissible at v.
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Proof. We have to verify (1). If X is not special, then ρE−Fv(X) ≥
ρE−F (X) ≥ γ(X), by (2a). If X is special and |X| ≥ 2, then by (2b),
ρE−Fv(X) ≥ ρ(X)− T (X) ≥ k. Notice that for an arbitrary set X ⊆ V
with s /∈ X, δE−Fv(X) ≥ δE−F (X) ≥ � holds. This is since δE−F (X) =
ρE−F (V −X)≥γ(X)=� by (2a). V −X is not special because of s∈V −X.

Claim 2.5. If F is globally admissible in G and F ′ ⊆ F , then F ′ is also
globally admissible in G.

Proof. When removing an edge from F , the right hand sides of (2a), (2b)
and (2c) cannot increase.

F = ∅ is globally admissible if and only if G is (k,�)-edge-connected.
By the above claim, any graph G that admits a globally admissible F is
automatically (k,�)-edge-connected.

We say that a globally admissible set F is maximal, if there is no edge
uv∈E−F so that F +uv is also globally admissible. A globally admissible
F is called sufficient if (2d) holds with equality for at least one special v,
otherwise it is called insufficient.

Let us introduce now the various types of tight sets. We say that a set
X is tight with respect to the globally admissible F , if at least one of (2a),
(2b) or (2c) holds with equality for X. A tight set with X−S �= ∅ is called
normal tight. A special tight X with |X| ≥ 2 is called T -tight or μ-tight if
it satisfies (2b) or (2c) with equality, respectively. If s /∈X then X is called
in-tight and if s∈X then V −X is called out-tight. Note that according to
these definitions, an out-tight set is not necessarily tight.

Claim 2.6. If F is insufficient globally admissible and for uv∈E−F , v∈S,
F+uv is not globally admissible, then uv enters a tight set X satisfying one
of the followings: (a) X is a normal tight set, or (b) X is a T -tight set with
sprout v, or (c) X is μ-tight, u∈V −S and X has a seed t with t �=v.

Proof. By the assumption, F +uv should violate one of (2a), (2b) or (2c).
This cannot happen if none of them holds with equality for F , since the right
hand sides may increase by at most 1. Thus uv must enter a tight set X.
If X is T -tight and v is not a sprout of v, then T (X) does not increase by
adding uv to F and thus (2b) will not be violated for X. Similarly, if X is
μ-tight and u∈S, then (2c) remains unchanged for F +uv. If u /∈S but the
unique seed of X is v, then for F+uv, both μ(X) and t(X) increase by 1.

Note that if F is an insufficient maximal globally admissible, this claim
applies for every edge uv∈E−F , v∈S.
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We will prove a slight generalization of Theorem 2.1 for the purpose of a
special induction argument. In order to state this form, the following notion
is needed. A globally admissible edge set F saturates the graph G if every
edge e= uv ∈E−F with v /∈ S enters a normal tight set. We are going to
prove the following:

Theorem 2.7. Let F0⊆Δout(s) be an arbitrary globally admissible set of
edges in G = (V,E) so that F0 saturates G. Then there exists a sufficient
globally admissible F ⊇F0.

The (k,�)-edge-connectivity of G follows by the existence of F0. However,
G is not assumed to be minimal subject to this property. Nevertheless F0=∅
is a globally admissible edge set saturating G if and only if G is a minimally
(k,�)-edge-connected digraph. Thus Theorem 2.1 is a direct consequence
of Theorem 2.7. Unfortunately, it is not true that every maximal globally
admissible F ⊇F0 is sufficient, as shown by a counterexample in Section 6.

Let uv be an edge entering the tight set X. If v∈S and X and uv satisfy
one of the conditions in Claim 2.6 or v /∈S and X is normal tight, then we
say that X blocks uv.

We conclude this section with some elementary propositions.

Claim 2.8. If X,Y ⊆V , then

ρ(X)+ ρ(Y ) = ρ(X∩Y )+ ρ(X∪Y )+ d(X,Y ), and(3a)

ρ(X)+ ρ(Y ) = ρ(X−Y )+ ρ(Y −X)+ ρ(X∩Y )− δ(X∩Y )+ d̄(X,Y ).(3b)

Claim 2.9. For any X,Y ⊆V ,

γ(X) + γ(Y ) = γ(X ∪ Y ) + γ(X ∩ Y ), and(4a)

γ(X) + γ(Y ) ≤ γ(X − Y ) + γ(Y −X).(4b)

Claim 2.10. For any X⊆V , ρ(X)−δ(X)=
∑

v∈X(ρ(v)−δ(v)).

Claim 2.11. Assume F is insufficient globally admissible, and Z �= ∅ is
special. Then δ(Z)<ρE−F (Z).

Proof. For each v ∈ Z, ρ(v)− δ(v) > |Fv |, and thus by summing for all
v∈Z, ρ(Z)− δ(Z)=

∑
v∈Z(ρ(v)− δ(v))>

∑
v∈Z |Fv|. The right hand side is

at least ρF (Z), hence the claim follows.

Claim 2.12. For G=(U+u,E) with ρ(u)=δ(u), let Gu denote the result of
an (arbitrary) complete splitting at u. Then for an X�U+u, ρGu(X−u)≤
ρG(X).

Proof. If u /∈X, then the claim follows since splitting off a pair of edges
incident to u cannot increase the degree of X=X−u. In the case of u∈X,
ρGu(X−u)≤δG(U−X,u)+δG(U−X,X−u)=ρG(X).
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3. Proof of Theorem 2.7

The proof relies on three basic lemmata. First:

Lemma 3.1. Let F0⊆Δout(s) be an insufficient globally admissible set of
edges, and ρ(u)= δ(u) for some s �=u∈V . There exists a complete splitting
at u so that F0 is globally admissible in the resulting graph.

Lemma 3.2. Assume F ′ is a globally admissible edge set and X is a tight
set with |X|≥2, s /∈X, |X−S|≤1. Then for any maximal globally admissible
F ⊇F ′, F is sufficient.

Lemma 3.3. If F is maximal globally admissible with u ∈ S+ s for each
uv∈F , then F is sufficient.

The first of these will be proved in Section 4, while the last two in Sec-
tion 5. Let us now turn to the proof of Theorem 2.7. Consider a counterex-
ample G=(V,E) and F0 so that |V | is minimal, and subject to this, |F0| is
maximal. Consider a maximal globally admissible F ⊇F0. By the assump-
tion, F is insufficient.

Case I. Assume there is a u∈V with ρ(u)=δ(u)=k. By Lemma 3.1, there
is a complete splitting at u so that F0 is globally admissible in the resulting
graph Gu=(V −u,E′).

Claim 3.4. F0 saturates Gu.

Proof. The set of special vertices is the same S in G and Gu. Consider an
edge e=yz in Gu with z /∈S. Assume first that e was an edge in G as well.
There is a normal tight set X ⊆ V blocking e in G, since F0 saturated G.
Claim 2.12 implies ρGu(X −u) ≤ ρG(X). X −u is also normal and as the
subset of F0 entering X−u in Gu is the same as the subset in G entering X,
it follows that X−u blocks e in Gu.

If e = yz is a new edge then take a set X that blocked uz in G. X is
again a normal tight set in Gu. Note that y /∈X as otherwise the in-degree
of X would be smaller in Gu than in G while the value of ρF0(X) does not
change. Hence X blocks e in Gu, completing the proof.

As Gu has less vertices than G, by the minimality of |V | there exists
a special vertex w and a sufficient locally admissible edge set Fw so that
F ′=Fw∪F0 is globally admissible. Note that w is special in G as well.

From Gu we can get to G by pinching the k splitted edges with u. By
abuse of notation, we will denote by Fw the edge set inG corresponding to Fw
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in Gu in the sense that if an edge xw∈Fw has been divided by u, then we
replace xw by uw in Fw. We will also use F ′ in this sense in G. Unfortunately,
it might happen that F ′ is not globally admissible in G. Consider a globally
admissible F1 maximal subject to the condition F0 ⊆ F1 ⊆ F ′ with |F1| as
large as possible. If F1 = F0 ∪Fw then F1 is sufficient as δG(w) = δGu(w).
Otherwise, we are going to prove that there is a tight set Z for F1 with
|Z−S| ≤ 1, |Z| ≥ 2 so Lemma 3.2 is applicable giving a sufficient globally
admissible superset of F1.

Assume Fw−F1 �= ∅, and consider an edge zw∈Fw−F1. By Claim 2.6,
zw is blocked by some tight set Z with respect to F1.

Claim 3.5. Z⊆S∪{u}.

Proof. Z=V−u is impossible as δF1(u)< |Fw|≤k−�, and thus ρE−F1(V−u)>
�. Assume we have V −Z−u �=∅ and Z−S−u �=∅. As F ′ is admissible in Gu

and Z−u is not special, ρGu,E′−F ′(Z−u)≥γ(Z) follows. Claim 2.12 implies
ρG,E−F ′(Z) ≥ ρGu,E′−F ′(Z −u). However, ρE−F1(Z) > ρE−F ′(Z)≥ γ(Z) as
zw ∈ F1 −F enters Z, showing that Z cannot be tight. This implies the
claim.

Case II. Assume the condition of Case I does not hold and there is an edge
uv∈F with u∈V −S−s. Let G1=(V,E−uv+sv), F1=F0+sv.

Claim 3.6. F1 is globally admissible in G1 and saturates it.

Proof. If |{u,s}∩X| �=1 then no term changes in the conditions (2a), (2b)
and (2c) for X. This is in fact always the case for (2b). If u∈X, s /∈X, then
in (2a) and (2c), both sides increase by one, while if u /∈X, s∈X, both sides
decrease by one. (Note that t(X)=0 in both cases as X−S �=∅.)

This implies the admissibility and that all tight sets remain the same.
Thus if an edge uv∈E−F with v /∈S was blocked by a normal tight set for
F0 in G, then the same blocks it in G1, proving the saturation.

By the choice of G and F0, there is a sufficient edge set F ′ ⊇ F1 in G1

with |F ′
w|= k− δG1(w) for some w special vertex in G1. All vertices but u

and s have the same in- and out-degrees in G and G1, and thus w is special
in G unless w = u and ρ(w) = δ(w) = k. This is a contradiction since we
assumed that no such vertex exists.

Let F ′′=F ′−sv+uv. As in the previous claim, it is straightforward to
show that F ′′ is globally admissible in G containing F0.

Case III. For all edges in uv∈F , u∈S+s. Now the conditions of Lemma 3.3
are satisfied, showing that F is sufficient.
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4. Splitting off

A set function X : 2V →R+ is called positively crossing supermodular, if for
crossing X and Y with p(X)>0, p(Y )>0,

p(X) + p(Y ) ≤ p(X ∪ Y ) + p(X ∩ Y ).

Frank has formulated the following theorem as an abstract generalization of
Mader’s splitting off theorem:

Theorem 4.1 (Frank [3]). Let U be a ground-set, mi and mo two non-
negative integer valued functions on U with mi(U) = mo(U). Let p be a
non-negative, integer valued positively crossing supermodular set function
on U with p(∅)=p(U)=0. Then there exists a digraph H=(U,A) for which

(5) ρH(X) ≥ p(X) for every X ⊆ V

and

(6) ρH(v) = mi(v), δH (v) = mo(v) for every v ∈ V

if and only if

mi(X) ≥ p(X) for every X ⊆ U, and(7a)

mo(U −X) ≥ p(X) for every X ⊆ U.(7b)

Theorem 1.6 is a straightforward consequence: for a graph G=(U+z,E)
which is (k,�)-edge-connected in U with root node s∈U , let E′ denote the set
of edges induced by U . For v∈U , let mo(v)= δE(v,z) and mi(v)= δE(z,v).
Let p(∅) = p(V ) = 0 and let p(X) = (γ(X)−ρE′(X))+ otherwise. It is easy
to check that this function is positively crossing supermodular and that the
conditions of the theorem hold due to the (k,�)-connectedness in U . A set A
of edges ensured by the theorem corresponds to the split edges.

Now we present a generalization of this theorem. The only difference
will be that we require a property slightly weaker than positively crossing
supermodularity. We remark that it is still only a special case of a theorem
in the master thesis of T. Király [7, Theorem 2.8]. Our proof follows the
same lines as the proof given in [5] for Theorem 4.1.

Theorem 4.2. Let U be a ground-set, mi and mo two non-negative integer
valued functions on U with mi(U)=mo(U). Let p be a non-negative, inte-
ger valued set function on U with p(∅) = p(U) = 0 satisfying the following
property. For crossing sets X,Y ∈U , with p(X),p(Y )>0, either

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ), or(8a)

p(X) + p(Y ) < p(X − Y ) + p(Y −X) +mi(X ∩ Y )−mo(X ∩ Y ).(8b)
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Then there exists a digraph H=(U,A) satisfying (5) and (6) if and only if
(7a) and (7b) hold.

Proof. Necessity is obvious as p(X) ≤ ρH(X) ≤min{mi(X),m0(U −X)}.
For sufficiency, assume for a contradiction that no such H exists. An H
satisfying (6) might be found easily. Let qH(X)=p(X)−ρH (X) denote the
violation of (5) for X and let νH = maxX⊆U qH(X) denote the maximum
violation. Let FH := {X ⊂U : qH(X) = νH} the set of maximally violating
sets. As (5) does not hold, νH >0, and thus p(X)>0 for every X∈FH .

Claim 4.3. Let X,Y ∈ FH crossing. Then both X ∩Y and X ∪Y belong
to FH .

Proof. If (8a) holds for X and Y then 2νH =p(X)+p(Y )−ρH(X)−ρH(Y )≤
p(X∪Y )+p(X∩Y )−ρH(X∪Y )−ρH(X∩Y )≤2νH , hence the claim follows.
Assume now (8b) holds. Observe that mi(X∩Y )−m0(X∩Y )=ρH(X∩Y )−
δH(X∩Y ). Using this,

2νH = p(X) + p(Y )− ρH(X)− ρH(Y )

< p(X −Y ) + p(Y −X) +mi(X ∩ Y )−mo(X ∩ Y )− ρH(X)− ρH(Y )

≤ 2νH + ρH(X −Y ) + ρH(Y −X)

+ (ρH(X ∩ Y )− δH(X ∩ Y ))− ρH(X)− ρH(Y ).

Finally we get

ρH(X) + ρH(Y ) < ρH(X − Y ) + ρH(Y −X) + (ρH(X ∩ Y )− δH(X ∩ Y )),

a contradiction to (3b).

Assume H is chosen so that (∗) νH is as small as possible, and subject to
this, (∗∗) |FH| is as small as possible. Let K be a minimal member of F and
L⊇K be a maximal member. There is an edge e=uv of H with u,v∈K and
an f =xy with x,y∈U−L as otherwise K or L would violate (7a) or (7b).
Let us replace e and f by uy and xv and let H ′ denote the resulting digraph.

Now ρH′(X)≥ρH (X)−1 for every X⊆V and equality may hold only if
X ∩{x,y,u,v} is either {x,v} or {u,y}. This condition cannot hold for an
X∈F as it would imply that X and K are crossing.

K /∈FH′ as ρH′(K) = ρH(K)+1. So by (∗∗), there is an X ∈FH′ −FH

with qH(X)=νH −1. By symmetry we may assume X∩{x,y,u,v}={x,v}.
p(X),p(K) > 0. Again (8a) gives a contradiction easily, and if (8b) holds,
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then

2νH − 1 = p(X) + p(K)− ρH(X) − ρH(K)

< p(X −K) + p(K −X) +mi(X ∩K)−mo(K ∩X)− ρH(X)− ρH(K)

≤ 2νH − 1 + ρH(X −K) + ρH(K −X) + ρH(X ∩K)

− δH(X ∩K)− ρH(X) − ρH(K).

In the last equation we have used that by the minimal choice of K and
K−X �=∅, qH(K−X)≤νH −1. This is again a contradiction to (3b).

Now Lemma 3.1 can be derived as an easy consequence.

Proof of Lemma 3.1. Let F = F0. As F ⊆ Δout(s), μ(X) = ρF (X) =
δF (s,X) for everyX. Observe that in this case we only have to guarantee (2c)
as it implies both (2a) and (2b).

Let U =V −u, and let G′=(U,E′) denote the deletion of u from G. Let
us define p(X) the following way. Let p(∅)=p(V )=0, otherwise let

p(X) :=
(
γ(X)− ρE′(X) + μ(X)− t(X)

)+
=

(
γ(X)− ρE′−F (X)− t(X)

)+
.

Let mo(z)=δG(z,u) and mi(z)=δG(u,z).

Claim 4.4. The conditions of Theorem 4.2 are satisfied.

Using this claim Lemma 3.1 follows immediately. Let us split off the edges
incident to u according to the edge set A given by the theorem. As u was
not special, the edges in F are left unchanged. Let Gu=(U,E′+A) denote
the graph after the splitting. We have to prove that F is globally admissible
in Gu. Again it is enough to verify (2c), which is a direct consequence of
ρA(X)≥p(X).

Proof of Claim 4.4. Consider crossing sets X,Y ⊆U with p(X),p(Y )>0.
Then t(X)≥ t(X ∪Y ) and if X has a seed in X ∩Y , then t(X)= t(X ∩Y )
and the same holds for exchanging X and Y . So if X ∩Y −S �= ∅ or X ∩Y
is special but it contains a seed of X or Y , then t(X)+ t(Y )≥ t(X ∩Y )+
t(X∪Y ) follows. In this case

p(X) + p(Y ) = γ(X) + γ(Y )− t(X) − t(Y )− ρE′−F (X) − ρE′−F (Y )

≤ γ(X ∪ Y ) + γ(X ∩ Y )− t(X ∪ Y )− t(X ∩ Y )

− ρE′−F (X ∪ Y )− ρE′−F (X ∩ Y )

≤ p(X ∪ Y ) + p(X ∩ Y ),
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and thus (8a) holds. Assume now X ∩ Y is special and X has a seed
x∈X−Y , Y has a seed y∈Y −X.

p(X) + p(Y ) = γ(X) + γ(Y )− t(X)− t(Y )− ρE′−F (X)− ρE′−F (Y )

≤ γ(X − Y ) + γ(Y −X)− t(X)− t(Y )− ρE′−F (X − Y )

− ρE′−F (Y −X)− (ρE′−F (X ∩ Y )− δE′−F (X ∩ Y )).

As F was insufficient, |Ft|<ρE(t)−δE(t) in the original graph G for every
t ∈ X ∩ Y , which implies |Ft| < ρE′(t) +mi(t)− δE′(t)−mo(t). This gives
mo(t)−mi(t) < ρE′−F (t)− δE′−F (t), and thus mo(X ∩ Y )−mi(X ∩ Y ) <
ρE′−F (X ∩Y )− δE′−F (X ∩Y ). Now t(X) = t(X−Y ) and t(Y ) = t(Y −X)
because of the seeds x and y, so we get

p(X) + p(Y ) < γ(X − Y ) + γ(Y −X)− t(X − Y )− t(Y −X)

− ρE′−F (X − Y )− ρE′−F (Y −X) + (mi(X ∩ Y )−mo(X ∩ Y ))

≤ p(X − Y ) + p(Y −X) +mi(X ∩ Y )−mo(X ∩ Y ).

It is left to verify (7a) and (7b). Let X ⊆U . As F was globally admissible
in G, ρE−F (X) ≥ γ(X)− t(X). Now ρE−F (X) = mi(X) + ρE′−F (X), giv-
ing (7a). On the other hand, ρE−F (X+u)≥γ(X+u)−t(X+u)=γ(X) as u /∈S.
ρE−F (X+u)=mo(U−X)+ρE′−F (X) and thusmo(U−X)≥γ(X)−ρE′−F (X),
giving (7b).

5. Lemmata

In all claims and lemmata of this section, F is assumed to be an insufficient
globally admissible edge set, if not asserted explicitly otherwise.

Claim 5.1. Assume ∅ �= Z �X � V , X −Z ⊆ S and δE−F (Z,X −Z) = ∅.
Then ρ(Z)<ρ(X)−δF (V −X,X−Z) and ρE−F (Z)<ρE−F (X).

Proof. For the first part, δ(X−Z)<ρE−F (X−Z) by Claim 2.11 as X−Z
is special. Then ρ(Z)= ρ(X)+ δ(X −Z,Z)− δF (V −X,X−Z)− δE−F (V −
X,X−Z)<ρ(X)−δF (V −X,X−Z) since δ(X−Z,Z)−δE−F (V −X,X−Z)=
δ(X−Z,Z)−ρE−F (X−Z)≤δ(X−Z)−ρE−F (X−Z)<0 by the previous remark.
The second part follows from this using ρF (Z)+δF (V −X,X−Z)≥ρF (X).

The next lemma describes strong connectivity properties of various tight
sets.

Lemma 5.2. (i) Assume X is an out-tight set. If for some Z ⊆ X,
δE−F (Z,X − Z) = 0, then Z is out-tight and Δout

E−F (Z) = Δout
E−F (X).
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(ii) If X is normal in-tight, Z ⊆X, then δE−F (Z,X −Z) = 0 implies that
X−Z is also normal in-tight and Δin

E−F (X) =Δin
E−F (X−Z). (iii) If X is

μ-tight, and u is a seed of X, then there is an edge uv∈E−F with v∈X.
(iv) If X is T -tight and v is a sprout of X, then there is an edge uv∈E−F
with u∈X.

Proof. (i) δE−F (X)= � and δE−F (Z)≥ �. Thus if δE−F (Z,X−Z)=0 then
all edges in E−F leaving Z must leave X as well, and this is what we wanted
to prove.

(ii) Assume first X−Z−S �=∅. ρE−F (X)=k, ρE−F (X−Z)≥k, and the
claim follows as in the first part.

Assume now X −Z is special. By Claim 5.1, ρE−F (Z)< ρE−F (X) = k,
a contradiction as X was not special, and thus neither is Z.

(iii) ρ(X) = k+ δF (V −X −S,X −u). If all edges in X outgoing from
u are in F , then we can use Claim 5.1 for Z = {u}, and thus k = ρ(u) <
k+δF (V −X−S,X−u)−δF (V −X,X−u)≤k, a contradiction.

(iv) ρ(X)=k+T (X)=k+δF (V −X,v). If all edges in X entering v are
in F , then Claim 5.1 can be applied for Z =X − v. Thus k ≤ ρ(X − v) <
k+T (X)−δF (V −X,v)=k, a contradiction again.

Claim 5.3. For sets ∅ �= Z ⊆ X, X −Z ⊆ S, if X has a seed u ∈ Z then
t(X)= t(Z).

Proof. As X−Z⊆S, for any x∈Z, δF (V −Z−S,x)=δF (V −X−S,x). u is
the vertex in X minimizing δ(V −X−S,x), and thus the claim follows.

In the next lemma, we show some configurations of tight sets which may
not exist for an insufficient globally admissible F .

Lemma 5.4. There exists no X⊆V with the following properties: |X|≥2,
X is in-tight and (i) X−S �=∅ and there is a subpartition Y={Y1, . . . ,Ym}
of X so that X−S⊆

⋃
Y and each Yi is out-tight and proper subset of X or

(ii) X is μ-tight and there is an out-tight Y �X containing a seed u of X;
(iii) X is T -tight and there is an out-tight Y �X not containing a sprout z
of X.

Proof. (i) We may assume that there is no special Yi as leaving such mem-
bers from Y the conditions still hold. Thus ρE−F (Yi) ≥ k for each i and
δE−F (Yi)=� as they are out-tight sets. Let X0=X−

⋃
Y. As X0 is special,

Claim 2.11 implies ρE−F (X0)− δE−F (X0)>δF (X0) whenever X0 �= ∅. Now
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ρE−F (X)=k, δE−F (X)≥�, and thus

k − � ≥ ρE−F (X)− δE−F (X)

=
(
ρE−F (X0)− δE−F (X0)

)
+

m∑

i=1

(
ρE−F (Yi)− δE−F (Yi)

)

≥ δF (X0) +m(k − �),

a contradiction, since either X0 �=∅ and thus the last inequality is strict, or
m≥2 as we did not allow Y={X}.

(ii) Let u denote a seed ofX as in the conditions. t(X)= t(Y ) by Claim 5.3
(X −Y ⊆ S holds since X is special). δ(Y ) = �+ δF (Y ) as Y is out-tight.
Claim 2.11 gives ρ(X−Y )−δ(X−Y )>ρF (X−Y ). Similarly to the previous
case,

k + μ(X)− t(X)− �− δF (X) ≥ ρ(X) − δ(X)

= ρ(X −Y )− δ(X −Y ) + ρ(Y )− δ(Y )

> ρF (X −Y )+ k+μ(Y )− t(Y )− �− δF (Y ).

This gives δF (Y ) − δF (X) + μ(X) − μ(Y ) > ρF (X − Y ). Using δF (Y ) ≤
δF (X)+ δF (Y,X −Y ) and μ(X) = μ(Y )+ δF (V −X −S,X −Y ), one gets
δF (Y,X−Y )+δF (V −X−S,X−Y )>ρF (X−Y ), clearly a contradiction.

(iii) As in the previous two cases,

k + T (X)− �− δF (X) ≥ ρ(X) − δ(X)

= ρ(X − Y )− δ(X − Y ) + ρ(Y )− δ(Y )

> ρF (X − Y ) + k − �− δF (Y ).

Thus δF (Y )−δF (X)+T (X)>ρF (X−Y ). As δF (Y )≤δF (X)+δF (Y,X−Y )
and T (X)=δF (V −X,z), we have δF (Y,X−Y )+δF (V −X,z)>ρF (X−Y ),
a contradiction again.

Claim 5.5. (a) If X ∩Y is special, then ρ(X)+ρ(Y )>ρ(X−Y )+ρ(Y −
X)+δF (V −X,X∩Y )+δF (V −Y,X∩Y ).

(b) If Y is normal tight, Y −X−S �=∅, s /∈X∩Y , then ρ(Y )≤ρ(Y −X)+
δF (V −Y,X∩Y ).

Proof. (a) By (3b), it is enough to prove that (ρ(X ∩ Y )− δ(X ∩ Y )) +
d̄(X,Y )>δF (V −X,X∩Y )+δF (V −Y,X∩Y ). By Claim 2.11, ρF (X∩Y )<
ρ(X ∩Y )− δ(X ∩Y ) and obviously, δF (V −X−Y,X ∩Y )≤ d̄(X,Y ). These
together imply the claim.
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(b) Since Y −X is not special, ρ(Y −X) ≥ γ(Y −X)+ ρF (Y −X) and
γ(Y −X)=γ(Y ) as s /∈X∩Y . Using these,

ρ(Y ) = γ(Y ) + ρF (Y ) = γ(Y ) + δF (V − Y, Y −X) + δF (V − Y,X ∩ Y )

≤ γ(Y −X) + ρF (Y −X) + δF (V − Y,X ∩ Y )

≤ ρ(Y −X) + δF (V − Y,X ∩ Y ).

We are almost ready to prove Lemma 3.2. The following lemma is slightly
weaker, but will easly imply it.

Lemma 5.6. If F ′ is globally admissible and there exists at least one spe-
cial tight set, then any maximal globally admissible set F ⊇F ′ is sufficient.

Proof. Let F be a maximal globally admissible set containing F ′. Clearly,
the tight sets for F are also tight for F ′. We show that if F is insufficient,
then no special tight set may exist.

First we show that no T -tight set exists. Indeed, assume X is minimal
T -tight; let z be a sprout. By Lemma 5.2(iv), there is an edge uz ∈E−F
with u∈X. By Claim 2.6, uz must enter a tight set Y which is either normal
or T -tight with sprout z. Case (c) is excluded since u is special.

First assume Y is normal. If V −Y ⊆X then we have a contradiction by
Lemma 5.4(iii) as V −Y is an out-tight set satisfying the conditions. Y ⊂X
is impossible as it would give Y ⊆S. Thus X and Y are crossing.

(9) ρ(X) = k + T (X) ≤ ρ(X − Y ) + δF (V −X,X ∩ Y )

as z∈X∩Y and ρ(X−Y )≥γ(X−Y )=k. Using both Claim 5.5(b) and (a)
we get a contradiction unless F is sufficient.

If Y is a T -tight set, by the minimality of X, X and Y are crossing.
(9) holds again and also ρ(Y )= k+T (Y )≤ ρ(Y −X)+ δF (V −Y,X ∩Y ) as
z∈X∩Y is also a sprout of Y . A contradiction again.

Next, assume X is minimal μ-tight, and let u be a seed. By
Lemma 5.2(iii), we have a uv∈E−F with v∈X blocked by a tight set Y .
We have seen already that no T -tight sets exist. Neither may Y be μ-tight
since u is special. Thus Y should be normal. Again V −Y ⊆X would con-
tradict Lemma 5.4(ii) and Y ⊂X is impossible, and thus X and Y should
be crossing. Using Claim 5.3 for X and Z=X−Y , t(X−Y )= t(X). Thus

ρ(X) = k + μ(X)− t(X) = k + δF (V − S −X,X) − t(X − Y )

= k + δF (V − S −X,X − Y )− t(X − Y ) + δF (V − S −X,X ∩ Y )

≤ ρ(X − Y ) + δF (V −X,X ∩ Y ).

Using again Claim 5.5(b) and (a) gives a contradiction.
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Lemma 5.7. Assume F is a maximal, insufficient globally admissible set
of edges. If X and Y are crossing tight sets, then X∪Y and X∩Y are tight
as well. If X or Y blocks an edge uv ∈E−F , then either X ∪Y or X ∩Y
blocks uv as well.

Proof. By Lemma 5.6, we know that both X and Y are normal tight.
Assume first that (X∩Y )−S �=∅. From (3a) and (4a) we have:

ρE−F (X) + ρE−F (Y ) = γ(X) + γ(Y ) = γ(X ∩ Y ) + γ(X ∪ Y )

≤ ρE−F (X ∩ Y ) + ρE−F (X ∪ Y ) ≤ ρE−F (X) + ρE−F (Y ),

implying that both X ∩Y and X ∪Y are tight and dE−F (X,Y ) = 0. The
second part of the claim follows as both of them are normal.

We show that X ∩ Y ⊆ S is impossible. X − Y and Y −X are both
non-special sets, and thus Claim 5.5(b) applies for Y and also for X by
exchanging the role of X and Y . Claim 5.5(a) leads to a contradiction
again.

An easy consequence of Lemma 5.7 is the following:

Claim 5.8. If F is maximal insufficient globally admissible and uv∈E−F ,
either there is a unique minimal in-tight set Bin

uv blocking uv or a unique
minimal out-tight Bout

uv blocking uv. If u,v∈X for an in- or out-tight set X,
then Bin

uv⊆X or Bout
uv ⊆X.

Proof. By Lemma 5.7, for every edge uv∈E−F there is a unique minimal
B1 and a unique maximal B2 in-tight set entered by uv. If s /∈B1 then B1

is in-tight and thus Bin
uv=B1, if s∈B1 then Bout

uv =V −B2. (Note that both
sets may exist.) The second part also follows by Lemma 5.7.

Now we are ready to prove Lemmas 3.2 and 3.3.

Proof of Lemma 3.2. By Lemma 5.6, the only case left is if X is normal
tight with s /∈X, |X−S|=1. Let X−S={u}. If there is no edge in E−F from
u to X−u, then by Lemma 5.2, X−u is normal in-tight, a contradiction to
X−u⊆S. Thus there exists an edge uv∈E−F with v∈X. Let Y =Bin

uv or
Y =Bout

uv as in Claim 5.8. In the first case Y ⊆S contradicting that it is a
tight set and every tight set is normal. In the second case, X and Y={Y }
satisfy the conditions of Lemma 5.4(i), a contradiction again.

Proof of Lemma 3.3. For a contradiction, assume F is insufficient. Let
K denote the set of in-tight singletons and L the set of out-tight singletons.

Claim 5.9. K∩L=∅.
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Proof. Let u ∈K ∩L. Trivially, u �= s. As a singleton tight set cannot be
special, ρ(u) = k and δ(u) ≥ k. However, the out-tightness of {u} implies
δE−F (u)=�, and thus δF (u)>0, a contradiction.

Claim 5.10. If an edge f = xy ∈E−F is blocked by an in-tight set, then
Bin

xy={y}. If it is blocked by an out-tight set, then Bout
xy ={x}.

Proof. Consider a minimal in-tight or out-tight set X for some edge f=xy∈
E−F which is not a singleton. By Lemma 5.2(i) or (ii) and the minimality
of X, X is strongly connected in E −F . We show that either X ⊆ K or
X⊆L. Consider an edge uv∈E−F with u,v∈X, guaranteed by the strong
connectivity. By Claim 5.8, either uv enters a minimal in-tight or leaves
a minimal out-tight Y with Y ⊆ X. By the minimal choice of X, Y is a
singleton: Y ={u}∈L or Y ={v}∈K. Thus either X∩K �=∅ or X∩L �=∅.

Assume first X∩K �= ∅ and let Z = X∩K. If X −Z �= ∅, then by the
strongly connectedness there is an edge uv∈E−F with u∈Z and v∈X−Z
blocked by a minimal in- or out-tight set Y . Again, Y is a singleton and either
Y ={u}∈L or Y ={v}∈K. Both cases are impossible since u∈X∩K, and
v∈X−K. Thus we may conclude X⊆K.

For next, consider X ∩L �= ∅ and let Z =X ∩L. If X −Z �= ∅, then an
edge uv∈E−F with u∈X−Z, v∈Z gives the contradiction as above. Thus
X⊆L follows.

X was either in- or out-tight. If X = Bout
xy is out-tight, then X ⊆ L is

excluded as it would give Bout
xy = {x}. Thus X ⊆K. As K ∩S = ∅, for each

u∈X, ρ(u)=k, δ(u)≥k. By the assumption that all edges in F have tail in
S+s, δF (X)=0 and thus δ(X)=�. Now

k − � ≤ ρ(X)− δ(X) =
∑

u∈X
(ρ(u) − δ(u)) ≤ 0,

giving a contradiction.

If X=Bin
xy is in-tight, then X⊆K is excluded since it would give Bin

xy=
{y}. Thus X⊆L. X−S �=∅ as all tight sets are normal by Lemma 5.6, and
thus the conditions of Lemma 5.4(i) apply with Y being the partition of X
into singletons.

s /∈K implies K �= V . Also K �= ∅ as by Claim 5.10, all edges in E−F
leaving s should enter members of K. As ρE−F (V −K)≥�, there is an edge
uv∈E−F leaving K. This cannot be blocked by neither an in-tight nor an
out-tight singleton.
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6. Further notes

6.1. Matroid property of locally admissible sets

First, we describe the structure of the locally admissible edge sets at a given
special node z. We prove:

Theorem 6.1. The set system Mz={F : F is locally admissible at z} is a
matroid.

This together with Theorem 2.1 gives a straightforward way for finding a
sufficient locally admissible edge set. By Theorem 2.1, we know that special
vertices exist and one of them has a sufficient locally admissible set. We
check the special vertices one-by-one, and at each special vertex z we greedily
choose a maximal locally admissible edge set. Note that this can be done
easily as we just need to take care of the (k,�)-edge-connectedness in V −z
which can be checked by flow computations. Theorem 6.1 ensures that if z
admits a sufficient global admissible edge set, we can find it this way.

Proof of Theorem 6.1. The only nontrivial property we have to check is
that if |F |< |F ′| and both F,F ′∈Mz then there is an edge uz∈F ′−F so that
F +uz is locally admissible as well. For a contradiction, assume this does
not hold. A set X will now be called tight at z for F if z∈X, X �={z} and
it satisfies (1) with equality. (Actually this notion coincides with the tight
sets containing z when we consider F as a globally admissible set of edges.)
Note that since |F ′|≤k−δ(z) by definition and |F |< |F ′|, |F | is insufficient.

Claim 6.2. If X and Y are crossing tight sets at z for F then X ∩Y and
X∪Y are also tight.

Proof. If X ∩Y �= {z}, then (1) also holds for X ∩Y and X ∪Y and thus
the claim follows by the submodularity of the function ρE−F . We show
that X ∩Y = {z} is impossible. In this case we would have by (3b) 2k =
ρE−F (X)+ρE−F (Y )≥ρE−F (X−Y )+ρE−F (Y −X)+ρE−F (z)−δE−F (z)>
ρE−F (X−Y )+ρE−F (Y −X)≥2k, as F was insufficient.

Thus for each edge uz ∈F ′−F there is a unique minimal tight set Xuz

at z for F entered by uz. For different uz,wz∈F ′−F , Xuz and Xwz cannot
be crossing as Xuz∩Xwz would also be tight contradicting their minimality.
Thus Xuz∪Xwz=V . Let T ={V −Xuz : uz∈F ′−F}. T forms a subpartition
of V−z so that for each uz∈F ′−F , u is contained in some member of T . For
each Y ∈T , δ(Y )=γ(V −Y )+δF (Y ). As F ′ is locally admissible, δF ′(Y )≤
δ(Y )−γ(V −Y )= δF (Y ), and thus δF ′−F (Y )≤ δF−F ′(Y ). Summing up for
all Y ∈ T we get |F ′−F |=

∑
Y ∈T δF ′−F (Y )≤

∑
Y ∈T δF−F ′(Y )≤ |F −F ′|,

contradicting |F |< |F ′|.
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6.2. Example of an insufficient maximal globally admissible set

An example for an insufficient maximal globally admissible set is shown on
the figure for k=4, �=2. G is minimally (4,2)-edge-connected. It contains
two special vertices u and t with in-degree 4 and out-degree 2. Both of them
have a sufficient locally admissible edge set: for both u and t the two edges
coming from w are sufficient locally admissible. However, if we consider F
consisting of one wu and on wt edge (the thick edges), F is maximal as the
following sets block every edge entering u and t: {u}, {t}, {w} are out-tight
and {u,t,v,w} is in-tight. However, F is insufficient.

The proof of the case �=k−1 by Frank and Király [5] used an argument
similar to the proof of Lemma 3.3. It is for the following reason why this
argument cannot be applied in the general case to prove that every maximal
globally admissible set is sufficient (and in fact, this is not true). Claim 5.9
fails to hold unless F satisfies the condition in Lemma 3.3: in this example
the singleton set {w} is both in- and out-tight.
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Department of Operations Research
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