
Ramsey-Cass-Koopmans Growth Model
Daniel Vernazza1

d.r.vernazza@lse.ac.uk

This note discusses some of the aspects of the Ramsey model mentioned in
Prof. Danny Quah�s handout entitled �Technical note Ramsey-Cass-Koopmans
growth� (http://moodle.lse.ac.uk/mod/resource/view.php?id=123481). Refer
to page 3. The Inada conditions (part of the neoclassical assumptions) are
typically written in terms of the marginal product of capital as:

lim
~k!0

f 0(~k) = +1

and

lim
~k!1

f 0(~k) = 0.

By L�Hôpital�s rule, we have lim
~k!0

f(~k)
~k
= 0

0 = lim
~k!0

f 0(~k) and lim
~k!1

f(~k)
~k
= 1

1 =

lim
~k!1

f 0(~k) and so in the limit the average product and marginal product are

equivalent.2

Social Planner�s Problem
The following discussion follows pages 4-7. The social planner�s problem

writes as:

max
f~c;~kg

Z 1

0

e�(���)tU(~c(t)A(t))dt

s.t.

:
~k(t) = f(~k(t))� ~c(t)� �~k(t)

where � = � + � + � and ~k(0) is given.

The present value Hamiltonian for this problem is:

H = U(~c(t)A(t))e�(���)t +
h
f(~k(t))� ~c(t)� �~k(t)

i
�(t)e�(���)t

The F.O.C.s (dropping the time subscripts where no confusion occurs) are:

1Any errors are my own.
2Away from the limit, the average product exceeds the marginal product when there is

diminishing marginal returns. Consider the Cobb Douglas production function: F (K;AN) =

K� (AN)1��, � 2 (0; 1); f(~k) = ~k� and f 0(~k) = �~k��1 6= ~k��1 = f(~k)
~k
.
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@H

@~c
= 0 () U 0(~cA)Ae�(���)t = �e�(���)t (2.7)

() AU 0(~cA) = �

@H

@~k
= � d

dt

h
�e�(���)t

i
(2.8)

()
�
f 0(~k)� �

�
�e�(���)t = � d

dt

h
�e�(���)t

i
() f 0(~k)� � = � d

dt

h
ln
�
�e�(���)t

�i
() f 0(~k)� � = �

"
_�

�
� (�� �)

#

Now we derive the Euler equation from equations (2.7) and (2.8):
Take logs of (2.7):

logA+ logU 0(~cA) = log �

Di¤erentiate w.r.t. time:

_A

A
+
U 00(~cA)

U 0(~cA)

h :
~cA+ _A~c

i
=
_�

�

_A

A
+

�
(~cA)U 00(~cA)

U 0(~cA)

� h :~cA+ _A~c
i

~cA
=
_�

�

where the term in curly brackets ~cAU 00(~cA)
U 0(~cA) is �minus�the coe¢ cient of rel-

ative risk aversion. De�ne R (~cA) � � (~cA)U 00(~cA)
U 0(~cA) . Then, replacing _A

A = � we
have:

:
~c

~c
+ � = R (~cA)

�1
 
� �

_�

�

!
(2.10)

Assume the utility function exhibits CRRA, that is, R (~cA) is a constant
R. Use (2.8) to eliminate � from (2.10) and this gives us the following Euler
equation:

:
~c

~c
+ � = R�1

h
� + f 0(~k)� � � (�� �)

i
NB: � = � + � + �, so this simpli�es to:
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:
~c

~c
+ � = R�1

h
f 0(~k)� � � �

i
:
~c

~c
=
h
f 0(~k)� (� + �+R�)

i
R�1 (2.11)

The endogenous variables in the model are
n
~c(t); ~k(t); �(t) : t 2 [0;1)

o
. The

social planner�s solution is governed by 3 equations: the Euler equation, the
transition law and the transversality condition. The Euler equation (2.11) is a
FODE for consumption, that is, it tells us how consumption in the next instant
depends on consumption in the last instant for optimality. The transition law
:
~k = f(~k)�~c�(� + � + �) ~k is a FODE for the capital stock. Notice that these two
FODEs are not independent, the Euler equation depends on ~k and the transition
law depends on ~c. So we have a (non-linear) SYSTEM of di¤erential equations
that must be solved simultaneously to �nd the optimal paths of ~c, ~k and �
(NB: equation (2.7) gives us � once we have ~c). Since we have two FODEs,

to pin down the levels of
n
~c(t); ~k(t); �(t) : t 2 [0;1)

o
we need two boundary

conditions. The capital stock at time zero ~k(0) is one and the other is the so-

called transversality (or terminal) condition lim
t!1

n
~k(t)�(t)e�(���)t

o
= 0. Most

of the time we are just interested in whether the system tends to a steady state
or BGP. Graphically we can do this using a phase diagram or, more formally,
by calculating the eigenvalues of the two-variable system of FODEs.

3


