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This note discusses some of the aspects of the Ramsey model mentioned in
Prof. Danny Quah’s handout entitled “Technical note Ramsey-Cass-Koopmans
growth” (http://moodle.lse.ac.uk/mod/resource/view.php?id=123481). Refer
to page 3. The Inada conditions (part of the neoclassical assumptions) are
typically written in terms of the marginal product of capital as:
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By L’Hopital’s rule, we have lim@ =93= lim f'(k) and lim 1k — x=
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Social Planner’s Problem
The following discussion follows pages 4-7. The social planner’s problem

writes as:

max - e~ (P=)t[r (s
{a,;;}/o U(c(t)A(t))dt
s.t.

R(t) = F(R(E)) — &(t) — CR(L)
where ¢ =6 + v + ¢ and k(0) is given.

The present value Hamiltonian for this problem is:

H = U(E6)A(t)e™ =+ [ £(k(t) — (t) = Ch(t)] At)e= ="

The F.O.C.s (dropping the time subscripts where no confusion occurs) are:

1 Any errors are my own.
2 Away from the limit, the average product exceeds the marginal product when there is
diminishing marginal returns. Consider the Cobb Douglas production function: F(K, AN) =

K (AN)"%, a € (0,1); f(k) = k* and f/(k) = ako—! # ko= = L&),
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Now we derive the Euler equation from equations (2.7) and (2.8):
Take logs of (2.7):

log A +log U’ (¢A) = log A
Differentiate w.r.t. time:
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A U'(¢A) c¢A A
where the term in curly brackets % is “minus” the coefficient of rel-
ative risk aversion. Define R (¢A) = —%. Then, replacing % =& we
have:
é L1 A
z +&=R(cA) <§ — /\> (2.10)

Assume the utility function exhibits CRRA, that is, R (¢A) is a constant
R. Use (2.8) to eliminate A from (2.10) and this gives us the following Euler
equation:
é —1 1/7.
SHE=RT e R ¢~ (p-v)
NB: ( = § + v + &, so this simplifies to:



§+€=R‘1 [f’(ff)—5—p]

- [f’(zé) - (6+p+R§)] R (2.11)
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The endogenous variables in the model are {E(t), E(t),A(t) - t €0, oo)} The

social planner’s solution is governed by 3 equations: the Euler equation, the
transition law and the transversality condition. The Euler equation (2.11) is a
FODE for consumption, that is, it tells us how consumption in the next instant
depends on consumption in the last instant for optimality. The transition law

k= f(k)—¢—(6 + v+ &) k is a FODE for the capital stock. Notice that these two
FODE:s are not independent, the Euler equation depends on k and the transition
law depends on é. So we have a (non-linear) SYSTEM of differential equations
that must be solved simultaneously to find the optimal paths of ¢, k& and A
(NB: equation (2.7) gives us A once we have ¢). Since we have two FODEs,
to pin down the levels of {é(t)J;(t),)\(t) (te [0,00)} we need two boundary
conditions. The capital stock at time zero l~c(0) is one and the other is the so-
called transversality (or terminal) condition tlirglo {l;(t))\(t)e’(”’“)t} = 0. Most
of the time we are just interested in whether the system tends to a steady state

or BGP. Graphically we can do this using a phase diagram or, more formally,
by calculating the eigenvalues of the two-variable system of FODEs.



