Learning to match in online platforms

Milan Vojnovic

Department of Statistics

LSk

Seminar of the School of Information Sciences & Technology,
Athens University of Economics and Business, Athens, Greece, 12 December 2019



Outline

e Part | — Adaptive matching for expert systems with uncertain task types

 Part Il — Test score approach to team selection



Part |

Adaptive matching for expert systems with
uncertain task types

Joint work with L. Gulikers, L. Massoulie, and V. Shah

Operations Research, accepted 2019



Motivating application scenarios

& Booking
airbnb

StackExchange=

employers — employees

cars — passengers

travelers — housing facilities

questions —answers



Matching problem formulation

servers

tasks

|

new task arrival
uncertain task type (class)




Key questions

 What throughput can be achieved by service systems with uncertain task types by
learning while matching tasks to servers?

* What policies can achieve optimal throughput?



PrOblem fOrmU|at|On e Each task is of a hidden

(latent) class, from a finite
set C of classes

SErvers e Each server can serve at

most 1 task at any time with
processing rate L

* Server s solves a task of
class ¢ according to an
independent Bernoulli (ps )
random variable

tasks

I * Bayesian framework: prior
distribution for class type

new task arrival



Classical case: scheduling flexible servers

O O Q Q * No uncertainty:

* Known task classes
* Known processing rates

ps,cﬂs
e Goal:

* Minimize a long-term cost, defined as a
c function of queue sizes or job waiting tasks

e Optimality of simple policies in some regimes:
* cu-scheduling policy




Learning from failures

&

Probability of failure:
Failed
attempt l/)s(z) — Zcec(l - pS,C)ZC
Prior distribution of task type: Posterior distribution of task type:

; N (1 - ps,c)Zc
Z - Z —(]55(2)—( D.(2) ,CEC)



Optimal stability region
* Thm Assume there exits server s such that p; . > 0 for all ¢ € C.
If there are variables v; . = 0 and 65 > 0 for s € S and ¢ € C such that
ATty + Xises zez:b.(z)=21 Vs,zWs(Z) = Lses Vs,z forall z' € Z (flow conservation)

and
Ysrez Vs +0s < ugforalls €S (capacity constraint)
then, there exists a policy under which the system is stable.

Otherwise, there is no policy under which the system is stable.
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Throughput optimal policy: challenges
* Natural approach: associate a queue with each task type z

* Challenge: an infinite number of queues (unlike to classical queueing systems)
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Naive greedy policy

* At each time when there is a free server s and a
task waiting to be served, assign s to a task with
O O O O maximum success probability according to the
posterior distribution of task class:
z(s) € argmax,ez.y, >0 (1 - ¢s(2))

, with random tie break

\ Not throughput optimal

N, tasks 12



Special case: Asymmetric (a) system

* Arrival type:

M51=1 S1 @Hszzl 1 1
(ch’ZCZ) = ( )

2'2

* Upon a failed attempt for a
task of type z, the task
¢y C2 becomes of type z' where

(Zé1’ Zéz) — (1’0)

b@=30-a %G =01-0
1 * Set of task types Z = {z,z'}
s, (2) =75 s, (2) = 1
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Asymmetric (a) system: optimal stability region

* Optimal stability region:

A< A*(a)
where

3a

A*(a) = min {Za,
a
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Arnival rate A

Stability region of random and greedy policies
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Optimal stability region: intuition

* For small values of a, the main bottleneck
is 51 serving tasks of class a

Hsy =1 S1 Sy ) Us, =1

* The extra capacity of server s, can be
used to identify class ¢, tasks

* For large values of a, both servers are
¢, c bottleneck, and thus identifying class ¢,
tasks results in a throughput loss

16



Intuition (cont’d)

A2 —a)

N

b @=30-0) Y@ =(0-a

NORE by (2) =1
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Backpressure (Y) policy

e Key idea: bundling task types such that the total number of queues is finite

N, X R . |
\ \ WSZ(N, X) = {NZ: l/)S(Z)Nd’s(Z) | if d)s(z) eY
| N, —s(2)X  ifds(2) € Z\Y

Backpressure (Y) priority index:

Y Z\Y
finite set 18



Backpressure (Y) policy

* Algorithm: when assigning sever s, if

ZsleS Usr maXZeY; NZ>() WS/,Z(NrX)

mingec ZsIES Psr,clsi

X <

then, assign a task of type in BS(N, X) to s with random tie break where

Bs(N, X) = arg max ws, (N, X)

else, assign a task chosen uniformly at random from Z\Y

19



Throughput optimality of Backpressure (Y)

* Thm: Assume there exits server s such that p; . > O forall ¢ € C.

If the sufficient conditions for stability hold, then there exists a finite subset Y of
the set of task classes Z such that Backpressure (Y) policy is throughput optimal.

20



Experimental results: Math StackExchange

Mathematics. .. = Login | Signup

Mathematics Stack Exchange is a question and a Rt s aouestion
answer site for people studying math at any

Anybody can answer

level and professionals in related fields. It only j
takes a minute to sign up. E

Sign up to join this community A

The best answers are voted up and
rise to the top

8 MATHEMATICS

Home | Explore our Questions peynsyl  Hot Network Questions
Questions In 4 spatial dimensions, would motion under a
central force law be confined to a plane?
Tags real-analysis calculus linear-algebra probability
@ Does a patron have to know their warlock?
Users abstract-algebra integration sequences-and-series
. . 5% Anovel (or maybe a whole series) where a weird
Unanswered combinatorics ~ general-topology ~matrices more tags Interesting Bountied | Hot | Week | Month disease infects men and machines

’;‘g Did "2001: A Space Odyssey" make any reference
to the names of companies, or show any evidence

A X N
0 0 2 x € K — K¥ is an algebraic element? of the existence of advertisements?
[ Brake disc and pads corrosion, do they need

votes answers views . . - .
algebraic-number-theory  p-adic-number-theory asked 2 mins ago Sssss 557 " replacement?
¢ Density plot on the surface of a sphere
Question About Part of the Proof of a Lemma to the Church-Rosser Theorem _
2 1 21 o« . 5] Why do amateur radio operators call an RF choke
voes | answer | views 1D “Lectures on the Curry-Howard Isomorphism”(1998) 7 2 balun?
relations  formal-languages lambda-calculus answered 2 mins ago Taroccoesbrocco 7,809 o Mostly One Way Travel : Says Grandpa
\ Isitacademically dishonest to submit the same
0 0 2 The convergence of power series of log(1 + x) with or without Taylor g;‘::‘zcsttg;w" different classes in the same
expansion !
votes answers views

5% Why couldn't Rick just use a micro sun to power
complex-analysis  power-series taylor-expansion asked 2 mins ago Alex 43 ~_his car?




= Stack Q Search on Mathematics...

£ MATHEMATICS

Home ¢n+1 _ (1 _ ¢)n+l

P | Proving lim,,— o
@" — (1 — D)
Tags
Asked today Active today Viewed 39 times
Users
Unanswered = 1+T‘/§ is the golden ratio

2 I'mhaving hard time using proving that

im (I)n+1 - (1 _q))n+l _
now @ —(1—@)

dividing both the numerator and denominator by ®" doesn't help, neither does

n—1
D" —(1-d") =20+ 1) Y &'(l — D)1
i=0

Where is the trick?

calculus  sequences-and-series  golden-ratio

share cite improve this question asked 1 hour ago

Fritjof Larsson
107 A5

A New contributor

4 1think that dividing the numerator and denominator by ®” is helpful. — Lord Shark the Unknown 1 hour ago

2 Answers

active oldest votes
Hint:
5-1 5-1 2
®-1= V5 = = <land>0
2 2541 A5+1
1-®
= |1 -®| < 1and <1
Divide the numerator and the denominator by ®”
share cite improve this answer edited 1 hour ago answered 1 hour ago
9:.‘1 lab bhattacharjee
&% 243k © 15 M170 A292
1  @user1992, Thanks for the observation — lab bhattacharjee 1 hour ago
1 @user1992, Rectified — lab bhattacharjee 1 hour ago
Use How do I prove Binet's Formula?
a™ — ﬂm
if F(m) = —ﬂ with a, § are the roots of
a—
P-t-1=0
we can prove
Fui2 = Fuy1 + Fy
Fu 1
n+ =1 +
Fn+1 Fn+1
F,
. Fyio
Iflimyse —— =7 > 0,
n+l
1 2
r=1+—- < rr-r-1=0,r=?
r
share cite improve this answer answered 1 hour ago

?-:‘i lab bhattacharjee

&% 243k

15

170 A292



Dataset

702,286 questions Inferred expert skills:
994,138 answers

Expert Clusters

Tags 1 2 3 4 5 6 7 8 9 10

calculus 32 | .39 | .30 || .35 || .37 || .47 | .28 || .16 | .26 || .41

. real-analysis A7 | .41 || 25 || .32 || .23 || .49 || .40 || .10 || .10 || .44

For each (user, tag) pair, the linear-algebra 46 | 20 || .05 | .36 | .14 || .48 | .26 || .31 || .07 | .43

. . abstract-algebra 02 || .05 || .03 || .32 || .02 || .38 || .23 || .50 | .01 || .27

estimated by empirical integration 09 | .43 | 05| .19 || .44 || .45 | .03 || .01 || .06 | .37

sequences-and-series || .05 || .32 || .16 || .31 20 || .45 || .09 || .04 || .06 || .33

freq uency general-topology 02 || .10 || .03 || .16 || .02 | .43 || .50 || .07 || .02 || .31

combinatorics 03 || .14 || .06 || .43 || .04 || .37 || .02 || .06 | .19 || .05

matrices 27 || 15 || .02 || .31 || .02 || .44 || .06 || .11 || .02 | .34

Expert classes CompUtEd by complex-analysis 02 | .19 | .08 || .16 || .14 || .50 || .09 || .05 || .01 || .44
using k-means clustering Size H 165 H 188 H 313 H 200 H 179 H 183 H 231 H 187 H 178 H 176 |

Estimated parameters used in simulations for different question arrival rates 4
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Backpressure vs greedy

Queue backlog
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Average delay: Backpressure vs greedy

—e— Backpressure

200 -
-<-- Greedy
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Part | —summary points

* Backpressure type policy for assigning tasks to servers with uncertain task types
e Shown to be throughput optimal

* Greedy and random policy can be substantially suboptimal

* Backpressure policy not easy to implement, but provides guidelines for designing
simple-to-implement heuristic policies

26



Part |

Test score approach to team selection

Joint work with S. Sekar and S. Yun

Management Science, accepted 2019
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Motivating application scenarios

?k &L * Data summarization
i T « Recommender systems
s L“‘%;lh * Feature selection for learning models

Online platforms

Combinatorial auctions
e Sensor placement

* Influence maximization in social networks

28



Problem formulation

* Selection of a subset of items of given cardinality from a pool of candidate items

29



Problem formulation (cont’d)

&

* Partition items to groups

Groups of items
(projects)

ltems
(workers)

30



Challenges

Group valuations:

value of a group of items may
depend on the values of
individual items in a
complicated way

E.g. complements or
supplements

Computation complexity:
selection or assignment of
items typically amounts to
solving combinatorial
optimization problems that
are NP hard

Uncertainty:

uncertainty of individual item
values may affect the expected
value of a group of items in
subtle ways

E.g. predictable vs high-risk
high-return items

Need for simple algorithms:
it is common assign items to
groups by simple algorithms
using individual item scores

E.g. select a set of items with
highest individual item scores

31



Benefits of algorithms based on item scores

* Dynamic environments: scalability for changing pools of candidate items

* Individual item scores only need to be computed once and do not need to be
recomputed when the set of candidate items changes

Distributed computation: algorithms for selection and assignment based on
individual item scores are easy to implement in distributed systems

* Oracle queries: individual item scores may require estimating value of groups of
items only for identical or similar items

Conceptual simplicity: selection of items based on individual item scores is easy
to understand by end users

32



Key questions

* Can algorithms that assign items to groups based on individual item scores
achieve close to optimal group performance?

* |f so, what are individual item scores that can guarantee this?

* How do simple, natural individual item scores perform?

33



Stochastic optimization problem formulation

e Given a ground set of elements N = {1,2, ..., n}, valuation function f: 2 xR™ —
R, feasible set F € 2/, and distribution P: find S* € F that is a solution to:

max u(S) = Ex-p[f (S, X)]

* Assumptions:
e F={Se2V:|S| =k}
* f(S,x) = g(Ms(x)) where g: R} — R is a symmetric monotone
submodular value function

* X = (Xq, X5, ..., X)) are independent random variables, X; ~ P;

Note: M¢(x); = x; if i € S and Mg(x); = ¢ otherwise (¢ is a minimal element)



Examples of valuation functions

Diminish returns of total value:
gx) = g(Xi=1 x;)
where g is increasing concave
Best-shot:
g(x) = max{xq, Xy, ..., Xn }
Top-r:
gx) =xqy+x+txgpforl<r<n

where x(1), X(2), ..., X(y) are values
X1, X9, ..., Xy arranged in decreasing order

Constant elasticity of substitution (CES):
gx) =0l + x5+ -+ xD)Y forr >0
diminishing returns forr = 1
Success probability:

g(x) =1—-[liz;(1 — p(xy))

where p: R — [0,1], increasing

35



Computation by using test scores

* Computation model introduced by [Kleinberg and Raghu 2015]: an algorithm has
access only to (estimates) of individual item scores (test scores)

* We can think of test scores as a mapping from (g, F, P;) to a real value:

a; = h(g,F,P;)

* The sample mean version:

a; =721 p(X©; g, F,P)

where x = ¢@(x; g, F, P;) is given and X©® are independent samples from Pl-d

36



Examples of test scores

* Mean test scores:
a; = EXiNPi[Xi]

e Standard quantile test scores:

a; = q;(0)

None of these

test scores
where q;(60) is the 8-quantile q;(#) = inf{x € R: P;(x) = 6} can guarantee a
constant-factor
approximation
¢ Quantile test scores:
a; = Ex,p,[X; | Pi(X;) = 0]



Main result: approximation guarantee

* Thm. Assume g is a symmetric monotone function that satisfies the extended
submodularity condition: for all x, y such that g(x) < g(y),

9(x,z) —g(x) 2 g(y,z) —g(y) forall z € R,

Then, there exist test scores that guaranteea (1 — 1/¢e)/(5 — 1/e)-factor
approximation.

 In particular, the theorem holds for replication test scores:
a; = EX~p':’< [g(X)]

(Expected value of a virtual set of independent copies of an item.)

* Proof based on a new approach that reduces the optimization problem to approximating
the objective function by “sketch” functions

38



Stochastic submodular welfare maximization

maximize ic1 4 (S))
N @
over 51,87, ...,8, €2

subject to: @

Sil=k;forj=12,...,m
1S = K;

§inS;j=0@foralli #j @

w(S): = E|g; (MS]. (X, ...,Xn,j))]

X; j are independent random variables, X; ; ~ P; ;
g is a symmetric monotone submodular value function

39



Approximation for welfare maximization

* Thm. Suppose that valuation functions satisfy the extended submodularity
condition and let k denote the largest cardinality constraint.

Then, there exists a test score algorithm using replication test scores that
guarantees a 1/(24(log(k) + 1)-factor approximation.

* Proof based on the same framework as for maximizing a stochastic submodular
function subject to a cardinality constraint, but using a different sketch and a
more intricate greedy assignment algorithm

40



Greedy algorithm for welfare maximisation

Input: N, M, replication test scores a{,j = Ex._pr [gj(X)]
Initialization: 5S¢, S5, ...,5, =0, A=N,P =M
while |[4| > 0 and |P| > 0 do:

a!.S]'j|+1

(L)) ehxp I5;[+1

(l ;] ) = arg
if |S]-*| = kj-then P < P\ {7}

Output: S]_, Sz, cie Sm

41



Part [| — summary points

* Test score selection of items can provide a constant-factor approximation for a
broad class of submodular utility functions

* This is guaranteed by a special type of test scores: replication test scores

* Submodular welfare maximization: (0(1/log(k))-approximation by replication
test scores, where k is the maximum number of assighnments to a project

42



