
Learning to match in online platforms

Milan Vojnovic
Department of Statistics

Seminar of the School of Information Sciences & Technology,
Athens University of Economics and Business, Athens, Greece, 12 December 2019

Outline

• Part I – Adaptive matching for expert systems with uncertain task types

• Part II – Test score approach to team selection

2

Part I

Adaptive matching for expert systems with
uncertain task types

Joint work with L. Gulikers, L. Massoulie, and V. Shah

Operations Research, accepted 2019

3

Motivating application scenarios

4

employers – employees

cars – passengers

travelers – housing facilities

questions – answers

Matching problem formulation

5

…

…

tasks

servers

new task arrival
uncertain task type (class)

Key questions

• What throughput can be achieved by service systems with uncertain task types by
learning while matching tasks to servers?

• What policies can achieve optimal throughput?

6

Problem formulation • Each task is of a hidden
(latent) class, from a finite
set 𝐶 of classes

• Each server can serve at
most 1 task at any time with
processing rate 𝜇$

• Server 𝑠 solves a task of
class 𝑐 according to an
independent Bernoulli (𝑝$,))
random variable

• Bayesian framework: prior
distribution for class type 𝜋

7

…

…

tasks

servers

new task arrival

Classical case: scheduling flexible servers

• No uncertainty:
• Known task classes
• Known processing rates

• Goal:
• Minimize a long-term cost, defined as a

function of queue sizes or job waiting tasks

• Optimality of simple policies in some regimes:
• 𝑐𝜇-scheduling policy

8

… …

…… 𝑠

𝑐

𝑝$,)𝜇$

Learning from failures

9

𝑠

Prior distribution of task type:

Failed
attempt

𝑧, = 𝜙$(𝑧) =
1 − 𝑝$,) 𝑧)
𝜓$(𝑧)

, 𝑐 ∈ 𝐶

Posterior distribution of task type:

𝜓$ 𝑧 = ∑)∈6 1 − 𝑝$,) 𝑧)

𝑧 ↦

Probability of failure:

Optimal stability region
• Thm Assume there exits server 𝑠 such that 𝑝$,) > 0 for all 𝑐 ∈ 𝐶.

If there are variables 𝜈$,) ≥ 0 and 𝛿$ > 0 for 𝑠 ∈ 𝑆 and 𝑐 ∈ 𝐶 such that

𝜆𝜋?, + ∑$∈A,?∈B:DE ? F?, 𝜈$,?𝜓$(𝑧) = ∑$∈A 𝜈$,?, for all 𝑧, ∈ 𝑍

and

∑?H∈B 𝜈$,?, + 𝛿$ ≤ 𝜇$ for all 𝑠 ∈ 𝑆

then, there exists a policy under which the system is stable.

Otherwise, there is no policy under which the system is stable.

10

(flow conservation)

(capacity constraint)

Throughput optimal policy: challenges
• Natural approach: associate a queue with each task type 𝑧

• Challenge: an infinite number of queues (unlike to classical queueing systems)

11

… …

……

𝑧

…

Naïve greedy policy

• At each time when there is a free server 𝑠 and a
task waiting to be served, assign 𝑠 to a task with
maximum success probability according to the
posterior distribution of task class:

𝑧 𝑠 ∈ argmax?∈B:OPQR 1 − 𝜓$ 𝑧

with random tie break

12

… …

…… 𝑠

𝑧

Not throughput optimal

𝑁? tasks

Special case: Asymmetric (a) system
• Arrival type:

(𝑧)T, 𝑧)U) =
1
2
,
1
2

• Upon a failed attempt for a
task of type 𝑧, the task
becomes of type 𝑧′ where

𝑧)T
, , 𝑧)U

, = 1,0

• Set of task types 𝑍 = {𝑧, 𝑧′}

13

11𝑎

𝑐[𝑐\

𝑠[𝑠\

𝜓$T 𝑧 =
1
2 (1 − 𝑎)

𝜓$U 𝑧 =
1
2

𝜓$T 𝑧′ = (1 − 𝑎)

𝜓$U 𝑧′ = 1

𝑃:

𝜇$U = 1𝜇$T = 1

Asymmetric (a) system: optimal stability region
• Optimal stability region:

𝜆 < 𝜆⋆ a

where

𝜆⋆ 𝑎 = min 2𝑎,
3𝑎
𝑎 + 1

14

Optimal
stability region

Stability region of random and greedy policies

15

stability region
of random policy

and pre-emptive greedy

𝜆 < 𝜆⋆ 𝑎 =
4𝑎
2 + 𝑎

Optimal stability region: intuition
• For small values of 𝑎, the main bottleneck

is 𝑠[serving tasks of class 𝑎

• The extra capacity of server 𝑠\ can be
used to identify class 𝑐[tasks

• For large values of 𝑎, both servers are
bottleneck, and thus identifying class 𝑐\
tasks results in a throughput loss

16

11𝑎

𝑐[𝑐\

𝑠[𝑠\ 𝜇$U = 1𝜇$T = 1

Intuition (cont’d)

17

11𝑎

𝑐[𝑐\

𝑠[𝑠\

𝜓$T 𝑧 =
1
2 (1 − 𝑎)

𝜓$U 𝑧 =
1
2

𝜓$T 𝑧′ = (1 − 𝑎)

𝜓$U 𝑧′ = 1

𝜇$U = 1𝜇$T = 1

𝑧 𝑧′

𝜇? = 2

𝜆

𝜇?, = 𝑎 1 −
𝜆
2

𝜆 2 − 𝑎
4

Backpressure (Y) policy
• Key idea: bundling task types such that the total number of queues is finite

18

…

𝑧

𝑌 𝑍\𝑌
finite set

f𝑁? 𝑋

…… 𝑠

𝑤$,? f𝑁, 𝑋 = i
f𝑁? − 𝜓$ 𝑧 f𝑁DE(?) if 𝜙$ 𝑧 ∈ 𝑌
f𝑁? − 𝜓$ 𝑧 𝑋 if 𝜙$ 𝑧 ∈ 𝑍\Y

Backpressure (Y) priority index:

Backpressure (Y) policy

• Algorithm: when assigning sever 𝑠, if

𝑋 ≤
∑EH∈l mEH nopP∈q: frPst uEH,P(fO,v)

nwxy∈z ∑EH∈l {EH,ymEH

then, assign a task of type in 𝐵$ f𝑁, 𝑋 to 𝑠 with random tie break where

𝐵$ f𝑁, 𝑋 = arg max
?∈}: fOPQR

𝑤$,?(f𝑁, 𝑋)

else, assign a task chosen uniformly at random from 𝑍\Y

19

Throughput optimality of Backpressure (Y)

• Thm: Assume there exits server 𝑠 such that 𝑝$,) > 0 for all 𝑐 ∈ 𝐶.

If the sufficient conditions for stability hold, then there exists a finite subset 𝑌 of
the set of task classes 𝑍 such that Backpressure (𝑌) policy is throughput optimal.

20

Experimental results: Math StackExchange

21

22

Dataset

23

702,286 questions
994,138 answers

Inferred expert skills:

For each (user, tag) pair, the
success probability
estimated by empirical
frequency

Expert classes computed by
using k-means clustering

Estimated parameters used in simulations for different question arrival rates 𝜆

Queue backlog: Backpressure vs greedy

24

queue buildup
unstable

Average delay: Backpressure vs greedy

25

Part I – summary points
• Backpressure type policy for assigning tasks to servers with uncertain task types

• Shown to be throughput optimal

• Greedy and random policy can be substantially suboptimal

• Backpressure policy not easy to implement, but provides guidelines for designing
simple-to-implement heuristic policies

26

Part II

Test score approach to team selection

Joint work with S. Sekar and S. Yun

Management Science, accepted 2019

27

Motivating application scenarios

• Data summarization
• Recommender systems
• Feature selection for learning models
• Online platforms
• Combinatorial auctions
• Sensor placement
• Influence maximization in social networks

28

Problem formulation

• Selection of a subset of items of given cardinality from a pool of candidate items

29

…

Problem formulation (cont’d)

• Partition items to groups

30

…

…

Items
(workers)

Groups of items
(projects)

Challenges

31

Group valuations:
value of a group of items may
depend on the values of
individual items in a
complicated way

E.g. complements or
supplements

Uncertainty:
uncertainty of individual item
values may affect the expected
value of a group of items in
subtle ways

E.g. predictable vs high-risk
high-return items

Computation complexity:
selection or assignment of
items typically amounts to
solving combinatorial
optimization problems that
are NP hard

Need for simple algorithms:
it is common assign items to
groups by simple algorithms
using individual item scores

E.g. select a set of items with
highest individual item scores

Benefits of algorithms based on item scores
• Dynamic environments: scalability for changing pools of candidate items
• Individual item scores only need to be computed once and do not need to be

recomputed when the set of candidate items changes

• Distributed computation: algorithms for selection and assignment based on
individual item scores are easy to implement in distributed systems

• Oracle queries: individual item scores may require estimating value of groups of
items only for identical or similar items

• Conceptual simplicity: selection of items based on individual item scores is easy
to understand by end users

32

Key questions

• Can algorithms that assign items to groups based on individual item scores
achieve close to optimal group performance?

• If so, what are individual item scores that can guarantee this?

• How do simple, natural individual item scores perform?

33

Stochastic optimization problem formulation

• Given a ground set of elements 𝑁 = {1,2, … , 𝑛}, valuation function 𝑓: 2O×𝐑� →
𝐑� feasible set ℱ ⊆ 2O, and distribution 𝑃: find 𝑆∗ ∈ ℱ that is a solution to:

max
A∈ℱ

𝑢 𝑆 ≔ 𝐄𝑿∼�[𝑓(𝑆, 𝑿)]

34Note: 𝑀A 𝒙 � = 𝑥� if 𝑖 ∈ 𝑆 and 𝑀A 𝒙 � = 𝜙 otherwise (𝜙 is a minimal element)

• Assumptions:
• ℱ = {𝑆 ∈ 2O: 𝑆 = 𝑘}
• 𝑓 𝑆, 𝒙 = 𝑔(𝑀A(𝒙)) where 𝑔: 𝐑�� → 𝐑� is a symmetric monotone

submodular value function
• 𝑿 = (𝑋[, 𝑋\, … , 𝑋�) are independent random variables, 𝑋� ∼ 𝑃�

Examples of valuation functions

35

Diminish returns of total value:

𝑔 𝒙 = 𝑔̅ ∑�F[� 𝑥�

where 𝑔̅ is increasing concave

Best-shot:

𝑔 𝒙 = max{𝑥[, 𝑥\, … , 𝑥�}

Top-r:

𝑔 𝒙 = 𝑥([) + 𝑥(\) + ⋯+ 𝑥 � for 1 ≤ 𝑟 ≤ 𝑛

where 𝑥 [, 𝑥(\), … , 𝑥(�) are values
𝑥[, 𝑥\, … , 𝑥� arranged in decreasing order

Constant elasticity of substitution (CES):

𝑔 𝒙 = 𝑥[� + 𝑥\� + ⋯+ 𝑥�� [/� for 𝑟 > 0

diminishing returns for 𝑟 ≥ 1

Success probability:

𝑔 𝒙 = 1 − ∏�F[
� (1 − 𝑝 𝑥�)

where 𝑝: 𝐑 → [0,1], increasing

Computation by using test scores
• Computation model introduced by [Kleinberg and Raghu 2015]: an algorithm has

access only to (estimates) of individual item scores (test scores)

• We can think of test scores as a mapping from (𝑔, ℱ, 𝑃�) to a real value:

𝑎� = ℎ(𝑔, ℱ, 𝑃�)

36

• The sample mean version:

𝑎� =
[
�
∑�F[� 𝜑 𝑋(�); 𝑔, ℱ, 𝑃�

where 𝒙 ↦ 𝜑 𝒙; 𝑔, 𝐹, 𝑃� is given and 𝑋(�) are independent samples from 𝑃�£

Examples of test scores
• Mean test scores:

𝑎� = 𝐄v¤∼�¤[𝑋�]

• Standard quantile test scores:
𝑎� = 𝑞� 𝜃

where 𝑞�(𝜃) is the 𝜃-quantile 𝑞� 𝜃 = inf{𝑥 ∈ 𝐑: 𝑃� 𝑥 ≥ 𝜃}

• Quantile test scores:
𝑎� = 𝐄v¤∼�¤[𝑋� ∣ 𝑃� 𝑋� ≥ 𝜃]

37

None of these
test scores

can guarantee a
constant-factor
approximation

Main result: approximation guarantee

• Thm. Assume 𝑔 is a symmetric monotone function that satisfies the extended
submodularity condition: for all 𝒙, 𝒚 such that 𝑔 𝒙 ≤ 𝑔(𝒚),

𝑔 𝒙, 𝑧 − 𝑔 𝒙 ≥ 𝑔 𝒚, 𝑧 − 𝑔(𝒚) for all 𝑧 ∈ 𝐑�

Then, there exist test scores that guarantee a (1 − 1/𝑒)/(5 − 1/𝑒)-factor
approximation.

• In particular, the theorem holds for replication test scores:

𝑎� = 𝐄𝑿∼�¤« 𝑔 𝑿

(Expected value of a virtual set of independent copies of an item.)

• Proof based on a new approach that reduces the optimization problem to approximating
the objective function by “sketch” functions

38

Stochastic submodular welfare maximization

maximize ∑�F[® 𝑢 (𝑆)

over 𝑆[, 𝑆\, … , 𝑆® ∈ 2O

subject to:
𝑆 = 𝑘 for 𝑗 = 1,2, … ,𝑚

𝑆� ∩ 𝑆 = ∅ for all 𝑖 ≠ 𝑗

𝑁

𝑆[

𝑆\

𝑆®

39

𝑢 𝑆 := 𝐄 𝑔¯ 𝑀A½ 𝑋[,¯, … , 𝑋�,¯
𝑋�,¯ are independent random variables, 𝑋�,¯ ∼ 𝑃�,¯
𝑔¯ is a symmetric monotone submodular value function

Approximation for welfare maximization

• Thm. Suppose that valuation functions satisfy the extended submodularity
condition and let 𝑘 denote the largest cardinality constraint.

Then, there exists a test score algorithm using replication test scores that
guarantees a 1/(24 log 𝑘 + 1 -factor approximation.

• Proof based on the same framework as for maximizing a stochastic submodular
function subject to a cardinality constraint, but using a different sketch and a
more intricate greedy assignment algorithm

40

Greedy algorithm for welfare maximisation

Input: 𝑁,𝑀, replication test scores 𝑎�,¯� = 𝐄𝑿∼�¤¿ 𝑔¯ 𝑿

Initialization: 𝑆[, 𝑆\, … , 𝑆® = ∅, 𝐴 = 𝑁, 𝑃 = 𝑀
while 𝐴 > 0 and 𝑃 > 0 do:

𝑖∗, 𝑗∗ = arg max
�,¯ ∈Á×�

Â¤,½
l½ ÃT

A½ �[

𝑆 ∗ ← 𝑆 ∗ ∪ {𝑖∗} and 𝐴 ← 𝐴 ∖ 𝑖∗

if 𝑆 ∗ = 𝑘 ∗ then 𝑃 ← 𝑃 ∖ 𝑗∗

Output: 𝑆[, 𝑆\, … , 𝑆®

41

Part II – summary points
• Test score selection of items can provide a constant-factor approximation for a

broad class of submodular utility functions

• This is guaranteed by a special type of test scores: replication test scores

• Submodular welfare maximization: Ω(1/ log(𝑘))-approximation by replication
test scores, where 𝑘 is the maximum number of assignments to a project

42

