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Outline

• Part I – Adaptive matching for expert systems with uncertain task types

• Part II – Test score approach to team selection
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Part I

Adaptive matching for expert systems with 
uncertain task types

Joint work with L. Gulikers, L. Massoulie, and V. Shah

Operations Research, accepted 2019
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Motivating application scenarios
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employers – employees

cars – passengers

travelers – housing facilities

questions – answers



Matching problem formulation
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tasks

servers
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uncertain task type (class)



Key questions

• What throughput can be achieved by service systems with uncertain task types by 
learning while matching tasks to servers? 

• What policies can achieve optimal throughput?
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Problem formulation • Each task is of a hidden 
(latent) class, from a finite 
set 𝐶 of classes

• Each server can serve at 
most 1 task at any time with 
processing rate 𝜇$

• Server 𝑠 solves a task of 
class 𝑐 according to an 
independent Bernoulli (𝑝$,)) 
random variable

• Bayesian framework: prior 
distribution for class type 𝜋
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tasks

servers

new task arrival



Classical case: scheduling flexible servers

• No uncertainty: 
• Known task classes
• Known processing rates

• Goal:
• Minimize a long-term cost, defined as a 

function of queue sizes or job waiting tasks

• Optimality of simple policies in some regimes:
• 𝑐𝜇-scheduling policy
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Learning from failures
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𝑠

Prior distribution of task type: 

Failed
attempt

𝑧, = 𝜙$(𝑧) =
1 − 𝑝$,) 𝑧)
𝜓$(𝑧)

, 𝑐 ∈ 𝐶

Posterior distribution of task type:

𝜓$ 𝑧 = ∑)∈6 1 − 𝑝$,) 𝑧)

𝑧 ↦

Probability of failure:



Optimal stability region
• Thm Assume there exits server 𝑠 such that 𝑝$,) > 0 for all 𝑐 ∈ 𝐶. 

If there are variables 𝜈$,) ≥ 0 and 𝛿$ > 0 for 𝑠 ∈ 𝑆 and 𝑐 ∈ 𝐶 such that

𝜆𝜋?, + ∑$∈A,?∈B:DE ? F?, 𝜈$,?𝜓$(𝑧) = ∑$∈A 𝜈$,?, for all 𝑧, ∈ 𝑍

and

∑?H∈B 𝜈$,?, + 𝛿$ ≤ 𝜇$ for all 𝑠 ∈ 𝑆

then, there exists a policy under which the system is stable. 

Otherwise, there is no policy under which the system is stable.
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(flow conservation)

(capacity constraint)



Throughput optimal policy: challenges
• Natural approach: associate a queue with each task type 𝑧

• Challenge: an infinite number of queues (unlike to classical queueing systems)
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Naïve greedy policy

• At each time when there is a free server 𝑠 and a 
task waiting to be served, assign 𝑠 to a task with 
maximum success probability according to the 
posterior distribution of task class:

𝑧 𝑠 ∈ argmax?∈B:OPQR 1 − 𝜓$ 𝑧

with random tie break 
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𝑧

Not throughput optimal

𝑁? tasks



Special case: Asymmetric (a) system
• Arrival type:

(𝑧)T, 𝑧)U) =
1
2
,
1
2

• Upon a failed attempt for a 
task of type 𝑧, the task 
becomes of type 𝑧′ where

𝑧)T
, , 𝑧)U

, = 1,0

• Set of task types 𝑍 = {𝑧, 𝑧′}
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11𝑎

𝑐[ 𝑐\

𝑠[ 𝑠\

𝜓$T 𝑧 =
1
2 (1 − 𝑎)

𝜓$U 𝑧 =
1
2

𝜓$T 𝑧′ = (1 − 𝑎)

𝜓$U 𝑧′ = 1

𝑃:

𝜇$U = 1𝜇$T = 1



Asymmetric (a) system: optimal stability region
• Optimal stability region:

𝜆 < 𝜆⋆ a

where

𝜆⋆ 𝑎 = min 2𝑎,
3𝑎
𝑎 + 1
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Optimal
stability region



Stability region of random and greedy policies
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stability region
of random policy

and pre-emptive greedy

𝜆 < 𝜆⋆ 𝑎 =
4𝑎
2 + 𝑎



Optimal stability region: intuition
• For small values of 𝑎, the main bottleneck 

is 𝑠[ serving tasks of class 𝑎

• The extra capacity of server 𝑠\ can be 
used to identify class 𝑐[ tasks

• For large values of 𝑎, both servers are 
bottleneck, and thus identifying class 𝑐\
tasks results in a throughput loss 
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11𝑎

𝑐[ 𝑐\

𝑠[ 𝑠\ 𝜇$U = 1𝜇$T = 1



Intuition (cont’d)
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11𝑎

𝑐[ 𝑐\

𝑠[ 𝑠\

𝜓$T 𝑧 =
1
2 (1 − 𝑎)

𝜓$U 𝑧 =
1
2

𝜓$T 𝑧′ = (1 − 𝑎)

𝜓$U 𝑧′ = 1

𝜇$U = 1𝜇$T = 1

𝑧 𝑧′

𝜇? = 2

𝜆

𝜇?, = 𝑎 1 −
𝜆
2

𝜆 2 − 𝑎
4



Backpressure (Y) policy
• Key idea: bundling task types such that the total number of queues is finite
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…

𝑧

𝑌 𝑍\𝑌
finite set

f𝑁? 𝑋

…… 𝑠

𝑤$,? f𝑁, 𝑋 = i
f𝑁? − 𝜓$ 𝑧 f𝑁DE(?) if 𝜙$ 𝑧 ∈ 𝑌
f𝑁? − 𝜓$ 𝑧 𝑋 if 𝜙$ 𝑧 ∈ 𝑍\Y

Backpressure (Y) priority index:



Backpressure (Y) policy

• Algorithm: when assigning sever 𝑠, if 

𝑋 ≤
∑EH∈l mEH nopP∈q: frPst uEH,P( fO,v)

nwxy∈z ∑EH∈l {EH,ymEH

then, assign a task of type in 𝐵$ f𝑁, 𝑋 to 𝑠 with random tie break where

𝐵$ f𝑁, 𝑋 = arg max
?∈}: fOPQR

𝑤$,?( f𝑁, 𝑋)

else, assign a task chosen uniformly at random from 𝑍\Y
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Throughput optimality of Backpressure (Y)

• Thm: Assume there exits server 𝑠 such that 𝑝$,) > 0 for all 𝑐 ∈ 𝐶. 

If the sufficient conditions for stability hold, then there exists a finite subset 𝑌 of 
the set of task classes 𝑍 such that Backpressure (𝑌) policy is throughput optimal.
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Experimental results: Math StackExchange
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Dataset
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702,286 questions
994,138 answers

Inferred expert skills: 

For each (user, tag) pair, the 
success probability 
estimated by empirical 
frequency

Expert classes computed by
using k-means clustering

Estimated parameters used in simulations for different question arrival rates 𝜆



Queue backlog: Backpressure vs greedy
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queue buildup
unstable



Average delay: Backpressure vs greedy

25



Part I – summary points
• Backpressure type policy for assigning tasks to servers with uncertain task types

• Shown to be throughput optimal

• Greedy and random policy can be substantially suboptimal

• Backpressure policy not easy to implement, but provides guidelines for designing 
simple-to-implement heuristic policies
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Part II

Test score approach to team selection

Joint work with S. Sekar and S. Yun 

Management Science, accepted 2019
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Motivating application scenarios

• Data summarization
• Recommender systems
• Feature selection for learning models
• Online platforms
• Combinatorial auctions
• Sensor placement
• Influence maximization in social networks
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Problem formulation

• Selection of a subset of items of given cardinality from a pool of candidate items
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Problem formulation (cont’d)

• Partition items to groups
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…

…

Items
(workers)

Groups of items
(projects)



Challenges
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Group valuations: 
value of a group of items may 
depend on the values of 
individual items in a 
complicated way

E.g. complements or 
supplements

Uncertainty: 
uncertainty of individual item 
values may affect the expected 
value of a group of items in 
subtle ways

E.g. predictable vs high-risk 
high-return items

Computation complexity: 
selection or assignment of 
items typically amounts to 
solving combinatorial 
optimization problems that 
are NP hard

Need for simple algorithms: 
it is common assign items to 
groups by simple algorithms 
using individual item scores

E.g. select a set of items with 
highest individual item scores



Benefits of algorithms based on item scores
• Dynamic environments: scalability for changing pools of candidate items
• Individual item scores only need to be computed once and do not need to be 

recomputed when the set of candidate items changes

• Distributed computation: algorithms for selection and assignment based on 
individual item scores are easy to implement in distributed systems

• Oracle queries: individual item scores may require estimating value of groups of 
items only for identical or similar items 

• Conceptual simplicity: selection of items based on individual item scores is easy 
to understand by end users
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Key questions

• Can algorithms that assign items to groups based on individual item scores 
achieve close to optimal group performance? 

• If so, what are individual item scores that can guarantee this?

• How do simple, natural individual item scores perform?
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Stochastic optimization problem formulation

• Given a ground set of elements 𝑁 = {1,2, … , 𝑛}, valuation function 𝑓: 2O×𝐑� →
𝐑� feasible set ℱ ⊆ 2O, and distribution 𝑃: find 𝑆∗ ∈ ℱ that is a solution to:

max
A∈ℱ

𝑢 𝑆 ≔ 𝐄𝑿∼�[𝑓(𝑆, 𝑿)]

34Note: 𝑀A 𝒙 � = 𝑥� if 𝑖 ∈ 𝑆 and 𝑀A 𝒙 � = 𝜙 otherwise (𝜙 is a minimal element)

• Assumptions:
• ℱ = {𝑆 ∈ 2O: 𝑆 = 𝑘}
• 𝑓 𝑆, 𝒙 = 𝑔(𝑀A(𝒙)) where 𝑔: 𝐑�� → 𝐑� is a symmetric monotone 

submodular value function
• 𝑿 = (𝑋[, 𝑋\, … , 𝑋�) are independent random variables, 𝑋� ∼ 𝑃�



Examples of valuation functions
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Diminish returns of total value:

𝑔 𝒙 = 𝑔̅ ∑�F[� 𝑥�

where 𝑔̅ is increasing concave

Best-shot: 

𝑔 𝒙 = max{𝑥[, 𝑥\, … , 𝑥�}

Top-r: 

𝑔 𝒙 = 𝑥([) + 𝑥(\) + ⋯+ 𝑥 � for 1 ≤ 𝑟 ≤ 𝑛

where 𝑥 [ , 𝑥(\), … , 𝑥(�) are values 
𝑥[, 𝑥\, … , 𝑥� arranged in decreasing order

Constant elasticity of substitution (CES):

𝑔 𝒙 = 𝑥[� + 𝑥\� + ⋯+ 𝑥�� [/� for 𝑟 > 0

diminishing returns for 𝑟 ≥ 1

Success probability: 

𝑔 𝒙 = 1 − ∏�F[
� (1 − 𝑝 𝑥� )

where 𝑝: 𝐑 → [0,1], increasing



Computation by using test scores
• Computation model introduced by [Kleinberg and Raghu 2015]: an algorithm has 

access only to (estimates) of individual item scores (test scores)

• We can think of test scores as a mapping from (𝑔, ℱ, 𝑃�) to a real value:

𝑎� = ℎ(𝑔, ℱ, 𝑃�)

36

• The sample mean version:

𝑎� =
[
�
∑�F[� 𝜑 𝑋(�); 𝑔, ℱ, 𝑃�

where 𝒙 ↦ 𝜑 𝒙; 𝑔, 𝐹, 𝑃� is given and 𝑋(�) are independent samples from 𝑃�£



Examples of test scores
• Mean test scores: 

𝑎� = 𝐄v¤∼�¤[𝑋�]

• Standard quantile test scores: 
𝑎� = 𝑞� 𝜃

where 𝑞�(𝜃) is the 𝜃-quantile 𝑞� 𝜃 = inf{𝑥 ∈ 𝐑: 𝑃� 𝑥 ≥ 𝜃}

• Quantile test scores:
𝑎� = 𝐄v¤∼�¤[𝑋� ∣ 𝑃� 𝑋� ≥ 𝜃]

37

None of these 
test scores 

can guarantee a 
constant-factor 
approximation



Main result: approximation guarantee

• Thm. Assume 𝑔 is a symmetric monotone function that satisfies the extended 
submodularity condition: for all 𝒙, 𝒚 such that 𝑔 𝒙 ≤ 𝑔(𝒚), 

𝑔 𝒙, 𝑧 − 𝑔 𝒙 ≥ 𝑔 𝒚, 𝑧 − 𝑔(𝒚) for all 𝑧 ∈ 𝐑�

Then, there exist test scores that guarantee a (1 − 1/𝑒)/(5 − 1/𝑒)-factor 
approximation.

• In particular, the theorem holds for replication test scores:

𝑎� = 𝐄𝑿∼�¤« 𝑔 𝑿

(Expected value of a virtual set of independent copies of an item.)

• Proof based on a new approach that reduces the optimization problem to approximating 
the objective function by “sketch” functions
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Stochastic submodular welfare maximization

maximize ∑�F[® 𝑢 (𝑆 )

over 𝑆[, 𝑆\, … , 𝑆® ∈ 2O

subject to:
𝑆 = 𝑘 for 𝑗 = 1,2, … ,𝑚

𝑆� ∩ 𝑆 = ∅ for all 𝑖 ≠ 𝑗

𝑁

𝑆[

𝑆\

𝑆®

39

𝑢 𝑆 := 𝐄 𝑔¯ 𝑀A½ 𝑋[,¯, … , 𝑋�,¯
𝑋�,¯ are independent random variables, 𝑋�,¯ ∼ 𝑃�,¯
𝑔¯ is a symmetric monotone submodular value function



Approximation for welfare maximization

• Thm. Suppose that valuation functions satisfy the extended submodularity
condition and let 𝑘 denote the largest cardinality constraint. 

Then, there exists a test score algorithm using replication test scores that 
guarantees a 1/(24 log 𝑘 + 1 -factor approximation. 

• Proof based on the same framework as for maximizing a stochastic submodular 
function subject to a cardinality constraint, but using a different sketch and a 
more intricate greedy assignment algorithm 
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Greedy algorithm for welfare maximisation

Input: 𝑁,𝑀, replication test scores 𝑎�,¯� = 𝐄𝑿∼�¤¿ 𝑔¯ 𝑿

Initialization: 𝑆[, 𝑆\, … , 𝑆® = ∅, 𝐴 = 𝑁, 𝑃 = 𝑀
while 𝐴 > 0 and 𝑃 > 0 do:

𝑖∗, 𝑗∗ = arg max
�,¯ ∈Á×�

Â¤,½
l½ ÃT

A½ �[

𝑆 ∗ ← 𝑆 ∗ ∪ {𝑖∗} and 𝐴 ← 𝐴 ∖ 𝑖∗

if 𝑆 ∗ = 𝑘 ∗ then 𝑃 ← 𝑃 ∖ 𝑗∗

Output: 𝑆[, 𝑆\, … , 𝑆®
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Part II – summary points
• Test score selection of items can provide a constant-factor approximation for a 

broad class of submodular utility functions

• This is guaranteed by a special type of test scores: replication test scores

• Submodular welfare maximization: Ω(1/ log(𝑘))-approximation by replication 
test scores, where 𝑘 is the maximum number of assignments to a project
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