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Summary. We propose a new method for changepoint estimation in partially-observed, high-
dimensional time series that undergo a simultaneous change in mean in a sparse subset of co-
ordinates. Our first methodological contribution is to introduce a ‘MissCUSUM’ transformation (a
generalisation of the popular Cumulative Sum statistics), that captures the interaction between the
signal strength and the level of missingness in each coordinate. In order to borrow strength across
the coordinates, we propose to project these MissCUSUM statistics along a direction found as the
solution to a penalised optimisation problem tailored to the specific sparsity structure. The change-
point can then be estimated as the location of the peak of the absolute value of the projected
univariate series. In a model that allows different missingness probabilities in different component
series, we identify that the key interaction between the missingness and the signal is a weighted
sum of squares of the signal change in each coordinate, with weights given by the observation
probabilities. More specifically, we prove that the angle between the estimated and oracle pro-
jection directions, as well as the changepoint location error, are controlled with high probability by
the sum of two terms, both involving this weighted sum of squares, and representing the error in-
curred due to noise and the error due to missingness respectively. A lower bound confirms that our
changepoint estimator, which we call MissInspect, is optimal up to a logarithmic factor. The striking
effectiveness of the MissInspect methodology is further demonstrated both on simulated data, and
on an oceanographic data set covering the Neogene period.
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1. Introduction

The Big Data era offers the exciting prospect of being able to transform our understanding of many
scientific phenomena, but at the same time many traditional statistical techniques may perform poorly,
or may no longer be computable at all, when applied to contemporary data challenges. A core assump-
tion that underpins much of statistical theory, as well as the way in which we think about statistical
modelling, is that our data are realisations of independent and identically distributed random vari-
ables. However, practical experience reveals that this is typically unrealistic for modern data sets,
and developing methods and theory to handle departures from this important but limited setting
represents a key theme for the field.

In contexts where data are collected over time, one of the simplest generalisations of an independent
and identically distributed data stream is given by changepoint models. Here, we postulate that
our data may be segmented into shorter, homogeneous series. Of course, the structural break, or
changepoint, between these series is often of interest in applications, such as distributed denial of
service monitoring of network traffic (Peng, Leckie and Ramamohanarao, 2004), disease progression
tracking via the alignment of electronic medical records (Huopaniemi et al., 2014) and the analysis of
‘shocks’ in stock price data (Chen and Gupta, 1997).

Another issue that turns out to be critical in working with Big Data in practice is that of missing
data. One reason for this is that when each observation is high-dimensional, it is frequently the
case that most or even every observation has missingness in some coordinates; thus a complete-case
analysis, which simply discards such observations, is unviable (Zhu, Wang and Samworth, 2019).
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The aim of this paper is to study the core, high-dimensional changepoint problem of a sparse change
in mean, but where our data are corrupted by missingness. In fact, in cases where our data arise as
discrete observations of several continuous processes, the observation times in different coordinates
may not be the same, and such a setting also fits within our framework. A key feature of both our
methodology and theory is that we wish to be able to handle heterogeneous missingness, i.e. where
the levels of missingness may differ across coordinates. Specifically, our primary theoretical goal is to
understand the way in which the missingness interacts with the signal strengths in the different series
to determine the difficulty of the problem.

In Section 2, we consider a setting where the practitioner has access to a partially-observed p× n
data matrix, where p is the number of series (coordinates) being monitored, and n is the number of
time points. We seek to identify a time at which the p-dimensional mean vector changes, in at least
one coordinate. One of the key ideas that underpins our methodological contribution is to define a new
version of the popular Cumulative Sum (CUSUM) transformation (Page, 1955) that is able to handle
the missingness appropriately. This operation, which we refer to as the MissCUSUM transformation,
returns a p×(n−1) matrix, and the intuition is that in coordinates that undergo a change in mean, the
transformed series should peak in absolute value near the changepoint. One of the main advantages
of our proposal is that it avoids the need to impute missing data†.

Since the changepoint location is shared across the signal coordinates, it is natural to seek to
borrow strength across the different data streams to estimate the changepoint. To this end, our next
goal is to estimate a projection direction, in order to convert the MissCUSUM transformation into
a univariate CUSUM series. Such a projection direction should ideally maximise the signal-to-noise
ratio of the projected series. When the data are fully observed, the oracle projection direction turns
out to be the leading left singular vector of the (rank one) CUSUM transformation of the mean
matrix. This facilitates estimation approaches based on entrywise `1-penalised M -estimation, as in
the inspect algorithm of Wang and Samworth (2018). A crucial difference when we have to handle
missing data, however, is that the MissCUSUM transformation of the mean matrix is no longer of rank
one, which means that the entrywise `1-penalty no longer adequately captures the sparsity structure
of the vector of mean change. Instead, we introduce a new optimisation problem that penalises
the `1-norm of the leading left singular vector of a rank one approximation of the MissCUSUM
transformation. This methodological proposal, which we call MissInspect, leads to considerably
improved performance. Implementation code for our method is available in the GitHub repository
https://github.com/wangtengyao/MissInspect and in the R package InspectChangepoint (Wang,
Follain and Samworth, 2022).

A further benefit of the MissInspect methodology is that it is amenable to theoretical analysis.
In particular, we study a Missing Completely At Random (MCAR) model with row homogeneous
missingness; in other words, the observation probability remains constant in each row, but may vary
arbitrarily across rows. In Proposition 1 in Section 3, we provide a high-probability bound on the
angle between the estimated and oracle projection directions. Theorems 1 and 2 then establish high-
probability bounds on the accuracy of the estimated changepoint location whenever the estimated and
oracle projection directions are sufficiently well aligned, for a sample splitting variant of our algorithm.
Theorem 1 provides a very general guarantee, while Theorem 2 establishes a faster rate whenever the
observation probability in each row satisfies a lower bound. This faster rate comprises two terms,
representing the error incurred due to noise in the observations, and the error due to missingness,
respectively. The key quantity in both of these terms turns out to be a weighted Euclidean norm of the
vector of mean change, where the weights are given by the observation probabilities in each row. This
weighted average therefore captures the interaction between the signal strength and the missingness
probabilities, and suggests that our analysis handles effectively the heterogeneity of the missingness
across rows (a more naive analysis would see the worst-case observation probability appearing in the

†In fact, our initial approach to this problem was to consider iterating between imputating missing entries
using row means on either side of a potential changepoint, and then updating the current changepoint location
estimate using the imputed data matrix. This turns out to perform poorly, because the imputation step tends
to reinforce bias in the changepoint estimate, leading to the iterations becoming stuck (potentially far from the
true location) very quickly; see Section 4.3.

https://github.com/wangtengyao/MissInspect
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bounds). This intuition is confirmed by our minimax lower bound (Theorem 3), which indicates that
the MissInspect algorithm attains the minimax rate of convergence in all problem parameters, up to
a logarithmic factor.

Section 4 explores the empirical performance of our MissInspect methodology. We study the
ability of the algorithm to estimate both the oracle projection direction and the changepoint location,
and compare with three alternative approaches. The first two use different imputation strategies in
combination with the inspect algorithm, while the third is an adaptation of the method of Londschien,
Kovács and Bühlmann (2021), which was originally proposed in the context of changepoint problems
in dynamic graphical models. We find that the MissInspect algorithm has very strong numerical
performance, and this provides further evidence of its practical utility in missing data settings. In
this section, we also present an application of the MissInspect methodology to detect changes in
oceanographic currents from carbon isotope measurements extracted from cores drilled into the ocean
floor. Section 5 discusses various methodological and theoretical extensions of our proposal to more
complicated problems, such as the estimation of multiple changepoints, or more general data generating
and missingness mechanisms. Proofs of our main results are given in Section 6, with auxiliary results
deferred to the Appendix in the supplementary material.

The study of changepoint problems dates at least back to Page (1955), and has since found appli-
cations in many different areas, including genetics (Olshen et al., 2004; Zhang et al., 2010), disease
outbreak watch (Sparks, Keighley and Muscatello, 2010), aerospace engineering (Henry, Simani and
Patton, 2010) and functional magnetic resonance imaging studies (Aston and Kirch, 2013), in addition
to those already mentioned. Entry points to the literature include Csörgő and Horváth (1997) and
Horváth and Rice (2014). In high-dimensional changepoint settings, where we may have a sparsity
assumption on the coordinates of change, prior work includes Bai (2010), Zhang et al. (2010), Horváth
and Hušková (2012), Cho and Fryzlewicz (2014), Chan and Walther (2015), Jirak (2015), Cho (2016),
Soh and Chandrasekaran (2017), Wang and Samworth (2018), Enikeeva and Harchaoui (2019), Padilla
et al. (2022) and Liu, Gao and Samworth (2021). Our focus in this work is on the offline version of the
changepoint estimation problem, where the practitioner sees the whole data set prior to determining a
changepoint location. The corresponding online version, where data are observed sequentially and the
challenge is to declare a change as soon as possible after it has occurred, has also received attention
in recent years; see, e.g., Mei (2010), Xie and Siegmund (2013), Chan (2017) and Chen, Wang and
Samworth (2022). In addition to Londschien, Kovács and Bühlmann (2021) discussed above, the only
works of which we are aware on changepoint estimation with missing data are those of Xie, Huang
and Willett (2013), Cao et al. (2019) and Enikeeva and Klopp (2021). Xie, Huang and Willett (2013)
study a situation where partially-observed sequential data lie close to a time-varying, low-dimensional
submanifold embedded within an ambient space; Cao et al. (2019) consider a sketching approach to
online changepoint detection with missing data, while Enikeeva and Klopp (2021) study the detection
of structural breaks in dynamic networks with missing links.

We conclude this section by introducing some notation that is used throughout the paper. Given n ∈
N, we let [n] := {1, . . . , n}. For a vector u = (u1, . . . , uM )> ∈ RM , a matrix A = (Aij) ∈ RM×N and for

r ∈ [1,∞), we write ‖u‖r :=
(∑M

i=1 |ui|r
)1/r

and ‖A‖r :=
(∑

i∈[M ]

∑
j∈[N ] |Aij |r

)1/r
for their entrywise

`r-norms, as well as ‖u‖∞ := maxi∈[M ] |ui| and ‖A‖∞ := maxi∈[M ],j∈[N ] |Aij |. Writing σ1(A), . . . , σs(A)
for the non-zero singular values of A, where s := rank(A), we let ‖A‖op := maxi∈[s] σi(A), ‖A‖∗ :=∑s

i=1 σi(A) and ‖A‖F := ‖A‖2 = {
∑s

i=1 σi(A)2}1/2 denote its operator, nuclear and Frobenius norms

respectively. We also write ‖u‖0 :=
∑M

i=1 1{ui 6=0}. Given q = (q1, . . . , qM )> ∈ [0, 1]M , we write
√
q := (

√
q1, . . . ,

√
qM )> and let ‖u‖r,q :=

(∑M
i=1 |ui|rqi

)1/r
. We denote by diag(u) the M × M

diagonal matrix with u as its diagonal. For S ⊆ [M ] and T ⊆ [N ], we write uS := (ui : i ∈ S)> ∈ R|S|
and write AS,T ∈ R|S|×|T | for the sub-matrix of A obtained by extracting the rows and columns with
indices in S and T respectively. For two matrices A,B ∈ RM×N , we denote their trace inner product
as 〈A,B〉 := tr(A>B). We also denote their Hadamard product as A ◦ B ∈ RM×N . For non-zero
vectors u, v ∈ RM , we write

∠(u, v) := cos−1

(
|〈u, v〉|
‖u‖2‖v‖2

)
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for the acute angle bounded between them. We let BM := {RM : ‖x‖2 ≤ 1} and SM−1 := {x ∈ RM :
‖x‖2 = 1} denote the unit Euclidean ball and sphere in RM respectively, and define SM−1(k) := {x ∈
SM−1 : ‖x‖0 ≤ k}. Given positive sequences (an), (bn), we write an . bn to mean that there exists a
universal constant C > 0 such that an ≤ Cbn for all n.

2. MissInspect methodology

Throughout this work, we will assume that the practitioner has access to a partially-observed p × n
data matrix. We will denote the full data matrix as X = (Xj,t) ∈ Rp×n, and let Ω = (ωj,t) ∈ {0, 1}p×n
denote the revelation matrix, so that ωj,t = 1 if Xj,t is observed, and is equal to zero otherwise.
Formally, then, we can regard the observed data as (X ◦ Ω,Ω); note here, that since the practitioner
has access to the matrix Ω, they are able to distinguish between an observed zero and a zero caused
by missingness in X ◦ Ω. For our theoretical analysis, the ◦ notation is a convenient way of avoiding
the need to introduce an ‘NA’ category for missing values.

In our theory, we will regard X as a realisation of a random matrix, whose mean matrix we denote
by µ = (µ1, . . . , µn) ∈ Rp×n. The changepoint structure of µ is encoded via the assumption that there
exist z ∈ [n− 1] and µ(1), µ(2) ∈ Rp with θ := µ(2) − µ(1) 6= 0 such that

µ1 = · · · = µz = µ(1) and µz+1 = · · · = µn = µ(2). (1)

In Section 3, we will assume that the change in mean is sparse, in the sense that ‖θ‖0 ≤ k for some k
that is typically much smaller than p. However, we remark that our methodology is adaptive to this
unknown sparsity level.

Our goal is to estimate the changepoint location z. To this end, we first introduce a new version of
the CUSUM transformation that is appropriate in our missing data setting. Writing Lj,t :=

∑t
r=1 ωj,r,

Rj,t :=
∑n

r=n−t+1 ωj,r and Nj := Lj,n = Rj,n for j ∈ [p] and t ∈ [n], we define the MissCUSUM

transformation T Miss
p,n : Rp×n × {0, 1}p×n → Rp×(n−1) by

[T Miss
p,n (M,Ω)]j,t :=

√
Lj,tRj,n−t

Nj

(
1

Rj,n−t

n∑
r=t+1

(M ◦ Ω)j,r −
1

Lj,t

t∑
r=1

(M ◦ Ω)j,r

)

when Lj,t > 0 and Rj,n−t > 0, and define [T Miss
p,n (M,Ω)]j,t := 0 otherwise. Since the subscripts p and

n of T Miss
p,n can be inferred from the dimensions of its arguments, we will frequently abbreviate this

transformation as T Miss. We note that this transformation only depends on M through M ◦ Ω. In
practice, we will always apply this transformation to pairs of the form (M ◦Ω,Ω); in other words, an
entry of the first argument is zero whenever the corresponding entry of the second argument is zero.
When the data matrix is fully observed (i.e. Ω is an all-one matrix), the MissCUSUM transformation
reduces to the standard CUSUM transformation T (M) := T Miss(M,Ω).

A key feature of the MissCUSUM transformation is that it captures the interaction between the
signal strength and the number of observations in each coordinate. To illustrate this, we focus on a
single (jth) coordinate, and the noiseless setting where X = µ. In this case, the peak level of the

absolute MissCUSUM transformation is |θj |
√

Lj,zRj,n−z
Nj

. Since

√
min(Lj,z, Rj,n−z)

2
≤

√
Lj,zRj,n−z

Nj
≤
√

min(Lj,z, Rj,n−z),

we see that the peak level in the jth coordinate is controlled by the absolute mean change |θj |, together
with the effective sample size min(Lj,z, Rj,n−z).

Another interesting property of the MissCUSUM transformation is that the multivariate setting
allows us to borrow strength across the different coordinates to compensate for some of the missingness.
To see this, note that the MissCUSUM transformation is piecewise constant in each coordinate. In
particular, even in the noiseless setting, the absolute MissCUSUM series will typically not have a
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unique maximiser in each coordinate, but combining the information across coordinates allows us to
pin down the changepoint location to an interval of length

min

{
t > z :

p∑
j=1

ωj,t 6= 0

}
−max

{
t ≤ z :

p∑
j=1

ωj,t 6= 0

}
.

This will often be a shorter interval than one would obtain from any of the individual component
series.

The next step of the MissInspect algorithm is to use the MissCUSUM transformation to find a
good projection direction v̂ ∈ Sp−1. The idea is that even though it is not possible to project the data
along v̂, due to the missingness, we can nevertheless compute the univariate series

(
(v̂>TΩ)t

)
t∈[n−1]

,

where TΩ := T Miss(X ◦ Ω,Ω). Writing AΩ := T Miss(µ ◦ Ω,Ω) and A := T (µ), if each column of
X has identity covariance matrix, then for a generic projection direction v ∈ Sp−1, we find that
E
{

(v>TΩ)t
∣∣ Ω
}

= (v>AΩ)t, and Var
{

(v>TΩ)t
∣∣ Ω
}

= 1. In Proposition 2 below, we will show
that in a heterogeneous missingness model in which each entry in the jth coordinate is observed with
probability qj , and q := (q1, . . . , qp)

>, the matrix AΩ can be well approximated by the rank one matrix
(diag

√
q)A = (θ ◦ √q)γ>, where

γ :=
1√
n

(√
1

n− 1
(n− z), . . . ,

√
z − 1

n− z + 1
(n− z),

√
z(n− z),

√
n− z − 1

z + 1
z, . . . ,

√
1

n− 1
z

)>
∈ Rn−1

attains its peak in absolute value at the true changepoint location z. Substituting this rank one
approximation into the expression for E

{
(v>TΩ)t

∣∣ Ω
}

= (v>AΩ)t suggests that an oracle projection
direction is a unit vector in the direction of θ ◦ √q, which is the leading left singular vector of
(diag

√
q)A.

For the corresponding problem with fully observed data, Wang and Samworth (2018) proposed a
semi-definite relaxation technique to estimating the oracle projection direction. Unfortunately, since
AΩ is not a rank one matrix when some data are missing, this relaxation turns out to be too coarse,
and a new approach is required. Motivated by the fact that θ ◦ √q has the same sparsity pattern
as θ, and viewing TΩ as a perturbation of (diag

√
q)A, we propose to estimate the oracle projection

direction by solving the following optimisation problem:

(v̂, ŵ) ∈ argmax
(ṽ,w̃)∈Bp×Bn−1

{
〈TΩ, ṽw̃

>〉 − λ‖ṽ‖1
}
, (2)

where λ > 0 is a tuning parameter to be specified later. Here, with a suitable choice of λ, the
`1 penalty on ṽ in (2) exploits the sparsity of the oracle projection direction to allow for consistent
estimation of (θ◦√q)/‖θ◦√q‖2, even when the dimension p is large, as will be shown in Proposition 1
in Section 3. A further advantage of (2) over the semi-definite relaxation approach is that it directly
exploits the row sparsity pattern of the rank one matrix (θ ◦ √q)γ>, as opposed to just the overall
entrywise sparsity of this matrix. Using the estimated oracle projection direction v̂, we can project
the MissCUSUM transformation TΩ of (X ◦ Ω,Ω), and estimate the changepoint by the location of
the maximum absolute value in the univariate projected series. Pseudocode for the MissInspect

algorithm is given in Algorithm 1.

Algorithm 1: Pseudocode of the MissInspect algorithm

Input: XΩ = X ◦ Ω ∈ Rp×n, Ω ∈ {0, 1}p×n, λ > 0
1 TΩ ← T Miss(XΩ,Ω);

2 Find (v̂, ŵ) ∈ argmaxṽ∈Bp,w̃∈Bn−1

{
〈TΩ, ṽw̃

>〉 − λ‖ṽ‖1
}

;

3 ẑ ← median
(
argmaxt∈[n−1]

∣∣(v̂>TΩ)t
∣∣);

Output: ẑ

The optimisation problem in Step 2 of Algorithm 1 is bi-concave in (ṽ, w̃); i.e., the objective is
concave in ṽ for every fixed w̃ and concave in w̃ for every fixed ṽ. Hence, we can alternate between
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optimising over ṽ and w̃ in (2). By inspecting the Karush–Kuhn–Tucker conditions as in Lemma 1
in the supplementary material, we see that when λ < ‖TΩ‖2→∞, both steps of each iteration have
closed form expressions; this motivates the iterative procedure to optimise (2) given in Algorithm 2.
In that algorithm, we define the soft-thresholding function soft : Rp × [0,∞) → Rp such that for
v = (v1, . . . , vp)

> ∈ Rp, we have
(
soft(v, λ)

)
j

= sgn(vj) max{|vj | − λ, 0} for j ∈ [p]. We remark that

TΩ is known to the practitioner, so we can always choose λ < ‖TΩ‖2→∞. As usual for such iterative
algorithms for bi-concave optimisation, the objective increases at each iteration; empirically, we have
not observed any convergence issues. In Step 3 of Algorithm 1, we take the median of the maximisers
of the series

{∣∣(v̂>TΩ)t
∣∣ : t ∈ [n − 1]

}
for definiteness, though our theory would hold for any other

(measurable) choice of element in this maximising set.

Algorithm 2: Pseudocode for an iterative procedure optimising (2)

Input: TΩ ∈ Rp×(n−1), λ ∈
(
0, ‖TΩ‖2→∞

)
1 ṽ ← leading left singular vector of TΩ;
2 repeat

3 w̃ ← T>Ω ṽ
‖T>Ω ṽ‖2

;

4 ṽ ← soft(TΩw̃,λ)
‖soft(TΩw̃,λ)‖2 ;

5 until convergence;
Output: (v̂, ŵ) = (ṽ, w̃)

We conclude this section by illustrating the MissInspect algorithm in action in Figure 1. Here,
with n = 250 and p = 100, we generated n independent p-variate Gaussian observations with mean
structure (1) and identity covariance matrix. We took z = 100, and θ = (ϑ1k/k

1/2,0p−k)
>, with

k = 10 and ϑ = 2. Thus, the first 10 coordinates represent signals, while the remaining 90 are noise
coordinates. All entries of our data matrix were observed independently (and independently of the
data), with probability 0.2. The top panels display visualisations of the data and the MissCUSUM
transformation respectively. In the bottom-left panel, the coloured lines are the first five components
of the MissCUSUM transformation; we see that these traces are piecewise constant, with jumps
at observed data points. Even though each of these five is obtained from a signal coordinate, the
locations of the peaks of these individual series would not yield very reliable changepoint estimates,
both because the noise introduces considerable variability (e.g. the peak of the purple series runs from
time 217 to 228), and because the missingness can lead to fairly long stretches where these series
are constant. Nevertheless, once all 100 series are aggregated appropriately by our MissInspect

algorithm, the resulting black trace does have a sharper peak close to the true changepoint. The
bottom-right plot shows two nonparametric density estimates of the estimated changepoint locations
from the MissInspect procedure over 1000 repetitions from this data generating mechanism; the first
is a histogram, which requires the choice of a binwidth, while the second is the log-concave maximum
likelihood estimator (Dümbgen and Rufibach, 2009; Cule, Samworth and Stewart, 2010), which is fully
automatic. Both indicate a sharp peak for the density close to the true changepoint; in the latter case,
the mode is exactly at 100.

3. Theoretical guarantees

We will focus our theoretical analysis on the single changepoint setting, in order to try to articulate
more clearly the way that the coordinate-wise signal-to-noise ratio and missingness mechanism interact
to determine both the performance of the MissInspect algorithm and the fundamental difficulty of
the problem. Moreover, we assume that the revelation matrix Ω = (ωj,t) ∈ {0, 1}n×p has a row-
homogeneous distribution, in the sense that there exists a vector q = (q1, . . . , qp)

> ∈ (0, 1]p such that
ωj,t ∼ Bern(qj), independently for all j ∈ [p] and t ∈ [n]. We will refer to q as the observation rate
vector. Such a row-homogeneous assumption may be appropriate, for instance, in applications where
each component series is measured by a separate device with its own observation rate. As for the
data, we will assume that the columns (Xt)t∈[n] of the data matrix X = (Xj,t)j∈[p],t∈[n] ∈ Rn×p satisfy
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Fig. 1. MissInspect algorithm in action. Top-left: visualisation of the data matrix with p = 100 and n = 250,
where each column represents a p-dimensional observation and missing entries are shown in white. Darker
colours indicate larger values. Time runs from left to right, and a change in mean occurs at time 100 in
each of the first ten rows. Top-right: visualisation of the MissCUSUM transformation of the data. Bottom-left:
the first five rows of the MissCUSUM matrix are plotted in colour, and the black curve shows the projected
MissCUSUM series, which is maximised at the estimated changepoint location of 90 (black dashed line). The
true changepoint is shown as a grey solid line. Bottom-right: histogram of estimated changepoints over 1000
repetitions from the same data setting; a log-concave estimated density is shown in red.
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Xt ∼ Np(µt, σ2Ip), independently for t ∈ [n], (3)

where µ1, . . . , µn satisfy (1).
For n ∈ N, z ∈ [n − 1], θ = (θ1, . . . , θp)

> ∈ Rp, σ > 0 and q = (q1, . . . , qp)
> ∈ (0, 1]p we write

Pn,p,z,θ,σ,q for the joint distribution of (X,Ω), where X and Ω are independent, where X satisfies (3)

with the vector of mean change θ := µ(2) − µ(1) ∈ Rp \ {0} satisfying ‖θ‖0 ≤ k, and where Ω has
a row-homogeneous distribution with observation rate vector q = (q1, . . . , qp)

> ∈ (0, 1]p. We write
τ := n−1 min(z, n − z). Recall our notation ‖θ‖22,q :=

∑p
j=1 θ

2
j qj , a quantity that captures a key

interaction between the signal strength and observation rate. Our first result below shows that the
projection direction v̂ obtained from Step 2 of Algorithm 1 is closely aligned with θ ◦ √q, which, as
argued in Section 2, can be regarded as an oracle projection direction.

Proposition 1. Let (X,Ω) ∼ Pn,p,z,θ,σ,q and let (v̂, ŵ) be obtained from Step 2 in Algorithm 1,

applied with inputs XΩ = X ◦ Ω, Ω and λ ≥ 2σ
√
n log(pn). Then

P
{

sin∠(v̂, θ ◦ √q) ≤ 32λ
√
k

nτ‖θ‖2,q
+

112‖θ‖2
τ‖θ‖2,q

√
6 log(kn)

n

}
≥ 1− 6

kn
.

Considering the case λ = 2σ
√
n log(pn) for simplicity, Proposition 1 reveals that, with high probability,

the sine of the acute angle between v̂ and θ ◦ √q is controlled by the sum of two terms: the first of
these represents the estimation error caused by the noise in the data we observe, and we see that
‖θ‖2,q/σ can be thought of as an effective signal-to-noise ratio. On the other hand, the second term
reflects the error due to our incomplete observations (and would be present even in the noiseless case
with σ = 0); here ‖θ‖22,q/‖θ‖22 may be regarded as a signal-weighted observation probability. Observe
that in this discussion we assume that σ is known; extensions to the case of unknown σ, as well as
more general cross-sectional covariance structures, are discussed in Section 5.

From a theoretical point of view, the fact that v̂ is estimated using the entire available data set
XΩ makes it difficult to analyse the post-projection noise structure. For this reason, in the analysis
below, we work with a sample-splitting variant of Algorithm 1, as given in Algorithm 3. Here, the
projection direction v̂ is estimated using only the observed data at odd-numbered time points, and
the MissCUSUM transformation of the observed data at even-numbered time points is then projected
along v̂ to obtain the final estimate of the changepoint location. We emphasise, however, that while
this sample splitting facilitates an informative theoretical analysis, in practice we recommend using
the full data set to estimate v̂ as in Algorithm 1. Indeed, it is this version of MissInspect that we
used throughout our numerical studies in Section 4.

Algorithm 3: Pseudo-code for the sample-splitting variant of the MissInspect algorithm.

Input: XΩ = X ◦ Ω ∈ Rp×n, Ω ∈ {0, 1}p×n, λ > 0
1 n1 ← bn/2c;
2 Let Ω(1) ∈ {0, 1}p×n1 and Ω(2) ∈ {0, 1}p×n1 denote the matrices formed from the first n1 odd

and the n1 even numbered columns of Ω respectively;

3 Let X
(1)
Ω ∈ Rp×n1 and X

(2)
Ω ∈ Rp×n1 denote the matrices formed from the first n1 odd and the

n1 even numbered columns of XΩ respectively;

4 T
(1)
Ω ← T Miss(X

(1)
Ω ,Ω(1)) ∈ Rp×(n1−1);

5 T
(2)
Ω ← T Miss(X

(2)
Ω ,Ω(2)) ∈ Rp×(n1−1);

6 (v̂, ŵ)← argmaxṽ∈Bp,w̃∈Bn−1

{
〈T (1)

Ω , ṽw̃>〉 − λ‖ṽ‖1
}

;

7 ẑ ← 2 median
(
argmaxt∈[n1−1]

∣∣(v̂>T (2)
Ω )t

∣∣);
Output: ẑ

Theorem 1 is our first main result on the performance of Algorithm 3 in contexts where our data
are generated from the single changepoint, row-homogeneous model Pn,p,z,θ,σ,q.
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Theorem 1. Suppose (X,Ω) ∼ Pn,p,z,θ,σ,q. Assume for simplicity that n and z are even. Let ẑ be

the output of Algorithm 3 with inputs X ◦Ω,Ω and λ = 2σ
√
n log(pn). There exist universal constants

C,C ′ > 0 such that whenever

C ′

τ

√
log(pn)

n

(
σ
√
k

‖θ‖2,q
+
‖θ‖2
‖θ‖2,q

)
≤ 1

2
, (4)

we have

P
{
|ẑ − z|
nτ

> C

√
log(kn)

nτ

(
σ

‖θ‖2,q
+
‖θ‖2
‖θ‖2,q

)}
≤ 22

n
.

Condition (4) ensures that the projection direction v̂ obtained in Step 6 of Algorithm 3 has non-
trivial correlation with the oracle projection direction θ ◦√q; cf. Proposition 1. An attractive feature
of Theorem 1 is the way that the interaction between the signal strength and the observation rate
vector is captured through ‖θ‖2,q. As mentioned in the introduction, this weighted average provides
much greater understanding of the influence of missingness on the performance of the MissInspect

algorithm than more naive bounds that depend on the worst-case missingness probability across all
rows. For instance, we see that a high degree of missingness in noise or weak signal coordinates may
not have too much of a detrimental effect on performance compared with complete observation of
these coordinates. See also Theorem 3 below for confirmation of the way in which ‖θ‖2,q also controls
the fundamental difficulty of the problem (not just for our procedure).

A further attraction of Theorem 1 is the absence of any condition on the number of observations
in each row. On the other hand, it turns out that if the expected number of observations in each row
is at least k/τ2 (up to logarithmic factors), then we can obtain a substantially improved bound on the
rate of estimation of Algorithm 3.

Theorem 2. Suppose (X,Ω) ∼ Pn,p,z,θ,σ,q. Assume for simplicity that n and z are even. Let ẑ be

the output of Algorithm 3 with inputs X ◦ Ω,Ω and λ = 2σ
√
n log(pn). Define

ρ :=
1

τ

√
log(pn)

n

(
σ
√
k

‖θ‖2,q
+
‖θ‖2
‖θ‖2,q

)
.

Then there exist universal constants c, C1, C2 > 0 such that if ρ ≤ c and nτ2 minj∈[p] qj ≥ C1k log(pn),
then

P
{
|ẑ − z|
nτ

>
C2 log(pn)

nτ

(
σ2

‖θ‖22,q
+
‖θ‖2∞
‖θ‖22,q

)}
≤ 23

n
.

The rate obtained in Theorem 2 is essentially the square of that obtained in Theorem 1. In fact,
an additional improvement is the reduction of ‖θ‖2 in the second term to ‖θ‖∞. Again, we see the
decomposition of the estimation error into terms reflecting the noise in the observed data and the
incompleteness of the observations respectively.

As a complement to Theorem 2, we now present a minimax lower bound, which studies the funda-
mental limits of the expected estimation error that are achievable by any algorithm. We write Z̃ for
the set of estimators of z, i.e. the set of Borel measurable functions ẑ : Rn×p × {0, 1}n×p → [n− 1].

Theorem 3. Let M ≥ 1 satisfy ‖θ‖∞ ≤ M minj∈[p]:θj 6=0 |θj |. If max{σ2, ‖θ‖2∞/(2M2)} ≥ ‖θ‖22,q,
then there exists c > 0, depending only on M , such that for n ≥ 3,

inf
z̃∈Ẑ

max
z∈[n−1]

EPn,p,z,θ,σ,q
|z̃(X ◦ Ω,Ω)− z|

n
≥ c

n
min

{
σ2

‖θ‖22,q
+
‖θ‖2∞
‖θ‖22,q

, n

}
.

Theorem 3 reveals that the MissInspect algorithm as given in Algorithm 3 attains the minimax
optimal estimation error rate up to logarithmic factors in all of the parameters of the problem, at
least in settings where the signals are of comparable magnitude. Note that the MissInspect algorithm
also matches (deterministically) the second term in the minimum in Theorem 3, because it trivially
satisfies |ẑ − z| ≤ n − 2. The form of the lower bound in Theorem 3 confirms that ‖θ‖2,q is the
correct functional of the mean change vector θ and observation q for capturing the difficulty of the
changepoint estimation problem in our missing data setting.
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Fig. 2. Mean angle in degrees (averaged over 200 repetitions) between the oracle projection direction and
the estimated projection direction from Algorithm 2 with λ = aσ

√
n log(pn) for a ∈ [0, 2]. Data are generated

under (3) with row-homogeneous missingness, independent of the data. Parameters: n = 1000, p = 500,
z = 400, σ = 1. Left panel: all entries observed independently with probability 0.2, k ∈ {3, 10, 50} and
ϑ ∈ {1, 1.5, 2, 2.5, 3}. Right panel: k = 3, ϑ = 2, signal coordinates are observed with probability qs ∈
{0.1, 0.2, 0.3, 0.4, 0.5} and noise coordinates are observed with probability qn ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

4. Numerical studies

4.1. Choice of tuning parameter
The tuning parameter choice of λ = 2σ

√
n log(pn) is convenient in our theoretical analysis. However,

this choice often turns out to be slightly too conservative in practice, so to explore this, we considered
the output of Algorithm 2 for a range of λ values, under several different settings of n, p, k, θ and q.
Figure 2 displays the mean angle between the estimated projection direction v̂ from (2) and the oracle
projection direction θ◦√q/‖θ◦√q‖2 as a function of λ in two such sets of simulations. In both panels,

we set n = 1000, p = 500, z = 400 and took λ = aσ
√
n log(pn) for a ∈ [0, 2]. The vector of mean

change is θ = ϑk−1/2(1>k ,0
>
p−k)

>. Data were observed according to the row-homogeneous missingness
model with qj = qs if θj 6= 0 and qj = qn otherwise. In the left panel of the figure, we set qs = qn = 0.2
and vary k ∈ {3, 10, 50} and ϑ ∈ {1, 1.5, 2, 2.5, 3}, whereas in the right panel, we took k = 3, ϑ = 2,

σ = 1 and vary qs, qn ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. We note that the choice λ = 2−1σ
√
n log(pn) performs

well in all settings, especially when the signal is relatively sparse. We therefore settled on this choice
of λ throughout our numerical studies. It is reassuring to see from the right panel of Figure 2 that
the performance of the projection direction estimator has almost no dependence on qn, as predicted
by our Proposition 1 (since ‖θ‖2,q does not depend on qn).

4.2. Validation of theoretical results
The aim of this subsection is to provide empirical confirmation of the forms of the bounds obtained in
Proposition 1 and Theorem 2. In particular, we would like to verify that the crucial quantity ‖θ‖2,q
does indeed capture the appropriate interaction between signal and missingness that determines the
performance of the version of the MissInspect algorithm given in Algorithm 1. The two panels of
Figure 3 study the angle between the estimated and oracle projection directions, and the estimated
changepoint location error respectively. To obtain this figure, we set n = 1200, p = 1000 and generated
data vectors under (3) with every entry observed independently with probability q ∈ {0.1, 0.2, 0.4, 0.8},
independent of the data. A single change occurred at z = 400 with vector of mean change θ =
ϑk−1/2(1>k ,0

>
p−k)

> and k = 3. We investigated the performance of MissInspect over 200 Monte Carlo

repetitions for each of ϑ ∈ {0.5, 1, 1.5, 2} and σ ∈ {0.2, 0.4, 0.8, 1.6}. The left panel of Figure 3 shows
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Fig. 3. Estimation accuracy of MissInspect as a function of ‖θ‖2,q. Data are generated under (3) with row-
homogeneous missingness, independent of the data. Parameters: n = 1200, p = 1000, z = 400, k = 3,
ϑ ∈ {0.5, 1, 2}, σ ∈ {0.2, 0.4, 0.8, 1.6} and q = q1p with q ∈ {0.1, 0.2, 0.4, 0.8}. Colours indicate ϑ, line type
indicates σ, and the circle, triangle, square and diamond plotting characters correspond to q = 0.1, 0.2, 0.4, 0.8
respectively. Left panel: logarithm of the mean sine angle loss (averaged over 200 repetitions) between esti-
mated and oracle projection directions. Right panel: logarithm of mean changepoint location loss (averaged
over 200 repetitions).

that the logarithm of the mean sine angle loss decreases approximately linearly with log ‖θ‖2,q, with
gradient approximately −1. This is consistent with the conclusion of Proposition 1, which shows that
the sine angle loss is controlled with high probability by an upper bound that is inversely proportional
to ‖θ‖2,q = ϑq1/2. Moreover, curves corresponding to σ = 0.2, 0.4, 0.8, 1.6 are roughly equally spaced

on the logarithmic scale, which corresponds to the linear dependence on λ = 2−1σ
√
n log(pn) of the

first term in the high-probability bound in Proposition 1. For fixed σ, the blue, orange and green curves
are approximately overlapping, especially when the sine angle loss is large. In particular, doubling
ϑ and reducing q by a factor of four leaves the sine angle loss virtually unchanged in these settings,
which is consistent with the first term in the high probability upper bound in Proposition 1 being the
dominant one, with its reciprocal dependence on ‖θ‖2,q = ϑq1/2. The contribution from the second
term in Proposition 1 is still visible in the high signal-to-noise ratio settings, where, for instance when
σ = 0.2, the ϑ = 2 curve (green) lies above the ϑ = 1 curve (orange). This is again consistent with
the form of the second term in the bound in Proposition 1, which, in our setting, does not depend on
ϑ, but is inversely proportional to q1/2.

A similar story emerges in the right panel of Figure 3 for the changepoint location estimator
accuracy. Here, for fixed ϑ and σ, most points lie on approximate straight lines with slope −2, which
is in agreement with the ‖θ‖−2

2,q dependence in the high probability bound of |ẑ − z| in Theorem 2.

The σ2 dependence in the first term of the bound in Theorem 2 is represented by the mostly equi-
spaced curves for the four different equi-spaced σ values on the logarithmic scale. The contribution of
the second term in the bound in Theorem 2 can be seen from the three curves corresponding to the
smallest noise scale σ = 0.2. Here, the estimation error only improves slightly as ϑ increases, which is
in agreement with our theoretical prediction, since, in the setting of this simulation, the second term
in Theorem 2 is proportional to q−1/2 and does not depend on ϑ.

4.3. Comparison with alternative approaches
In this subsection, we compare the performance of MissInspect with three alternatives. The first
two combine the idea of handling missing data via imputation and the original inspect procedure.
Specifically, given a data matrix with incomplete observations, we consider applying the softImpute
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procedure of Mazumder, Hastie and Tibshirani (2010), with the maximum matrix rank parameter set
to 2 (since X ◦Ω can be viewed as a perturbation of its mean (diag

√
q)µ, which has rank 2). We then

perform changepoint estimation on the imputed data matrix using the inspect procedure of Wang
and Samworth (2018), with the suggested regularisation parameter choice therein. This method is
denoted as ImputeInspect.

An alternative imputation strategy was mentioned briefly in the introduction: after an initial
imputation of missing entries with the corresponding row mean, we iterate between applying the
inspect algorithm to update our estimate of the changepoint location, and then re-imputing the
missing entries with the row means to the left and right of the current changepoint location estimate.
We call this method IteratedMeanImputation.

Our final comparator is an adaptation of the method of Londschien, Kovács and Bühlmann (2021),
who consider dynamic Gaussian graphical models with piecewise constant, but unknown, mean vec-
tors and precision matrices. Although in such a graphical modelling context, it is changes in the
precision matrix that are of primary interest, one can nevertheless apply this method with the preci-
sion matrices fixed in advance to be the identity matrix. In that case, the method can be regarded
as reporting the location of the peak of the absolute value of the `2-aggregated MissCUSUM trans-
formation of the observed data; equivalently, it seeks the most extreme generalised likelihood ratio
statistic for testing the alternative of a change at a particular time point. We refer to this method as
GeneralisedLikelihoodRatio.

Table 1 compares the performance of the four changepoint estimation algorithms MissInspect,
ImputeInspect, IteratedMeanImputation and GeneralisedLikelihoodRatio under various set-
tings. Here, we choose n = 1200, p = 2000, k ∈ {3, b√pc, p}, ϑ ∈ {1, 2, 3}. Data are generated accord-
ing to (3) with row-homogeneous missingness, independent of the data. The changepoint occurs at z =
400, with vector of mean change having `2 norm ϑ and proportional to (1, 2−1/2, . . . , k−1/2, 0, . . . , 0)>.
The observation rate vector q = (q1, . . . , qp)

> is randomly generated, independent of all other sources

of randomness, such that qj
iid∼ Beta

(
10ν, 10(1 − ν)

)
for j ∈ [p], where ν ∈ {0.1, 0.5}. Since the

MissInspect and ImputeInspect procedures are based on a single projection, we can compare their
performance in projection direction estimation; we also compare all methods in terms of their change-
point estimation risk. Note that the oracle projection direction for ImputeInspect is parallel to θ (since
the imputed matrix has no missing entries), whereas the oracle projection direction of MissInspect

is parallel to θ ◦ √q. We see in Table 1 that MissInspect consistently outperforms ImputeInspect

and IteratedMeanImputation, often dramatically, for all observation fractions, sparsity levels and
signal strengths considered. The MissInspect approach also achieves much smaller average esti-
mation errors than the GeneralisedLikelihoodRatio method when there is some sparsity to the
signal, with comparable performance when k = p. This is unsurprising in view of the fact that the
GeneralisedLikelihoodRatio procedure does not exploit sparsity in the vector of mean change.

4.4. Real data analysis
In this subsection, we illustrate the applicability of the MissInspect algorithm on an oceanographic
data set covering the Neogene geological period. Oceanographers study historic changes in the global
ocean circulation system by examining microfossils that record the isotopic composition of water at
the time at which they lived (Wright and Miller, 1996). In particular, large cores are extracted from
the ocean floor and a species of microfossils called foraminifera are taken from small slices of sediment
at different depths within the core. The ratio of the abundances of 13C to 12C isotopes in their calcium
carbonate shells is compared against a standard, to understand the carbon composition within the
oceans during their lifetime, and hence to determine the direction in which ocean currents flowed.
The depth of the foraminifera within the core is used as a proxy for the geological age of the fossil,
measured in millions of years (Ma).

Our data, which are available in a GitHub repository‡, and were previously analysed by Samworth
and Poore (2005) and Poore et al. (2006), consist of measurements from 16 cores extracted from the
North Atlantic, Pacific and Southern Oceans and are displayed in Figure 4. In total, there are 7369

‡https://github.com/wangtengyao/MissInspect/tree/main/real_data

https://github.com/wangtengyao/MissInspect/tree/main/real_data
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Table 1. Location and projection direction estimation errors (averaged over 200 Monte Carlo rep-
etitions) for MissInspect (denoted by superscript MI), ImputeInspect (denoted by superscript II),
IteratedMeanImputation (denoted by IMI) and GeneralisedLikelihoodRatio (denoted by GLR). Other
parameters: n = 1200, p = 2000, z = 400, q1, . . . , qp

iid∼ Beta
(
10ν, 10(1− ν)

)
. The best performing method is

highlighted in bold in each case.
ν k ϑ ∠(v̂MI, θ ◦ √q) ∠(v̂II, θ) |ẑMI − z| |ẑII − z| |ẑIMI − z| |ẑGLR − z|

0.1 3 1 71.4 86.8 141.7 468.0 184.1 212.4
0.1 3 2 40.6 56.7 36.5 304.8 147.7 139.8
0.1 3 3 26.1 40.1 14.5 257.5 101.0 66.6
0.1 44 1 82.6 88.9 185.9 468.9 187.6 209.4
0.1 44 2 63.5 83.2 66.9 404.5 133.7 118.3
0.1 44 3 49.0 72.8 18.7 308.6 90.8 52.0
0.1 2000 1 86.5 88.2 180.0 485.0 184.1 219.6
0.1 2000 2 76.9 87.6 121.2 457.3 138.9 137.5
0.1 2000 3 67.7 82.9 50.4 376.9 79.2 41.0
0.5 3 1 32.3 81.0 11.9 358.4 150.8 176.0
0.5 3 2 13.6 42.1 1.6 7.2 44.8 10.5
0.5 3 3 9.6 24.8 0.7 6.9 7.6 2.1
0.5 44 1 62.7 88.4 50.1 438.5 159.4 207.1
0.5 44 2 37.3 73.6 2.3 174.2 41.8 7.3
0.5 44 3 26.9 58.1 0.7 1.8 3.3 1.6
0.5 2000 1 77.5 88.6 114.3 448.1 162.5 202.9
0.5 2000 2 59.2 85.5 6.7 338.6 40.6 6.8
0.5 2000 3 52.0 72.4 1.7 48.2 3.9 1.7

observations at 6295 distinct time points, but Figure 4 makes clear that the heterogeneous nature of
the data collection process means that it is appropriate to think of the data as containing missingness.
The figure also indicates the 10 most prominent changepoints identified by applying the MissInspect

algorithm in combination with binary segmentation, as discussed in Section 5 below. It is notable that
the first changepoint, found by applying the algorithm to the full data set, occurs at 6.13Ma, a time
that has previously been identified as a time of rapid change in oceanographic current flow (Poore
et al., 2006, p. 13).

5. Extensions

As mentioned in the introduction, one of our main theoretical goals in this work is to understand the
way in which the missingness and the signal interact in changepoint problems to determine the difficulty
of the problem. This is particularly challenging when we seek to handle both high dimensionality and
different levels of missingess in different coordinates. For the purposes of our theoretical analysis, then,
it is natural to impose stronger assumptions elsewhere, so as to best expose the interesting phenomena
at play. Nevertheless, it remains of interest to consider the extent to which the methodology could be
generalised, and the assumptions could be relaxed, to cover a wider range of scenarios and problems
one might see in practice.

As we saw in analysing the oceanography data in Section 4.4, it may be that we wish to iden-
tify multiple changepoints. There are several standard techniques for extending single changepoint
procedures to such settings, including binary segmentation and different versions of wild binary seg-
mentation (Fryzlewicz, 2014; Kovács et al., 2020). Any of these approaches can be used in conjunction
with the MissInspect algorithm to identify multiple changepoints in high-dimensional data streams
in the presence of missingness. The theoretical analysis of such a procedure would be technically
involved, but would proceed along similar lines to that of Wang and Samworth (2018) for the case of
fully-observed data.

As always when handling missing data, the situation becomes much more complicated when the
missingness and the data are not independent, i.e. the Missing Completely At Random (MCAR) as-
sumption does not hold. In the worst case, the missingness may render the changepoint estimation
problem impossible, for instance if no signal coordinate has observed data on both sides of the change-
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Fig. 4. Ratios of carbon isotope measurements taken from foraminifera in 16 different cores from the North
Atlantic, Pacific and Southern Oceans. The label of each panel indicates both the ocean and the number of
the core, while the horizontal axis measures geological time (0–23 Ma). The red dashed lines indicate the
10 most prominent changepoints identified by applying the MissInspect algorithm in combination with binary
segmentation, with the most significant change plotted with a solid line.
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point. A less adversarial setting would be one in which all observations exceeding 1 are censored. Thus,
if the vector of mean change had positive entries in signal coordinates, we would expect to see fewer
observations in these coordinates after the change. The censoring would lead to (different) truncated
Gaussian distributions before and after the change, but a difference in mean of these distributions
would persist, so changepoint estimation may still be possible. In general, careful and problem-specfic
modelling of the dependence of the data and the missingness mechanism is recommended.

In this paper, we have focused on the problem of estimating a changepoint location in settings
where such a change is known to exist. An interesting complementary problem is that of detecting
whether or not there is a change; in other words, testing H0 : θ = 0 against H1 : θ 6= 0. To address this
challenge, first, for j ∈ [p], let Tj,1 := min{t ∈ [n] : ωj,t = 1} denote the first observation time in the
jth coordinate, and for ` = 2, . . . , Nj , let Tj,` := min{t > Tj,`−1 : ωj,t = 1} denote the `th observation
time in the jth coordinate. Then, under the null hypothesis and conditional on Ω,(

T Miss(X ◦ Ω,Ω)j,Tj,` : ` ∈ [Nj − 1]
) d

=

(
Bt√
t(1− t)

: t = 1/Nj , . . . , (Nj − 1)/Nj

)
, (5)

where (Bt)t∈[0,1] denotes a standard Brownian bridge. Under the alternative hypothesis, the condi-
tional distribution of the absolute value of the peak of the left-hand side in (5), given Ω, is stochastically
larger than under the null. This leads to various possible test statistics, including

T (1) := max
j∈[p]

max
`∈[Nj−1]

∣∣T Miss(X ◦ Ω,Ω)j,Tj,`
∣∣ and T (2) := max

`∈[Nj−1]

p∑
j=1

T Miss(X ◦ Ω,Ω)2
j,Tj,` ,

with pivotal null distributions, conditional on Ω.
Finally, we discuss settings of temporal and spatial dependence in the data. In the former case, a

natural model is to replace (3) with

Xt = µt +Wt, for t = 1, . . . , n,

where µ1, . . . , µn satisfy (1) and where the noise vectors (W1, . . . ,Wn) form a mean-zero, stationary
Gaussian process. In this case, with row-homogeneous missingness independent of the data, the oracle
projection direction remains (θ ◦√q)/‖θ ◦√q‖2, and the MissInspect methodology does not need to
be altered. On the other hand, if spatial dependence is introduced into (1) by replacing the identity
covariance matrix there with a general covariance matrix Σ, then the oracle projection direction
becomes proportional to Σ−1(θ◦√q). If Σ is unknown, then estimating Σ−1 may represent a significant
challenge, but it may be considerably simplified if our data stream satisfies additional structural
assumptions. For instance, if Σ = diag(σ2

1, . . . , σ
2
p), where σ1, . . . , σp are unknown, then we can

estimate these quantities robustly using, for example, the median absolute deviation of the marginal
one-dimensional series (Hampel, 1974). As another example, if Σ is Toeplitz with Σ = (ρ|j−k|)j,k∈[p]

for some ρ ∈ (−1, 1), then Σ−1 is tridiagonal, and its form can again be used to estimate ρ (Wang and
Samworth, 2018, Lemma 12).

6. Proof of main results

6.1. Proof of Proposition 1
The proof of Proposition 1 requires the following result.

Proposition 2. For n ≥ 2, suppose (X,Ω) ∼ Pn,p,z,θ,σ,q and let A = T
(
E(X)

)
∈ Rp×(n−1) and

AΩ = T Miss
(
E(X) ◦ Ω,Ω

)
∈ Rp×(n−1). We have that

P
(
|(AΩ)j,t −

√
qjAj,t| > 7

√
6|θj |

√
log(kn)

)
≤ 4

k2n2

for all j ∈ [p] and t ∈ [n− 1]. Consequently,

P
(
‖AΩ − (diag

√
q)A‖F > 7

√
6‖θ‖2

√
n log(kn)

)
≤ 4

kn
.
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Proof. Let ∆ := AΩ−
(
diag

√
q
)
A ∈ Rp×(n−1) have (j, t)th entry ∆j,t and let S := {j ∈ [p] : θj 6=

0}. Since ∆j,t = 0 for j /∈ S, it suffices to bound |∆j,t| for each j ∈ S and t ∈ [n− 1]. Without loss of
generality, we may assume that θj > 0.

First assume that j satisfies nτqj ≥ 24 log(kn). Let aj :=
⌈8 log(kn)

3qj

⌉
. It follows that aj ≤ nτ/6.

Define

δj,t :=


4 log(kn)

tqj
if 1 ≤ t ≤ aj − 1√

6 log(kn)
tqj

if aj ≤ t ≤ n.

Recall that Lj,t =
∑t

r=1 ωj,r and Rj,t =
∑n

r=n−t+1 ωj,r for j ∈ [p] and t ∈ [n]. We consider the event

Aj,t :=

{
max

(∣∣∣∣Lj,ttqj
− 1

∣∣∣∣, ∣∣∣∣Rj,ttqj
− 1

∣∣∣∣) ≤ δj,t}.
By Bernstein’s inequality (Lemma 3 in the supplementary material), we obtain that

P
(
Ac
j,t

)
≤ 4 exp

{
−

δ2
j,ttqj

2(1 + δj,t/3)

}
= 4 exp

{
− 8 log2(kn)

tqj + 4 log(kn)/3

}
1{t<aj} + 4 exp

{
− 3 log(kn)

1 +
√

2 log(kn)/(3tqj)

}
1{t≥aj}

≤ 4e−2 log(kn) ≤ 4

k2n2
,

where we have used the facts that tqj ≤ 8 log(kn)/3 for t ≤ aj − 1 and
√

2 log(kn) ≤
√

3tqj/2 for
t ≥ aj in the penultimate inequality.

We will now bound |∆j,t| for different values of t on Aj,t. First, consider aj ≤ t ≤ z. Since
n− z ≥ nτ > aj , we have δj,n−z ≤ δj,nτ ≤ 1/2. We deduce from the definition of AΩ that

(AΩ)j,t =

√
Lj,t

Rj,n−t(Lj,t +Rj,n−t)
Rj,n−zθj ≤

√
(1 + δj,t)tqj

(1− δj,n−t)2(n− t)nq2
j

(1 + δj,n−z)(n− z)qjθj

≤ √qjAj,t
√

1 + δj,t(1 + δj,n−z)

1− δj,n−z
. (6)

It follows that for j ∈ S and aj ≤ t ≤ z,

∆j,t ≤
√
qjAj,t

{√
1 + δj,t(1 + δj,n−z)

1− δj,n−z
− 1

}
≤ √qjAj,t

{
(1 + δj,t)(1 + 4δj,n−z)− 1

}
≤ √qjAj,t(3δj,t + 4δj,n−z).

By a similar calculation for deviations in the opposite direction, we have

∆j,t ≥ −
√
qjAj,t(δj,t + 4δj,n−z/3).

Thus, using the fact that Aj,t ≤ θj min
(√
t,
√
n− z

)
, we deduce that

|∆j,t| ≤
√
qjAj,t(3δj,t + 4δj,n−z) ≤ 7

√
qjθj min

(√
t,
√
n− z

)
max(δj,t, δj,n−z) ≤ 7θj

√
6 log(kn).

By symmetry, if z < t ≤ n− aj , we also have |∆j,t| ≤ 7θj
√

6 log(kn).
Next, if t ≤ aj − 1, then we necessarily have t ≤ nτ . The calculation in (6) still applies, and we

have

(AΩ)j,t ≤
√
qjAj,t

√
1 + δj,t(1 + δj,n−z)

1− δj,n−z
≤ 3
√
qjAj,t

√
1 + δj,t.
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Hence, since sgn
(
(AΩ)j,t

)
= sgn(Aj,t), we have

|∆j,t| ≤ max
(
(AΩ)j,t,

√
qjAj,t

)
≤ Aj,t

√
qj max

(
3
√

1 + δj,t, 1
)

≤ θj
√
tqj max

{
3

√
tqj + 4 log(kn)

tqj
, 1

}
≤ 8θj

√
log(kn).

A symmetric argument shows that |∆j,t| ≤ 8θj
√

log(kn) for n− aj ≤ t ≤ n− 1. Combining the above
bounds on |∆j,t|, we see that for j satisfying nτqj ≥ 24 log(kn) and all t ∈ [n− 1], we have that

P
(
|∆j,t| > 7

√
6θj
√

log(kn)
)
≤ P(Ac

j,t) ≤
4

k2n2
. (7)

We now turn our attention to j satisfying nτqj < 24 log(kn). If qj = 0, then ∆j,t = 0. So we may
assume qj > 0. Define

εj :=
24 log(kn)

nτqj
,

so that εj > 1. For j ∈ S, consider the event

Bj :=

{
max

(
Lj,z
zqj

,
Rj,n−z

(n− z)qj

)
≤ 1 + εj

}
.

By Lemma 3 in the supplement again, we have

P(Bc
j) ≤ 2 exp

{
−

ε2jnτqj

2(1 + εj/3)

}
≤ 2e−9 log(kn) =

2

(kn)9
.

On Bj , we have

(AΩ)j,t ≤ (AΩ)j,z ≤ θj
√

min{Lj,z, Rj,n−z} ≤ θj
√

(1 + εj)nτqj ≤ θj
√

48 log(kn).

On the other hand,

√
qjAj,t ≤

√
qjAj,z ≤

√
qj min{

√
z,
√
n− z}θj = θj

√
nτqj ≤ θj

√
24 log(kn).

Consequently, when nτqj < 24 log(kn), we have

P
(
|∆j,t| > θj

√
48 log(kn)

)
≤ P

(
(AΩ)j,t > θj

√
48 log(kn)

)
≤ P(Bc

j) ≤
2

(kn)9
. (8)

The first claim follows from (7) and (8). It now follows that

P
(
‖∆‖F > 7

√
6‖θ‖2

√
n log(kn)

)
≤
∑
j∈S

n−1∑
t=1

P
(
|∆j,t| > 7

√
6θj
√

log(kn)
)
≤ 4

kn
,

as desired.

Proof (of Proposition 1). Let v ∈ Sp−1 denote the leading left singular vector of AΩ and
let σ1 ≥ σ2 ≥ 0 denote the two largest singular values of AΩ. We start by controlling the angle
between v̂ and v. Write ∆ := AΩ − (diag

√
q)A ∈ Rp×(n−1) as in the proof of Proposition 2. Since

A = θγ>, we have (diag
√
q)A = (θ ◦√q)γ>. Hence, by Weyl’s inequality (e.g. Stewart and Sun, 1990,

Corollary IV.4.9), we obtain

σ1 − σ2 ≥ ‖θ‖2,q‖γ‖2 − 2‖∆‖op ≥
nτ‖θ‖2,q

4
− 2‖∆‖F,

where the final bound uses Wang and Samworth (2018, Lemma 3). By Proposition 2, there is an

event A with probability at least 1− 4/(kn) such that ‖∆‖F ≤ 7
√

6‖θ‖2
√
n log(kn). We may assume
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that
√
nτ‖θ‖2 ≥ 112‖θ‖2,q

√
6 log(kn), since otherwise, the proposition is trivially true. With this

assumption, we have on A that σ1 − σ2 ≥ nτ‖θ‖2,q/8. Thus, by Lemma 2 in the supplementary

material, on the event A ∩ {‖TΩ −AΩ‖∞ ≤ λn−1/2}, we have that

sin∠(v̂, v) ≤ 4λ
√
k

σ1 − σ2
≤ 32λ

√
k

nτ‖θ‖2,q
. (9)

On the other hand, by Wang (2016, Theorem 1.4) (an extension of Yu, Wang and Samworth (2015,
Corollary 1)), on A, we also have that

sin∠(v, θ ◦ √q) ≤ 4‖∆‖op

nτ‖θ‖2,q/4
≤ 112‖θ‖2

τ‖θ‖2,q

√
6 log(kn)

n
. (10)

By the triangle inequality, we deduce from (9) and (10) that on A ∩ {‖TΩ −AΩ‖∞ ≤ λn−1/2},

sin∠(v̂, θ ◦ √q) ≤ 32λ
√
k

nτ‖θ‖2,q
+

112‖θ‖2
τ‖θ‖2,q

√
6 log(kn)

n
.

The proposition follows on observing that

P(Ac ∪ {‖TΩ −AΩ‖∞ > λn−1/2}) ≤ 4

kn
+

p∑
j=1

n−1∑
t=1

P(|(TΩ)j,t − (AΩ)j,t| > λn−1/2)

≤ 4

kn
+ pne−λ

2/(2nσ2) ≤ 6

kn
,

where the penultimate inequality uses the fact that (AΩ)j,t − (TΩ)j,t | Ω ∼ N(0, σ2) for all t ∈ [n− 1]
and j ∈ [p] such that Lj,tRj,n−t 6= 0, and is equal to 0 when Lj,tRj,n−t = 0.

6.2. Proof of Theorem 1
Proof (of Theorem 1). Recall from Algorithm 3 that n1 = n/2, and for ` ∈ {1, 2}, let Ω(`) ∈

{0, 1}p×n1 , X(`) ∈ Rp×n1 and X
(`)
Ω ∈ Rp×n1 denote the matrices formed from the n1 odd columns

(when ` = 1) and the n1 even numbered columns (when ` = 2) of Ω, X and XΩ = X ◦Ω respectively.

For ` ∈ {1, 2}, let T
(`)
Ω := T Miss(X

(`)
Ω ,Ω(`)) ∈ Rp×(n1−1). By Proposition 1, the output v̂ of Algorithm 1

with inputs T
(1)
Ω and λ satisfies

P
{

sin∠(v̂, θ ◦ √q) >
32λ
√
k

n1τ‖θ‖2,q
+

112‖θ‖2
τ‖θ‖2,q

√
6 log(kn1)

n1

}
≤ 6

kn1
=

12

kn
. (11)

We can therefore find a universal constant C ′ > 0 such that whenever (4) holds, we have that the
event A :=

{
sin∠(v̂, θ ◦ √q) ≤ 1/2

}
has probability at least 1− 12/(kn).

Writing µ(2) := E(X(2)) ∈ Rp×n, let A(2) = T (µ(2)) and A
(2)
Ω = T Miss(µ(2) ◦ Ω(2),Ω(2)). Our main

decomposition of interest here is

T
(2)
Ω = (diag

√
q)A(2) + ∆(2) + E

(2)
Ω ,

where ∆(2) := A
(2)
Ω − (diag

√
q)A(2) and E

(2)
Ω := T

(2)
Ω − A(2)

Ω . Since Algorithm 3 remains the same if

we replace v̂ in Step 6 with −v̂, we may assume without loss of generality that v̂>(θ ◦√q) ≥ 0. Since

(diag
√
q)A(2) = (θ ◦ √q)γ(2)>, where γ(2) = (γ

(2)
1 , . . . , γ

(2)
n1−1)> ∈ Rn1−1

γ
(2)
t :=


√

t
(n1−t)n1

(n1 − z/2) if t ≤ z/2,√
(n1−t)
tn1

(z/2) if t > z/2,
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we have
(
v̂>(diag

√
q)A(2)

)
t
≥ 0 for all t ∈ [n1 − 1]. On the event A, we have

(
v̂>(diag

√
q)A(2)

)
z/2
≥
√

3

2
‖θ‖2,qγ(2)

z/2 ≥
√

3

4
‖θ‖2,q

√
nτ. (12)

Observe that for every t ∈ [n1 − 1], we have

(v̂>E
(2)
Ω )t | Ω(2) ∼ N

(
0, σ2‖v̂Jt‖22

)
,

where Jt :=
{
j ∈ [p] : min

(∑t
r=1(Ω(2))j,r,

∑n1

r=t+1(Ω(2))j,r
)
> 0

}
. Since ‖v̂Jt‖2 ≤ 1, we deduce

that (v̂>E
(2)
Ω )t is stochastically dominated by N(0, σ2). Hence, together with the first conclusion of

Proposition 2 and a union bound, there exists an event B with probability at least 1− 4/(kn1)− 1/n1

such that on B we have

max
t∈[n1−1]

|(v̂>∆(2))t| ≤ 7
√

6‖θ‖2
√

log(kn) and max
t∈[n1−1]

|(v̂>E(2)
Ω )t| ≤ 2σ

√
log n. (13)

Combining (12) and (13), and by increasing the universal constant C ′ > 0 if necessary, we have by (4)
that on A ∩ B,(

v̂>T
(2)
Ω

)
z/2

=
(
v̂>(diag

√
q)A(2)

)
z/2

+ (v̂>E
(2)
Ω )z/2 + (v̂>∆(2))z/2

≥ max
{

0, max
t∈[n1−1]

{
−(v̂>E

(2)
Ω )t − (v̂>∆(2))t

}}
> max

t∈[n1−1]

(
−v̂>T (2)

Ω

)
t
.

In particular, on A ∩ B, we have from the definition of ẑ that (v̂>T
(2)
Ω )ẑ/2 ≥ (v̂>T

(2)
Ω )z/2 ≥ 0, so on

this event we have the basic inequality(
v̂>(diag

√
q)A(2)

)
z/2
−
(
v̂>(diag

√
q)A(2)

)
ẑ/2

≤
∣∣(v̂>E(2)

Ω )z/2 − (v̂>E
(2)
Ω )ẑ/2

∣∣+
∣∣(v̂>∆(2))z/2 − (v̂>∆(2))ẑ/2

∣∣. (14)

By Wang and Samworth (2018, Lemma 7) on the event A ∩ B, for every t ∈ [n1 − 1], we have(
v̂>(diag

√
q)A(2)

)
z/2
−
(
v̂>(diag

√
q)A(2)

)
t

=
∣∣v̂>(
√
q ◦ θ)

∣∣(γz/2 − γt)
≥
√

3

2
‖θ‖2,q ·

2

3
√

6
min

(
|z/2− t|
√
n1τ

,

√
n1τ

2

)
=

1

3
√

2
‖θ‖2,q min

(
|z/2− t|
√
n1τ

,

√
n1τ

2

)
. (15)

Combining (14), (15) and (13), we then have on A ∩ B that,

1

3
√

2
‖θ‖2,q min

(
|ẑ − z|
2
√
n1τ

,

√
n1τ

2

)
≤ 4σ

√
log n+ 14

√
6‖θ‖2

√
log(kn). (16)

For C ′ ≥ 84
√

3, we have by (4) that

24
√

2σ

‖θ‖2,q

√
log n

n1τ
+

168
√

3‖θ‖2
‖θ‖2,q

√
log(kn)

n1τ
<

2C ′

τ

√
log(pn)

n

(
σ
√
k

‖θ‖2,q
+
‖θ‖2
‖θ‖2,q

)
≤ 1,

which means that the minimum on the left-hand side of (16) must be achieved by the first term. We
therefore deduce with probability at least P(A ∩ B) ≥ 1− 22/n that,

|ẑ − z|
nτ

≤
24σ
√

log n+ 84
√

6‖θ‖2
√

log(kn)

‖θ‖2,q
√
nτ

≤ 84
√

6

(
σ

‖θ‖2,q
+
‖θ‖2
‖θ‖2,q

)√
log(kn)

nτ
,

as desired.
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6.3. Proof of Theorem 2
The proof of Theorem 2 will make use of the following propositions.

Proposition 3. Let (X,Ω) ∼ Pn,p,z,θ,σ,q, let A = (Aj,t) = T
(
E(X)

)
∈ Rp×(n−1) and let AΩ =

(AΩ)j,t = T Miss
(
E(X) ◦ Ω,Ω

)
∈ Rp×(n−1). Write ∆ = (∆j,t) = AΩ − (diag

√
q)A ∈ Rp×(n−1), fix

v = (v1, . . . , vp)
> ∈ Sp−1 and let τ := n−1 min{z, n − z}. For any given δ ∈ (0, 1], if nτ minj∈[p] qj ≥

60k log(12p/δ), then for t satisfying |z − t| ≤ nτ/50, we have with probability at least 1− δ that

∣∣(v>∆)z − (v>∆)t
∣∣ ≤ 2‖θ‖2,q|z−t|

9
√
nτ

+

√
2|z−t|

∑
j∈[p] v

2
j θ

2
j log(12/δ)

nτ
+

4 log(12p/δ)

3
√
nτ

max
j∈[p]

|vjθj |
q

1/2
j

.

Proof. Without loss of generality, we may assume that t < z. For each j ∈ [p], by two Taylor
expansions, there exist ξj , ξ̃j ∈ [t, z] such that

Aj,z −Aj,t =
(n− z)θj√

n

(√
z

n− z
−
√

t

n− t

)
= θj(z − t)

√
z−1 + (n− z)−1

2
+ θj(z − t)2n

1/2(n− z)(n− 4ξj)

8ξ
3/2
j (n− ξj)5/2

= θj(z − t)
√
t−1 + (n− z)−1

2
+ θj(z − t)2

{
n1/2(n− z)(n− 4ξj)

8ξ
3/2
j (n− ξj)5/2

− 1

4ξ̃2
j

√
ξ̃−1
j + (n− z)−1

}
.

Similarly, by another two Taylor expansions, there exist random variables Ξj , Ξ̃j ∈ [Lj,t, Lj,z] such
that

(AΩ)j,z − (AΩ)j,t = θj(Lj,z − Lj,t)

√
L−1
j,t +R−1

j,n−z

2

+ θj(Lj,z − Lj,t)2

{
N

1/2
j Rj,n−z(Nj − 4Ξj)

8Ξ
3/2
j (Nj − Ξj)5/2

− 1

4Ξ̃2
j

√
Ξ̃−1
j +R−1

j,n−z

}
.

We write

D1,j :=
θj
2

√
t−1 + (n− z)−1

qj

{
(Lj,z − Lj,t)− qj(z − t)

}
D2,j :=

θj(Lj,z − Lj,t)
2

{√
L−1
j,t +R−1

j,n−z −

√
t−1 + (n− z)−1

qj

}
D3,j := |θj |q1/2

j (z − t)2

{
1

2

(
n

ξj(n− ξj)

)3/2

+
1

4ξ̃
3/2
j

}

D4,j := |θj |(Lj,z − Lj,t)2

{
1

2

(
Nj

Ξj(Nj − Ξj)

)3/2

+
1

4Ξ̃
3/2
j

}
.

We then have the bound∣∣(v>∆)z − (v>∆)t
∣∣ ≤ ∣∣∣∣ p∑

j=1

vjD1,j

∣∣∣∣+

∣∣∣∣ p∑
j=1

vjD2,j

∣∣∣∣+

p∑
j=1

|vj |D3,j +

p∑
j=1

|vj |D4,j . (17)

We control the four terms on the right-hand side of (17) separately. For the first term, setting

y :=
√

2(z − t)
∑

j∈[p] v
2
j θ

2
j log(12/δ) + (1/3) maxj∈[p] |vjθj |q

−1/2
j log(12/δ), we consider the event

Bt :=

{∣∣∣∣ p∑
j=1

vjθj

q
1/2
j

z∑
r=t+1

(ωj,r − qj)
∣∣∣∣ ≤ y}.
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Since (ωj,r)j∈[p],r∈(t,z] are independent Bern(qj) random variables, we have by Lemma 3 in the supple-
mentary material that P(Bc

t ) ≤ δ/6. On Bt, we have that∣∣∣∣ p∑
j=1

vjD1,j

∣∣∣∣ =
1

2

√
t−1 + (n− z)−1

∣∣∣∣ p∑
j=1

vjθj

q
1/2
j

z∑
r=t+1

(ωj,r − qj)
∣∣∣∣ ≤ 0.8y√

nτ
. (18)

For the second term on the right-hand side of (17), let F denote the σ-algebra generated by (ωj,r :
j ∈ [p], r ∈ [n], r /∈ [t+ 1, z]), then Lj,z − Lj,t is independent of F , whereas

Gj :=
vjθj

2

{√
L−1
j,t +R−1

j,n−z − q
−1/2
j

√
t−1 + (n− z)−1

}
is measurable with respect to F . We can therefore apply Lemma 3 in the supplement conditional on
F to obtain that there is a event Ct with P(Cc

t | F) ≤ δ/6 on which∣∣∣∣ p∑
j=1

vjD2,j

∣∣∣∣ =

∣∣∣∣ p∑
j=1

Gj

z∑
r=t+1

ωj,r

∣∣∣∣
≤ (z − t)

∣∣∣∣ p∑
j=1

Gjqj

∣∣∣∣+

√√√√2(z − t) log(12/δ)

p∑
j=1

G2
jqj +

1

3
max
j∈[p]
|Gj | log(12/δ). (19)

For 0 ≤ a < b ≤ n, define

Hj,(a,b) :=

∣∣∣∣Lj,b − Lj,a(b− a)qj
− 1

∣∣∣∣. (20)

We consider the event

Aj,t :=

{
max

(
Hj,(0,t), Hj,(0,z), Hj,(z,n)

)
≤ 1

5

}
∩
{
Hj,(t,z) ≤

√
2 log(12p/δ)

(z − t)qj
+

log(12p/δ)

3(z − t)qj

}
.

By Lemma 3 in the supplement again, we obtain that

P(Ac
j,t) ≤ 6 exp

{
−(1/5)2(1− 1/50)nτqj

2(1 + 1/15)

}
+

δ

6p
≤ 6e−nτqj/60 +

δ

6p
≤ 2δ

3p
,

where we used the assumption nτqj ≥ 60 log(12p/δ) in the final inequality. On Aj,t, we have

|Gj | ≤
|vjθj |
2q

1/2
j

(
√

5/4− 1)
√
t−1 + (n− z)−1 ≤ 0.084|vjθj |

(nτqj)1/2
,

where we have used the fact that t ≥ (49/50)nτ . Combining the above inequality with (19), on
∩j∈[p]Aj,t ∩ Ct, we have by the Cauchy–Schwarz inequality that∣∣∣∣ p∑

j=1

vjD2,j

∣∣∣∣ ≤ 0.084
‖θ‖2,q(z − t) + y

(nτ)1/2
. (21)

For the third and fourth terms on the right-hand side of (17), since |z − t| ≤ nτ/50, we have

D3,j ≤ |θj |q1/2
j (z − t)2

{
1

2

(
2

min(t, n− z)

)3/2

+
1

4t3/2

}
≤

1.8|θj |q1/2
j (z − t)2

(nτ)3/2
.

Moreover, on Aj,t,

D4,j ≤ |θj |q2
j (z − t)2(1 +Hj,(t,z))

2

{
1

2

(
2

min(Lj,t, Rj,n−z)

)3/2

+
1

4L
3/2
j,t

}

≤
2.4|θj |q1/2

j (z − t)2

(nτ)3/2
(1 +Hj,(t,z))

2 ≤
4.8|θj |q1/2

j (z − t)2

(nτ)3/2
+

60|θj | log2(12p/δ)

(nτqj)3/2
,
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where the final step uses the fact that (1 +
√

2a + a/3)2 ≤ 2 + 25a2 for any a > 0. Therefore, on
∩j∈[p]Aj,t, since |z − t| ≤ nτ/50 and nτ minj∈[p] qj ≥ 60k log(12p/δ), we have by the Cauchy–Schwarz
inequality again that

p∑
j=1

|vj |(D3,j +D4,j) ≤
6.6‖θ‖2,q(z − t)2

(nτ)3/2
+

60 log2(12p/δ)

(nτ)3/2

∑
j:θj 6=0

|vjθj |
q

3/2
j

≤ 0.132‖θ‖2,q(z − t)
(nτ)1/2

+
log(12p/δ)

(nτ)1/2
max
j:θj 6=0

|vjθj |
q

1/2
j

. (22)

Therefore, combining (17), (18), (21) and (22), we have on ∩j∈[p]Aj,t ∩ Bt ∩ Ct that∣∣(v>∆)z − (v>∆)t
∣∣ ≤ y√

nτ
+

2‖θ‖2,q(z − t)
9
√
nτ

+
log(12p/δ)

(nτ)1/2
max
j∈[p]

|vjθj |
q

1/2
j

≤ 2‖θ‖2,q(z − t)
9
√
nτ

+

√
2(z − t)

∑
j∈[p] v

2
j θ

2
j log(12/δ)

nτ
+

4 log(12p/δ)

3(nτ)1/2
max
j∈[p]

|vjθj |
q

1/2
j

.

Since
∑p

j=1 P(Ac
j,t) + P(Bc

t ) + P(Cc
t ) ≤ δ, the proof is complete.

Proposition 4. Suppose that Ω = (ωj,t)j∈[p],t∈[n] and W = (Wj,t)j∈[p],t∈[n] are independent, with

ωj,t ∼ Bern(qj) independently and qj ∈ (0, 1], and with Wj,t
iid∼ N(0, σ2). Let EΩ := T Miss(W ◦ Ω,Ω),

let z ∈ [n− 1] and let τ := n−1 min{z, n− z}. Suppose that t ∈ [n− 1] satisfies |z − t| ≤ nτ/2. For a
fixed v ∈ Sp−1, if nτ minj∈[p] qj ≥ 20 log(11p/δ), then we have for any δ ∈ (0, 1] that

P

{∣∣(v>EΩ)z − (v>EΩ)t
∣∣ > 70σ

√
|z − t| log(11/δ) + log2(11/δ) maxj∈[p] v

2
j /qj

nτ

}
≤ δ.

Proof. By symmetry, we may assume without loss of generality that t < z. We note that (EΩ)j,z−
(EΩ)j,t is a centred normal random variable conditional on Ω, so we start by looking at its conditional
variance. By definition of T Miss, we have

(EΩ)j,z − (EΩ)j,t =

√
Nj

Lj,zRj,n−z

(
Lj,z
Nj

n∑
r=1

Wj,rωj,r −
z∑
r=1

Wj,rωj,r

)

−

√
Nj

Lj,tRj,n−t

(
Lj,t
Nj

n∑
r=1

Wj,rωj,r −
t∑

r=1

Wj,rωj,r

)

=

√
Nj

Lj,zRj,n−z

(
Lj,z − Lj,t

Nj

n∑
r=1

Wj,rωj,r −
z∑

r=t+1

Wj,rωj,r

)

+

(√
Nj

Lj,zRj,n−z
−

√
Nj

Lj,tRj,n−t

)(
Lj,t
Nj

n∑
r=1

Wj,rωj,r −
t∑

r=1

Wj,rωj,r

)
. (23)

Now, by the mean value theorem, there exists a random variable Ξj ∈ [Lj,t, Lj,z] such that∣∣∣∣
√

Nj

Lj,zRj,n−z
−

√
Nj

Lj,tRj,n−t

∣∣∣∣ ≤ (Lj,z − Lj,t)
∣∣∣∣ΞjNj
− 1

2

∣∣∣∣( Nj

Ξj(Nj − Ξj)

)3/2

≤
√

2(Lj,z − Lj,t)
min(Ξj , Nj − Ξj)3/2

.

(24)

Also, observe that

Lj,t
Nj

n∑
r=1

Wj,rωj,r −
t∑

r=1

Wj,rωj,r =

n∑
r=t+1

Wj,rωj,r −
Rj,n−t
Nj

n∑
r=1

Wj,rωj,r. (25)
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Substituting (24) and (25) into (23), and observing that
∑n

r=1Wj,rωj,r is positively correlated with

each of
∑z

r=t+1Wj,rωj,r,
∑t

r=1Wj,rωj,r and
∑n

r=t+1Wj,rωj,r, we have that

Var
(
(EΩ)j,z − (EΩ)j,t

∣∣ Ω
)
≤ 2σ2Nj

Lj,zRj,n−z

(
(Lj,z − Lj,t)2

Nj
+ Lj,z − Lj,t

)
+

4σ2(Lj,z − Lj,t)2

min(Ξj , Nj − Ξj)3
min

(
L2
j,t

Nj
+ Lj,t, Rj,n−t +

R2
j,n−t
Nj

)
≤ 4σ2(Lj,z − Lj,t)

(
1

Lj,z
+

1

Rj,n−z

)
+

8σ2(Lj,z − Lj,t)2

min{Lj,t, Rj,n−z}2
max

(
Lj,z
Lj,t

,
Rj,n−t
Rj,n−z

)
. (26)

Recalling the definition of Hj,(a,b) from (20) in the proof of Proposition 3, we consider the event

Aj,t :=

{
max{Hj,(0,z), Hj,(0,t), Hj,(z,n), Hj,(t,n)} ≤

1

2

}
∩
{
Hj,(t,z) ≤

nτ

z − t

}
.

By Bernstein’s inequality (Lemma 3 in the supplementary material), we obtain that

P(Ac
j,t) ≤ 8 exp

{
−(1/2)2(nτ/2)qj

2(1 + 1/6)

}
+ exp

{
−(nτ/(z − t))2(z − t)qj

2
(
1 + nτ/{3(z − t)}

) } ≤ 9e−nτqj/20,

where we used the fact that z − t ≤ nτ/2 in the final inequality. It therefore follows from (26) that
on the event Aj,t,

Var
(
(EΩ)j,z − (EΩ)j,t

∣∣ Ω
)
≤ 16σ2

nτqj
(Lj,z − Lj,t) +

768σ2

(nτqj)2
(Lj,z − Lj,t)2 ≤ 1168σ2

nτqj
(Lj,z − Lj,t).

Hence, on ∩j∈[p]Aj,t, we have

Var
{

(v>EΩ)z − (v>EΩ)t
∣∣ Ω
}
≤ 1168σ2

nτ

p∑
j=1

v2
j

qj
(Lj,z − Lj,t) =

1168σ2

nτ

p∑
j=1

v2
j

qj

z∑
r=t+1

ωj,r.

Now, setting y :=
√

2(z − t)
∑

j∈[p] v
4
j q
−1
j log(11/δ)+(1/3) maxj∈[p] v

2
j q
−1
j log(11/δ), consider the event

Bt :=

{ p∑
j=1

v2
j

qj

z∑
r=t+1

ωj,r ≤ z − t+ y

}
.

We have by Bernstein’s inequality (Lemma 3 in the supplement) that P(Bc
t ) ≤ δ/11. Noting that∑

j∈[p] v
4
j q
−1
j ≤ maxj∈[p] v

2
j q
−1
j , and using the fact that a+

√
2ab+ b/3 ≤ 2(a+ b) for any a, b > 0, we

have from the Gaussian tail bound that for every u > 0,

P

{∣∣(v>EΩ)z − (v>EΩ)t)
∣∣ > 49uσ

√
z − t+ log(11/δ) maxj∈[p] v

2
j /qj

nτ

}

≤ e−u2/2 +

p∑
j=1

P(Ac
j,t) + P(Bc

t ) ≤ e−u
2/2 + 9

p∑
j=1

e−nτqj/20 +
δ

11
.

The result follows by taking u :=
√

2 log(11/δ) and using the fact that nτ minj∈[p] qj ≥ 20 log(11p/δ).

Proof (of Theorem 2). We write z1 := z/2 and n1 := n/2. Taking C,C ′ > 0 from Theorem 1,
we may assume that c ∈ (0, 1/50] is small enough that the hypothesis (4) of Theorem 1 is satisfied
when ρ ≤ c. Hence, by Theorem 1, there is an event E with probability at least 1− 22/n such that

|ẑ − z|
nτ

≤ C
√

log(kn)

nτ

(
σ

‖θ‖2,q
+
‖θ‖2
‖θ‖2,q

)
≤ Cρ.
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By further reducing c > 0 if necessary, we may assume that on E , and when ρ ≤ c, we have |ẑ − z| ≤
nτ/50.

Let A(2),∆(2) and E
(2)
Ω be defined as in the proof of Theorem 1. With v̂ = (v̂1, . . . , v̂p)

> ∈ Sp−1 as
defined in Algorithm 3, an inspection of the proof of Theorem 1 reveals that on E , we also have for
all t ∈ [z1 − n1τρ, z1 + n1τρ] and ρ ≤ c that(

v̂>(diag
√
q)A(2)

)
z1
−
(
v̂>(diag

√
q)A(2)

)
t
≥ |z1 − t|‖θ‖2,q

3
√

2n1τ
. (27)

Recall that v̂ is measurable with respect to the σ-algebra generated by the odd-numbered time points,

and that ∆(2) and E
(2)
Ω are measurable with respect to the σ-algebra generated by the even-numbered

time points. By taking the universal constant C1 > 0 in the statement of the theorem to be sufficiently
large, we can ensure that the lower bounds on nτ minj∈[p] qj in Propositions 3 and 4 are satisfied. It
follows by these propositions that when ρ ≤ c, for each t ∈ [z1−n1τρ, z1 +n1τρ], there is an event At
of probability at least 1− n−2 on which both

∣∣(v̂>∆(2))z1
− (v̂>∆(2))t

∣∣− 2‖θ‖2,q|z1 − t|
9
√
n1τ

.

√
|z1 − t|

∑
j∈[p] v̂

2
j θ

2
j log n

nτ
+

log(pn)√
nτ

max
j∈[p]

|v̂jθj |
q

1/2
j

, (28)

∣∣(v̂>E(2)
Ω )z1

− (v̂>E
(2)
Ω )t

∣∣ .√ |z1 − t|σ2 log n

nτ
+
σ log n√
nτ

max
j∈[p]

|v̂j |
q

1/2
j

. (29)

Combining (27), (28), (29) and the basic inequality as in (14) in the proof of Theorem 1, we have on
the event E ∩

⋂
t∈[z/2−n1τρ,z/2+n1τρ]At and with ρ ≤ c that

|ẑ − z|‖θ‖2,q√
nτ

.

√
|ẑ − z|(σ2 +

∑
j∈[p] v̂

2
j θ

2
j ) log n

nτ
+

log(pn)√
nτ

max
j∈[p]

|v̂jθj |
q

1/2
j

+
σ log n√
nτ

max
j∈[p]

|v̂j |
q

1/2
j

. (30)

Define v = (vj)j∈[p] ∈ Rp such that vj := θjq
1/2
j /‖θ‖2,q. Then we can write

v̂ = αv + βw,

for some unit-length (random) vector w = (wj)j∈[p] that is orthogonal to v and some α, β ∈ R such

that α2 + β2 = 1. Moreover, by inspecting the proof of Theorem 1, we see that on E , we have
|β| = sin∠(v̂, v) ≤ ρ. Then from (30), we have on E ∩

⋂
t∈[z/2−n1τρ,z/2+n1τρ]At that

|ẑ − z| .
σ2 + α2

∑
j∈[p] v

2
j θ

2
j + β2

∑
j∈[p]w

2
j θ

2
j

‖θ‖22,q
log n

+
|α|maxj∈[p] |vjθj |q

−1/2
j + |β|maxj∈[p] |wjθj |q

−1/2
j

‖θ‖2,q
log(pn)

+
σ(|α|maxj∈[p] |vj |q

−1/2
j + |β|maxj∈[p] |wj |q

−1/2
j )

‖θ‖2,q
log n

.
σ2 log n

‖θ‖22,q
+
‖θ‖44,q log n

‖θ‖42,q
+
ρ2‖θ‖2∞ log n

‖θ‖22,q

+
‖θ‖2∞ log(pn)

‖θ‖22,q
+
ρmaxj∈[p] |θj |q

−1/2
j log(pn)

‖θ‖2,q

+
‖θ‖∞σ log n

‖θ‖22,q
+

ρσ log n

‖θ‖2,q minj∈[p] q
1/2
j

.

(
σ2 + ‖θ‖2∞

)
log(pn)

‖θ‖22,q
+
ρ(σ + ‖θ‖∞) log(pn)

‖θ‖2,q minj∈[p] q
1/2
j

.

(
σ2 + ‖θ‖2∞

)
log(pn)

‖θ‖22,q
,
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where the final bound uses the definition of ρ and the fact that nτ2 minj∈[p] qj ≥ C1k log(pn). The

desired result follows since P
(
E ∩

⋂
t∈[z/2−n1τρ,z/2+n1τρ]At

)
≥ 1− 22/n− (2n1τρ+ 1)/n2 ≥ 1− 23/n.

6.4. Proof of Theorem 3
Proof (of Theorem 3). For notational simplicity, we abbreviate Pn,p,z,θ,σ,q as Pz in this proof,

with corresponding expectation operator Ez. For any 1 ≤ z1 < z2 ≤ n − 1, by Le Cam’s two point
testing lemma (e.g. Yu, 1997, Lemma 1), we have that

inf
z̃∈Z̃

max
z∈[n−1]

Ez|z̃ − z| ≥
1

2
|z1 − z2|

{
1− dTV(Pz1

, Pz2
)
}
. (31)

By Pinsker’s inequality (e.g. Wainwright, 2019, Lemma 15.2), we have

2d2
TV(Pz1

, Pz2
) ≤ KL(Pz1

||Pz2
) = EPz1

[
EPz1

{
log

(
dPz1

dPz2

(X,Ω)

) ∣∣∣∣ Ω

}]
=

p∑
j=1

z2∑
t=z1+1

EPz1
θ2
jωj,t

2σ2
=

(z2 − z1)‖θ‖22,q
2σ2

.

Choosing z2 − z1 = min
{
bσ2/‖θ‖22,qc, n − 2

}
, we have dTV(Pz1

, Pz2
) ≤ 1/2 and consequently if σ2 ≥

‖θ‖22,q, then by (31),

inf
z̃∈Z̃

max
z∈[n−1]

Ez|z̃ − z| ≥
1

4
min

{⌊
σ2

‖θ‖22,q

⌋
, n− 2

}
≥ 1

12
min

{
σ2

‖θ‖22,q
, n

}
. (32)

On the other hand, if ‖θ‖2∞ ≥ 2M2‖θ‖22,q, then∑
j:θj 6=0

qj ≤
‖θ‖22,q

minj:θj 6=0 θ
2
j

≤
M2‖θ‖22,q
‖θ‖2∞

≤ 1/2.

Define S := {j ∈ [p] : θj 6= 0} and

A :=
{(

(xj,t)j∈[p],t∈[n], (ωj,t)j∈[p],t∈[n]

)
: ωj,t = 0 whenever j ∈ S and z1 + 1 ≤ t ≤ z2

}
.

Then the distributions of Pz1
given A and Pz2

given A are identical. Moreover, Pz1
(A) = Pz2

(A).
Thus, for any Borel measurable subset B of Rn×p × {0, 1}n×p, we have

|Pz1
(B)− Pz2

(B)| =
∣∣Pz1

(B | Ac)− Pz2
(B | Ac)

∣∣Pz1
(Ac) ≤ Pz1

(Ac).

Hence, using the fact that 1− x ≥ e−2x log 2 for x ∈ [0, 1/2], we have

1− dTV(Pz1
, Pz2

) ≥ Pz1
(A) =

∏
j:θj 6=0

(1− qj)z2−z1 ≥ exp

{
−2(log 2)(z2 − z1)

∑
j:θj 6=0

qj

}
.

Choosing z2−z1 = min
{
d(2
∑

j:θj 6=0 qj)
−1e, n−2

}
, we have 1−dTV(Pz1

, Pz2
) ≥ 1/4, and consequently,

on combining with (31) we obtain that

inf
z̃∈Z̃

max
z∈[n−1]

Ez|z̃ − z| ≥
1

8
min

{
1

2
∑

j:θj 6=0 qj
, n− 2

}
≥ 1

24
min

{
‖θ‖2∞

M2‖θ‖22,q
, n

}
. (33)

By combining (32) and (33), and considering the three possible cases of (i) σ2 ≥ ‖θ‖22,q > ‖θ‖2∞/(2M2),

(ii) ‖θ‖2∞/(2M2) ≥ ‖θ‖22,q > σ2 and (iii) min{σ2, ‖θ‖2∞/(2M2)} ≥ ‖θ‖22,q, we have

inf
z̃∈Z̃

max
z∈[n−1]

Ez|z̃ − z| ≥
1

12
max

{
σ2

‖θ‖22,q
∧ n

2
,
‖θ‖2∞

2M2‖θ‖22,q
∧ n

2

}
≥ 1

12
min

(
max

{
σ2

‖θ‖22,q
,
‖θ‖2∞

2M2‖θ‖22,q

}
,
n

2

)
≥ 1

24
min

(
σ2

‖θ‖22,q
+

‖θ‖2∞
2M2‖θ‖22,q

, n

)
,

as required.
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A. Auxiliary lemmas and proofs

Define the soft-thresholding function soft : Rp × [0,∞)→ Rp such that for v = (v1, . . . , vp)
> ∈ Rp, we

have
(
soft(v, λ)

)
j

= sgn(vj) max{|vj | − λ, 0} for j ∈ [p].

Lemma 1. Let M ∈ Rp×n and let

(v∗, w∗) ∈ argmax
(v,w)∈Bp×Bn

{
〈M,vw>〉 − λ‖v‖1

}
.

If ‖M‖2→∞ < λ, then v∗ = 0; if ‖M‖2→∞ > λ, then

v∗ =
soft(Mw∗, λ)

‖soft(Mw∗, λ)‖2
and w∗ =

M>v∗
‖M>v∗‖2

. (1)

Finally, if ‖M‖2→∞ = λ, then either v∗ = 0 or both w∗ ∈ {w ∈ Rn : ‖w‖2 = 1, ‖Mw‖∞ = λ} and

sgn
(
v∗,j
)

= sgn
(
(Mw∗)j

)
1{|(Mw∗)j |=λ}

for every j ∈ [n], where v∗ = (v∗,1, . . . , v∗,p).

Proof. For (v, w) ∈ Rp × Rn with ‖v‖2 ≤ 1, ‖w‖2 ≤ 1, we write

f(v, w) := 〈M,vw>〉 − λ‖v‖1
for our objective function. We first note that maximisers exist since f is concave and the constraint
set is convex and compact. Moreover, for (v, w) ∈ Bp × Bn, we have

f(v, w) = v>Mw − λ‖v‖1 ≤ (‖Mw‖∞ − λ)‖v‖1 =: g(v, w).

If ‖M‖2→∞ < λ, then f(v, w) ≤ g(v, w) ≤ 0, with both equalities holding if and only if v = 0, and
we deduce that v∗ = 0. If ‖M‖2→∞ = λ, then again f(v, w) ≤ g(v, w) ≤ 0 with both equalities
holding if and only if either v = 0, or v>Mw = ‖Mw‖∞ = λ; the latter case yields the constraints
on w∗ and v∗ given in the statement. Finally, we consider the case where ‖M‖2→∞ > λ. We can
find (v0, w0) ∈ Sp−1 × Sn−1 such that ‖Mw0‖∞ = ‖M‖2→∞ and v>0 Mw0 = ‖v0‖1‖Mw0‖∞, and
consequently f(v∗, w∗) ≥ f(v0, w0) = g(v0, w0) > 0. In particular, we may assume that M>v∗ 6= 0 in
the remainder of the proof. Define the Lagrangian L : Rp × Rn × [0,∞)× [0,∞)→ R by

L(v, w, α, β) := 〈M, vw>〉 − λ‖v‖1 − α
(
‖v‖22 − 1

)
− β

(
‖w‖22 − 1

)
.

By the Karush–Kuhn–Tucker conditions, we have

M>v∗ − 2βw∗ = 0

Mw∗ − λη − 2αv∗ = 0,

where η = (η1, . . . , ηp) ∈ [−1, 1]p satisfies ηj = sgn
(
(v∗)j

)
if (v∗)j 6= 0. Therefore, we have w∗ ∝M>v∗

and v∗ ∝ soft(Mw∗, λ), as desired, since M>v∗ 6= 0.



2 Bertille Follain, Tengyao Wang and Richard J. Samworth

Lemma 2. Suppose that A, T ∈ Rp×n satisfy ‖T −A‖∞ ≤ λn−1/2 for some λ ≥ 0. Suppose further
that v ∈ Sp−1(k) and w ∈ Sn−1 are respectively the leading left and right singular vectors of A, and
that

(v̂, ŵ) ∈ argmax
(ṽ,w̃)∈Sp−1×Sn−1

{
〈T, ṽw̃>〉 − λ‖ṽ‖1

}
.

Let δ > 0 denote the difference between the first and second singular values of A. Then

sin∠
(
v̂, v
)
≤ 4λ

√
k

δ
.

Proof. Let S := {j ∈ [p] : vj 6= 0}. By Lemma 2 in the supplementary material of Wang and
Samworth (2018), we have

δ

2
‖v̂ŵ> − vw>‖2F ≤ 〈A, vw> − v̂ŵ>〉 = 〈T, vw> − v̂ŵ>〉+ 〈A− T, vw> − v̂ŵ>〉

≤ λ(‖v‖1 − ‖v̂‖1) + λn−1/2‖v̂ŵ> − vw>‖1

= λ

{
‖vS‖1 − ‖v̂S‖1 + n−1/2‖v̂Sŵ> − vSw>‖1 + ‖v̂Sc‖1(‖ŵ‖1n−1/2 − 1)

}
≤ λ

(
‖vS‖1 − ‖v̂S‖1 +

√
k‖v̂ŵ> − vw>‖F

)
. (2)

Moreover, writing w0 := (ŵ + w)/2 and ∆ := w − w0 = (w − ŵ)/2, we have

‖v̂ŵ> − vw>‖2F = ‖v̂(w0 −∆)> − v(w0 + ∆)>‖2F = ‖(v̂ − v)w>0 ‖2F + ‖(v̂ + v)∆>‖2F
= ‖w0‖22‖v̂ − v‖22 + ‖∆‖22‖v̂ + v‖22
≥ (‖w0‖22 + ‖∆‖22) min(‖v̂ − v‖22, ‖v̂ + v‖22)
≥ 2(1− |v̂>v|) ≥ 1− (v̂>v)2 = sin2∠(v̂, v), (3)

where the penultimate step uses the fact that ‖w0‖22 + ‖∆‖22 = 1. It follows that

‖vS‖1 − ‖v̂S‖1 ≤ min(‖v̂S − vS‖1, ‖v̂S + vS‖1) ≤
√
kmin(‖v̂ − v‖2, ‖v̂ + v‖2)

≤
√
k‖v̂ŵ> − vw>‖F (4)

Substituting (3) and (4) into (2), we conclude that

sin∠(v̂, v) ≤ ‖v̂ŵ> − vw>‖F ≤
4λ
√
k

δ
, (5)

as required.

We state below a version of the Bernstein’s inequality that is convenient to apply in our setting.

Lemma 3. If X1, . . . , Xn are independent with Xi ∼ Bern(qi) for qi ∈ (0, 1). Let a = (ai)i∈[n] ∈ Rn

and define ‖a‖2,q :=
(∑

i∈[n] a
2
i qi
)1/2

. Writing S :=
∑

i∈[n] ai(Xi − qi), we have for any y > 0 and

δ ∈ (0, 1) that

P(S ≥ y) ≤ exp

(
−1

2

y2

‖a‖22,q + ‖a‖∞y/3

)
and

P
(
S ≥ 21/2‖a‖2,q log1/2(1/δ) +

‖a‖∞
3

log(1/δ)

)
≤ δ.

In particular, if Y ∼ Bin(n, q) for n ∈ N and q ∈ (0, 1) and H := Y/(nq)− 1, then for any u > 0 and
δ ∈ (0, 1) we have

P(H ≥ u) ≤ exp

(
−1

2

nqu2

1 + u/3

)
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and

P
(
H ≥

√
2 log(1/δ)

nq
+

log(1/δ)

3nq

})
≤ δ.

Moreover, the same conclusions hold with −S and −H replacing S and H respectively above.

Proof. Writing Yi := ai(Xi − qi) for i ∈ [n], we have for any positive integer r ≥ 2 that

E|Yi|r = ari {qi(1− qi)r + (1− qi)qri } ≤ ari qi(1− qi).

Consequently,

n∑
i=1

E|Yi|r ≤
n∑
i=1

ari qi(1− qi) ≤
n∑
i=1

r!

2
3−(r−2)ari qi ≤

r!

2

(
‖a‖∞

3

)r−2
‖a‖22,q.

Hence, the first two conclusions follows from Boucheron, Lugosi and Massart (2013, (2.10) and The-
orem 2.10). The final two conclusions follows from the first two by setting a = (1, . . . , 1)> ∈ Rn and
y = nqu.
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