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Abstract

We consider the problem of testing whether a single coefficient is equal to zero in high dimensional
fixed-design linear models. We propose a new method, called residual permutation test (RPT), which is
constructed by projecting the regression residuals onto the space orthogonal to the union of the column
spaces of the original and permuted design matrices. RPT can be proved to achieve finite-population
size validity under fixed design with just exchangeable noises, whenever p < n/2. Moreover, RPT is
shown to be asymptotically powerful for heavy tailed noises with bounded (1+t)-th order moment when
the true coefficient is at least of order n−t/(1+t) for t ∈ [0, 1]. We further proved that this signal size
requirement is essentially optimal in the minimax sense. Numerical studies confirm that RPT performs
well in a wide range of simulation settings with normal and heavy-tailed noise distributions.

1 Introduction

Testing and inference of linear regression coefficients is a fundamental problem in statistics research and
has inspired methodological innovations in many other research directions in the statistics community [e.g.
Arias-Castro et al., 2011, Zhang and Zhang, 2014, Barber and Candès, 2015, Chernozhukov et al., 2018,
Bradic et al., 2019]. In this paper, we consider the setting that we have observations (X,Z,Y ) ∈ Rn×p ×
Rn × Rn generated according to the following model:

Y = Xβ + bZ + ε, (1)

where ε := (ε1, . . . , εn)
⊤ ∈ Rn is an n-dimensional noise vector, and our goal is to test the null hypothesis

H0 : b = 0 against the alternative H1 : b ̸= 0.
In this paper, we are primarily interested in designing a new coefficient test with finite-population va-

lidity. In other words, we require our test to have valid size control with arbitrary magnitude of n, instead
of requiring some asymptotic regime assumption that may be unrealistic in practice.When the noise vari-
ables are independent and identically distributed (i.i.d.) Gaussian random variables and p < n, the ANOVA
test [Fisher, 1973] can be used to test H0 against H1 with finite-population valid Type-I error control. While
the Gaussianity assumption is convenient for theoretical analysis, it is in general not realistic in practical
applications, which limits the applicability of the ANOVA test. Indeed, as we will see in Section 3, the size
of ANOVA test can be far from the nominal level in the presence of heavy-tailed noises. This motivates
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us to propose a new test that is finite-population valid without such restrictive distributional assumptions.
In particular, instead of the independent Gaussian distribution assumption above, we only assume that the
noise ε = (ε1, . . . , εn)

⊤ have exchangeable components:

Assumption 1 (Exchangeable noise). For any permutation σ of indices 1, . . . , n,

(ε1, . . . , εn)
d
= (εσ(1), . . . , εσ(n)).

A common approach to handle exchangeable noise is through the idea of permutation tests [Pitman,
1937a,b, 1938]. Recently, Lei and Bickel [2021] implemented this idea to the problem of regression co-
efficient testing. In their seminal work, the authors proposed cyclic permutation test that achieved finite
population validity under Assumption 1 by exploiting the exchangeability of the noise terms. However, to
achieve a size α control, their cyclic permutation test requires that n/p ≥ 1/α − 1. For example, for a
sample size of n = 300 and a targeting Type-I error rate is α = 0.01, at most p = 2 covariates are allowed
in X . This limits the applicability of their test in moderately large dimensions. In this paper, we consider the
more challenging question of finite-population Type-I error control in the high dimensional setting where
p is allowed to be of the same order of magnitude as n. We propose residual permutation test (RPT), a
permutation-based approach that performs hypothesis tests by manipulating the empirical residuals after
regression adjustment. The proposed test is guaranteed to have the correct Type-I error control whenever
p < n/2. Moreover, our result is fixed design and does not require any regularity conditions on the design
matrix X .

In addition to proving its finite-population validity, we further analyze the statistical power of the pro-
posed test in high dimensions, especially when the εi’s follow a heavy-tailed distribution. As we will discuss
further in Section 2.3, statistical methods with robustness to heavy-tailed data have significant demands in
practice [Eklund et al., 2016, Wang et al., 2015, Cont, 2001], and has been actively studied in both modern
statistics and theoretical computer science communities. Despite its importance, there is a lack of available
tools that can handle high dimensional regression coefficient testing with heavy-tailed noise. In this paper,
we fill this gap by showing that when the εi’s are i.i.d. and have a finite (1 + t)-th order moment for any
t ∈ [0, 1], we can still construct a test with non-trivial statistical power in high dimensions. Specifically, we
prove that when n/p ≥ 3+m for some m > 0, our proposed test is guaranteed to have power converging to
1 whenever the coefficient b is of order at least n−t/(1+t). We also studied the minimax optimality of high-
dimensional coefficient testing with heavy-tailed noises; and proved that in the presence of heavy-tailed
noise with only a finite (1 + t)-th moment, the n−t/(1+t) order requirement for b is essentially optimal.

Since ANOVA has been used extensively in practical applications, as an independent contribution, we
provide a more comprehensive analysis of the ANOVA test. Specifically, we show that ANOVA is finite
population valid when either the design or the noise follows a spherically symmetric distribution, a condition
that is slightly weaker than the Gaussianity assumption. On the other hand, our simulation analysis show that
ANOVA is indeed not validity when such spherical distributional assumptions are violated. At the same, we
propose another permutation-based test: naive residual permutation test (naive RPT), which like ANOVA,
is also valid under spherically symmetric noise distribution whenever p < n. While naive RPT is still not
valid for non-spherically symmetric noises, it does appear to have smaller Type I error violations compared
to ANOVA.

In sum, we make the following contributions

• We propose a new test that has finite population validity with fixed-design linear models and ex-
changeable noises in the high dimensional setting where p < n/2.
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• We prove that when the noise variables are heavy-tailed with bounded (1 + t)-th order moment for
t ∈ [0, 1], our test is asymptotically powerful when b is at least of order n−t/(1+t).

• We perform numerical analysis to show that ANOVA is indeed invalid in general distributions, espe-
cially with heavy-tailed data. We also studied other theoretical properties of ANOVA.

• We discuss the minimax optimality of regression coefficient test with heavy-tailed distributions, and
show that our test is essentially optimal in the minimax sense.

The rest of this paper is organized as follows. In Section 2, we review existing results in high-dimensional
coefficient testing, conditional independence testing and heavy-tailed data. In Section 3, we provide more
studies on the finite-sample properties of ANOVA test with non-Gaussian noises, and propose a new test
that is easier to implement and more robust to non-Gaussianity. As ANOVA test has been heavily used in
practical applications, we believe this is of independent interest. In Section 4, we present our method, and
prove its finite population validity. In Sections 5 and 6, we provide power analysis of RPT and study the
minimax optimality of high-dimensional coefficient testing under some heavy-tailed assumptions. Finally,
in Section 7 we provide numerical analysis. In Section 8, we finalize the manuscript with a discussion.

Notation

We conclude this section by introducing some notation used throughout the paper. For any n × p dimen-
sional matrix A, we denote by span(A) the subspace spanned by the p column vectors of A; and we write
span(A)⊥ as the space that is orthogonal to span(A). Given an n-dimensional vector a, we denote by
ProjA(a) the projection of a onto the subspace span(A), and denote by ∥a∥2 as the ℓ2-norm of the vector
a. Given two n × q1 and n × q2 dimensional matrices A, B, we denote by (A,B) as the n × (q1 + q2)
matrix via column concatenation of matrices A and B. We write N (0, 1) as standard normal distribution.
For two sequences (an)n∈N and (bn)n∈N, we write an = O(bn), or equivalently bn = Ω(an), if there ex-
ists a universal constant C > 0 such that |an| ≤ C|bn| for all n; we write an = o(bn), or equivalently
bn = ω(an), if |an|/|bn| → 0.

2 Literature review

Our work spans a wide range of research directions, including high dimensional coefficient testing, permutation-
based hypothesis tests and high dimensional heavy-tailed problems. In this section, we compare our research
to works within each direction.

2.1 High dimensional testing of regression coefficients

The most classical approach for testing the null hypothesis b = 0 is through the analysis of variance
(ANOVA) test [Fisher, 1973]. ANOVA test was originally proposed by Sir Ronald Fisher in the 1920s, and
has been widely used in economics [Doane and Seward, 2016], finance [Paolella, 2018] and biology [Lazic,
2008] etc. Under the context of single coefficient testing, when n > p + 1 and ε ∼ N (0, σ2I) for some
σ2 > 0, if β̃ := argminβ∥Y −Xβ∥22 and (β̂, b̂) := argmin(β,b)∥Y −Xβ− bZ∥22, then under H0, the test
statistic

ϕanova :=
∥Y −Xβ̃∥22 − ∥Y −Xβ̂ − b̂Z∥22
∥Y −Xβ̂ − b̂Z∥22/(n− p− 1)

∼ F1,n−p−1 (2)
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can be used to construct a test where H0 is rejected when ϕanova exceeds the 1−α quantile of the F1,n−p−1

distribution. As the above distributional result is nonasymptotic and holds whenever n > p + 1, the asso-
ciated test is valid even in the high-dimensional setting. However, as we will discuss in Section 3, beyond
Gaussianity and some other class of restrictive assumptions on ε, ANOVA test is usually not guaranteed to
have a valid Type-I error control. This encourages us to construct hypothesis tests with valid Type-I error
control allowing a broader class of noise distributions.

As emphasized by Lei and Bickel [2021], this is a challenging problem, with a “century long effort” in
the statistical community to alleviate the strong Gaussianity assumption of ANOVA. Some representative
works include Hartigan [1970], Meinshausen [2015]. However, the two methods mentioned above still
require the noise to follow certain geometric constraint, which is either symmetric about 0 or rotationally
invariant. Lei and Bickel [2021] represented, to the best of our knowledge, the first work that established
finite-population size control with only exchangeable noise. However, as mentioned in the introduction,
despite its striking distribution-free property, the cyclic permutation test proposed in Lei and Bickel [2021]
requires the dimension of p to be much smaller than n for valid size control, and no corresponding statistical
power analysis was provided. Another alternative with less restrictive assumptions on dimension p was
proposed in D’Haultfœuille and Tuvaandorj [2022], where the authors proposed a “stratified randomization
test”. Different from our test that is fixed design and allows arbitrary X , D’Haultfœuille and Tuvaandorj
[2022] assume that rows of X must follow a discrete random distribution with a relatively small number of
unique values.

Besides finite-population validity, a less demanding criteria for coefficient test is the asymptotic validity.
By invoking 1) certain sparsity conditions on the regression coefficients; 2) some regularity conditions on
the design matrix X and 3) sharp tail bounds on the noise variables, debiased lasso is guaranteed to establish
asymptotically valid p-value and confidence intervals for regression coefficients [Zhang and Zhang, 2014,
Van de Geer et al., 2014, Javanmard and Montanari, 2014]. Recall that our test is finite population valid with
arbitrary design and coefficient and has non-trivial power even with heavy-tailed ε. Other follow up studies
of debiased lasso include Zhu and Bradic [2018], Bradic et al. [2019], Shah and Bühlmann [2019], to name
a few.

More broadly speaking, regression coefficient test can be viewed as a subdomain of the more general
conditional independence testing, i.e., testing the null hypothesis Y ⊥⊥ Z | X , treating X,Y ,Z as i.i.d.
realizations from some hypothesized superpopulation. Unfortunately, when one has no assumption on the
joint distribution of the random variables X,Y and Z, Shah and Peters [2020] proved that it is a “statistically
hard problem”, in the sense that a valid test for the null does not have power against any alternative. This
means that some restrictions must be added to the class of null distributions to have some power. Follow-
ing this insight, an important research question then, is to propose valid test under minimal distributional
assumptions. In this paper, we show that a linear functional relationship between Y and X is sufficient to
have exact validity with non-trivial power.

2.2 Permutation based hypothesis tests

As also mentioned in the introduction section, our new method is based on permutation test [Pitman,
1937a,b, 1938]. Permutation test was originally developed for independence testing. Specifically, using
the exchangeability properties of the sampled data, permutation test is guaranteed to have finite-sample va-
lidity guarantee, without any geometric or moment constraints on the underlying distributions. Thanks to
such distribution-free property, permutation tests and its extensions have also been used in coefficient tests
[Lei and Bickel, 2021, D’Haultfœuille and Tuvaandorj, 2022], sharp null hypothesis tests [Caughey et al.,
2017, 2021] and conditional independence tests [Berrett et al., 2020, Kim et al., 2021] for finite-population
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or asymptotically valid Type-I error control.

2.3 Heavy-tailed data

To understand the efficiency of the proposed method in heavy tailed data, in this paper, we further provide
power analysis when the noise terms follow a heavy-tailed distribution. In classical high-dimensional lit-
erature, due to the simplicity of theoretical analysis, existing methods usually focus on data with sharp tail
bounds, such as sub-Gaussian or sub-exponential tail bounds [see, e.g. Wainwright, 2019]. However, as also
discussed by Sun et al. [2020], such strong tail condition may not be reasonable in real world applications,
such as neuroimaging [Eklund et al., 2016], gene expression analysis [Wang et al., 2015], and finance [Cont,
2001].

Since the pioneering work by Catoni [2012], the problem of extracting useful information from heavy-
tailed data (or the related adversarially contaminated data) has been an active area of research in mathemat-
ical statistics and theoretical computer science literature in the past ten years [Bubeck et al., 2013, Lykouris
et al., 2018, Lugosi and Mendelson, 2019, Sun et al., 2020, Fan et al., 2021]. In the high dimensional setting
where we allow the dimension p to grow with n, heavy-tailed data has been actively studied in mean estima-
tion [Lugosi and Mendelson, 2019, 2021], regression coefficient estimation [Wang, 2013, Fan et al., 2017,
Sun et al., 2020, Pensia et al., 2020] and covariance matrix analysis [Loh and Tan, 2018, Fan et al., 2021].
The definition of “heavy-tail” may vary across different articles. Among all the heavy tail literature, our
heavy tail assumption is the same as the one in Sun et al. [2020], Bubeck et al. [2013], which assume that
the noise variables has at most a finite (1+t)-th order moments for some t ∈ (0, 1] without any geometric or
shape constraints. To our knowledge this is also the weakest heavy tail assumption studied in the literature
(or at least in the high dimensional literature).

Nevertheless, under the context of coefficient testing, existing methods on heavy-tailed data seem still
limiting. In this paper, we fill this gap by providing statistical power guarantee of our constructed test with
heavy tail noises. Our power analysis stems from our new theoretical insight on the asymptotic convergence
of heavy-tailed random variables after subspace projections. It would be of interest if these results could
be extended to understand the power of permutation-testing based hypothesis tests in other heavy-tailed
scenarios.

3 Finite-population validity of ANOVA beyond Gaussianity

As ANOVA has been frequently used in empirical analysis, it would be of interest to provide a more com-
prehensive analysis on the sensitivity of ANOVA test with respect to the Gaussianity assumption, both
empirically and theoretically. First, we show that in fact, by Lemma 1 below, ANOVA is valid as long as
either the noise ε or the design matrix (X,Z) follows a spherically symmetric distribution.

Definition 1. We say that a random matrix A ∈ Rn×q follows a spherically symmetric distribution if for
any Q ∈ On×n, A d

= QA, where On×n is the set of n× n orthonormal matrices.

Lemma 1. Suppose Y is generated under (1) with β ∈ Rp, b = 0. Suppose also that ε is a random vector
that is almost surely not a zero vector, (X,Z) is either deterministic or independent from ε. If either ε
or (X,Z) follows a spherically symmetric distribution, then the test statistic ϕanova defined in (2) satisfies
ϕanova ∼ F1,n−p−1.
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ANOVA Naive
n p X type noise type 0.01 0.005 0.01 0.005

300 100 Guassian Guassian 0.0101(0.0003) 0.0050(0.0002) 0.010(0.0003) 0.0049(0.0002)
300 100 Guassian t1 0.0181(0.0004) 0.0160(0.0004) 0.0158(0.0004) 0.0116(0.0003)
300 100 Guassian t2 0.0153(0.0004) 0.0107(0.0003) 0.0139(0.0004) 0.0089(0.0003)
300 100 t1 Guassian 0.0101(0.0003) 0.0050(0.0002) 0.0103(0.0003) 0.0049(0.0002)
300 100 t1 t1 0.0243(0.0005) 0.0208(0.0005) 0.0158(0.0004) 0.0107(0.0003)
300 100 t1 t2 0.0180(0.0004) 0.0130(0.0004) 0.0141(0.0004) 0.0088(0.0003)
600 100 Guassian Guassian 0.0095(0.0003) 0.0050(0.0002) 0.0096(0.0003) 0.0048(0.0002)
600 100 Guassian t1 0.0163(0.0004) 0.0143(0.0004) 0.0128(0.0004) 0.0080(0.0003)
600 100 Guassian t2 0.0169(0.0004) 0.0120(0.0003) 0.0128(0.0004) 0.0076(0.0003)
600 100 t1 Guassian 0.0105(0.0003) 0.0050(0.0002) 0.0102(0.0003) 0.0052(0.0002)
600 100 t1 t1 0.0188(0.0004) 0.0166(0.0004) 0.0106(0.0003) 0.0058(0.0002)
600 100 t1 t2 0.0174(0.0004) 0.0130(0.0004) 0.0114(0.0003) 0.0063(0.0002)
600 200 Guassian Guassian 0.0101(0.0003) 0.0049(0.0002) 0.0103(0.0003) 0.0050(0.0002)
600 200 Guassian t1 0.0141(0.0004) 0.0122(0.0003) 0.0124(0.0004) 0.0090(0.0003)
600 200 Guassian t2 0.0150(0.0004) 0.0104(0.0003) 0.0136(0.0004) 0.0089(0.0003)
600 200 t1 Guassian 0.0101(0.0003) 0.0049(0.0002) 0.0098(0.0003) 0.0049(0.0002)
600 200 t1 t1 0.0202(0.0004) 0.0173(0.0004) 0.0133(0.0004) 0.0086(0.0003)
600 200 t1 t2 0.0170(0.0004) 0.0120(0.0003) 0.0134(0.0004) 0.0080(0.0003)

Table 1: Sizes of the ANOVA test and naive residual permutaion test, estimated over 100000 Monte
Carlo repetitions, for various noise distributions at nominal levels of α = 0.01 and α = 0.005. Data are
generated by models (1) and (3), with X , ε and e having independent components distributed according to
the various X types and noise types described in the table. Standard errors of the estimated sizes are given
in parentheses.

The spherical symmetry in the noise or the design is slightly weaker than the usual Gaussianity con-
straint, however, it is still too strong for many real data applications. For instance, if we assume that obser-
vations (Xi, Zi, Yi) are independent, then this assumption amounts to either i.i.d. normal noise or an i.i.d.
multivariate normal design.

We now perform a numerical experiment to analyze the validity of ANOVA test under general distribu-
tional classes of ε. We generate data (X,Z,Y ) according to the model specified in (1) and that

Z = XβZ + e. (3)

In the simulation, we set b = 0; since the result of ANOVA is invariant to β, βZ , we simply set them to be
zero vectors. We also set X as n× p matrices with i.i.d. entries following either N (0, 1) or t1 distribution,
with (n, p) = (300, 100), (600, 100) or (600, 200); and e and ε have i.i.d. components from one of N (0, 1),
t2 or t1 distributions.

Table 1 summarizes the performance of ANOVA test from 100000 Monte Carlo simulations. For evalua-
tion criterion we consider the sizes of the ANOVA test at nominal levels α = 0.01, 0.005 among the 100000
replicates. According to the simulation results, when the noises of e and ε follows a standard normal dis-
tribution, the ANOVA test has the correct size control, which is consistent with Lemma 1. However, when
normality is violated, the ANOVA test will be overly optimistic, with an empirical size more than twice
as large as the nominal level in some cases. In particular, the performance of noise type t1 is in general
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Figure 1: Histogram of p-values under the null for ANOVA test and naive residual permutation test from
100000 Monte-Carol replicates. The first line are the histograms of the ANOVA test under different spec-
ifications. Specifically, (a) is the result with Gaussian design, n = 300, p = 100 and ε has independent
t1 components; (b) is the histogram with the same setting as in (a) except that we switch from Gaussian
design to t1 design; (c) is the histogram with Gaussian design, n = 600, p = 100 and ε has independent
t1 components. The second line are the histogram for naive test. (e)-(f) use the same simulation settings as
(a)-(c).

worse than that of t2, this means that ANOVA test is more vulnerable to heavy-tailed noises. Moreover, the
performance of ANOVA is worse with a heavy-tailed design matrix X .

To better understand the empirical distribution of the simulated p-values, we plot the histogram of Monte
Carlo repetitions in Figure 1. Figure 1(a)-(c) corresponds to the histogram of the p-values from the ANOVA
test. Apparently, all the histograms are far from uniform on [0, 1] under the null hypothesis, with a large
spike near zero. In addition, the magnitude of the spike gets higher as n becomes smaller or that ε or X
becomes more heavy-tailed. Another interesting property is that the histograms are usually “U-shaped”,
where the peaks appear at regions near either 1 or 0. In sum, when data are generated from non-Gaussian
and in particular heavy-tailed distributions, the ANOVA tests are usually far from the correct level and the
aim of the current paper is to propose a new test that 1) is finite-population valid in high dimensions just
with exchangeable noises and 2) has power even in heavy-tailed distribution.

It is worth noting that when β = 0, we can easily construct a valid permutation test by computing
the correlation of Y to Z and to its permutations. From this intuition, a straightforward approach is to
first regress both Y and Z onto X to eliminate the influence of X , and then to use regression residuals
for permutation test construction. Specifically, let R̂ε := (I − X(X⊤X)−1X⊤)Y and R̂e := (I −
X(X⊤X)−1X⊤)Z be the regression residuals after projecting Y and Z onto X respectively. Let V 0 ∈
Rn×(n−p) be a matrix with orthonormal columns spanning an (n− p)-dimensional subspace of span(X)⊥,
then I − X(X⊤X)−1X⊤ = V 0V

⊤
0 . Hence under H0 : b = 0, the regression residuals R̂ε satisfy

7



R̂ε = V 0V
⊤
0 Y = V 0V

⊤
0 ε. From above, we construct a test, which we call as naive residual permutation

test, based on the projected residuals ε̂ := V ⊤
0 R̂ε = V ⊤

0 Y and ê := V ⊤
0 R̂e = V ⊤

0 Z as

ϕnaive =
1

K + 1

(
1 +

K∑
k=1

1(|ê⊤ε̂| ≤ |ê⊤P kε̂|)

)
, (4)

where the P k ∈ R(n−p)×(n−p)’s are random permutation matrices that are sampled uniformly at random
from the set of all permutation matrices. Lemma 2 shows that under a slightly weaker condition than
Lemma 1, ϕnaive is a valid test.

Lemma 2. Suppose Y is generated under (1) with β ∈ Rp, b = 0. If either

(a) ε or (X,Z) follows a spherically symmetric distribution;

(b) Z is generated under (3) and either e or (X,Y ) follows a spherically symmetric distribution,

ϕnaive is valid p-value, i.e., for all α ∈ (0, 1), P(ϕnaive ≤ α) ≤ α.

The conditions for Lemma 2 is slightly weaker than Lemma 1. However, Lemma 2 still requires the
spherically symmetric distribution. To better understand their empirical performances, we also show the
performance of ϕnaive with non-Gaussian noises or non-Gaussian designs in Table 1 and Figures 1(d)-(f) .
Consistent with the theoretical findings, without the strong Gaussianity or shperically symmetry assumption,
ϕanova is also not guaranteed to have finite-population validity. Nevertheless, when both tests are invalid,
the size of naive permutation test is closer to the correct level than its competitor. This indicates that naive
test is more robust to non-Gaussian distributions. Moreover, the naive test is an intuitive method and is easy
to implement. Thus, the naive test could be used as a preferrable alternative to ANOVA in real data analysis
when n/2 ≤ p < n.

Although the empirical finding suggests that the naive RPT is more robust to Gaussian violations, the
question remains: how can we construct a hypothesis test that is finite-population valid just with arbitrary
exchangeable noises in high dimensions where p can be in the same order of magnitude as n? We answer
this question in the next section.

4 Residual permutation test: methodology and validity

In Section 3, we have shown from simulation experiments that a naive permutation test on the residuals,
although more robust than ANOVA, is still not guaranteed to have finite-population validity with just ex-
changeable noises. In this section we describe a more refined test using the projected residuals ε̂ and ê,
which we call residual permutation test (RPT), and present its finite-population validity guarantee in Theo-
rem 2. For intuitions behind such construction, we refer the readers to Section 4.1.

To describe RPT, we write P for the set of all permutation matrices in Rn×n and we denote by P 0 = I ⊆
P the identity matrix. To successfully perform the regression permutation test, we first need to randomly
generate of a sequence of K permutation matrices {P 1, . . . ,PK} ⊆ P \ {P 0}, such that together with P0

they form a group:

Assumption 2. For any P i,P j in the set of permutation matrices PK := {P 0,P 1, . . . ,PK}, there exists
a k ∈ {0, . . . ,K} such that P k = P iP j .
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We write V 0 ∈ Rn×(n−p) as a matrix with orthonormal columns spanning an (n − p)-dimensional
subspace of span(X)⊥ and V k := P kV 0.1 In addition, we denote by Ṽ k ∈ Rn×(n−2p) a matrix with
orthonormal columns spanning a subspace of span(V 0) ∩ span(V k). Recall that ê := V ⊤

0 Z and ε̂ :=
V ⊤

0 Y . Given a fixed T : Rn−2p × Rn−2p → R, we can calculate the p-value of our coefficient test via:

ϕ :=
1

K + 1

(
1 +

K∑
k=1

1

{
min

Ṽ ∈{Ṽ 1,...,Ṽ K}
T
(
Ṽ

⊤
V 0ê, Ṽ

⊤
V 0ε̂

)
≤ T

(
Ṽ

⊤
k V 0ê, Ṽ

⊤
k V kε̂

)})
. (5)

Notice that T can be any function. For example, one can choose T (x, y) = |⟨x, y⟩|. As demonstrated in the
Supplementary Material, the above definition of ϕ can be simplified as the following equivalent form

ϕ :=
1

K + 1

(
1 +

K∑
k=1

1

{
min

Ṽ ∈{Ṽ 1,...,Ṽ K}
T
(
Ṽ

⊤
Z, Ṽ

⊤
Y
)
≤ T

(
Ṽ

⊤
k Z, Ṽ

⊤
k P kY

)})
. (6)

The following theorem shows that the proposed p-value is uniformly valid under the null:

Theorem 2. Suppose that (X,Z,Y ) is generated under model (1) with p < n/2 and that the noise ε
satisfies Assumption 1. Suppose {P k : k = 0, . . . ,K} satisfies Assumption 2. Under H0 : b = 0, ϕ defined
in (6) is a valid p-value, i.e. P (ϕ ≤ α) ≤ α for all α ∈ [0, 1].

We remark that as shown in Theorem 2, an important advantage of RPT is that the result is finite-
population such that it holds for arbitrary size of n. Moreover, our result assumes a fixed-design matrix and
does not require any assumption on X for finite-population validity. For example, the rank of X even does
not necessarily need to be p. Also, Theorem 2 shows that RPT has valid size for any choice of function
T (·, ·) and number of permutations K. However, in practice, to have good power under the alternative, we
typically set T (x, y) = |⟨x, y⟩| and choose a moderate size of K = O(1/α).

4.1 Some intuition of RPT

In this section, we discuss the intuition behind (5). As demonstrated in Section 3, a naive permutation test
on the residuals is in general not valid in the finite population setting with just exchangeable noises. This is
because under the null, ϕnaive performs permutations on the vector ε̂ = V ⊤

0 ε instead of ε itself. Even if ε
is an exchangeable random vector, V ⊤

0 ε may no longer be so, which renders the naive test invalid.
To overcome this challenge, we may want to construct a new test that, under H0, is equivalent to per-

muting the noise vector ε directly, instead of the transformed noise V 0ε. Interestingly, this goal can be
achieved based on a special transformation of the vector V ⊤

0 ε. Specifically, given a permutation matrix P k,
recall that V k = P kV 0, we may use the transformation that under H0,

ε̂ = V ⊤
0 ε = V ⊤

0 P
⊤
k P kε = V ⊤

k P kε. (7)

In light of this transformation, we further have that under H0, V kε̂ = V kV
⊤
k P kε = ProjV k

(P kε),
i.e., a projection of the noise vector P kε onto the space span(V k), and equivalently, V 0ε̂ = ProjV 0

(ε).
However, this is still not enough, as ProjV 0

(ε) and ProjV k
(P kε) corresponds to the projections of the

1If X is full column rank, then V 0V
⊤
0 = I−X(X⊤X)−1X⊤ and span(V 0) and span(X)⊥ are the same space. Otherwise,

span(V 0) is a subspace of span(X)⊥.

9



vectors ε and P kε onto different subspaces, which are not directly comparable. This means that we need to
further propose a more refined strategy to project ε and P kε onto some same space for a fair comparison.

Now recall that we already have ProjV 0
(ε) and ProjV k

(P kε), an ideal choice of such space would
then be span(Ṽ k), i.e., the intersection of span(V 0) and span(V k). Specifically, using that Ṽ k spans a
subspace of span(V k), it is straightforward that Ṽ

⊤
k = Ṽ

⊤
k V kV

⊤
k . From this and (7), we have that under

H0,
Ṽ

⊤
k V kε̂ = Ṽ

⊤
k V kV

⊤
k P kε = Ṽ

⊤
k P kε

and equivalently Ṽ
⊤
k V 0ε̂ = Ṽ

⊤
k ε since Ṽ k spans a subspace of span(V 0) as well.

From the above analysis, we further have that under H0,

T
(
Ṽ

⊤
k V 0ê, Ṽ

⊤
k V 0ε̂

)
= T

(
Ṽ

⊤
k V 0ê, Ṽ

⊤
k ε
)

and T
(
Ṽ

⊤
k V 0ê, Ṽ

⊤
k V kε̂

)
= T

(
Ṽ

⊤
k V 0ê, Ṽ

⊤
k P kε

)
.

This allows us to control ϕ as that

ϕ =
1

K + 1

(
1 +

K∑
k=1

1

{
min

Ṽ ∈{Ṽ 1,...,Ṽ K}
T
(
Ṽ

⊤
V 0ê, Ṽ

⊤
ε
)
≤ T

(
Ṽ

⊤
k V 0ê, Ṽ

⊤
k P kε

)})

≥ 1

K + 1

(
1 +

K∑
k=1

1

{
min

Ṽ ∈{Ṽ 1,...,Ṽ K}
T
(
Ṽ

⊤
V 0ê, Ṽ

⊤
ε
)
≤ min

Ṽ ∈{Ṽ 1,...,Ṽ K}
T
(
Ṽ

⊤
V 0ê, Ṽ

⊤
P kε

)})

=
1

K + 1

(
1 +

K∑
k=1

1 {g(ε) ≤ g(P kε)}

)

for some function g(·) that depends only on (X,Z,PK). Since here we consider a deterministic PK , g(·)
is also a deterministic function.

Now our only remaining job is to prove that the p-value displayed at the end of the above inequality is
valid. The following lemma shows that once we construct PK such that Assumption 2 holds, ϕ is a valid
p-value:

Lemma 3. Suppose ε = (ε1, . . . , εn)
⊤ satisfies Assumption 1 and let {P 0 = I,P 1, . . . ,PK} be a fixed

set of permutation matrices satisfying Assumption 2. Then for any function g : Rn → R, we have that

P
{

1

K + 1

(
1 +

K∑
k=1

1{g(ε) ≤ g(P kε)}
)

≤ α

}
≤ ⌊α(K + 1)⌋

K + 1
≤ α.

5 Analysis of statistical power

This section provides power analysis of RPT under mild moment assumptions of noises εi and ei’s where,
e.g., the second order moments are not necessarily finite. For simplicity of exposition, throughout this
section we assume without loss of generality that n is a multiple of |PK | = K + 1, where K is a fixed
constant that is chosen such that K ≥ 1/α for the prespecified Type-I error α. The scenario where n is not
divisible by K + 1 can be handled by randomly discarding a subset of data of size at most K to make n
divisible. We will focus on the version of RPT defined in (6) with T (x, y) = |⟨x, y⟩|. Moreover, we are
primarily interested in the dependence of the power of RPT on the tail heaviness of the noise distributions.
To this end, we make the following assumption on the model:

10



Assumption 3. εi’s are i.i.d. from some distribution Pε with mean 0, Z follows the model in (3) with ei’s
i.i.d. from some distribution Pe with mean 0. ε is independent from e.

In addition, we make following assumption on the permutation matrices P 1, . . . ,PK .

Assumption 4. For any k = 1, . . . ,K, |tr[V 0V
⊤
0 P k]| <

√
2pK and tr[P k] = 0.

Notice that when the covariate matrix X is of full column rank p, Assumption 4 is equivalent to that
|tr[X(XX)−1X⊤P k]| <

√
2pK.

In Theorem 3, we showcase the pointwise signal detection rate of ϕ given any fixed Pε and Pe. Moreover,
we just require Pε to have bounded (1 + t)-th order moment.

Theorem 3. Fix K ∈ N. Assume that ε and e satisfy Assumption 3 and

0 < E[|e1|2] < ∞ and 0 < E[|ε1|1+t] < ∞

for some constant t ∈ [0, 1]. Assume PK satisfies Assumption 4. In the asymptotic regime where b and p
vary with n in a way such that n > (3 +m)p for some constant m > 0 and

|b| = Ω(n− t
1+t ) if t < 1 or |b| = ω(n− 1

2 ) if t = 1, (8)

we have limn→∞ P
(
ϕ > 1

K+1

)
= 0.

Notice that here we need to assume without loss of generality that E[e2i ] > 0 and E[|ε1|1+t] > 0 to ensure
that both two random variables are not almost surely equal to zero. Otherwise, ϕ is almost surely equal to 1,
and cannot have any statistical power with any size of b. Theorem 3 shows that under certain assumptions
on the PK , RPT has power to reject the alternative classes even with heavy-tailed noises. Moreover, our
analysis is high-dimensional and allows the number of covariates to be as large as n/3. Remarkably, the
statistical power guarantee in Theorem 3 does not require the εi’s to have a bounded second order moment.
This distinguishes us from the class of empirical correlation based approaches, such as debiased lasso or
OLS fit based tests, which requires εi’s to have at least a bounded second order moment or even stronger
conditions such as sub-Gaussianity to have statistical power.

As we will see in Section 5.1, Assumption 4 is a mild condition that can be checked in practice. However,
an inspection of the proof of Theorem 3 reveals that, even if Assumption 4 does not hold for PK , RPT is still
asymptotically powerful under the same signal strength condition (8) and a slightly stronger requirement on
the number of covariates. Specifically, we require that n > (4 + m)p for some constant m > 0 that does
not depend on n.

In the following theorem, we show that when p/n → 0, we can further relax ei’s finite second order
moment condition to a finite first order moment condition.

Theorem 4. Fix K ∈ N. Assume that ε and e satisfy Assumption 3 and

0 < E[|e1|] < ∞ and 0 < E[|ε1|1+t] < ∞

for some constant t ∈ [0, 1]. In the asymptotic regime where b and p vary with n in a way such that p/n → 0

and b satisfies (8), limn→∞ P
(
ϕ > 1

K+1

)
= 0.
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Algorithm 1: Permutation set construction
Input: The number of permutation matrices K, design matrix X ∈ Rn×p, the maximal number of

loops T
1 repeat
2 Generate an independent random permutation π of indices {1, . . . , n}
3 for k = 1, . . . ,K do
4 Construct a permutation matrix P k ∈ P by setting its (u, v)-th entries as 1 if and only if⌈

π(u)

K + 1

⌉
=

⌈
π(v)

K + 1

⌉
and π(u)− π(v) ∈ {k, k − (K + 1)}.

5 end
6 until (i) |tr(X(X⊤X)X⊤P k)| ≤

√
2Kp1/2 for all k = 1, . . . ,K or (ii) the number of iterations

has reached its limit T
Output: Set of permutation matrices PK := {P 1, . . . ,PK} satisfying the criteria (i). When none

of the PK’s comply, report the PK with the smallest
∑K

k=1 |tr(X(X⊤X)X⊤P k)|.

The statistical power guarantee in Theorem 3 requires the set of permutations to follow Assumption 4,
whlist the finite-population validity requires instead Assumption 2. Then an important question is, how to
effectively construct a PK that satisfies both assumptions. In Section 5.1, we provide an algorithm to answer
this question. In order to prove Theorems 3 and 4, we are faced with two questions, the first is that we do not
have any assumption on X , so that Ṽj can follow arbitrary pattern; the second is the heavy tails of ei’s and
εi’s. We defer the proof of the two theorems to the Supplementary Material. To help the readers understand
the intuitions of the proof, we provide a proof sketch of the two theorems in Sections 5.2 and 5.3.

5.1 An algorithm for construction of permutation set

As demonstrated in Theorems 2 and 3, to successfully perform a test that is valid under the null and has
sufficient statistical power to get the rate in (8) in high-dimensional models, one needs a set of permutations
satisfying both Assumptions 2 and 4. As demonstrated in Proposition 1 below, such permutation set always
exist, so that we can at least apply a brute-forth algorithm to find a desired set. To improve computational
efficiency, we further develop a randomized algorithm that can discover the desired permutation set with
high probability (Algorithm 1).

In fact, finding a permutation set that just satisfies Assumption 2 is trivial, as we can easily divide the
indices {1, . . . , n} into K + 1 subsets and change the order of subsets for permutation set construction.
However, such construct cannot create sufficient randomness to satisfy Assumption 4 for an arbitrary X .
To generate extra randomness, we need to first shuffle the permutation of all indices and then construct PK

on the randomized data. In Proposition 1, we show that after doing T -th round of such random shuffling,
Algorithm 1 is able to deliver a PK satisfying the desired properties with probability at least 1− 1

KT .

Proposition 1. Given K,T and assume that n ≥ 2, we have that there exists a PK satisfying Assumptions 2
and 4. Moreover, with probability at least 1 − 1

KT , Algorithm 1 returns a PK that satisfies Assumptions 2
and 4.

Notice that throughout this article, we assume that the alternative class is in the form Y = Xβ+bZ+ε
for some b ̸= 0, whence we invoke Assumption 4 to increase its statistical power. When the alternative

12



Algorithm 2: Residual Permutation Test (RPT)
Input: design matrix X ∈ Rn×p, additional covariate of of interest Z ∈ Rn, response vector

Y ∈ Rn, number of permutations K ∈ N, maximal number of iterations T ∈ N.
1 Apply Algorithm 1 with inputs K,T and X to generate K permutation matrices {P 1, . . . ,PK}.
2 Find an orthonormal matrix V 0 ∈ Rn×(n−p) such that V ⊤

0 X = 0.
3 for k = 1, . . . ,K do
4 Set V k := P kV 0.

5 Find an orthonormal matrix Ṽ k ∈ Rn×(n−2p) such that Ṽ
⊤
k (X,P kX) = 0.

6 Compute

ak :=
∣∣∣⟨Ṽ ⊤

k Z, Ṽ
⊤
k Y ⟩

∣∣∣ and bk :=
∣∣∣⟨Ṽ ⊤

k Z, Ṽ
⊤
k P kY ⟩

∣∣∣ ,
where < ·, · > denotes the inner product.

7 end
Output: p-value ϕ := 1

K+1(1 +
∑K

k=1 1{min1≤j≤K aj ≤ bk})

class follows other forms, such as Y = Xβ + f(Z) + ε with some nonlinear function f : Rn 7→ Rn,
one may not necessarily need Assumption 4 anymore. Instead, one may need other assumptions on PK to
adapt to the nonlinear function f(·). In light of Algorithm 1 and our theoretical statements, we summarize
an implementation of RPT in Algorithm 2.

5.2 Proof sketch of Theorem 3

As K is finite, we mainly need to prove that for any fixed P j ,P k ∈ PK , with probability converging to 1,

|ê⊤V ⊤
0 Ṽ jṼ

⊤
j V j ε̂| > |ê⊤V ⊤

0 Ṽ kṼ
⊤
k V kε̂|. To achieve this goal, we need to prove that

|e⊤Ṽ jṼ
⊤
j ε|

bn
= oP(1) (9)

(i.e., that the empirical correlation between the projection of e and ε onto the space spanned by Ṽ j is
negligible with high probability) and that with high probability,

e⊤Ṽ jṼ
⊤
j e− e⊤Ṽ kṼ

⊤
k P ke

n
≳ 1 and

e⊤Ṽ jṼ
⊤
j e+ e⊤Ṽ kṼ

⊤
k P ke

n
≳ 1. (10)

There are two main challenges to establish (9), namely the lack of structural assumptions of arbitrary
fixed design matrix Ṽ jṼ

⊤
j and the heavy tailed noise ε. To address the first challenge, we introduce a

random permutation matrix P ∼ Unif(P) independent from e and ε. From the exchangeability of ε, we

have e⊤Ṽ jṼ
⊤
j ε

d
= e⊤Ṽ jṼ

⊤
j Pε, so that we can take expectation over P to “smooth out” the matrix

Ṽ jṼ
⊤
j for a tighter control of (9).

We now focus on the second challenge. To illustrate intuitions, throughout this section we assume that
the εi’s are one-sided heavy tail, i.e., there exists a constant B > 0 such that almost surely, εi ≥ −B,
and defer its extension to the two-sided heavy tail data to the Supplementary Material. To deal with such
one-sided heavy tail noise, we truncate εi to obtain fi := εi1(|εi| ≤ Bi

1
1+t ). As using such truncation the

expectation of fi may not necessarily be zero, we further construct f ′
i as a mean-zero random variable such
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that f ′
i = fi almost surely under the event fi ≥ 0 and fi ≤ f ′

i ≤ 0 almost surely under the event fi < 0. As
we will demonstrate in the Supplementary Material, such construction is always possible. Also, we define
f := (f1, . . . , fn) and f ′ := (f ′

1, . . . , f
′
n).

Such construction allows us to solve (9) by tackling the terms e⊤Ṽ jṼ
⊤
j Pf ′, e⊤Ṽ jṼ

⊤
j P (f − f ′)

and e⊤Ṽ jṼ
⊤
j P (ε − f) separately. The third term can be controlled via applying the Borel–Cantelli

Lemma [Durrett, 2019]; and the second term can be controlled via an analgous argument as the first term.
Thus, we mainly discuss the first term e⊤Ṽ jṼ

⊤
j Pf ′.

Now that all the f ′
i are bounded, we may apply Chebyshev’s inequality for this term. As will be

demonstrated in the supplement, to apply Chebyshev’s inequality, we just need to prove that given any
fixed e ∈ Rn,

E[(e⊤Ṽ jṼ
⊤
j Pf ′)2] = o(n

1−t
1+t · ∥e∥22). (11)

To prove (11), exploiting the randomness of P , we can prove that E[(e⊤Ṽ jṼ
⊤
j Pf ′)2] ≤ ∥e∥22E[∥f ′∥22]/n

(this is how P “smoothes” Ṽ jṼ
⊤
j ). Now to control E[∥f ′∥22]/n, we further let an be a sequence of integers

such that an → ∞ but an/n → 0. Then we may decompose E[∥f ′∥22]/n as that

E[∥f ′∥22]/n =
1

n

an∑
i=1

E[(f ′
i)

2] +
1

n

n∑
i=an+1

E[(f ′
i)

2] ≤ E[ε211(ε1 ≤ Ba
1

1+t
n )]

+
1

n

n∑
i=an+1

E[ε2i1(Ba
1

1+t
n < ε1 ≤ Bi

1
1+t )],

(12)

where the first term on the right hand side of (12) can be bounded as

E[ε211(ε1 ≤ Ba
1

1+t
n )] = E[|ε1|1+t|ε1|1−t

1(ε1 ≤ Ba
1

1+t
n )] ≲ E[|ε1|1+t]a

1−t
1+t
n = o(n

1−t
1+t ).

Using an analogous argument, we may control the second term of (12) as well. Putting together, we get the
desired bound in (9).

Thanks to the bounded second order moment of ei’s, the analysis of (10) is simpler. Specially, by using
a weak law of large number to control the weighted sum of e2i ’s [Van Thanh, 2006] and a Chebyshev’s
inequality to control the sum of cross term eiej’s, we can have that with probability converging to 1,

e⊤Ṽ jṼ
⊤
j e− e⊤Ṽ kṼ

⊤
k P ke

n
≳

n− 3p− tr[X(X⊤X)−1X⊤P k]

n
.

Using that P k satisfies Assumption 4, we easily obtain the desired result.

5.3 Proof sketch of Theorem 4

Due to the heavy-tailedness of e, ∥e∥22/n is not statistically convergent anymore. Hence, our goal now
becomes proving that

|e⊤Ṽ jṼ
⊤
j ε|

b∥e∥22
= oP(1) (13)

and
e⊤Ṽ jṼ

⊤
j e− e⊤Ṽ kṼ

⊤
k P ke

∥e∥22
≳ 1 and

e⊤Ṽ jṼ
⊤
j e+ e⊤Ṽ kṼ

⊤
k P ke

∥e∥22
≳ 1. (14)
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We note that (13) can be controlled using a similar argument as (9). Therefore, in the rest of this proof
sketch we focus on (14). Without loss of generality we focus on the first inequality of (14). In the regime
p ≪ n, the matrices Ṽ jṼ

⊤
j and Ṽ kṼ

⊤
k are expected to be not too faraway from the identity matrix. This

encourages us to prove (14) via (i) bounding the differences between the quantity in (14) and e⊤e−e⊤P ke
∥e∥22

;

and (ii) proving that e⊤P ke = oP(∥e∥22). To tackle Step (i), we use that

e⊤Ṽ jṼ
⊤
j e− e⊤Ṽ kṼ

⊤
k P ke ≥ e⊤e− e⊤P ke+ e⊤Me

for some positive semidefinite matrix M depending on P k such that tr[M ] ≤ 2p. Now it remains to
control e⊤Me, which seems impossible as entries of e do not even have finite second moment. Fortunately,
if we further restrict Pe to follow a symmetric distribution, we may use the following lemma to prove
e⊤Me = oP(∥e∥22) knowing that tr[M ]/n → 0:

Lemma 4. Consider Pw as a distribution that is symmetric around zero and U ∈ Rn×n as a positive
semi-definite matrix. Let w := (w1, . . . , wn)

⊤ be n i.i.d. realizations from Pw. Then we have that for any
δ > 0,

P
(
w⊤Uw > δ∥w∥22

)
≤ tr[U ]

δn
.

We now discuss Step (ii). We write σk for the permutation of {1, . . . , p} corresponding to P k. Observe
that e⊤P ke =

∑n
i=1 eieσk(i) have dependent summands. The following combinatorial lemma allows us to

circumvent this difficulty by partitioning the summands into three similar sized subsets so that summands
within each subset are i.i.d. and can be controlled using standard concentration inequalities.

Lemma 5. Consider a permutation σ of {1, . . . , n} such that for any i ∈ {1, . . . , n}, σ(i) ̸= i. Then there
exists a partition U1, U2, U3 of the set {1, . . . , n} such that

∀j ∈ {1, 2, 3}, |Uj | ∈
[n
4
− 1,

n

2
+ 1
]
& |Uj ∩ σ(Uj)| = 0.

The above analysis illustrates how we prove (14) with symmetric Pe. To generalize to asymmetric case,
we can simply let e′ be an independent replicate of e. Apparently, e − e′ is a mean zeroed random vector
where all the indices are symmetric around zero. Thus allows us to use the previous arguments find a control
of (e− e′)⊤

(
Ṽ jṼ

⊤
j − Ṽ kṼ

⊤
k P k

)
(e− e′). Then we can control e⊤

(
Ṽ jṼ

⊤
j − Ṽ kṼ

⊤
k P k

)
e using the

independence between e and e′ and the fact that they have the same distribution.

6 Minimax optimality of coefficient tests

In this section, we investigate the minimax optimality of RPT by deriving the statistical efficiency limit of
coefficient tests with heavy-tailed noises. Without loss of generality, we denote Dt as the class of distribu-
tions with t-th order moment bounded between [1, 2], i.e., for some t > 0 and some random variable ξ with
distribution Pξ,

Pξ ∈ Dt iff E[ξ] = 0 and 1 ≤ E[|ξ|t] ≤ 2.

Notice that in the above definition, the thresholds 1 and 2 are chosen for notational simplicity, in fact, the
general conclusions in this section still hold for η1 ≤ E[|ξ|t] ≤ η2 with arbitrary η1, η2 > 0. We further let
D̃ denote the class of distributions such that

Pξ ∈ D̃ iff P
(
|ξ| > 1

2

)
>

1

2
.
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With a slight abuse of notation, given b0 ∈ R, we write Pb0 as a distribution of (Y ,Z) such that the b in (1)
is equal to b0. Note that we have suppressed the dependence of Pb0 on X, β, βZ ,Pε and Pe for notational
simplicity. In particular, P0 corresponds to the null hypothesis.

From above, we define the minimax testing risk indexed by t,X as

Rt,X(τ) := inf
φ∈Φ

{
sup

Pε∈Dt

sup
Pe∈D1∩D̃

sup
β,βZ∈Rp

P0(φ = 1) + sup
|b|≥τ

sup
Pε∈Dt

sup
Pe∈D1∩D̃

sup
β,βZ∈Rp

Pb(φ = 0)

}
.

Here Φ corresponds to the class of measurable functions of data (X,Z,Y ) taking value in {0, 1}. We first
establish the following finite-population minimax lower bound for testing H0 : b = 0 against H1 : b ̸= 0 in
the presence of heavy-tailed noises.

Theorem 5. Let t ∈ [0, 1] be given and assume that ε and e satisfy Assumption 3. For any η ∈ (0, 1), there
exists a constant cη > 0 depending only on η such that for any fixed design X ,

R1+t,X

(
cηn

− t
1+t

)
≥ 1− η.

Theorem 5 shows that when entries of ε have finite (1 + t)-th moment, the minimax separation in b

for testing H0 against H1 is at least of order n− t
1+t , which matches the upper bound in Theorem 3. This

indicates that the rate n− t
1+t may be a tight lower bound, and that our constructed test may be an optimal test.

Nevertheless, Theorems 3 and 4 are pointwise convergence results, where both Pξ and Pe are considered as
fixed and does not depend on n, p. To match the lower bound in Theorem 5, we further provide a power
control of RPT uniformly over classes of noise distributions of Pε and Pe. Just as in Section 5, we assume
without loss of generality that n is divisible by K + 1.

Theorem 6. Fix K ∈ N. Suppose that ε and e satisfy Assumption 3 and that PK satisfies Assumption 4. In
an asymptotic regime where b and p vary with n in a way such that n > (3 +m)p for some constant m > 0

and |b| = Ω(n− t
1+t

+δ) for some constants t ∈ (0, 1] and δ > 0, we have for any constant ν > 0 that,

lim
n→∞

sup
Pε∈D1+t

sup
Pe∈D2+ν∩D̃

P
(
ϕ >

1

K + 1

)
= 0. (15)

If we drop Assumption 4 and instead assume p/n → 0, then we have for any constant ν > 0 that,

lim
n→∞

sup
Pε∈D1+t

sup
Pe∈D1+ν∩D̃

P
(
ϕ >

1

K + 1

)
= 0. (16)

In Theorem 6, the separation rate is slightly worse than (8) by a factor of nδ, where δ can be any positive
constant. Also, it is slightly worse than the lower bound in Theorem 5. This shows that the separation rate
n− t

1+t is a nearly-optimal rate of coefficient testing in the minimax sense. At the same time, it also shows
that our residual permutation test is a nearly-optimal hypothesis test in the minimax sense.

7 Numerical studies

7.1 Experimental setups

In this section, we evaluate the performance of RPT, together with several competitors, in the following
synthetic datasets. The observations (X,Y ,Z) ∈ Rn×p×Rn×Rn are generated according to the models (1)
and (3) where
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• X is generated according to X := WΣ1/2, where Σ = (2−|j−k|)j,k∈[p] is the Toeplitz matrix and W
is an n× p dimensional matrix with i.i.d. entries from either N (0, 1) or t1 distribution;

• β and βZ are p-dimensional vectors with the first 10 components equal to 1/
√
10 and the rest com-

ponents equal to 0;

• e and ε have independent and identically distributed components drawn from N (0, 1), t1 or t2.

We vary n ∈ {300, 600}, p ∈ {100, 200} and b in different simulation experiments.
In practice, we find that the p-value calculated by Algorithm 2 is slightly on the conservative side. Hence,

in addition to the test with p-value constructed by Algorithm 2, we also study a variant in our numerical
experiments, where the p-value is computed as 1

K+1(1 +
∑K

k=1 1{ak ≤ bk}) instead (we call this variant
as RPTEM, where “EM” stands for empirical). To benchmark the performance of RPT and RPTEM, we
also look at the naive residual permutation test in (4). Other tests used for comparison include the ANOVA
test described in the introduction and a debiased Lasso based test (dbLasso) using the implementation of
Javanmard and Montanari [2018] in our numerical studies.

We note that RPT relies on tuning parameters K and T . For a test to have a size of α, we need to have
K+1 at least 1/α. We suggest using K+1 = ⌈1/α⌉ in practice, though empirical simulation results suggest
that our method is robust to the choice of K. We also set T = 1 to boost the computational efficiency of
Algorithm 1.

7.2 Numeric analysis of validity under the null

We start by analysing the validity of various tests under the null described in Section 7.1. We estimate the
size of RPT, RPTEM and dbLasso at nominal levels of 0.01 and 0.005 for (n, p) ∈ {(300, 100), (600, 100), (600, 200)}.
The results are summarised in Table 2. Notice that since the p-values of both ANOVA and the naive test are
invariant with respect to the choices of β, βZ and Σ, the results in Table 1 are directly comparable to the
ones in Table 2. Therefore, we do not repeat the simulations of the two tests here. Besides, notice that since
the test of Lei and Bickel [2021] is not well-defined for p ≥ n/(⌈1/α⌉+ 1), we did not include CPT in our
numerical experiment.

From Table 2, we see that all tests considered have valid size guarantees when the noise has Gaussian
components, regardless of the choices of X . However, in the presence of heavy-tailed noises, dbLasso
reports empirical sizes much larger than the nominal levels, which is just like ANOVA and the naive RPT
in Table 1. Interestingly, when X follows the t1 design, the size of dbLasso is even above 70%, which is
much larger than the size of ANOVA and the naive RPT displayed in Table 1. This indicates that dbLasso is
more sensitive to heavy-tailed design matrices than the other competing methods.

On the other hand, RPT exhibits valid size controls in all settings, which is consistent with our theoretical
findings. What’s more interesting, the size of RPTEM is also valid across all the simulation settings, even
with heavy-tailed noises and heavy-tailed design. In Section 7.3, we further study the empirical power of
RPT and RPTEM.

7.3 Numeric analysis of alternative power

In Section 5, we established asymptotic power guarantees of RPT under fixed design and heavy tailed noises.
In this section, we validate these theoretical insights via numerical analysis. To benchmark the results, we
investigate the power of all tests considered in Section 7.1. We set n = 600, p = 100 and vary the b in (1)
as b ∈ {0.1, 0.2, . . . , 1.9, 2.0}. We analyze the power of all methods with design following Gaussian and
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RPTEM RPT dbLasso
n p X noise 0.01 0.005 0.01 0.005 0.01 0.005
300 100 Gauss. Gauss. 0(0) 0(0) 0(0) 0(0) 0.31(0.02) 0.15(0.01)
300 100 Gauss. t1 0.51(0.02) 0.12(0.01) 0.24(0.02) 0(0) 1.83(0.04) 1.56(0.04)
300 100 Gauss. t2 0.14(0.01) 0.02(0) 0.04(0.01) 0(0) 1.20(0.03) 0.84(0.03)
300 100 t1 Gauss. 0(0) 0(0) 0(0) 0(0) 99.71(0.02) 99.71(0.02)
300 100 t1 t1 0.01(0) 0(0) 0(0) 0(0) 75.98(0.14) 75.44(0.14)
300 100 t1 t2 0(0) 0(0) 0(0) 0(0) 93.20(0.08) 93.19(0.08)
600 100 Gauss. Gauss. 0.21(0.01) 0.07(0.01) 0.01(0) 0(0) 0.62(0.02) 0.28(0.02)
600 100 Gauss. t1 0.73(0.03) 0.43(0.02) 0.48(0.02) 0.28(0.02) 1.59(0.04) 1.41(0.04)
600 100 Gauss. t2 0.61(0.02) 0.33(0.02) 0.20(0.01) 0.12(0.01) 1.16(0.03) 0.85(0.03)
600 100 t1 Gauss. 0.23(0.02) 0.07(0.01) 0.01(0) 0(0) 99.93(0.01) 99.93(0.01)
600 100 t1 t1 0.13(0.01) 0.03(0.01) 0(0) 0(0) 72.21(0.14) 71.78(0.14)
600 100 t1 t2 0.10(0.01) 0.03(0.01) 0(0) 0(0) 92.95(0.08) 92.94(0.08)
600 200 Gauss. Gauss. 0(0) 0(0) 0(0) 0(0) 0.86(0.03) 0.43(0.02)
600 200 Gauss. t1 0.46(0.02) 0.34(0.02) 0.26(0.02) 0.17(0.01) 1.51(0.04) 1.30(0.04)
600 200 Gauss. t2 0.12(0.01) 0.10(0.01) 0.04(0.01) 0.03(0) 1.26(0.04) 0.87(0.03)
600 200 t1 Gauss. 0(0) 0(0) 0(0) 0(0) 100.00(0) 100.00(0)
600 200 t1 t1 0.01(0) 0(0) 0(0) 0(0) 88.97(0.10) 88.55(0.10)
600 200 t1 t2 0(0) 0(0) 0(0) 0(0) 99.39(0.02) 99.38(0.02)

Table 2: Sizes of various tests under the null, estimated over 100000 Monte Carlo repetitions, for various
noise distributions at nominal levels of α = 0.01 and α = 0.005. Data are generated from the model in (1)
and (3) with b = 0. X , ε and e are generated according to the various distribution types prescribed in the
table. Here “Gauss.” stands for standard normal distribution. For ease of presentation, the estimated sizes
are multiplied by 100 in the table. Standard errors of the estimated size are given in parentheses.

t1 distributions and noises following Gaussian, t1, and t2 distributions. The estimated power curves over
10000 repetitions are displayed in Figure 2.

From Figures 2(a)-(c), (d) and (f), we can conclude that in most of the settings, the power of RPT is
slightly worse than the competing approaches. The difference is more pronounced when both the design
and the noise follow a heavy-tailed distribution (Figure 2(e)). However, bearing in mind the lack of valid
size control of ANOVA, naive RPT and debiased Lasso, we would argue that the gap in power between RPT
and these competitors is the price to pay for distribution-free finite-population validity in high dimensions.
Moreover, we observe that RPT is nevertheless still guaranteed to reject the alternative with high probability
given sufficiently large b.

Another interesting phenomenon is that the power of RPTEM is generally stronger than RPT, especially
in the setting displayed in Figure 2(e), where both design and noise follow t1 distribution. This, together
with the validity display in Section 7.2, suggests RPTEM, although being lack of theoretical support, can
serve as a viable alternative of RPT in empirical analysis. We leave the theoretical investigations of RPTEM
as future work.

Finally, the power of naive RPT is nearly the same as ANOVA in most of the settings. Sometimes, the
two power curves are even indistinguishable. Recall that in Section 3, we have shown that empirically, the
size control of the naive RPT under the null is more robust to non-Gaussian noises than ANOVA. In practice,
we recommend using the naive RPT for single coefficient tests when n/2 ≤ p < n.
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(a) Gaussian design, Gaussian noise
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(b) Gaussian design, t1 noise
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(c) Gaussian design, t2 noise
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(d) t1 design, Gaussian noise
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(e) t1 design, t1 noise
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(f) t1 design, t2 noise

Figure 2: Proportion of p-values below α = 0.01 over 10000 replicates for b = 0.1, 0.2, . . . , 1.9, 2. Here
X, ε and e are generated according to various distribution types prescribed in the caption of each figure.

8 Discussion

In this paper, we propose a new method for high-dimensional fixed design regression coefficient test. RPT
is a permutation-based approach that exploits the exchangeability of the noise terms to achieve finite-
population validity control. Our approach uses the fact that the empirical residuals of the classical OLS
fit is equivalent to the projection of the n-dimensional noise vector onto an (n − p)-dimensional subspace
to construct a valid test for p < n/2 based on multiple subspace projection. At the same time, we pro-
vide power analysis of RPT, and derived the signal detection rate of the coefficient b in the presence of
heavy-tailed noise vector ε. As a by product, we propose RPTEM and demonstrate its validity and power via
numerical experiments. It would be of interest to understand the theoretical properties of RPTEM in future
study.

In the higher dimensional regime n/2 ≤ p < n, we propose the naive RPT, and prove its finite-
population validity under spherically invariant distributions, and compare it with ANOVA as well as other
competing approaches via numerical experiments. In the meanwhile, we provide a more profound theoret-
ical and empirical analysis of ANOVA test, which is of independent interest for practitioners interested in
ANOVA.

Distribution-free inference and test is an important topic in statistics research. In this paper, permutation
test facilitates an important basis for construction of finite-population tests hypothesis tests with distribution-
free validity. This sheds light on extending permutation tests to solve other distribution-free problems in
modern statistics, which we leave as future work. In addition, permutation tests and its related the rank based
tests have also been applied in model-free uncertainty quantification of machine learning predictions [Lei
et al., 2013, Balasubramanian et al., 2014, Romano et al., 2019]. It would be of interest if the power analysis
techniques invented in this paper could be used to understand the efficiency of these approaches in modern
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machine learning applications.
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SUPPLEMENT TO “RESIDUAL PERMUTATION TEST FOR HIGH-DIMENSIONAL
REGRESSION COEFFICIENT TESTING”

Section A1 provides validity analysis of different tests. It includes the proof of the theoretical statements
in Sections 3 and 4 and also the discussion of the equivalence between (5) and (6).

Section A2 studies the statistical power of RPT. It includes the proof of the theoretical statements in
Section 5.

Section A3 studies the minimax optimality of coefficient test with heavy-tailed noises. It includes proof
of the theoretical statements in Section 6.

A1 Theoretical analysis of finite-population validity

A1.1 ANOVA validity

Proof of Lemma 1. Recall that ProjX := X(X⊤X)−1X⊤ and ProjX,Z := (X,Z)
{
(X,Z)⊤(X,Z)

}−1
(X,Z)⊤.

First assume that ε is spherically symmetric. Since ε has a spherically symmetric distribution, we can write
ε = ρξ, such that ξ ∼ Unif(Sn), i.e., a random vector that is sampled uniformly from the unit sphere with
respect to the Haar measure; and that ρ is some random variable taking value in [0,∞) and is independent
from ξ. Then, we have almost surely,

ϕanova =
∥(I − ProjX)(ε)∥22 − ∥(I − ProjX,Z)(ε)∥22

∥(I − ProjX,Z)(ε)∥22/(n− p− 1)
=

∥(ProjX,Z − ProjX)(ξ)∥22
∥(I − ProjX,Z)(ξ)∥22/(n− p− 1)

. (A1.1)

Hence, the distribution of ϕanova does not depend on ρ.
By Cochran’s theorem, we know that ϕanova ∼ F1,n−p−1 when ε ∼ N (0, I), i.e., a multivariate standard

normal distribution. Moreover, when ε ∼ N (0, I), we have ε satisfies the above decomposition ε = ρξ for
some random variable ρ. Now recall that ϕanova does not depend on ρ (as shown in (A1.1)), we must have
ϕanova ∼ F1,n−p−1 for all spherically symmetric ε as desired.

If instead (X,Z) is spherically symmetric, let Q be an indepedent random matrix that is sampled
uniformly from On×n with respect to the Haar measure, then

ϕanova
d
=

∥(ProjQX,QZ − ProjQX)(ε)∥22
∥(In − ProjQX,QZ)(ε)∥22/(n− p− 1)

=
∥(ProjX,Z − ProjX)(Q−1ε)∥22

∥(In − ProjX,Z)(Q
−1ε)∥22/(n− p− 1)

.

Since Q−1ε has a spherically symmetric distribution, the desired conclusion follows from the first case.

A1.2 Validity of naive residual permutation test

Proof of Lemma 2. Without loss of generality we just prove the lemma with Condition (a). We first consider
the case where ε follows a spherically symmetric distribution. Then using an analogous analysis as in
Lemma 1, we have

ϕnaive =
1

K + 1

(
1 +

K∑
k=1

1(|ê⊤ε̂| ≤ |ê⊤P kε̂|)

)

=
1

K + 1

(
1 +

K∑
k=1

1(|Z⊤V 0V
⊤
0 ξ| ≤ |Z⊤V 0P kV

⊤
0 ξ|)

)
.
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This means that just like ϕanova, the distribution of ϕnaive does not depend on ρ. Moreover, when ε follows a
multivariate standard normal distribution, V 0ε is a n− p dimensional multivariate standard normal random
vector and thus ϕnaive is a valid p-value. Then using an analogous argument as in the proof of Lemma 1, we
have that ϕnaive is a valid p-value for all spherically symmetric noises.

If instead (X,Z) is spherically symmetric, again let Q be an independent matrix sampled uniformly
from On×n, then

ϕnaive
d
=

1

K + 1

(
1 +

K∑
k=1

1(|(QZ)⊤QV 0V
⊤
0 Q

⊤ε| ≤ |(QZ)⊤QV 0P kV
⊤
0 Q

⊤ε|)

)

=
1

K + 1

(
1 +

K∑
k=1

1(|Z⊤V 0V
⊤
0 Q

⊤ε| ≤ |ZV 0P kV
⊤
0 Q

⊤ε|)

)
.

Then using an analogous argument, we prove the validity of ϕnaive.

A1.3 Validity of residual permutation test

We first show that the two definitions of RPT defined in (5) and (6) are equivalent. Since by definition,
ε̂ = V ⊤

0 Y , we easily have Ṽ
⊤
k V 0ε̂ = Ṽ

⊤
k V 0V

⊤
0 Y = Ṽ

⊤
k Y , where for the last equality we apply

Lemma A1. Using an analogous argument, we can prove that Ṽ
⊤
k V 0ê = Ṽ

⊤
k Z. Now for Ṽ

⊤
k V kε̂, we

apply that

Ṽ
⊤
k V kε̂ = Ṽ

⊤
k V kV

⊤
0 Y = Ṽ

⊤
k V kV

⊤
0 P

⊤
k P kY = Ṽ

⊤
k V kV

⊤
k P kY = Ṽ

⊤
k P kY ,

where for the last equality we apply again Lemma A1. Putting together, we see that the two definitions of ϕ
in (5) and (6) are numerically equivalent.

In the rest of this section, our goal is to prove Theorem 2. We start with the following preliminary
lemmas. Recall that for any matrix U ∈ Rn×q with orthonormal columns and any vector a ∈ Rn,
ProjU (a) := UU⊤a.

Lemma A1. Let U ∈ Rn×p1 and V ∈ Rn×p2 be two matrices with orthonormal columns spanning sub-
spaces of Rn. Let W ∈ Rn×q be a matrix with orthonormal columns spanning a subspace of span(U) ∩
span(V ). Then for any vector a ∈ Rn, W⊤a = W⊤ProjU (a) = W⊤ProjV (a).

Proof. This is straghtfoward using that

W⊤ = W⊤UU⊤ = W⊤V V ⊤

since V spans a subspace of span(U) and span(V ).

Lemma A2. Under H0, V 0ε̂ = ProjV 0
(ε). Moreover, for any permutation matrix P k, we have that

V kε̂ = ProjV k
(P kε).

Proof. Since we are under the H0, we have that

ε̂ = V ⊤
0 Y = V ⊤

0 (Xβ + ε) .

Then as a direct consequence of that span(V 0) is orthogonal to span(X), we have that V ⊤
0 X = 0 and thus

ε̂ = V ⊤
0 ε. From above, we have

V 0ε̂ = V 0V
⊤
0 ε = ProjV 0

(ε)
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and that
V kε̂ = V kV

⊤
0 ε = V kV

⊤
0 P

⊤
k P kε = V kV

⊤
k P kε = ProjV k

(P kε).

Proof of Theorem 2. Throughout the proof we work on a fixed (X,Z) and a fixed set of permutation ma-
trices {P 0, . . . ,PK} satisfying Assumption 2.

From Lemmas A1 and A2, we have that for any α ∈ [0, 1],

Iα := P

(
1

K + 1

(
1 +

K∑
k=1

1

{
min

Ṽ ∈{Ṽ 1,...,Ṽ K}
T
(
Ṽ

⊤
V 0ê, Ṽ

⊤
V 0ε̂

)
≤ T

(
Ṽ

⊤
k V 0ê, Ṽ

⊤
k V kε̂

)})
≤ α

)

= P

(
1

K + 1

(
1 +

K∑
k=1

1

{
min

Ṽ ∈{Ṽ 1,...,Ṽ K}
T
(
Ṽ

⊤
V 0ê, Ṽ

⊤
ε
)
≤ T

(
Ṽ

⊤
k V 0ê, Ṽ

⊤
k P kε

)})
≤ α

)
.

Then using that for any k ∈ {1, . . . ,K},

1

{
min

Ṽ ∈{Ṽ 1,...,Ṽ K}
T
(
Ṽ

⊤
V 0ê, Ṽ

⊤
ε
)
≤ T

(
Ṽ

⊤
k V 0ê, Ṽ

⊤
k P kε

)}

≥ 1

{
min

Ṽ ∈{Ṽ 1,...,Ṽ K}
T
(
Ṽ

⊤
V 0ê, Ṽ

⊤
ε
)
≤ min

Ṽ ∈{Ṽ 1,...,Ṽ K}
T
(
Ṽ

⊤
V 0ê, Ṽ

⊤
P kε

)}
,

we have

Iα ≤ P

(
1

K + 1

(
1 +

K∑
k=1

1

{
min

Ṽ ∈{Ṽ 1,...,Ṽ K}
T
(
Ṽ

⊤
V 0ê, Ṽ

⊤
ε
)

≤ min
Ṽ ∈{Ṽ 1,...,Ṽ K}

T
(
Ṽ

⊤
V 0ê, Ṽ

⊤
P kε

)})
≤ α

)
.

By defining g : Rn 7→ R as a fixed projection depending only on (X,Z) and PK such that for any a ∈ Rn,

g(a) = min
Ṽ ∈{Ṽ 1,...,Ṽ K}

T
(
Ṽ

⊤
V 0ê, Ṽ

⊤
a
)
,

we can further rewrite the above inequality as

Iα ≤ P

(
1

K + 1

(
1 +

K∑
k=1

1 {g(ε) ≤ g(P kε)}

)
≤ α

)
.

Using Lemma 3, we can finally have that

Iα ≤ P

(
1

K + 1

(
1 +

K∑
k=1

1 {g(ε) ≤ g(P kε)}

)
≤ α

)
≤ α,

which proves the desired results.
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A1.3.1 Proof of Lemma 3

Proof. Let ξ0, . . . , ξK
i.i.d.∼ N (0, 1) and independent of all other randomness in the problem. Let

Rk :=
K∑

k′=0

1{g(P kε) ≤ g(P k′ε)},

and

R̃k :=

K∑
k′=0

(
1{g(P kε) < g(P k′ε) + 1{g(P kε) = g(P k′ε) and ξk ≤ ξk′}

)
.

In other words, R̃k is the rank of g(P kε) among (g(P k′ε) : k′ = 0, . . . ,K) in a decreasing order, with

random tie-breaking. Also, observe that Rk ≥ R̃k. By Assumptions 1 we have ε
d
= P kε for all k, hence

R0
d
=

K∑
k′=0

1{g(P kε) < g(P k′P kε)} =
K∑

k′=0

1{g(P kε) < g(P k′ε)} = Rk,

where we used Assumption 2 in the penultimate equality. Thus, for all k ∈ {0, . . . ,K} and x ∈ {1, . . . ,K+
1},

P(Rk ≤ x) =
1

K + 1

K∑
k′=0

P(Rk′ ≤ x) ≤ 1

K + 1

K∑
k′=0

P(R̃k′ ≤ x). (A1.2)

On the other hand, almost surely (R̃0, R̃1, . . . , R̃K) is a re-arrangement of (1, . . . ,K + 1). This means
that for any fixed j ∈ {1, . . . ,K + 1}, almost surely there is a k′ such that R̃k′ = j. In other words, for
j ∈ {1, . . . ,K + 1},

K∑
k′=0

P(R̃k′ = j) = 1.

By taking this back to (A1.2), we may further bound (A1.2) as

P(Rk ≤ x) ≤ x

K + 1
.

Then

P
{

1

K + 1

(
1 +

K∑
k=1

1{g(ε) ≤ g(P kε)}
)

≤ α

}
= P

(
R0

K + 1
≤ α

)
≤ ⌊α(K + 1)⌋

K + 1
≤ α,

as desired.

A2 Theoretical analysis of Type-II error

Notations we define ∥∥op as operator norm, ∥∥2 as ℓ2-norm, ∥∥F as Frobenius norm. We define a/b = ∞
if a = b = 0 or b = 0. We denote D̃≥,B as the class of distributions that is lower bounded by a threshold B,
and D̃≤,B as the class of distributions upper bounded by some threshold B. Without loss of generality, we
assume b > 0. Let w := (w1, . . . , wn)

⊤ and ξ := (ξ1, . . . , ξn)
⊤ be two independent random vectors with

i.i.d. entries from some distributions Pw and Pξ respectively (where restrictions on Pw and Pξ differ from
lemma to lemma).

A4



A2.1 Preliminary lemmas

Lemma A3. Let M ∈ Rn×n be a deterministic matrix that varies with n and satisfies ∥M∥op ≤ 1. Then
if b = ω

(
n−1/2

)
, we have that for any fixed δ > 0,

∀Pw ∈ D1 ∪ D2,Pξ ∈ D2, lim
n→∞

P
(
|w⊤Mξ|
b∥w∥22

> δ

)
= 0.

Proof. For any fixed w0 ∈ Rn, we have

E[|w⊤Mξ|2|w = w0] = E[w⊤Mξξ⊤M⊤w|w = w0]

= 2E[w⊤MM⊤w|w = w0] ≤ 2∥w0∥22,

and thus by Chebyshev’s inequality, for any δ > 0,

P
(
|w⊤Mξ|
b∥w∥22

> δ | w = w0

)
≤ E[|w⊤Mξ|2|w = w0]

δ2b2∥w0∥42
≤ 2

δ2b2∥w0∥22
.

From above, we have

P
(
|w⊤Mξ|
b∥w∥22

> δ

)
≤ E

[
P
(
|w⊤Mξ|
b∥w∥22

> δ | w
)
1

(
∥w∥22 ≥

1

2
n

)]
+ P

(
∥w∥22 <

1

2
n

)
≤ E

[
2

δ2b2∥w∥22
1

(
∥w∥22 ≥

1

2
n

)]
+ P

(
∥w∥22 <

1

2
n

)
≤ 4

δ2b2n
+ P

(
∥w∥22 <

1

2
n

)
.

Then using that b2n = ω(1) and Lemma A9, we obtain the desired result.

Lemma A4. Let g := (g1, . . . , gn)
⊤ be a n-dimensional vector satisfying ∥g∥22 = O(n

1−t
1+t ). Then if

b = Ω(n− t
1+t ), we have that for any fixed δ > 0,

∀Pw ∈ D1 ∪ D2, lim
n→∞

P
(
|w⊤g|
b∥w∥22

> δ

)
= 0

Proof. Let P be a uniformly random permutation matrix, then Pw
d
= w, and our task becomes proving

∀Pw ∈ D1 ∪ D2,

P
(
|w⊤P⊤g|
b∥w∥22

> δ

)
→ 0.

For any i ̸= j, we have

E[(Pww⊤P⊤|w = w0)i,j ] =
1

n(n− 1)

∑
k ̸=ℓ

w0,kw0,ℓ =
(1⊤w0)

2

n(n− 1)
− ∥w0∥22

n(n− 1)
,

where 1 denotes the n dimensional vector with all entries equal to 1. From above and Lemma A13, we have
from basic matrix algebra that

E[Pww⊤P⊤|w = w0] =

(
∥w0∥22

n
− (
∑

1⊤w0)
2

2n(n− 1)
+

∥w0∥22
2n(n− 1)

)
I+

(
(1⊤w0)

2

2n(n− 1)
− ∥w0∥22

2n(n− 1)

)
11⊤,
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where I denotes the n × n identity matrix. This allows us to further control E[(w⊤P⊤g)2|w = w0] via
that

E[(w⊤P⊤g)2|w = w0] = tr[E[Pw0w
⊤
0 P

⊤]gg⊤]

= tr

[(
∥w0∥22

n
− (1⊤w0)

2

2n(n− 1)
+

∥w0∥22
2n(n− 1)

)
gg⊤ +

(
(1⊤w0)

2

2n(n− 1)
− ∥w0∥22

2n(n− 1)

)
11⊤gg⊤

]
≤ 2

n
∥w0∥22g⊤g +

(1⊤w0)
2

2n(n− 1)
(1⊤g)2.

Now applying again Cauchy-Schwartz inequality,

E[(w⊤P⊤g)2|w = w0] ≤
2

n
∥w0∥22∥g∥22 +

(1⊤w0)
2

2(n− 1)
∥g∥22. (A2.3)

Thus by defining E(s) :=
{
∥w∥22 > 1

2n,
|1⊤w|

n ≤ s
}

indexed by a s > 0, which, using Lemma A9 and
the strong law of large number, holds with probability converging to 1 for any constant s > 0, we have

P
(
|w⊤P⊤g|
b∥w∥22

> δ

)
≤ P

(
|w⊤P⊤g|
b∥w∥22

> δ | E(s)
)
+ P(Ec(s))

≤ E
[
P
(
|w⊤P⊤g|
b∥w∥22

> δ | w
)

| E(s)
]
+ P(Ec(s)) ≤ E

 2
n∥w∥22∥g∥22 +

(1⊤w)2

2(n−1) ∥g∥
2
2

b2δ2∥w∥42
| E(s)

+ P(Ec(s)).

(A2.4)

Here for the last step we apply Chebyshev’s inequality and (A2.3). The lemma statement yields that for
sufficiently large n, there exists some cg,∆ > 0 such that ∥g∥22 ≤ cgn

1−t
1+t and b ≥ ∆n− t

1+t . From this, we
have that under event E(s), for n sufficiently large,

2
n∥w∥22∥g∥22 +

(1⊤w)2

2(n−1) ∥g∥
2
2

b2∥w∥42
≤ 4∥g∥22

b2n2
+

2∥g∥22s2

b2(n− 1)
≤ o(1) +

4cgs
2

∆2
.

Putting back to (A2.4) yields

P
(
|w⊤P⊤g|
b∥w∥22

> δ

)
≤ 4cgs

∆2
+ o(1) + P(Ec(s)).

From above, and that P(Ec(s)) → 0 for any choice of constant s > 0, we have for any constant
η ∈ (0, 1), there exists some constant s small enough such that

lim
n→∞

P
(
|w⊤P⊤g|
b∥w∥22

> δ

)
≤ η.

Since the above result holds for any η, we obtain the desired result.

Lemma A5. Consider the M in Lemma A3 and let t ∈ [0, 1), B > 0 be given. Then if b = Ω(n− t
1+t ), we

have that for any fixed δ > 0,

∀Pw ∈ D1 ∪ D2,Pξ ∈ D1+t ∩ D̃≥,−B, lim
n→∞

P
(
|w⊤Mξ|
b∥w∥22

> δ

)
= 0.
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Proof. Let P be a uniformly random permutation matrix (i.e., a random matrix generated by sampling
uniformly at random from the set of permutation matrices). Moreover, we require P to be independent from
w and ξ. Then we have that conditioning on w, w⊤Mξ

d
= w⊤MPξ, whence

P
(
|w⊤Mξ|
b∥w∥22

> δ

)
= P

(
|w⊤MPξ|

b∥w∥22
> δ

)
.

Let fi := ξi1(|ξi| ≤ Bi
1

1+t ) denote a truncated random variable of ξi. Since Pξ ∈ D̃≥,−B , we have from
Lemma A16 that there exists a f ′

i satisfying E[f ′
i ] = 0, f ′

i = fi almost surely when fi ≥ 0 and fi ≤ f ′
i < 0

almost surely when fi < 0. Moreover, we write f := (f1, . . . , fn)
⊤ and f ′ := (f ′

1, . . . , f
′
n)

⊤.
Using the new notations, we have the decomposition ε = f ′ + (f − f ′) + (ε− f), and morevoer,

P
(
|w⊤MPξ|

b∥w∥22
> δ

)
≤ P

(
|w⊤MPξ|

b∥w∥22
> δ | ∥w∥22 >

1

2
n

)
+ P

(
∥w∥22 ≤

1

2
n

)
≤ P

(
|w⊤MPf ′|

b∥w∥22
>

δ

3
| ∥w∥22 >

1

2
n

)
︸ ︷︷ ︸

=:I

+ P
(
|w⊤MP (f − f ′)|

b∥w∥22
>

δ

3
| ∥w∥22 >

1

2
n

)
︸ ︷︷ ︸

=:II

+ P
(
|w⊤MP (ξ − f)|

b∥w∥22
>

δ

3
| ∥w∥22 >

1

2
n

)
︸ ︷︷ ︸

III

+ P
(
∥w∥22 ≤

1

2
n

)
.

From Lemma A9, we have that P
(
∥w∥22 ≤ 1

2n
)
→ 0 as n → ∞, which bounds the last term. In the rest

of the proof we focus on controlling the terms I – III.
We first consider I. From Lemma A14, we have for any i ̸= j, E[(Pf ′(f ′)⊤P⊤)i,j ] = 0; from

Lemma A13 and that P and f ′ are indepenedent, we have E[(Pf ′(f ′)⊤P⊤)i,i] =
1
n

∑n
j=1 E[(f ′

j)
2]. Now

to control 1
n

∑n
j=1 E[(f ′

j)
2], let an be a sequence of integers such that as n → ∞, an → ∞ and an/n → 0,

we have that

n∑
i=1

E[(fi)′2] =
an∑
i=1

E[(f ′
i)

2] +
n∑

i=an+1

E[(fi)′2]

≤
an∑
i=1

E[ξ2i 1(|ξi| ≤ Bi
1

1+t )] +
n∑

i=an+1

E[ξ2i 1(|ξi| ≤ Ba
1

1+t
n )]

+

n∑
i=an+1

E[ξ2i 1(Ba
1

1+t
n ≤ |ξi| ≤ Bi

1
1+t )]

≤
n∑

i=1

E[ξ2i 1(|ξi| ≤ Ba
1

1+t
n )] +

n∑
i=an+1

E[ξ2i 1(Ba
1

1+t
n ≤ |ξi| ≤ Bi

1
1+t )].

(A2.5)

For the first term in the above inequality,

n∑
i=1

E[ξ2i 1(|ξi| ≤ Ba
1

1+t
n )] = nE[|ξ1|1+t|ξ1|1−t

1(|ξ1| ≤ Ba
1

1+t
n )] ≤ nE[|ξ1|1+tB1−ta

1−t
1+t
n ] = O(n·a

1−t
1+t
n ) = o(n

2
1+t ),

where for the first equality we use that the ξi’s are i.i.d.
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For the second term on the right hand side of (A2.5), we have

n∑
i=an+1

E[ξ2i 1(Ba
1

1+t
n ≤ |ξi| ≤ Bi

1
1+t )] =

n∑
i=an+1

E[|ξi|1+t|ξi|1−t
1(Ba

1
1+t
n ≤ |ξi| ≤ Bi

1
1+t )]

≤
n∑

i=an+1

E[|ξi|1+t
1(Ba

1
1+t
n ≤ |ξi| ≤ Bi

1
1+t )] ·B1−tn

1−t
1+t ≤ B1−tn

2
1+tE[|ξ1|1+t

1(|ξ1| ≥ Ba
1

1+t
n )].

where the last inequality uses again that the ξi’s are i.i.d. random variables. Putting together yields

n∑
i=1

E[(fi)′2] = o(n
2

1+t ) +O(n
2

1+t )E[|ξ1|1+t
1(|ξ1| ≥ Ba

1
1+t
n )].

Notice further that |ξ1|1+t
1(|ξ1| ≥ Ba

1
1+t
n ) → 0 almost surely, and almost surely |ξ1|1+t

1(|ξ1| ≥ Ba
1

1+t
n ) ≤

|ξ1|1+t where E[|ξ1|1+t] < ∞. Therefore, by dominated convergence theorem, E[|ξ1|1+t
1(|ξ1| ≥ Ba

1
1+t
n )] →

0. Thus
∑n

i=1 E[(fi)′2] = o(n
2

1+t ), which means that E[(Pf ′(f ′)⊤P⊤)i,i] = o(n
1−t
1+t ).

In light of our control of all the (i, j)’s entries of the matrix E[Pf ′(f ′)⊤P⊤], we have for any fixed
w0 ∈ Rn,

E[(w⊤MPf ′)2|w = w0] = w⊤
0 ME[Pf ′(f ′)⊤P⊤]M⊤w0

= o(n
1−t
1+t )w⊤

0 MM⊤w0 = o(n
1−t
1+t ) · ∥w0∥22.

From above, and by Chebyshev’s inequality,

I = E
[
P
(
|w⊤MPf ′|

b∥w∥22
>

δ

3
| w
)

| ∥w∥22 >
1

2
n

]
≤ E

[
9E[(w⊤MPf ′)2|w]

δ2(∥w∥22)2b2
| ∥w∥22 >

1

2
n

]
= o(n

1−t
1+t ) · E

[
1

∥w∥22b2
| ∥w∥22 >

1

2
n

]
= o

(
n

1−t
1+t

b2n

)
= o(1).

We second consider II. Notice that again

II ≤ P
(
|w⊤MP (f − f ′ − E[f − f ′])|

b∥w∥22
>

δ

6
| ∥w∥22 >

1

2
n

)
+ P

(
|w⊤MPE[f − f ′]|

b∥w∥22
>

δ

6
| ∥w∥22 >

1

2
n

)
=: II1 + II2.

For II1, as fi − f ′
i is bounded between [−B,B], using the same analysis as in Lemma A3, we have

II1 → 0. For II2, observe first that

∥E[f − f ′]∥22 =
∑
i

(E[fi − f ′
i ])

2 =
∑
i

(E[fi])2 =
∑
i

(E[ξi1(|ξi| > Bi
1

1+t )])2

(i)

≤
∑
i

(E[|ξi|1+t])
2

1+t (E[1(|ξi| > Bi
1

1+t )])
2t
1+t ≤ 2

2
1+t

∑
i

P(|ξi|1+t > B1+ti)
2t
1+t

(ii)

≤ 2
2

1+tn

(∑
i P(|ξi|1+t > B1+ti)

n

) 2t
1+t (iii)

= O(n
1−t
1+t ),
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where (i) uses Hölder’s inequality; (ii) uses Jensen’s inequality; (iii) uses Lemma A10. Then applying
Lemma A4 with PE[f − f ′] as g and noticing also Lemma A9, we have II2 → 0 as n → ∞. Putting
together yields II → 0.

We third consider III. For any n, from Lemma A10,

n∑
i=1

P(fi ̸= ξi) =
n∑

i=1

P(|ξi|1+t > B1+ti) < ∞.

By Borel-Cantelli Lemma (see e.g. Lemma A12), the event fi ̸= ξi happens finite time almost surely.
That is by setting the random variable Vi := 1(fi ̸= ξi), Vi converges to zero almost surely. Hence Vi → 0
in probability, which means that for any η ∈ (0, 1), there exists a constant Nη depending on η such that
P(Vn = 0, ∀n ≥ Nη) ≤ η

3 . This is equivalent to that

P(∃k > Nη s.t. fk ̸= ξk) ≤
η

3
.

Using that Nη is finite, we further have there exists a constant Cη such that

P(∃ℓ ≤ Nη, s.t. |ξℓ| > Cη) ≤
η

3
.

Writing the event E := {∀k > Nη, fk = ξk, ∀ℓ ≤ Nη, |ξi| < Cη}. From above, we have P(Ec) ≤ 3η
2 ,

which gives us that

P
(
|w⊤MP (ξ − f)|

b∥w∥22
>

δ

3

)
≤ P

(
|w⊤MP (ξ − f)|

b∥w∥22
>

δ

3
| E
)
+ P(Ec)

≤ 2η

3
+ P

(
|w⊤MP (ξ − f)|

b∥w∥22
>

δ

3
| E
)
.

Under the random event E , using Cauchy-Schwartz inequality, we have

|w⊤MP (ξ − f)| ≤ ∥w∥2∥MP (ξ − f)∥2 ≤ ∥w∥2∥ξ − f∥2 = ∥w∥2

√√√√ Nη∑
i=1

ξ2i 1(|ξi|1+t > B1+ti)

≤ ∥w∥2Cη

√
Nη.

Putting back yields

P
(
|w⊤MP (ξ − f)|

b∥w∥22
>

δ

3

)
≤ 2η

3
+ P

(
Cη

√
Nη∥w∥2

b∥w∥22
>

δ

3
| E

)
≤ 2η

3
+ o(1),

where the last inequality uses Lemma A9. Since it works for any η, we have P
(
|w⊤MP (ξ−f)|

b∥w∥22
> δ

3

)
→ 0.

Applying again Lemma A9, we have III → 0.
In light of our control of I – III, our desired result follows.

Lemma A6. Consider the M in Lemma A3; let t ∈ [0, 1] be given and assume that b satisfies (8). Then for
any fixed δ > 0,

∀Pe ∈ D1 ∪ D2,Pξ ∈ D1+t lim
n→∞

P
(
|w⊤Mξ|
b∥w∥22

> δ

)
= 0.
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Proof. When t = 1, the result follows from Lemma A3. Otherwise, we apply the decomposition

ξi = (ξi1(ξi ≥ 0)− E[ξi1(ξi ≥ 0)])− ((−ξi)1(ξi < 0)− E[(−ξi)1(ξi < 0)]) =: ξ1,i − ξ2,i;

and define ξ1 := (ξ1,1, . . . , ξ1,n)
⊤, ξ2 := (ξ2,1, . . . , ξ2,n)

⊤. Then our desired result follows by applying
Lemma A5 but with ξ replaced by ξ1 or ξ2 and taking a union bound.

Lemma A7. Let M ∈ Rn×n be a matrix with all diagonal entries equal to zero. Then for any Pw ∈ D2,
we have for any fixed δ > 0,

P
(
w⊤Mw

n
> δ

)
≤

4∥M∥2F
n2δ2

.

Proof. Observe that

E

[(
w⊤Mw

n

)2
]
= E

∑
i ̸=j

M i,j
wiwj

n

2 .

Using that for any i ̸= j, wi ⊥⊥ wj , we have

E

[(
w⊤Mw

n

)2
]
= E

∑
i,j

M2
i,j

w2
iw

2
j

n2

 ≤
4∥M∥2F

n2
.

Then by applying Chebyshev’s inequality, we obtain the desired result.

Lemma A8. Consider a deterministic permutation matrix P ∈ Rn×n that varies with n and tr[P ] = 0. We
have that for any fixed δ > 0

∀Pw ∈ D1, lim
n→∞

P(|w⊤Pw|/n > δ) = 0

.

Proof. Let σ be the permutation corresponding to P . From Lemma 5, we have there exists a partition
U1, U2, U3 with |Uj ∩ σ(Uj)| = 0 and that |Uj | ≥ n

4 − 1 for j = 1, 2, 3 such that

w⊤Pw

n
=

1

n

3∑
j=1

∑
i∈Uj

wiwσ(i).

Then

lim
n→∞

P(|w⊤Pw|/n > δ) ≤
3∑

j=1

P

 1

|Uj |

∣∣∣∣∣∣
∑
i∈Uj

wiwσ(i)

∣∣∣∣∣∣ > δ

3

 .

From above, it remains to prove that for any j and any fixed δ > 0,

P

 1

|Uj |

∣∣∣∣∣∣
∑
i∈Uj

wiwσ(i)

∣∣∣∣∣∣ > δ

→ 0.
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Let w̃i be a sequence of i.i.d. random variables that is independent from w and that w̃i
d
= w1w2. Then

we easily have that w̃i are i.i.d. random variables with zero mean and bounded first order moment. Then
using the weak law of large number, we have that with an(δ) := supm≥n P(|

∑m
i=1 w̃i/m| > δ),

lim
n→∞

an(δ) = lim sup
n→∞

P

(∣∣∣∣∣
n∑

i=1

w̃i/n

∣∣∣∣∣ > δ

)
= lim

n→∞
P

(∣∣∣∣∣
n∑

i=1

w̃i/n

∣∣∣∣∣ > δ

)
= 0.

Using that the Uj and σ(Uj) has no overlap, we have

|Uj |∑
i=1

w̃i
d
=
∑
i∈Uj

wiwσ(i)

and thus

P

 1

|Uj |

∣∣∣∣∣∣
∑
i∈Uj

wiwσ(i)

∣∣∣∣∣∣ > δ

 ≤ a|Uj |(δ) ≤ a⌈n/4−1⌉(δ) → 0,

where for the last inequality we use that an(δ) is non-increasing and |Uj | ≥ n/4− 1.

Proof of Lemma 4. Let J be a random diagonal matrix where all diagonal entries J i,i are i.i.d. binary
random variables with P(J i,i = 1) = P(J i,i = −1) = 1

2 . We write P for a uniformly random permutation
matrix that is independent from J . Recalling that Pw is symmetric and all the wi’s are independent, we have
that w d

= PJw, i.e., they are equal in distribution.
This allows us to prove the statement by controlling P(w⊤J⊤P⊤UPJw > δ∥w∥22) due to that

P
(
w⊤Uw ≥ δ∥w∥22

)
= P

(
w⊤J⊤P⊤UPJw > δw⊤J⊤P⊤PJw

)
= P

(
w⊤J⊤P⊤UPJw > δ∥w∥22

)
. (A2.6)

First, for any fixed w0 ∈ Rn, we have

E[w⊤J⊤P⊤UPJw|w = w0] = w⊤
0 E[J⊤P⊤UPJ ]w0.

Second, for any fixed matrix M ∈ Rn×n, we have E[(J⊤MJ)i,j ] = E[J i,iM i,jJ j,j ] = 0 whenever
i ̸= j and E[(J⊤MJ)i,i] = E[J i,iM i,iJ i,i] = M i,i. Putting together and apply Lemma A13, we have

E[w⊤J⊤P⊤UPJw|w = w0] = w⊤
0 E[J⊤P⊤UPJ ]w0 =

tr(U)

n
∥w0∥22.

From above and Markov’s inequality, we have

P(w⊤J⊤P⊤UPJw > δ∥w∥22) = E
[
P
(
w⊤J⊤P⊤UPJw > δ∥w∥22 | w

)]
≤ E

[
E[w⊤J⊤P⊤UPJw | w]

δ∥w∥22

]
= E

[
tr[U ]

δn

]
=

tr[U ]

δn
.

In light of the above equality and (A2.6), we obtain the desired result.
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Proof of Lemma 5. Let G be a directed graph on vertices {1, . . . , n} where there exists a directed edge
i → j in G if and only if j = σ(i). Then the cycles in G are of length at least 2.

Let U denote a set with the maximum number of notes such that |U ∩ σ(U)| = 0, then apparently
|U | < n

2 +1. Let G′ denote the subgraph of G removing all the edges of the type (u, σ(u)) for u ∈ U . Then
we must have that a node is in U c if and only if the node has an out edge in G′. Moreover, we claim that (i)
G′ does not contain a circle with length 2; (ii) all the connected component of G′ has no more than 2 edges.
To prove claim (i), suppose in contradiction there exists a circle a → b → a in G′, then we must have that
a, b ̸∈ U . This means that the set U ′ = U ∪ {b} can still satisfy that |U ′ ∩ σ(U ′)| = 0, which contradicts
that U is maximal. To prove claim (ii), suppose in contradiction there exists a connected component with at
least 3 edges, then in this component there must exists a path a → b → c → d or a → b → c → a. Then
we easily have that b, c ̸∈ U . This means that the set U ′ = U ∪ {b} can still satisfy that |U ′ ∩ σ(U ′)| = 0,
which contradicts that U is maximal.

From the two claims, we must have that all the connected components in G′ must be of the form a → b
or a → b → c. We now introduce three sets of nodes A,B,C, where A consists of all the nodes a such
that a → b formalizes a connected component in G′; B consists of all the nodes a such that a → b → c
is a connected component in G′; and C consists of all the nodes b such that a → b → c is a connected
component in G′. Now recall the claim that a node is in U c if and only if the node has an out edge in G′,
we have that the four disjoint sets A,B,C,U formalizes a partition of all the nodes; moreover, σ(A) ⊆ U ,
σ(B) = C, σ(C) ⊆ U , σ(U) = A ∪B.

From above, we split A into two sets A1, A2 with size |A1| and |A2| differ by at most 1; and set U1 =
U,U2 = A1 ∪B,U3 = A2 ∪ C. Then it is straightforward that for all i = 1, 2, 3,

n

4
− 1 ≤ n− |U1| − 1

2
≤ |Ui| ≤ |U1| ≤

n

2
+ 1

and that

|Ui ∩ σ(Ui)| = 0,

which proves the desired result.

A2.2 Proof of Theorem 3

Proof. Without loss of generality, we assume throughout that Pe ∈ D2 and Pε ∈ D1+t. Since K is finite,
we only need to prove that for any j, k ∈ {1, . . . ,K}, as n → ∞,

P
(
|e⊤Ṽ jṼ

⊤
j (ε+ be)| ≤ |e⊤Ṽ kṼ

⊤
k P k(ε+ be)|

)
→ 0.

In this proof, we tackle this problem via proving that for all δ > 0,

P

 |e⊤Ṽ jṼ
⊤
j ε|

bn
≥ δ

→ 0;

P

(
|e⊤Ṽ kṼ

⊤
k P kε|

bn
≥ δ

)
→ 0;

(A2.7)
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and that with probability converging to 1,

e⊤Ṽ jṼ
⊤
j e− e⊤Ṽ kṼ

⊤
k P ke

n
≥ m

2(4 +m)
;

e⊤Ṽ jṼ
⊤
j e+ e⊤Ṽ kṼ

⊤
k P ke

n
≥ m

2(4 +m)
.

(A2.8)

To prove the first claim of (A2.7), since Pe ∈ D2, we have from the law of large number that

P
(
1

2
n ≤ ∥e∥22 ≤

5

2
n

)
→ 1.

Let E denote the above event. Then applying basic inequalities of random events, we have

P

 |e⊤Ṽ jṼ
⊤
j ε|

bn
≥ δ

 ≤ P

 |e⊤Ṽ jṼ
⊤
j ε|

bn
≥ δ | E

P(E) + P(Ec)

(i)

≤ P

5|e⊤Ṽ jṼ
⊤
j ε|

2b∥e∥22
≥ δ | E

P(E) + P(Ec) ≤ P

5|e⊤Ṽ jṼ
⊤
j ε|

2b∥e∥22
≥ δ

+ P(Ec),

where for the inequality (i) we apply that we are under E . Then as a direct consequence of Lemma A6, we

prove the first claim of (A2.7). For the second claim of (A2.7), using that P kε
d
= ε, The result follows the

same argument as the first claim of (A2.7).
In the rest of the proof we focus on proving the first statement of (A2.8), and the second statement can

be proven via a similar argument. To prove this statement, we apply the decomposition

e⊤Ṽ jṼ
⊤
j e− e⊤Ṽ kṼ

⊤
k P ke

n
=
e⊤(Ṽ jṼ

⊤
j − diag(Ṽ jṼ

⊤
j ))e− e⊤(Ṽ kṼ

⊤
k P k − diag(Ṽ kṼ

⊤
k P k))e

n

+
e⊤diag(Ṽ jṼ

⊤
j )e− e⊤diag(Ṽ kṼ

⊤
k P k)e

n
=: I + II,

where for any matrix A ∈ Rn×n, diag(A) corresponds to the diagonal matrix such that all the diagonal
elements are equal to the diagonal elements of A.

For I, observe that

∥Ṽ jṼ
⊤
j − diag(Ṽ jṼ

⊤
j )∥2F ≤ ∥Ṽ jṼ

⊤
j ∥2F = tr[Ṽ jṼ

⊤
j Ṽ jṼ

⊤
j ]

= tr[Ṽ jṼ
⊤
j ] = n− 2p,

and that

∥Ṽ kṼ
⊤
k P k − diag(Ṽ kṼ

⊤
k P k)∥2F ≤ ∥Ṽ kṼ

⊤
k P k∥2F = tr(Ṽ kṼ

⊤
k P kP

⊤
k Ṽ kṼ

⊤
k )

= tr(Ṽ kṼ
⊤
k ) = n− 2p,
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We can apply Lemma A7 to show that for any constant δ > 0,

lim
n→∞

P(|I| ≤ δ) → 1. (A2.9)

For II, given any fixed P j and P k, we write Vi := e2i and

an,i :=
(Ṽ jṼ

⊤
j − Ṽ kṼ

⊤
k P k)i,i

n
,

then we can rewrite II as II =
∑n

i=1 an,iVi. It is straightforward that for each n, the absolute value all the
entires in an,i are bounded by 2

n . Thus given any fixed P j ,P k,

sup
n≥1

n∑
i=1

|an,i|E[|Vi|1(|Vi| > a)] ≤ 2E[|Vi|1(|Vi| > a)],

which converges to 0 as a → ∞. Moreover,

lim
n→∞

n∑
i=1

|an,i|2 ≤ lim
n→∞

4

n
= 0.

This allows us to apply Lemma A11 to get that for any constant δ > 0,

P (|II− E[II | P j ,P k]| > δ | P j ,P k) → 0. (A2.10)

Thus, it remains to control E[II | P j ,P k] =
∑n

i=1 an,i. We write

AkA
⊤
k = I − Ṽ kṼ

⊤
k , (A2.11)

where Ak is a n × (n − 2p) matrix with orthonormal columns. Since the column space of Ṽ k is at the
intersection of span(X)⊥ and span(P kX)⊥, we have that span(X) must be a subspace of span(Ak).
Hence without loss of generality we can write Ak := [A0,Bk], where A0 ∈ Rn×p is a matrix with
orthonormal columns spanning span(V 0)

⊥. With the above notations, we calculate

E[II | P j ,P k] =

n∑
i=1

an,i =
1

n
tr[Ṽ jṼ

⊤
j − Ṽ kṼ

⊤
k P k] =

1

n
((n− 2p)− tr[AkA

⊤
k P k])

=
1

n
((n− 2p)− tr[A0A

⊤
0 P k +BkB

⊤
k P k]).

From Assumption 4, we have tr[A0A
⊤
0 P k] ≤

√
2pK, and using Lemma A15, we have tr[BkB

⊤
k P k] ≤

tr[BkB
⊤
k ] ≤ p, putting together we further have

E[II | P j ,P k] ≥
1

n
((n− 2p)− p−

√
2pK) ≥ m

4 +m
,

where the last inequality holds for sufficiently large n. From above and (A2.10), and also our control of the
term I in (A2.9), we have that the first statement of (A2.8) holds with probability converging to 1. Using an
analogous argument we prove the second statement of (A2.8). In light of this and our analysis of (A2.7), we
obtain the desired result.
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A2.3 Proof of Theorem 4

Proof. Without loss of generality, we assume throughout that Pe ∈ D1 and Pε ∈ D1+t. Following analogous
argument as in the proof of Theorem 3, we tackle this problem via proving that for any j, k ∈ {1, . . . ,K}
and for all δ > 0,

P

 |e⊤Ṽ jṼ
⊤
j ε|

b∥e∥22
≥ δ

→ 0;

P

(
|e⊤Ṽ kṼ

⊤
k P kε|

b∥e∥22
≥ δ

)
→ 0;

(A2.12)

and that with probability converging to 1,

e⊤Ṽ jṼ
⊤
j e− e⊤Ṽ kṼ

⊤
k P ke

∥e∥2
≥ 1

5
;

e⊤Ṽ jṼ
⊤
j e+ e⊤Ṽ kṼ

⊤
k P ke

∥e∥2
≥ 1

5
.

(A2.13)

The first claim of (A2.12) directly follows Lemma A6. The second claim of (A2.12) uses Lemma A6
and that P kε

d
= ε. In the rest of the proof we focus on proving the first statement of (A2.13), and the second

statement can be proven via a similar argument.
In the rest of the proof we assume throughout that both P j and P k are fixed permutation matrices or

equivalently being conditioned on. To prove the statement, let e′ denote an independent replication of e.
Recalling the definition of Ak in (A2.11), we have

(e− e′)⊤(Ṽ jṼ
⊤
j − Ṽ kṼ

⊤
k P k)(e− e′)

= ∥e− e′∥22 − (e− e′)⊤P k(e− e′)− (e− e′)⊤(AjAj
⊤ −AkAk

⊤P k)(e− e′)

≥ ∥e− e′∥22 − (e− e′)⊤P k(e− e′)− (e− e′)⊤
(
AjAj

⊤ +
AkAk

⊤ + P⊤
k AkAk

⊤P k

2

)
(e− e′),

(A2.14)
where for the last inequality we apply Cauchy-Schwartz inequality. As ei − e′i is symmetric around zero,
we have from Lemma 4 that the following event E1 holds with probability 1− 10p

n → 1:

E1 :=
{
(e− e′)⊤(AjAj

⊤ +
AkAk

⊤ + P⊤
k AkAk

⊤P k

2
)(e− e′) <

1

5
(e− e′)⊤(e− e′)

}
.

In addition, as ∥Ṽ jṼ
⊤
j − Ṽ kṼ

⊤
k P k∥op ≤ 2, we have from Lemma A6 that the following two events

E2 and E3 hold with probability converging to 1:

E2 :=

{∣∣∣e′⊤ (Ṽ jṼ
⊤
j − Ṽ kṼ

⊤
k P k

)
e
∣∣∣ < 1

5
∥e∥22

}
;

E3 :=

{∣∣∣e′⊤ (Ṽ jṼ
⊤
j − Ṽ kṼ

⊤
k P k

)
e
∣∣∣ < 1

5
∥e∥22

}
.

Working on the intersection of the three events E1 ∩ E2 ∩ E3, and applying the decomposition

(e− e′)⊤(Ṽ jṼ
⊤
j − Ṽ kṼ

⊤
k P k)(e− e′) = e⊤(Ṽ jṼ

⊤
j − Ṽ kṼ

⊤
k P k)e+ e′⊤(Ṽ jṼ

⊤
j − Ṽ kṼ

⊤
k P k)e

′

− e⊤(Ṽ jṼ
⊤
j − Ṽ kṼ

⊤
k P k)e

′ − e′⊤(Ṽ jṼ
⊤
j − Ṽ kṼ

⊤
k P k)e,
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we have from (A2.14) that

e⊤(Ṽ jṼ
⊤
j − Ṽ kṼ

⊤
k P k)e+ e′⊤(Ṽ jṼ

⊤
j − Ṽ kṼ

⊤
k P k)e

′

≥ 4

5
∥e− e′∥22 − (e− e′)⊤P k(e− e′)− 1

5
(∥e∥22 + ∥e′∥22)

=
3

5
(∥e∥22 + ∥e′∥22)− (e− e′)⊤P k(e− e′)− 8

5
e⊤e′.

(A2.15)

Define random events

E4 :=
{
(e− e′)⊤P k(e− e′) ≤ 1

5
∥e∥22

}
, E5 :=

{
e⊤e′ ≤ 1

8
∥e∥22

}
.

For E4, we have

P (Ec
4) ≤ P

(
Ec
4 & ∥e∥22 ≥ n/2

)
+ P

(
∥e∥22 < n/2

)
= P

({
(e− e′)⊤P k(e− e′) >

1

5
∥e∥22

}
& ∥e∥22 ≥ n/2

)
+ P

(
∥e∥22 < n/2

)
≤ P

({
(e− e′)⊤P k(e− e′) >

n

10

}
& ∥e∥22 ≥ n/2

)
+ P

(
∥e∥22 < n/2

)
≤ P

({
(e− e′)⊤P k(e− e′) >

n

10

})
+ P

(
∥e∥22 < n/2

)
Then using Lemmas A8 and A9, we have that the event E4 holds with probability converging to 1.

For E5, using that all the eie
′
i’s are i.i.d. random variables with E[|eie′i|] = E[|ei|]E[|e′i|] < ∞, we

have e⊤e′/n → 0 in probability; thus using a similar argument as E4, we have E5 holds with probability
converging to 1.

Now working on the event E1 ∩ · · · ∩ E5 (which, as shown above, occurs with probability converging to
1), we have from (A2.15) and also the definitions of E4 and E5 that

e⊤(Ṽ jṼ
⊤
j − Ṽ kṼ

⊤
k P k)e+ e′⊤(Ṽ jṼ

⊤
j − Ṽ kṼ

⊤
k P k)e

′ ≥ 1

5
(∥e∥22 + ∥e′∥22).

In other words, with probability converging to zero,

e⊤
(
Ṽ jṼ

⊤
j − Ṽ kṼ

⊤
k P k −

1

5
I

)
e︸ ︷︷ ︸

I

+ e′⊤
(
Ṽ jṼ

⊤
j − Ṽ kṼ

⊤
k P k −

1

5
I

)
e′︸ ︷︷ ︸

I′

< 0.

Since I and I′ are two i.i.d. random variables, we have using their independence and identically distributed
property that

P(I < 0) =
√

P(I < 0)P(I′ < 0) =
√
P(I < 0, I′ < 0) ≤

√
P(I + I′ < 0) → 0,

which proves (A2.13). In light of this and our control of (A2.12), we prove the desired result.

A2.4 Auxiliary lemmas

Lemma A9. Let w1, . . . , wn be a sequence of i.i.d. random variables from some distribution Pw. Then if
Pw ∈ D1 ∪ D2, we have

lim
n→∞

P

(
n∑

i=1

w2
i ≥ 1

2
n

)
= 1.
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Proof. We first consider Pw ∈ D2. From standard results of weak law of large number, we have

lim
n→∞

P

(
1

n

n∑
i=1

w2
i ≥ 1

2

)
= 1.

We next consider Pw ∈ D1. First, apparently we have that either E[w2
1] = ∞ or that E[w2

1] is finite and
satisfy E[w2

1] ≥ (E[|w1|])2 ≥ 1. In either of the two cases, we have that there exists a threshold τ such that
E[w2

11(|w1| ≤ τ)] = 1.
Let w̃i := wi1(|w1| ≤ τ). Then by again standard results of weak law of large number, we have

lim
n→∞

P

(
n∑

i=1

w̃2
i ≥ 1

2
n

)
= 1,

and the desired result is a direct consequence of that almost surely, w2
i ≥ w̃2

i .

Lemma A10. Given a constant B > 0 and a random variable V with E[|V |] < ∞. Then

lim
n→∞

n∑
i=1

P(|V | ≥ Bi) ≤ E
[
|V |
B

]
< ∞.

Proof. For any integer n,

n∑
i=1

P(|V | ≥ Bi) =
n∑

i=1

P
(
|V |
B

≥ i

)
≤
∫
x≥0

P
(
|V |
B

> x

)
dx = E

[
|V |
B

]
< ∞.

Lemma A11. (Van Thanh [2006, Theorem 3]) Let an,i (i, n = 1, . . . ,∞) be a deterministic array with
limn→∞

∑n
i=1 |an,i|2 = 0. Let Vi (i = 1, . . . ,∞) be a sequence of independent random variables satisfying

that

lim
a→∞

sup
n≥1

n∑
i=1

|an,i|E[|Vi|1(|Vi| > a)] = 0.

Then

lim
m→∞

E

[∣∣∣∣∣
m∑
i=1

am,iVi − E[Vi]

∣∣∣∣∣
]
= 0.

Lemma A12. (Borel-Cantelli Lemma [Durrett, 2019, Theorem 2.3.1]) Let E1, . . . be a sequence of random
events. If limn→∞

∑n
i=1 P(Ei) < ∞, then

P(En i.o.) = 0,

where En i.o. stands for En occurs infinitely often.

Lemma A13. Let P be a uniformly random permutation matrix. Let M ∈ Rn×n be a fixed n × n matrix.
Then for any i = 1, . . . , n, E[(PMP⊤)ii] =

1
n

∑n
j=1M jj .
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Proof. Let σ be the random permutation corresponding to P , we have

E[(P⊤MP )i,i] = E[Mσ(i),σ(i)] =
1

n

∑
j

M j,j ,

where the second inequality is due to that σ(i) can be viewed as a random variable that samples uniformly
at random from the set {1, . . . , n}.

Lemma A14. Consider the P in Lemma A13. Let f := (f1, . . . , fn)
⊤ denote a random vector where all

the fi’s are zero-mean independent random variables. Then for any i ̸= j, E[(Pff⊤P⊤)ij ] = 0.

Proof. Let σ be the random permutation corresponding to P . Then using that for any i ̸= j, fi and fj are
independent,

E[(Pff⊤P⊤)ij ] = E[fσ(i)fσ(j)] = 0,

which proves the desired result.

Lemma A15. Consider a symmetric positive semi-definite matrix M ∈ Rn×n and a permutation matrix
P ∈ Rn×n, we have

tr[MP ] ≤ tr[M ].

Proof. Using the positive semi-definiteness and symmetry of M , we have for any i, j (i and j can be equal
or unequal),

M i,j ≤
M i,i +M j,j

2
.

Let σ be the permutation associated with P , we have

tr[MP ] =

n∑
i=1

M i,σ(i) ≤
n∑

i=1

M i,i +Mσ(i),σ(i)

2
= tr[M ],

which proves the desired result.

Lemma A16. For any random variable f satisfying E[f ] ≤ 0, there exists a random variable f ′ with
E[f ′] = 0 and that

P
(
f ′ = f |f > 0

)
= 1 & P

(
f ≤ f ′ ≤ 0|f ≤ 0

)
= 1.

Proof. If E[f ] = 0, then f ′ = f satisfies all the conditions. Thus we only need to consider the case with
E[f ] < 0. define f+ = f1(f > 0) and f− = −f1(f ≤ 0). Then E[f ] = E[f+]−E[f−]. As E[f ] < 0, we
easily have that E[f−] > E[f+] ≥ 0.

We now construct a Bernoulli random variable B satisfying that P(B = 1) = E[f+]
E[f−]

∈ [0, 1) and that
B ⊥⊥ f . Then apparently, f ′ = f+ −Bf− satisfies all the requirements, as

E[f ′] = E[f+]−BE[f−] = 0

P
(
f ′ = f |f > 0

)
= P

(
(1−B)f− = 0|f− = 0

)
= 1

P
(
f ≤ f ′ ≤ 0|f ≤ 0

)
= P

(
(1−B)f− ≥ 0, f+ = 0|f− ≥ 0, f+ = 0

)
= 1.
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A2.5 Theoretical analysis of the algorithms

We will first show an lemma.

Lemma A17. Consider a fixed matrix M ∈ Rn×n with n ≥ 2 and a fixed permutation matrix P 0 ∈ Rn×n

satisfying tr[P 0] = 0. Let P̃ ∈ Rn×n be a uniformly randomly sampled permutation matrix and define
P := P̃

−1
P 0P̃ . Then for any δ > 0, we have that

P

|tr[MP ]| ≥

√
2tr[MM⊤]

√
δ

 ≤ δ.

Proof. Let σ̃ be the random permutation corresponding to P̃ . Then we have that for any P u,v, P u,v = 1
if and only if (P 0)σ̃(u),σ̃(v) = 1. Now that since σ̃ is a uniformly random permutation, we have that
(σ̃(u), σ̃(v)) is a pair that is uniformly at random drawn from the set {(i, j) | i ̸= j ∈ {1, . . . , n}}. From
this, we have for any fixed (u, v),

P(P u,v = 1) = P((P 0)σ̃(u),σ̃(v) = 1) =
n

n2 − n
=

1

n− 1
,

and equivalently, E[P 2
u,v] = E[P u,v] =

1
n−1 .

Notice also that since P is a random permutation matrix, we have that for any fixed u and any fixed
v1 ̸= v2, almost surely P u,v1P u,v2 = 0.

Putting together, we have

E[tr[MP ]2] = E

(∑
u

∑
v

Mu,vP u,v

)2
 ≤ n

∑
u

E

(∑
v

Mu,vP u,v

)2


= n
∑
u

∑
v

E[M2
u,vP

2
u,v] =

n

n− 1

∑
u

∑
v

M2
u,v =

n

n− 1
tr[MM⊤] ≤ 2tr[MM⊤].

From above, the desired result follows from Chebyshev’s inequality.

Proof of Proposition 1. Throughout the proof we only consider the case with number of iterations T = 1,
and the case of T ≥ 2 can be proven via analogous argument. For any k1, k2 ∈ {1, . . . ,K}, we have that by
setting k3 as the remainder after dividing k1 + k2 by K + 1, we have that P k3 = P k1P k2 . Which proves
that the returned PK satisfies Assumption 2.

We now define P 0k as a permutation matrix such that (P 0k)u,v = 1 if and only if

⌈ u

K + 1
⌉ = ⌈ v

K + 1
⌉ & u− v ∈ {k, k − (K + 1)};

and define P π be the random permutation matrix associated with the permutation π, then we have that
almost surely,

P k = P−1
π P 0kP π.

We then have from Lemma A17 and

tr[X(X⊤X)−1X⊤X(X⊤X)−1X⊤] = tr[X(X⊤X)−1X⊤] = p
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that for any k,

P
(
|tr[X(X⊤X)−1X⊤P k]| ≥

√
2pK

)
≤ 1

K2
.

The desired result then follows by applying a union bound for all k.
Note that since Algorithm 1 returns with non-zero probability, there must exist a PK that satisfies both

assumptions.

A3 Theoretical analysis of optimality

A3.1 Proof of Theorem 5

Without loss of generality we consider the scenario where β = βZ = 0. Let H1(τ) be the class of alterna-
tives such that |b| ≥ τ , with τ to be specified later. Then using Neyman-Pearson lemma, we have that for
any (Z,Y ) in H0 and any (Z ′,Y ′) in H1(τ),

Rt,X(τ) ≥ 1− TV(PY ,Z ,PY ′,Z′).

Hence, the problem becomes constructing a (Z,Y ) and (Z ′,Y ′) belonging to H0 and H1(τ) such that their
total variation distance is smaller than η.

We can do the following construction. First, we construct Zi as i.i.d. binary random variables such that
P(Zi = n/γ) = γ/n and P(Zi = −(1 − γ/n)−1) = 1 − γ/n, where γ = − log(1 − η)/2, and without
loss of generality, n is sufficiently larger such that γ/n < 1. Moreover, we construct Z ′

i such that for each
i, Zi = Z ′

i almost surely.
We then construct εi, ε′i as i.i.d. Rademacher random variables that are independent from Zi, Z

′
i; and

construct Z̃i as i.i.d replicates of Zi which are independent from other randomness in the problem. Finally
let Yi = bZ̃i + εi and Y ′

i = bZ ′
i + εi where b = cηn

−t/(1+t) for some constant cη > 0 depending only on η
such that E[|Yi|1+t] = E[|Y ′

i |1+t] = 2. Then it is straightforward that the distribution of Yi is in D1+t, so
that (Y ,Z) and (Y ′,Z ′) are feasible choices in H0 and H1(τ) respectively with τ := cηn

−t/(1+t).
Using the above construction, we control their total variation distance as

TV(PY ,Z ,PY ′,Z′) = sup
B

{P ((Y ,Z) ∈ B)− P
((
Y ′,Z ′) ∈ B

)
}

≤ sup
B

{P ((Y ,Z) ∈ B)− P
((
Y ′,Z ′) ∈ B, (Y ,Z) ∈ B

)
}

≤ sup
B

P
(
(Y ,Z) ∈ B,

(
Y ′,Z ′) ̸∈ B

)
≤ P

(
Z ̸= Z̃

)
≤ 1− (1− γ/n)2n ≤ 1− e−2γ = η.

A3.2 Preliminary lemmas for Theorem 6

In this section, we invoke the notations introduced at the beginning of Section A2.

Lemma A18. Consider the M in Lemma A3. If b ≥ ∆n−1/2+γ for some γ > 0, then for any fixed δ > 0,

lim
n→∞

sup
Pw∈D̃

sup
Pξ∈D2

P
(
|w⊤Mξ|
b∥w∥22

> δ

)
= 0.
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Proof. Following the same lines of proof as Lemma A3, we have for any δ > 0,

P
(
|w⊤Mξ|
b∥w∥22

> δ

)
≤ 16

δ2b2n
+ P

(
∥w∥22 <

n

16

)
.

Combining the above with Lemma A24 yields the desired result.

Lemma A19. Let g := (g1, . . . , gn)
⊤ be a n-dimensional vector satisfying ∥g∥22 ≤ cgn

1−t
1+t for some

constant cg > 0. Then if b ≥ ∆n− t
1+t

+γ for some γ > 0, we have that for any fixed δ > 0,

lim
n→∞

sup
Pw∈D̃

P
(
|w⊤g|
b∥w∥22

> δ

)
= 0

Proof. We have almost surely
|w⊤g|
b∥w∥22

≤ ∥g∥2
b∥w∥2

,

whence

P
(
|w⊤g|
b∥w∥22

> δ

)
≤ P

(
∥g∥2
b∥w∥2

> δ

)
.

From above and Lemma A24, we obtain our desired result.

Lemma A20. Consider the M in Lemma A3 and let t ∈ (0, 1), B > 0 be given. Then if b ≥ ∆n− t
1+t

+γ

for some constants γ,∆ > 0, we have that for any fixed δ > 0,

lim
n→∞

sup
Pw∈D̃

sup
Pξ∈D1+t∩D̃≥,−B

P
(
|w⊤Mξ|
b∥w∥22

> δ

)
= 0.

Proof. Let t1 denote a constant in (−1, t) such that

1− t1
1 + t1

− 1− t

1 + t
≤ γ.

Let fi := ξi1(|ξi| ≤ Bi
1

1+t1 ) denote a truncated random variable of ξi. ALso, we construct f ′
i as in

Lemma A16. Moreover, we write f := (f1, . . . , fn)
⊤ and f ′ := (f ′

1, . . . , f
′
n)

⊤. Then following the same
derivations as in Lemma A5, we have

P
(
|w⊤MPξ|

b∥w∥22
> δ

)
≤ P

(
|w⊤MPf ′|

b∥w∥22
>

δ

3
| ∥w∥22 >

n

16

)
︸ ︷︷ ︸

=:I

+ P
(
|w⊤MP (f − f ′)|

b∥w∥22
>

δ

3
| ∥w∥22 >

n

16

)
︸ ︷︷ ︸

=:II

+ P
(
|w⊤MP (ξ − f)|

b∥w∥22
>

δ

3
| ∥w∥22 >

n

16

)
︸ ︷︷ ︸

III

+ P
(
∥w∥22 ≤

n

16

)
.

From Lemma A24, we have that supPw∈D̃ζ,v
P
(
∥w∥22 ≤ n/16

)
→ 0 as n → ∞, which bounds the last

term. For I, using analogous analysis as term I in Lemma A5, we have that there exists a universal constant
c > 0 such that for any feasible choices of Pw,Pξ,

I ≤ cB1−t

δ2
n

1−t1
1+t1

b2n
≤ cB1−t

δ2∆2

1

nγ
.
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This implies that

lim
n→∞

sup
Pw∈D̃

sup
Pξ∈D1+t∩D̃≥,−B

I = 0.

We second consider II. Notice that again

II ≤ P
(
|w⊤MP (f − f ′ − E[f − f ′])|

b∥w∥22
>

δ

6
| ∥w∥22 >

n

16

)
+ P

(
|w⊤MPE[f − f ′]|

b∥w∥22
>

δ

6
| ∥w∥22 >

n

16

)
=: II1 + II2.

For II1, as fi − f ′
i is bounded between [−B,B], using the same analysis as in Lemma A18, we have

supPw∈D̃ supPξ∈D1+t∩D̃≥,−B
II1 → 0. For II2, observe first that using the same analysis as term II2 in

Lemma A5,

∥E[f − f ′]∥22 ≤ n
1−t
1+t (

E[∥ξ∥1+t1 ]

B1+t1
)

2t
1+t .

Then applying Lemma A19 with PE[f − f ′] as g and noticing also Lemma A24, we have

sup
Pw∈D̃

sup
Pξ∈D1+t∩D̃≥,−B

II2 → 0

as n → ∞. Putting together yields supPw∈D̃ supPξ∈D1+t∩D̃≥,−B
II → 0.

We third consider III. From Lemma A10, we have that for any N > 0,

∞∑
i=N

P(fi ̸= ξi) =

∞∑
i=N

P(|ξi|1+t1 > B1+t1i) ≤ E
[
|ξ1|1+t1

B1+t1
1(|ξ1|1+t1 > B1+t1N)

]
,

whence

E
[
|ξ1|1+t1

B1+t1
1(|ξ1|1+t1 > B1+t1N)

]
= E

[
|ξ1|1+t|ξ1|t1−t

B1+t1
1(|ξ1|1+t1 > B1+t1N)

]

≤ E
[
|ξ1|1+t

B1+t1
1(|ξ1|1+t1 > B1+t1N)

]
·Bt1−tN

t1−t
1+t1 ≤ 2

N
t1−t
1+t1

B1+t
.

From above, ∀η > 0 by choosing Nη =
(
ηB1+t/6

) 1+t1
t1−t , we have

P(∃k > Nη s.t. fk ̸= ξk) ≤
∞∑

i=Nη

P(fi ̸= ξi) ≤
η

3
.

Further letting Cη = (6Nη/η)
1

1+t , we have

P(∃ℓ ≤ Nη, s.t. |ξℓ| > Cη) ≤ NηP(|ξ1| > Cη) ≤
2Nη

C1+t
η

=
η

3
.
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Putting together, we have that for the event E := {∀k > Nη, fk = ξk, ∀ℓ ≤ Nη, |ξi| < Cη}, P(Ec) ≤ 2η
3 ,

which gives us that

P
(
|w⊤MP (ξ − f)|

b∥w∥22
>

δ

3

)
≤ P

(
|w⊤MP (ξ − f)|

b∥w∥22
>

δ

3
| E
)
+ P(Ec)

≤ 2η

3
+ P

(
|w⊤MP (ξ − f)|

b∥w∥22
>

δ

3
| E
)
.

Under the random event E , using Cauchy-Schwartz inequality, we have

|w⊤MP (ξ − f)| ≤ ∥w∥2∥MP (ξ − f)∥2 ≤ ∥w∥2∥ξ − f∥2 = ∥w∥2

√√√√ Nη∑
i=1

ξ2i 1(|ξi|1+t > B1+ti)

≤ ∥w∥2
√
NηCη.

Putting back yields

P
(
|w⊤MP (ξ − f)|

b∥w∥22
>

δ

3

)
≤ 2η

3
+ P

(
Cη

√
Nη∥w∥2

b∥w∥22
>

δ

3
| E

)
=

2η

3
+ P

(
Cη

√
Nη

b∥w∥2
>

δ

3

)
,

then by lemma A24, we have

lim sup
n→∞

sup
Pw∈D̃

sup
Pξ∈D1+t∩D̃≥,−B

P
(
|w⊤MP (ξ − f)|

b∥w∥22
>

δ

3

)

≤2η

3
+ lim sup

n→∞
sup
Pw∈D̃

sup
Pξ∈D1+t∩D̃≥,−B

P

(
Cη

√
Nη

b∥w∥2
>

δ

3

)
=

2η

3
.

As η is arbitrary, we have as n → ∞,

sup
Pw∈D̃

sup
Pξ∈D1+t∩D̃≥,−B

P
(
|w⊤MP (ξ − f)|

b∥w∥22
>

δ

3

)
→ 0

In light of our control of I – III, our desired result follows.

Lemma A21. Consider the M in Lemma A3; let t ∈ (0, 1] be given and assume that b ≥ n− t
1+t

+γ . Then
for any fixed δ > 0,

lim
n→∞

sup
Pw∈D̃

sup
Pξ∈D1+t∩D̃≥,−B

P
(
|w⊤Mξ|
b∥w∥22

≤ δ

)
= 1.

Proof. When t = 1, the result follows from Lemma A18. Otherwise, we apply the decomposition

ξi = (ξi1(ξi ≥ 0)− E[ξi1(ξi ≥ 0)])− ((−ξi)1(ξi < 0)− E[(−ξi)1(ξi < 0)]) =: ξ1,i − ξ2,i;

and define ξ1 := (ξ1,1, . . . , ξ1,n)
⊤, ξ2 := (ξ2,1, . . . , ξ2,n)

⊤. Then our desired result follows by applying
Lemma A20 but with ξ replaced by ξ1 or ξ2 and taking a union bound.
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Lemma A22. Let an,i (i, n = 1, . . . ,∞) be a deterministic array with
∑n

i=1 |an,i|2 ≤ 4
n . Let Vi (i =

1, . . . ,∞) be a sequence of independent random variables obeying the law PVi . Then for any γ > 0,

lim
n→∞

sup
PV1

,...,PVn∈D1+γ

E

[∣∣∣∣∣
n∑

i=1

an,i(Vi − E[Vi])

∣∣∣∣∣
]
= 0.

Proof. Let a = n
1

2(γ+1) ; define

V ′
i = Vi1(|Vi| > a), V ′′

i = Vi1(|Vi| ≤ a).

We first have
n∑

i=1

|an,i|E[|V ′
i |] =

n∑
i=1

|an,i|E[|Vi|1(|Vi| > a)] =
n∑

i=1

|an,i|E[|Vi|1+γ |Vi|−γ
1(|Vi| > a)]

≤ a−γ
n∑

i=1

|an,i|E[|Vi|1+γ
1(|Vi| > a)] ≤ 2a−γ

n∑
i=1

|an,i|

(i)

≤ 2a−γn1/2

(
n∑

i=1

|an,i|2
)1/2

≤ 4a−γ .

where (i) uses Cauchy-Schwartz inequality. From above, we have

E

[∣∣∣∣∣
n∑

i=1

an,i(Vi − E[Vi])

∣∣∣∣∣
]
= E

[∣∣∣∣∣
n∑

i=1

an,i(V
′
i − E[V ′

i ] + V ′′
i − E[V ′′

i ])

∣∣∣∣∣
]

≤ E

[∣∣∣∣∣
n∑

i=1

an,i(V
′′
i − E[V ′′

i ])

∣∣∣∣∣
]
+ 2

n∑
i=1

|an,i|E[|V ′
i |]

≤ E

[∣∣∣∣∣
n∑

i=1

an,i(V
′′
i − E[V ′′

i ])

∣∣∣∣∣
]
+ 8a−γ

To deal with the first summand on the right hand side of the above inequality, we apply Hölder’s in-
equality to get that

E

[∣∣∣∣∣
n∑

i=1

an,i(V
′′
i − E[V ′′

i ])

∣∣∣∣∣
]
≤

E
∣∣∣∣∣

n∑
i=1

an,i(V
′′
i − E[V ′′

i ])

∣∣∣∣∣
2
1/2

=

[
E

[
n∑

i=1

a2n,i(V
′′
i − E[V ′′

i ])
2

]]1/2
≤

[
E

[
n∑

i=1

a2n,i4a
2

]]1/2
= 2a

[
n∑

i=1

a2n,i

]1/2
≤ 4a√

n

Putting together, we have

sup
PV1

,...,PVn∈D1+γ

E

[∣∣∣∣∣
n∑

i=1

an,i(Vi − E[Vi])

∣∣∣∣∣
]
≤ 8a−γ +

4a√
n
≤ 12n

− γ
2(γ+1) ,

which gives us the desired result.
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Lemma A23. Consider the P as in Lemma A8. We have that for any fixed δ > 0,

lim
n→∞

sup
Pw∈D1+ν

P(|w⊤Pw|/n > δ) = 0.

.

Proof. Let w1,1, w1,2, . . . , w1,n, . . . and w2,1, w2,2, . . . , w2,n, . . . be two sequences of i.i.d. random variables
from a distribution Pw. Then apparently if Pw ∈ D1+t, 1 ≤ E[|w1,iw2,i|1+t] ≤ 4. Then using Lemma A22,
we have from Markov’s inequality that for any δ > 0,

lim
n→∞

sup
PwD1+t

P

(∣∣∣∣∣ 1n
n∑

i=1

w1,iw2,i

∣∣∣∣∣ > δ

)
= 0.

The desired result then follows from the same lines of proof as in Lemma A8.

Lemma A24. We have
lim
n→∞

sup
Pw∈D̃

P
(
∥w∥22 <

n

16

)
= 0.

Proof. Let w̃i :=
1
21
(
|wi| ≥ 1

2

)
, then E[w̃2

i ] ≥ 1
8 . By Hoeffding’s inequality,

P

(∣∣∣∣∣
n∑

i=1

(w̃2
i − E[w̃2

i ])

∣∣∣∣∣ ≥ n

16

)
≤ exp

(
− n

128

)
.

In light of the above inequality and that almost surely, |wi| ≥ |w̃i|, we obtain the desired result.

A3.3 Theoretical analysis of (15)

Proof. Following the proof of Theorem 3, we only need to show that for any fixed j, k, for all δ > 0,

sup
Pe∈D2+ν∩D̃

sup
Pε∈D1+t

P

 |e⊤Ṽ jṼ
⊤
j ε|

bn
> δ

→ 0;

sup
Pe∈D2+ν∩D̃

sup
Pε∈D1+t

P

(
|e⊤Ṽ kṼ

⊤
k P kε|

bn
> δ

)
→ 0;

(A3.16)

and that,

sup
Pe∈D2+ν∩D̃

sup
Pε∈D1+t

P

e⊤Ṽ jṼ
⊤
j e− e⊤Ṽ kṼ

⊤
k P ke

n
<

m

2(4 +m)

→ 0;

sup
Pe∈D2+ν∩D̃

sup
Pε∈D1+t

P

e⊤Ṽ jṼ
⊤
j e+ e⊤Ṽ kṼ

⊤
k P ke

n
<

m

2(4 +m)

→ 0.

(A3.17)

To prove the first claim of (A3.16), since Pe ∈ D2+ν , using Lemma A22 yields

sup
Pe∈D2+ν

E
[∣∣∣∣ 1n∥e∥22 − E[e21]

∣∣∣∣]→ 0,
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whence by Markov’s inequality,

sup
Pe∈D2+ν

P
(
∥e∥22 > 2E[e21]n

)
→ 0.

For Pe ∈ D2+ν , using Hölder’s inequality, we have

E[e21] ≤ (E[|e1|2+ν ])2/(2+ν) ≤ 22/(2+ν).

From the above two inequalities, we have the random event E := {∥e∥22 ≤ 2(3+ν)/(2+ν)n} satisfies that
supPe∈D2+ν

P(Ec) → 0. Therefore, we can control the first inequality of (A3.16) via that

P

 |e⊤Ṽ jṼ
⊤
j ε|

bn
≥ δ

 ≤ P

 |e⊤Ṽ jṼ
⊤
j ε|

bn
≥ δ | E

P(E) + P(Ec)

(i)

≤ P

 |e⊤Ṽ jṼ
⊤
j ε|

2b∥e∥22
≥ δ | E

P(E) + P(Ec) ≤ P

 |e⊤Ṽ jṼ
⊤
j ε|

2b∥e∥22
≥ δ

+ P(Ec),

where for the inequality (i) we apply that we are under E . Then as a direct consequence of Lemma A21, we

prove the first claim of (A3.16). For the second claim of (A3.16), using that P kε
d
= ε, The result follows

the same argument as the first claim of (A3.16).
In the rest of the proof we focus on proving the first statement of (A3.17), and the second statement can

be prove via a similar argument. To prove this statement, we apply again the decomposition

e⊤Ṽ jṼ
⊤
j e− e⊤Ṽ kṼ

⊤
k P ke

n
=
e⊤(Ṽ jṼ

⊤
j − diag(Ṽ jṼ

⊤
j ))e− e⊤(Ṽ kṼ

⊤
k P k − diag(Ṽ kṼ

⊤
k P k))e

n

+
e⊤diag(Ṽ jṼ

⊤
j )e− e⊤diag(Ṽ kṼ

⊤
k P k)e

n
=: I + II,

where recall that for any matrix A ∈ Rn×n, diag(A) corresponds to the diagonal matrix such that all the
diagonal elements are equal to the diagonal elements of A.

For I, using the same lines of proof as the term I in Section A2.2, we have that for any constant δ > 0,

sup
Pe∈D2+ν

P(|I| < δ) ≤ 2(6+ν)/(2+ν)

nδ2
. (A3.18)

For II, we apply the same lines of proof as the control of term II in Section A2.2, except that we replace
Lemma A11 with Lemma A22. Putting together, we obtain the desired result.

A3.4 Theoretical analysis of (16)

Proof. Following analogous argument as in the proof of Theorem 4, we tackle this problem via proving that
for any j, k ∈ {1, . . . ,K} and for all δ > 0,

sup
Pe∈D1+ν∩D̃

sup
Pε∈D1+t

P

 |e⊤Ṽ jṼ
⊤
j ε|

b∥e∥22
≥ δ

→ 0;

sup
Pe∈D1+ν∩D̃

sup
Pε∈D1+t

P

(
|e⊤Ṽ kṼ

⊤
k P kε|

b∥e∥22
≥ δ

)
→ 0;

(A3.19)
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and that

sup
Pe∈D1+ν∩D̃

P

e⊤Ṽ jṼ
⊤
j e− e⊤Ṽ kṼ

⊤
k P ke

∥e∥2
<

1

5

→ 0;

sup
Pe∈D1+ν∩D̃

P

e⊤Ṽ jṼ
⊤
j e+ e⊤Ṽ kṼ

⊤
k P ke

∥e∥2
<

1

5

→ 0.

(A3.20)

The first claim of (A3.19) directly follows Lemma A21. The second claim of (A3.19) uses Lemma A21
and that P kε

d
= ε. To prove (A3.20), recall the definition of E1 – E5, it remains to prove that

lim
n→∞

sup
Pe∈D1+ν∩D̃

P(Ec
1 ∪ · · · ∪ Ec

5) = 0.

We can control E1 – E5 following the same lines of proof as in the proof of those events in Section A2.3,
except that for E2 and E3 we replace Lemma A6 by Lemma A21; for E4, we replace Lemmas A8 and A9
by Lemmas A23 and A24 respectively; and for E5, we additionally control the uniform convergence of
|e⊤e′|/n with Lemma A22.

In light of our control of all the random events, the desired result follows.
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