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We consider the problem of testing whether a single coefficient is equal
to zero in linear models when the dimension of covariates p can be up to a
constant fraction of sample size n. In this regime, an important topic is to
propose tests with finite-sample valid size control without requiring the noise
to follow strong distributional assumptions. In this paper, we propose a new
method, called the residual permutation test (RPT), which is constructed by
projecting the regression residuals onto the space orthogonal to the union of
the column spaces of the original and permuted design matrices. RPT can be
proved to achieve finite-sample size validity under fixed design with just ex-
changeable noises, whenever p < n/2. Moreover, RPT is shown to be asymp-
totically powerful for heavy-tailed noises with bounded (1 + t)th order mo-
ment when the true coefficient is at least of order n−t/(1+t) for t ∈ [0,1]. We
further proved that this signal size requirement is essentially rate-optimal in
the minimax sense. Numerical studies confirm that RPT performs well in a
wide range of simulation settings with normal and heavy-tailed noise distri-
butions.

1. Introduction. Testing and inference of linear regression coefficients is a fundamental
problem in statistics research and has inspired methodological innovations in many other
research directions in the statistics community (e.g., Arias-Castro, Candès and Plan (2011),
Zhang and Zhang (2014), Barber and Candès (2015), Chernozhukov et al. (2018), Bradic
et al. (2019)). In this paper, we consider the setting where we have observations (X,Z,Y ) ∈
R

n×p ×R
n ×R

n generated according to the following model:

(1) Y = Xβ + bZ + ε,

where ε := (ε1, . . . , εn)
� ∈ R

n is an n-dimensional noise vector with n ≥ 2, and our goal is
to test the null hypothesis H0 : b = 0 against the alternative H1 : b �= 0.

Here, we are primarily interested in designing a new coefficient test with finite-sample size
validity. In other words, we require our test to have valid size control with arbitrary magnitude
of n, instead of requiring some asymptotic regime assumption that may be unrealistic in prac-
tice. Classically, one of the most well-known tests for b = 0 in model (1) is the ANOVA test
(Fisher (1935)). It is known to be asymptotically valid when p is fixed and n → ∞, and has
finite-sample valid size control when the noise possesses spherical symmetry. However, as
we will see in Section 3, the finite-sample size of an ANOVA test can be far from the nominal
level in the presence of heavy-tailed noises. This motivates us to propose a new test that has
finite-sample valid size control under weaker noise assumptions, especially with relatively
large p, which is also a topic that has received increasing attention in recent years (see, e.g.,
Section 2). In particular, we are interested in developing a test with finite-sample valid size
control under a fixed design of X and Z by assuming that the noise ε = (ε1, . . . , εn)

� has
exchangeable components.
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ASSUMPTION 1 (Exchangeable noise). For any permutation σ of indices 1, . . . , n,

(ε1, . . . , εn)
d= (εσ(1), . . . , εσ(n)).

We remark that Assumption 1 differs from the common assumption that E[ε] = 0 for fixed
design of X, Z or that E[ε | X,Z] = 0 (or even the more relaxed assumption E[ε�(X,Z)] =
0) when X, Z follow a random design, which allows for heteroskedastic noise and typically
appears in the regression coefficient tests with asymptotically valid size control. A com-
mon approach to handle exchangeable noise is through the idea of permutation tests (Pitman
(1937a,b, 1938)). Recently, Lei and Bickel (2021) implemented this idea to the problem of re-
gression coefficient testing. In their seminal work, the authors proposed a cyclic permutation
test that achieved finite-sample size validity under Assumption 1 by exploiting the exchange-
ability of the noise terms. However, to achieve a size α control, their cyclic permutation test
requires that n/p ≥ 1/α−1. For instance, for a sample size of n = 300 and a targeting Type-I
error rate is α = 0.01, at most p = 2 covariates are allowed in X. This limits the applicability
of their test in large dimensions. In this paper, we consider the more challenging question
of finite-sample Type-I error control in setting where p is allowed to be of the same order
of magnitude as n. We propose a residual permutation test (RPT), a permutation-based ap-
proach that performs hypothesis tests by manipulating the empirical residuals after regression
adjustment. The proposed test is guaranteed to have the correct Type-I error control whenever
p < n/2. Moreover, our result is fixed design and does not require any regularity conditions
on the design matrix X.

In addition to proving its finite-sample size validity, we further analyze the statistical power
of the proposed test in the regime where p can be up to a constant fraction of n, which we will
refer to as the proportional regime in this work, especially when the εi ’s follow a heavy-tailed
distribution. It should be noted that just with Assumption 1 we can only guarantee our test
to have correct size control, the resulting test may not necessarily have power. Indeed, just
with Assumption 1, b may not even be identifiable, so that there is no test that is uniformly
valid under the null while still maintaining power against some alternative. For example, in
the extreme case where Z = XβZ for some βZ ∈ R

p , that is, that Z can be expressed as
a linear representation of the column vectors of X, then b is not an identifiable parameter
anymore, that is, no test can have any power. As we can also see in (6), under Assumption 1
and with such choice of Z, we can always have P(φ ≤ α) ≤ α for all α ∈ [0,1], no matter
how large b is. This means that in order for our test to have power, additional assumption
on Z must be imposed. As we will discuss further in Section 2.3, statistical methods with
robustness to heavy-tailed data have significant demands in practice (Eklund, Nichols and
Knutsson (2016), Wang, Peng and Li (2015), Cont (2001)), and has been actively studied in
both modern statistics and theoretical computer science communities. Despite its importance,
there is a lack of available tools that can handle regression coefficient testing under this
proportional regime with heavy-tailed noise. In this paper, we fill this gap by showing that
under a suitable modeling assumption of Z, when the εi ’s are i.i.d. and have a finite (1 +
t)th order moment for any t ∈ [0,1], and that n/p ≥ 3 + m for some m > 0, our proposed
test is asymptotically powerful whenever the coefficient b is of order at least n−t/(1+t). In
proving this result, a crucial step is to establish a concentration bound for projected length
of a random vector with independent heavy-tailed components. This concentration bound
may be of independent interest for future research on statistical procedures with heavy-tailed
noise, and is stated in Corollary 8. We also studied the minimax rate optimality of regression
coefficient testing with heavy-tailed noises; and proved that in the presence of heavy-tailed
noise with only a finite (1 + t)th moment, the n−t/(1+t) order requirement for b is essentially
rate-optimal.
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Since ANOVA has been used extensively in practical applications, as an independent con-
tribution, we provide a more comprehensive analysis of the ANOVA test. Specifically, while
ANOVA can be shown to have finite-sample size validity with spherically symmetric noise,
our simulations show that the it can substantially violate the nominal size control under more
general noise distributions. At the same time, we propose another permutation-based test:
naive residual permutation test (naive RPT), which, like ANOVA, also has valid size con-
trol under spherically symmetric noise distribution whenever p < n. While naive RPT is still
not valid for nonspherically symmetric noises, it does appear to have smaller Type-I error
violations compared to ANOVA.

In summary, we make the following contributions in this work:

• We propose a new test that has finite-sample size validity with fixed-design linear models
and exchangeable noises whenever p < n/2.

• We prove that when the noise variables are heavy-tailed with bounded (1 + t)th order mo-
ment for t ∈ [0,1] and under suitable assumptions of Z, our test is asymptotically powerful
when b is at least of order n−t/(1+t).

• We perform numerical analysis to show that ANOVA is indeed invalid in general distri-
butions, especially with heavy-tailed data. We also studied other theoretical properties of
ANOVA.

• We discuss the minimax rate optimality of regression coefficient test with heavy-tailed
distributions, and show that our test is essentially optimal in the minimax sense.

The rest of this paper is organized as follows. In Section 2, we review existing results in
regression coefficient testing, permutation- and randomization-based tests and heavy-tailed
data. In Section 3, we provide more studies on the finite-sample properties of ANOVA test
with non-Gaussian noises, and propose a new test that is easier to implement and more ro-
bust to non-Gaussianity. As ANOVA test has been heavily used in practical applications, we
believe this is of independent interest. In Section 4, we present our method, and prove its
finite-sample size validity. In Sections 5 and 7, we provide power analysis of RPT and study
its minimax rate optimality under some heavy-tailed assumptions. Finally, in Section 8 we
provide numerical analysis. In Section 9, we end the manuscript with a discussion.

Notation. We conclude this section by introducing some notation used throughout the
paper. For any n × p dimensional matrix A, we denote by span(A) the subspace spanned
by the p column vectors of A; and we write span(A)⊥ as the space that is orthogonal to
span(A). Given an n-dimensional vector a, we denote by ProjA(a) the projection of a onto
the subspace span(A), and denote by ‖a‖2 as the �2-norm of the vector a. Given two n × q1
and n × q2 dimensional matrices A, B , we denote by (A,B) as the n × (q1 + q2) matrix
via column concatenation of matrices A and B . We write N (0,1) as standard normal dis-
tribution. For two sequences (an)n∈N and (bn)n∈N, we write an = O(bn), or equivalently
bn = Ω(an), if there exists a universal constant C > 0 such that |an| ≤ C|bn| for all n; we
write an = o(bn), or equivalently bn = ω(an), if |an|/|bn| → 0.

2. Literature review. Our work spans a wide range of research directions, including hy-
pothesis testing of regression coefficients, permutation- and randomization-based hypothesis
tests and heavy-tailed data analysis. In this section, we compare our research to works within
each direction.

2.1. Hypothesis testing of regression coefficients. The most classical approach for test-
ing the null hypothesis b = 0 is through the analysis of the variance (ANOVA) test (Fisher
(1935)). The ANOVA test was originally proposed by Sir Ronald Fisher in the 1920s, and
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has been widely used in economics (Doane and Seward (2016)), finance (Paolella (2019)),
biology (Lazic (2008)), etc. In the context of single coefficient testing, when n > p + 1 and
ε follows a spherically symmetric distribution, if β̃ := arg minβ‖Y − Xβ‖2

2 and (β̂, b̂) :=
arg min(β,b)‖Y − Xβ − bZ‖2

2, then under H0, the test statistic

(2) φanova := ‖Y − Xβ̃‖2
2 − ‖Y − Xβ̂ − b̂Z‖2

2

‖Y − Xβ̂ − b̂Z‖2
2/(n − p − 1)

∼ F1,n−p−1

can be used to construct a test where H0 is rejected when φanova exceeds the 1 − α quantile
of the F1,n−p−1 distribution. As the above distributional result is nonasymptotic and holds
whenever n > p + 1, the associated test is valid even when p diverges as a constant fraction
of n. However, as we will discuss in Section 3, for a general noise distribution of ε, the
ANOVA test is usually not guaranteed to have a valid Type-I error control. This encourages
us to construct hypothesis tests with valid Type-I error control allowing a broader class of
noise distributions.

As emphasized by Lei and Bickel (2021), this is a challenging problem, with a “century
long effort” in the statistical community to alleviate the strong assumption of ANOVA. In
the context of finite-sample size validity, some representative works include Hartigan (1970),
Meinshausen (2015). However, the two methods mentioned above still require the noise to
follow certain geometric constraint, which is either symmetric about 0 or rotationally in-
variant. Lei and Bickel (2021) represented, to the best of our knowledge, the first work that
established finite-sample size control with only exchangeable noise. However, as mentioned
in the Introduction, the cyclic permutation test proposed in Lei and Bickel (2021) requires the
dimension of p to be much smaller than n for valid size control, and no corresponding sta-
tistical power analysis was provided. An alternative test with less restrictive assumptions on
dimension p was proposed in D’Haultfœuille and Tuvaandorj (2024), which relaxes the di-
mensionality assumption by requiring the rows of X to follow a discrete random distribution
with a relatively small number of unique values.

Besides finite-sample size validity, a less demanding criteria for the coefficient test is the
asymptotic size validity. The idea of permutation or randomization has been heavily used to
propose an asymptotically valid test; see Section 2.2 for more details. In the high-dimensional
regime where p is proportional or even much larger than n, the debiased/desparsified Lasso
was proposed to construct confidence intervals and perform coefficient tests (Zhang and
Zhang (2014), van de Geer et al. (2014), Javanmard and Montanari (2014)). By invoking
(1) certain sparsity conditions on the regression coefficients; (2) some regularity conditions
on the design matrix X and (3) sharp tail bounds on the noise variables, debiased/ despar-
sified lasso is guaranteed to establish asymptotically valid p-value and confidence intervals
for regression coefficients. We remark that the additional sparsity assumption on the regres-
sion coefficients allow for the dimension p to diverge at a much faster rate than n compared
to asymptotic regime studied in the current paper. Other follow-up studies include Zhu and
Bradic (2018), Bradic et al. (2019), Shah and Bühlmann (2023), to name a few.

More broadly speaking, the regression coefficient test can be viewed as a subdomain of the
more general conditional independence testing, that is, testing the null hypothesis Y ⊥⊥ Z | X,
treating X, Y , Z as i.i.d. realizations from some hypothesized superpopulation. Unfortu-
nately, when one has no assumption on the joint distribution of the random variables X, Y

and Z, Shah and Peters (2020) proved that it is a “statistically hard problem,” in the sense that
a valid test for the null does not have power against any alternative. This means that some re-
strictions must be added to the class of null distributions to have some power. Following this
insight, an important research question then is to propose tests with valid size control under
weak distributional assumptions. In this paper, we show that a linear functional relationship
between Y and X is sufficient to have finite-sample size validity with nontrivial power.
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2.2. Permutation- and randomization-based hypothesis tests. As also mentioned in the
Introduction section, our new method is based on the permutation test (Pitman (1937a,b,
1938)). Application of permutation and related randomization techniques for statistical infer-
ence has a long history in statistics and econometrics (Fisher (1935), Basu (1980), Rosen-
baum (1984), Romano (1990), Kennedy (1995), Rosenbaum (2002), Canay, Romano and
Shaikh (2017), Young (2019)). The permutation test was originally developed for indepen-
dence testing. Specifically, using the exchangeability properties of the sampled data, permu-
tation test is guaranteed to have finite-sample size validity, without any geometric or moment
constraints on the underlying distributions.

For the task of regression coefficient testing, Freedman and Lane (1983) proposed tests
based on permuted regression residuals, and analyzed its asymptotic size control in a fixed
dimension. DiCiccio and Romano (2017) considered a permutation test using the studentized
partial correlation of Y and Z given X and derived asymptotic size and power of the test
in a fixed dimension setting. Toulis (2019) studied a test based on permuting the residuals
of Y regression against (Z,X). More recently, Lei and Bickel (2021), D’Haultfœuille and
Tuvaandorj (2024) used the permutation test and its extensions to obtain exact size control
for testing a single component or a subvector of regression coefficients. We note that although
all the works mentioned in this paragraph use permutation tests as the basic building block of
their tests, their validity guarantees are based on different assumptions. Among them, Toulis
(2019), Lei and Bickel (2021), D’Haultfœuille and Tuvaandorj (2024) considered the size
validity of their tests under a similar noise invariance assumption to our Assumption 1.

Other related applications of permutation tests include sharp null hypothesis tests
(Caughey, Dafoe and Miratrix (2017), Caughey et al. (2023)), instrumental variable tests
(Imbens and Rosenbaum (2005)) and conditional independence tests (Berrett et al. (2020),
Kim et al. (2022)).

In addition to the above permutation-based testing, the knockoff-based procedure (Candès
et al. (2018)) can also be used to perform asymptotically valid coefficient testing in the re-
gression setting. Another related line of works exploit bootstrap or jackknife techniques to
provide tests with asymptotic size validity (e.g., Miller (1974), Freedman (1981), Mammen
(1993), Chatterjee (1999), Bickel and Sakov (2008)). See the discussions in Lei and Bickel
((2021), Section A in Supplementary Material) for a comprehensive overview of this area.

2.3. Heavy-tailed data. To understand the efficiency of the proposed method in heavy-
tailed data, in this paper, we further provide power analysis when the noise terms follow
a heavy-tailed distribution. In classical high-dimensional literature, due to the simplicity of
theoretical analysis, existing methods usually focus on data with sharp tail bounds, such as
sub-Gaussian or subexponential tail bounds (see, e.g., Wainwright (2019)). However, as also
discussed by Sun, Zhou and Fan (2020), such a strong tail condition may not be reasonable in
real world applications, such as neuroimaging (Eklund, Nichols and Knutsson (2016)), gene
expression analysis (Wang, Peng and Li (2015)) and finance (Cont (2001)).

Since the pioneering work by Catoni (2012), the problem of extracting useful informa-
tion from heavy-tailed data (or the related adversarially contaminated data) has been an ac-
tive area of research in mathematical statistics and theoretical computer science literature in
the past 10 years (Bubeck, Cesa-Bianchi and Lugosi (2013), Lykouris, Mirrokni and Paes
Leme (2018), Lugosi and Mendelson (2019), Sun, Zhou and Fan (2020), Fan, Wang and Zhu
(2021)). When we allow the dimension p to grow with n, heavy-tailed data have been actively
studied in mean estimation (Lugosi and Mendelson (2019, 2021)), regression coefficient es-
timation (Wang (2013), Fan, Li and Wang (2017), Sun, Zhou and Fan (2020), Pensia, Jog
and Loh (2024)) and covariance matrix analysis (Loh and Tan (2018), Fan, Wang and Zhu
(2021)). The definition of “heavy-tail” may vary across different articles. Among all literature
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working with heavy-tailed noise, our assumptions are most similar to those in Sun, Zhou and
Fan (2020), Bubeck, Cesa-Bianchi and Lugosi (2013), which assume that the noise variables
has at most a finite (1 + t)th order moments for some t ∈ (0,1] without any geometric or
shape constraints. To our knowledge, this is also the weakest heavy-tail assumption studied
in the literature.

In the context of coefficient testing, few methods have been proposed that can work with
heavy-tailed data. We fill this gap by providing statistical power guarantees of our constructed
test in the presence of heavy-tail noises. Our power analysis stems from our new theoretical
insight on the asymptotic convergence of heavy-tailed random variables after subspace pro-
jections. It would be of interest if these results could be extended to understand the power of
permutation-testing based hypothesis tests in other heavy-tailed scenarios.

3. Finite-sample size validity of ANOVA beyond Gaussianity. As ANOVA has been
frequently used in empirical analysis, it would be of interest to provide a more comprehensive
analysis on the sensitivity of an ANOVA test with respect to the Gaussianity assumption, both
empirically and theoretically. In fact, although not explicitly stated in Fisher (1935), Fisher
recognized that ANOVA’s size validity only requires the noise to be spherically symmetric
instead of Gaussian (Stigler (2016), pp. 163–164). We provide a slight generalization of this
result in Lemma 1, which shows that ANOVA has valid size when either the design or the
noise is spherically symmetric, in the sense defined below.

DEFINITION 1. We say that a random matrix A ∈ R
n×q follows a spherically symmetric

distribution if for any Q ∈ O
n×n, A

d= QA, where O
n×n is the set of n × n orthonormal

matrices.

LEMMA 1. Suppose Y is generated under (1) with β ∈ R
p , b = 0. Suppose also that ε

is a random vector that is almost surely not a zero vector, (X,Z) is either deterministic or
independent from ε. If either ε or (X,Z) follows a spherically symmetric distribution, then
the test statistic φanova defined in (2) satisfies φanova ∼ F1,n−p−1.

For the sake of completeness, we provide a proof of Lemma 1 in the Supplementary Ma-
terial (Wen, Wang and Wang (2025)). The spherical symmetry in the noise or the design is
slightly weaker than the usual Gaussianity constraint, however, it is still too strong for many
real data applications. For instance, if we assume that observations (Xi,Zi, Yi) are indepen-
dent, then this assumption amounts to either i.i.d. normal noise or an i.i.d. multivariate normal
design.

We now perform a numerical experiment to analyze the size validity of an ANOVA test
under general distributional classes of ε. We generate data (X,Z,Y ) according to the model
specified in (1) and that

(3) Z = XβZ + e.

In the simulation, we set b = 0; since the result of ANOVA is invariant to β , βZ , we simply
set them to be zero vectors. We also set X as n × p matrices with i.i.d. entries following
either N (0,1) or t1 distribution, with (n,p) = (300,100), (600,100) or (600,200); and e
and ε have i.i.d. components from one of N (0,1), t2 or t1 distributions.

Table 1 summarizes the performance of an ANOVA test from 100,000 Monte Carlo simu-
lations. We consider the sizes of the ANOVA test at nominal levels α = 0.01,0.05. According
to the simulation results, when the noises of e and ε follows a standard normal distribution,
the ANOVA test has the correct size control, which is consistent with Lemma 1. However,
when normality is violated, the ANOVA test will be overly optimistic, with an empirical size
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TABLE 1
Percentage of rejection of the ANOVA test and naive residual permutation test, estimated over 100,000 Monte

Carlo repetitions, for various noise distributions at nominal levels of α = 1% and α = 5%. Data are generated
by models (1) and (3), with X, ε and e having independent components distributed according to the various X

types and noise types described in the table. Standard errors for all entries are in the range of 0.02% to 0.05%

ANOVA Naive

n p X type noise type 1% 5% 1% 5%

300 100 Gaussian Gaussian 1.01 4.99 1.00 4.96
300 100 Gaussian t1 1.81 3.1 1.58 3.38
300 100 Gaussian t2 1.53 4.83 1.39 4.83
300 100 t1 Gaussian 1.01 4.99 1.03 5.03
300 100 t1 t1 2.43 3.96 1.58 4.25
300 100 t1 t2 1.80 5.03 1.41 5
600 100 Gaussian Gaussian 0.95 4.9 0.96 4.88
600 100 Gaussian t1 1.63 2.45 1.28 3.36
600 100 Gaussian t2 1.69 4.61 1.28 4.79
600 100 t1 Gaussian 1.05 4.86 1.02 4.87
600 100 t1 t1 1.88 2.84 1.06 3.84
600 100 t1 t2 1.74 4.79 1.14 5.01
600 200 Gaussian Gaussian 1.01 4.96 1.03 4.93
600 200 Gaussian t1 1.41 2.48 1.24 2.82
600 200 Gaussian t2 1.50 4.67 1.36 4.72
600 200 t1 Gaussian 1.01 5.11 0.98 5.09
600 200 t1 t1 2.02 3.26 1.33 3.74
600 200 t1 t2 1.70 4.64 1.34 4.66

more than twice as large as the nominal level in some 1%-level tests (this issue is more pro-
nounced if we consider a 0.5% test level; see Table A2 in the Supplementary Material). In
particular, the performance of noise type t1 is in general worse than that of t2. This means
that the ANOVA test is more vulnerable to heavy-tailed noises. Moreover, the performance
of ANOVA is worse with a heavy-tailed design matrix X.

To better understand the empirical distribution of the simulated p-values, we plot their
histogram in Figure 1(a)–(c). Apparently, all the histograms are far from uniform on [0,1]
under the null hypothesis, with a large spike near zero. In addition, the magnitude of the
spike increases as n becomes smaller or that ε or X becomes more heavy-tailed. Another
interesting property is that the histograms are usually “U-shaped,” where the peaks appear
at regions near either 1 or 0. In sum, when data are generated from non-Gaussian and
in particular heavy-tailed distributions, the ANOVA tests are usually far from the correct
level.

It is worth noting that when β = 0 in (1), we can easily construct a permutation test with
valid size control by comparing the correlation of Y to Z and to its permutations. From this
intuition, a straightforward approach is to first regress both Y and Z onto X to eliminate
the influence of X, and then to use regression residuals for permutation test construction.
Specifically, let R̂ε := (I − X(X�X)−1X�)Y and R̂e := (I − X(X�X)−1X�)Z be the
regression residuals after projecting Y and Z onto X, respectively. Let V 0 ∈ R

n×(n−p) be a
matrix with orthonormal columns spanning an (n − p)-dimensional subspace of span(X)⊥,
then I − X(X�X)−1X� = V 0V

�
0 . Hence, under H0 : b = 0, the regression residuals R̂ε

satisfy R̂ε = V 0V
�
0 Y = V 0V

�
0 ε. From above, we construct a test, which we call as the

naive residual permutation test, based on the projected residuals ε̂ := V �
0 R̂ε = V �

0 Y and
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FIG. 1. Histogram of p-values under the null for ANOVA test and naive residual permutation test from 100,000
Monte Carlo replicates. The first line are the histograms of the ANOVA test under different specifications. Specif-
ically, (a) is the result with Gaussian design, n = 300, p = 100 and ε has independent t1 components; (b) is
the histogram with the same setting as in (a) except that we switch from Gaussian design to t1 design; (c) is the
histogram with Gaussian design, n = 600, p = 100 and ε has independent t1 components. The second line is the
histogram for the naive test. (e)–(f) use the same simulation settings as in (a)–(c).

ê := V �
0 R̂e = V �

0 Z as

(4) φnaive = 1

K + 1

(
1 +

K∑
k=1

1
(∣∣ê�ε̂

∣∣ ≤ ∣∣ê�P k ε̂
∣∣)),

where the P k ∈ R
(n−p)×(n−p)’s are random permutation matrices that are sampled uniformly

at random from the set of all permutation matrices. Lemma 2 shows that under a slightly
weaker condition than Lemma 1, φnaive has valid Type-I error control.

LEMMA 2. Suppose Y is generated under (1) with β ∈ R
p , b = 0. If either:

(a) ε or (X,Z) follows a spherically symmetric distribution;
(b) Z is generated under (3) and either e or (X,Y ) follows a spherically symmetric distri-

bution,

φnaive is a valid p-value, that is, for all α ∈ (0,1), P(φnaive ≤ α) ≤ α.

While Lemma 2 is slightly less stringent than Lemma 1, it still requires the spherical
symmetry in distributions. To better understand their empirical performances, we also show
the performance of φnaive with non-Gaussian noises or non-Gaussian designs in Table 1 and
Figures 1(d)–(f). Without the strong Gaussianity or spherically symmetry assumption, φanova
is also not guaranteed to have finite-sample size validity. Nevertheless, when both tests are
invalid, the size of naive permutation test is closer to the correct level than its competitor.
This indicates that the naive test is more robust to non-Gaussian distributions. Moreover, the
naive test is an intuitive method and is easy to implement. Thus, the naive test could be used
as a preferable alternative to ANOVA in real data analysis when n/2 ≤ p < n.

4. Residual permutation test: Methodology and size validity. In Section 3, we have
shown from simulation experiments that a naive permutation test on the residuals, although
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more robust than ANOVA, it is still not guaranteed to have finite-sample size validity with
just exchangeable noise. In this section, we describe a more refined test using the projected
residuals ε̂ and ê, which we call the residual permutation test (RPT), and present its finite-
sample size validity guarantee in Theorem 2. For intuition behind such construction, we refer
the readers to Section 4.1. We will assume throughout this section that the design matrix
(X,Z) is deterministic.

To describe RPT, we write P for the set of all permutation matrices in R
n×n and we denote

by P 0 = I ∈ P the identity matrix. To successfully perform the regression permutation test,
we first need to randomly generate of a sequence of K permutation matrices {P 1, . . . ,P K} ⊆
P \ {P 0}, such that together with P 0 they form a group.

ASSUMPTION 2. The set of permutation matrices PK := {P 0,P 1, . . . ,P K} satisfies that
for any P i , P j , there exists a k ∈ {0, . . . ,K} such that P k = P iP j .

We write V 0 ∈ R
n×(n−p) as a matrix with orthonormal columns spanning an (n − p)-

dimensional subspace of span(X)⊥ and V k := P kV 0.1 In addition, we denote by Ṽ k ∈
R

n×(n−2p) a matrix with orthonormal columns spanning a subspace of span(V 0)∩ span(V k).
Recall that ê := V �

0 Z and ε̂ := V �
0 Y . Given a fixed T : Rn−2p ×R

n−2p → R, we can calcu-
late the p-value of our coefficient test via

(5) φ := 1

K + 1

(
1 +

K∑
k=1

1
{

min
Ṽ ∈{Ṽ 1,...,Ṽ K }

T
(
Ṽ

�
V 0ê, Ṽ

�
V 0ε̂

) ≤ T
(
Ṽ

�
k V 0ê, Ṽ

�
k V k ε̂

)})
,

where T can be any bivariate function. For example, one can choose T (x, y) = |〈x, y〉|. As
demonstrated in the Supplementary Material, the above definition of φ can be simplified as
the following equivalent form:

(6) φ := 1

K + 1

(
1 +

K∑
k=1

1
{

min
Ṽ ∈{Ṽ 1,...,Ṽ K }

T
(
Ṽ

�
Z, Ṽ

�
Y

) ≤ T
(
Ṽ

�
k Z, Ṽ

�
k P kY

)})
.

The following theorem shows that the proposed p-value is uniformly valid under the null.

THEOREM 2. Suppose that (X,Z,Y ) is generated under model (1) with p < n/2 and
that the noise ε satisfies Assumption 1. Suppose {P k : k = 0, . . . ,K} satisfies Assumption 2.
Under H0 : b = 0, φ defined in (6) is a valid p-value, that is, P(φ ≤ α) ≤ α for all α ∈ [0,1].

We remark that as shown in Theorem 2, an important advantage of RPT is that the result
is the finite sample in the sense that it holds for arbitrary size of n. Moreover, our result as-
sumes a fixed-design matrix and does not require any assumption on X for finite-sample size
validity. For example, the rank of X even does not necessarily need to be p. Also, Theorem 2
shows that RPT has valid size for any choice of function T (·, ·) and number of permuta-
tions K . However, in practice, to have good power under the alternative, we typically set
T (x, y) = |〈x, y〉| and choose a moderate size of K = O(1/α).

4.1. Some intuition of RPT. In this section, we discuss the intuition behind (5). As
demonstrated in Section 3, a naive permutation test on the residuals is in general not valid in
the finite-sample setting with just exchangeable noises. This is because under the null, φnaive

1If X is full column rank, then V 0V �
0 = I −X(X�X)−1X� and span(V 0) and span(X)⊥ are the same space.

Otherwise, span(V 0) is a subspace of span(X)⊥.
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performs permutations on the vector ε̂ = V �
0 ε instead of ε itself. Even if ε is an exchangeable

random vector, V �
0 ε may no longer be so, which renders the naive test invalid.

To overcome this challenge, we may want to construct a new test that, under H0, is equiv-
alent to permuting the noise vector ε directly, instead of the transformed noise V �

0 ε. In-
terestingly, this goal can be achieved based on a further transformation of the vector V �

0 ε.
Specifically, given a permutation matrix P k , recall that V k = P kV 0, we may use the trans-
formation that under H0,

(7) ε̂ = V �
0 ε = V �

0 P �
k P kε = V �

k P kε.

In light of this transformation, we have that under H0, V k ε̂ = V kV
�
k P kε = ProjV k

(P kε),
that is, a projection of the noise vector P kε onto the space span(V k), and equivalently, V 0ε̂ =
ProjV 0

(ε). However, this is still not enough, as ProjV 0
(ε) and ProjV k

(P kε) correspond to
the projections of the vectors ε and P kε onto different subspaces, which are not directly
comparable. This means that we need to further propose a more refined strategy to project ε
and P kε onto some same space for a fair comparison.

Now recall that we already have ProjV 0
(ε) and ProjV k

(P kε), an ideal choice of such space

would then be span(Ṽ k), that is, the intersection of span(V 0) and span(V k). Specifically,

using that Ṽ k spans a subspace of span(V k), it is straightforward that Ṽ
�
k = Ṽ

�
k V kV

�
k .

From this and (7), we have that under H0,

Ṽ
�
k V k ε̂ = Ṽ

�
k V kV

�
k P kε = Ṽ

�
k P kε

and equivalently Ṽ
�
k V 0ε̂ = Ṽ

�
k ε since Ṽ k spans a subspace of span(V 0) as well.

In light of the above analysis, we further have that under H0,

ak := T
(
Ṽ

�
k V 0ê, Ṽ

�
k V 0ε̂

) = T
(
Ṽ

�
k V 0ê, Ṽ

�
k ε

)
,

bk := T
(
Ṽ

�
k V 0ê, Ṽ

�
k V k ε̂

) = T
(
Ṽ

�
k V 0ê, Ṽ

�
k P kε

)
.

Writing further that

a∗ := min
�∈{1,...,K}a� and b∗

k := min
�∈{1,...,K}T

(
Ṽ

�
� V 0ê, Ṽ

�
� P kε

)
,

we can control φ as

(8) φ = 1

K + 1

(
1 +

K∑
k=1

1
{
a∗ ≤ bk

}) ≥ 1

K + 1

(
1 +

K∑
k=1

1
{
a∗ ≤ b∗

k

})
,

where for the last inequality we use the fact that b∗
k ≤ bk . Observe that we may also write a∗ =

g(ε) and b∗
k = g(P kε) for g(u) := minṼ ∈{Ṽ 1,...,Ṽ K } T (Ṽ

�
V 0ê, Ṽ

�
u), which is a function

that depends only on (X,Z,PK). This allows us to rewrite the above inequality as

φ ≥ 1

K + 1

(
1 +

K∑
k=1

1
{
g(ε) ≤ g(Pkε)

})
.

Now our only remaining job is to prove that the p-value displayed at the end of the above
inequality is valid. The following lemma, which is a key ingredient in the proof of Theorem 2,
shows that once we construct PK such that Assumption 1 holds, φ is a valid p-value.

LEMMA 3. Suppose ε satisfies Assumption 1 and let {P 0 = I ,P 1, . . . ,P K} be a fixed
set of permutation matrices satisfying Assumption 2. Then for any function g : Rn → R, we
have that

P

{
1

K + 1

(
1 +

K∑
k=1

1
{
g(ε) ≤ g(Pkε)

}) ≤ α

}
≤ �α(K + 1)�

K + 1
≤ α.
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We remark that from the above discussion, a more ideal approach would be to compute
a∗ and b∗

k for k = 1, . . . ,K and construct the test directly using the right-hand side of (8).
This test, while almost exact, is unfortunately not directly computable from the data. As a
compromise, we replace b∗

k with an upper bound bk to obtain a feasible test φ. As we will see
from the numerical simulations, this has resulted in a relatively conservative test.

5. Analysis of statistical power. This section provides power analysis of RPT under
mild moment assumptions of noises εi and ei’s when the second-order moments are not
necessarily finite. For simplicity of exposition, throughout this section we assume without
loss of generality that n is a multiple of |PK | = K + 1, where K is a fixed constant that is
chosen such that K ≥ 1/α for the prespecified Type-I error α. The scenario where n is not
divisible by K +1 can be handled by randomly discarding a subset of data of size at most K to
make n divisible. We will focus on the version of RPT defined in (6) with T (x, y) = |〈x, y〉|.
While we continue to assume that the design matrix X is deterministic, Z is assumed to have
a random design following specific models in this and the next two sections. Moreover, we
are primarily interested in the dependence of the power of RPT on the tail heaviness of the
noise distributions. To this end, we make the following assumption on the model.

ASSUMPTION 3. εi’s are i.i.d. from some distribution Pε with mean 0, Z follows the
model in (3) with ei ’s i.i.d. from some distribution Pe with mean 0. ε is independent from e.

As mentioned in the Introduction, some assumption on Z is needed for the regression
coefficient b to even be identifiable. The structural assumption on Z in (3) is stronger than
typically assumed in the regression coefficient testing literature. This is partly due to the fact
that previous power results mostly assume a fixed p regime (e.g., Freedman and Lane (1983),
DiCiccio and Romano (2017)), or asymptotic regimes where p = O(nγ ) for some constant
γ < 1 (e.g., Mammen (1993)); see also the references in the Supplementary Material of Lei
and Bickel (2021). On the other hand, when p � n, it is not uncommon to see additional
structural assumptions on the design matrix. For instance, debiased lasso (Zhang and Zhang
(2014)) assumes a nodewise linear regression structure similar to (3) and Lopes (2014) im-
posed an eigenvalue decay condition on the sample covariance matrix. In addition, the exact
form of model (3) is not essential, and is assumed here to simplify our exposition. As we will
see later in Section 6, RPT will be asymptotically powerful as long as the quantity defined
in (16) is bounded away from zero (Corollary 7). While the modeling assumption in (3) is
a sufficient condition for this to hold with asymptotic probability 1, we may relax it to ac-
commodate nonlinear dependence of Z on X and heteroscedastic noise (Theorems 5 and 6).
Even if all these models do not work and Z is completely deterministic, Corollary 7 shows
that our test is still powerful, provided (16) is large enough, which is an assumption verifiable
by practitioners. It would be of interest to propose new tests that have nontrivial power under
a nonlinearity assumption weaker than Theorem 6, which we leave for future work.

We also make the following assumption on the permutation matrices P 1, . . . ,P K .

ASSUMPTION 4. For any k = 1, . . . ,K , |tr[V 0V
�
0 P k]| < √

2pK and tr[P k] = 0.

Notice that when the covariate matrix X is of full column rank p, Assumption 4 is equiv-
alent to that |tr[X(XX)−1X�P k]| < √

2pK .
In Theorem 3, we showcase the pointwise signal detection rate of φ given any fixed Pε

and Pe. Moreover, we just require Pε to have bounded (1 + t)th order moment.
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THEOREM 3. Fix K ∈ N. Suppose that (X,Z,Y ) is generated under model (1) where ε
and Z satisfy Assumption 3 and

0 < E
[|e1|2]

< ∞ and 0 < E
[|ε1|1+t ] < ∞

for some constant t ∈ [0,1]. Assume PK satisfies Assumption 4. In the asymptotic regime,
where b and p vary with n in a way such that n > (3 + m)p for some constant m > 0 and

|b| = Ω
(
n− t

1+t
)

if t < 1 or |b| = ω
(
n− 1

2
)

if t = 1,(9)

we have limn→∞P(φ > 1
K+1) = 0.

Notice that here we need to assume without loss of generality that E[e2
i ] > 0 and

E[|ε1|1+t ] > 0 to ensure that both two random variables are not almost surely equal to zero.
Otherwise, φ is almost surely equal to 1, and cannot have any statistical power with any size
of b. Theorem 3 shows that under certain assumptions on the PK , RPT has power to reject
the alternative classes even with heavy-tailed noises. Moreover, our analysis works in a pro-
portional regime where the number of covariates can be as large as n/3. Remarkably, the
statistical power guarantee in Theorem 3 does not require the εi ’s to have a bounded second-
order moment. This distinguishes us from the class of empirical correlation based approaches,
such as debiased/desparsified lasso or OLS fit based tests, which requires εi’s to have at least
a bounded second-order moment or even stronger conditions such as sub-Gaussianity to have
statistical power.

As we will see in Section 5.1, Assumption 4 is a mild condition that can be checked in
practice. However, an inspection of the proof of Theorem 3 reveals that, even if Assumption 4
does not hold for PK , RPT is still asymptotically powerful under the same signal strength
condition (9) and a slightly stronger requirement on the number of covariates. Specifically, we
require that n > (4 +m)p for some constant m > 0 that does not depend on n. In Theorem 3,
for simplicity we assume that K is a fixed constant. In the Supplementary Material, we further
provide an extension of Theorem 3 where we allow K to diverge with n. In particular, we

show that for t < 1, RPT is still guaranteed to have nontrivial power whenever K = O(n
2t

1+t ).
In the following theorem, we show that when p/n → 0, we can further relax ei ’s finite

second-order moment condition to a finite first-order moment condition.

THEOREM 4. Fix K ∈ N. Suppose that (X,Z,Y ) is generated under model (1) where ε
and Z satisfy Assumption 3 and

0 < E
[|e1|] < ∞ and 0 < E

[|ε1|1+t ] < ∞
for some constant t ∈ [0,1]. In the asymptotic regime where b and p vary with n in a way
such that p/n → 0 and b satisfies (9), limn→∞P(φ > 1

K+1) = 0.

The statistical power guarantee in Theorem 3 requires the set of permutations to follow
Assumption 4, while the finite-sample size validity requires instead Assumption 2. Then an
important question is how to effectively construct a PK that satisfies both assumptions. In
Section 5.1, we provide an algorithm to answer this question. In order to prove Theorems 3
and 4, we are faced with two questions: the first is that we do not have any assumption on
X, so that Ṽ j can follow an arbitrary pattern; the second is the heavy tails of ei ’s and εi ’s.
We defer the proof of the two theorems to the Supplementary Material. To help the readers
understand the intuitions of the proof, we provide a proof sketch of the main Theorem 3 in
Section 5.2.
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Algorithm 1: Permutation set construction
Input: The number of permutation matrices K , the orthonormal matrix

V 0 ∈ R
n×(n−2p) such that V �

0 X = 0, the maximum number of loops T

1 repeat
2 Generate an independent random permutation π of indices {1, . . . , n}
3 for k = 1, . . . ,K do
4 Construct a permutation function σk := π−1 ◦ σ̃k ◦ π , where ◦ denotes a

composition of two functions and σ̃k is a permutation function such that

(10) σ̃k(i) :=
{

i + k if i mod (K + 1) ≤ K + 1 − k

i − (K + 1 − k) otherwise,

and set P k as the permutation matrix corresponding to σk .
5 end
6 until (i) | tr[V 0V

�
0 P k]| ≤

√
2Kp1/2 for all k = 1, . . . ,K or (ii) the number of

iterations has reached its limit T

Output: Set of permutation matrices PK := {P 0 := I ,P 1, . . . ,P K} satisfying the
criteria (i). When none of the PK ’s comply, report the PK with the smallest∑K

k=1 | tr[V 0V
�
0 P k]|.

5.1. An algorithm for construction of permutation set. As demonstrated in Theorems 2
and 3, to successfully perform a test that is valid under the null and has sufficient statistical
power to get the rate in (9) when n/p > 3 + m for some constant m > 0, one needs a set of
permutations satisfying both Assumptions 2 and 4. As demonstrated in Proposition 1 below,
such permutation set always exist, so that we can at least apply a brute force algorithm to
find a desired set. To improve computational efficiency, we further develop a randomized
algorithm that can discover the desired permutation set with high probability (Algorithm 1).
To understand this algorithm, notice that if we are just interested in Assumption 2, one simple
way is to divide the n indices into m := n/(K + 1) ordered list of indices and perform cyclic
permutation on each sublist. Specifically, we first denote S1, . . . , Sm as an m ordered list of
indices such that

(1, . . . , n) := (
1, . . . ,K + 1︸ ︷︷ ︸

S1

,K + 2, . . . ,2(K + 1)︸ ︷︷ ︸
S2

, (m − 1)(K + 1) + 1, . . . ,m(K + 1)︸ ︷︷ ︸
Sm

)
.

Then we define the P̃ k for k ≥ 1 (or equivalently its permutation function σ̃k) as(
σ̃k(1), . . . , σ̃k(n)

) := (
Sk

1 , . . . , Sk
m

)
,

where each Sk
i is created via shifting all the elements in Si by k places. Taking Sk

1 , for exam-
ple, means Sk

1 := (K + 2 − k, . . . ,K + 1,1,2, . . . ,K + 1 − k). One can easily verify that the
resulting set of permutation matrices P̃K := {I , P̃ 1, . . . , P̃ K} satisfies Assumption 2 since it
is constructed by cyclic permutations.2 However, since P̃K is blind of X, Assumption 4 may
not hold. To overcome this challenge, in Algorithm 1 we apply an iterative algorithm where
in each round, we set σk := π−1 ◦ σ̃k ◦ π for some random permutation π and loop until
it reaches the number of rounds limit or the resulting PK satisfies Assumption 4 (Step 6).
This allows Algorithm 1 to still preserve Assumption 2, while being more adaptive to X. In
Proposition 1, we show that after doing T th round of such iterations, Algorithm 1 is able to
deliver a PK satisfying the desired properties with probability at least 1 − 1

KT .

2Notice that the “σ̃k” described here is exactly the same as the “σ̃k” in (10).
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Algorithm 2: Residual Permutation Test (RPT)

Input: Design matrix X ∈ R
n×p , additional covariate of interest Z ∈ R

n, response
vector Y ∈ R

n, number of permutations K ∈N, maximal number of iterations
T ∈ N.

1 Find an orthonormal matrix V 0 ∈ R
n×(n−p) such that V �

0 X = 0.
2 Apply Algorithm 1 with inputs K , T and V 0 to generate K permutation matrices

{P 1, . . . ,P K}.
3 for k = 1, . . . ,K do
4 Set V k := P kV 0.
5 Find an orthonormal matrix Ṽ k ∈ R

n×(n−2p) such that
span(Ṽ k) ⊆ span(V 0) ∩ span(V k).

6 Compute

ak := ∣∣〈Ṽ �
k Z, Ṽ

�
k Y

〉∣∣ and bk := ∣∣〈Ṽ �
k Z, Ṽ

�
k P kY

〉∣∣,
where < ·, · > denotes the inner product.

7 end
Output: p-value φ := 1

K+1(1 + ∑K
k=1 1{min1≤j≤K aj ≤ bk})

PROPOSITION 1. Given K , T , we have that there exists a PK satisfying Assumptions 2
and 4. Moreover, Algorithm 1 always returns a PK that satisfies Assumption 2; and with
probability at least 1 − 1

KT , the returned PK also satisfies Assumption 4.

Notice that throughout this article, we assume that the alternative class is in the form
Y = Xβ + bZ + ε for some b �= 0, whence we invoke Assumption 4 to increase its statisti-
cal power. When the alternative class follows other forms, such as Y = Xβ + f (Z) + ε with
some nonlinear function f :Rn �→ R

n, one may not necessarily need Assumption 4 anymore.
Instead, one may need other assumptions on PK to adapt to the nonlinear function f (·). In
light of Algorithm 1 and our theoretical statements, we summarize an implementation of
RPT in Algorithm 2. The maximum time complexities of Algorithms 1 and 2 are O(T Knp)

and O(T Knp + Knp2), respectively, where T is the maximum number of iterations. The
expected time complexities of the two algorithms are instead O(Knp) and O(Knp2), re-
spectively. We also remark that due to the construction of the permutation set in Algorithm 1,
RPT is inherently a randomized procedure, and unlike permutation tests or bootstrapping,
this variability due to randomness cannot be reduced by increasing computational time. It
would be of interest to propose a new test that eradicates such reproducibility issue while
maintaining all the beneficial features of Algorithm 1, which we leave for future work.

5.2. Proof sketch of Theorem 3. As K is finite, we mainly need to prove that for any fixed

P j ,P k ∈ PK , with probability converging to 1, |ê�V �
0 Ṽ j Ṽ

�
j V 0ε̂| > |ê�V �

0 Ṽ kṼ
�
k V k ε̂|.

To achieve this goal, we need to prove that

(11)
|e�Ṽ j Ṽ

�
j ε|

bn
= oP(1)

(i.e., that the empirical correlation between the projection of e and ε onto the space spanned
by Ṽ j is negligible with high probability) and that with high probability,

(12)
e�Ṽ j Ṽ

�
j e − e�Ṽ kṼ

�
k P ke

n
≳ 1 and

e�Ṽ j Ṽ
�
j e + e�Ṽ kṼ

�
k P ke

n
≳ 1.
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To prove (11), when t = 1, the result is straightforward from Chebyshev’s inequality;
hence the main challenge is to prove the case t ∈ [0,1). In Corollary 8, we establish a more
general result, which characterizes the stochastic convergence of |w�ε| where w is an arbi-
trary deterministic vector and ε can be heteroscedastic. We refer the readers to Section 6 for
its statement as well as the intuitions for its proof.

Thanks to the bounded second-order moment of ei ’s, the analysis of (12) is simpler. Spe-
cially, by using a variant of weak law of large number we develop in this paper to control the
weighted sum of e2

i ’s and a Chebyshev’s inequality to control the sum of cross terms eiej ’s,
we can have that with probability converging to 1,

e�Ṽ j Ṽ
�
j e − e�Ṽ kṼ

�
k P ke

n
≳ n − 3p − tr[X(X�X)−1X�P k]

n
.

Using that P k satisfies Assumption 4, we easily obtain the desired result.

6. Statistical power under broader classes of alternatives. In Theorems 3 and 4, for
simplicity of illustration, we consider the class of alternative hypotheses where Z is a linear
model and all the noises are i.i.d. In this section, we consider two relaxations of these as-
sumptions. First, we assume that Z follows a linear model with respect to the covariates and
all noises are heteroscedastic; second, we allow Z to have some nonlinearity, at the cost of
slightly more restrictions on the degree of heteroscedasticity of εi ’s.

ASSUMPTION 5. Z follows the model in (3); the random vectors ε and e are first n com-
ponents of two independent infinite sequences of independent zero-mean random variables
ε1, ε2, . . . and e1, e2, . . ., respectively. Suppose also that:

• for some universal constants Ce, ce > 0, we have E[e2
i ] ≤ Ce for all 1 ≤ i < ∞, and

(13) lim
a→∞ sup

n≥1

1

n

n∑
i=1

E
[
e2
i 1

(
e2
i ≥ a

)] = 0 and lim inf
n→∞

1

n

n∑
i=1

E
[
e2
i

]
> ce;

• for some fixed t ∈ [0,1] and some universal constant Cε > 0, we have E[|εi |1+t ] ≤ Cε for
all i and given any fixed B > 0,

(14)
∞∑
i=1

P
(|εi |1+t ≥ Bi

)
< ∞.

Informally speaking, instead of requiring all noises to be i.i.d., Assumption 5 allows noises
to be heteroscedastic, under certain restrictions on the degree of heteroscedasticity of εi ’s and
ei ’s. To intuitively understand (14) and the first equation in (13), taking (14), for example,
a sufficient condition for it to hold is that there exists a zero-mean random variable ε∞ sat-
isfying that E[|ε∞|1+t ] < ∞ and that for any 1 ≤ i < ∞, |εi | �d |ε∞|, that is, that |εi | is
stochastically dominated by |ε∞| uniformly for all εi ’s. When such ε∞ exists, for any n ≥ 1,

n∑
i=1

P
(|εi |1+t ≥ Bi

) ≤
n∑

i=1

P
(|ε∞|1+t ≥ Bi

)

≤
∫ ∞

0
P

( |ε∞|1+t

B
≥ x

)
dx = E

[ |ε∞|1+t

B

]
< ∞,

which satisfies (14). Analogously, when there exists a zero-mean random variable e∞ with
E[|e∞|2] < ∞ and |e∞| stochastically dominates all |ei |’s, we can also have

sup
n≥1

1

n

n∑
i=1

E
[
e2
i 1

(
e2
i ≥ a

)] ≤ E
[
e2∞1

(
e2∞ ≥ a

)]
,
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which, from dominated convergence theorem, converges to zero as a → ∞. Armed with
Assumption 5, we have the following theorem on the power of RPT.

THEOREM 5. Fix K ∈ N. Assume that (X,Z,Y ) is generated under model (1) with ε
and Z satisfying Assumption 5; PK satisfies Assumption 4. In the asymptotic regime where
b and p vary with n in a way such that n > (3Ce/ce + m)p for some constant m > 0 and b

satisfies (9), we have limn→∞ P(φ > 1
K+1) = 0.

In the following, we show that when we are willing to impose slightly more restrictions
on the degree of heterogeneity of εi’s, we can still maintain the n− t

1+t rate even when the
expectation of Z cannot be viewed as a linear function of X.

ASSUMPTION 6. Z is generated according to Z = XβZ + h + e, where h is an n-
dimensional deterministic vector; ε and e follow the same assumptions as the ε and e in
Assumption 5, with the addition that

lim
a→∞ sup

i≥1
E

[|εi |1+t1
(|εi |1+t > a

)] = 0.

In Assumption 6, to alleviate the linearity requirement of Z, we introduce an additional
uniform constraint concerning the tails of εi ’s. It is worth noting that this new condition is
satisfied when there exists a ε∞ with E[|ε∞|1+t ] < ∞ that stochastically dominates all εi ’s.
Specifically, when such ε∞ exists, then

sup
i≥1

E
[|εi |1+t1

(|εi |1+t > a
)] ≤ E

[|ε∞|1+t1
(|ε∞|1+t > a

)]
,

which, from the dominated convergence theorem, converges to zero as a → ∞.

THEOREM 6. Fix K ∈ N. Assume that (X,Z,Y ) is generated under model (1) with
ε and Z satisfying Assumption 6; PK satisfies Assumption 4. In the asymptotic regime
where b, p and h vary with n in a way such that for some constants m, r with m > 0,
r < ce, lim supn→∞ ‖h‖2

2/n ≤ r , n > (3Ce/(ce − r) + m)p and b satisfies (9), we have
limn→∞ P(φ > 1

K+1) = 0.

When PK does not satisfy Assumption 4, the same conclusion in Theorem 6 still holds
with n > (4Ce/(ce − r) + m)p; see also the analogous comment after Theorem 3. Notice
also that when Z and P 1, . . . ,P K are all deterministic and we keep the data generating
model of Y as (1), following an analysis analogous to the proof of Theorem 6, we can prove
that φ is still asymptotically powerful whenever

(15) |b| = Ω
(
z−1
n n− t

1+t
)

if t < 1 or |b| = ω
(
z−1
n n− 1

2
)

if t = 1,

where

(16) zn :=
(‖V �

0 Z‖2√
n

)−1
· min

1≤j,k≤K
min

z∈{0,1}
Z�Ṽ j Ṽ

�
j Z + (−1)zZ�Ṽ kṼ

�
k P kZ

n
.

In other words, Z does not necessarily need to be random for RPT to have power. To formally
describe the above intuition, we have the following corollary.

COROLLARY 7. Fix K ∈ N. Assume that (X,Z,Y ) is generated under model (1) with
ε as in Assumption 6 and p < n/2. Z, PK are deterministic such that ‖V �

0 Z‖2 > 0 and
zn > 0 uniformly for all n ≥ 3. In the asymptotic regime where b satisfies (15), we have
limn→∞ P(φ > 1

K+1) = 0.
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An inspection of the proof of Theorem 6 reveals that when Z satisfies the random model
as prescribed in Assumption 6 and (n,p) is as in Theorem 6, with probability converging
to 1, zn � 1, and the scale delivered by (15) and (9) coincide. In practice, one can choose
P 1, . . . ,P K to maximize (16).

In order to prove Theorem 6, one needs to understand the rate of convergence of the term

|h�Ṽ j Ṽ
�
j ε|. Based on our analysis of this term in the proof of Theorem 6, it is straightfor-

ward to get the following corollary, which characterizes the rate of convergence of w�ε for
arbitrary deterministic n-dimensional vector w, which we believe is of independent interest.

COROLLARY 8. Consider the ε as in Assumption 6 with t ∈ [0,1). Then for any fixed
constant δ > 0,

lim
n→∞ sup

w∈Sn−1
P

(∣∣w�ε
∣∣ > δn

1−t
2(1+t)

) = 0,

where Sn−1 := {w ∈ R
n : ‖w‖2 = 1} is the (n − 1)-sphere in the n-dimensional Euclidean

space.

Informally then, Corollary 8 means that |w�ε| = oP(‖w‖2n
1−t

2(1+t) ) for any choice of the n-
dimensional unit vector w. For example, one can even allow max1≤i≤n |wi |/‖w‖2 � 1. This

enables us to prove the rate of convergence of hṼ j Ṽ
�
j ε without any regularity condition on

X or h.
To prove Corollary 8 (or equivalently to find the rate of convergence of h�Ṽ j Ṽ

�
j ε),

the main challenge is to deal with the heavy-tailedness of εi ’s. We apply a truncation
fi := εi1(|εi | ≥ Bi) and seek to control w�f and w�(ε − f ) separately, where for sim-
plicity we write f := (f1, . . . , fn)

�. We seek to control w�f via proving the following two
convergence results (see the Supplementary Material for its proof):

• For any fixed B > 0, supw∈Sn−1 E[|w�(f −E[f ])|2] = o(n
1−t
1+t );

• As B → ∞, we have that supn≥1 ‖E[f ]‖2
2/n

1−t
1+t → 0 (notice that here ‖E[f ]‖2

2 is a func-
tion of B).

With the above results, it is straightforward that for any constant δ > 0, by choosing the
constant Bδ > 0 sufficiently large, uniformly for all n ≥ 2,

sup
w∈Sn−1

∣∣w�
E[f δ]

∣∣ ≤ ∥∥E[f δ]
∥∥

2 ≤ δ

2
· n 1−t

2(1+t) ,

where we rewrite f as f δ to emphasize its dependence on Bδ . Moreover, by Chebyshev’s
inequality, we further have from the above convergence results that as n → ∞,

(17) sup
w∈Sn−1

P

(∣∣w�(
f −E[f ])∣∣ >

δ

2
· n 1−t

2(1+t)

)
→ 0.

Taking together, we control wf δ ; and our only remaining job is to control the convergence
of w�(ε − f δ), which we prove by an argument similar in spirit to the Borel–Cantelli
lemma (Durrett (2019)).

7. Minimax rate optimality of coefficient tests. In this section, we investigate the min-
imax rate optimality of RPT by deriving the statistical efficiency limit of coefficient tests with
heavy-tailed noises. Without loss of generality, we denote Dt as the class of distributions with
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t th-order moment bounded between [1,2], that is, for some t > 0 and some random variable
ξ with distribution Pξ ,

Pξ ∈ Dt iff E[ξ ] = 0 and 1 ≤ E
[|ξ |t ] ≤ 2.

Notice that in the above definition, the thresholds 1 and 2 are chosen for notational simplicity,
in fact, the general conclusions in this section still hold for η1 ≤ E[|ξ |t ] ≤ η2 with arbitrary
η1, η2 > 0. We further let D̃ denote the class of distributions such that

Pξ ∈ D̃ iff P

(
|ξ | > 1

2

)
>

1

2
.

With a slight abuse of notation, given b0 ∈ R, we write Pb0 as a distribution of (Y ,Z) such
that the b in (1) is equal to b0. Note that we have suppressed the dependence of Pb0 on X, β ,
βZ , Pε and Pe for notational simplicity. In particular, P0 corresponds to the null hypothesis.

From above, we define the minimax testing risk indexed by t , X as

Rt,X(τ )

:= inf
ϕ∈Φ

{
sup
Pε∈Dt

sup
Pe∈D1∩D̃

sup
β,βZ∈Rp

P0(ϕ = 1) + sup
|b|≥τ

sup
Pε∈Dt

sup
Pe∈D1∩D̃

sup
β,βZ∈Rp

Pb(ϕ = 0)
}
.

Here, Φ corresponds to the class of measurable functions of data (X,Z,Y ) taking value
in {0,1}. We first establish the following nonasymptotic minimax lower bound for testing
H0 : b = 0 against H1 : b �= 0 in the presence of heavy-tailed noises.

THEOREM 9. Let t ∈ [0,1] be given and assume that ε and e satisfy Assumption 3. For
any η ∈ (0,1), there exists a constant cη > 0 depending only on η such that for any fixed
design X,

R1+t,X
(
cηn

− t
1+t

) ≥ 1 − η.

Theorem 9 shows that when entries of ε have finite (1 + t)th moment, the minimax sepa-
ration rate in b for testing H0 against H1 is at least of order n− t

1+t , which matches the upper
bound in Theorem 3. This indicates that the rate n− t

1+t may be a tight lower bound, and that
our constructed test may be an rate optimal test. Nevertheless, Theorems 3 and 4 are point-
wise convergence results, where both Pξ and Pe are considered as fixed and does not depend
on n, p. To match the lower bound in Theorem 9, we further provide a power control of RPT
uniformly over classes of noise distributions of Pε and Pe. Just as in Section 5, we assume
without loss of generality that n is divisible by K + 1.

THEOREM 10. Fix K ∈ N. Assume that (X,Z,Y ) is generated under model (1) with ε
and Z satisfying Assumption 3 and that PK satisfies Assumption 4. In an asymptotic regime
where b and p vary with n in a way such that n > (3 + m)p for some constant m > 0 and
|b| = Ω(n− t

1+t
+δ) for some constants t ∈ (0,1] and δ > 0, we have for any constant ν > 0

that

(18) lim
n→∞ sup

Pε∈D1+t

sup
Pe∈D2+ν

P

(
φ >

1

K + 1

)
= 0.

If we drop Assumption 4 and instead assume p/n → 0, then we have for any constant ν > 0
that

lim
n→∞ sup

Pε∈D1+t

sup
Pe∈D1+ν∩D̃

P

(
φ >

1

K + 1

)
= 0.(19)
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In Theorem 10, the separation rate is slightly worse than (9) by a factor of nδ , where δ

can be any positive constant. Also, it is slightly worse than the lower bound in Theorem 9.
This shows that the separation rate n− t

1+t is a nearly optimal rate of coefficient testing in the
minimax sense. At the same time, it also shows that our residual permutation test is a nearly
rate-optimal hypothesis test in the minimax sense.

8. Numerical studies.

8.1. Experimental setups. In this section, we evaluate the performance of RPT, together
with several competitors, in the following synthetic data sets. The observations (X,Y ,Z) ∈
R

n×p ×R
n ×R

n are generated according to the models (1) and (3) where:

• X is generated with i.i.d. entries from either N (0,1) or t1 distribution;
• β and βZ are p-dimensional vectors with the first 5 components sampled uniformly on the

sphere S4 and the rest of the components equal to 0;
• e and ε have independent and identically distributed components drawn from N (0,1), t1

or t2.

We vary n ∈ {300,600}, p ∈ {100,200} and b in different simulation experiments.
In practice, we find that the p-value calculated by Algorithm 2 is slightly on the con-

servative side. Hence, in addition to the test with p-value constructed by Algorithm 2,
we also study a variant in our numerical experiments, where the p-value is computed as

1
K+1(1 + ∑K

k=1 1{ak ≤ bk}) instead (we call this variant as RPTEM, where “EM” stands for
empirical). To benchmark the performance of RPT and RPTEM, we also look at the naive
residual permutation test in (4). Other tests used for comparison include the ANOVA test de-
scribed in the Introduction, the robust permutation test by DiCiccio and Romano (2017) (DR),
the residual bootstrap method of Freedman (1981) (RB), the residual permutation approach
of Freedman and Lane (1983) (FL), the conditional randomization test (CRT) of Candès et al.
(2018), the residual randomization (RR) procedure of Toulis (2019), the desparsified lasso as
implemented in the hdi R package (HDI) (Dezeure et al. (2015)) and the cyclic permutation
test of Lei and Bickel (2021) (CPT).

We note that RPT relies on tuning parameters K and T . For a test to have a size of α,
we need to have K + 1 at least 1/α. We suggest using K + 1 = �1/α� in practice, though
empirical simulation results suggest that our method is robust to the choice of K . We also set
T = 1 to boost the computational efficiency of Algorithm 1.

8.2. Numeric analysis of validity under the null. We start by analyzing the validity
of various tests under the null described in Section 8.1. We estimated the size of RPT,
RPTEM, DR, FL, CRT, RB, RR and HDI at nominal levels of 1% and 5% for (n,p) ∈
{(300,100), (600,100), (600,200)} (see Table A2 in the Supplementary Material for the es-
timated size at the 0.5% nominal level). RB, RR and HDI displayed more serious violation
of the empirical sizes in these simulation settings (see Table A1 in the Supplementary Mate-
rial). The results for the remaining procedures are summarized in Table 2. Notice that since
the p-values of both ANOVA and the naive RPT are invariant with respect to the choices of
β , βZ and Σ, the results in Table 1 are directly comparable to the ones in Table 2. Therefore,
we do not repeat the simulations of the two tests here.

From Table 2, we see that DR has good size control when the design matrix X has Gaussian
components and exceeds the nominal size levels when X is generated with t1 components. FL
performed the best when n/p is relatively large, consistent with the asymptotic size validity
of the test established in Freedman and Lane (1983), though with low n/p ratios and heavy-
tailed noise, the empirical sizes can exceed the nominal level. CRT is conservative when
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TABLE 2
Percentage of rejections of various tests under the null, estimated over 100,000 Monte Carlo repetitions, for

various noise distributions at nominal levels of α = 1% and α = 5%. Data are generated from the model in (1)
and (3) with b = 0. X, ε and e are generated according to the various distribution types prescribed in the table.

Here, “G” stands for standard normal distribution. Percentage signs are omitted

RPTEM RPT DR FL CRT

n p X Noise 1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

300 100 G G 0 0.08 0 0 0.98 5.04 0.99 5.02 0 0.05
300 100 G t1 0.51 1.12 0.24 0.5 0.88 4.66 1.28 3.8 1.89 3.03
300 100 G t2 0.14 0.45 0.04 0.09 0.67 3.88 1.23 4.91 0.53 1.86
300 100 t1 G 0 0.09 0 0 3.33 9.02 1.01 4.99 0 0
300 100 t1 t1 0.01 0.23 0 0 1.28 5.67 1.21 4.35 0.33 0.59
300 100 t1 t2 0 0.09 0 0 2.54 8.45 1.09 5 0 0.01
600 100 G G 0.21 1.77 0.01 0.06 0.95 4.91 0.95 4.91 0 0.04
600 100 G t1 0.73 2.31 0.48 1.24 0.92 4.77 1.09 3.82 1.68 2.47
600 100 G t2 0.61 2.29 0.2 0.55 0.68 4.04 1.09 4.87 0.61 1.94
600 100 t1 G 0.23 1.72 0.01 0.08 3.95 9.52 0.93 4.92 0 0
600 100 t1 t1 0.13 1.49 0 0.01 1.37 5.76 1.04 4.15 0.25 0.42
600 100 t1 t2 0.1 1.54 0 0.02 3.33 9.25 1.05 5.05 0.01 0.01
600 200 G G 0 0.12 0 0 1.04 4.94 1.02 4.94 0 0.04
600 200 G t1 0.46 1.02 0.26 0.51 0.89 4.77 1.18 3.41 1.5 2.37
600 200 G t2 0.12 0.5 0.04 0.1 0.68 4.08 1.2 4.82 0.49 1.94
600 200 t1 G 0 0.12 0 0 3.45 9.07 0.98 5.11 0 0
600 200 t1 t1 0.01 0.26 0 0 1.25 5.61 1.13 4.12 0.27 0.49
600 200 t1 t2 0 0.1 0 0 2.71 8.74 1.01 4.75 0 0.01

components of X and the noise have the same distribution, but can violate the size control
when the noise distributions have much heavier tails than that of components of X. On the
other hand, RPT exhibits valid, though sometimes conservative, size controls in all settings,
which is consistent with our theoretical findings. More interestingly, the size of RPTEM is
also valid across all the simulation settings, even with heavy-tailed noises and heavy-tailed
design. In Section 8.3, we further study the empirical power of RPT and RPTEM.

8.3. Numeric analysis of alternative power. In Section 5, we established asymptotic
power guarantees of RPT under fixed design and heavy-tailed noises. In this section, we
validate these theoretical insights via numerical analysis. To benchmark the results, we in-
vestigate the power of all tests considered in Section 8.1. We set n = 600, p = 100 and vary
the b in (1) for b equals to 0 or one of the 25 different values on an equally-spaced logarith-
mic grid in the range of 0.01 to 2. We analyze the power of all methods with design following
Gaussian and t1 distributions and noises following Gaussian, t1 and t2 distributions. The es-
timated power curves for RPTEM, RPT, ANOVA, naive RPT, DR, FL and CRT over 10,000
repetitions are displayed in Figure 2 (see also Figure A1 in the Supplementary Material for
power curves of RB, RR and HDI).

From Figures 2(a)–(c), (d) and (f), we can conclude that in most of the settings, the power
of RPT is slightly worse than ANOVA, the naive RPT and FL. The difference is more pro-
nounced when both the design and the noise follow a heavy-tailed distribution (Figure 2(e)).
However, bearing in mind the lack of valid size control of ANOVA, naive RPT, DR, FL and
CRT, especially when design and noise are heavy-tailed, we would argue that the gap in
power between RPT and these competitors is the price to pay for finite-sample size validity
with only exchangeable noise in the proportional regime. Moreover, RPT is nevertheless still
guaranteed to reject the alternative with high probability given a signal size b not too much
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FIG. 2. Power (proportion of rejections) with nominal level α = 0.01 (represented by the horizontal dashed line)
over 10,000 replicates for b = 0 or on a logarithmic grid between 0.01 and 2. Here, X, ε and e are generated
according to various distribution types prescribed in the caption of each figure.

larger than the competitors. In addition, we observe that DR does not seem to have power
converging to 1 as b increases for heavy-tailed noise, while the power of CRT is substantially
reduced for heavy-tailed design distributions.

Another interesting phenomenon is that the power of RPTEM is generally stronger than
RPT, especially in the setting displayed in Figure 2(e), where both design and noise follow t1
distribution. This, together with the size validity display in Section 8.2, suggests RPTEM, al-
though being lack of theoretical support, can serve as a viable alternative of RPT in empirical
analysis. We leave the theoretical investigations of RPTEM as future work.

Finally, we compare RPT with the cyclic permutation test proposed in Lei and Bickel
(2021). As the cyclic permutation test is not well-defined for n/p < 1/α + 1, we consider
a relatively low-dimensional setting where n = 1000, p = 40 and α = 0.05. We consider
the test with both the default variable ordering (CPT) and a preordering computed using
a genetic algorithm (CPT-GA). Due to computational limitations, the genetic algorithm is
computed with only 1000 random initializations. The data generation mechanism is the same
as that described in Section 8.1, except that to adapt the high computational cost of CPT-
GA, for each specification we first generate 10 repetitions of (X, Z), then for each (X, Z),
we generate 1000 repetitions of ε, summing up to 10,000 repetitions. Figure 3 shows the
power curves of RPTEM, RPT, CPT-GA and CPT under various design matrix and noise
distributions. We see that all four methods are well-calibrated at 5% level when b = 0, with
RPT slightly more conservative than the other three approaches. For all the settings, the power
of RPT and RPTEM converges to 1 faster than CPT, though CPT has higher rejection rate than
RPT as b begins to diverge from zero. For CPT-GA, the performance of RPT and CPT-GA are
comparable; and CPT-GA can significantly outperform RPT when both the design and noise
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FIG. 3. Power (proportion of rejections) with nominal level α = 0.05 (represented by the horizontal dashed line)
over 10,000 replicates for b = 0 or on a logarithmic grid between 0.01 and 2. Here, X, ε and e are generated
according to various distribution types prescribed in the caption of each figure.

are heavy-tailed. Moreover, we have found that genetic algorithm can significantly increase
the power of CPT, which is consistent with the observation from Lei and Bickel (2021).
From Lei and Bickel (2021), it is expected that once we increase the number of random
initializations for genetic algorithm from 1000 to the recommended setting of 10,000, CPT-
GA can become more powerful.

9. Discussion. In this paper, we propose a new method for the fixed-design regression
coefficient test when the number of covariates p can be as large as a fraction of the sample size
n. RPT is a permutation-based approach that exploits the exchangeability of the noise terms
to achieve finite-sample size control. Our approach uses the fact that the empirical residuals
of the classical OLS fit is equivalent to the projection of the noise vector onto an subspace
orthogonal to the design to construct a test with valid size for p < n/2 based on multiple
subspace projection. At the same time, we provide power analysis of RPT, and derived the
signal detection rate of the coefficient b in the presence of heavy-tailed noise vector ε. As
a byproduct, we propose RPTEM and demonstrate its size validity and power via numerical
experiments. It would be of interest to understand the theoretical properties of RPTEM in a
future study.

In the regime where n/2 ≤ p < n, we propose the naive RPT, and prove its finite-sample
size validity under spherically invariant distributions, and compare it with ANOVA as well
as other competing approaches via numerical experiments. In the meanwhile, we provide a
more profound analysis of the ANOVA test, which is of independent interest for practitioners
interested in ANOVA.

In this paper, permutation test facilitates an important basis for construction of our test.
This sheds light on extending permutation tests to solve other problems in modern statistics,
which we leave as future work. In addition, permutation tests and its related rank based tests
have also been applied in model-free uncertainty quantification of machine learning predic-
tions (Lei, Robins and Wasserman (2013), Balasubramanian, Ho and Vovk (2014), Romano,
Patterson and Candes (2019)). It would be of interest if the power analysis techniques in-
vented in this paper could be used to understand the efficiency of these approaches in modern
machine learning applications.
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