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1. Introduction

Rechargeable lithium-ion batteries (LIBs)
are known as the most promising energy
storage technology due to their high energy
density, high power density, and long
charge/discharge life cycle.[1,2] Presently,
an extensive amount of research has been
devoted to boosting their performance as to
complement the applications in sustainable
energy power and this demands for the
improvements in storage capacity, steadi-
ness and safety, toxicity, eco-friendliness,
and material cost.[3–7] For this, discovering
new cathode materials has become the key
as they both contribute to 33% of the total
battery cost and compared with the anode,
have much lower storage capacity, and
therefore greatly limit on the battery
discharging capacities.

Among all cathode materials, spinel
cathode materials (LiMn2O4) are preferred
over the widely commercialized lithium
cobalt oxide (LiCoO2) material for its
nontoxic nature, robust 3D structure (high

Li-ion diffusion), and low cost (manganese metal is more abun-
dant than cobalt metal). However, the issues of drastic capacity
fading and limited rate performance have restricted their use in
large-scale commercial applications. These inferior properties
can be explained by two underlying chemical phenomena. The
first is the dissolution of the manganese ions Mn3þ from the
material surface into various forms of Mn4þ(solid) and
Mn2þ(sol), which reduces the Li-ions site energy and eventually
lowers the rate of reversible electrochemical reactions. The sec-
ond reason is the Jahn–Teller distortion (JRD) effects initialized
from the high spin electrons interactions from the d-orbital elec-
trons of manganese ion (Mn3þ), which destabilize the overall
crystal structure and hence reduce the respective cycle life.

Doping the manganese (III) sites with lower valence (lower
than 3þ) dopants (Figure 1a) seems to be an effective approach
to this problem as it increases the average Mn valence in
LiMn2O4 to suppress the JTD effect through reducing the
concentration of Mn (III) and eventually decrease the rate of dis-
solution reaction. Indeed, promising results have been seen in
capacity improvement for lower valence dopants such as Al,[8]

Cr,[9] Fe,[10] Gd,[11] Ga,[12] Mg,[13] Nd,[14] Ni,[15] Ru,[16] Sc,[17]

and Zn;[18] however, the use of higher valence dopants such
as Si[19] and Sn[20] are also shown to be effective. Figure 1b shows
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The electrochemical potentials of spinel lithium manganese oxide (LMO) have
long been plagued by the significant Mn3þ dissolution during long cycle dis-
charging, resulting in rapid capacity fading and short cycle life. Although the
doping mechanisms are effective in suppressing these reactions, the correlations
of their effects on the material properties and the improved discharging per-
formance still remain uncovered. In this study, seven machine learning (ML)
methods are applied to a manually curated dataset of 102 doped LMO spinel
systems to predict the initial discharge capacities (IC) and 20th cycle end dis-
charge capacities (EC) from fundamental system properties like material molar
mass and crystal structure dimension. Gradient boosting models achieved the
best prediction powers for IC and EC with their errors estimated to be 11.90 and
11.77 mAhg�1, respectively. Besides, a higher formula molar mass of doped LMO
can improve both capacities and additionally, a shorter crystal lattice dimension
with a dopant with smaller electronegativity can slightly improve the value of the
IC and EC, respectively. This study demonstrates the great potential of using ML
models to both predict the discharging performance of doped spinel cathodes
and identify the governing material properties for controlling the discharging
performance.
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that the high-valence silicon-doped lithium manganese oxide
(LMO) material offers a higher discharge capacity on the 60th
cycle than both the lower valence gallium-doped system and
the pristine material. This seems contradictory to the widely
known doping principles because the introduction of high-
valence dopants would increase the Mn valence in the system,
leading to faster manganese (III) dissolution reactions and even-
tually worsen the cycling performance. From this, one can see
that a comprehensive understanding in the doping mechanism
and corresponding benefits on the spinel discharging capability
are still lacking in the research community. One of the main root
causes is the difficulty in comparing the results across different
groups as there are a lot of variations in the experimental param-
eters such as synthesis routines, doping concentration, and
testing conditions. The current study aims to uncover the under-
lying relationships of these complex material properties with the
corresponding electrochemical properties using machine
learning (ML) techniques.

ML algorithms have received a tremendous amount of interest
in recent years due to their robust analytical and predictive
abilities. One important benefit is it allows the researchers to
gain valuable insights into intercorrelations between multiple
variables that are too complex to be understood by pairwise exam-
ination of the variables. The implementations of ML in battery
material research are seen to be growing at a significant rate.

Min et al.[21] built a random forest model that can capture
75% of the variation in the capacity retention rate of nickel–
manganese–cobalt cathode materials from using the material
synthesis parameters. Joshi et al.[22] concluded that deep learning
model is powerful in predicting the voltage of electrode materials
for different metal-ion batteries with nearly 81% of the
variations being captured in a holdout test dataset. Furthermore,
Zhang et al.[23] implemented clustering algorithms to group the
Li-containing compounds’ X-ray diffraction spectroscopy pat-
terns according to their ionic conductivity and this eventually
led to the discovery of 16 new conductors with the conductivities
range of 10�4–10�1 S cm�1. Other successful cases are also seen
in predicting the cathodes crystal system[24] and the remaining
useful life of the LIB[25] and also to detect the LIB cell cracks.[26]

The discharge capacity at a certain cycle is not a quantity that
can be derived by any existing physical models and the experi-
mental measures are often very difficult to control due to
the presence of many independent parameters. In this study, the
aim is to investigate the potentials of using ML to predict the
initial and 20th cycle end discharge capacity for doped spinel sys-
tems from various reported material properties, including the
ICP molar ratio for dopant (M) and manganese atom (Mn) in the
material, crystal lattice constant-a (LC_a), elemental properties
such as the material molecular mass (M), dopant’s electronega-
tivity (M_EN), as well as the experimental condition—current

Figure 1. a) A schematic demonstration of the doping mechanism with the example dopant (M) for the pristine crystal structure of LiMn2O4 (LMO).
b) The cyclic performances of the silicon-doped LMO, gallium-doped LMO, and the pristine LMO material; arrows indicate the performance gap.
Reproduced with permission.[33] Copyright 2020, Elsevier. c) A summary of the model architecture, investigating algorithms and the final goals of select-
ing the best performing model as well as identifying the key features for predictions.
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density (CD). A summary of the model variable selection is
shown in Figure 1c. First, seven multivariate models are built
for each prediction task and this covers a wide range of linear
and nonlinear algorithms such as the ridge regression (RR), lasso
regression (LR), support vector machine (SVM), deep neural
network (DNN), decision-tree (DS), random forest (RF), and
the gradient boosting model (GBM). The principles and theories
of these models can be widely found in other literature and will
not be further discussed here.[27] Next, a variable importance
study is performed, with the best performing tree-based models,
to gain valuable insights into the governing material properties
on the discharging performance.

2. Results and Discussion

The distributions of collected IC and EC values of 102 doped spi-
nel cathodes are shown in Figure S1, Supporting Information.
Their ranges are 50.8–149.0 and 43.33–134.89mAh g�1, respec-
tively. Figure 2 shows the matrix results of the Pearson coeffi-
cient correlation study performed for each pair of variables in
the dataset. The level of statistical confidence of these calculated
coefficient values is also shown in Figure S3, Supporting
Information. The Pearson correlation coefficient (R) values are
presented in the range of 0 and 1, with the value closer to either
–1 (darker blue) or 1 (darker red), implying a more positive or
negative linear relationship between the investigating variable
pair. From the results presented, one’s intuition should not be
misguided by the perfect negative linearity (R¼ –1) relationship
estimated for the M and Mn as it is the result of direct site sub-
stitution. In addition, Mr is found to have a relatively stronger
linear correlation with IC and with EC than other pairs with coef-
ficients estimated to be R¼ 0.38 and R ¼ 0.35, respectively.
To conclude, there are no strong linear correlations (R> 0.6)

being observed for any of the covariate (M, Mn, LC_a, CD,
M_EN) with the two response variables (IC, EC).

Finding a suitable ML algorithm is crucial for capturing the
accurate underlying relationship between material properties
and the discharging performance. Figure 2c shows the estimated
mean root mean square error (RMSE) through tenfold
cross-validated training and the predictions against the holdout
dataset. Among all models, the GBM model has shown the best
performance in generalizing for both the initial and 20th cycle
end discharge capacities, with the RMSE calculated to be
11.90 and 11.77mAh g�1 from the test set predictions. In addi-
tion, the cross-validated RMSE mean value for each prediction is
observed to be higher than the test set RMSE values, which imply
that the models are not encountering overfitting issues. It is
important to note that the RMSE test set value shows more of
the model’s true prediction power because the test set data
are not involved in the model training process. In this respect,
GBM models will be chosen for further analysis as they have the
lowest test set RMSE values in each case.

Gradient boosting algorithm is an ensemble approach where
the base tree learners are built sequentially to minimize the
residual errors from every previous training iteration. The advan-
tages of the gradient boosting algorithm are seen from its robust-
ness in predicting nonlinear relationships, offering more flexible
hyperparameter tuning options (minimum tree depth, learning
rate, number of iterations) and not requiring data preprocessing
prior to the model training. With the aid of GBM approach,
promising results are seen in screening out the feasible solid
electrolyte for dendrite growth suppression,[28] predicting the
bandgaps and heat of formation for Pb-free halide perovskites,[29]

and predicting the efficiency of organic solar cells.[30]

For the given experimental dataset, GBM are seen to hold the
best prediction power for both prediction tasks. Figure 2a,b
shows the linearity plots for both the training set and test set
of initial and end discharge capacity predictions as well as their
respective RMSE, R2 values on the test set. The plots have dem-
onstrated the reasonable linearities for the predicted capacities
and experimental capacities on both training and test set.
In addition, both GBMs can produce good predictions against
the test set without showing any noticeable sign of overfitting
to the training data. However, a few outliners (data out of the
normal distribution) can be identified at the lower range of
the discharge capacity (smaller than 80mAh g�1) for both plots
and this has affected the R2 scores (Figure 3).

Most nonlinear algorithms such as neural network and
support vector machine are known as the “black-boxes” as they
do not provide any valuable insights into the approximated
internal functions for the prediction task. On the contrary, the
gradient boosting algorithm explains variable importance
because of the highly interpretable nature of the DS.
Figure 4a shows the relative importance of the six covariate var-
iables for both prediction tasks and there are no redundant var-
iables involved in the model considering all values are above
zero. First, the molar mass of the doped LMO is observed to
be the most important variable for the predictions of IC and EC
prediction with their relative importance estimated as 37.44 and
36.05, respectively. For this, Faraday’s law stated that the material
molar mass and the number of reactive electrons/Li ions in the
electrochemical reactions are reversely proportionally to the
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Figure 2. Result matrix of the Pearson correlation coefficient of every vari-
able pair including the responsive variables, IC and EC, and the covariate
variables, LC_a, Mn, M, M_electron, and CD.
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specific capacity of an electrode (the ideal amount of energy avail-
able for withdrawing per unit mass). In this regard, the variation
in material molar mass would inevitability influence the practical
capacities on both the first and the 20th discharging cycle as they
are quantitively related to the specific capacity. Figure 4b shows
positive linearity trends for the material molar mass with both
discharging capacities in the whole dataset and this might sug-
gest that the higher molar mass of doped LMO formula can lead
to higher values for IC and EC.

The electronegativity and the lattice constant(a) of the dopant
atom are determined to be the second most important variable
for the IC and the EC predictions and their relative importance
estimated to be 21.36 and 24.15, respectively. The electronegativ-
ity of the dopant can modify the overall structural density of the

doped LMO systems as it controls the bonding strength with
the surrounding manganese ions and oxygen ions. A small
difference in the electronegativity value indicates the formation
of covalent bonds, which, in turn, makes the structure more sta-
ble and less dense than the structure that contains ionic bonds.
In addition, the Li-ion site energy would be changed according to
the modified structural density, and this would change the rate
of intercalation/deintercalation of the Li ions from the LMO
cathode, resulting various loading capacities at the first cycle.
Figure 4c shows a negative correlation between IC and the dop-
ant’s electronegativity, with the highest capacities occurring at
the lowest electronegativity value. However, this correlation is
not conclusive due to the dispersed distribution. In addition,
variations in the crystal lattice dimension of the doped LMO

(c)

(b)

(a)

ML techniques
Initial Discharge Capacity (mAhg-1) 20th Cycle End Discharge Capacity 

(mAhg-1)
Cross-validated 

RMSE mean
RMSE on the 

test set
Cross-validated 

RMSE mean 
RMSE on the 

test set
RR 16.26 12.82 13.67 12.11
LR 17.24 13.76 16.26 12.57

DNN 13.97 18.84 11.61 13.11
DT 14.62 14.33 17.18 14.68
RF 14.66 12.45 13.51 13.15

GBM 13.57 11.90 13.52 11.77
SVM 15.69 13.42 12.91 14.37

Figure 3. a) Scatter plots of experimental values against the predicted value for initial capacity and b) 20th cycle end capacity performed by the GBM.
c) The mean RMSE values for during the tenfold cross-validation and for testing against 20 holdout test dataset for the prediction of Initial discharge
capacity and end discharge capacity.
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cathode would also influence the Li-ion site energy which is
highly correlated to the discharging performance of the 20th
cycle. For this, previous studies have confirmed the important
influence of the crystal lattice parameters on the discharging per-
formance of manganese such as the doped spinel(LiMgxMn2–
xO2),

[31] and the finding was made such as the larger crystal lat-
tice dimension often leading to poor discharging performance in
the short cyclic run and this was reconfirmed by the negative
slope best-fitted line, as shown in Figure 4d.

Despite the promising results as seen from the model predic-
tion performance, there are still many remaining challenges
remained in curating perfectly comparable data for ML model
construction. First, considerable variations are observed in the
battery cell fabrication methods such as the mixing ratio for
the anode and cathode components (e.g., binder, conductive
additives, and active material). This variation is due to the lack
of commonly agreed experimental standards across different
research teams and thereby is varied case-by-case. The ratio of
binder and additive can affect the mechanical stability and the
conductivities of the cathode material; therefore, this would have
an impact in predicting the long-term discharge capacities.[32]

However, due to the complexity in curating such information
while considering that the active LMO component being the
main driving force for the electrochemical reactions, suchmixing
ratio is assumed to be standardized during the data collection

and is not involved in the model construction. Second, the micro-
structure of the cathode material such as particle sizes and their
distribution as well as their surface morphologies are known to
be affecting the conductivity and the rate of electrochemical
reactions of the cathode.[8–34] The complication of such data is
found to be challenging as either the measurements are not per-
formed in some publication or the results are not published in
the numerical format and would require further interpretation.
Similar issues and challenges have also been encountered by
Kauwe et al. during the data collection work for their data collec-
tion studies of LIB materials.[35] Lastly, despite a strict measure
was made on collecting data from battery cells that used organic
LiPF6 electrolyte cells, there is still a variation in the solvents used
for this compound, ranging from ethylene carbonate, ethylene
methylene carbonate, to dimethyl carbonate.

The standardization of the battery assembling and testing
methods used in cathode research work is crucial for curating
highly comparable data and subsequently to be used for produc-
ing accurate predictive ML models. There are still many afore-
mentioned independent variables in the dataset despite the
great effort that has been made in filtering and selecting the
publications with the highest comparability. In this perspective,
we have additionally summarized the following improvement
points for the experimental and data scientist researchers to
consider as the future work to enhance the power of the ML
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Figure 4. a) The relative importance of the model input variable for the prediction of the initial (IC) and the 20th cycle end discharge capacity (EC)
estimated by the optimized GBMs. b) The plot of the values of IC and EC against the molar mass of the doped LMO cathode material with the linearity
fitted lines for the whole dataset. c) The plot of IC against dopant’s electronegativity with the red best-fitted line. d) EC versus crystal lattice constant-a with
the red best-fitted line.
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approach: 1) Standardize the cell fabrication methods for anode,
cathode, electrolyte, and report the experimental parameters in
detail, including the mixing ratio of the raw materials.
2) Report the full results of the electrode features such as the
X-ray diffraction (XRD) results, physical dimensions, crystal
structure distribution, particle size and their distribution, and
the pore sizes in “csv” format so that it would be more assessable
to ML models. 3) Use the principal component analysis method
to reduce the dimensions of the descriptor space prior to the
model training to improve the training speed and prediction
accuracy. 4) Discover new descriptors for describing the material
properties, for example, using density functional theory to
estimate the dipole moment.

3. Conclusions

To conclude, we have explored the scope of seven algorithms for
their prediction power in describing the correlations of six differ-
ent structural and elemental properties of 102 doped LMO sys-
tems and the corresponding discharging performance at the first
and 20th cycles. The dataset was carefully curated from the liter-
ature, with data collection rules such as the standardized experi-
mental conditions (i.e., electrolyte, anode, discharging
environment temperature) being applied to ensure achieve good
quality data. Out of the seven investigated algorithms, the GBM
algorithm demonstrated the best predicting power for IC and EC
with the RMSE for each being the lowest from the validation
against the heldout test set. A variable importance study was con-
ducted using the GBM models and the results suggest that a
higher molar mass of doped LMOs can lead to a higher discharge
capacity. In addition, weak negative correlations are captured for
the variable pair of the electronegativity of the dopant in LMO
with IC and for the crystal structure lattice constant-a with
EC, respectively. The results of this study have demonstrated
the great potentials in implementing ML algorithms to grasp
the complex structure–property correlations of the doped LMO
systems which could shorten the testing duration of battery mate-
rial performance and leading a faster discovery speed of new
doped cathode materials for LIBs with higher storage capacity
and longer life cycle.

4. Experimental Section

Data Collection of the Doped Spinel Materials: The dataset consisted of
102 different doped spinel systems with 17 dopant variations (B, Co, Ni,
Al, Cr, Ce, Sc, Mg, Gd, Zn, Si, Sn, Nd, Ga, Co, In, and Ru) and was curated
from over 34 reliable publications between 1998 and 2019. A broad range
of covariate variables were selected from the material properties (M, Mn,
LC_a, Mr, M_and EN) and the experimental condition (CD). The materials’
discharging properties such as IC and EC were extracted from cyclic result
graph using graphic extraction algorithms. For material properties, data
collections were strictly made for single doped, noncoated spinel cathode
system with a space group of Fd-3 m and any materials that were indicated
as oxygen-deficient or used anion doping like fluoride were discarded.
The purpose of this was to maintain a high consistency of the material
data for better model training. For collecting the results of discharge
capacities, the cyclic performance test must fulfill all listed conditions:
1) used lithium foil as the contrasting anode; 2) used aqueous LiPF6
as the electrolyte; 3) used the charge/discharge CD to be within
150mAh g�1, also called 1 C (the discharge current will discharge the full

charged battery within 1 h); 4) a minimum of performance of 20 charges/
discharge cycles; and 5) performed the cyclic test under standard room
conditions (T¼ 25 �C, P¼ 1 atm). The 20th cycle discharge capacity
was selected as the collection target as it was the most commonly
performed cycle across the literature. A schematic illustration of the data
collection rules used for each step of the collection process is shown in
Figure S2, Supporting Information.

Model Training: The ML models used in this work were implemented
using various R (version 3.6.0) libraries, including caret, gbm,
randomForest, and keras. The whole data space was randomly split into
the ratio of 4:1, which corresponds to the model training set and test set.
Model hyperparameters were optimized using tenfold cross-validation
during model training and the results are shown in Table S1,
Supporting Information.

Model Evaluation Metrics: The evaluation of model performance will be
mainly assessed through the calculation of the RMSE and of the coefficient
of determination (R2) from the predictions against the formerly split
holdout test set. The calculations of each are given as Equation (1) and (2)
as follows

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

X

n

i¼1

ðyi � ŷiÞ2
s

(1)

R2 ¼ 1�
Pn

i¼1 ðyi � ŷiÞ2
Pn

i¼1 ðyi � ȳÞ2 (2)

where n is the number of values, yi is the observed variable, ŷi is the pre-
dicted values, and ȳ is the average of the observed values.
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