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We introduce a new method for two-sample testing of high-dimensional
linear regression coefficients without assuming that those coefficients are in-
dividually estimable. The procedure works by first projecting the matrices of
covariates and response vectors along directions that are complementary in
sign in a subset of the coordinates, a process which we call ‘complementary
sketching’. The resulting projected covariates and responses are aggregated to
form two test statistics, which are shown to have essentially optimal asymp-
totic power under a Gaussian design when the difference between the two
regression coefficients is sparse and dense respectively. Simulations confirm
that our methods perform well in a broad class of settings and an application
to a large single-cell RNA sequencing dataset demonstrates its utility in the
real world.

1. Introduction. Two-sample testing problems are commonplace in statistical applica-
tions across different scientific fields, wherever researchers want to compare observations
from different samples. In its most basic form, a two-sample Gaussian mean testing prob-
lem is formulated as follows: upon observing two samples X1, . . .Xn1

iid∼ N(µ1, σ
2) and

Y1, . . . , Yn2

iid∼ N(µ2, σ
2), we wish to test

(1) H0 : µ1 = µ2 versus H1 : µ1 6= µ2.

This leads to the introduction of the famous two-sample Student’s t-test. In a slightly more
involved form in the parametric setting, we observe X1, . . . ,Xn1

iid∼ Fθ1,γ1 and Y1, . . . , Yn2

iid∼
Fθ2,γ2 and would like to test H0 : θ1 = θ2 versus H1 : θ1 6= θ2, where γ1 and γ2 are nuisance
parameters.

Linear regression models have been one of the staples of statistics. A two-sample testing
problem in linear regression arises in the following classical setting: fix p�min{n1, n2}, we
observe an n1-dimensional response vector Y1 with an associated design matrix X1 ∈Rn1×p
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in the first sample, and an n2-dimensional response Y2 with design matrix X2 ∈Rn2×p in the
second sample. We assume in both samples the responses are generated from standard linear
models

(2)

{
Y1 =X1β1 + ϵ1,

Y2 =X2β2 + ϵ2,

for some unknown regression coefficients β1, β2 ∈Rp and independent homoscedastic noise
vectors ϵ1 | (X1,X2)∼Nn1

(0, σ2In1
) and ϵ2 | (X1,X2)∼Nn2

(0, σ2In2
). The purpose is to

test H0 : β1 = β2 versus H1 : β1 6= β2. Suppose that β̂ is the least square estimate of β =
β1 = β2 under the null hypothesis and β̂1, β̂2 are the least square estimates of β1 and β2
respectively under the alternative hypothesis. Define the residual sum of squares as

(3)
RSS1 = ‖Y1 −X1β̂1‖22 + ‖Y2 −X2β̂2‖22,

RSS0 = ‖Y1 −X1β̂‖22 + ‖Y2 −X2β̂‖22.

The classical generalized likelihood ratio test (Chow, 1960) compares the F -statistic

(4) F =
(RSS0−RSS1)/p

RSS1 /(n1 + n2 − 2p)
∼ Fp,n1+n2−2p

against upper quantiles of the Fp,n1+n2−2p distribution. It is well-known that in the classical
asymptotic regime where p is fixed and n1, n2 →∞, the above generalized likelihood ratio
test is asymptotically optimal.

High-dimensional datasets are ubiquitous in the contemporary era of Big Data. As dimen-
sions of modern data p in genetics, signal processing, econometrics and other fields are often
comparable to sample sizes n, the most significant challenge in high-dimensional data is that
the fixed-p-large-n setup prevalent in classical statistical inference is no longer valid. Yet
the philosophy remains true that statistical inference is only possible when the sample size
relative to the true parameter size is sufficiently large. Most advances in high-dimensional
statistical inference so far have been made under some ‘sparsity’ conditions, i.e., all but a
small (often vanishing) fraction of the p-dimensional model parameters are zero. The as-
sumption in effect reduces the parameter size to an estimable level, and it makes sense in
many applications because often only few covariates are really responsible for the response,
though identification of these few covariates is still a nontrivial task. In the high-dimensional
regression setting Y =Xβ + ϵ where Y ∈ Rn, X ∈ Rn×p, β ∈ Rp with p,n→∞ simulta-
neously, a common assumption to make is k log p/n→ 0 with k = ‖β‖0 :=

∑p
j=1 1{βj ̸=0}.

Therefore, k is the true parameter size, which vanishes relative to the sample size n, and log p
is understood as the penalty to pay for not knowing where the k true parameters are.

Aiming to take a step in studying the fundamental aspect of two-sample hypothesis testing
in high dimensions, this paper is primarily concerned with the following testing problem:
we need to decide whether the responses in the two samples have different linear dependen-
cies on the covariates. More specifically, under the same regression setting as in (2) with
min{p,n}→∞, we wish to test the global null hypothesis

(5) H0 : β1 = β2

against the composite alternative

(6) H1 : ‖β1 − β2‖2 ≥ 2ρ, ‖β1 − β2‖0 ≤ k.

In other words, we assume that under the alternative hypothesis, the difference between the
two regression coefficients is a k-sparse vector with ℓ2 norm at least 2ρ (the additional factor
of 2 here exists to simplify relevant statements under the reparametrisation we will introduce
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later in Section 2). Throughout this paper, we do not assume the sparsity of β1 or β2 under
the alternative.

Classical F -tests no longer work well on the above testing problem, for the simple reason
that it is not possible to get good estimates of β’s through naive least square estimators,
which are necessary in establishing RSS in (3) to measure the model’s goodness of fit. A
standard way out is to impose certain kinds of sparsity on both β1 and β2 to ensure that both
quantities are estimable. To our best knowledge, this is the out-of-shelf approach taken by
most literature, see, for instance, Städler and Mukherjee (2012); Xia, Cai and Cai (2015).
Nevertheless, it is both more interesting and relevant in applications to study the testing
problem where neither β1 nor β2 is estimable but only β1 − β2 is sparse.

Practically, the assumption that β1 and β2 are both dense, but their difference is sparse can
be motivated by comparisons of paired high-dimensional datasets where the commonly seen
sparsity assumption fails for each individual dataset. For instance, Kraft and Hunter (2009)
pointed out that in some genetic studies, “many, rather than few, variant risk alleles are re-
sponsible for the majority of the inherited risk of each common disease”. Hence, to compare
the difference between two such populations, it may not be appropriate to assume that the
number of responsible single nucleotide polymorphisms (SNPs) in each population is small.
On the other hand, the difference between the two populations can still be accounted for by
a few SNPs, as pointed out in the Framingham Offspring Study (Kannel and McGee, 1979;
Xia, Cai and Cai, 2018). The area of differential networks provides further examples to moti-
vate two-sample testing of regression coefficients assuming only sparsity in their difference.
Here, researchers are interested in whether two networks formulated as Gaussian graphical
models, such as ‘brain connectivity network’ and gene-gene interaction network (Xia, Cai
and Cai, 2015; Charbonnier, Verzelen and Villers, 2015), are different in two subgroups of
population. Such complex networks are mostly of high-dimensional nature, in the sense that
the number of nodes or features in the networks are large, relative to the number of observa-
tions. Since the off-diagonal entries of the inverse covariance matrix in a graphical model can
be equated to the node-wise regression coefficients, such differential network testing prob-
lems can be reduced to multiple two-sample high-dimensional regression coefficient testing
problems. Such networks are often dense as interactions within different brain parts or genes
are omnipresent, but because they are subject to the about same physiology, the differences
between networks from two subpopulations are conceivably small, i.e., there are only a few
different edges from one network to another. In the above case of dense coefficients, spar-
sity assumption may not be true, and it is impossible to obtain reasonable estimates of either
regression coefficient β1 or β2 when p is of the same magnitude as n. For this reason, any
approach to detect the difference between β1 and β2, which is built upon comparing esti-
mates of β1 and β2 in some ways, fails. In fact, any inference on β1 or β2 is not possible
unless we make some other stringent structural assumptions on the model. However, certain
inference on the coefficient difference β1 − β2, such as testing the zero null with the sparse
alternative, is feasible by exploiting sparse difference between different networks without
many assumptions. See Section 5 for an application of our method to a real-world single
cell RNA-sequencing dataset, which exemplifies the aforementioned two-sample differential
network analysis.

1.1. Related Works. The two-sample testing problem in its most general form is not well-
understood in high dimensions. Most of the existing literature has focused on testing the
equality of means, namely the high-dimensional equivalence of (1), see, e.g. Cai, Liu and Xia
(2014); Chen, Li and Zhong (2019). Similar to our setup, in the mean testing problems, we
may allow for non-sparse means in each sample and test only for sparse differences between
the two population means (Cai, Liu and Xia, 2014). The intuitive approach for testing equality
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of means is to eliminate the dense nuisance parameter by taking the difference in means
of the two samples and thus reducing it to a one-sample problem of testing a sparse mean
against a global zero null, which is also known as the ‘needle in the haystack’ problem well
studied previously by e.g. Ingster (1997); Donoho and Jin (2004). Such reduction, however,
is more intricate in the regression problem, as a result of different design matrices for the two
samples.

Literature is scarce for two-sample testing under high-dimensional regression setting.
Städler and Mukherjee (2012), Xia, Cai and Cai (2018), Xia, Cai and Sun (2020) have pro-
posed methods that work under the additional assumption so that both β1 and β2 can be
consistently estimated. Charbonnier, Verzelen and Villers (2015) and Zhu and Bradic (2016)
are the only existing works in the literature we are aware of that allow for non-sparse re-
gression coefficients β1 and β2. Specifically, Charbonnier, Verzelen and Villers (2015) look
at a sequence of possible supports of β1 and β2 on a Lasso-type solution path and then ap-
ply a variant of the classical F -tests to the lower-dimensional problems restricted on these
supports, with the test p-values adjusted by a Bonferroni correction. Zhu and Bradic (2016)
(after some elementary transformation) uses a Dantzig-type selector to obtain an estimate for
(β1 + β2)/2 and then use it to construct a test statistic based on a specific moment condi-
tion satisfied under the null hypothesis. As both tests depend on the estimation of nuisance
parameters, their power can be compromised if such nuisance parameters are dense.

1.2. Our contributions. Our contributions are four-fold. First, we propose a novel
method to solve the testing problems formulated in (5) and (6) for model (2). Through ‘com-
plementary sketching’, which is a delicate linear transformation on both the designs and
responses, our method turns the testing problem with two different designs into one with
the same design of dimension m × p where m = n1 + n2 − p. After taking the difference
in two regression coefficients, the problem is reduced to testing whether the coefficient in
the reduced one-sample regression is zero against sparse alternatives. The transformation
is carefully chosen such that the error distribution in the reduced one-sample regression is
homoscedastic. This paves the way for constructing test statistics using the transformed co-
variates and responses. Our method is easy to implement and does not involve any compli-
cations arising from solving computationally expensive optimization problems. Moreover,
when complementary sketching is combined with any methods designed for one-sample
global testing problems (e.g. Ingster, Tsybakov and Verzelen, 2010; Arias-Castro, Candès and
Plan, 2011; Carpentier et al., 2019; Carpentier and Verzelen, 2021), our proposal substantially
supplies a novel class of testing and estimation procedures for the corresponding two-sample
problems. However, as the design matrices after the complementary sketching transforma-
tion possess complex dependence structure, theoretical results from the one-sample testing
literature cannot be directly applied, and new techniques are required in the current work to
analyse our two-stage procedure.

Our second contribution is that, in the sparse regime, where the sparsity parameter k ∼ pα

in the alternative (6) for any fixed α ∈ (0,1/2), we show that the detection limit of our pro-
cedure, defined as the minimal ‖β1 − β2‖2 necessary for asymptotic almost sure separation
of the alternative from the null, is minimax optimal up to a multiplicative constant under a
Gaussian design. More precisely, we show that in the asymptotic regime where n1, n2, p di-
verge at a fixed ratio, and for a large class of covariance matrices of the design, if ρ2 ≳ k log p

nκ1
,

where κ1 is a constant depending on n1/n2 and p/m only, then our test has asymptotic power
1 almost surely. On the other hand, in the same asymptotic regime, if ρ2 ≤ cαk log p

nκ1
for some

cα depending only on α, then almost surely no test has asymptotic size 0 and power 1.
Furthermore, our results reveal the effective sample size of the two-sample testing prob-

lem. Here, by effective sample size, we mean the sample size for a corresponding one-sample
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testing problem (i.e. testing β = 0 in a linear model Y =Xβ + ϵ with rows of X following
the same distribution as rows of X1 and X2) that has an asymptotically equal detection limit;
see the discussion after Theorem 5 for a detailed definition. At first glance, one might think
that the effective sample size is m, which is the number of rows in the reduced design. This
hints that the reduction to the one-sample problem has made the original two-sample problem
obsolete. However, on deeper thoughts, as an imbalance in the numbers of observations inX1

and X2 clearly makes testing more difficult, the effective sample size has to also incorporate
this effect. We see from the previous point that uniformly for any α less than and bounded
away from 1/2, the detection boundary is of order ρ2 � k log p

nκ1
, with the precise definition of

κ1 given in Proposition 2. Writing n1/n2 = r and p/m = s, our results on the sparse case
implies that the two-sample testing problem has the same order of detection limit as in a
one-sample problem with sample size nκ1 =m(r−1 + r + 2)−1. We note that this effective
sample size is proportional to m, and for each fixed m, maximized when r = 1 (i.e. n1 = n2)
and approaches m/n in the most imbalanced design. This is in agreement with the intuition
that testing is easiest when n1 = n2 and impossible when n1 and n2 are too imbalanced.
Our study, thus, sheds light on the intrinsic difference between two-sample and one-sample
testing problems and characterizes the precise dependence of the difficulty of the two-sample
problem on the sample size and dimensionality parameters.

Finally, we observe a phase transition phenomena of how the minimax detection limit de-
pends on the sparsity parameter k. On top of minimax rate optimal detection limit of our
procedure in the sparse case when k � pα for α ∈ [0,1/2), we also prove that a modified
version of our procedure, designed for denser signals, is able to achieve minimax optimal de-
tection limit up to logarithmic factors in the dense regime k � pα for α ∈ (1/2,1). However,
the detection limit is of order ρ2 � k log p

nκ1
in the sparse regime, but of order ρ2 � p−1/2 up to

logarithmic factors in the dense regime. Such a phase transition phenomenon is qualitatively
similar to results previously reported in the one-sample testing problem (see, e.g. Ingster,
Tsybakov and Verzelen, 2010; Arias-Castro, Candès and Plan, 2011; Carpentier et al., 2019;
Carpentier and Verzelen, 2021).

1.3. Organization of the paper. We describe our methodology in detail in Section 2 and
establish its theoretical properties in Section 3. Numerical results illustrate the finite sample
performance of our proposed algorithm in Section 4. We present in Section 5 a real data
example to compare gene regulatory networks in two close-related types of T cells. Proofs
of our main results are deferred until Section 6 with the rest of proofs and ancillary results in
Sections A and B of the online supplementary material.

1.4. Notation. For any positive integer n, we write [n] := {1, . . . , n}. For a vector v =
(v1, . . . , vn)

⊤ ∈ Rn, we define ‖v‖0 :=
∑n

i=1 1{vi ̸=0}, ‖v‖∞ := maxi∈[n] |vi| and ‖v‖q :={∑n
i=1(vi)

q
}1/q for any positive integer q, and let Sn−1 := {v ∈Rn : ‖v‖2 = 1}. The support

of vector v is defined by supp(v) := {i ∈ [n] : vi 6= 0}.
For n≥m, On×m denotes the space of n×mmatrices with orthonormal columns. For a ∈

Rp, we define diag(a) to the p× p diagonal matrix with diagonal entries filled with elements
of a, i.e., (diag(a))i,j = 1{i=j}ai. Let A ∈ Rp×p, and we write ‖A‖op, ‖A‖F and ‖A‖max

for its operator, Frobenius and entrywise ℓ∞ norm respectively. We define diag(A) to be the
p× p diagonal matrix with diagonal entries coming from A, i.e., (diag(A))i,j = 1{i=j}Ai,j .
We also write tr(A) :=

∑
i∈[p]Ai,i. For a symmetric matrix A ∈ Rp×p and j ∈ [p], we write

λj(A) for its jth largest (real) eigenvalue. When λp(A)≥ 0,A is positive semidefinite, which
we denote byA� 0. ForA symmetric and k ∈ [p], the k-sparse operator norm ofA is defined
by

‖A‖k,op := sup
v∈Sp−1:∥v∥0≤k

|v⊤Av|.
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For any S ⊆ [n], we write vS for the |S|-dimensional vector obtained by extracting coordi-
nates of v in S and AS,S the matrix obtained by extracting rows and columns of A indexed
by S.

Given two sequences (an)n∈N and (bn)n∈N such that bn > 0 for all n, we write an =O(bn)
if |an| ≤Cbn for some constant C . If the constant C depends on some parameter x, we write
an =Ox(bn) instead. Also, an = O(bn) denotes an/bn → 0.

2. Testing via complementary sketching. In this section, we describe our testing strat-
egy. Since we are only interested in the difference in regression coefficients in the two linear
models, we reparametrize (2) with γ := (β1 + β2)/2 and θ := (β1 − β2)/2 to separate the
nuisance parameter from the parameter of interest. Define

Θp,k(ρ) :=
{
θ ∈Rp : ‖θ‖2 ≥ ρ and ‖θ‖0 ≤ k

}
.

Under this new parametrization, the null and the alternative hypotheses can be equivalently
formulated as

H0 : θ = 0 and H1 : θ ∈Θp,k(ρ).

The parameter of interest θ is now k-sparse under the alternative hypotheses. However, its
inference is confounded by the possibly dense nuisance parameter γ ∈ Rp. A natural idea,
then, is to eliminate the nuisance parameter from the model. In the special design setting
where X1 = X2 (in particular, n1 = n2), this can be achieved by considering the sparse
regression model Y1 − Y2 = X1θ + (ϵ1 − ϵ2). While the above example only works in a
special, idealized setting, it nevertheless motivates our general testing procedure.

To introduce our test, we first concatenate the design matrices and response vectors to
form

X =

(
X1

X2

)
and Y =

(
Y1
Y2

)
.

A key idea of our method is to project X and Y respectively along n− p pairs of directions
that are complementary in sign in a subset of their coordinates, a process we call complemen-
tary sketching. Specifically, assume n1 + n2 > p and define n := n1 + n2 and m := n− p
and let A1 ∈Rn1×m and A2 ∈Rn2×m be chosen such that

(7) A⊤
1 A1 +A⊤

2 A2 = Im and A⊤
1 X1 +A⊤

2 X2 = 0.

In other words, A := (A⊤
1 ,A

⊤
2 )

⊤ is a matrix with orthonormal columns orthogonal to the
column space ofX . SuchA1 andA2 exist since the null space ofX has dimension at leastm.
Define Z :=A⊤

1 Y1 +A⊤
2 Y2 ∈Rm, W :=A⊤

1 X1 −A⊤
2 X2 ∈Rm×p and ξ =A⊤

1 ε1 +A⊤
2 ε2 ∈

Rm. From the above construction, we have

(8) Z =A⊤
1 X1β1 +A⊤

2 X2β2 + (A⊤
1 ϵ1 +A⊤

2 ϵ2) =Wθ+ ξ,

where ξ |W ∼ Nm(0,A
⊤A) = Nm(0, σ

2Im). We note that similar to conventional sketch-
ing (see, e.g. Mahoney, 2011), the complementary sketching operation above synthesizes m
data points from the original n observations. However, unlike conventional sketching, where
one projects the design X and response Y by the same sketching matrix S ∈ Rm×n to ob-
tain sketched data (SX,SY ), here we project X and Y along different directions to obtain
(Ã⊤X,A⊤Y ), where Ã := (A⊤

1 ,−A⊤
2 )

⊤ is complementary in sign to A in its second block.
Moreover, the main purpose of the conventional sketching is to trade off statistical efficiency
for computational speed by summarizing raw data with a smaller number of synthesized data
points, whereas the main aim of our complementary sketching operation is to eliminate the
nuisance parameter, and surprisingly, as we will see in Section 3, there is essentially no loss
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of statistical efficiency introduced by our complementary sketching in this two-sample testing
setting.

To summarize, after projectingX and Y via complementary sketching to obtainW and Z ,
we reduce the original two-sample testing problem to a one-sample problem with m obser-
vations, where we test the global null of θ = 0 against sparse alternatives using data (W,Z).
From here, we can construct test statistics as functions of W and Z , for which we describe
two different tests. The first testing procedure, detailed in Algorithm 1, computes the sum of
squares of hard-thresholded inner products between the responseZ and standardized columns
of the design matrix W in (8). We denote the output of Algorithm 1 with input X1, X2, Y1
and Y2 and tuning parameters ω and τ as ψsparse

ω,τ (X1,X2, Y1, Y2). As we will see in Sec-
tion 3, if we have a ‘good’ estimator σ̂ for the noise level σ, the choice of ω = 2σ̂

√
log p and

τ = kσ̂2 log p would be suitable for testing against sparse alternatives in the case of k ≤ p1/2.
On the other hand, in the dense case when k > p1/2, one option would be to choose ω = 0.
However, it turns out to be difficult to set the test threshold level τ in this dense case using
the known problem parameters. Therefore, we decided to study instead the following as our
second test. We apply steps 1 to 4 of Algorithm 1 to obtain the vector Z , and then for a
suitable choice of threshold level η, define our test as

ψdense
η (X1,X2, Y1, Y2) := 1{‖Z‖22 ≥ η}.

Algorithm 1: Pseudo-code for complementary sketching-based test ψsparse
ω,τ .

Input: X1 ∈Rn1×p,X2 ∈Rn2×p, Y1 ∈Rn1 , Y2 ∈Rn2 satisfying n1 + n2 − p > 0, a hard threshold
level ω ≥ 0, and a test threshold level τ > 0.

1 Set m← n1 + n2 − p.

2 Form A ∈On×m with columns orthogonal to the column space of (X⊤
1 ,X⊤

2 )⊤.
3 Let A1 and A2 be submatrices formed by the first n1 and last n2 rows of A.

4 Set Z←A⊤
1 Y1 +A⊤

2 Y2 and W ←A⊤
1 X1 −A⊤

2 X2.

5 Compute Q←{diag(W⊤W )}−1/2W⊤Z .
6 Compute the test statistic

T :=

p∑
j=1

Q2
j1{|Qj |≥ω}.

7 Reject the null hypothesis if T ≥ τ .

The computational complexity of both ψsparse
ω,τ and ψdense

η depends on Step 2 of Algo-
rithm 1. In practice, we can form the projection matrix A as follows. We first generate an
n ×m matrix M with independent N(0,1) entries, and then project columns of M to the
orthogonal complement of the column space of X to obtain M̃ := (In−XX†)M , where X†

is the Moore–Penrose pseudoinverse of X . Finally, we extract an orthonormal basis from the
columns of M̃ via a QR decomposition M̃ = AR, where R is upper triangular and A is a
(random) n×m matrix with orthonormal columns that can be used in Step 2 of Algorithm 1.
The overall computational complexity for our tests are therefore of order O(n2p+nm2). Fi-
nally, it is worth emphasizing that while the matrix A generated this way is random, our test
statistics T =

∑p
j=1Q

2
j1{|Qj |≥ω} and ‖Z‖22, are in fact deterministic. To see this, we observe

that both

W⊤Z = (A⊤
1 X1 −A⊤

2 X2)
⊤(A⊤

1 Y1 +A⊤
2 Y2)

=
(
X⊤

1 −X⊤
2

)(A1

A2

)(
A⊤

1 A
⊤
2

)(Y1
Y2

)
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and ‖Z‖22 = Y ⊤AA⊤Y depend on A only through AA⊤, which is determined by the
column space of A. Moreover, by Lemma 10, (‖Wj‖22)j∈[p], being diagonal entries of
W⊤W = 4X⊤

1 A1A
⊤
1 X1, are also functions of X alone. This attests that both test statistics,

and consequently our two tests, are deterministic in nature.

3. Theoretical analysis. We now turn to the analysis of the theoretical performance of
ψsparse
ω,τ and ψdense

η . We consider both the size and power of each test, as well as the minimax
lower bounds for smallest detectable signal strengths.

In addition to working under the regression model (2), we further assume the following
conditions in our theoretical analysis. For some constants 0< λ≤ λ <∞, we write

C := {Σ ∈Rp×p : Σ� 0, diag(Σ) = Ip and for all S ⊆ [p] with |S|= k

λ≤ λk(ΣS,S)≤ λ1(ΣS,S)≤ λ}
(C1) All rows of X1 and X2 are independent and follows Np(0,Σ) distribution such that

Σ ∈ C.
(C2) Parameters n1, n2, p satisfy m = n1 + n2 − p > 0 and lie in the asymptotic regime

where n1/n2 → r and p/m→ s as n1, n2, p→∞.

The condition that diag(Σ) = Ip in (C1) means that all columns of the design matrix should
have unit variance and that Σ is in fact a correlation matrix. This is assumed here both to
simplify notation in our theoretical analysis and to reflect the common practice of column
normalization in practical applications (especially when covariates are measured in different
units). For a generic Σ, we remark that the testing boundary should be measured in terms
of θ⊤ diag(Σ)θ instead of ‖θ‖22 and results similar to Theorems 1, 3, 5, 6, 7 can be derived
via the reduction X 7→ X{diag(Σ)}−1/2. The condition in (C1) that the spectrum of any
k × k principal submatrix of Σ is contained in [λ,λ] is relatively mild. It requires that any
k covariates are not too collinear. We note that it is in particular implied if Σ itself has a
bounded condition number, or alternatively if Σ satisfies the restricted isometry condition.

The condition n1+n2− p > 0 in (C2) is necessary in this two-sample problem, since oth-
erwise, for any prescribed value of ∆ := β1 − β2, the equation system with β1 as unknowns(

X1

X2

)
β1 =

(
Y1

Y2 −X2∆

)
has at least one solution when (X⊤

1 ,X
⊤
2 )⊤ has rank n. As a result, except in some patho-

logical cases, we can always find β1, β2 ∈ Rp that fit the data perfectly with Y1 =X1β1 and
Y2 =X2β2, which makes the testing problem impossible. A more rigorous statement regard-
ing the necessity of this condition in a minimax sense is proved in Proposition 9. Finally,
we have carried out proofs of our theoretical results with finite sample arguments wherever
possible. Nevertheless, due to a lack of finite-sample bounds on the empirical spectral density
of matrix-variate Beta distributions, all results in this section are presented under the asymp-
totic regime set out in Condition (C2). Under this condition, we were able to exploit existing
results in the random matrix theory to obtain a sharp dependence of the detection limit on s
and r.

In practice, the noise variance σ2 is typically unknown. The problem of noise variance
estimation in high-dimensional linear models is a well-studied one itself that has received
much attention recently (Fan, Guo and Hao, 2012; Sun and Zhang, 2012; Homrighausen and
McDonald, 2013; Dicker, 2014; Reid, Tibshirani and Friedman, 2016). As the main focus
of the current work is on two-sample testing of regression coefficients, we will make the
simplifying assumption in our theoretical analysis that the noise variance σ2 is either known
or that good estimators exist. Specifically, we assume that one of the following two conditions
about the noise variance is met:
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(S1) There exists an independent estimator σ̂ of σ such that σ̂ a.s.−→ σ.
(S2) There exists an independent estimator σ̂ such that we have |σ̂/σ−1|= O(p−1/2 log1/2 p)

almost surely.

For most of our theoretical analysis, the much weaker condition (S1) suffices. The stronger
condition (S2) is needed only in Theorem 6, where we derive the upper bound for the test
ψdense
η .
We remark that condition (S1) is very mild. It is for instance significantly weaker than most

conditions where one requires the rate of convergence of σ̂ of order at least a polynomial in
p, i.e., for some α ≤ 1/2 and any ε > 0, P(|σ̂/σ − 1|pα > ε) = O(1). The independence
assumption on σ̂ is often achieved in practice by sample splitting. For instance, using con-
sistent estimators of σ proposed in Dicker (2014), we may use O(log2 n) data points from
each sample to estimate σ, and use the remaining samples to perform the hypothesis test.
However, we will assume that σ̂ is available independent of (X1, Y1,X2, Y2) so that we can
focus our theoretical analysis on the primary points of interest in this problem.

Condition (S2) is much stronger than (S1) but slightly weaker than the usual
√
n-

consistency found in the parametric literature, albeit we need the convergence to take place
almost surely. Similar to (S1), in reality we could possibly obtain such an estimator via the
usual sample-splitting argument, where we take a fixed proportion of all data points to esti-
mate σ and the rest for testing.

Finally, for ease of reference, we summarize all our theoretical findings in Table 1. Here,
the lower bounds are proved in a subclass of covariance matrices C(D)⊆ C defined in (12).

sparse dense

upper bound
7σ2k log p

λ2nκ1

2σ2
√
m log p

λnκ1

lower bound
(1− 2α− ϵ)σ2k log p

8Dnκ1
O(p−1/2min{log−1/2(ep/k),D−3/2})

TABLE 1
Comparison of upper and lower bounds of the testing boundary in terms of ρ2 in both sparse and dense cases.

3.1. Sparse case. We consider in this subsection the test ψsparse
ω,τ , which is suitable for

distinguishing β1 and β2 that differ in only a few coordinates, the setting that has more subtle
phenomena and hence is most interesting to us. Our first result below states that with a choice
of hard-thresholding level ω of order σ

√
log p, the test has asymptotic size 0.

THEOREM 1. If Conditions (C2) and (S1) hold and β1 = β2, then, with the choice of
parameters τ > 0 and ω = σ̂

√
(4 + ε) log p for any ε > 0, we have

ψsparse
ω,τ (X1,X2, Y1, Y2)

a.s.−−→ 0.

The almost sure statement in Theorem 1 and subsequent results in this section are with
respect to both the randomness in X = (X⊤

1 ,X
⊤
2 )⊤ and in ϵ= (ϵ⊤1 , ϵ

⊤
2 )

⊤. However, a closer
inspection of the proof of Theorem 1 tells us that the statement is still true if we allow an
arbitrary sequence of matrices X (indexed by p) and only consider almost sure convergence
with respect to the distribution of ϵ.

The control of the asymptotic power of ψsparse
ω,τ is more involved. A key step in the argu-

ment is to show thatW⊤W is suitably close to a multiple of the population covariance matrix
Σ. More precisely, in Proposition 2 below, we derive entrywise and k-sparse operator norm
controls of the Gram matrix of the design matrix sketch W .



10 F. GAO AND T. WANG

PROPOSITION 2. Under Conditions (C1) and (C2), we further assume k ∈ [p] and let W
be defined as in Algorithm 1. Then with probability 1,

(9) max
j∈[p]

∣∣∣∣(W⊤W )j,j
4nκ1

− 1

∣∣∣∣→ 0,

where κ1 := r/{(1 + r)2(1 + s)}. Moreover, define W̃ :=W{diag(W⊤W )}−1/2. If

(10)
k log(ep/k)

n
→ 0,

then there exists Cs,r > 0, depending only on s and r, such that with probability 1, the fol-
lowing holds for all but finitely many p:

(11) ‖W̃⊤W̃ −Σ‖k,op ≤Cs,r

{
λ

√
k log(ep/k)

n
+ λ

2

√
log p

n

}
.

We note that condition (10) is relatively mild and would be satisfied if k ≤ pα for any
α ∈ [0,1). As we will see later, the quantity nκ1 in (9) can be viewed as the ‘effective sample
size’ of the two-sample testing problem. A more detailed discussion about the intuition and
interpretation of this quantity is provided after Theorem 5.

All theoretical results in this section except for Theorem 1 assume the random design
Condition (C1) to hold. However, as revealed by the proofs, for any given (deterministic)
sequence of X , these results remain true as long as (9) and (11) are satisfied. The asymptotic
nature of Proposition 2 is a result of our application of Bai et al. (2015, Theorem 1.1), which
guarantees an almost sure convergence of the empirical spectral distribution of Beta random
matrices in the weak topology. This sets the tone for the asymptotic nature of our results,
which depend on the aforementioned limiting spectral distribution.

The following theorem provides power control of our procedure ψsparse
ω,τ , when the ℓ2 norm

of the scaled difference in regression coefficient θ = (β1 − β2)/2 exceeds an appropriate
threshold.

THEOREM 3. Under Conditions (C1), (C2) and (S1), we further assume k ∈ [p] and
that (10) holds. If θ = (β1−β2)/2 ∈Θp,k(ρ) with ρ2 ≥ 7σ2k log p

λ2nκ1
, and we set input parameters

ω = σ̂
√

(4 + ε) log p for any ε ∈ (0,1) and τ ≤ σ̂2k log p in Algorithm 1, then

ψsparse
ω,τ (X1,X2, Y1, Y2)

a.s.−−→ 1.

The size and power controls in Theorems 1 and 3 jointly provide an upper bound on the
minimax detection threshold. Specifically, let PXβ1,β2

be the conditional distribution of Y1, Y2
given X1,X2 under model (2). Conditionally on the design matrices X1 and X2 and given
k ∈ [p] and ρ > 0, the (conditional) minimax risk of testing H0 : β1 = β2 against H1 : θ =
(β1 − β2)/2 ∈Θp,k(ρ) is defined as

MX(k, ρ) := inf
ψ

{
sup
β∈Rp

PXβ,β(ψ 6= 0) + sup
β1,β2∈Rp

(β1−β2)/2∈Θp,k(ρ)

PXβ1,β2
(ψ 6= 1)

}
,

where we suppress all dependences on the dimension of data for notational simplicity and
the infimum is taken over all ψ : (X1, Y1,X2, Y2) 7→ {0,1}. If MX(k, ρ)

p−→ 0, there exists a
test ψ that with asymptotic probability 1 correctly differentiates the null and the alternative.
On the other hand, if MX(k, ρ)

p−→ 1, then asymptotically no test can do better than a random
guess. The following corollary provides an upper bound on the signal size ρ for which the
minimax risk is asymptotically zero.
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COROLLARY 4. Under conditions (C1), (C2) and (S1), we further assume k ∈ [p] and
that (10) holds. If ρ2 ≥ 7σ2k log p

λ2nκ1
, and we set input parameters ω = σ̂

√
(4 + ε) log p for any

ε ∈ (0,1] and τ ∈ (0, σ̂2k log p] in Algorithm 1, then

MX(k, ρ)≤ sup
β∈Rp

PXβ,β(ψ
sparse
ω,τ 6= 0) + sup

β1,β2∈Rp

(β1−β2)/2∈Θp,k(ρ)

PXβ1,β2
(ψsparse

ω,τ 6= 1)
a.s.−−→ 0

Corollary 4 shows that the test ψsparse
ω,τ has an asymptotic detection limit, measured in

‖β1 − β2‖2, of at most {7σ2k log p
λ2nκ1

}1/2 for all k satisfying (10). While (10) is satisfied for k ≤
pα with any α ∈ [0,1), the detection limit upper bound shown in Corollary 4 is suboptimal
when α> 1/2, as we will see later in Theorem 6. On the other hand, Theorem 5 below shows
that when α < 1/2, the detection limit of ψsparse

ω,τ is essentially optimal for a large subclass
of covariance matrices. For some D > 0 (which we allow to diverge as p→∞), we write
RowSp(D)⊆ Rp×p for the subset of p× p matrices having at most D nonzero elements in
each row and define

(12) C(D) :=

{
Σ ∈ C : Σ = Σ0 +Γ for Σ0 ∈RowSp(D) and ‖Γ‖max ≤

D

k log2 p

}
.

The class C(D) consists of matrices admitting a sparse plus noise decomposition, and con-
tains many common covariance matrices for relatively small choice of D. For instance,
if Σ is a banded matrix, we may take D to be its bandwidth and Γ = 0. When Σ =
(Σj,ℓ)j,ℓ∈[p] = (ϱ|j−ℓ|)j−ℓ∈[p] has an auto-regressive structure, we may take D = (logk +

log log2 p)/ log(varrho). Another example is when Σ = V ΛV ⊤ + Ξ has a spiked covari-
ance structure such that V is uniformly sampled from Op×r and Λ,Ξ� 0 are diagonal (this
is commonly encountered in e.g. factor analysis). In this case, each row of V has ℓ2 norm
bounded by

√
(r log p)/p with high probability, so ‖V ΛV ⊤‖max ≤ (λr log p)/p and hence

Σ ∈ C(D) with D =max{1, (λr log3 p)/p}.

THEOREM 5. Under conditions (C1) and (C2), if further assume Σ ∈ C(D) for some
D > 0, k ≤ pα for some α ∈ [0,1/2) and ρ2 ≤ (1−2α−ε)σ2k log p

8Dnκ1
for some ε ∈ (0,1 − 2α],

then MX(k, ρ)
a.s.−−→ 1.

For any fixed α < 1/2, Theorem 5 shows that for designs having covariance matrix in
C(D), if the squared signal ℓ2 norm is a factor of 56D/{λ2(1− 2α− ε)} smaller than what
can be detected by ψsparse

ω,τ shown in Corollary 4, then all tests are asymptotically powerless in
differentiating the null from the alternative. In other words, in the sparse regime where k ≤ pα

for α < 1/2, the test ψsparse
ω,τ has a minimax optimal detection limit measured in ‖β1 − β2‖2,

up to constants depending on α,λ and D only.
It is illuminating to relate the above results with the corresponding ones in the one-sample

problem in the sparse regime (α< 1/2). Let X be an n× p matrix with independent N(0,1)
entries and Y =Xβ + ϵ for ϵ |X ∼N(0, In), and we consider the one-sample problem to
test H0 : β = 0 against H1 : β ∈ Θp,k(ρ). Theorem 2 and 4 of Arias-Castro, Candès and
Plan (2011) state that under the additional assumption that all nonzero entries of β have

equal absolute values, the detection limit for the one-sample problem is at ρ �
√

k log p
n , up

to constants depending on α. Thus, when λ and D are constants, Corollary 4 and Theorem 5
suggest that the two-sample problem with model (2) has up to multiplicative constants the
same detection limit as the one-sample problem with sample size

(13) nκ1 =
nr

(1 + r)2(1 + s)
,
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which unveils how this ‘effective sample size’ depends on the relative proportions between
sample sizes n1, n2 and the dimension p of the problem. It is to be expected that the effective
sample size is proportional to m, which is the number of observations constructed from
X1 and X2 in W . More intriguingly, (13) also gives a precise characterization of how the
effective sample size depends on the imbalance between the number of observations in X1

and X2. For a fixed n= n1 + n2, nκ1 is maximized when n1 = n2 and converges to n1m/n
(or n2m/n) if n1/n→ 0 (or n2/n→ 0).

3.2. Dense case. We now turn our attention to our second test, ψdense
η . The following

theorem states a sufficient signal ℓ2 norm size for which ψdense
η is asymptotically powerful in

distinguishing the null from the alternative.

THEOREM 6. Under Conditions (C1), (C2) and (S2), we let η = σ̂2
(
m+2

√
(2 + ε)m log p+

2(1 + ε) log p
)

for any ε ∈ (0,5). We further assume k ∈ [p], ρ2 ≥ 2σ2
√
m log p

nκ1λ
and that (10)

is satisfied.

(a) If β1 = β2, then ψdense
η (X1,X2, Y1, Y2)

a.s.−−→ 0.
(b) If θ = (β1 − β2)/2 ∈Θp,k(ρ), then ψdense

η (X1,X2, Y1, Y2)
a.s.−−→ 1.

Consequently, MX(k, ρ)
a.s.−−→ 0.

Theorem 6 indicates that the sufficient signal ℓ2 norm for asymptotic powerful testing
via ψdense

η does not depend upon the sparsity level. While the above result is valid for all
k ∈ [p] such that (10) holds, it is more interesting in the dense regime where k ≥ p1/2. More
precisely, by comparing Theorems 6 and 4, we see that if k2 log p > m and k log(ep/k) ≤
n/(2Cs,r), the test ψdense

η has a smaller provable detection limit than ψsparse
ω,τ . In our asymp-

totic regime (C2), m� n� p, so 2
√
m log p
nκ1

is, up to constants depending on s and r, of order
p−1/2 log1/2 p. The following theorem points out that when Σ ∈ C(D) for some constant D,
the detection limit of ψdense

η is minimax optimal up to poly-logarithmic factors in the dense
regime.

THEOREM 7. Under conditions (C1) and (C2), if we further assume Σ ∈ C(D) for some
D> 0, p1/2 ≤ k ≤ pα for some α ∈ [1/2,1) and ρ2 = O(p−1/2min{log−1/2(ep/k),D−3/2}),
then MX(k, ρ)

a.s.−−→ 1.

4. Numerical studies. In this section, we study the finite sample performance of our
proposed procedures via numerical experiments. Unless otherwise stated, the data generating
mechanism for all simulations in this section is as follows. We first generate design matrices
X1 and X2 with independent N(0,1) entries. Then, for a given sparsity level k and a signal
strength ρ, set ∆= (∆j)j∈[p] so that (∆1, . . . ,∆k)

⊤ ∼ ρUnif(Sk−1) and ∆j = 0 for j > k.
We then draw β1 ∼ Np(0, Ip) and define β2 := β1 +∆. Finally, we generate Y1 and Y2 as
in (2), with ϵ1 ∼Nn1

(0, In1
) and ϵ2 ∼Nn2

(0, In2
) independent of each other.

In Section 4.1, we supply the oracle value of σ̂2 = 1 to our procedures to check whether
their finite sample performance is in accordance with our theory. In all subsequent subsec-
tions where we compare our methods against other procedures, we estimate the noise vari-
ance σ2 with the method-of-moments estimator proposed by Dicker (2014). We implement
our estimators ψsparse

ω,τ and ψdense
η on standardized data X1/σ̂, X2/σ̂, Y1/σ̂ and Y2/σ̂ with

the tuning parameters ω = 2σ̂
√
log p, τ = σ̂2 log p and η = σ̂2(m+

√
8m log p+ 4 log p) as

suggested by Theorems 1, 3 and 6.
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4.1. Effective sample size in two-sample testing. We first investigate how the empirical
power of our test ψsparse

λ,τ relies on various problem parameters. In light of our results in
Theorems 1 and 3, we define

(14) ν :=
rnρ2

σ2(1 + s)(1 + r)2k log p
,

where s := p/m and r := n1/n2. Note that in the asymptotic regime (C2), we have ν →
nκ1ρ

2/(σ2k log p). As discussed after Theorem 3, rn/{(1 + s)(1 + r)2} in the definition
of ν is asymptotically nκ1 and can be viewed as the effective sample size in the testing
problem. In Figure 1, we plot the estimated test power of ψsparse

λ,τ against ν over 100 Monte
Carlo repetitions for n = 1000, k = 10, ρ ∈ {0,0.2, . . . ,2} and various values of p and n1.
In the left panel of Figure 1, p ranges from 100 to 900, which corresponds to s from 1/9 to
9. As for the right panel, we vary n1 from 100 to 900, which corresponds with an r varying
between 1/9 and 9. In both panels, the power curves for different s and r values overlap each
other, with the phase transition all occurring at around ν ≈ 1.5. This conforms well with the
effective sample size and the detection limit articulated in our theory.
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Fig 1: Power function of ψsparse
λ,τ , estimated over 100 Monte Carlo repetitions, plotted

against ν, as defined in (14), in various parameter settings. Left panel: n1 = n2 = 500,
p ∈ {100,200, . . . ,900}, k = 10, ρ ∈ {0,0.2, . . . ,2}. Right panel: n1 ∈ {100,200, . . . ,900},
n2 = 1000− n1, p= 400, k = 10, ρ ∈ {0,0.2, . . . ,2}.

4.2. Comparison with other methods. Next, we compare the performance of our proce-
dures against competitors in the existing literature. The only methods we were aware of that
could allow for dense regression coefficients β1 and β2 were those proposed by Zhu and
Bradic (2016) and Charbonnier, Verzelen and Villers (2015). In addition, we also include in
our comparisons the classical likelihood ratio test, denoted by ψLRT, which rejects the null
when the F -statistic defined in (4) exceeds the upper α-quantile of an Fp,n−2p distribution.
Note that the likelihood ratio test is only well-defined if p <min{n1, n2}. The test proposed
by Zhu and Bradic (2016), which we denote by ψZB, requires that n1 = n2 (when the two
samples do not have equal sample size, a subset of the larger sample would be discarded for
the test to apply). Specifically, writing X+ :=X1+X2, X− :=X1−X2 and Y+ := Y1+Y2,
ψZB first estimates γ = (β1 + β2)/2 and

Π := {E(X⊤
+X+)}−1E(X⊤

+X−)
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by solving Dantzig-Selector-type optimization problems. Then based on the obtained estima-
tors γ̂ and Π̂, ψZB proceeds to compute a test statistic

TZB :=
‖{X− −X+Π̂}⊤{Y+ −X+γ̂}‖∞

‖Y+ −X+γ̂‖2
.

Their test rejects the null if the test statistic exceeds an empirical upper-α-quantile (obtained
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Fig 2: Power comparison of different methods at different sparsity levels k ∈
{1,10, bp1/2c,0.1p, p} and different signal ℓ2 norm ρ on a logarithmic grid (noise variance
σ2 = 1). Top panel: n1 = n2 = 1200, p = 1000, ρ ∈ [0,10]; bottom panel: n1 = n2 = 500,
p= 800, ρ ∈ [0,20].

via Monte-Carlo simulation) of ‖ξ‖∞ for ξ ∼N(0,{X− −X+Π̂}⊤{X− −X+Π̂}). As the
estimation of Π involves solving a sequence of p Dantzig Selector problems, which is often
time-consuming, we have implemented ψZB with the oracle choice of Π̂ = Π, which is equal
to Ip when covariates in the two design matrices X1 and X2 follow independent centred
distribution with the same covariance matrix. The test proposed by Charbonnier, Verzelen
and Villers (2015), denoted here by ψCVV, first performs a LARS regression (Efron et al.,
2004) of concatenated response Y = (Y ⊤

1 , Y
⊤
2 )⊤ against the block design matrix(

X1 X1

X2 −X2

)
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to obtain a sequence of regression coefficients b̂ = (b̂1, b̂2) ∈ Rp+p. Then for every b̂ on the
LARS solution path with ‖b̂‖0 ≤ min{n1, n2}/2, they restrict the original testing problem
into the subset of coordinates where either b̂1 or b̂2 is non-zero, and form test statistics based
on the Kullback–Leibler divergence between the two samples restricted to these coordinates.
The sequence of test statistics is then compared with Bonferroni-corrected thresholds at size
α. For both the ψLRT and ψCVV, we set α= 0.05.

Figure 2 compares the estimated power, as a function of ‖β1−β2‖2, of ψsparse
ω,τ and ψdense

η

against that of ψLRT, ψZB and ψCVV. We ran all methods on the same 100 datasets for each
set of parameters. We performed numerical experiments in two high-dimensional settings
with different sample-size-to-dimension ratio: p= 1000, n1 = n2 = 1200 in the left panel and
p= 800, n1 = n2 = 500 in the right panel. Here, we took n1 = n2 to maximize the power of
ψZB. Also, since the likelihood ratio test requires p <min{n1, n2}, it is only implemented in
the left panel. For each experiment, we varied k in the set {1,10, bp1/2c,0.1p, p} to examine
different sparsity levels.

We see in Figure 2 that both ψsparse
λ,τ and ψdense

η showed promising finite sample perfor-
mance. Both our tests did not produce any false positives under the null when ρ = 0, and
showed better power compared to ψZB and ψCVV. In the more challenging setting of the
right panel with p >max{n1, n2}, it takes a signal ℓ2 norm more than 10 times smaller than
that of the competitors for our test ψsparse

ω,τ to reach power of almost 1 in the sparsest case.
Note though, in the densest case on the right panel (k = 800), ψsparse

ω,τ and ψdense
η did not have

saturated power curves, because noise variance is over-estimated by σ̂2 in this setting.
We also observe that the power of ψsparse

ω,τ has a stronger dependence on the level k than that
of ψdense

η . For k ≤√
p, ψsparse

ω,τ appears much more sensitive to the signal size. As k increases,
ψdense
η eventually outperforms ψsparse

λ,τ , which is consistent with our observed phase transition
behaviour as discussed after Theorem 6. It is interesting to note that when the likelihood ratio
test is well-defined (left panel), it has better power than ψdense

η . This is partly due to the fact
that the theoretical choice of threshold η is relatively conservative to ensure asymptotic size
of the test is 0 almost surely. In comparison, the rejecting threshold for the likelihood ratio
test is chosen to have (p fixed and n→∞) asymptotic size of α = 0.05, and the empirical
size is sometimes observed to be larger than 0.08.

As remarked at the beginning of Section 1.2, the complementary sketching transforming
can potentially be combined with other one-sample global testing procedure to obtain a two-
sample test. Figure 3 illustrates this by comparing our methods with a two-stage procedure
combining the complementary sketching transformation with the one-sample test proposed in
Carpentier et al. (2019), which we call ψCCCTW. We remark that the test in Carpentier et al.
(2019) requires the knowledge of the sparsity k and involves an unspecified parameter C∗.
In our experience, the optimal choice of C∗ seems to vary with different sparsity levels. As
such, we have implemented ψCCCTW by choosing C∗ in each simulation setting to maximize
the power subject to a size constraint of α = 0.05 (specifically, for k = 1,10,31,100,1000,
we have chosen C∗ = 0.30,0.67,1.56,3.37,2.84 respectively). We note that even granting
ψCCCTW access to the additional sparsity parameter and this strong oracle parameter choice,
ψsparse
ω,τ and ψdense

η are still competitive and in most cases outperforming ψCCCTW in the
sparse and dense regimes respectively. We attribute this difference in performance to the
fact that the matrix W after complementary sketching transformation does not satisfy typical
design conditions (such as independent rows) assumed in most one-sample testing literature.
As a result, two-stage methods such as the ψCCCTW test may suffer from power loss due to
model misspecification.

4.3. More general data generating mechanisms. We have thus far focused on the case
of Gaussian random design X1,X2 with identity covariance and Gaussian regression noises
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Fig 3: Power comparison of methods constructed by using different one-sample testing proce-
dures after complementary sketching transformation. Parameters: n1 = n2 = 1200, p= 1000,
ρ ∈ [0,2.5], k ∈ {1,10,31,100,1000}.

ϵ1, ϵ2. However, as our proposed testing procedures can still be used under more general data
generating mechanisms. We consider the following four setups:

(a) Correlated design: assume rows of X1 and X2 are independently drawn from N(0,Σ)
with Σ= (2−|j1−j2|)j1,j2∈[p].

(b) Rademacher design: assume entries of X1 and X2 are independent Rademacher random
variables.

(c) One way balanced ANOVA design: assume d1 := n1/p and d2 := n2/p are integers and
X1 and X2 are block diagonal matrices

X1 =

1d1
. . .

1d1

 X2 =

1d2
. . .

1d2

 ,

where 1d is an all-one vector in Rd.
(d) Heavy tailed noise: we generate both ϵ1 and ϵ2 with independent t4/

√
2 entries. Note

that the
√
2 denominator standardizes the noise to have unit variance, to ensure easier

comparison between settings.

In setups (a) to (c), we keep ϵ1 ∼ Nn1
(0, In1

) and ϵ2 ∼ Nn2
(0, In2

) and in setup (d), we
keep X1 and X2 to have independent N(0,1) entries. Note that in setup (a) the covariance
matrix belongs to C(D) with D � logk + log log2 p. Figure 4 compares the performance
of ψsparse

λ,τ , ψdense
η with that of ψZB and ψCVV. In all settings, we set n1 = n2 = 500 and

k = 10. In settings (a), (b) and (d), we choose p= 800 and ρ from 0 to 20. In setting (c), we
choose p= 250 and ρ from 0 to 50. We see that ψsparse

ω,τ is robust to model misspecification
and exhibits good power in all settings. The test ψdesne

η is robust to non-normal design and
noise, but exhibits a slight reduction in power in a correlated design. The advantage of ψsparse

ω,τ

and ψdense
η over competing methods is least significant in the ANOVA design in setting (c),

where each row vector of the design matrices has all mass concentrated in one coordinate.
In all other settings where the rows of the design matrices are more ‘incoherent’ in the sense
that all coordinate have similar magnitude, ψsparse

ω,τ and ψdense
η start having nontrivial power

at a signal ℓ2 norm 10 to 20 times smaller than that of the competitors.
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(a) Correlated design Σ= (2−|i−j|)i,j∈[p]
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(b) Rademacher design
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(c) One-way balanced ANOVA design
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(d) Gaussian design with t4/
√
2 noise

Fig 4: Power functions of different methods in models with non-Gaussian design or non-
Gaussian noise, plotted against signal ℓ2 norm ρ on a logarithmic grid. Details of the models
are in Section 4.3.

5. Analysing a single-cell dataset. Here, we illustrate the applicability of our method-
ology on a single-cell RNA sequencing dataset from Suo et al. (2022). The dataset consists of
the logarithmic normalized gene expression levels of 33538 genes measured in 91298 cells.
For simplicity, we focus on the subset of n = 7816 cells that have been labelled as either
CD4+ T cells (n1 = 4852) or T regulatory (TREG) cells (n2 = 2964), two closely related
T cell subpopulations, and only keep the p = 4123 genes whose log normalized expression
variance is at least 1 in the two cell subpopulations. We are interested in testing for difference
in the gene regulatory networks in the two cell subpopulations. This can be modelled by the
difference in their respective Gaussian graphical model networks and tested by comparing
the nodewise regression coefficients of each gene against the remaining genes in CD4+ T
cells and TREG cells. The left column of Table 2 summarizes the genes that report signifi-
cant difference in their nodewise regression coefficients from our complementary sketching
method, which we call ‘master regulators’. Among the nine genes identified to have signif-
icant difference in their nodewise regression coefficients, FOXP3, CTLA4, IL2RA, IL7R,
IKZF2, CD83, ANXA1 are all known to be important regulators, from several independent
pathways, essential for the function of the TREG cell type (Bayer, Yu and Malek, 2007;
Walker, 2013; Kim et al., 2015; Doebbeler et al., 2018; Toomer et al., 2019; Bai et al., 2020).

In addition to identifying the master regulator genes, a slight modification of our algorithm
also allows us to identify their top interacting partners insofar as the two T cell subpopulations
are concerned. Specifically, after performing complementary sketching to obtain sketched
design W and response Z in Step 4 of Algorithm 1, we may compute the Lasso solution path
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master regulators top interacting partners

IKZF2 MT-ND4L, HLA-B, MT-ATP8, ETS1, FYB1, JUNB, RNF213, HLA-C
FOXP3 MT-ND4L, MT-ATP8, S100A4, CD96, ISG20, BIRC2, SRSF4, GZMM
CD83 HSPA1A, NFKBIA, RGS2, MTRNR2L12, NR4A1, PSMC3, BAG3, SRP9
IL2RA ENO1, ARID5B, RPL23, CDC42, CREM, CISH, GADD45B, PMAIP1
ANXA1 JUNB, JUN, TNFAIP3, FOSB, CALM2, ABLIM1, RGS2, CHI3L2
CD8A FTL, SLC25A3, CD8B, COTL1, PTPRCAP, PCBP1, STMN1, IGFBP2
CTLA4 RGS1, GBP2, RPS10, ZFP36L1, TAGAP, STAT3, RPS4Y1, SRGN
GNG8 RPL41, HSPB1, OST4, LTB, TERF2IP, CUTA, PPDPF, IFITM1
IL7R RPL41, RPL27A, VIM, TRBC2, SLC25A6, CORO1A, RPS26, TRAC

TABLE 2
Genes with significant difference identified by the complementary sketching algorithm, together with their top
eight interacting partners using graphical Lasso post complementary sketching. Genes that are identified to be

significant by the Mann–Whitney–Wilcoxon test after Bonferroni correction are shown in bold.

(Tibshirani, 1996). The right column of Table 2 shows genes corresponding to the first eight
nonzero coefficients entering the solution path, which can be interpreted as the top interacting
partners of the master regulator genes.

Computationally, we remark that when applying Algorithm 1 to a differential network
analysis setting, we can precompute an orthonormal basis spanning the orthogonal comple-
ment of the column span of (X⊤

1 ,X
⊤
2 )⊤, and obtain individual sketching matrices A for

each nodewise regression by augmenting that basis with one additional vector. For example,
on an 8-core 3.20 GHz desktop machine, our algorithm was able to test for all p = 4123
pairs of nodewise regressions in 1.6 hours (averaging 1.4 seconds per node). Our code and
preprocessed dataset for the real data analysis are both available on GitHub1.

It is interesting to contrast our analysis to the common differential-expression-based ap-
proach for identifying master regulator genes which determine the identity of different cell
types. Differential expression analysis simply compares the expression levels of a gene in two
different cell types, typically with the Mann–Whitney–Wilcoxon test. We have highlighted
in bold in Table 2 all genes that are differentially expressed in CD4+ T cells and TREG cells
(at 0.05 level after Bonferroni correction). It can be seen that all our master regulators are
differentially expressed. However, differential expression analysis identifies a much larger
set of genes, many potentially belonging to the same pathway and dependent on each other.
Overall, our complementary sketching approach allows for more precise identification of the
central players in gene regulatory networks.

6. Proof of main results.

PROOF OF THEOREM 1. By Condition (S1), we may work on the almost sure event Ωσ :=
{σ̂/σ = 1+ O(1)}. Under the null hypothesis where β1 = β2, we have θ = 0 and therefore,
Z =Wθ+ ξ = ξ ∼Nm(0, σ

2Im). In particular, Qj/σ ∼N(0,1) for all j ∈ [p].
Thus, noting the independence of σ̂ and the sample and employing a union bound, we have

for ω = σ̂
√

(4 + ε) log p and any τ > 0 that

P(T ≥ τ | σ̂)≤
p∑
j=1

P(|Qj |/σ ≥ ω/σ | σ̂)≤ p exp
(
−ω2/(2σ2)

)
.

1https://github.com/wangtengyao/compsket/

https://github.com/wangtengyao/compsket/
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Keeping the preceding display in mind, by the independence of σ̂ and the sample, we bound
for p sufficiently large

P(T ≥ τ |Ωσ)≤ p exp
(
−(1− O(1))(2 + ε/2) log p

)
≤ p exp(−(2 + ε/4) log p).

Noting that Ωσ is an almost sure event and that p−1−ε/4 is summable for any ε > 0, the almost
sure convergence in the theorem statement follows from the Borel–Cantelli lemma.

PROOF OF THEOREM 3. By Proposition 2, it suffices to work with a deterministic se-
quence of W such that (9) and (11) holds, which we henceforth assume in this proof.

Define θ̃ = (θ̃1, . . . , θ̃p)
⊤ such that θ̃j := θj‖Wj‖2. Then, from (8), we have

Z = W̃ θ̃+ ξ,

for ξ ∼Nm(0, Im). Write Q := (Q1, . . . ,Qp)
⊤ and S := supp(θ) = supp(θ̃), then

QS = (W̃⊤Z)S ∼Nk

(
(W̃⊤W̃ )S,S θ̃S , (W̃

⊤W̃ )S,S
)
.

Our strategy will be to control ‖QS‖22. To this end, we first look at the quantity ‖(W̃⊤W̃ )
−1/2
S,S QS‖22,

which has a noncentral chi-squared distribution χ2
k(‖θ̃⊤S (W̃⊤W̃ )S,S θ̃S‖22). By (9) and (11),

we have

‖θ̃⊤S (W̃⊤W̃ )S,S θ̃S‖22 ≥ ‖(W̃⊤W̃ )S,S‖op‖θS‖22 ≥ {λ− O(1)}4nκ1ρ2

≥ 28σ2k log p

λ
,

where we have used the fact that ρ2 ≥ 7k log p/(λ2nκ1) in the final bound. Thus, by Birgé
(2001, Lemma 8.1), we have with probability at least 1− p−2 that

‖(W̃⊤W̃ )
−1/2
S,S QS‖22

≥ k+ ‖θ̃⊤S (W̃⊤W̃ )S,S θ̃S‖22 − 2

√
(2k+ 4‖θ̃⊤S (W̃⊤W̃ )S,S θ̃S‖22) log p

≥ {1− O(1)}‖θ̃⊤S (W̃⊤W̃ )S,S θ̃S‖22 − 4‖θ̃⊤S (W̃⊤W̃ )S,S θ̃S‖2
√

log p

≥ (6− O(1))σ2k log p

λ
.(15)

Consequently, by (15) and (11) again, we have with probability at least 1− p−2 that

‖QS‖22 ≥ ‖(W̃⊤W̃ )S,S‖op‖(W̃⊤W̃ )
−1/2
S,S QS‖22

≥ {λ− O(1)}6σ
2k log p

λ
≥ (6− O(1))σ2k log p.(16)

By Condition (S1), we define the almost sure event Ωσ := {σ̂/σ = 1 + O(1)} and ω0 :=

σ
√

(4 + ε) log p. We observe that on the event Ωσ , (ω/ω0)
2 − 1 = (σ̂/σ + 1)(σ̂/σ − 1) =

O(1). From (16), using the tuning parameters ω = σ̂
√

(4 + ε) log p and τ ≤ σ̂2k log p, we
have, conditionally on Ωσ , for sufficiently large p that with probability at least 1− 2p−2,

T =

p∑
j=1

Q2
j1{|Qj |≥ω} ≥ ‖QS‖22 − kω2

0

(
1 + (ω/ω0)

2 − 1
)
≥ σ̂2k log p≥ τ,
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which would allow us to reject the null on the ‘good’ event Ωσ . Keeping in mind that Ωσ is
an almost sure event, we proceed to bound

P(T ≤ τ) = P(T ≤ τ |Ωσ)≤ 2p−2,

The desired almost sure convergence follows by the Borel–Cantelli lemma since 1/p2 is
summable over p ∈N.

PROOF OF THEOREM 5. By considering a trivial test ψ̃ ≡ 0, we see that M≤ 1. Thus, it
suffices to show that M≥ 1− O(1). Note that since k ≤ p1/2, condition (10) is satisfied and
hence by Proposition 2, it suffices to work with a deterministic sequence of X (and hence
W ) such that (9) and (11) holds, which we henceforth assume in this proof.

It is convenient to reparametrize the distributions in terms of (γ, θ) = ((β1 + β2)/2, (β1 −
β2)/2) instead of (β1, β2). Define QXγ,θ := PXβ1,β2

. Let L := (X⊤
1 X1 +X⊤

2 X2)
−1(X⊤

2 X2 −
X⊤

1 X1) and π be the uniform distribution on

Θ0 := {θ ∈ {k−1/2ρ,−k−1/2ρ,0}p : ‖θ‖0 = k} ⊆Θ.

We write Q0 := QX0,0 and let Qπ :=
∫
θ∈Θ0

QXLθ,θ dπ(θ) denote the uniform mixture of QXγ,θ
for {(γ, θ) : θ ∈Θ0, γ = Lθ}. Let L := dQπ/dQ0 be the likelihood ratio between the mixture
alternative Qπ and the simple null Q0. We have that

M≥ inf
ψ̃

{
1− (Q0 −Qπ)ψ̃

}
= 1− 1

2

∫ ∣∣∣∣1− dQπ
dQ0

∣∣∣∣dQ0

≥ 1− 1

2

{∫ (
1− dQπ

dQ0

)2

dQ0

}1/2

≥ 1− 1

2
{Q0(L2)− 1}1/2.

So it suffices to prove that Q0(L2)≤ 1 + O(1). Writing X̃1 =X1L+X1 and X̃2 =X2L−
X2, by the definition of Qπ , we compute that

L=

∫
dQXLθ,θ
dQ0

dπ(θ) =

∫
e−

1

2
(∥Y1−X1Lθ−X1θ∥2+∥Y2−X2Lθ+X2θ∥2)

e−
1

2
(∥Y1∥2+∥Y2∥2)

dπ(θ)

=

∫
e⟨X̃1θ,Y1⟩− 1

2
∥X̃1θ∥2+⟨X̃2θ,Y2⟩− 1

2
∥X̃2θ∥2

dπ(θ).

For θ ∼ π and some fixed J0 ⊆ [p] with |J0| = k, let πJ0
be the distribution of θJ0

con-
ditional on supp(θ) = J0. Let J,J ′ be independently and uniformly distributed on {J0 ⊆
[p] : |J0| = k}. Define θ̃ := (θ̃1, . . . , θ̃p)

⊤ and θ̃′ := (θ̃′1, . . . , θ̃
′
p)

⊤ such that θ̃j := θj‖Wj‖2
and θ̃′j := θ′j‖Wj‖2. Since Σ ∈ C(D), we can write Σ = Σ0 + Γ for Σ0 ∈ RowSp(D) and
‖Γ‖max = O(D/(k log p)). Also, since Σ is symmetric and ‖Σ‖max = ‖diag(Σ)‖max = 1,
we may assume without loss of generality that Σ0 is symmetric and ‖Σ0‖max ≤ 1. By Fu-
bini’s theorem and Lemmas 11 and 10, we have

Q0(L2) =

∫∫
θ,θ′

e
1

2
∥X̃1(θ+θ′)∥2− 1

2
∥X̃1θ∥2− 1

2
∥X̃1θ′∥

× e
1

2
∥X̃2(θ+θ′)∥2− 1

2
∥X̃2θ∥2− 1

2
∥X̃2θ′∥2

dπ(θ)dπ(θ′)

=

∫∫
θ,θ′

eθ
⊤(X̃⊤

1 X̃1+X̃⊤
2 X̃2)θ′ dπ(θ)dπ(θ′)

=

∫∫
θ,θ′

eθ
⊤W⊤Wθ′ dπ(θ)dπ(θ′)

≤ {E(e2θ̃⊤(W̃⊤W̃−Σ0)θ̃′)}1/2{E(e2θ̃⊤Σ0θ̃′)}1/2,(17)
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where we apply the Cauchy–Schwarz inequality in the final inequality. We now bound the
two factors in the final expression separately. By (9), we have

(18) ϑ := max
{
max
j∈J

|θ̃j |,max
j∈J ′

|θ̃′j |
}
≤ (1 + O(1))

√
4nκ1ρ2

k
.

By (11), we have that

ϑ2‖(W̃⊤W̃ −Σ0)J,J ′‖F ≤
√
kϑ2‖(W̃⊤W̃ −Σ)J,J ′‖op + ϑ2‖ΓJ,J ′‖F

≤ ϑ2
{√

k‖W̃⊤W̃ −Σ‖2k,op + k‖Γ‖max

}
≤ (4 + O(1))nκ1ρ

2

k

[
Cs,r

{
λ

√
k2 log(ep)

n
+ λ

2

√
k log p

n

}
+ O

(
D

log p

)]
.(19)

Since ρ≤
√

(1−2α−ε)k log p
4Dnκ1

, we have from (19) that ϑ2‖(W̃⊤W̃ −Σ0)J,J ′‖F = O(1). Conse-
quently, by Lemma 15, we have for sufficiently large p that

E(e2θ̃⊤(W̃⊤W̃−Σ0)θ̃′)≤ 1 +Cϑ2‖(W̃⊤W̃ −Σ0)J,J ′‖Fe4ϑ
2∥(W̃⊤W̃−Σ0)J,J′∥2

F

= 1+ O(1).(20)

For the second factor on the right-hand side of (17), we have by Lemma 16 that

(21) E(e2θ̃⊤Σ0θ̃′)≤
{
1 +

Dk

p

(
cosh(2ϑ2D)− 1

)}k
≤ exp

(
Dk2

p
e2ϑ

2D

)
.

Since α ∈ [0,1/2) and ρ2 ≤ (1−2α−ε)k log p
8Dnκ1

, from (18), we deduce that

2ϑ2D ≤ (1− 2α− ε+ O(1)) log p

and hence e2ϑ
2DDk2/p= p−ε+O(1) = O(1). So, from (17), (20) and (21) we have Q0(L2)≤

1 + O(1), which completes the proof.
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APPENDIX A: PROOFS OF THE REST OF THEORETIC RESULTS

We collect here proofs of the remaining theoretical results omitted in the main text.
To prove Proposition 2, we need the following proposition, which considers tail bounds

for ‖Wu‖ for a fixed u ∈ Sp−1 in the special case Σ= Ip.

PROPOSITION 8. Under the conditions of Proposition 2, we further assume Σ = Ip.
There exists a random sequence (hn)n such that hn

a.s.−−→ 4κ1 for κ1 defined in Lemma 13 and
that for any sequence (δn)n satisfying log(1/δn) = O(p), we have for all large p that

P
{∣∣∣∣ 1n(W⊤W )1,1 − hn

∣∣∣∣>(8 + O(1))

√
log(1/δn)

n

(
(κ1 + κ2)

√
n/p+ κ1

)}
≤δn.

PROOF. Let X = QT be the QR decomposition of X , which is almost surely unique if
we require the upper-triangular matrix T to have non-negative entries on the diagonal.

Let Q1 be the submatrix obtained from the first n1 rows of Q. From Lemma 14, Q1 and T
are independent and T has independent entries distributed as Tj,j = tj > 0 with t2j ∼ χ2

n−j+1
for j ∈ [p] and Tj,k = zj,k ∼N(0,1) for 1≤ j < k ≤ p.

Define B :=Q⊤
1 Q1 and let B = V ΛV ⊤ be its eigendecomposition, which is almost surely

unique if we require the diagonal entries of Λ to be non-increasing and the diagonal entries of
V to be nonnegative. By Lemma 14, Q is uniformly distributed on On×p, which means Q d

=

QH for any H ∈Op×p. Consequently, Q1
d
=Q1H and B d

=H⊤BH = (H⊤V )Λ(H⊤V )⊤.
Since the group Op×p acts transitively on itself through left multiplication, the joint density
of V and Λ must be a function of Λ only. In particular, V and Λ are independent.
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Keywords and phrases: two-sample hypotheses testing, high-dimensional data, linear model, sparsity, mini-

max detection.
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Note thatX1 =Q1T . Thus,X⊤
1 X1 = T⊤BT andX⊤

2 X2 = T⊤(Ip−B)T . By Lemma 10,
we have

W⊤W = 4X⊤
1 A1A

⊤
1 X1 = 4(X⊤

1 X1)(X
⊤
1 X1 +X⊤

2 X2)
−1(X⊤

2 X2)

= 4T⊤B(Ip −B)T = 4T⊤V Λ(Ip −Λ)V ⊤T.(S.1)

Let 1≥ λ1 ≥ · · · ≥ λp ≥ 0 be the diagonal entries of Λ. Define aj = λj(1−λj) for j ∈ [p] and
set a := (a1, . . . , ap). We can write t21 = s21+r

2
1 with s21 ∼ χ2

p and r21 ∼ χ2
n−p such that s1 ≥ 0,

r1 ≥ 0 are independent of each other and independent of everything else. By Lemma 14, we
have that Gj,1 := s1Vj,1 for j ∈ [p] are independent N(0,1) random variables. Note that

1

4
(W⊤W )1,1 =

p∑
j=1

t21ajV
2
j,1 =

t21
s21

p∑
j=1

ajG
2
j,1.

Let δ = δn > 0 be chosen later. By Laurent and Massart (2000, Lemma 1), applied condition-
ally on a, we have with probability at least 1− 6δ that all the following inequalities hold:

‖a‖1 − 2‖a‖2

√
log

1

δ
≤

p∑
j=1

ajG
2
j,1 ≤ ‖a‖1 + 2‖a‖2

√
log

1

δ
+ 2‖a‖∞ log

1

δ
,

p− 2

√
p log

1

δ
≤ s21 ≤ p+ 2

√
p log

1

δ
+ 2 log

1

δ
,

n− 2

√
n log

1

δ
≤ t21 ≤ n+ 2

√
n log

1

δ
+ 2 log

1

δ
.

Keeping in mind that ‖a‖∞ ≤ 1/4, we have with probability at least 1− 6δ that

n− 2
√
n log(1/δ)

p+ 2
√
p log(1/δ) + 2 log(1/δ)

{
‖a‖1 − 2‖a‖2

√
log(1/δ)

}
≤ 1

4
(W⊤W )1,1

≤
n+ 2

√
n log(1/δ) + 2 log(1/δ)

p− 2
√
p log(1/δ)

{
‖a‖1 + 2‖a‖2

√
log(1/δ) +

1

2
log(1/δ)

}
If log(1/δ) = O(p), then for each p with probability at least 1− 6δ, we have that

(S.2)

∣∣∣∣(W⊤W )1,1
4

− n

p
‖a‖1

∣∣∣∣≤ ‖a‖1
2
√
n log(1/δ)

p

(
1 +

√
n/p

)
+
n

p

{
2‖a‖2

√
log(1/δ) +

log(1/δ)

2

}
+Os

(
‖a‖1 log(1/δ)

p
+

‖a‖2 log(1/δ)√
p

+
log3/2(1/δ)

p1/2

)
.

By the definition of B, we have for H := T (X⊤X)−1/2 ∈Op×p that

H⊤BH =H⊤T−⊤X⊤
1 X1T

−1H = (X⊤X)−1/2(X⊤
1 X1)(X

⊤X)−1/2,

which follows the matrix-variate Beta distribution Betap(n1/2, n2/2) as defined before
Lemma 13. Hence, the diagonal elements of Λ are the same as the eigenvalues of a
Betap(n1/2, n2/2) random matrix. By (S.2), for each p, with probability at least 1 − 6δ,
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we have

(S.3)

∣∣∣∣(W⊤W )1,1 −
4n

p
‖a‖1

∣∣∣∣≤ 8
√
n log(1/δ)

(
(κ1 + κ2)

√
n/p+ κ1

)
+Os

(
log(1/δ) +

log3/2(1/δ)

p1/2

)
.

The desired result follows by taking hn = 4‖a‖1/p and observing that by Lemma 13 hn →
4κ1 almost surely.

With Proposition 8, we are now in a position to prove Proposition 2 in its general form.

PROOF OF PROPOSITION 2. Let Vi :=XiΣ
−1/2, i= 1,2 and set V = (V ⊤

1 , V
⊤
2 )⊤. Then

each row of V follows N(0, Ip) and is independent of each other. We have

W⊤W = 4(X⊤
1 X1)(X

⊤X)−1(X⊤
2 X2)

= 4(Σ1/2V ⊤
1 V1Σ

1/2)(Σ−1/2(V ⊤V )−1Σ−1/2)(Σ1/2V ⊤
2 V2Σ

1/2)

= 4Σ1/2V ⊤
1 V1(V

⊤V )−1V ⊤
2 V2Σ

1/2 d
=Σ1/2(W⊤

I WI)Σ
1/2,

where WI is the complementarily sketched design matrix when all entries of X are indepen-
dent standard normals (i.e. Σ= Ip). Let hn be the random sequence satisfying Proposition 8
and define ∆ :=W⊤W/n− hnΣ and ∆I :=W⊤

I WI/n− hnIp. We start by controlling the
ℓ-sparse operator norm of ∆ for an arbitrary ℓ ∈ [p]. By Lemma 12, there exists a 1/4-net Nℓ

of {v ∈ Sp−1 : ‖v‖0 ≤ ℓ} of cardinality at most
(
p
ℓ

)
9ℓ, such that

‖∆‖ℓ,op = 2 sup
u∈Nℓ

u⊤∆u
d
= 2 sup

u∈Nℓ

(Σ1/2u)⊤∆I(Σ
1/2u)

≤ 2‖Σ‖k,op sup
u∈N ′

ℓ

u⊤∆Iu≤ 2λ sup
u∈N ′

ℓ

u⊤∆Iu,(S.4)

where N ′
ℓ := {Σ1/2u/‖Σ1/2u‖2 : u ∈ Nℓ}. We claim that for any u ∈ Sp−1, we have

u⊤∆Iu
d
= e⊤1 ∆Ie1. This is because for any H ∈ Op×p, we have V d

= V H and hence by
Lemma 10 that

H⊤W⊤
I WIH = 4(H⊤V ⊤

1 V1H)(H⊤V ⊤V H)−1(H⊤V ⊤
2 V2H)

d
= 4(V ⊤

1 V1)(V
⊤V )−1(V ⊤

2 V2) =W⊤
I WI ,(S.5)

which in particular implies our claim. Consequently, by Proposition 8 and a union bound,
when log(1/δ) = O(p), we have with probability at least 1− 6|Nℓ|δ that

(S.6) ‖∆‖ℓ,op ≤ (16 + O(1))λ

√
log(1/δ)

n

{
(κ1 + κ2)

√
n/p+ κ1

}
.

To prove (9), we recall diag(Σ) = Ip and set ℓ = 1 and δ = p−3 in (S.6) to obtain with
probability at least 1− 54p−2 that

(S.7)

max
j∈[p]

∣∣∣∣(W⊤W )j,j
nhn

− 1

∣∣∣∣= 1

hn
‖∆‖1,op

≤ (16 + O(1))λ

hn

√
3 log p

n

{
(κ1 + κ2)

√
n/p+ κ1

}
.
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The first conclusion follows by noting that hn → 4κ1 and an application of the Borel–Cantelli
lemma (since p−2 is summable).

To prove (11), we set ℓ= k and δ = (10ep/k)−(k+4). By (10), we have log(1/δ) = (k +
4) log(10ep/k) = O(p) and

|N |δ ≤ 9k
(
p

k

)(
10ep

k

)−(k+4)

≤
(
9ep

k

)k(10ep

k

)−(k+4)

≤ 0.9k

(ep/k)4
≤max(p−2,0.9

√
p).

By the Borel–Cantelli lemma,

(S.8) ‖∆‖k,op ≤ (16 + O(1))λ

√
(k+ 4) log(10ep/k)

n

{
(κ1 + κ2)

√
n/p+ κ1

}
,

holds for all but finitely many p. We work on p sufficiently large such that (S.8) holds
henceforth. Define D̂ := diag(W⊤W )/(nhn). By (S.7) and a Taylor expansion, we have
that ‖D̂−1/2 − I‖op = (1+ O(1))(2hn)

−1‖∆‖1,op. Thus,

‖D̂−1/2W⊤WD̂−1/2 −W⊤W‖k,op

≤ ‖D̂−1/2 − I‖op‖W⊤W‖k,op(1 + ‖D̂−1/2‖op)

≤ (2 + O(1))
‖∆‖1,op
2hn

‖n∆+ nhnΣ‖k,op ≤ (1 + O(1))nλ‖∆‖1,op

where the final bound follows from (S.8) and the fact that ‖Σ‖k,op ≤ λ. Consequently, noting
hn → 4κ1, for all large p we have

‖W̃⊤W̃ −Σ‖k,op =
1

hn
‖D̂−1/2W⊤WD̂−1/2/n− hnΣ‖k,op

≤ 1

hn
‖∆‖k,op +

1

nhn
‖D̂−1/2W⊤WD̂−1/2 −W⊤W‖k,op

≤ 1

hn
(‖∆‖k,op + λ‖∆‖1,op)

≤Cs,r

{
λ

√
k log(ep/k)

n
+ λ

2

√
log p

n

}
,

for Cs,r := 9(1 +
√

1 + 1/s+
√
s+ r− 1 + 1/s+ 1/r), which completes the proof.

PROOF OF COROLLARY 4. The first inequality follows from the definition of MX(k, ρ).
An inspection of the proofs of Theorems 1 and 3 of the main text reveals that both results
only depend on the complementary-sketched model Z =Wθ+ ξ, and hence hold uniformly
over (β1, β2). Thus, we have from Theorem 1 that supβ∈Rp PX

β,β(ψ
sparse
λ,τ 6= 0)

a.s.−−→ 0 and

from Theorem 3 that supβ1,β2∈Rp:(β1−β2)/2∈Θp,k(ρ)P
X
β,β(ψ

sparse
λ,τ 6= 1)

a.s.−−→ 0. Combining the
two completes the proof.

PROOF OF THEOREM 6. As in the proof of Theorem 3, we work with a determinis-
tic sequence of W such that (9) and (11) are satisfied. Furthermore, by Condition (S2),
we henceforth work on the almost sure event Ωσ = {|σ̂/σ − 1| = O(p−1/2 log1/2 p)}. For
θ̃ = (θ̃1, . . . , θ̃p)

⊤ such that θ̃j := θj‖Wj‖2, we have from (8) that Z = W̃ θ̃ + ξ, for
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ξ ∼ Nm(0, σ2Im). Hence, under the null hypothesis, (‖Z‖22/σ2) ∼ χ2
m, which by Laurent

and Massart (2000, Lemma 1) yields that

P
{
‖Z‖22/σ2 ≥m+ 2

√
m log(1/δ) + 2 log(1/δ)

}
≤ δ.

We set δ = p−(1+ε/2) and have for η0 = σ2(m + 2
√

(1 + ε/2)m log p + 2(1 + ε/2) log p),
η = σ̂2(m+ 2

√
m(1 + ε) log p+ 2(1 + ε) log p)≥ η0 on Ωσ for all p sufficiently large. We

bound, for all p sufficiently large,

P(‖Z‖2 ≥ η)≤ P(‖Z‖2 ≥ η0)≤ p−(1+ε/2),

whence, by the Borel–Cantelli lemma, we have ψdense
η (X1,X2, Y1, Y2)

a.s.−−→ 0.
On the other hand, under the alternative, (‖Z‖22/σ2) ∼ χ2

m(‖Wθ‖22). Observe from (9)
and (11) that

‖Wθ‖22 = ‖W̃ θ̃‖22 = ‖Σ1/2θ̃‖22 + θ̃⊤(W̃⊤W̃ −Σ)θ̃

≥ ‖θ̃‖22
(
λ− ‖W̃⊤W̃ −Σ‖k,op

)
≥ (4λ− O(1))nκ1ρ

2 ≥ (8− O(1))σ2
√
m log p.

By a similar argument, we also have ‖Wθ‖22 ≤ (4λ+ O(1))nκ1ρ
2 = O(m). Thus, by Birgé

(2001, Lemma 8.1), we have with probability at least 1− p−2 that

‖Z‖22/σ2 ≥m+ ‖Wθ‖22 − 2
√

(2m+ 4‖Wθ‖22) log p

≥m+ (8− 2
√
2− O(1))

√
m log p

which is at least η = σ̂2(m + 2
√

2(1 + ε)m log p + 2(1 + ε) log p) ≤ for all p sufficiently
large and any ε ∈ (0,5], conditionally on the almost sure event Ωσ .

Consequently, we have P(‖Z‖22 ≤ η) ≤ p−2 for all large p. As p−2 is summable, by the
Borel–Cantelli lemma, ψdense

η (X1,X2, Y1, Y2)
a.s.−−→ 1.

PROOF OF THEOREM 7. Note that since k ≤ pα for α< 1, condition (10) is satisfied and
hence we can work with a deterministic sequence of W satisfying (9) and (11). Similar to the
proof of Theorem 5, we write Σ=Σ0+Γ for some Σ0 ∈RowSp(D) with ‖Σ0‖max ≤ 1 and
‖Γ‖max = O(D/(k log p)). We follow the proof of Theorem 5 up to (19).

Now, noting the assumption on ρ2, we have by (18) that E(e2θ̃⊤(W̃⊤W̃−Σ0)θ̃′
) = 1+ O(1).

It remains to show that E(e2θ̃⊤Σ0θ̃′
) = 1+ O(1). To this end, we have by Lemma 16 that

E(e2θ̃⊤Σ0θ̃′
)≤

{
1 +

Dk

p

(
cosh(2ϑ2D)− 1

)}k

≤
{
1 +

Dk

p

(
2 + O(1)

)
ϑ4D2

}k

≤ exp

{
(2 + O(1))D3k2ϑ4

p

}
= 1+ O(1),

where the second inequality follows by the Taylor expansion of x 7→ cosh(x) and the fact
that ϑ2D = (4+O(1))nκ1ρ

2D/k = O(1), and the last equality holds by noting D3k2ϑ4/p=
(16+ O(1))κ21D

3ρ4n2/p= O(1).

APPENDIX B: ANCILLARY RESULTS

PROPOSITION 9. If k = p≥min{n1, n2}, then MX(k, ρ) = 1. If k = p and p/n1, p/n2 ∈
[ε,1) for any fixed ε ∈ (0,1), and θ = (β1 − β2)/2 ∈Θp,k(ρ) with

ρ2 = O

(
max

{
p

(n1 − p)2
,

p

(n2 − p)2

})
,
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then MX(k, ρ)
a.s.−−→ 1.

PROOF. As in the proof of Theorem 5, it suffices to control P0(L2) for some choice
of prior π. We write λmin(W

⊤W ) for the minimum eigenvalue of W⊤W and let θ be an
associated eigenvector with ℓ2 norm equal to ρ. We choose π to be the Dirac measure on θ.
Then by (17), we have

P0(L2) = eθ
⊤W⊤Wθ = eρ

2λmin(W⊤W ).

When p ≥ n1 or p ≥ n2, we have by Lemma 10 that the Gram matrix W⊤W =
(X⊤

1 X1)(X
⊤X)−1(X⊤

2 X2) is singular. Hence, λmin(W
⊤W ) = 0 and P0(L2) = 1, which

implies that MX(k, ρ) = 1.
On the other hand, if p < min{n1, n2}, let V1, V2, V,WI be defined as in the proof of

Proposition 2. Let T and Λ be defined as in the proof of Proposition 8, with V and WI taking
the roles of X and W therein respectively. Then, by (S.1), we have

(S.9)
λmin(W

⊤
I WI)≤ 4‖T‖2opλmin

(
Λ(I −Λ)

)
≤ 4‖V ⊤V ‖opmin{λmin(Λ),1− λmax(Λ)}.

Applying tail bounds for operator norm of a random Gaussian matrix (see, e.g. Wainwright,
2019, Theorem 6.1), we have

‖V ⊤V ‖op ≤ n

(
1 +

√
p

n
+

√
2 log p

n

)2

≤ 5n

asymptotically with probability 1. Moreover, by Bai et al. (2015, Theorem 1.1), there is
an almost sure event on which the empirical spectral distribution of Λ converges weakly
to a distribution supported on [tℓ, tr], for tℓ and tr defined in (S.10). We will work on
this almost sure event henceforth. For p/n1 → ξ ∈ [ε,1) and p/n2 → η ∈ [ε,1), we have
limsupp→∞ λmin(Λ)≤ tℓ and lim infp→∞ λmax(Λ)≥ tr . On the other hand, Taylor expand-
ing the expression for tℓ and tr in (S.10) with respect to 1 − ξ and 1 − η respectively, we
obtain that

tℓ =
1

4
η(1− ξ)2 +Oε

(
(1− ξ)3

)
,

1− tr =
1

4
ξ(1− η)2 +Oε

(
(1− η)3

)
.

Therefore, min{λmin(Λ),1 − λmax(Λ)} = Oε(min{(1 − ξ)2, (1 − η)2}). By the condition
on ρ2 and (S.9), we have

ρ2λmin(W
⊤W )≤ λρ2λmin(W

⊤
I WI) = O(1),

which implies that P0(L2) = 1+ O(1) and MX
a.s.−−→ 1.

LEMMA 10. Let n1, n2, p,m be positive integers such that n1 + n2 = p +m = n. Let
X = (X⊤

1 ,X
⊤
2 )⊤ ∈Rn×p be a non-singular matrix with block components X1 ∈Rn1×p and

X2 ∈Rn2×p. Choose A1 ∈Rn1×m and A2 ∈Rn2×m to satisfy (7). Then

X⊤
1 A1A

⊤
1 X1 =−X⊤

2 A2A
⊤
2 X2 = (X⊤

1 X1)(X
⊤X)−1(X⊤

2 X2).

PROOF. The first equality follows immediately from (7). Define X̃1 := X1(X
⊤X)−1/2

and X̃2 :=X2(X
⊤X)−1/2. Then X̃ := (X̃⊤

1 , X̃
⊤
2 )⊤ has orthonormal columns with the same

column span as X , and so (
X̃1 A1

X̃2 A2

)
∈On×n.
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In particular, X̃1X̃
⊤
1 +A1A

⊤
1 = In1

. Therefore,

X⊤
1 A1A

⊤
1 X1 =X⊤

1 (In1
− X̃1X̃

⊤
1 )X1 =X⊤

1 X1 −X⊤
1 X1(X

⊤X)−1X⊤
1 X1

=X⊤
1 X1(X

⊤X)−1(X⊤X −X⊤
1 X1)

= (X⊤
1 X1)(X

⊤X)−1(X⊤
2 X2),

where the last equality holds by noting the block structure of X .

LEMMA 11. ForX1 ∈Rn1×p andX2 ∈Rn2×p, defineL := (X⊤
1 X1+X

⊤
2 X2)

−1(X⊤
2 X2−

X⊤
1 X1), X̃1 :=X1(L+ Ip) and X̃2 :=X2(L− Ip). We have

X̃⊤
1 X̃1 + X̃⊤

2 X̃2 = 4X⊤
1 X1(X

⊤
1 X1 +X⊤

2 X2)
−1X⊤

2 X2.

PROOF. Write G1 :=X⊤
1 X1, G2 :=X⊤

2 X2. It is clear that

L− Ip =−2(X⊤
1 X1 +X⊤

2 X2)
−1X⊤

1 X1 =−2(G1 +G2)
−1G1,

L+ Ip = 2(X⊤
1 X1 +X⊤

2 X2)
−1X⊤

2 X2 = 2(G1 +G2)
−1G2.

Therefore, we have

1

4
(X̃⊤

1 X̃1 + X̃⊤
2 X̃2)

=
1

4

{
(L+ Ip)

⊤X⊤
1 X1(L+ Ip) + (L− Ip)

⊤X⊤
1 X2(L− Ip)

}
=G2(G1 +G2)

−1G1(G1 +G2)
−1G2

+G1(G1 +G2)
−1G2(G1 +G2)

−1G1

=−G1(G1 +G2)
−1G1(G1 +G2)

−1G2

−G1(G1 +G2)
−1G2(G1 +G2)

−1G2 + 2G1(G1 +G2)
−1G2

=G1(G1 +G2)
−1G2.

The proof is complete by recalling the definitions of G1 and G2.

The following lemma concerns the control of the k-operator norm of a symmetric matrix.
Similar results have been derived in previous works (see, e.g. Wang, Berthet and Samworth,
2016, Lemma 2). For completeness, we include a statement and proof of the specific version
we use.

LEMMA 12. For any symmetric matrix M ∈ Rp×p and k ∈ [p], there exists a subset
N ⊆Sp−1 such that |N | ≤

(
p
k

)
9k and

‖M‖k,op ≤ 2 sup
u∈N

u⊤Mu.

PROOF. Define B0(k) := ∪J⊂[p],|J |=kSJ , where SJ := {v ∈ Sp−1 : vi = 0,∀i /∈ J}. For
each SJ , we find a 1/4-net NJ of cardinality at most 9k (Vershynin, 2012, Lemma 5.2). De-
fine N := ∪J⊂[p],|J |=kNJ , which has the desired upper bound on cardinality. By construction,
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for v ∈ argmaxu∈B0(k) u
⊤Mu, there exists a ṽ ∈N such that | supp(v)∪ supp(ṽ)| ≤ k and

‖v− ṽ‖2 ≤ 1/4. We have

‖M‖k,op = v⊤Mv = v⊤M(v− ṽ) + (v− ṽ)⊤Mṽ+ ṽ⊤Mṽ

≤ 2‖v− ṽ‖2‖M‖k,op + ṽ⊤Mṽ ≤ 1

2
‖M‖k,op + sup

u∈N
u⊤Mu.

The desired inequality is obtained after rearranging terms in the above display.

The following lemma describes the asymptotic limit of the nuclear and Frobenius norms
of the product of a matrix-variate Beta-distributed random matrix and its reflection. Re-
call that for n1 + n2 > p, we say that a p × p random matrix B follows a matrix-variate
Beta distribution with parameters n1/2 and n2/2, written B ∼ Betap(n1/2, n2/2), if B =

(S1 + S2)
−1/2S1(S1 + S2)

−1/2, where S1 ∼Wp(n1, Ip) and S2 ∼Wp(n2, Ip) are indepen-
dent Wishart matrices and (S1 + S2)

1/2 is the symmetric matrix square root of S1 + S2.
Recall also that the spectral distribution function of any p × p matrix A is defined as
FA(t) := n−1

∑p
i=1 1{λA

i ≤t}, where λAi s are eigenvalues (counting multiplicities) of the ma-
trix A. Further, given a sequence (An)n∈N of matrices, their limiting spectral distribution
function F is defined as the weak limit of the FAn , if it exists.

LEMMA 13. Let B ∼ Betap(n1/2, n2/2) and suppose that λ1, . . . , λp are the eigenval-
ues ofB. Define a= (a1, . . . , ap)

⊤, with aj = λj(1−λj) for j ∈ [p]. In the asymptotic regime
of (C2), we have

‖a‖1/p
a.s.−−→ κ1,

‖a‖2/
√
p

a.s.−−→ κ2,

where

κ1 =
r

(1 + r)2(1 + s)
and κ22 =

r(r+ s− rs+ r2s+ rs2)

(1 + r)4(1 + s)3
.

PROOF. We first look at the limiting spectral distribution of B. From the asymptotic rela-
tions between n1, n2 and p in (C2), we have that

p/n1 → ξ :=
s+ sr

r+ sr
and p/n2 → η :=

s+ sr

1 + s
.

Define the left and right limits

(S.10) tℓ, tr :=
(ξ + η)η+ ξη(ξ − η)∓ 2ξη

√
ξ − ξη+ η

(ξ + η)2
.

By Bai et al. (2015, Theorem 1.1), almost surely, weak limit F of FB exists and is of the
form max{1− 1/ξ,0}δ0 +max{1− 1/η,0}δ1 + µ, where δ0 and δ1 are point masses at 0
and 1 respectively, and µ has a density

(ξ + η)
√

(tr − t)(t− tℓ)

2πξηt(1− t)
1[tℓ,tr]

with respect to the Lebesgue measure on R. Define h1 : t 7→ t(1 − t). By the portmanteau
lemma (see, e.g. van der Vaart, 2000, Lemma 2.2), we have almost surely that

‖a‖1/p= FBh1 → Fh1 =
ξ + η

2πξη

∫ tr

tℓ

√
(tr − t)(t− tℓ)dt=

ξ + η

16ξη
(tr − tℓ)

2

=
r

(1 + r)2(1 + s)
.
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Similarly, for h2 : t 7→ t2(1− t)2, we have almost surely that

‖a‖22/p→ Fh2 =
ξ + η

2πξη

∫ tr

tℓ

t(1− t)
√

(tr − t)(t− tℓ)dt

=
ξ + η

256ξη
(tr − tℓ)

2(8tℓ − 5t2ℓ + 8tr − 6tℓtr − 5t2r)

=
r(r+ s− rs+ r2s+ rs2)

(r+ 1)4(s+ 1)3
.

Define κ1 := Fh1 and κ2 := (Fh2)
1/2, we arrive at the lemma.

The following result concerning the QR decomposition of a Gaussian random matrix is
probably well-known. However, since we did not find results in this exact form in the existing
literature, we have included a proof here for completeness. Recall that for n≥ p, the set On×p

can be equipped with a uniform probability measure that is invariant under the action of left
multiplication by On×n (see, e.g. Stiefel manifold in Muirhead, 2009, Section 2.1.4).

LEMMA 14. Suppose n≥ p and X is an n× p random matrix with independent N(0,1)
entries. Write X =HT , with H taking values in On×p and T an upper-triangular p× p ma-
trix with non-negative diagonal entries. This decomposition is almost surely unique. More-
over, H and T are independent, with H uniformly distributed on On×p with respect to the
invariant measure and T = (tj,k)j,k∈[p] having independent entries satisfying t2j,j ∼ χ2

p−j+1
and tj,k ∼N(0,1) for 1≤ j < k ≤ p.

PROOF. The uniqueness of the QR decomposition follows since X has rank p almost
surely. The marginal distribution of T then follows from the Bartlett decomposition of X⊤X
(Muirhead, 2009, Theorem 3.2.14) and the relationship between the QR decomposition of X
and the Cholesky decomposition of X⊤X .

For any fixed Q ∈On×n, we have QX d
=X . Since On×n acts transitively (by left multi-

plication) on On×p, the joint density of H and T must be constant in H for each value of T .
In particular, we have that H and T are independent, and that H is uniformly distributed on
On×p with respect to the translation-invariant measure.

The following two lemmas control the moment generation functions of (decoupled)
quadratic Rademacher chaos random variables with respect to different matrices.

LEMMA 15. Let ξ = (ξ1, . . . , ξd)
⊤ and ξ′ = (ξ′1, . . . , ξ

′
d)

⊤ be independent with indepen-
dent Rademacher entries and fix A ∈ Rd×d. There exists a universal constant C > 0 such
that for any 0< ‖A‖op ≤ 1/32, we have

E(eξ⊤Aξ′)≤ 1 +C‖A‖Fe4∥A∥2
F .

PROOF. By Hoeffding’s inequality, we have

(S.11) P(ξ⊤Aξ′ ≥ t | ξ′)≤ exp

{
− t2

2‖Aξ′‖22

}
.

By Jensen’s inequality, we have E(‖Aξ′‖2) ≤ {E(ξ′⊤A⊤Aξ′)}1/2 ≤ ‖A‖F. Moreover, the
map x 7→ ‖Ax‖ is Lipschitz with constant ‖A‖op. Hence, from Boucheron, Lugosi and Mas-
sart (2013, Theorem 6.10), we have

(S.12) P(‖Aξ′‖2 ≥ ‖A‖F + u)≤ exp

{
− u2

8‖A‖2op

}
.
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Combining (S.11) and (S.12), and setting u= (2t‖A‖op)1/2, we have

P(ξ⊤Aξ′ ≥ t)≤ P(‖Aξ′‖2 ≥ ‖A‖F + u)

+E[P(ξ⊤Aξ′ ≥ t | ξ′)1{∥Aξ′∥2≤∥A∥F+u}]

≤ exp

{
− u2

8‖A‖2op

}
+ exp

{
− t2

2(‖A‖F + u)2

}
≤ 2exp

{
− t2

4(‖A‖F + t1/2‖A‖1/2op )2

}
≤ 2max

{
e−t2/(16∥A∥2

F), e−t/(16∥A∥op)
}
.

Consequently, if 32λ‖A‖op ≤ 1, we have

E(eξ⊤Aξ′) =

∫ 1

u=0
P(eξ⊤Aξ′ ≥ u)du+

∫ ∞

t=0
P(ξ⊤Aξ′ ≥ t)et dt

≤ 1 + 2

∫ ∥A∥2
F/∥A∥op

t=0
e−t2/(16∥A∥2

F)+t dt

+ 2

∫ ∞

∥A∥2
F/∥A∥op

e−t/(16∥A∥op)+t dt

≤ 1 + 8
√
2π‖A‖Fe4∥A∥2

F + 64‖A‖op.
Our claim follows since ‖A‖op ≤ ‖A‖F.

LEMMA 16. Fix A ∈ RowSp(D) ⊆ Rp×p and let J and J ′ be independent and drawn
uniformly at random from all subset of cardinality k of [p]. Let ξ = (ξ1, . . . , ξd)

⊤ and ξ′ =
(ξ′1, . . . , ξ

′
d)

⊤ be independent (and independent of J and J ′) with independent Rademacher
entries. Then

E(eξ⊤AJ,J′ξ′)≤
{
1 +

Dk

p

(
cosh(D‖A‖max)− 1

)}k

.

PROOF. Write a := ‖A‖max. Also, for notational simplicity, we define θ, θ′ ∈ Rp such
that θJ = ξ, θJc = 0, θ′J ′ = ξ′, θ′J ′c = 0. So ξ⊤AJ,J ′ξ′ = θ⊤Aθ′.

For each j ∈ [p], we write nb(j) := {j′ ∈ [p] : Aj,j′ 6= 0}. Note that by the definition of
RowSp(D), |nb(j)| ≤D for all j ∈ [p]. Hence,

θ⊤Aθ′ =
∑
j∈J

∑
j′∈nb(j)∩J ′

Aj,j′θjθ
′
j′ =

∑
j∈J

cjθj

where cj :=
∑

j′∈nb(j)∩J ′ Aj,j′θ
′
j′ . We note that |cj | ≤Da and cj = 0 unless j ∈ ∪j′∈J ′nb(j′).

Observe that | ∪j′∈J ′ nb(j′)| ≤Dk, so | ∪j′∈J ′ nb(j′)∩J | is stochastically dominated by the
hypergeometric random variable HyperGeom(k;Dk,p) (defined as the number of black
balls obtained from k draws without replacement from an urn containing p balls, Dk of
which are black). Let B ∼Bin(k,Dk/p), we have by Hoeffding (1963, Theorem 4) that

E(eθ⊤Aθ′
) = E

{∏
j∈[p]

E(ecjθj | J ′, θ′)
}
= E

{ ∏
j∈∪j′∈J′nb(j′)∩J

cosh(cj)
}

≤ E(eB log cosh(Da)) =

{
1 +

Dk

p

(
cosh(Da)− 1

)}k

.

The proof is complete.
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