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Abstract
We introduce the coverage correlation coefficient, a novel nonparametric measure of sta-

tistical association designed to quantifies the extent to which two random variables have
a joint distribution concentrated on a singular subset with respect to the product of the
marginals. Our correlation statistic consistently estimates an f -divergence between the joint
distribution and the product of the marginals, which is 0 if and only if the variables are
independent and 1 if and only if the copula is singular. Using Monge–Kantorovich ranks,
the coverage correlation naturally extends to measure association between random vectors.
It is distribution-free, admits an analytically tractable asymptotic null distribution, and can
be computed efficiently, making it well-suited for detecting complex, potentially nonlinear
associations in large-scale pairwise testing.

1 Introduction

Correlation is a measure of statistical association that quantifies how two variables tend to vary
together. Classically, Pearson’s correlation, rX,Y , captures linear relationships between real-
valued variables X and Y (Pearson, 1920). In contrast, Spearman’s rank correlation, ρX,Y ,
and Kendall’s rank correlation, τX,Y , capture monotonic associations between X and Y , using
different definitions of rank concordance (Spearman, 1904; Kendall, 1938). A key limitation of
these classical measures is their poor performance in detecting non-monotonic associations, even
in noise-free data.

To overcome this limitation, numerous approaches have been proposed, including the maxi-
mal correlation coefficient (Hirschfeld, 1935; Gebelein, 1941; Rényi, 1959; Breiman and Friedman,
1985), various methods based on joint cumulative distribution functions and ranks (e.g. Hoeffd-
ing, 1948; Blum et al., 1961; Bergsma and Dassios, 2014; Drton et al., 2020; Deb and Sen, 2023)
kernel-based methods (e.g. Gretton et al., 2005, 2008; Sen and Sen, 2014; Pfister et al., 2018;
Zhang et al., 2018), information-theoretic coefficients (e.g. Linfoot, 1957; Kraskov et al., 2004;
Reshef et al., 2011; Berrett and Samworth, 2019; Berrett et al., 2021), copula-based coefficients
(e.g. Sklar, 1959; Schweizer and Wolff, 1981; Zhang, 2019) and coefficients based on pairwise
distances (e.g. Friedman and Rafsky, 1983; Székely et al., 2007; Heller et al., 2013).

Although many of these coefficients are commonly applied, two significant drawbacks remain.
Most are constructed with the primary goal of testing for independence, offering little direct in-
formation about the magnitude of the underlying dependence. Moreover, their null distributions
are often analytically intractable, so p-values often must be obtained through computationally
intensive permutation procedures.
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Recently, there has been renewed interest in developing nonparametric measures of statistical
association, driven in part by the need to identify relevant features and interactions in large
datasets. Several new statistics have been proposed to capture the extent to which Y can be
expressed as a deterministic (measurable) function of X (Dette et al., 2013; Chatterjee, 2021;
Azadkia and Chatterjee, 2021; Deb et al., 2020; Wiesel, 2022; Azadkia and Roudaki, 2025).

Among these recent proposals, Chatterjee’s correlation (Chatterjee, 2021) has seen remark-
ably rapid adoption in practice, particularly in fields such as bioinformatics, where uncovering
complex and potentially nonlinear associations in high-dimensional data is a central challenge
(e.g. Dong et al., 2023; Suo et al., 2024; Sansalone et al., 2024). Its popularity arises from several
appealing properties: the statistic is distribution-free under the null hypothesis of independence,
allowing precise characterisation of its asymptotic null distribution, and it is computationally
efficient, scaling well to large datasets.

To illustrate, consider the task of detecting covariation in gene expression levels in a single-cell
RNA sequencing experiment, where thousands of genes are measured across tens of thousands of
cells. The scale of this problem creates a substantial multiple testing burden, often requiring raw
p-values on the order of 10−8 or smaller to declare significance for any gene pair. In such settings,
resampling-based tests such as permutation become computationally prohibitive, making access
to an accurate asymptotic null distribution essential.

Chatterjee’s correlation is specifically designed to capture the extent to which Y can be
expressed as a measurable function of X and is therefore inherently asymmetric. While this
asymmetry can be advantageous in certain contexts, such as when a clear predictor-response
relationship is present, it may be less suitable in others. In the genetic association example
above, the direction of dependence between gene expression levels is often not known a priori,
and in fact, the relationship may not be directional at all. For instance, two genes, A and B,
may exhibit strong statistical dependence simply because they are both downstream of a common
regulator gene C, rather than one being a function of the other. Motivated by such considerations,
we propose a new measure of statistical association, the coverage correlation coefficient, which
is symmetric and designed to capture more general implicit functional relationships of the form
f(X,Y ) = 0. More precisely, the coverage correlation coefficient quantifies the extent to which
the joint distribution P (X,Y ) is singular with respect to the product of marginals PX⊗P Y , thereby
detecting dependencies that may lie on low-dimensional structures within the joint space.

1.1 Coverage correlation coefficient

To provide intuition for the coverage correlation coefficient, consider a simplified setting in which
the random variables X and Y have marginal distributions Unif[0, 1]. Given an i.i.d. sample
{(Xi, Yi)}ni=1 drawn from the joint distribution P (X,Y ), we examine two extreme cases:

(i) X and Y are independent;
(ii) P (X,Y ) is singular with respect to Unif([0, 1]2).

In the first case, the sample points (Xi, Yi) are uniformly distributed over the unit square [0, 1]2.
In contrast, under the second scenario, the points (Xi, Yi) are concentrated on a subset of [0, 1]2

with Lebesgue measure zero. These two cases yield qualitatively distinct scatter plots, reflecting
the presence or absence of dependence.

To quantify this difference, consider the area of the region in [0, 1]2 not covered by the union
of ℓ∞-balls (squares) centred at each sample point (Xi, Yi), where the area of each ball is fixed
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to be 1/n. The behaviour of this uncovered area has been extensively studied in the context of
coverage processes (see, e.g. Hall, 1988).

As n → ∞, the limiting uncovered area exhibits fundamentally different behaviour in the
two cases considered above: when X and Y are independent, it converges to e−1, whereas when
P (X,Y ) is singular with respect to Unif([0, 1]2), it converges to 1 in probability.

Building on this geometric intuition, we propose the coverage correlation coefficient of random
vectors X ∈ RdX and Y ∈ RdY with dX , dY ∈ N, based on the (multivariate) ranks of X :=
(Xi)1≤i≤n and Y := (Yi)1≤i≤n. This statistic is powerful against the alternative where X and Y
possess a singular dependence. Intuitively speaking, the proposed correlation coefficient measures
the uncovered volume in [0, 1]dX+dY when small cubes of volume 1/n, centred at the multivariate
ranks of (Xi, Yi), are used to cover the space.

Given two sets of reference points U = (U1, . . . , Un) in [0, 1]dX and V = (V1, . . . , Vn) in
[0, 1]dY , let

πX := argmin
π∈Sn

1

n

n∑
i=1

∥Uπ(i) −Xi∥22 and πY := argmin
π∈Sn

1

n

n∑
i=1

∥Vπ(i) − Yi∥22

be the optimal transport maps from X to U and from Y to V respectively, where Sn is the set
of all permutations on [n] := {1, . . . , n}. For each i ∈ [n], the empirical multivariate ranks for
Xi and Yi are

RX
i := UπX(i) and RY

i := VπY (i), (1)

respectively, and we write
Ri := (RX

i , R
Y
i ) ∈ [0, 1]d, (2)

for their joint rank, where d := dX + dY . We remark that RX
i and RY

i are known as the
Monge–Kantorovich ranks in the literature (Chernozhukov et al., 2017; Hallin et al., 2021).

We also define a d-dimensional ℓ∞ neighbourhood of radius r centred at w ∈ [0, 1]d as

B(w, r) := {z ∈ [0, 1]d : inf
ℓ∈{−1,0,1}d

∥z − w − ℓ∥∞ ≤ r}.

Here, the infimum over ℓ defines the ℓ∞ distance with a periodic boundary condition that iden-
tifies opposite sides of the unit cube [0, 1]d. This improves the empirical performance of the cor-
relation coefficient statistic in small sample size. Writing vol(·) for the d-dimensional Lebesgue
measure, for γ ∈ (0, 1), we define

V(X,Y ,U ,V ; γ) := 1− vol
( n⋃
i=1

B(Ri, γ)
)

(3)

to be the uncovered volume in the d-dimensional unit cube outside subcubes of radius γ centred
at the empirical ranks.

In what follows, we will mostly be working with the uniformly random reference points
(U1, V1), . . . , (Un, Vn)

iid∼ Unif[0, 1]d and γ := 1
2n1/d so that each subcube has volume 1/n. We

write Vn = V(X,Y ,U ,V ; γ) for this specific choice of reference points and γ.

Definition 1. The empirical coverage correlation coefficient between samples X1, . . . , Xn and
Y1, . . . , Yn is defined as

κX,Y
n :=

Vn − e−1

1− e−1
.
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We note that κX,Y
n is random due to the uniformly random reference points, even when

conditioning on X and Y . If a non-random correlation statistic is preferred, it is possible to
replace the randomly generated U and V by a set of fixed reference points that are sufficiently
‘spread out’ in [0, 1]d. For instance, when dX = dY = 1, a natural choice could be U = V =
(1/n, . . . , (n− 1)/n, 1). We will discuss this further in Section 2.

We summarise several key features of the coverage correlation coefficient κX,Y
n as follows:

1. When dX = dY = 1, the coverage correlation statistic converges to 0 in probability if and
only if X is independent of Y , and to 1 in probability if and only if P (X,Y ) is singular with
respect to the product of the marginals.

2. More generally, κX,Y
n converges to a population quantity that measures an f -divergence

between the joint distribution and the product of the marginals with respect to the diver-
gence generator function f(x) = e−x−e−1

1−e−1 . Notably, κX,Y
n circumvents the need for density

estimation, distinguishing it from numerous existing divergence estimators (e.g. Rubenstein
et al., 2019).

3. For any dX , dY , under the null hypothesis of independence between X and Y , κX,Y
n is

asymptotically normally distributed, which allows us to construct asymptotically valid p-
values.

4. The coverage correlation statistic is distribution-free, thanks to Monge–Kantorovich ranks
used in (1). This is in contrast to other possible multivariate ranks such as depth-based
ranks (Tukey, 1975; Liu and Singh, 1993; Zuo and Serfling, 2000), spatial ranks (Möttönen
and Oja, 1995; Chaudhuri, 1996; Koltchinskii, 1997), componentwise ranks (Hodges, 1955;
Bickel, 1965), and Mahalanobis ranks (Hallin and Paindaveine, 2002b,a). The distribution-
free property of the coverage correlation statistic yields a pivotal null distribution, enabling
easy computation of p-values.

5. For univariate marginal distributions, we develop an algorithm with O(n log n) time com-
plexity (see Appendix C.1). The method is implemented as R and Python packages
covercorr. Both the package and simulation code for reproducing figures and tables in
the paper can be found at https://github.com/wangtengyao/covercorr.

1.2 Connection to Chatterjee’s correlation

For random variables X and Y and given a sample (Xi, Yi)i∈[n], let X(1) ≤ · · · ≤ X(n) denote the
order statistics of the Xi’s and let (Y(i))i∈[n] denote the corresponding concomitants. Assuming
for simplicity that there are no ties, the empirical Chatterjee’s correlation is defined as

ξX,Y
n := 1−

∑n−1
i=1 |ri+1 − ri|
(n2 − 1)/3

, (4)

where ri := #{j : Y(j) ≤ Y(i)} is the rank of Y(i). Chatterjee (2021, Theorem 1.1) shows that
ξX,Y
n converges stochastically to 0 when X and Y are independent, and to 1 when Y is a function

of X. This convergence is interpreted through the population statistic

ξX,Y :=

∫
RVar(E[1{Y ≥ t} | X]) dP Y (t)∫

RVar(E[1{Y ≥ t}]) dP Y (t)
.
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We remark that (4) can also be interpreted as a measure of ‘excess vacancy’, similar to our
coverage correlation coefficient, in the following sense. Writing Ṽ := 1−

∑n−1
i=1

∣∣ ri+1

n −
ri
n

∣∣ · 1n for
the total area in [0, 1]2 not covered by the union of rectangles

n−1⋃
i=1

([ i− 1

n
,
i

n

]
×
[
min

{ri
n
,
ri+1

n

}
,min

{ri
n
,
ri+1

n

}])
,

we have

ξX,Y
n =

Ṽ − 2/3

1/3
+O(n−2).

In other words, if we draw a line plot of the ordered normalisedXi ranks (which are 1/n, 2/n, . . . , 1)
against the corresponding normalised Yi ranks (r1/n, . . . , rn/n), with a line ‘thickness’ of 1/n,
then Ṽ approximates the area in [0, 1]2 that remains uncovered by this thickened line plot.

Figure 1 illustrates this for several (X,Y ) distributions. In the case of independence (first
column), the normalised Yi ranks resemble independent Unif[0, 1] values, and successive differ-
ences in rank are approximately 1/3 on average, yielding Ṽ ≈ 2/3. On the other hand, when Y
is a function of X, the normalised Yi ranks become a deterministic function of the normalised
Xi ranks (modulo discretisation), which under mild conditions causes the uncovered area Ṽ to
shrink towards 0. As seen in the second and third columns, when a fraction of the Yi’s can
be well-approximated by a function of the Xi’s, the area uncovered by the line plot decreases
accordingly. Chatterjee’s correlation captures this structure.

The last column of Figure 1 presents an interesting example in which both X and Y are
generated as functions of a third latent variable U , with added noise. In this setting, even
though a visually striking relationship exists between the Xi’s and Yi’s, Chatterjee’s correlation
remains close to zero. This highlights a key limitation of the statistic: it is specifically designed to
detect directional functional dependence, but it may fail to capture more symmetric or indirect
relationships.

2 Theoretical guarantees

In this section, we present theoretical results for the coverage correlation coefficient κX,Y
n defined

in Definition 1. We first show that for univariate X and Y , κX,Y
n converges in probability to a

population quantity that measures an f -divergence between P (X,Y ) and PX ⊗P Y . We recall the
definition of f -divergence (see, e.g. Samworth and Shah, 2025+, Definition 8.2).

Definition 2. Let f : R → R ∪ {+∞} be a convex function with f(1) = 0. For any two
probability measures µ, ν on a space S, let dµ = hdν + dν⊥ be the Lebesgue–Radon–Nikodym
decomposition of µ with respect to ν, where h is ν-integrable and ν⊥ is singular with respect to
ν. The f -divergence between µ and ν is defined as

Df (µ ∥ ν) =
∫
S
f ◦ h dν + f ′(∞)ν⊥(S),

where f ′(∞) := limt→∞ t−1f(t) is the asymptotic slope of f at infinity.

The following theorem shows that when dX = dY = 1, the correlation coefficient κX,Y
n

converges stochastically to a population limit.
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Figure 1: Chatterjee’s correlation and coverage correlation for various joint distributions using a
sample of n = 1000 observation pairs. Data generating mechanisms are as follows — first column:
X,Y

iid∼ N (0, 1); second column: X ∼ N (0, 1) and Y = sin(10X) + 0.5ϵ where ϵ ∼ N (0, 1) ⊥⊥
(X,Y ); third column: X ∼ N (0, 1) and Y = XB + ϵ(1 − B), where (B, ϵ) ∼ Bernoulli(1/2) ⊗
N (0, 1) ⊥⊥ (X,Y ); fourth column: X = U sin(10πU) + 0.01ϵX and Y = U cos(10πU) + 0.01ϵY ,
where (U, ϵX , ϵY ) ∼ Unif[0, 1] ⊗ N (0, 1) ⊗ N (0, 1) ⊥⊥ (X,Y ). For each column, the top panel
shows the scatter plot, the middle panel shows the line plot of ordered normalised X ranks
against the corresponding Y ranks, and the bottom panel shows the union of small squares of
area 1/n, centred at joint normalised ranks of X and Y . Test statistics and p-values for both
correlation measures are also displayed.

6



Theorem 1. Let P (X,Y ) be a Borel probability measure on R2 with marginals PX and P Y .
Define f : R → R as f(x) = (e−x − e−1)/(1 − e−1). Given (X1, Y1), . . . , (Xn, Yn)

iid∼ P (X,Y ), we
have

κX,Y
n

p−→ κX,Y := Df (P
(X,Y ) ∥PX ⊗ P Y ), as n→∞. (5)

We do not impose any assumptions on the joint distribution P (X,Y ), thus the variables X
and Y may be continuous, discrete, or a mixture of both. By the data processing inequality (see
Lemma 15), it suffices to consider distributions P (X,Y ) with Unif[0, 1] marginals. Moreover, if X
and Y are independent, then κX,Y

n
p−→ 0, i.e. Vn

p−→ e−1. This can be established relatively easily,
without invoking Theorem 1, by observing that for an independent point W ∼ Unif([0, 1]2) we
have

E(Vn) = E
[
P
{
W /∈

n⋃
i=1

B
(
Ri,

1

2
√
n

) ∣∣∣ R1, . . . , Rn

}]
= E

[
P
{
Ri /∈ B

(
W,

1

2
√
n

)
∀ i ∈ [n]

∣∣∣W}]
= (1− 1/n)n → e−1, (6)

and similarly (through a second moment calculation) Var(Vn) → 0. However, this argument
does not extend to the general case, because the joint ranks Ri are no longer independent, so
the final equality above does not hold. This subtle dependence structure among the Ri’s is the
main technical obstacle in proving Theorem 1.

Interestingly, if we begin with a distribution P (X,Y ) having Unif([0, 1]dX ) and Unif([0, 1]dY )
marginals and compute the coverage correlation on the raw data (Xi, Yi) directly (i.e. setting
Ri = (Xi, Yi) and skipping the rank transforms), then a similar argument to the one in (6) shows
that κX,Y

n
p−→ κX,Y for any Borel probability measure P (X,Y ) on RdX+dY , instead of just for

univariate X and Y . Based on this heuristic and supporting numerical results, we conjecture
that Theorem 1 holds for multivariate X and Y . However, the current proof technique relies
on the total ordering of R, and thus does not immediately generalise to higher dimensions.
Nonetheless, we are able to establish the following partial result in general dimensions.

Proposition 2. Suppose (X1, Y1), . . . , (Xn, Yn)
iid∼ P (X,Y ) for a Borel probability measure P (X,Y )

on RdX+dY with marginals PX and P Y on RdX and RdY respectively.

(i) If P (X,Y ) = PX ⊗ P Y , then κX,Y
n

p−→ 0.

(ii) If P (X,Y ) is singular with respect to PX ⊗ P Y , then κX,Y
n

p−→ 1.

We have defined the coverage correlation using uniformly distributed reference points U and
V . When X and Y are univariate, as considered in Theorem 1, it is also quite natural to use
a grid reference U = V = (1/n, 2/n, . . . , 1). Such a grid reference derandomises the coverage
correlation coefficient, which can be desirable in practice. As we show below, the empirical
coverage correlation coefficient converges to the same population limit when defined through
this grid reference.

Theorem 3. Let P (X,Y ) be a Borel probability measure on R2 with marginals PX and P Y

and let f be defined as in Theorem 1. Given X = (Xi)i∈[n] and Y = (Yi)i∈[n] such that

(X1, Y1), . . . , (Xn, Yn)
iid∼ P (X,Y ), and U = V = (1/n, 2/n, . . . , 1), define

κX,Y ;grid
n :=

V
(
X,Y ,U ,V ; 1

2
√
n

)
− e−1

1− e−1
.
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We have
κX,Y ;grid
n

p−→ κX,Y := Df (P
(X,Y ) ∥PX ⊗ P Y ), as n→∞.

Theorem 1 allows us to characterise the joint distribution P (X,Y ) when κX,Y
n

p−→ 0 and
κX,Y
n

p−→ 1 respectively. The following proposition formalises this, as well as establishing several
other properties of the population version of the coverage correlation coefficient.

Proposition 4. Suppose (X,Y ) ∼ P(X,Y ) ∈ P(Rd) and PX , P Y are the corresponding marginal
probability measures. Let κX,Y be defined as (5), then we have

(i) κX,Y = 0 if and only if X is independent of Y ;
(ii) κX,Y = 1 if and only if P (X,Y ) is singular with respect to PX ⊗ P Y .
(iii) For a random variable Z, if X ⊥⊥ Y | Z, then we have κX,Z ≥ κX,Y ;
(iv) For any sequence of random variables X(n) and Y (n) such that P (X(n),Y (n)) d−→ P (X,Y ), we

have lim infn→∞ κX
(n),Y (n) ≥ κX,Y ;

(v) κX,Y = κY,X .

We remark that parts (i), (iii), (iv) and (v) demonstrate that κX,Y , as a measure of statistical
association, satisfies the ‘zero-independence’, ‘information-monotonicity’, ‘lower semicontinuity’
and ‘symmetry axioms’ considered in Borgonovo et al. (2025) (see also Móri and Székely, 2019;
Rényi, 1959). Part (ii) is related to the ‘max-functionality’ axiom, though the coverage correla-
tion measures a more general statistical association between X and Y than a purely directional
functional relationship. Also, the following information gain inequality is an immediate conse-
quence of part (iii).

(iii’) for any random variables X, X ′ and Y , we have κ(X,X′),Y ≥ κX,Y .

This inequality is not mentioned in Borgonovo et al. (2025), but it appears as an axiom for
dependency measurement in Griessenberger et al. (2022).

The following result derives the asymptotic distribution of κX,Y
n under the null. This allows

us to use the coverage correlation to perform independence testing between X and Y .

Theorem 5. Suppose that X and Y are independent random vectors on RdX and RdY respec-
tively. Define

σ2n :=
1

(1− e−1)2

n∑
k=2

(
n

k

)(
1− 2

n

)n−k
{( 2

k + 1

)d
n−k−1 − n−2k

}
.

Given an independent and identically distributed copies (X1, Y1), . . . , (Xn, Yn) of (X,Y ), we have
√
nκX,Y

n

σn

d−→ N (0, 1)

as n→∞.

Based on the above theorem, we can construct a test for

H0 : P
(X,Y ) = PX ⊗ P Y versus H1 : P

(X,Y ) ̸= PX ⊗ P Y

by rejecting the null hypothesis if √
nκX,Y

n

σn
≥ zα, (7)
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where zα is the upper α quantile of the standard normal distribution. Since the limiting distri-
bution is independent of the marginal distribution PX and P Y , test (7) is distribution-free.

The normalising factor σn/
√
n in Theorem 5 is the exact standard deviation of the empirical

coverage correlation under the null. As can be seen in Lemma 24, we have

lim
n→∞

σ2n =
1

(e− 1)2

∞∑
k=2

1

k!

(
2

k + 1

)dX+dY

=: σ2

One can equivalently construct the asymptotic test by replacing σn with σ in (7), though using
the exact variance σ2n improves the finite sample performance of the test when n is relatively
small. When dX = dY = 1, the expression of the asymptotic variance σ2 has an explicit value of
(e− 1)−2(4Ei(1)− 4γ0 − 5) ≈ 0.091992, where γ0 is the Euler–Mascheroni constant and Ei(1) is
the exponential integral evaluated at 1.

While the central limit theorem in Theorem 5 allows us to derive asymptotically valid p-
values, the worst-case relative error of such p-values can still be large in the tails of the normal
distribution (e.g. a bound of order n−1/2 from the Berry–Esseen theorem (Berry, 1941; Esseen,
1942)). However, using the fact that the coverage correlation coefficient statistic exhibits weak
dependence on individual data point (Xi, Yi), we are able to derive a finite-sample concentration
inequality.

Theorem 6. Let P (X,Y ) be a Borel probability measure on R2. There exists a universal constant
C > 0 such that for any t > 0, we have

P(|Vn − EVn| ≥ t) ≤ 2(n+ 1)e−Cmin{nt2,(nt2)1/3}.

We remark that the above concentration is not sub-Gaussian for large deviations due to the
fact that the spacings between consecutive order statistics of the uniformly random reference
points U and V have sub-Gamma tails and deviate from the expected spacing of 1/(n + 1).
However, if we use the grid reference as in Theorem 3, which has constant spacing between
consecutive grid points, a sub-Gaussian concentration is available.

Proposition 7. Let P (X,Y ) be a Borel probability measure on R2 and let κX,Y ;grid
n be defined as

in Theorem 3. There exists a universal constant C > 0 such that for any t > 0, we have

P
(
|κX,Y ;grid

n − E(κX,Y ;grid
n )| ≥ t

)
≤ 2e−Cnt2 .

3 Empirical studies

3.1 Numerical simulations

Table 1 summarises the finite-sample sizes of the independence test based on the coverage cor-
relation coefficient κX,Y

n at various nominal levels, for n ∈ {10, 100, 1000} and dX = dY ∈ {1, 2}.
We see that the test is a bit conservative at relatively low sample sizes and well-calibrated for
large sample sizes.

In Figure 2, we compare the power of the test based on ξX,Y
n to those of Chatterjee’s cor-

relation (Chatterjee, 2021, implemented in the XICOR R package), distance correlation (dCor)
(Székely et al., 2007, implemented in the Rfast R package), Hilbert–Schmidt Independence Cri-
terion (HSIC) (Gretton et al., 2008, implemented in the dHSIC R package), the kernel measure of
association (KMAc) (Deb et al., 2020, implemented in the KPC R package) and the U-statistics
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n dX α = 1% α = 2.5% α = 5% α = 10%

10 1 0.69(0.03) 1.54(0.04) 3.03(0.05) 6.02(0.08)
100 1 0.93(0.03) 2.27(0.05) 4.34(0.06) 8.78(0.09)
1000 1 0.96(0.03) 2.34(0.05) 4.76(0.07) 9.50(0.09)
10 2 0.55(0.02) 1.18(0.03) 2.10(0.05) 4.08(0.06)
100 2 0.94(0.03) 2.11(0.05) 4.12(0.06) 8.03(0.09)
1000 2 0.97(0.03) 2.36(0.05) 4.66(0.07) 9.30(0.09)

Table 1: Empirical sizes (in percentage) of independent test based on coverage correlation coeffi-
cient at various nominal levels α, estimated over 100000 Monte Carlo repetitions (with standard
errors in brackets).

permutation test (USP) (Berrett et al., 2021, implemented in the USP R package). For dCor,
HSIC, KMAc and USP, we run 100 permutations to obtain p-values. Also, for USP, we set
M = 3 for the maximum frequency to use in the Fourier basis. We generate n ∈ {1000, 2000}
independent copies of (X,Y ) pair in RdX × RdY for dX = dY ∈ {1, 2} from one of the six data
generating mechanisms described below at different noise levels γ ∈ {0, 0.2, . . . , 1.8, 2} (all func-
tions below are applied componentwise for vector inputs and (ϵX , ϵY ) ∼ N (0, IdX ) ⊗ N (0, IdY )
is independent of all other randomness):

(i) sinusoidal: X ∼ Unif([−1, 1]dX ), Y = cos(8πX) + γϵY

(ii) zigzag: X ∼ Unif([−1, 1]dX ), Y = |X − 0.5sgn(X)|+ γϵY

(iii) circle: U ∼ Unif([0, 2π]dX ), X = cos(U) + 0.5γϵX , Y = sin(U) + 0.5γϵY

(iv) spiral: U ∼ Unif([0, 1]dX ), X = U sin(10πU) + 0.15γϵX , Y = U cos(10πU) + 0.15γϵY

(v) Lissajous: U ∼ Unif([0, 1]dX ), X = sin(3U + π/2) + 0.1γϵX , Y = sin(4U) + 0.1γϵY

(vi) local: Z ∼ N (0, IdX ), W ∼ N (0, IdY ), X = Z + 0.8ϵX , Y = 1{Z>0,W>0}Z + (1 −
1{Z>0,W>0})W + ϵY .

Appendix C.2 includes representative scatter plots across various noise levels and reports the
average runtime of the algorithms. We remark that in the ‘sinusoidal’ and ‘zigzag’ settings, Y
can be viewed as a function of X with added noise. Here, Chatterjee’s correlation performs
best (though it is only applicable when dX = dY = 1), and the coverage correlation, while
testing against a wider range of alternatives, has similar power performance. In ‘circle’, ‘spiral’,
‘Lissajous’ settings, X and Y are, up to additive noise, functions of a latent variable U , and
in the ‘local’ setting, the joint distribution of (X,Y ) has a lower-dimensional support in the
first quadrant only. In these cases, coverage correlation shows better power than Chatterjee’s
correlation and KMAc, which are designed to test functional relationships. HSIC, dCor and USP
perform well in a subset of these scenarios, though they all show poor performance in at least
one setting. Moreover, since these methods rely on permutation-based p-value computation, they
may not scale well, particularly when the multiple testing burden is high.

3.2 Real data

We use the coverage correlation coefficient to study two biological datasets. We first look at
a single-cell RNA sequencing dataset from Suo et al. (2022). We use a subset of the data
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Figure 2: Power curves, estimated over 500 Monte Carlo repetitions, are presented for the cov-
erage correlation, Chatterjee’s correlation, distance correlation, HSIC, KMAc and USP in six
data-generating scenarios described in Section 3.1 for (n, dX , dY ) ∈ {(1000, 1, 1), (2000, 2, 2)}
and noise level γ ∈ {0, 0.2, 0.4, . . . , 2}. Power is evaluated at the nominal level 0.05. The solid
lines correspond to the setting (n, dX , dY ) = (1000, 1, 1) while the dashed lines represent the
setting (n, dX , dY ) = (2000, 2, 2).
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used in the paper, consisting of the gene expression levels of top p = 1000 highly variable genes
measured in n = 9369 CD8+ T cells (the processed data is available in the covercorr R package).
We compute all

(
p
2

)
pairwise correlations using Pearson’s correlation, Spearman’s correlation,

Chatterjee’s correlation and the coverage correlation and adjust the corresponding p-values via
Bonferroni correction. We identified 54 gene pairs as significant by coverage correlation but not
by any of the other methods. The two most significant pairs are plotted in Figure 3. As can be
seen, for both pairs, the scatter plots of pairwise gene expression levels exhibit a clear L-shaped
relationship suggestive of an implicit functional dependence.
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Figure 3: The top two gene pairs with significant coverage correlation after Bonferroni correction,
but are not significant under Pearson, Spearman, or Chatterjee’s correlation tests. The right
column shows heatmaps of excess density of covered area in the coverage correlation calculation
of the corresponding gene pairs on the left column.

We next look at the yeast gene expression data from Spellman et al. (1998) (available from
R package minerva). The dataset measures the expression level of p = 4381 genes over n = 23
time points. We compute all

(
p
2

)
pairwise correlations using Pearson’s, Spearman’s, Chatterjee’s,

and coverage correlation and adjust p-values via Bonferroni correction. There are 85 pairs of
genes whose association are statistically significant at 0.05 level after Bonferroni correction using
coverage correlation, but no other methods. The top four such pairs with the largest coverage
correlation coefficients are shown in Figure 4.
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Figure 4: Top four gene pairs with significant coverage correlation after Bonferroni correction,
but not significant under Pearson’s, Spearman’s, or Chatterjee’s correlation tests.

A Proof of main results

A.1 Proof of Theorem 1

The proof strategy for Theorem 1 is as follows. We first reduce the problem to the case where
the marginal distributions PX and P Y are both Unif[0, 1], so that the joint distribution P (X,Y )

is simply the copula. Next, we approximate the absolutely continuous part of P (X,Y ) by a
piecewise constant density on rectangular pieces and the singular part of P (X,Y ) by a singular
measure supported on a Lebesgue null compact set. Finally, we show that the contribution to
the coverage from each rectangular piece with constant density q is proportional to e−q and
the contribution from the singular measure with Lebesgue null support is 0 to complete the
argument. Following this strategy, we will lay down some preliminary results before presenting
the overall proof.

The first preliminary result controls the contribution to the coverage from a rectangular
region in the domain where the density is constant.

Proposition 8. Suppose P (X,Y ) is a probability measure on [0, 1]2 with Unif[0, 1] marginals. Sup-
pose that for some 0 ≤ a1 < a2 ≤ 1 and 0 ≤ b1 < b2 ≤ 1, P (X,Y ) is equal to q ·vol when restricted
to [a1, a2]× [b1, b2], where vol denotes the Lebesgue measure. Let (X1, Y1), . . . , (Xn, Yn)

iid∼ P (X,Y )

and let Ri be defined as in (2) with respect to reference points (Ui, Vi)i∈[n]
iid∼ Unif[0, 1]2. Then

vol

( ⋃
i:(Xi,Yi)∈(a1,a2]×(b1,b2]

B
(
Ri,

1

2
√
n

))
= (1− e−q)(a2 − a1)(b2 − b1)(1 + op(1)).

Proof. Define I := {i ∈ [n] : a1 < Xi ≤ a2}, I− := {i ∈ [n] : Xi ≤ a1}, J := {j ∈ [n] : b1 <
Yj ≤ b2} and J− := {j ∈ [n] : Yj ≤ b1}. We write S0 := |I−|, S1 := |I− ∪ I|, T0 := |J−| and
T1 := |J− ∪ J |. Also, let M := |I ∩ J |.

Given (Ui, Vi)i∈[n]
iid∼ Unif[0, 1]2, observe that for RX

i and RY
i be defined in (1), we have

{RX
i : i ∈ I} = {U(S0+1), . . . , U(S1)} and {RY

j : j ∈ J } = {V(T0+1), . . . , V(T1)}.

Let F be the σ-algebra generated by U(S0), U(S1+1), and V(T0), V(T1+1) and M . By David and
Nagaraja (2004, Theorem 2.5), we have

(RX
i : i ∈ I)

∣∣ F iid∼ Unif[U(S0), U(S1+1)] and (RY
j : j ∈ J )

∣∣ F iid∼ Unif[V(T0), V(T1+1)].

13



Furthermore, since (
(Xi, Yi) : i ∈ I ∩ J

) ∣∣M iid∼ Unif(a1, a2]⊗Unif(b1, b2], (8)

we have
(Ri : i ∈ I ∩ J ) | F

iid∼ Unif[U(S0), U(S1+1)]⊗Unif[V(T0), V(T1+1)].

By law of large numbers, there is an event Ω with probability 1 on which we have M/n →
q(a2 − a1)(b2 − b1), S0/n → a1, S1/n → a2, T0/n → b1, T1/n → b2, U(S0) → a1, U(S1+1) → a2,
V(T0) → b1 and V(T1+1) → b2. We will work on this event henceforth.

As n→∞, the contribution of the covered area by points near the boundary of any rectangle
is negligible (so we may ignore the periodic boundary condition), hence Lemma 24 and a linear
rescaling, conditional on F , we have

E
{
vol

( ⋃
i∈I∩J

B
(
Ri,

1

2
√
n

)) ∣∣∣∣ F}→ (1− e−q)(a2 − a1)(b2 − b1),

Var

{
vol

( ⋃
i∈I∩J

B
(
Ri,

1

2
√
n

)) ∣∣∣∣ F}→ 0.

By the Dominated Convergence Theorem, the same result holds unconditionally, which implies
the desired result by an application of Chebyshev’s inequality.

The next preliminary result shows that the coverage correlation coefficients of samples gen-
erated from two probability measures close in total variation distance are (stochastically) close
to each other.

Proposition 9. Let µ and ν be two probability measures on R2 with dTV(µ, ν) ≤ ϵ and suppose
(Xi, Yi)i∈[n]

iid∼ µ, (X̃i, Ỹi)
iid∼ ν. Also suppose (Ui, Vi)i∈[n]

iid∼ Unif[0, 1]2 and (Ũi, Ṽi)i∈[n]
iid∼

Unif[0, 1]2 are independent of (Xi, Yi)i∈[n] and (X̃i, Ỹi)i∈[n] respectively. There exists a coupling
between (Xi, Yi, Ui, Vi)i∈[n] and (X̃i, Ỹi, Ũi, Ṽi)i∈[n] such that∣∣∣∣V((Xi)i∈[n], (Yi)i∈[n], (Ui)i∈[n], (Vi)i∈[n];

1

2
√
n

)
− V

(
(X̃i)i∈[n], (Ỹi)i∈[n], (Ũi)i∈[n], (Ṽi)i∈[n];

1

2
√
n

)∣∣∣∣
≤ ϵ+Op(n

−1/2).

Proof. For notational simplicity, write X := (Xi)i∈[n], Y := (Yi)i∈[n], X̃ := (X̃i)i∈[n], Ỹ :=

(Ỹi)i∈[n], U := (Ui)i∈[n], V := (Vi)i∈[n], Ũ := (Ũi)i∈[n], Ṽ := (Ṽi)i∈[n]. Also, let (XPois,Y Pois) :=

(XPois
i , Y Pois

i )i∈[N ] ∼ PP(nµ) be a Poisson point process with intensity nµ with N ∼ Poi(n)

points. Similarly, define mutually independent Poisson point processes (X̃
Pois

, Ỹ
Pois

) ∼ PP(nν),
(UPois,V Pois) ∼ PP(n · vol) and (Ũ

Pois
, Ṽ

Pois
) ∼ PP(n · vol).

We define a new measure λ that is the maximum of µ and ν as follows. Let f = dµ/d(µ+ ν)
and g = dν/d(µ+ ν) be densities with respect to the common dominating measure µ+ ν, we set
dλ := max(f, g) d(µ+ ν). It is clear that λ ≥ µ and λ ≥ ν, and from the total variation bound
between µ and ν we have λ(R2)−max{µ(R2), ν(R2)} ≤ ϵ. We define another two independent
Poisson point process (Xmax,Y max) ∼ PP(nλ) and (Umax,V max) ∼ PP(n · vol).
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We now define a chain of couplings by Lemmas 22 and 23 as follows:
X
Y
U
V

 Lemma 22←−−−−−→


XPois

Y Pois

UPois

V Pois

 Lemma 23←−−−−−→


Xmax

Y max

Umax

V max

 Lemma 23←−−−−−→


X̃

Pois

Ỹ
Pois

Ũ
Pois

Ṽ
Pois

 Lemma 22←−−−−−→


X̃

Ỹ

Ũ

Ṽ


In particular, under this coupling, the cardinality of XPois, Y Pois, UPois, V Pois and their tilde-ed
counterpart are all equal to some N ∼ Poi(n) and the cardinality of Xmax, Y max, Umax, V max

are equal to M ∼ Poi(nλ(R2)). By Lemma 22, we have∣∣∣∣V(X,Y ,U ,V ;
1

2
√
n

)
− V

(
XPois,Y Pois,UPoisV Pois;

1

2
√
N

)∣∣∣∣ = Op(n
−1/2)∣∣∣∣V(X̃, Ỹ , Ũ , Ṽ ;

1

2
√
n

)
− V

(
X̃

Pois
, Ỹ

Pois
, Ũ

Pois
Ṽ

Pois
;

1

2
√
N

)∣∣∣∣ = Op(n
−1/2)

By Lemma 23, we have∣∣∣∣V(Xmax,Y max,Umax,V max;
1

2
√
M

)
− V

(
XPois,Y Pois,UPoisV Pois;

1

2
√
N

)∣∣∣∣ ≤ ϵ+Op(n
−1/2)∣∣∣∣V(Xmax,Y max,Umax,V max;

1

2
√
M

)
− V

(
X̃

Pois
, Ỹ

Pois
, Ũ

Pois
Ṽ

Pois
;

1

2
√
N

)∣∣∣∣ ≤ ϵ+Op(n
−1/2)

The desired result follows by combining the above four vacancy difference bounds under the
coupling.

We are now in a position to prove Theorem 1.

Proof of Theorem 1. Let FX and FY be the distribution functions of random variables X and
Y , respectively. By Lemma 15 and the fact that the coverage correlation is preserved under
monotonic transformation of X and Y , we may replace (Xi, Yi)i∈[n] by (FX(Xi), FY (Yi))i∈[n] and
assume without loss of generality that PX = P Y = Unif[0, 1], so that P (X,Y ) is simply a copula.

By Lebesgue–Radon–Nikodym decomposition, we can write dP (X,Y ) = h dvol + dν for some
measurable function h and a measure ν singular with respect to the Lebesgue measure. Fix
ϵ > 0. For all sufficiently large integer N , we can find a function h̃ piecewise constant on each
Qj,k := [(j − 1)/N, j/N)× [(k − 1)/N, k/N) such that

∫
|h− h̃| dvol ≤ ϵ (for instance, h̃ can be

defined to be equal to the mean value of h in each Qj,k and the claim follows from the Lebesgue
Differentiation Theorem and Dominated Convergence Theorem). Since P (X,Y ), and hence also
ν, is Radon, and in particular inner regular, we can find a compact set K with Lebesgue measure
0 in [0, 1]2 such that ν(Kc) ≤ ϵ. By possibly increasing N , we may also assume that∑

(j,k):Qj,k∩K ̸=∅

vol(Qj,k) ≤ vol

(
K +B

(
(0, 0),

1

N

))
≤ ϵ (9)

We write ν̃ for the restriction of ν on K, i.e. ν̃(A) = ν(A∩K) for all Borel subset A of [0, 1]2.
Let P̃ (X,Y ) be defined such that

dP̃ (X,Y ) =
h̃ dvol + dν̃∫

[0,1]2 h̃ dvol + ν̃([0, 1]2)
.
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By construction, we have dTV(P
(X,Y ), P̃ (X,Y )) ≤ 2ϵ. In particular, the marginals P̃X and P̃ Y of

P̃ (X,Y ) also satisfies max{dTV(P
X , P̃X), dTV(P

Y , P̃ Y )} ≤ 2ϵ, so by the triangle inequality

dTV(P
X ⊗ P Y , P̃X ⊗ P̃ Y ) ≤ dTV(P

X ⊗ P Y , PX ⊗ P̃ Y ) + dTV(P
X ⊗ P̃ Y , P̃X ⊗ P̃ Y ) ≤ 4ϵ.

By Lemma 16, we conclude that for M = 1 and L = 1/(1− e−1)∣∣Df (P
(X,Y ) ∥PX ⊗ P Y )−Df (P̃

(X,Y ) ∥ P̃X ⊗ P̃ Y )
∣∣ ≤ (8M + 6L)ϵ1/2. (10)

Let κX̃,Ỹ
n be the empirical coverage correlation of samples (X̃i, Ỹi)i∈[n]

iid∼ P̃ (X,Y ) with re-

spect to reference points (Ũi, Ṽi)
iid∼ Unif[0, 1]2. By Proposition 9, there is a coupling between

(Xi, Yi, Ui, Vi)i∈[n] and (X̃i, Ỹi, Ũi, Ṽi)i∈[n] such that

|κX,Y
n − κX̃,Ỹ

n | ≤ 2ϵ

1− e−1
+Op(n

−1/2). (11)

Now, since P̃ (X,Y ) has piecewise constant density in its absolutely continuous part, we may
explicitly control κX̃,Ỹ

n . Specifically, writing R̃i for the bivariate ranks of (X̃i, Ỹi) with respect to
(Ũi)i∈[n] and (Ṽi)i∈[n] defined as in (2), we have that

(1− e−1)κX̃,Ỹ
n = 1− e−1 − vol

( n⋃
i=1

B
(
R̃i,

1

2
√
n

))
≤ 1− e−1 −

∑
(j,k):Qj,k∩K=∅

vol

(
Qj,k ∩

⋃
i:(X̃i,Ỹi)∈Qj,k

B
(
R̃i,

1

2
√
n

))

≤ 1− e−1 − (1 + op(1))

N∑
j,k=1

∫
(x,y)∈Qj,k

(1− e−h̃(x,y)) + ϵ

= (1 + op(1))

∫
(x,y)∈[0,1]2

(e−h̃(x,y) − e−1) + ϵ

= (1− e−1 + op(1))Df (P̃
(X,Y ) ∥PX ⊗ P Y ) + ϵ

where the second inequality follows from Proposition 8 and (9). By a similar argument, we can
bound κX̃,Ỹ

n below as

(1− e−1)κX̃,Ỹ
n = 1− e−1 −

∑
(j,k)

vol

(
Qj,k ∩

⋃
i:(X̃i,Ỹi)∈Qj,k

B
(
R̃i,

1

2
√
n

))

≥ (1 + op(1))

∫
(x,y)∈[0,1]2

(e−h̃(x,y) − e−1)− vol

( ⋃
(j,k):Qj,k∩K ̸=∅
i:(X̃i,Ỹi)∈Qj,k

B
(
R̃i,

1

2
√
n

))

≥ (1− e−1 + op(1))Df (P̃
(X,Y ) ∥PX ⊗ P Y )− vol

(
K +B

(
0,

1

N
+ ϵ+Op(n

−1/2)
))

, (12)

where in the final step, we applied Lemma 17 to both (X̃i)i∈[n], (Ỹi)i∈[n] and (Ũi)i∈[n], (Ṽi)i∈[n].
By another application of Lemma 16, Df (P̃

(X,Y ) ∥PX ⊗ P Y ) is at most (8M + 2L)
√
ϵ away

from Df (P̃
(X,Y ) ∥P̃X ⊗ P̃ Y ). Also, using the fact that vol(K) = 0 and the upper continuity of
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Lebesgue measure, by choosing ϵ sufficiently small (and consequently N sufficiently large), the
volume of the Minkowski dilation of K of width 1/N + ϵ + Op(n

−1/2) on the right-hand side
of (12) can be made smaller than any positive number in probability. Therefore, we conclude
that

κX̃,Ỹ
n

p−→ Df (P̃
(X,Y ) ∥P̃X ⊗ P̃ Y ). (13)

The desired result then follows by combining (10), (11) and (13), since we can set ϵ arbitrarily
small.

A.2 Proof of Proposition 2

Proof of Proposition 2. The first part of the proposition follows directly from Lemma 24, which
implies that E(Vn)→ e−1 and Var(Vn)→ 0.

Now we consider the case that P (X,Y ) is singular with respect to PX ⊗ P Y . By the same
argument as in the proof of Lemma 15, there exist convex functions ϕ : RdX → R and ψ :
RdY → R and random vectors U ∼ Unif([0, 1]dX ) and V ∼ Unif([0, 1]dY ) such that X =
∇ϕ(U) and Y = ∇ψ(V ) defines respectively the optimal transport maps from U to X and
from V to Y . Let TX and TY be the Markov transition kernel from X to U and from Y
to V , respectively, corresponding to the conditional distribution U | X and V | Y . Then
we have TX(X1), . . . , TX(Xn)

iid∼ Unif([0, 1]dX ) and TY (Y1), . . . , TY (Yn)
iid∼ Unif([0, 1]dY ). Since

(∇ϕ(TX(X1)),∇ψ(TY (Y1))) = (X1, Y1), we have that the joint distribution of (TX(X1), TY (Y1))
is singular with respect to the product of the marginals (the preimage of the joint distribution of
(X1, Y1) under the mapping (a, b) 7→ (∇ϕ(a),∇ϕ(b)) is has measure 1 under the joint distribution
of (TX(X1), TY (Y1)) and measure 0 under the product of the marginals). Fix ϵ > 0. Since the
joint distribution of (TX(X1), TY (Y1)) is a Radon measure, and hence inner regular, we can find
a compact subset K of its support (so K has Lebesgue measure 0) such that

P((TX(X1), TY (Y1)) ∈ K) ≥ 1− ϵ.

Denote I := {i : (TX(X1), TY (Y1)) /∈ K}. By the multiplicative Chernoff bound (Samworth and
Shah, 2025+, Exercise 10.6.11), we have

P(|I| > 2ϵn) ≤ e−3nϵ/8.

By Fournier and Guillin (2015, Theorem 1), the empirical distribution of both (Ri)i∈[n] and
(TX(Xi), TY (Yi))i∈[n] are at most Cdρn away from Unif([0, 1]d) in 1-Wasserstein distance where

ρn =

{
n−1/2 log(en) if d = 2

n−1/d if d ≥ 3

and Cd depends only on d. Hence by the triangle inequality and Markov’s inequality, the 1-
Wasserstein distance between (Ri)i∈[n] and (TX(Xi), TY (Yi))i∈[n] is bounded by 2Cdρ

1/2
n with

probability at least 1− ρ1/2n . Define

J := {i : min
j∈[n]
∥Ri − (TX(Xj), TY (Yj))∥2 > 2ϵ−1Cdρ

1/2
n }.
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Then P(|J | > ϵn) ≤ ρ1/2n . Therefore, on an event with probability at least 1− ρ1/2n − e−3nϵ/8, we
have for some C ′

d depending only on d that

vol

( ⋃
i∈[n]

B
(
Ri,

1

2n1/d

))
≤ vol

( ⋃
i∈I∪J

B
(
Ri,

1

2n1/d

))
+ vol

(
K +B(0, C ′

dϵ
−1ρ1/2n )

)
≤ 3ϵ+ vol

(
K +B(0, C ′

dϵ
−1ρ1/2n )

)
For each fixed ϵ, the Minkowski dilation K +B(0, C ′

dϵ
−1ρ

1/2
n ) has Lebesgue measure converging

to 0 (since K is compact and Lebesgue null). Since ϵ is arbitrary, we must have the left-hand
side of the above converging to 0 in probability, and consequently κX,Y

n
p−→ 1 as desired.

A.3 Proof of Theorem 3

The proof strategy for Theorem 3 is similar to that of Theorem 1 and is as follows. We first
reduce the problem to the case where the marginal distributions PX and P Y are both Unif[0, 1],
so that the joint distribution P (X,Y ) is simply the copula. Next, we approximate the absolutely
continuous part of P (X,Y ) by a piecewise constant density on rectangular pieces and the singular
part of P (X,Y ) by a singular measure supported on a Lebesgue null compact set. Finally, we
show that the contribution to the coverage from each rectangular piece with constant density q is
proportional to e−q and the contribution from the singular measure with Lebesgue null support
is 0 to complete the argument. Following this strategy, we will lay down some preliminary results
before presenting the overall proof.

The first preliminary result controls the contribution to the coverage from a rectangular
region in the domain where the density is constant.

Proposition 10. Suppose P (X,Y ) is a probability measure on [0, 1]2 with Unif[0, 1] marginals.
Suppose that for some 0 ≤ a1 < a2 ≤ 1 and 0 ≤ b1 < b2 ≤ 1, P (X,Y ) is equal to q · vol when re-
stricted to [a1, a2]×[b1, b2], where vol denotes the Lebesgue measure. Let (X1, Y1), . . . , (Xn, Yn)

iid∼
P (X,Y ) and let Ri be defined as in (2) with respect to reference points U = V = (1/n, . . . , (n −
1)/n, 1). Then

vol

( ⋃
i:(Xi,Yi)∈(a1,a2]×(b1,b2]

B
(
Ri,

1

2
√
n

))
= e−q(a2 − a1)(b2 − b1)(1 + op(1)).

Proof. Define I := {i ∈ [n] : a1 < Xi ≤ a2}, I− := {i ∈ [n] : Xi ≤ a1}, J := {j ∈ [n] : b1 <
Yj ≤ b2} and J− := {j ∈ [n] : Yj ≤ b1}. We write S0 := |I−|, S1 := |I− ∪ I|, T0 := |J−| and
T1 := |J− ∪ J |. Also, let M := |I ∩ J |. Let

RX = {(S0 + 1)/n, . . . , S1/n} and RY = {(T0 + 1)/n, . . . , T1/n}.

For an arbitrary finite set S and integer k > 0, let S(k) := {A ⊆ S | |A| = k}, e.g. the set of all
subsets of size k of S. Define Unif(S(k)) to be the uniform distribution over all subsets of size k
of S. Let F be the σ-algebra generated by S0, S1, T0, T1, and M . Then using (8) we have

{RX
i : i ∈ I ∩ J } | F ∼ Unif(R(M)

X ) and {RY
j : j ∈ I ∩ J } | F ∼ Unif(R(M)

Y ).

which are independent of each other, which gives us

(Ri : i ∈ I ∩ J ) | F ∼ Unif(R(M)
X )⊗Unif(R(M)

Y ).
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This means that any matchings between any subset of size M of RX and any subset of size M
of RY are equally likely given F .

By law of large numbers, there is an event Ω with probability 1 on which we have M/n →
q(a2 − a1)(b2 − b1), S0/n→ a1, S1/n→ a2, T0/n→ b1, T1/n→ b2. We will work on this event
henceforth.

As n→∞, the contribution of the covered area by points near the boundary of any rectangle
is negligible (so we may ignore the periodic boundary condition), hence Lemma 26 and a linear
rescaling, conditional on F , we have

E
{
vol

( ⋃
i∈I∩J

B
(
Ri,

1

2
√
n

)) ∣∣∣∣ F}→ e−q(a2 − a1)(b2 − b1).

Then using Lemma 27

Var

(
vol

( ⋃
i∈I∩J

B
(
Ri,

1

2
√
n

)) ∣∣∣∣ F)

= E
{(

vol

( ⋃
i∈I∩J

B
(
Ri,

1

2
√
n

))
− E

{
vol

( ⋃
i∈I∩J

B
(
Ri,

1

2
√
n

)) ∣∣ F})2 ∣∣∣∣ F}

=

∫ ∞

0
P
{(

vol

( ⋃
i∈I∩J

B
(
Ri,

1

2
√
n

))
− E

{
vol

( ⋃
i∈I∩J

B
(
Ri,

1

2
√
n

)) ∣∣ F})2

≥ t
∣∣∣∣ F}dt→ 0.

Using Lemma 27 and McDiarmid inequality we have

P
{(

vol

( ⋃
i∈I∩J

B
(
Ri,

1

2
√
n

))
− E

{
vol

( ⋃
i∈I∩J

B
(
Ri,

1

2
√
n

)) ∣∣ F})2

≥ t
∣∣∣∣ F} ≤ 2 exp(−Cnt),

which gives

Var

(
vol

( ⋃
i∈I∩J

B
(
Ri,

1

2
√
n

)) ∣∣∣∣ F)→ 0.

By the Dominated Convergence Theorem, the same result holds unconditionally, which implies
the desired result by an application of Chebyshev’s inequality.

The next preliminary result shows that the coverage correlation coefficients of samples gen-
erated from two probability measures close in total variation distance are (stochastically) close
to each other.

Proposition 11. Let µ and ν be two probability measures on R2 with dTV(µ, ν) ≤ ϵ. Let U =

V = (1/n, . . . , (n−1)/n, 1). Then there is a coupling between µ and ν such that (Xi, Yi)i∈[n]
iid∼ µ,

(X̃i, Ỹi)
iid∼ ν

P
(∣∣∣∣V((Xi)i∈[n], (Yi)i∈[n],U ,V ;

1

2
√
n

)
− V

(
(X̃i)i∈[n], (Ỹi)i∈[n],U ,V ;

1

2
√
n

)∣∣∣∣ ≥ 12ϵ
√
n
)
≤ e−nϵ/3.

Proof. Since dTV(µ, ν) ≤ ϵ we can construct a coupling between µ and ν such that for two
i.i.d. samples {(Xi, Yi)}ni=1 and {(X̃i, Ỹi)}ni=1 and for each i ∈ [n] we have (e.g. Theorem 5.2 in
Lindvall (2002))

P
(
(Xi, Yi) ̸= (X̃i, Ỹi)

)
= dTV(µ, ν)/2 ≤ ϵ/2.

19



Let I be the set of all indices i ∈ [n] where (Xi, Yi) and (X̃i, Ỹi) are different and let K = |I|.
The variable K follows a binomial distribution B(n, p) with p ≤ ϵ/2 which gives us E(K) ≤ nϵ/2.
For any i we have

RX
i = n−1

n∑
j=1

1{Xj ≤ Xi}, R̃X
i = n−1

n∑
j=1

1{X̃j ≤ X̃i}.

For i ̸∈ I, since Xi = X̃i and there are at most K indices j such that 1{X̃j ≤ X̃i} ≠ 1{Xj ≤ X̃i}
we have |RX

i − R̃X
i | ≤ K/n. Using the same argument, we have |RY

i − R̃Y
i | ≤ K/n. Therefore

∥Ri − R̃i∥∞ ≤ K/n. Note that for i ∈ I we cannot provide any non-trivial bound. Let

S = ∪ni=1(Ri +B), S̃ = ∪ni=1(R̃i +B).

Then note that |vol(S)− vol(S̃)| ≤ vol(S∆S̃). Also we have

vol(S∆S̃) ≤ vol
((
∪i ̸∈I (Ri +B)

)
∆
(
∪i ̸∈I (R̃i +B)

))
+ vol

(
∪i∈I (Ri +B)

)
+ vol

(
∪i∈I (R̃i +B)

)
.

where

vol
(
∪i∈I (Ri +B)

)
+ vol

(
∪i∈I (R̃i +B)

)
≤ 2K

n
.

Then for the set of i ̸∈ I we have

vol
((
∪i ̸∈I (Ri +B)

)
∆
(
∪i ̸∈I (R̃i +B)

))
≤

∑
i ̸∈I

vol
(
(Ri +B)∆(R̃i +B)

)
≤ 4K(n−K)

n
√
n

.

Putting these together, we get

|vol(S)− vol(S̃)| ≤ 4K(n−K)

n
√
n

+
2K

n
≤ 6K√

n
.

Therefore, using the Chernoff bound, we have

P(|vol(S)− vol(S̃)| ≥ 6(1 + δ)ϵ
√
n) ≤ P(K ≥ (1 + δ)nϵ) ≤ exp

(
− nϵδ2

3

)
.

Therefore, by setting δ = 1, we get the desired result.

We are now in a position to prove Theorem 3.

Proof of Theorem 3. Consider the same set-up as in the proof of Theorem 1. Let κX̃,Ỹ
n be the

empirical coverage correlation of sample (X̃i, Ỹi)i∈[n]
iid∼ P̃ (X,Y ) with P̃ (X,Y ) constructed as in

proof of Theorem 1 and using the coupling argument in Proposition 11 for nϵ→∞ such that

|κX,Y ;grid
n − κX̃,Ỹ ;grid

n | ≤ Op(ϵ
√
n). (14)
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Now, since P̃ (X,Y ) has piecewise constant density in its absolutely continuous part, we may
explicitly control κX̃,Ỹ ;grid

n . Specifically, writing R̃i for the bivariate ranks of (X̃i, Ỹi) with respect
to reference points U = V = (1/n, . . . , (n− 1)/n, 1) defined as in (2), we have

(1− e−1)κX̃,Ỹ
n = 1− e−1 − vol

( n⋃
i=1

B
(
R̃i,

1

2
√
n

))
≤ 1− e−1 −

∑
(j,k):Qj,k∩K=∅

vol

(
Qj,k ∩

⋃
i:(X̃i,Ỹi)∈Qj,k

B
(
R̃i,

1

2
√
n

))

≤ 1− e−1 − (1 + op(1))
N∑

j,k=1

∫
(x,y)∈Qj,k

(1− e−h̃(x,y)) + ϵ

= (1 + op(1))

∫
(x,y)∈[0,1]2

(e−h̃(x,y) − e−1) + ϵ

= (1− e−1 + op(1))Df (P̃
(X,Y ) ∥PX ⊗ P Y ) + ϵ

where the second inequality follows from Proposition 10 and (9). By a similar argument, we can
bound κX̃,Ỹ ;grid

n below as

(1− e−1)κX̃,Ỹ ;grid
n = 1− e−1 −

∑
(j,k)

vol

(
Qj,k ∩

⋃
i:(X̃i,Ỹi)∈Qj,k

B
(
R̃i,

1

2
√
n

))

≥ (1 + op(1))

∫
(x,y)∈[0,1]2

(e−h̃(x,y) − e−1)− vol

( ⋃
(j,k):Qj,k∩K ̸=∅
i:(X̃i,Ỹi)∈Qj,k

B
(
R̃i,

1

2
√
n

))

≥ (1− e−1 + op(1))Df (P̃
(X,Y ) ∥PX ⊗ P Y )− vol

(
K +B

(
0,

1

N
+ ϵ+Op(n

−1/2)
))

, (15)

where in the final step, we applied Lemma 17 to (X̃i)i∈[n], (Ỹi)i∈[n].
By Lemma 16, Df (P̃

(X,Y ) ∥PX ⊗P Y ) is at most (8M +2L)
√
ϵ away from Df (P̃

(X,Y ) ∥P̃X ⊗
P̃ Y ). Also, using the fact that vol(K) = 0 and the upper continuity of Lebesgue measure, by
choosing ϵ sufficiently small (and consequently N sufficiently large), the volume of the Minkowski
dilation of K of width 1/N + ϵ+Op(n

−1/2) on the right-hand side of (15) can be made smaller
than any positive number in probability. Therefore, we conclude that

κX̃,Ỹ ;grid
n

p−→ Df (P̃
(X,Y ) ∥P̃X ⊗ P̃ Y ). (16)

The desired result then follows by combining (10), (14) and (16), by choosing small ϵ such that
nϵ→∞ and

√
nϵ→ 0.

A.4 Proof of Proposition 4

Proof of Proposition 4. Part (i) is true since Df (P
(X,Y ) ∥PX ⊗ P Y ) = 0 if and only if P (X,Y ) =

PX ⊗ P Y for strictly convex f . For part (ii), write dP (X,Y ) = h d(PX ⊗ P Y ) + dν for ν singular
with respect to PX ⊗ P Y . Since limt→∞ t−1f(t) = 0, we have

Df (P
(X,Y ) ∥ PX ⊗ P Y )− 1 =

∫
[0,1]2

e−h(x) − 1

1− e−1
d(PX ⊗ P Y )(x) = 0
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if and only if h(x) = 0 PX ⊗ P Y almost everywhere, i.e. P (X,Y ) = ν is singular with respect to
PX ⊗ P Y .

For part (iii), observe that conditional independence of X and Y given Z means that we can
generate both PX⊗P Y and P (X,Y ) from PX⊗PZ and P (X,Z) respectively using the same Markov
kernel (channel) P Y |Z . Hence, we can apply the data processing inequality (Polyanskiy and Wu,
2025, Theorem 7.4) of the f -divergence to obtain that κ(Z, Y ) ≥ κ(X,Y ) as desired. Part (iv)
follows from the lower semicontinuity of f -divergence (Polyanskiy and Wu, 2025, Theorem 4.9).
Finally, part (v) is true since the definition of κ(X,Y ) is symmetric with respect to the two
arguments by Fubini’s theorem.

A.5 Proof of Theorem 5

Proof of Theorem 5. Our proof strategy is inspired by Hall (1985, Theorem 1). Write γ := 1
2n1/d

for notational simplicity and fix λ ∈ N for now. Define L1 := ⌊ 1
(λ+2)γ ⌋. We can partition [0, 1)d

into L := Ld
1 small cubes

∏
j∈[d]

[kj−1
L1

,
kj
L1

)
for k1, . . . , kd ∈ [L1]. We call these small cubes

P1, . . . ,PL. For each ℓ ∈ [L], we define Qℓ to be the concentric cube in Pℓ with side length λγ.
Define Iℓ = {i : Ri ∈ Pℓ} and Nℓ := |Iℓ|. Writing

V inn,ℓ := vol
(
Qℓ \

⋃
i∈Iℓ

B(Ri, γ)
)
∀ ℓ ∈ [n] and Voutn := vol

(
[0, 1]d \

{ ⋃
ℓ∈[L]

Qℓ ∪
⋃
i∈[n]

B(Ri, γ)
})
,

(17)

we have

Vn = V inn + Voutn , where V inn :=
L∑

ℓ=1

V inn,ℓ.

The key observation here is that (V inn,ℓ : ℓ ∈ [L]) are conditionally independent given (Nℓ : ℓ ∈
[L]). Our proof strategy here is to first establish a Berry–Esseen bound for V inn conditional on
(Nℓ : ℓ ∈ [L]), then control the asymptotic behaviour of the mean and variance of V inn to derive
its unconditional central limit theorem, and finally show that Voutn has negligible contribution by
choosing λ sufficiently large. Define

Mn := E(V inn | N1, . . . , NL), Sn := Var(V inn | N1, . . . , NL). (18)

By Proposition 13 we have

sup
t∈R

∣∣∣∣P(√n(V inn −Mn)√
Sn

≤ t
∣∣∣∣ N1, . . . , NL

)
− Φ(t)

∣∣∣∣ = Op(n
−1/2), (19)

where Φ is the standard Gaussian distribution function. Additionally Proposition 12 gives us
√
n(Mn − E(Mn))

d−→ N (0, α2
λ), nSn

p−→ β2λ. (20)

Using Lemma 29, (19) and (20) gives us

√
n(V inn − E(V inn ))

d−→ N (0, α2
λ + β2λ).

Finally, using Proposition 14 and Chebyshev’s inequality by λ→∞ we have
√
n(Voutn − E(Voutn ))

p−→ 0.
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By Lemma 30, as λ→∞, we have α2
λ → 0 and β2λ → β2 for β2 > 0. Consequently, we conclude

that √
n(Vn − E(Vn))

d−→ N (0, β2).

The proof is complete by combining the above distributional convergence with the variance
calculation in Lemma 24.

Proposition 12. Let Mn and Sn be defined as in (18), we have

nSn
p−→ β2λ,

√
n(Mn − E(Mn))

d−→ N (0, α2
λ),

such that

α2
λ :=

λ2d

e22d(λ+ 2)d

(
e(λ/2+1)−d − 1

)
− λ2d

e2(λ+ 2)2d
, (21)

β2λ :=
{ λd

(λ+ 2)de2
Cd +

λ2d

2d(λ+ 2)de2
(1− e(λ/2+1)−d

)
}
+O(λ−1), (22)

where Cd =
∑

k≥1
2d

k!(k+1)d
.

Proof. To prove that nSn
p−→ β2λ we show that E(nSn) → β2λ, and Var(nSn) = o(1). Note that

(V inn,ℓ : ℓ ∈ [L]) are conditionally independent given (Nℓ : ℓ ∈ [L]). Therefore

Sn = Var(V inn | N1, . . . , NL) = Var
( L∑

ℓ=1

V inn,ℓ | N1, . . . , NL

)
=

L∑
ℓ=1

Var(V inn,ℓ | Nℓ).

First, note that when X and Y are independent, the optimal permutations πX and πY are
independent, and this implies that for i ∈ [n] we have Ri

iid∼ Unif[0, 1]d. Also note that given
i ∈ Iℓ, Ri follows a uniform distribution on Pℓ.

Without loss of generality, we fix Qℓ and introduce the following functions, which will be
used throughout the remainder of the proof. For any x1, x2 ∈ [0, 1]d define

C(x1, x2) :=
vol(B(x1, γ) ∩B(x1, γ))

vol(B(x1, γ))
= nvol(B(x1, γ) ∩B(x1, γ)).

For x1, x2 ∈ Qℓ and random variable W ∼ Unif(Pℓ) define

v(x1) := P
(
W ̸∈ B(x1, γ)

)
= 1− (

λ

2
+ 1)−d,

u(x1, x2) := P
(
W ̸∈ B(x1, γ) ∪B(x2, γ)

)
= 1− 2(

λ

2
+ 1)−d + C(x1, x2)(

λ

2
+ 1)−d.

First, note that we have

E[V inn,ℓ | Nℓ] = E
[ ∫

Qℓ

1{x ̸∈
⋃
i∈Iℓ

B(Ri, γ)}dx
∣∣∣ Nℓ

]
=

∫
Qℓ

v(x)Nℓdx,

E[(V inn,ℓ)2 | Nℓ] = E
[∫

Q2
ℓ

1{x1, x2 ̸∈
⋃
i∈Iℓ

B(Ri, γ)}dx1dx2
∣∣∣ Nℓ

]
=

∫
Q2

ℓ

u(x1, x2)
Nℓdx1dx2.
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Since Nℓ ∼ Bin(n, vol(Pℓ)), for a > 0 constant, we have EaNℓ = (1 + vol(Pℓ)(a − 1))n. Using
this equality, we have

E
[
Var

(
V inn,ℓ | Nℓ

)]
= E

[
E
(
(V inn,ℓ)2 | Nℓ

)
− E

(
V inn,ℓ | Nℓ

)2]
= E

[ ∫
Q2

ℓ

u(x1, x2)
Nℓ −

∫
Q2

ℓ

v(x1)
Nℓv(x2)

Nℓdx1dx2

]
=

∫
Q2

ℓ

{
1 + vol(Pℓ)(u(x1, x2)− 1)

}n
−
{
1 + vol(Pℓ)(v(x1)v(x2)− 1)

}n
dx1dx2

= (1 +O(
1

n
))

∫
Q2

ℓ

{
exp

(
(
λ

2
+ 1)d(u(x1, x2)− 1)

)
− exp

(
(
λ

2
+ 1)d(v(x1)v(x2)− 1)

)}
dx1dx2

= (1 +O(
1

n
))e−2

∫
Q2

ℓ

{
exp

(
C(x1, x2)

)
− exp

(
(
λ

2
+ 1)−d

)}
dx1dx2

= (1 +O(
1

n
))
{ λd

2de2n2
Cd +

λ2d

22de2n2
(1− e(λ/2+1)−d

)
}

=
{ λd

2de2n2
Cd +

λ2d

22de2n2
(1− e(λ/2+1)−d

)
}
+O(

λ2d

n3
+
λd−1

2dn2
)

where in the last line we have used the following equality∫
Q2

ℓ

exp(C(x1, x2))dx1dx2 = vol(Qℓ)
2+

vol(Qℓ)(2γ)
d

∫
[−1,1]d

(exp(
d∏

i=1

max{(1− |ui|), 0})− 1)du(1 +O(λ−1)),

where ∫
[−1,1]d

(exp(

d∏
i=1

max{(1− |ui|), 0})− 1)du =
∑
k≥1

2d

k!(k + 1)d
= Cd.

Therefore

E[nSn] = nE[
L∑

ℓ=1

Var(V inn,ℓ | Nℓ)]

= e−2
{
Cd +

λd

2d
(1− e(λ/2+1)−d

)
}
+O(λ−1 +

λd

n
)

= e−2(Cd − 1) +O(λ−1 + λ−d +
λd

n
). (23)

since 2−dλd(1− e(λ/2+1)−d
) = −1 +O(λ−d).

We then work out Var(Sn).

Var(Sn) = Var
( L∑

ℓ=1

Var(V inn,ℓ | Nℓ)
)
=

∑
ℓ,k∈[L]

Cov
(
Var(V inn,ℓ | Nℓ),Var(V inn,k | Nk)

)
.

Since

Var(V inn,ℓ | Nℓ) =

∫
Q2

ℓ

u(x1, x2)
Nℓ − v(x1)Nℓv(x2)

Nℓdx1dx2,
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applying Fubini’s theorem, we have

Cov
(
Var(V inn,ℓ | Nℓ),Var(V inn,k | Nk)

)
=

∫
Q4

1

Cov(u(x1, x2)
Nℓ , u(x3, x4)

Nk) + Cov(v(x1)
Nℓv(x2)

Nℓ , v(x3)
Nkv(x4)

Nk)

− Cov(u(x1, x2)
Nℓ , v(x3)

Nkv(x4)
Nk)−Cov(u(x3, x4)Nk , v(x1)

Nℓv(x2)
Nℓ)dx1dx2dx3dx4

= (vol(Q1))
4O(n−2) = O(n−6),

where in the last line we have used Lemma 28 together with the following fact

max{(u(x1, x2)− 1), (u(x3, x4)− 1), (v(x1)v(x2)− 1), (v(x3)v(x4)− 1)} = O(1).

As a result, we have

Var(nSn) = O(n−2). (24)

Combining (23) and (24), Markov’s inequality implies that nSn
p−→ β2λ

We now turn to proving that
√
n(Mn − E(Mn))

d−→ N (0, α2
λ). For w ∈ {0, 1, . . . , n}, let

f(w) := E[V inn,1 | N1 = w]. Let W ∼ Poi(nvol(P1)). Define

τ2 := LVar(f(W ))− L2

n
Cov2(W, f(W )).

Holst (1972, Theorem 1) implies that as n→∞

1

τ
(Mn − E(Mn))

d−→ N (0, 1).

To finish the proof, it is therefore enough to show that nτ2 → α2. For X ∼ Unif[Q1] we have

nLVar
(
f(W )

)
= nLVar(

∫
Q1

v(x)Wdx)

= nLvol2(Q1)Var
(
E
(
{v(X)}W |W

))
=

λ2d

(2λ+ 4)d
Var

({
1− (λ/2 + 1)−d

}W
)
=

λ2d

(2λ+ 4)d
e−2

(
e(λ/2+1)−d − 1

)
, (25)

where the final equality follows from the fact that EaW = envol(P1)(a−1) for any constant a > 0.
Similarly we derive

LCov
(
W,f(W )

)
= Lvol(Q1)

(
E
[
WE

(
{v(X)}W

∣∣W )]
− nvol(P1)E

[
E
(
{v(X)}W

∣∣W )])
=

(
λ

λ+ 2

)d(
E
{
W (1− (λ/2 + 1)−d)W

}
− (λ/2 + 1)dE

{
1− (λ/2 + 1)−d

}W
)

=

(
λ

λ+ 2

)d(
nvol(P1)

(
1− (λ/2 + 1)−d

)
e−1 − (λ/2 + 1)de−1

)
= −

(
λ

λ+ 2

)d

e−1,

(26)
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where we use the fact that E(WaW ) = nvol(P1)ηenp(a−1) for constant a > 0 in the second to
last equality. Combining (25) and (26) we have

nτ2 =
λ2d

2de2(λ+ 2)d

(
e(λ/2+1)−d − 1

)
− λ2d

e2(λ+ 2)2d
= α2

λ,

which finishes the proof.

Proposition 13. Let Mn and Sn be defined as in (18), we have

sup
t∈R

∣∣∣∣P(√n(V inn −Mn)√
Sn

≤ t
∣∣∣∣ N1, . . . , NL

)
− Φ(t)

∣∣∣∣ = Op(n
−1/2),

where Φ is the standard Gaussian distribution function.

Proof. Since each point in Qℓ lies at least γ away from the boundary of Pℓ, it follows that,
conditional on (Nℓ : ℓ ∈ [L]), the collections (V inn,ℓ : ℓ ∈ [L]) are independent. Then using
Berry-Esseen Theorem (Berry, 1941; Esseen, 1942) we have

sup
t∈R

∣∣∣P(√n(V inn −Mn)√
Sn

≤ t
∣∣∣∣N1, . . . , NL

)
− Φ(t)

∣∣∣ ≤ Cn,

where

Cn := C

∑L
ℓ=1 E

(
|V inn,ℓ − E(V inn,ℓ | Nℓ)|3 | Nℓ

)
S3/2

,

with C a universal constant independent of n. Additionally note that for all ℓ ∈ [L]

V inn,ℓ ≤ vol(Pℓ) =
(λ/2 + 1)d

n
.

Therefore we have

Cn ≤
(λ/2 + 1)3d

n2S
3/2
n

.

Using Proposition 12, we have Sn = Op(n
−1); thus it follows that Cn = Op(n

−1/2) which
completes the proof.

Proposition 14. Let Voutn be defined as in (17). We have

Voutn − E(Voutn ) = Op(n
−1/2λ−1/2).

Proof. First note that by Lemma 24 we have

E(Voutn ) =

{
1−

(
λ

λ+ 2

)d}(
1− 1

n

)n

. (27)

Take Z1, Z1
iid∼ Unif

[
[0, 1]d \

⋃
ℓ∈[L]Qℓ

]
. Using Lemma 24, we have

E[(Voutn )2] =

{
1−

(
λ

λ+ 2

)d}2

E
{
1− 2

n
+ vol(C(Z1, Z2))

}n

=

{
1−

(
λ

λ+ 2

)d}2 n∑
k=0

(
n

k

)(
1− 2

n

)n−k

E(vol(C(Z1, Z2)))
k. (28)

26



Note that for 1 ≤ k ≤ n we have

E(vol(C(Z1, Z2)))
k =

{
1−

(
λ

λ+ 2

)d}−2 ∫(
[0,1]d\

⋃
ℓ∈[L] Qℓ

)2 vol(C(z1, z2))k dz1dz2
≤

{
1−

(
λ

λ+ 2

)d}−2 ∫
[0,1]d\

⋃
ℓ∈[L] Qℓ

∫
[0,1]d

n−k
1{z1 ∈ Bd

∞(z2, 2γ)} dz2dz1

=

{
1−

(
λ

λ+ 2

)d}−1

2dn−(k+1). (29)

Therefore putting together (27),(28) and (29) we have

Var(Voutn ) ≤ 2d

n

{
1−

(
λ

λ+ 2

)d} n∑
k=1

(
n

k

)(
1− 2

n

)n−k 1

nk

+

{
1−

(
λ

λ+ 2

)d}2(
(1− 2

n
)n − (1− 1

n
)2n

)
=

2d

n

{
1−

(
λ

λ+ 2

)d}((
1− 1

n

)n − (
1− 2

n

)n)
+

{
1−

(
λ

λ+ 2

)d}2((
1− 2

n

)n − (
1− 1

n

)2n)
=

2d

n

{
1−

(
λ

λ+ 2

)d}
(e−1 − e−2)−

{
1−

(
λ

λ+ 2

)d}2 e−2

n
+ o(

1

n
).

Note that for large λ we have

1−
(

λ

λ+ 2

)d

= O(
1

λ
),

therefore allowing λ to grow in infinity as n→∞ we have

Var(Voutn ) = O(
1

nλ
).

This completes the proof.

A.6 Proof of Theorem 6

Proof of Theorem 6. As in the proof of Lemma 21, we generate P1, . . . , Pn+1, Q1, . . . , Qn+1
iid∼

Beta(1/2, 1/2) independent of all other randomness in the problem and define Gi := U(i) −
(U(i) − U(i−1))Pi and Hi := V(i) − (V(i) − V(i−1))Qi for i ∈ [n + 1] (with the convention that
U(0) = V(0) = 0 and U(n+1) = V(n+1) = 1).

Given any deterministic x = (xi)i∈[n] and y = (yi)i∈[n] and i0 ∈ [n], define

x−i0 = (x1, . . . , xi0−1, xi0+1, . . . , xn), y−i0 = (y1, . . . , yi0−1, yi0+1, . . . , yn).

By the proof of Lemma 21, there exists Ũ
[rx]

= (Ũ
[rx,ry ]
i )i∈[n−1] defined in terms of U = (Ui)i∈[n],

P1, . . . , Pn+1 and rx :=
∑

i∈[n]1{xi0
≥xi}, and Ṽ

[ry ]
= (Ũ

[ry ]
i )i∈[n−1] defined in terms of V =
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(Vi)i∈[n], Q1, . . . , Qn+1 and ry :=
∑

i∈[n]1{yi0≥yi}, such that Ũ
[rx] and Ṽ

[ry ] each have iid Unif[0, 1]

entries and∣∣∣∣V(X,Y ,U ,V ;
1

2
√
n

)
− V

(
X−i0 ,Y −i0 , Ũ

[rx]
, Ṽ

[ry ]
;

1

2
√
n− 1

)∣∣∣∣
≤ 5max{G(rx+1) −G(rx), H(ry+1) −H(ry), n

−1}.

Thus, if X ′ and Y ′ differ from X and Y only in the i0th entry respectively, we must have∣∣∣∣V(X,Y ,U ,V ;
1

2
√
n

)
− V

(
X ′,Y ′,U ,V ;

1

2
√
n

)∣∣∣∣
≤ 10max{G(rx+1) −G(rx), H(ry+1) −H(ry), n

−1}.

Since (G(r+1) − G(r))r∈[n] and (H(r+1) − H(r))r∈[n] are have Beta(1, n) entries, we have by
Lemma 25 that on an event Ω with probability at least 1− 2ne−t2/(2+4t/3) that

max
r∈[n]

max{G(r+1) −G(rx), H(r+1) −H(r), n
−1} ≤ 1 + t

n
.

Thus, we can apply McDiarmid’s inequality conditional on the event Ω to obtain that

P(|Vn − E(Vn)| ≥ s) ≤ P
(
|Vn − E(Vn)| ≥ s

∣∣ Ω)P(Ω) + P(Ωc)

≤ 2 exp

{
− ns2

50(1 + t)2

}
+ 2n exp

{
− t2

2 + 4t/3

}
Setting t = 1

5 min{(ns2)1/3, (ns2)1/2}, we then have

P(|Vn − E(Vn)| ≥ s) ≤ 2(n+ 1) exp

{
− 1

72
min{ns2, (ns2)1/3}

}
,

as desired.

A.7 Proof of Proposition 7

Proof of Proposition 7. The proof of this proposition is an immediate application of Lemma 27
and McDiarmid’s inequality (McDiarmid et al., 1989).

B Ancillary results

The following lemma shows that f -divergence is between the joint distribution and product of
marginal distributions is preserved under the Monge–Kantorovich rank transform.

Lemma 15. Let (X,Y ) be a pair of jointly distributed random variables on RdX × RdY . Let U
and V be continuous random variables with distribution PU on RdX and P V on RdY respectively,
chosen such that U ⊥⊥ V | (X,Y ) and that

U ∈ argmin
Ũ∼PU

E∥X − Ũ∥22 and V ∈ argmin
Ṽ∼PV

E∥Y − Ṽ ∥22. (30)

Let P (X,Y ) be the joint distribution of (X,Y ) with marginals PX and P Y , and similarly P (U,V ),
PU , P V the joint and marginal distributions of (U, V ). Then for any convex function f : R →
R ∪ {∞} such that f(1) = 0 (cf. Definition 2, we have

Df (P
(X,Y ) ∥PX ⊗ P Y ) = Df (P

(U,V ) ∥PU ⊗ P V ).
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Proof. Let π be the joint coupling (joint distribution) of (X,U) and γ the coupling of (Y, V )
defined through the solution of the optimal transport problem in (30). Let PU |X=x and P V |Y=y

be the corresponding conditional distributions of U given X = x and V given Y = y respectively.
Note that these conditional distributions are well-defined up to a PX -measure 0 set of x-values
and P Y -measure 0 set of y-values. The fact that U ⊥⊥ V | (X,Y ) means that PU |X=x ⊗P V |Y=y

is the conditional distribution of (U, V ) given (X,Y ) = (x, y). Therefore, we have

P (U,V ) =

∫
RdX×RdY

PU |X=x ⊗ P V |Y=y dP (X,Y )(x, y)

PU ⊗ P Y =

∫
RdX×RdY

PU |X=x ⊗ P V |Y=y d(PX ⊗ P Y )(x, y).

By the data processing inequality (Polyanskiy and Wu, 2025, Theorem 7.4), we thus have

Df (P
(X,Y ) ∥PX ⊗ P Y ) ≥ Df (P

(U,V ) ∥PU ⊗ P V ).

On the other hand, since U is absolutely continuous with respect to the Lebesgue measure,
by Brenier’s Theorem (see, e.g. Villani, 2021, Theorem 2.12), there exists a convex function
ϕ : RdX → R such that dπ(x, u) = dPU (u)δ{y=∇ϕ(u)}. In other words, the the optimal transport
from U to X is the function ∇ϕ (which is PU -almost everywhere uniquely defined), and so X =
∇ϕ(U). Similarly, we have Y = ∇ψ(V ) for some convex function ψ : RdY → R. Consequently,
we have that conditional on (U, V ), X and Y are deterministic, so in particular, conditionally
independent. This allows us to run a symmetric argument with the conditional distribution
of (X,Y ) given (U, V ) to obtain a data processing inequality in the reverse direction, thus
establishing the desired equality.

The next lemma shows the stability of the f -divergence Df (P ∥Q) with respect to total-
variation perturbation of P and Q when the generator function f is bounded Lipschitz in [0,∞).

Lemma 16. Suppose f : [0,∞) → [0,M ] is convex and L-Lipschitz. Then for any probability
measures P,Q, P ′, Q′ such that Q′ is absolutely continuous with respect to Q, we have

|Df (P ∥Q)−Df (P
′ ∥Q′)| ≤ 2LdTV(P, P

′) + (4M + L)
√
dTV(Q,Q′).

Proof. For notational convenience, we write ϵP := dTV(P, P
′) and ϵQ := dTV(Q,Q

′). Since f
is convex and bounded, it must be decreasing on [0,∞) with limt→∞ t−1f(t) → 0, so singular
components of P and P ′ has no contribution in the f divergence. Let Pac and P ′

ac be the
absolutely continuous part of P and P ′ with respect to Q, and let p, p′, q, q′ be densities of
Pac, P

′
ac, Q,Q

′ with respect to Q (note q ≡ 1). Then we have

Df (P ∥Q) =

∫
f

(
p(x)

q(x)

)
q(x) dQ(x) and Df (P

′ ∥Q′) =

∫
f

(
p′(x)

q′(x)

)
q′(x) dQ(x),

where f(∞) is interpreted as limt→∞ f(t), which exists since f is decreasing and bounded from
below. Thus, we have

Df (P ∥Q)−Df (P
′ ∥Q′) =

∫
f

(
p(x)

q(x)

)
(q(x)− q′(x)) dQ(x)

+

∫ {
f

(
p(x)

q(x)

)
− f

(
p(x)

q′(x)

)}
q′(x) dQ(x)

+

∫ {
f

(
p(x)

q′(x)

)
− f

(
p′(x)

q′(x)

)}
q′(x) dQ(x) =: I1 + I2 + I3.
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For the first terms on the right-hand side, we have

|I1| ≤M
∫
|q(x)− q′(x)| dQ(x) = 2MϵQ.

For the last term, using the fact that f is Lipschitz, we have

|I3| ≤ L
∫ ∣∣∣∣ p(x)q′(x)

− p′(x)

q′(x)

∣∣∣∣ q′(x) dQ(x) ≤ 2LϵP .

For the second term, writing A := {|q′(x) − q(x)| ≤ ϵ
1/2
Q } and using the fact that q(x) ≡ 1, we

have

|I2| ≤ L
∫ ∣∣∣∣p(x)q(x)

− p(x)

q′(x)

∣∣∣∣ q′(x)1A dQ(x) +M

∫
q′(x)1Ac dQ(x)

≤ L
∫
|q(x)− q′(x)|p(x)1A dQ(x) +M

∫
|q′(x)− q(x)| dQ(x) +M

∫
q(x)1Ac dQ(x)

≤ Lϵ1/2Q +MϵQ +Mϵ
1/2
Q ,

where we used Markov’s inequality in the final step. The desired result is obtained by combining
the bounds for I1, I2 and I3.

The following lemma studies locations of order statistics of a sample drawn from a distribution
close in total variation to Unif[0, 1].

Lemma 17. Suppose P is a distribution on [0, 1] such that dTV(P,Unif[0, 1]) ≤ ϵ. For observa-
tions X1, . . . , Xn

iid∼ P , let X(1) ≤ · · · ≤ X(n) denote their order statistics. Then for any t > 0,
we have

P
(
max
i∈[n]

∣∣∣∣X(i) −
i

n

∣∣∣∣ ≥ ϵ+ t

)
≤ 2e−2nt2 .

Proof. Let F be the distribution function of P and Fn the empirical c.d.f. of X1, . . . , Xn. We
then have

max
i∈[n]

∣∣∣∣X(i) −
i

n

∣∣∣∣ ≤ max
i∈[n]

∣∣∣∣X(i) − F (X(i))

∣∣∣∣+max
i∈[n]

∣∣∣∣F (X(i))− Fn(X(i))

∣∣∣∣
≤ sup

x∈[0,1]
|x− F (x)|+ sup

x∈[0,1]
|F (x)− Fn(x)|

≤ dTV(P,Unif[0, 1]) + sup
x∈[0,1]

|F (x)− Fn(x)|.

Therefore, we have

P
(
max
i∈[n]

∣∣∣∣X(i) −
i

n

∣∣∣∣ ≥ ϵ+ t

)
≤ P

(
sup

x∈[0,1]

∣∣∣∣F (x)− Fn(x)

∣∣∣∣ ≥ t) ≤ 2e−2nt2 ,

where the final bound uses the Dvoretzky–Kiefer–Wolfowitz–Massart–Reeve inequality (Dvoret-
zky et al., 1956; Massart, 1990; Reeve, 2024).

The following lemma shows that we can construct disjoint (randomised) intervals around
each order statistic of a uniform sample U1, . . . , Un on [0, 1], such that after deleting a subset of
these intervals, the remaining Ui’s are uniformly distributed in the carved out set.
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Lemma 18. Suppose U1, . . . , Un
iid∼ Unif([0, 1]) and P1, . . . , Pn+1

iid∼ Beta(1/2, 1/2) are indepen-
dent. Let U(1), . . . , U(n) be order statistics of (Ui)i∈[n] with the convention that U(0) := 0 and
U(n+1) := 1 and set Gi := U(i) − (U(i) − U(i−1))Pi. Given I ⊆ [n], define a mapping

g : [0, 1] \
⋃
i∈I

[Gi, Gi+1)→ [0, 1]

by

g(x) =
x−

∑
i∈I(Gi+1 −Gi)1{x ≥ Gi+1}
1−

∑
i∈I(Gi+1 −Gi)

.

Then, {g(U(i)) : i /∈ I} are order statistics of an independent and identically distributed sample
from Unif[0, 1].

Proof. Let M ∼ Gamma(n+1, 1) be independent from other randomness in the problem. Write
Si := U(i)M and and Ti := GiM , then

T1 − S0, S1 − T1, T2 − S1, S2 − T2, . . . , Tn+1 − Sn, Sn+1 − Tn+1

are 2n+ 2 independent Gamma(1/2, 1) random variables. Moreover,

D := [S(0), S(n+1)] \
⋃
i∈I

[Ti, Ti+1),

is exactly the domain of g scaled by M . For every i ∈ [n + 1], define its predecessor pred(i) :=
max{i′ ≤ i : i′ /∈ I}. Let Li denote the Lebesgue measure of [T(pred(i)+1), T(i+1)] ∩D. We note
that each Li = (Si − Ti) + (Tpred(i)+1 − Spred(i)) is the sum of two independent Gamma(1/2, 1)
increments and distinct increments are used to compute Li for different i. Hence, Li : i /∈ I are
independent Exp(1) random variables, which is equivalent to the desired result after rescaling.

The next two lemmas show how the covered area changes under simple operations. First, we
show that the covered area decreases by a small amount when we delete narrow horizontal and
vertical strips in [0, 1]2.

Lemma 19. For (x1, y1), . . . , (xn, yn) ∈ [0, 1]2, let [a, b), [c, d) ⊆ [0, 1] be intervals such that
[a, b)∩ {x1, . . . , xn} = xn and [c, d)∩ {y1, . . . , yn} = yn. Define g : [0, 1] \ [a, b)→ [0, 1− (b− a)]
by g(x) := x−(b−a)1{x ≥ b} and h : [0, 1]\[c, d)→ [0, 1−(d−c)] by h(y) := y−(d−c)1{y ≥ d}.
Then

0 ≤ vol

( n⋃
i=1

B∞((xi, yi), r)

)
− vol

(n−1⋃
i=1

B∞((g(xi), h(yi)), r)

)
≤ (b− a) + (d− c) + 4r2.

Proof. We define four sets of unions A1 := ∪ni=1B∞((xi, yi), r), A2 := ∪n−1
i=1 B∞((xi, yi), r), A3 :=

∪n−1
i=1 B∞((g(xi), yi), r) and A4 := ∪n−1

i=1 B∞((g(xi), h(yi)), r). It is easy to see that vol(A1) −
vol(A2) ∈ [0, 4r2], hence it suffices to show that vol(A2) − vol(A3) ∈ [0, b − a] and vol(A3) −
vol(A4) ∈ [0, d − c]. We will prove the former, and the latter follows by an essentially identical
argument.

Let S(y) := {x : (x, y) ∈ A2} and S̃(y) := {x : (x, y) ∈ A3} be horizontal ‘slices’ of A2 and
A3 respectively. By Fubini’s theorem, it suffices to check that λ(S(y))− λ(S̃(y)) ∈ [0, b− a] for
all y, where λ denotes the Lebesgue measure. Observe that

S(y) =
⋃

i∈[n−1]:|y−yi|≤r,xi<a

[xi − r, xi + r] ∪
⋃

i∈[n−1]:|y−yi|≤r,xi≥b

[xi − r, xi + r] =: S1(y) ∪ S2(y).
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and

S̃(y) =
⋃

i∈[n−1]:|y−yi|≤r,xi<a

[xi − r, xi + r] ∪
⋃

i∈[n−1]:|y−yi|≤r,xi≥b

[xi − (b− a)− r, xi − (b− a) + r]

= S1(y) ∪ {S2(y) + (a− b)},

where S2(y) + (a − b) denotes translation of the set S2(y) by a − b. If S1(y) ∩ S2(y) = ∅, then
λ(S1(y) ∩ {S2(y) + (a − b)}) ≤ b − a, so λ(S(y)) − λ(S̃(y)) ∈ [0, b − a]. On the other hand, if
S1(y) ∩ S2(y) ̸= ∅, let i1 = argmaxi∈[n−1],|y−yi|≤r,xi<a xi and i2 = argmini∈[n−1],|y−yi|≤r,xi≥b xi.
We must have xi1 + r ≥ xi2 − r. Observe that xi2 − (b − a) − r ≥ xi1 − r and xi1 + r ≤
xi2 − (b− a) + r, together with [xi1 − r, xi1 + r] ⊆ S1(y) and [xi2 − r, xi2 + r] ⊆ S2(y), we deduce
that S2(y) + (a− b) ∩ [0, a] ⊆ S1(y) and S1(y) ∩ [a, 1− (b− a)] ⊆ S2(y) + (a− b). In particular,
we have λ(S̃(y)) = λ(S(y))− (b− a). This establishes the desired result.

The following lemma controls the extent of change in the coverage area when we scale both
the domain and the radius of each ℓ∞ ball.

Lemma 20. Fix a, b ∈ (0, 1) and let f : [0, a] × [0, b] → [0, 1]2 be defined such that f(x, y) =
(x/a, y/b). For (x1, y1), . . . , (xn, yn) ∈ [0, a]× [0, b] and r, r′ ∈ (0, 1/2), we have

−
(

1

ab
− 1

)
nr2 − 4n

{
(r′)2 −min

(
r

a
, r′

)
min

(
r

b
, r′

)}
≤ vol

( ⋃
i∈[n]

B∞((xi, yi), r)

)
− vol

( ⋃
i∈[n]

B∞(f(xi, yi), r
′)

)

≤ 4n

{
max

(
r

a
, r′

)
max

(
r

b
, r′

)
− (r′)2

}
.

Proof. Let A1 := ∪i∈[n]B∞((xi, yi), r), A2 := ∪i∈[n][xi/a−r/a, xi/a+r/a]×[yi/b−r/b, yi/b+r/b]
and A3 := ∪i∈[n]B∞(f(xi, yi), r

′). We will control vol(A1) − vol(A3) by controlling separately
vol(A1)− vol(A2) and vol(A2)− vol(A3). For the former, we observe that A2 is simply f(A1),
so

0 ≤ vol(A2)− vol(A1) ≤
(

1

ab
− 1

)
vol(A1) ≤

(
1

ab
− 1

)
nr2.

For the latter, we have

vol(A2)− vol(A3) ≤ vol(A2 \ A3) ≤ 4n
{
max(r/a, r′)max(r/b, r′)− (r′)2

}
and

vol(A3)− vol(A2) ≤ vol(A3 \ A2) ≤ 4n
{
(r′)2 −min(r/a, r′)min(r/b, r′)

}
The desired result follows by combining the two bounds.

The following lemma provides an upper bound on the change in vacancy area when we delete
a few points from a sample of size n. We recall the definition of the vacancy volume in (3).

Lemma 21. Given n,m ∈ N with m ≤ n/2, let X := (Xi)i∈[n] and Y := (Yi)i∈[n] be fixed

and suppose (Ui, Vi)i∈[n]
iid∼ Unif[0, 1]2 and (Ũi, Ṽi)i∈[n−m]

iid∼ Unif[0, 1]2. Write U := (Ui)i∈[n],
V := (Vi)i∈[n], Ũ := (Ũi)i∈[n−m], Ṽ := (Ṽi)i∈[n−m], X̃ := (Xi)i∈[n−m] and Ỹ := (Yi)i∈[n−m].
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There exists a coupling between (U ,V ) and (Ũ , Ṽ ) such that for every t ∈ [0, n
2m−1] the following

holds with probability at least 1− 2e−t2m/(2+4t/3):

(5 + 3t)m

n
≤ V

(
X,Y ,U ,V ;

1

2
√
n

)
− V

(
X̃, Ỹ , Ũ , Ṽ ;

1

2
√
n−m

)
≤ (5 + 5t)m

n
,

where, by convention, U(0) = 0 and U(n+1) = 1.

Proof. Let P1, . . . , Pn+1, Q1, . . . , Qn+1
iid∼ Beta(1/2, 1/2) be independent from other randomness

in the problem and define Gi := U(i) − (U(i) − U(i−1))Pi and Hi := V(i) − (V(i) − V(i−1))Qi. Let
rXi :=

∑n
i′=1 1{Xi′ ≤ Xi} and rYi :=

∑n
i′=1 1{Yi′ ≤ Yi} for i ∈ [n]. For r ∈ [m], define

gr : [0, 1] \
n⋃

i=n−r+1

[GrXi
, GrXi +1)→

[
0, 1−

n∑
i=n−r+1

(GrXi +1 −GrXi
)

]

hr : [0, 1] \
n⋃

i=n−r+1

[HrYi
, HrYi +1)→

[
0, 1−

n∑
i=n−r+1

(HrYi +1 −HrYi
)

]
by

gr(x) := x−
n∑

i=n−r+1

(GrXi +1 −GrXi
)1{x ≥ GrXi +1},

hr(y) := y −
n∑

i=n−r+1

(HrYi +1 −HrYi
)1{y ≥ HrYi +1}.

Now, define

g : [0, 1] \
n⋃

i=n−m+1

[GrXi
, GrXi +1)→ [0, 1] and h : [0, 1] \

n⋃
i=n−m+1

[HrYi
, HrYi +1)→ [0, 1]

via

g(x) := gm(x)/gm(1) and h(y) := hm(y)/hm(1).

Intuitively, gr can be seen as the bijection that compresses the carved out interval [0, 1] \
∪ni=n−r+1[GrXi

, GrXi +1) to a contiguous interval and g further rescales the compressed interval
to [0, 1] after deleting intervals associated with Xn−m+1, . . . , Xn. Similarly, hr and h represent
compression of the carved out y-interval and its rescaled version.

By Lemma 18, Ũi := g(Ui) and Ṽi := h(Vi) for i ∈ [n − m] satisfies (Ũi, Ṽi)i∈[n−m]
iid∼

Unif[0, 1]2. We will establish the desired bound under this coupling.
Let Ri ≡ (RX

i , R
Y
i ) := (UrXi

, VrYi
) for i ∈ [n], then

1− V
(
X,Y ,U ,V ;

1

2
√
n

)
= vol

( ⋃
i∈[n]

B∞

(
Ri,

1

2
√
n

))
.

Under the present coupling, we also have that

1− V
(
X̃, Ỹ , Ũ , Ṽ ;

1

2
√
n−m

)
= vol

( ⋃
i∈[n−m]

B∞

(
(g(Rx

i ), h(R
y
i )),

1

2
√
n−m

))
.
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To establish the desired result, we will construct a few sets whose volume interpolates the two
volumes on the right-hand side of the two previous displays. Specifically, define

A0 :=
⋃
i∈[n]

B∞

(
Ri,

1

2
√
n

)
,

Ar :=
⋃

i∈[n−r]

B∞

(
(gr(R

X
i ), hr(R

Y
i )),

1

2
√
n

)
B :=

⋃
i∈[n−m]

B∞

(
(g(RX

i ), h(RY
i )),

1

2
√
n−m

)
.

By Lemma 19,

0 ≤ vol(A0)− vol(Am) =

m∑
r=1

{
vol(Ar−1)− vol(Ar)

}
≤ (1− gm(1)) + (1− hm(1)) +

m

n
.

By Lemma 20,

min

{
1

gm(1)
,

√
n

n−m

}
min

{
1

hm(1)
,

√
n

n−m

}
− n

n−m
−
(

1

gm(1)hm(1)
− 1

)
≤ vol(Am)− vol(B) ≤ max

{
1

gm(1)
,

√
n

n−m

}
max

{
1

hm(1)
,

√
n

n−m

}
− n

n−m
.

Since 1 − gm(1), 1 − hm(1)
iid∼ Beta(m,n + 1 − m), by Lemma 25, there is an event Ω with

probability at least 1− 2e−t2m/(2+4t/3) on which

max{1− gm(1), 1− hm(1)} ≤ (1 + t)m

n
=: δ.

Writing δ′ := m/n, so that δ′ ≤ δ ≤ 1/2 under the assumption. We have the event Ω that

vol(A0)− vol(B) = vol(A0)− vol(Am) + vol(Am)− vol(B) ≤ 2δ + δ′ +
1

(1− δ)2
− 1

1− δ′
≤ 5δ.

Similarly, on Ω, we also have

vol(B)−vol(A0) = vol(Am)−vol(A0)+vol(B)−vol(Am) ≤ 1

(1− δ)2
−1+

1

1− δ′
−1 ≤ 3δ+2δ′.

The desired result follows from combining the two bounds above.

We will often employ the ‘Poissonisation trick’ to analyse the vacancy volume, i.e. studying
the vacancy associated with N ∼ Poi(n) instead of n data points. The following lemma studies
the difference in vacancy due to Poissonisation.

Lemma 22. Let P (X,Y ) be a probability measure on R2. Let (Xi, Yi)i∈N
iid∼ P (X,Y ) and N ∼

Poi(n). Suppose we have (Ui, Vi)i∈N
iid∼ Unif[0, 1]2 and (Ũi, Ṽi)i∈N

iid∼ Unif[0, 1]2. There is a
coupling between (Ui, Vi)i∈[n] and (N, (Ũi, Ṽi)i∈[N ]) such that

V
(
(Xi)i∈[n], (Yi)i∈[n],(Ui)i∈[n], (Vi)i∈[n];

1

2
√
n

)
− V

(
(Xi)i∈[N ], (Yi)i∈[N ], (Ũi)i∈[N ], (Ṽi)i∈[N ];

1

2
√
N

)
= Op(n

−1/2)
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Proof. We define the coupling conditionally on N as follows. If N ≥ n, we can view (Xi, Yi)i∈[n]
as obtained from (Xi, Yi)i∈N by deleting the last N − n points, and (Ui, Vi)i∈[n] can be defined
conditionally on (Ũi, Ṽi)i∈[N ] by Lemma 21. If N < n, we view (Xi, Yi)i∈N as obtained from
(Xi, Yi)i∈[n] by deleting the last n − N points and again obtain a conditional joint distribution
between (Ũi, Ṽi)i∈[N ] and (Ui, Vi)i∈[n] by Lemma 21.

Now, given any ϵ > 0, we can find C > 0 such that P(|N − n| ≥ Cn1/2) ≤ ϵ/2. Conditional
on N = n′ for n′ ∈ [n − Cn1/2, n + Cn1/2], by Lemma 21 under the current coupling, we have
with (conditional) probability at least 1− 2e−3Cn1/2/10 that∣∣∣∣V((Xi)i∈[n], (Yi)i∈[n],(Ui)i∈[n], (Vi)i∈[n];

1

2
√
n

)
− V

(
(Xi)i∈[N ], (Yi)i∈[N ], (Ũi)i∈[N ], (Ṽi)i∈[N ];

1

2
√
N

)∣∣∣∣ ≤ 10

n1/2
.

Choosing n sufficiently large so that 2e−3Cn1/2/10 < ϵ/2, and integrating over N, we have with
probability at least 1− ϵ that the desired vacancy volumes have difference bounded by 10n−1/2.

For any finite measure λ on R2, we use PP(λ) to denote the Poisson point process with
intensity λ. Recall that for finite measure, the Poisson point process can be identified as
N ∼ Poi(λ(R2)) points drawn independently (conditionally on N) from the probability mea-
sure λ/λ(R2). The following lemma studies the effect on vacancy due to thinning the Poisson
point process.

Lemma 23. Given two finite measures µ and ν on R2 such that µ ≤ ν, ν(R2) = n and µ(R2) =
(1− ϵ)n. There exists a coupling between ((Xi, Yi)i∈[M ], (Ui, Vi)i∈N) ∼ PP(µ)⊗Unif[0, 1]⊗N and
((X̃i, Ỹi)i∈[N ], (Ũi, Ṽi)i∈N) ∼ PP(ν)⊗Unif[0, 1]⊗N such that∣∣∣∣V((Xi)i∈[M ],(Yi)i∈[M ], (Ui)i∈[M ], (Vi)i∈[M ];

1

2
√
M

)
− V

(
(X̃i)i∈[N ], (Ỹi)i∈[N ], (Ũi)i∈[N ], (Ṽi)i∈[N ];

1

2
√
N

)∣∣∣∣ ≤ 10ϵ+Op(n
−1/2).

Proof. Since µ ≤ ν, we have that µ is absolutely continuous with respect to ν and the Radon–
Nikodym derivative satisfies 0 ≤ dµ/dν ≤ 1 ν-almost everywhere. We can define a coupling
between PP(µ) and PP(ν) via Poisson thinning, i.e. we can define (X1, Y1), . . . , (XM , YM ) to be
a subset of (X̃1, Ỹ1), . . . , (X̃N , ỸN ) such that conditional on (X̃i, Ỹi)i∈[N ], each point (X̃i, Ỹi) is
selected into the subset with probability dµ/dν(X̃i, Ỹi). Note in particular that under such a
coupling, M ≤ N and N −M ∼ Poi(ϵn). We can then define a conditional joint distribution
(conditional on (Xi, Yi)i∈[M ] and (X̃i, Ỹi)i∈[M ]) between (Ui, Vi)i∈N and (Ũi, Ṽi)i∈N by first con-
structing a conditional coupling between (Ui, Vi)i∈[M ] and (Ũi, Ṽi)i∈[N ] as in Lemma 21 and then
set (Ui, Vi)i>M and (Ũi, Ṽi)i>N to be independent.

Under this coupling, we have N ∼ Poi(n) and N −M ∼ Poi(nϵ). So given any δ > 0, there
exists C > 0 (depending on δ and ϵ) and an event with probability at least 1− δ/2 on which

N ∈ [n− C
√
n, n+ C

√
n] and N −M ∈ [ϵn− C

√
n, ϵn+ C

√
n].
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Conditional on any realisation of (Xi, Yi)i∈[M ] and (X̃i, Ỹi)i∈[N ] on this event, we can apply
Lemma 21 to obtain that under the current coupling, we have with (conditional) probability at
least 1− 2e−3Cn1/2/10 that∣∣∣∣V((Xi)i∈[M ], (Yi)i∈[M ],(Ui)i∈[M ], (Vi)i∈[M ];

1

2
√
M

)
− V

(
(X̃i)i∈[N ], (Ỹi)i∈[N ], (Ũi)i∈[N ], (Ṽi)i∈[N ];

1

2
√
N

)∣∣∣∣ ≤ 10(ϵn+ C
√
n)

n− C
√
n

,

which can be further upper bounded by 10ϵ + 2Cn−1/2 for sufficiently large n. Also, for large
n, we have 1− 2e−3Cn1/2/10 ≤ δ/2, the desired result follows after integrating over realisation of
(Xi, Yi)i∈[M ] and (X̃i, Ỹi)i∈[N ].

Lemma 24. Suppose R1, . . . , Rn
iid∼ Unif([0, 1]d). For δ ∈ [0, 1/2), let B be a compact set

symmetric around 0 with vol(B) = δ and define

V := vol
(
[0, 1]d \

n⋃
i=1

(Ri +B)
)
,

where Ri +B denotes the Minkowski sum of the sets. If nδ → q, then as n→∞, we have

E(V) = (1− δ)n → e−q and Var(V)→ 0.

If in addition, B = B(0, γ) (i.e. δ = (2γ)d) for some γ < 1/4, then we have

Var(V) =
n∑

r=2

(
n

r

)
(1− 2δ)n−r

{
2dδr+1

(r + 1)d
− δ2r

}
= (1 + o(1))

qe−2q

n

∞∑
r=2

qr

r!

(
2

r + 1

)d

.

Proof. Draw W1,W2
iid∼ Unif[0, 1]d independent of all other randomness. We have

E(V) =P
(
W1 ̸∈

n⋃
i=1

(Ri +B)
)
= E

{
P
( n⋂
i=1

{Ri ̸∈ (W1 +B)}
∣∣∣W1

)}
= (1− δ)n → e−q.

To control the variance, we start with

E(V2) =P
(
Wj ̸∈

n⋃
i=1

(Ri +B) ∀ j ∈ {1, 2}
)
= E

[
P
( n⋂
i=1

{Ri ̸∈ (W1 +B) ∪ (W2 +B)}
∣∣∣W1,W2

)]
=E

[{
1− 2δ + vol

(
(W1 +B) ∩ (W2 +B)

)}n
]
. (31)

Since vol
(
(W1 +B) ∩ (W2 +B)

) a.s.−−→ 0, by the Dominated Convergence Theorem, we have

lim
n→∞

E(V2) = lim
n→∞

{1− 2δ}n = e−2q.

Consequently Var(V) = E(V2)− (EV)2 → 0.
When B = B(0, γ) is a cube, we can obtain an explicit expression of the variance by ex-

amining moments of H := vol
(
(W1 + B) ∩ (W2 + B)

)
in detail. Specifically, noting that H
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measures the volume of a hypercube with independent side lengths each having density distri-
bution 4γUnif[0, 2γ] + (1− 4γ)δ0, we get for any r ∈ N that

E(Hr) =

{
2

∫ 2γ

0
tr dt

}d

=

{
2(2γ)r+1

r + 1

}d

=
2dδr+1

(r + 1)d
.

Consequently, from (31), we have

E(V2) =
n∑

r=0

(
n

r

)
(1− 2δ)n−rE(Hr) = (1− 2δ)n +

n∑
r=1

(
n

r

)
(1− 2δ)n−r2dδr+1

(r + 1)d
. (32)

On the other hand, we have

{E(V)}2 = (1− δ)2n =

n∑
r=0

(
n

r

)
(1− 2δ)n−rδ2r. (33)

Combining (32) and (33), we have

Var(V) =
n∑

r=2

(
n

r

)
(1− 2δ)n−r

{
2dδr+1

(r + 1)d
− δ2r

}
.

We next compute the asymptotic variance. Since
∑n

r=2

(
n
r

)
(1 − 2δ)n−rδ2r ≤

∑∞
r=2(nδ

2)r =
O(n−2), we have

δ−1Var(V) =
n∑

r=2

(
n

r

)
(1− 2δ)n−r

(
2

r + 1

)d

δr +O(n−1)

= (1− 2δ)n
n∑

r=2

(
n

r

)
δr

(1− 2δ)r

(
2

r + 1

)d

+O(n−1)

= (1 + o(1))e−2q
n∑

r=2

qr

r!

(
2

r + 1

)d

= (1 + o(1))e−2q
∞∑
r=2

qr

r!

(
2

r + 1

)d

which implies the desired limit since nδ → q.

The following lemma provides a multiplicative Chernoff bound for a Beta distribution.

Lemma 25. For 0 < m ≤ n/2 and X ∼ Beta(m,n−m), we have for any t ≥ 0 that

P
(
X ≥ (1 + t)m

n

)
≤ exp

{
− t2m

2 + 4t/3

}
.

Proof. Set

v =
m(n−m)

n2(n+ 1)
c =

2(n− 2m)

n(n+ 2)
.

By Skorski (2023, Theorem 1), we have

P
(
X ≥ (1 + t)m

n

)
≤ exp

{
− t2m2/n2

2v + 2ctm/(3n)

}
≤ exp

{
− t2m

2 + 4t/3

}
as desired.
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Lemma 26. Suppose σ ∈ Sn is a random permutation on [n]. Write Ri = (i/n, σ(i)/n) for
i ∈ [n]. For δ ∈ [0, 1/2), let B be a compact set symmetric around 0 with vol(B) = δ and define

V := vol
(
[0, 1]d \

n⋃
i=1

(Ri +B)
)
,

where Ri +B denotes the Minkowski sum of the sets. If nδ → q, then as n→∞, we have

E(V)→ e−q.

Proof. For any x ∈ [0, 1]2, let Nx := |{i : (i/n, σ(i)/n) ∈ x + B}|. Note that Nx follows a
Hypergeometric distribution Hyper(n2,K, n) where K = |{(i, j) : (i/n, j/n) ∈ x + B}|. Note
that K = n2δ + o(n). Therefore λn := E[Nx] = nδ + o(1). Then note that we have

dTV (Hyper(n
2,K, n),Pois(λn)) = O(

1

n
)

Then note that

V =

∫
[0,1]2

1{Nx = 0}dx,

therefore

E[V] =
∫
[0,1]2

P(Nx = 0)dx = e−nδ +O(
1

n
)→ e−q.

as desired.

Lemma 27. Let {(xi, yi)}ni=1 be n points in R2 and let x = (x1, . . . , xn) and y = (y1, . . . , yn).
Assume that xi ̸= xj and yi ̸= yj for all i ̸= j. For any z ∈ Rn let rzi = n−1

∑n
j=1 1{zj ≤ zi}.

Define ri = (rxi , r
y
i ) for i ∈ [n]. Let B = [−1/2

√
n, 1/2

√
n]2 and define

V := vol
(
[0, 1]2 \

n⋃
i=1

(ri +B)
)
,

where ri + B denotes the Minkowski sum of the sets. Let {(x′i, y′i)}ni=1 be another set of points
in R2 and define xk, yk ∈ Rn where xki = xi and yki = yi for all i ∈ [n] \ {k} and xkk = x′k and
ykk = y′k.

Vk := vol
(
[0, 1]d \

n⋃
i=1

(rki +B)
)
,

where rki = (rx
k

i , ry
k

i ). Then
|V − Vk| ≤ 10/n.

Proof. First note that |V − Vk| = 0 if xk = x′k and yk = y′k, thus the result holds automatically.
Assume xk ̸= x′k or yk ̸= y′k. Define

I0 := {i ∈ [n] \ {k} : (xi − xk)(xi − x′k) ≥ 0 and (yi − yk)(yi − y′k) ≥ 0},
I1 := {i ∈ [n] \ {k} : (xi − xk)(xi − x′k) < 0 and (yi − yk)(yi − y′k) < 0},
I2 := {i ∈ [n] \ {k} : (xi − xk)(xi − x′k) < 0 and (yi − yk)(yi − y′k) ≥ 0},
I3 := {i ∈ [n] \ {k} : (xi − xk)(xi − x′k) ≥ 0 and (yi − yk)(yi − y′k) < 0}.
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Note that when replacing xk by x′k and yk by y′k, both {xi : i ∈ I0} and {yi : i ∈ I0} maintain
their original ranks, and both {xi : i ∈ I1} and {yi : i ∈ I1} have a shift of 1/n in either direction.
The ranks of {xi : i ∈ I2} have a similar shift of 1/n while the ranks of {yi : i ∈ I2} remain the
same. Conversely, the ranks of {xi : i ∈ I3} remains the same while ranks of {yi : i ∈ I3} have
a shift of 1/n in either direction. Specifically, we have

rki =


ri, if i ∈ I0
ri + (± 1

n ,±
1
n), if i ∈ I1

ri + (± 1
n , 0), if i ∈ I2

ri + (0,± 1
n), if i ∈ I3.

(34)

Let Uj =
⋃

i∈Ij (ri + B) and Uk
j =

⋃
i∈Ij (r

k
j + B) for j = 0, 1, 2, 3, we have the following

decompositions

C :=
⋃
i∈[n]

(ri +B) =
( 3⋃
j=0

Uj
)
∪ (rk +B),

Ck :=
⋃
i∈[n]

(rki +B) =
( 3⋃
j=0

Uk
j

)
∪ (rkk +B).

By (34) we have vol
(
U0∆Uk

0

)
= 0. For i ∈ I2, Uk

2 is a shift of U2 by 1/n to the right(or left).
Therefore, for “almost" every x ∈ U2 \ Uk

2 there is y ∈ Uk
2 \ U2 except for those x ∈ [0, 1]2 with

x ∈
(
[0, 1/n]∪ [1− 1/n, 1]

)
× [0, 1]. A similar argument holds for i ∈ I3, with the difference that

the shift is up/down. Hence, for j = 2, 3

|vol
(
Uj

)
− vol

(
Uk
j

)
| ≤ 2/n.

For i ∈ I1, boxes shift both right/left and up/down and hence we have

|vol
(
U1

)
− vol

(
Uk
1

)
| ≤ 4/n.

Therefore, we have

|V − Vk| ≤
3∑

j=0

|vol
(
Uj

)
− vol

(
Uk
j

)
|+ vol

(
(rk +B)∆(rkk +B)

)
≤ 10/n.

as claimed.

Lemma 28. For n,L ∈ N, let p := 1/L and suppose (N1, . . . , NL) ∼ Multin(n; (p, . . . , p)).
Consider the asymptotic regime where n→∞ and L is fixed. Suppose a, b ≥ 1 satisfies p(a−1) =
O(1/n) and p(b− 1) = O(1/n), then for any and ℓ, k ∈ [L], we have

Cov(aNℓ , bNk) = O(n−2).

Proof. We first assume that ℓ ̸= k. We write α = p(a− 1) and β = p(b− 1) for simplicity. Using
the moment generating function of the Multinomial distribution, we observe that,

E(aNℓ) = (1 + α)n

E(aNℓbNk) = (1 + α+ β)n.
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Using the above identities and the Taylor expansion

|Cov(aNℓ , bNk)| = |(1 + α+ β)n − (1 + α+ β + αβ)n|

= αβ
n−1∑
i=0

(1 + α+ β)n−1−i(αβ)i

≤ αβ(1 + α+ β)n
n−1∑
i=0

(αβ)i = O(αβ) = O(n−2).

It remains to check the case where ℓ = k. For this, define η = p(ab− 1),

|Cov(aNℓ , bNk)| = {1 + p(ab− 1)}n − {1 + p(a− 1)}n{1 + p(b− 1)}n

= (1 + αβ/p+ α+ β)n − (1 + α+ β + αβ)n

= αβ(1/p− 1)
n−1∑
i=0

(1 + α+ β + αβ)n−1−i(αβ/p− αβ)i

≤ αβ(1/p− 1)(1 + α)n(1 + β)n
n−1∑
i=0

(αβ/p− αβ)i = O(αβ) = O(n−2),

as desired.

Lemma 29. Let (Mn)n and (L)n be sequences of random variables such that Mn
d−→ N (µ, α2)

and Ln
p−→ β2. Let Fn be the sigma-algebra generated by (Mi)i≤n and (Li)i≤n. If (Xn)n is a

sequence of random variables such that

E sup
−∞<x<∞

∣∣∣∣P(Xn −Mn√
Ln

≤ x
∣∣∣∣ Fn

)
− Φ(x)

∣∣∣∣→ 0, n→ +∞. (35)

Then we have Xn
d−→ N (µ, α2 + β2).

Proof. For any x ∈ R, we have

sup
x∈R

∣∣∣∣P(Xn ≤ µ+ x
√
α2 + β2

)
− Φ(x)

∣∣∣∣
=sup

x∈R

∣∣∣∣E{P
(
Xn −Mn√

Ln
≤ µ−Mn + x

√
α2 + β2√

Ln

∣∣∣∣ Fn

)}
− Φ(x)

∣∣∣∣
=sup

x∈R

∣∣∣∣E{Φ

(
µ−Mn + x

√
α2 + β2√

Ln

)}
− Φ(x)

∣∣∣∣+ o(1), (36)

where we use condition (35) in the final step. By Slutsky’s theorem, we have for each x ∈ R

µ−Mn + x
√
α2 + β2√

Ln

d−→ N
(
x
√
α2 + β2

β
,
α2

β2

)
.

Consequently, we have for Z ∼ N (0, 1) independent of all other randomness in the lemma that

E
{
Φ

(
µ−Mn + x

√
α2 + β2√

Ln

)}
= P

(
Z − µ−Mn + x

√
α2 + β2√

Ln
≤ 0

)
= Φ(x) + o(1).

The conclusion holds by combining the above with (36), and using Chow and Teicher (1988,
Lemma 3, pp.265).
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Lemma 30. For α2
λ and β2λ defined in (21) and (22), as λ→∞, we have

α2
λ → 0, β2λ → β2.

where β2 is a positive constant.

Proof of Lemma 30. Note that α2
λ = α2

1,λ − α2
2,λ where

α2
1,λ =

λ2d

e22d(λ+ 2)d

(
e(λ/2+1)−d − 1

)
, α2

2,λ =
λ2d

e2(λ+ 2)2d
.

We show that as λ→∞, α2
λ converges to a positive constant. First note that α2

1,λ = e−2+O(λ−d)

and α2
2,λ = e−2 +O(λ−1). Therefore α2

λ → 0 as λ→∞.
For β2λ, note that as λ→∞ we have

β2λ → e−2(Cd − 1) = β2 > 0

as desired.

C Algorithm and simulation settings

C.1 Algorithmic implementation details

The computation of the coverage correlation coefficient involves evaluating the volume of the
union of n axis-aligned hypercubes, each of volume 1/n, in the unit cube [0, 1]d, with edge wrap-
ping. This is a special case of Klee’s measure problem (Klee, 1977), which concerns computing the
volume of the union of arbitrary axis-aligned hyperrectangles. When d = 2, Bentley’s algorithm
solves this in O(n log n) time by sweeping along one axis and maintaining the union of intervals
along the other using a segment tree (Ben-Or, 1983). In higher dimensions, the time complexity
of Bentley’s algorithm becomes O(nd−1 log n), while the best known theoretical bound is Chan’s
O(nd/2) algorithm (Chan, 2013). However, for moderate dimensions (e.g., d ≤ 10), Bentley’s
approach remains more practical due to its smaller constant factors, better memory behaviour,
and simpler implementation. Moreover, in our setting, we are able to exploit the uniform size
of the input small hypercubes to make computational gains using Bentley’s algorithm alone.
Specifically, we partition [0, 1]d into md grid blocks with m ≈ n1/d, and compute the union vol-
ume by summing contributions from individual blocks. In cases where the small hypercubes are
spread out uniformly at random, we expect Op(log n) small hypercubes intersecting each block,
thus making the entire algorithm run in an average-case complexity of O(n logd−1 n). We outline
the recursive union volume computation using Bentley’s algorithm in Algorithm 1 and the full
coverage correlation computation algorithm in Algorithm 2.

C.2 Simulation supplement

We show in Figure 5 scatter plots of the six simulation settings used in Section 3.1 at different
noise levels. Also, Table 2 shows the running time of the six algorithms under comparison for
n ∈ {10, 100, 1000, 10000} and dX = dY ∈ {1, 2}. Algorithm timing was performed on an 8-core
3.2 GHz laptop CPU, averaged over 10 repetitions. We see that when dX = dY = 1, both
the coverage correlation and Chatterjee’s correlation scale approximately linearly and the other
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Algorithm 1: UnionVolume(R, d): Bentley’s algorithm for union volume for d ≥ 2

Input: List R of axis-aligned rectangles in Rd, d ≥ 2
Output: Volume of the union of rectangles

1 if d = 2 then
2 Initialize an empty event list E;
3 foreach rectangle (xmin, xmax, ymin, ymax) ∈ R do
4 Add events (xmin,+1, [ymin, ymax]) and (xmax,−1, [ymin, ymax]) to E;
5 end
6 Sort E by x-coordinate;
7 Initialize active multiset A← ∅, total_area← 0, xprev ← undefined;
8 foreach event (x, type, [ymin, ymax]) ∈ E do
9 if xprev is defined then

10 Let height← total length of union of intervals in A;
11 total_area← total_area+ (x− xprev) · height;
12 end
13 if type = +1 then
14 Insert interval [ymin, ymax] into A;
15 else
16 Remove interval [ymin, ymax] from A;
17 end
18 xprev ← x;
19 end
20 return total_area;
21 else
22 Extract all unique coordinates along the first axis and sort them as x1 < · · · < xk;
23 Initialize total_volume← 0;
24 foreach interval [xi, xi+1] do
25 Let S ← {rectangles in R that span [xi, xi+1] in axis 1};
26 Project each rectangle in S to the remaining d− 1 dimensions to obtain S ′;
27 total_volume← total_volume+ (xi+1 − xi) · UnionVolume(S ′, d− 1);
28 end
29 return total_volume;
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Algorithm 2: Pseudocode for computing the coverage correlation coefficient
Input: Two samples X1, . . . , Xn ∈ RdX and Y1, . . . , Yn ∈ Rd

Y

Output: coverage correlation κX,Y
n and the corresponding p-value pκ

1 Draw U1, . . . , Un
iid∼ Unif([0, 1]dX ) and V1, . . . , Vn

iid∼ Unif[0, 1]dY ;
2 Compute Monge–Kantorovich ranks R1, . . . , Rn ∈ [0, 1]d for d = dX + dY as in (2);
3 Initialize empty list R;
4 for i in 1, . . . , n do
5 Split B(Ri,

1
2n1/d ) along wrapped axes to get up to 2d axis-aligned hyperrectangles

within [0, 1]d;
6 Add all resulting non-wrapping rectangles to R;
7 end
8 Partition [0, 1]d into md grid blocks G1, . . . , Gmd for m := ⌊n1/d⌋. ;
9 if d = 2 then

10 Vn ← 1− CoveredVolume(R)
11 else
12 Initialise Vn ← 1;
13 foreach grid block Gk, k ∈ [md] do
14 Define R′

k := {A ∩Gk : A ∈ R} Vn ← Vn − CoveredVolume(R′
k)

15 end
16 end
17 Compute µ← (1− 1/n)n and

σ2 :=

n∑
k=2

(
n

k

)(
1− 2

n

)n−k
{( 2

k + 1

)d
n−k−1 − n−2k

}
.

18 return κX,Y
n := (Vn − µ)/µ and pκ := 1− Φ(

√
n(Vn − µ)/σ).
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algorithms scale quadratically in n. When dX = dY = 2, the coverage correlation has a quadratic
scaling in n, mostly driven by the Monge–Kantorovich rank computation.
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Figure 5: Scatter plot of data from different simulation settings at different noise levels.
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n dX κX,Y
n ξX,Y

n dCor HSIC KMAc USP
125 1 0.001 0.001 0.008 0.014 0.553 0.010
250 1 0.001 0.001 0.010 0.047 1.06 0.043
500 1 0.002 0.001 0.037 0.192 2.50 0.182
1000 1 0.003 0.001 0.130 1.01 7.35 0.781
2000 1 0.005 0.001 0.498 4.23 26.3 2.98
4000 1 0.010 0.002 2.01 21.6 - 10.8
8000 1 0.019 0.003 7.95 - - -
125 2 0.034 - 0.004 0.011 0.514 0.042
250 2 0.076 - 0.014 0.042 1.05 0.164
500 2 0.177 - 0.052 0.186 2.52 0.720
1000 2 0.567 - 0.176 0.975 7.50 3.17
2000 2 1.93 - 0.694 4.45 27.5 10.8
4000 2 6.16 - 2.77 21.5 - 43.9
8000 2 24.4 - 11.4 - - -

Table 2: Average running time of coverage correlation, Chatterjee’s correlation, distance corre-
lation, HSIC, KMAc and USP for various n and dX = dY values under the null. Chatterjee’s
correlation is only computed for dX = dY = 1. Time is shown in seconds, and time larger than
60 seconds is not displayed.
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