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We introduce a new methodology ‘charcoal’ for estimating the location of sparse changes in high-
dimensional linear regression coefficients, without assuming that those coefficients are individually sparse.
The procedure works by constructing different sketches (projections) of the design matrix at each time
point so as to eliminate the possible dense nuisance parameters. The sequence of sketched design matrices
is then compared against a single sketched response vector to form a sequence of test statistics whose
behavior shows a surprising link to the well-known CUSUM statistics of univariate changepoint analysis.
The procedure is computationally attractive, and strong theoretical guarantees are derived for its estimation
accuracy. Simulations confirm that our methods perform well in extensive settings, and a real-world
application to a large single-cell RNA sequencing dataset showcases the practical relevance.
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1. Introduction

The past twenty years have witnessed rapid development of statistical methodologies for high-dimensional
data sets, where the number of variables of interest is often of comparable or even larger order of
magnitude than the number of observations. The most prominent example, perhaps, is the line of work
on sparse linear regression, which started from the seminal work of Tibshirani [44], and was developed
and generalized subsequently by many others (see, e.g. Bithlmann and van de Geer [8], Fan and Lv [16]
for a general overview of this area). In many of these works, the primary focus was on how to exploit the
sparsity of the regression coefficients for their successful estimation, and to achieve this, a homogeneous
data generating mechanism was often assumed for simplicity of analysis.

However, it is usually unrealistic in large, high-dimensional data sets to assume that the data
generating mechanism holds true throughout. In fact, heterogeneity is the norm rather than exception in
Big Data applications. Several attempts have been made to handle data heterogeneity in high-dimensional
linear models. For instance, Krishnamurthy et al. [31], Stddler et al. [42], Yin et al. [50] considered
the problem of learning mixture of sparse linear regression, where the regression coefficient vector is
sampled from a small set of sparse regression coefficients. When observations have a temporal structure,
one common way to handle heterogeneity is to break the sequence of observations into shorter time
segments on which the data are more homogeneous. This line of thinking is the driving force behind the
recent revival of interest in changepoint analysis, which dates back to the early work of Page [38], but
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has seen growing interest recently in high-dimensional settings, see e.g., Bai [2], Chen et al. [9], Cho
[10], Cho and Fryzlewicz [11], Enikeeva and Klopp [15], Follain et al. [17], Horvath and Huskova
[24], Jirak [25], Lévy-Leduc and Roueff [34], Liu et al. [35], Wang and Samworth [48], Zhang et al.
[52].

In our linear regression setting, such a changepoint setup means that the sequence of regression
coefficient vectors has a piecewise constant structure. More precisely, for an unknown sequence of
changepoints 0 < z; < --- < zy < n (for notational convenience, we also define zp := 0 and zy4| :=n)
and an unknown sequence of a regression coefficients ([3(’) 11 <r<v+1), we assume that the data
(x,y) € R? xR, 1 <t < n are generated according to the following model

v :x,—rﬁ,—i—e‘,, where f3; :[5’(’) forz,_ 1 <t<z,1<r<v+l, (1.1

and (& )1<,<, are the observational errors distributed as N (0, 621,) conditionally independent of (x;)1</<p.
The goal is to locate the changepoints z, . ..,z upon observing the response vector ¥ = (yy,...,v,) "
and the design matrix X = (xq,...,x,) .

Classically, when the dimension p is far smaller than n, Bai [1], Bai and Perron [3], Julious [26]
showed that a least-square-based approach works well in the above changepoint problem, which is
equivalent to maximum-likelihood estimations under Gaussianity assumptions. Specifically, for a given v,
the maximum likelihood estimator finds the optimal partition of {1,...,n} into v+ 1 segments such that
residual sum of squares within each segment is minimized. The least-square (maximum-likelihood) fit
from different choices of v can then be compared using for instance the Bayesian Information Criterion
(BIC) to choose the best v, which is often solved algorithmically via dynamic programming.

In the high-dimensional setting, the above least-square approach no longer works. Several works
have appeared to analyze such regression changepoint problems in the high-dimensional context, see
for instance Kaul et al. [28], Lee et al. [32], Rinaldo et al. [40], Wang et al. [47] and references therein.
However, in addition to the modeling assumption in (1.1), these works also impose the additional
assumption that all regression coefficients () : 1 < r < v + 1) are individually sparse. Given a
hypothesized set of changepoints, this additional assumption allows them to form estimators of [3<’),
1 <r < v+1, which are in turn used to form goodness-of-fit statistics for the set of hypothesized
changepoints.

A major difference between this work and the aforementioned existing line of works is that we do
not assume that the regression coefficients within different stationary segments are individually sparse.
Instead, we make the less stringent assumption that the difference in the regression coefficient vectors
before and after each change, i.e., (") := (B(+1) — (")) /2, are sparse in the sense that [|8()|o < ,
for r=1,...,v. We would argue that this is a more natural assumption, since it is the change in the
regression coefficients, rather than the pre- and post-change coefficients themselves, that is the quantity
of interest in this statistical problem. Practically, the assumption that all regression coefficients are
sparse can be violated in applications. For instance, Kraft and Hunter [30] argued that in genetic studies,
“many, rather than few, variant risk alleles are responsible for the majority of the inherited risk of each
common disease”, leading to non-sparse regression coefficients. However, in such examples, the task
of detecting sparse changes in these regression coefficients over time can still be of interest in, e.g.,
identifying different development stages in gene regulatory networks in species [23]. Furthermore, our
‘sparsity-in-change’ assumption is also more in line with the assumptions made in the high-dimensional
change-in-mean problem [see, e.g. 11, 25, 48], where the pre- and post-change mean vectors are regarded
as nuisance parameters and sparsity assumptions only need to be placed on vectors of changes for
successful detection and estimation of the changepoints. In other words, our paper falls into the broader
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category of statistical inference in the presence of nuisance parameter, where the goal is to extract
information of interest, e.g., the differences in regression coefficients 6(")°s and associated changepoints
z»’s, which is often challenging to be disentangled from complex nuisance parameters, e.g., the exact
regression coefficients 3 ("5, The literature of statistical inference in the presence of nuisrance parameter
has a long history [37], but has received renewed interest in recent years, especially in high-dimensional
settings [5, 6]. We aim to solve our problem without the simplifying assumption that the nuisance
parameters are estimable in some way. Since the initial draft of this paper, we have also become aware of
a recent work [13] that addresses the setting with dense regression coefficients.

Allowing for dense pre- and post-change regression coefficients makes the changepoint estimation
problem considerably more challenging. In particular, the general strategy employed by existing works on
high-dimensional regression changepoints that relies on forming good estimators of (8" : r € {1,...,v})
will unlikely be successful here. Our first contribution in this paper is to propose a novel methodology,
which we call charcoal (changepoint in regression via a complementary-sketching algorithm), and works
by forming a projected response vector and a sequence of projected design matrices to eliminate the
dense nuisance parameter. For simplicity of exposition, we consider the single changepoint scenario,
where B; = 1) iy + B(Z)l{ix. }- Under the hypothesis that the true change takes place at time 7, we
have

_ 1
Y(O,t] - X(O,r]ﬁ( ) + 8(0;]7 (1.2)
Y(t.,n] = X(t,n]ﬁ<2) + E(t,n)»
where the subscript (0,¢] indicates the concatenation of relating quantities on (1,...,7) and (¢,n] that
of (r+1,...,n). We may think of (1.2) as a two-sample problem with different regression coefficients

before and after r. We assume throughout the paper that n > p for otherwise it is impossible to estimate
the change when both pre- and post-change parameters are dense (see further discussion at the beginning
of Section 3). By invoking the complementary sketching method of Gao and Wang [21], we can find
matrices A, € R"*("=P) and Ay € R=1)%("=P) such that (A(TOJ],A?M])T has orthogonal columns
spanning the orthogonal complement of the range of X. By forming the projected design matrix W, :=
A(TOJ]X(OJ] —A(Tt_’n]X(m] and the projected response Z := A(TOJ]Y(O,,] +A(TI7H]Y(,7,1], we can eliminate the

possibly dense nuisance parameter { := (8 + (1)) /2 and conduct tests on 8(1) = (B2 — (1)) /2 is
zero against that it is non-zero and sparse.

In light of the true changepoint at time z;, the hypothesized model (1.2) is only correctly specified
when 7 = z;. The further 7 is away from zy, the less different the two samples (X, Y(0,) and (X ), Y1)
are, since one of the samples will be further contaminated by the data points assigned to the wrong
segment by the hypothesized changepoint. Intuitively, we would expect the aforementioned two-sample
test statistics to peak around ¢ = z;, which can thus be used to estimate the location of the single
changepoint. Unfortunately, while good for testing, these two-sample test statistics have variances
too large for accurate changepoint estimation. Nevertheless, the general idea of using complementary
sketching to eliminate nuisance parameters is valid. We introduce in Section 2 several alternative
statistics based on the sketched design W; and response Z that do lead to good changepoint estimation
performance. In particular, we will show in Section 3 that a variant of the charcoal procedure achieves a
rate of convergence of order k'/2/(n'/2||@(1)||,), up to logarithmic factors. In the course of theoretical
investigations, we have developed new crucial results and proofs in understanding the asymptotic
behavior of the sketched design matrices by generalizing existing matrix-variate Beta distribution to
rank-deficient cases (Lemma 10 and Corollary 11) and extended sub-Gaussian bounds of Beta random
variables to the matrix variate case (Lemma 13). Both rely on novel proof techniques and may be of
independent interest. Particularly, the conditioning argument used in the proof of Lemma 13 seems rarely
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seen in the literature and may be an alternative way to establish concentration in similar scenarios. Last
but not least, for any generic multiple-changepoint estimation procedures obtained by combining the
narrowest-over-threshold methodology and a viable single-changepoint method, we provide a general
theorem 5 to establish rates of convergence, which may be useful in many other applications.

1.1. Outline of the paper

We present the methodology in detail in Section 2, including several algorithms that all use the
complementary sketching idea. Section 3 provides theoretical performance guarantees to the slight
variants of those proposed in Section 2. In the first part of Section 4, we conduct numerical experiments
on the charcoal methodology over a comprehensive range of settings for both single and multiple
changepoint estimation tasks and compare our methods with other changepoint estimation methods in the
high-dimensional linear regression context. In the second part of Section 4, we study a real data example
to identify changes for each gene in terms of its interaction with other genes in the gene regulatory
network across various development stages of T cells. The proofs of the main results and of the ancillary
results are collected in the supplementary materials.

1.2. Notation

For a positive integer p, [p] = {1,..., p} consists of all positive integers not exceeding p. For vector v =
(Vi,...,vp) ", diag(v) is a p x p matrix such that (diag(v)); ; = 1i—jyvifori, j € [p]. We follow the usual
definitions of ||v]lo = Yie(p) Livizop- V2 = (Ticpp) V)2 IVl = Ligp) vil and [[v]eo = max;ep,) |vil-

Given a matrix A € R"™, we make it a convention that A = (A; j)ic( jepm = [A1 | -+ [ An] =
(ay,...,a,)", where a; is the transpose of the ith row of A and Aj; is the jth column of A. Given any
set S C R, we write Ag to be the submatrix of A with row indices in S. For instance, given positive
integers s,f such that 1 <s <t <n, A(m = (Agt1,. . 7a,)T. We define the usual norms for A as follows
lA]lop := SUPy R [y, =1 |Av||2 and [|A[|lmax := MaX;ey), jem) [Ai ;|- Assuming n =m in A, diag(A) is an
n x n matrix such that (diag(A)); ; := 1i=;A; ; for i € [n] and tr(A) := ¥ic[y Aii-

For n > m, O™ := {0 e R :0"0 = I,,}. We define /7! := {v € R” : ||v|| = 1} and the
k-sparse unit ball as By(k) := {v € R? : ||v|» < 1,||v]|o < k}.

2. Methodology

In this section, we describe in detail our charcoal algorithm for identifying the changepoints in the
problem setup of (1.1).

2.1. Single changepoint estimation

We start by focusing on the setting of a single changepoint estimation, i.e., v = 1, which captures the
essence of the difficulty of this problem. For simplicity, we denote z := z; for the location of the only
changepoint and write m := n — p. The main idea is to use data-driven projections to sketch the design
matrix and the response vector to eliminate the effect of the nuisance parameters.

Recall the data generating model (1.1). At each time point ¢ € [n — 1], we perform a two-sample test
for the equality of regression coefficients before and after 7 using data points (x;,y;)i_; and (x;, )%, ;
respectively. Motivated by [21], this can be achieved by constructing a matrix A € Q"™ whose columns



SPARSE REGRESSION CHANGE WITH NUISANCE PARAMETERS 5

span the orthogonal complement of the column space of X. We then define for any 7 € [n — 1]

W, = AE[) t}X(O 1] —AT X(l n = ZAT ]X<0 1] S RmXp,

(2,n]

Z:=AG Y00 +ALnYun =AY €R™.

We define 6 = (B! @) /2, ¢ = (B +B@)/2 and € = ATe ~ N,(0,0%1,). By the model
construction, we have
Z= AOz] (OZ]+A(Zn] ) :A(Oz( Ozﬁ +£0Z])+A(ZH]( (z,n]ﬁ<2>+£(z,n]) @)
:AI 2] (9+C) n]X(zn](6 C)+€ W@—l—é

whence we have eliminated the nuisance parameter {, and obtain the sketched data in the form of
(Z,(Wi)iejn—1))- By (2.1) and the sparsity assumption on 6, Z can be approximated by a sparse linear
combination of the columns of W,. Therefore, the changepoint estimation problem is reduced to finding ¢
such that W; forms a ‘best’ sparse linear approximation to Z.

As mentioned in the introduction, a naive way to achieve this would be based on the two-sample test
statistics introduced in Gao and Wang [21]. Specifically, let O = (Q1,...,0u—1 )T be defined such that

0, == {diag(W," W;)} /2w, Z.

We view Q; as the vector of the correlations between columns of W; and Z, where we naturally seek to
find the time point ¢ such that such correlations are as large as possible. To take into account of possible
observational errors, we first remove small entries of Q; via an entrywise hard-thresholding operation
hard(Q;, A) for hard(v,A) : (vi)!_; — (vily}y,|=4})7_ . where the threshold level A is a tuning parameter.
This allows us to estimate the location of the changepoint via £ := argmax,(,_y) | hard(Qy,1)]|2.
Note that || hard(Q,,A)||> is the statistic from Gao and Wang [21] to test whether the two samples
(X(OJ] , Y(O,,]) and (X(M] , Y(W]) have the same regression coefficient against the alternative that there is a
sparse difference. As is argued before, we expect that two-sample testing statistics gives the strongest
signal against the null of no change at t = z — the only point where the two-sample problem is correctly
specified.

However, the changepoint estimator £ is less than ideal in practice, as the discontinuity of the
hard-thresholding function creates large variabilities in the test statistics. Moreover, the theoretical
guarantees given in Gao and Wang [21] becomes increasingly inapplicable for test statistics away from
the true changepoint as one of the two samples contains a mixture of data both before and after the
change. Coupled with the fact that W, has large variance when ¢ is close to the boundary, O, may have
a large number of entries above the hard-thresholding level A = 2+/Iog p as recommended in Gao and
Wang [21]. Empirically, this is evidenced by high variance of the test statistics near the two endpoints
of the interval for changepoint detection, as shown in Figure 1. Quite often, this boundary effect may
overwhelm the main signal near the true changepoint, leading to a spurious changepoint being estimated
near the boundary. One way to alleviate the instability problem of 24 is to replace the hard-thresholding
in M4 by a soft-thresholding operation on each entry of Q. The changepoint is then estimated by
£ = argmax, || s0ft(Qr, A) |2, where soft(v,A) : (i)} > (sign(v;) max(|vi| — 1,0))7_, with a
tuning parameter A. The continuity of the soft-thresholding function reduces the variance in the test
statistics, and in the ensuing changepoint estimator. However, as also shown in Figure 1, the sequence
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FIG. 1. Visualization of different test statistics for changepoint estimation. We compare the hard-thresholded test statistics
||hard(Q;,2)]|2 used to estimate 2'*™ (denoted by hard), the soft-thresholded test statistics ||soft(Q;,A)]||2 used to estimate 2%°%
(denoted by soft) and the projected statistics |\9T Q| in Algorithm 1 (denoted by proj) over two random realizations. Here,
n =600, p =200, |1 — B2]lo = 10, || B1 — B2]|2 = 8. and the true change takes place at z = 180, as indicated by the dashed lines.
In both panels, we observe that both ||hard(Q;,A)||> and ||soft(Q;,A)]|» exhibit relatively strong boundary effect.

500

of test statistics (||soft(Qr,A)[2)re,—1) could still exhibit undesirably large, although less so than
(/[hard(Qr,A)|2)e[n—1)» variations when  is close to the boundary.

To avoid such boundary effect, we propose instead to aggregate the test statistics (Q; ), via a projection-
based approach. The key insight here is that, away from the boundary, the matrix Q = (Q1,...,Qy—1) can
be well-approximated by a rank-one matrix whose leading left singular vector is proportional to 6. Hence,
by first estimating 6/||6||2 via the leading left singular vector of soft(Q, 1), we can aggregate each vector
of correlation Q; along the direction of ¥ and estimate the changepoint by Z:= argmax; ¢ (g, (1—q)n] P70l
This approach is summarized in Algorithm 1. We allow Algorithm 1 to output both the changepoint
estimator Z and a test statistic Hp,x, which can be used in our multiple changepoint algorithm to determine
if an estimated changepoint is spurious.

To compute the sequence (Q,)te[n,l] in Algorithm 1, observe that the same A and Z can be used for
all t € [n— 1] and hence only need to be computed once. It is worth noting that we exploit the structures
of the sketched designs (W;), to greatly simplify their computations. Recall that @, € R"~” is the tth
row vector of A, i.e., A = (ay,... ,an)T. W; are computed via the simple iterative scheme Wy = 0 and
W, =W,_1+ Za,x,T for r € [n—1]. As a common measure, we introduce the burn-in parameter o so that
we forgo the possibilities of having changepoints in (0, an) U ((1 — o)n,n).

While the main focus of our current work is the changepoint estimation problem, we remark that
Algorithm 1 can be easily adapted to test the existence of a single changepoint in the sequence of
regression coefficients. Specifically, we can construct the test

Vorr=1{_ max = [lsof(Q.4)| =7}, 22)

telon,(1—a)n

where T is some appropriate threshold.
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Algorithm 1: Pseudocode for changepoint estimation

Input: X € R"*? Y € R” satisfying n — p > 0, a soft threshold level A > 0, burn-in parameter
a>0

1 Setm<+n—p

2 Form A € Q"™ with columns orthogonal to the column space of X
3 Compute Z <+ A'Y

4 Set Wo =0,

sforl1 <tr<n-—1do

6 Compute W; < W;_| + Za,x;r

7 | Compute Q, = {diag(W,' W;)}~'/>W," z

8 end

9 Form Q := (Q(an)»--->Of(1-ay]) "

[
=

Compute ¥ < the leading left singular vector of soft(Q, 1)
Output: 2 := ArgMaX g << (1—at)n |ﬁTQt| and Hiax 1= MaXg,<i<(1-a)n | soft(Qr, 4)]-

Finally, we mention that another natural approach to find the W; whose columns form the best
sparse linear approximation of Z = W,0 + & is to fit a sparse linear model by regressing Z against W, and
compare the goodness-of-fit across ¢ via the Bayesian Information Criterion (BIC). We choose the BIC for
the model selection purpose, though it is conceivably straightforward to apply any other model selection
criteria. The pseudocode for this procedure is given in Algorithm 2. Specifically, for appropriately chosen
(&) te[n—1)» We compute first the Lasso solutions in Step 4 and then the corresponding BICs in Step 5. In
practice, the sequence of regularizing parameters (4, ), may be chosen via cross-validation for each .

Algorithm 2: Pseudocode for changepoint estimation with Lasso with BIC
Input: X € R"*7,Y € R” satisfying n > p, & > 0 and a sequence (4 )¢[p—1]
1 Follow Algorithm 1 until line 4
2forl1 <tr<n-—1do
Compute W; < W,_1 +2ax,"
Compute the Lasso estimator 6; < argmin, gy { 2-||Z — W,v|[3 + A[|v]|1 }
Compute H; <+ —(||Z—W,6,]3+16,]|ologm)
end
Output: 2 := argmax g, <;<(1—q)n Hr

A AW

Algorithm 1 has a computational complexity of O(n?p), with the most computationally intensive
step being its Step 2 to form the sketching matrix A (e.g. via a QR decomposition). For Algorithm 2,
each Lasso step has a computational cost of O(k*n) [14], leading to an overall computational complexity
of O(n*(p+k?*)). It is remarkable that for sparse signals (k = O(,/p)), the changepoint algorithms we
proposed here has essentially the same computational complexity as the complementary-sketching-based
two-sample test [21] for any hypothesized changepoint location ¢.
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2.2. Multiple changepoint estimation

The single changepoint estimation procedure described above can be combined with a generic top-down
multiple changepoint estimation method, such as binary segmentation [46], wild binary segmentation
[18] and its variants [e.g., 4, 20, 29], to iteratively identify multiple changepoints. For concreteness, we
describe an approach combining Algorithm 1 with the narrowest-over-threshold method of Baranowski
et al. [4]. Algorithm 3 is a slight generalization of Baranowski et al. [4, Algorithm 1]. It takes as input a
single changepoint estimation procedure Z and a testing procedure y. When the data Dy, ..., D, are the
covariate-response pair (X, Y;);c[,)» we may apply Algorithm 1 or 2 to obtain Z and define y(X,Y) :=
1,1} for some T using the output Hmax of Algorithm 1. However, note that both Algorithms 1 and 2
require the number of observations to be larger than the dimension for the complementary sketching to
work. If this is not satisfied, we simply define 2(X,Y) := 0 and y(X,Y) :=0.

Essentially, in Algorithm 3, we generate multiple intervals and run the single changepoint algorithm
on each interval to obtain candidate changepoint estimates and test results. We choose the candidate
changepoint associated with the narrowest interval for which the test rejects the null, and add that to the
set of estimated changepoints. We then segment the data at this estimated changepoint, and repeat the
above process recursively on the data to the left and right segments, using only intervals lying completely
within each segment. The process terminates when none of the tests reject the null. Furthermore, for
practical reasons, we recommend combining Algorithm 3 with some second-stage refinements, for which
we discuss in more details in Section 4.4.

Algorithm 3: Pseudocode for multiple changepoint estimation

Input: Data Dy, ...,D,, number of intervals M, burn-in parameter @ > 0, single changepoint
estimation procedure Z and a single changepoint testing procedure y
1 Set Z < 0 and generate a set of M intervals .# := {(s1,e1],..., (su,en]} independently and
uniformly from {(a,b]: 0 <a < b <n}.
2 Run NOT(0,n) where NOT is defined below.
3 Let ¥ < |Z| and sort elements of Z in increasing order to yield 2| < --- < %;.
Output: Z;,...,Z
4 Function NOT (s, e)

S Set %(x’e] A {m: (sm’er} g (s,e], W(D(strnaf,emfntIS]) = 1}
6 if 254 £ ( then

7 mo < argmin, _ (.| (€m — Sim)

8 b <+ Sy +2(D(Sm7em])

9 7+ ZU{b}

10 NOT (s, b)

11 NOT (b, e)
12 end

13 end
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3. Theoretical guarantees

In this section, we establish theoretical guarantees for the changepoint procedures proposed in Section 2.
We start by focusing on the single changepoint estimation problem. For simplicity of analysis, we will
assume that the noise variance ¢ is known in this section, which by scale invariance can be further
assumed to be equal to 1. We discuss practical aspects of estimating 62 in Section 4.1. We first present
two conditions, which we will need to establish the results in this section.

Condition 1 All entries of X are independent standard normals.
Condition 2 n,z, p satisfy thatn > p, z/n — 1t € (0,1) and (n—p)/n — 1 € (0,1) as min(z,n, p) — co.

The design Condition 1 requires that the rows of the design matrix X = (x1,...,x,) ' follow the
isotropic Gaussian distribution. Condition 2 specifies the asymptotic regime we work in. Note that the
assumption n > p is necessary, since otherwise, even if z is known, it is impossible to test 8 = 0 against
the alternative 8 = 6* for any fixed 6* € R” (see Lemma 8). The key ingredient of our theoretical
analysis is the following proposition, which shows that W," W, is close to a multiple of identity in terms
of their actions on sparse vectors. We impose both conditions 1 and 2 only to enable the application of
the existing random matrix theory on the limiting spectral measure of matrix-variate Beta distributions in
the proof of Proposition 1. In principle, even if the above conditions are violated, the theoretical results
in the rest of the section hold for any data (X,Y) such that (3.1) is satisfied. In particular, we remark that
the empirical study in Section 4.3 has demonstrated that our methodology exhibits good finite-sample
performance even when the above two conditions do not hold.

Proposition 1 Suppose that Conditions 1 and 2 are satisfied and define

(t:2) = 4t(n—z)(n—p)/n* if1<t<z,
SED TV detn—0)n—p)w® ifz<r<n—1.

There exists a constant Cry > 0, depending only on T and 1 such that with probability 1, for any fixed
v e .#P~V and { € [p], we have for all but finitely many p’s that

sup  sup uT{WtTszg(t;z)Ip}vgern\/ﬁnlogp. 3.1
t€[n—1]ueBy(L)

Note that we suppress the dependence on 7 and 7 in the notation of g(z;z). Taking £ = 1 in the above
proposition, we would expect diag(W,” W;) to concentrate around g(t;1)I, = 4t(n—t)(n— p)n~2I, for
each ¢. This would allow us to approximate the test statistics Q, = {diag(W,' W)}~ '/2(W,"W,0 + W,T€)
for a fixed t. However, due to a lack of non-asymptotic probabilistic bounds in random matrix theory
on the convergence of the spectral measures of matrix-variate Beta random matrices, we are unable to
establish the said convergence of diag(W,” W;) uniformly over # € [n— 1]. As such, we instead show the
theoretical results for a slightly modified variant of Algorithm 1, where we replace the definition of Q; by

n

.
LS (3.2)

Q=

We will henceforth refer to the above variant of Algorithm 1 as Algorithm 1’. It is worth noting that the
latter is merely a proof device, and in practice we always recommend applying Algorithm 1. Empirically,
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the primed variant has a slightly worse but comparable estimation accuracies than Algorithm 1, which
can be seen in Table | in Section 4.1.

With this alternative choice of Oy, after removing the perturbation introduced by observational errors
&’s with an appropriate soft-thresholding tuning parameter A, we expect

H; = [[soft(Qr, A) 2 ~ hy := [|6]|2%,

where 7; is defined by

4(n—p) n(nt—z) (n—z) ifl1<r<g,

Y= g(r;z)\/t(n = ! (3.3)

n—t) Ynzp)  fnty ifz<t<n—1.
Interestingly, &, (or 7;) is proportional to the CUSUM statistic in the univariate change-in-mean problem,
whence /; attains its maximum at ¢ = z [cf. 48, Equation (10)]. By exploiting the above observation,
we establish in Theorem 2 that the testing procedure (2.2) is capable of determining whether a (single)
changepoint is present in the regression data, as mentioned in Section 2.

Recall { := (B +B2))/2and 6 := (B — B(?)) /2, where we regard { as a possibly dense nuisance
parameter and wish to estimate the changepoint only assuming the difference parameter 0 is sparse, i.e.,
|8]lo < k for some unknown but fixed & typically much smaller than p.

Theorem 2 Assume Conditions 1 and 2 and that data (X,Y) are generated according to (1.1) with
v = 1. Suppose that ||0||o < k satisfies (klogp)/n — 0 and that min(t,1 —T) > o for some known
a. There exists ctn’a,CT’n,a,c’T’n’a > 0, depending only on t,m,, such that for A = c;y qlogp,

T = C@n,a\/lzlogp, the following holds.

I If0 =0, then Yo ) 7(X,Y) =25 0.

Al
2. 11182 > o PREL, then o pr(X,¥) 25 1.

We now turn our attention to the estimation in Algorithm 1’. The key of understanding the
performance of Algorithm 1’ lies in an analysis of the estimated projection vector ¥ in Step 10 of
the algorithm. By Proposition 1 in the appendix, we expect Q = (Q1,...,0Q,—1) to be well-approximated
by the rank-one matrix 8y ", where y = (y,)le[n, ] is defined in (3.3). Thus, the oracle projection direction
to aggregate Q is along 6/]|0||2. We are now in a position to state the convergence rate of the changepoint
estimator from Algorithm 1'.

Theorem 3  Assume Conditions 1 and 2 and that data (X,Y) are generated according to (1.1) with
v = 1. Suppose that ||0]|2 < 1, k < p/2 and that min(t,1 — ) > o > 0 for some known o. There exists
cen.a > 0, depending only on T,1, @, such that if A > cgn qlogp, then the output 2 of Algorithm I'
(defined below Proposition 1) with input (X,Y), A and a satisfies with probability 1 for all but finitely

many p’s that
|Z—z] < A2k
~T,1,0 2"
Vnl|6]13

Theorem 3 shows that with a tuning parameter choice of order log p, and when ||6]], is bounded
(which is the more difficult regime for estimation), Algorithm 1’ produces a consistent changepoint
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estimator with a rate of convergence of order k'/2n~1/2,6]|;% up to logarithmic factors. However, in
light of the testing viewpoint of Theorem 2, in which it is possible to test apart the null of no change
against a sparse alternative if v/7||0||2/v/k, up to logarithmic factors, is sufficiently large, the rate in the
above theorem appears to have an extra factor of ||6||; !, This additional factor is likely to arise from
the technical difficulty of controlling the weak, though complex, dependence between the estimated
projection direction ¥ and the sketched Gaussian noises (W,"€ : ¢ € [n— 1]). Indeed, the following
theorem shows that if ¥ is estimated from an independent sample, then the estimator from Algorithm 1|
has a rate of convergence that agrees with what is prescribed in Theorem 2, up to logarithmic factors.
Recall that the definition of Q; in Algorithm 1’ is replaced by (3.2).

Theorem 4  Assume the same conditions as in Theorem 3. Let (X,Y) be an independent copy of (X,Y).
Let Q be the matrix constructed in Step 7 of Algorithm I’ (defined below Proposition 1) with input
(X,Y), A and o. Suppose ¥ is computed in Step 9 of Algorithm 1" with input (X,Y), A and o. Then
Z:=argmax,c|,_q |97 Q| satisfies with probability 1 for all but finitely many p’s that

|2_Z‘ < 2'\/];10gp
VAT P

This additional independent sample (X,¥) may be obtained in reality via a sample-splitting scheme.
For example, we may take all odd time points to construct the Q matrix, and then use the even time
points to estimate the projection direction ¥. However, such sample splitting is necessary only from a
technical viewpoint, and the algorithm typically performs better without sample splitting in practice.

We remark that the rate in the above Theorem 4 is slower compared to the usual results from change-
in-mean problems as well as under regression settings, where rates of order n~!|| 0 I, 2 are achievable
under appropriate conditions [see e.g. 12, 45, 47, 48, 49]. Unlike the classical change-in-mean setting,
where the perturbation term (the CUSUM of the noise series) can be controlled both globally and locally,
with the local fluctuation admitting a modulus of continuity bound scaling as /8 for time increment
0, our proof provides only a global perturbation bound. The local modulus of continuity bound seems
difficult to obtain with the current toolbox of random matrix theory we have. We believe that this lack
of local control of the perturbation is behind the apparent suboptimal rate. It remains to be seen if the
estimation rate can be improved via alternative and possibly more refined analysis routes.

We now turn our attention to theoretical guarantees in the multiple changepoint setting. The following
theorem shows that provided that we have a good single changepoint estimation and testing procedure in
any changepoint problem, combining the narrowest-over-threshold with the single change procedures
yields a multiple changepoint estimation procedure of similar accuracy with theoretical guarantees.

Theorem S5 Let Dy,...,D, be a data sequence with changepoints 0 =zo < z; < --- < 2y < Zy4+] =n.
We assume that z; — zi—1 > nA; for all i € [v+1]|. Let .# be defined as in Algorithm 3. Write
So:={(s,€] € M : (s+n®,e —n®|N{z1,...,2v} = 0} and for i € [v], define .7; := {(s,e] € M :
s € [zi —nAg /2,2 —nAg/3),e € [zi+nAr /3,2 + 1A J2]} and I := {(s,e] € A : min{z; —s,e —7;} >
nAc/6 and e —s < nAc}. Let 2 and y be the single changepoint estimation and testing procedure
used in Algorithm 3. Define the events Qo := {Vi € [v],3m € [M], s.t. (Sm,em| € Fi}, Q) :=
{W(D(s+nw,e—nw]) =0jorall (S’e] € S} Q= miG[v]{W(D(s+nw,e—z1w]) = 1f0r~all (Sve] € ‘ﬁl} and
for some ¢y,...,0y >0, Q3 := ﬂie[v]{|Z(D(S74) — (zi—5)| < ng; forall (s,e] € ;}. Let 1,...,%; be
the output of Algorithm 3 with inputs D1,....D,, M >0, ® = A;/6, £ and . Assume further
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¢ :=maxc|y) ¢ < @. We have on QoM Q1 NQy NQ3 that V = v and n Y& —zi| < @i foralli€ [v]. In
particular, we have

P(V=vandn ' —z| < ¢ forall i € [v]) > 1 —P(Q5) —P(Q5) — P(Q5) — ve 4:M/3.

Note that the theorem is valid for any generic multiple changepoint estimation that combines
valid single changepoint estimation and testing procedures and the top-down narrowest-over-threshold
multiple changepoint estimation paradigm. Hence, it can be applied in contexts other than the linear
regression setting here. The statement of Theorem 5 is slightly stronger than the usual results on
narrowest-over-threshold procedures, where ¢; are taken identical.

Applying the above theorem to our specific problem, we extend the single changepoint estimation
result in Theorem 4 to the multiple changepoint setting and establish the estimation accuracy of
Algorithm 3. We first give the following condition, which is the equivalent of Condition 2 in the
multiple changepoint setting.

Condition 3 n,p sarisfy n > p and that (n — p)/n — 1N as min(n,p) — . Assume further the
changepoints satisfy 0 =z0 < z] < -+ <2y < zZy41 =n and z; — zi—1 > nA; for all i € [v+ 1] and
zi/n— T for0<i<v+1.

Due to the asymptotic nature of our theoretical results in the above, we consider a sequence of
Algorithm 3. To facilitate proof, we study a specific coupling of the random intervals { (s, €] : m € [M]}
generated across this sequence as follows:

(Sms@m] " Unif({(@,B] : 0<a < b < 1}), Ym € [M],

& (3.4)
Sm = |nSm], em = [néy| form € [M] and n € N.

Note that the intervals generated by (3.4) have the same law as those generated in Algorithm 3.

Corollary 6 Let X and Y be generated by (1.1) and write D; := (X;,Y;) for i € [n]. Assume Conditions 1
and 3 hold. There exist c,C,c’,C’' > 0, depending only on o,A¢,n, such that the following holds.
For oo <1/6, A =clogp, T = CVklogp, let 2 = Za,p be the sample-splitted version of the single
changepoint estimator defined in Algorithm 1" and v = W be the testing procedure defined in (2.2).
IfA: >3(1—1m), M% <1092 < 1 and |6W|jo < k such that “182 — 0, then the output %1,...,%;
of Algorithm 3 with intervals {(sm,en| : m € [M]} generated according to (3.4), inputs (D;);c[n), M > 0,

—AZM /36

@ = 1/6, 24 5 and Yy 5 7 satisfies with probability 1 — ve that for all but finitely many p’s,

|2i — zil <C’l\/%logp
S Vo0

V=vand

forallie [v].

4. Numerical study

4.1. Tuning parameter choice and comparison of variants

Theoretical analysis in Section 3 have assumed that the noise variance ¢ is known. In practice, we may
obtain an upward-biased estimator & as the median absolute deviation of entries of the Q matrix. We
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note
Var(Q;) = E[Var{W," (W.0 + &) | X}] + Var[E{W," (W.0 + &) | X}]
= 6’E(W," W) + Var(W," W.6).

Since IE(WITW,) has all diagonal entries equal to 1, every entry of Q has a marginal variance of at least

c2.
0 Nek |
..
<~
— k=1
— k=3
@ =1 @«
: p=3 £ i
B =y 2 k=00
r- — k=200
o & = 1000
~d
~d
T ‘ T T T T T T ‘ T T T T T
0 1 2 3 4 5 0 1 2 3 4 5
A/logp A logp
Varying p Varying k
10— pa L‘: —
/j n
Rk | hl
<=
2 7"
S = |
g g
<
i =
w2
g - — =
— — 00, p = 400 — 7=0.3
=1 E — -
; T 2100, 5= 2000 ‘ — 7=05
T T T T T T T T T T T T
0 1 2 3 4 5 0 1 2 3 4 5
A logp A logp
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FIG. 2. The effect of choosing different A in a series of studies. Our recommendation of A := 0.51og p is marked in dashed vertical
line in each panel. Unless specified otherwise in each one, the panels share the parameters n = 1200, p = 1000,7=0.3,k=3,p =2.

Algorithm 1 requires a soft-thresholding tuning parameter A > 0 as an input. The theoretical
results in Section 3 suggests using A = colog p for some ¢ > 0. We investigate here the performance
of our algorithm at different soft-thresholding levels A. Specifically, we computed the logarithmic
average loss |2 — z| of Algorithm 1 over 100 Monte Carlo repetitions for parameter settings of
n € {600,1200,2400}, p € {n/3,5n/6}, 7 € {0.2,0.3,0.4,0.5}, k € {1,3,10, | \/p], |0.1p], |0.2p], p}.
p:=10|2 €{1,2,4,8}, 6 =1 and various choices of ¢ € [0.1,5]. In all our simulations here and
below, we sample the vector of change in the regression coefficients 0 uniformly from the set
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{v:|vllo =k, |[v|l2 = p}, and generate dense pre-change vector from N,(0,max{1,p>}I,). Figure 2
illustrates part of the simulation results where we vary one aspect of the parameters at a time. From the
figure, we see that a choice of ¢ = 0.5 provides good statistical performance across the parameter settings
considered, and we will henceforth adopt this choice of A = 0.56 log(p) in our subsequent numerical
studies.

We now compare the statistical performance of various versions of complementary-sketching-based
approaches proposed in the paper, including Algorithms 1 and 2 from Section 2 and the slight variant
Algorithm 1’ mentioned in Section 3 to facilitate theoretical analysis. For a demonstrative purpose, we
have also included the naive hard- and soft-thresholded changepoint estimators 24 and 7°°" mentioned
just above Algorithm 1. We use the A choice suggested in the previous paragraph for 2" and 2T,
Algorithm 1 and its variant, and choose 4, in Algorithm 2 via a five-fold cross-validation for each
t € [n—1]. Empirical observations suggest that Algorithms 1, 1’ and 2 work well without any burn-in (i.e.
o = 0). However, both 2%°™ and 24 do suffer from more serious boundary effects, as seen in the large
root mean squared errors in Table 1. In addition, Algorithm 1 has roughly the same but slightly better
estimation accuracy compared to its primed variant. This justifies our recommendation of Algorithm 1
over its primed variant, and the similarity in performance further consolidates the relevance of our
theoretical analysis on the primed variant as a proof device.

np k p oot ghad o Alel Algll  Alg2
600 200 3 1 50.1 17835 12.6 40.79 22.34
2 398 8876 3.1 501 458

4 2537 923 214 433 229

14 1 317 12211 3736 83.59 129.71

2 64 88.04 614 732 983

4 388 5892 382 467 295

1200 400 3 1 11.24 196.81 10.95 1334 19.54
2 315 136.02 3.69 458 496

4 3565 101.17 1.67 436  2.09

20 1 39.17 14698 18.14 37.63 168.56

2 506 1445 729 759 1551

4 472 10684 272 293 4.47

TABLE 1 Comparisons of performances of gsoft - shard

Algorithms 1, I’ and 2 in various settings in terms of root
mean squared error. No burn-in is applied anywhere (0t = 0). The
true change takes place at 0.3n.

4.2. Comparisons with other methods

From the discussion above, we recommend using Algorithms 1 and 2 for their robustness against the
choice of the burn-in parameter ¢, and for the more accurate estimation of Algorithm 1 over its primed
variant. We will henceforth focus on Algorithms 1 and 2, which we call charcoalyy,j and charcoalagso,
respectively. In this section, we compare the performance of charcoaly,; (CP) and charcoaljago (CL)
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with existing approaches in the literature. Specifically, we will compare against the VPBS algorithm of
Rinaldo et al. [40], two-sided Lasso-based approaches of Lee et al. [32] (LSS), Leonardi and Biihlmann
[33] (LB) and Cho and Owens [12], a two-stage refinement approach of Kaul et al. [28] (KJF), a
dynamic programming algorithm of Xu et al. [49]. We have used the authors’ own implementation for
VPBS, KJF, CO and XWZY, and Kaul et al. [28]’s implementation for LSS. We have implemented LB
ourselves using the recommended tuning parameter choices as in Leonardi and Biihlmann [33]. It is
worth noting that none of the six existing methods in the literature were designed to estimate changes in
the regression coefficients when both the pre- and post-change coefficients are dense. As such, we also
include simulation settings where the pre-change regression coefficient is s-sparse for s < p.

We compare the performance in terms of mean absolute loss of various methods in a single
changepoint estimation task for n = 1200, p =400, T=0.3, k€ {3, |\/p|,p}. s € {k, p}, p € {1,2,4,8}
in Table 2 (we also include additional results for p = 1000 in Table S.1 in the supplement). We see
that when the pre-change coefficients are sparse, most existing methods works well and in particular,
KIF tends to have the best average loss, but our charcoalpy,j and charcoaljasso remains comparable. In
contrast, if the pre-change regression coefficients are dense, our methods can significantly outperform
other approaches. Specifically, we see that none of VPBS, LB, KJF, LSS, CO or XWZY show any sign
of consistent estimation as their average loss do not decrease as the signal strength increases. On the
other hand, both charcoalyo; and charcoalyasso have shown highly promising performance in various
settings. It is surprising that our methods also seem to work even when the vector of change is dense. We
notice that charcoaly.,; does not perform as well as charcoaljasso When the change is dense. This may
be related to the fact that the marginal correlation based test statistics Q; may suffer from larger bias due
to covariate collinearity in the transformed design W when the vector of change 6 is dense. We further
note that charcoalj,sso Shows better estimation accuracy when either the signal strength p is high or the
vector of change 0 is dense.

4.3. Model misspecification

While we have focused on the Gaussian Orthogonal Ensemble (GOE) design (i.e. X has independent
N(0, 1) entries) and Gaussian noise in the theoretical analysis, our methodology can be applied in more
general settings. In this subsection, we investigate the robustness of the estimation accuracy of our
method to deviations from this Gaussian distributional assumptions. Specifically for n = 1,200, p = 400,
7=0.3,k=20and p € {1 50, 1.58}, we varied the design matrix X to have either N,(0,X) rows,
where ¥ = (0.7"'_1 ‘) i.je[p) has an autoregressive Toeplitz structure, or independent Rademacher entries.
We also vary the noise distribution to take f4, ts, centred Exp(1) or Rademacher distributions. Overall, we
see from Figure 3 that the performance of charcoalj,g, is robust to both non-GOE design matrices and
discrete, heavy-tailed or skewed noise distributions. Similar results hold for the charcoalpyo; method.

We further investigate the robustness of our procedure to more severe departure of the design
distribution from Condition 1, by allowing the covariate distributions to change over time. Specifically,
we consider the following three scenarios:

(a) Forz =n—z wedraw x; ~N(0,1,) for 1 <t <7, and x, ~ N(—100,1,) for 7/ <t <n.

(b) We first draw % iAi(}N(O,Ip), and then find a permutation 7 such that [|%z(1)[l2 < -+ < [|Zz(y) ||2- Finally,
we set x; = Xy

(¢) Forz =n—z wedrawx, ~N(0,%1,), where {/ = /it (n—2') for <Z'and yy = | /227 for
t>7.
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k s p Cp CL VPBS LB KIF LSS CO XWZY
3 31 6.2 12.6 503 5495 38 175 876 14.1
2 2.0 4.2 7.6 535 1.6 43 125 7.3

4 0.9 1.3 2.6 0.7 1.1 22 115 0.5

8 1.0 0.8 1.1 03 1.0 0.8 105 32

3 400 1 7.2 132 4524 556.1 238.8 4722 2473  254.6
2 22 3.5 4763 569.2 2393 364.1 86.5 315.0

4 11 1.5 4342 532.8 239.1 272.1 294  325.1

8 0.7 0.8 3263 496.8 239.1 310.8 622  327.0

20 20 1 135 964 552 716.7 58 331 3733 18.2
2 42 122 10.2 6755 1.8 6.9 315.1 2.7

4 1.6 2.6 29 698 14 26 1743 7.7

8 1.4 1.1 3.1 0.6 1.2 1.0 111.3 2.0

20 400 1 124 854 4227 528.8 2389 479.5 387.0 2735
2 3.0 9.2 4949 546.8 2389 2845 364.8 316.2

4 2.0 2.6 4319 553.1 239.1 2685 367.0 321.8

8 1.9 0.8 3562 513.3 2393 261.5 397.1 322.0

400 400 1 1622 3442 477.8 569.8 238.8 4299 4069  263.7
2 463 3384 5040 5832 238.8 2524 408.5 3139

4 253 133 4463 554.1 2389 2856 3923 3234

8 207 3.0 355.6 487.6 239.1 250.1 3742 3248

TABLE 2 Average loss of various changepoint methods under different settings.
Other parameters: n = 1200, p = 400 and z = 360. The method with the least average
loss in each line is marked in bold.

As we see in Figure 4, our charcoalj,gs, procedure shows remarkable robustness against possibly strong
design heterogeneity.

4.4. Multiple changepoints

As mentioned in Section 2, our charcoal algorithms can be easily combined with generic multiple
changepoint methods to deal with multiple changepoints, and we proposed a specific version in
Algorithm 3 of such a multiple changepoint estimation procedure. We run Algorithm 3 with @ = 0 and
M =200. For the single changepoint estimator input Z in Algorithm 3, we employ Algorithm 1 with the
recommended value of A in Section 4.1 and the burn-in parameter o« = 0.05. For the testing procedure
input y of Algorithm 3, we run Algorithm 1 to obtain output Hin,x and define y(X,Y) = Ly <7y,
where the testing threshold T is chosen by a Monte Carlo simulation as follows. We generate B = 1000
pairs of (X,Y) under model (1.1) with v = 0 (i.e. no changepoint), and run Algorithm 1 with these
synthetic (X,Y) pairs and the same A and o choices as above. This would return B test statistics
(Hﬁlax),,e[g], which are used to estimate an upper 0.01/M quantile by fitting a generalized extreme value
distribution [41].
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FIG. 4. Robustness to time-varying design distribution. See Section 4.3 for detailed setup of the three scenarios.

While Algorithm 3 already produces good estimators of multiple changepoints, its performance can
be further improved by the following post-processing procedures. Such post-processing has previously
been described in e.g., Fryzlewicz [19, Section 2 of online supplement].

Specifically, after we obtain an initial candidate set of changepoints using Algorithm 3, we iteratively
run the test prescribed by (2.2) on the largest time interval containing each candidate changepoint as the
only estimated changepoint, and remove that candidate changepoint if the test is non-significant. For the
remaining candidate changepoints i, ..., Zy, we refine their estimated locations in two steps. We first
perform a ‘midpoint’ refinement, where we use (for instance) Algorithm 2 to output a refined estimator
Z; based on data { (x;,y;) : t € ((Zi—1 +2i)/2, (i +Z2i+1)/2]} for each i € [V]. Here, we use the convention
that Zp = 0 and Z;,; = n. Using midpoints between successive estimated changepoints ensures that
each ((2i—1+2:)/2, (% +Zi+1)/2] contains with high probability at most one true changepoint. However,
it does not use the full data available around each true changepoint. As such, we perform a second
refinement step after this, where we use Algorithm 2 to output a further refined estimator 2feﬁ“ed based
ondata {(x;,y;) : t € (Zi—1 + on,Zi+1 — an]} for each i € [V] with o being the burn-in parameter as in
Algorithm 3. Again, we use the convention that Zp = 0 and Zy | = n. For both refinement steps, we may
also use Algorithm 1 in place of Algorithm 2, and they have very similar performances in our numerical
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n p k  Pmin V — v value counts Haus ARI
-3 -2 -1 0 1

1200 200 3 08 0 0 96 4 0 292.8 0.742

1.2 0 0 22 78 0 75.4 0918

1.6 0 0 0 98 2 8.8 0.978

10 0.8 0 2 97 1 0 3049 0.710

1.2 0 0 42 55 3 141.1 0.856

1.6 0 0 1 9 3 18.0 0.960

100 0.8 3 67 30 0 0 591.7 0.303

1.2 0 4 88 8 0 3193 0.611

1.6 0 0 52 46 2 217.1 0.759

2400 400 3 08 0 0 25 75 0 1553 0.881

1.2 0 0 0 100 O 14.3 0.975

1.6 0 0 0 100 O 10.1 0.983

10 0.8 0 15 53 32 0 3769 0.720

1.2 0 0 2 98 0 37.3 0.945

1.6 0 0 1 99 0 21.0 0.970

100 0.8 42 57 1 0 0 11549 0.184

1.2 0 32 54 14 0 647.0 0.457

1.6 0 0 14 84 2 3769 0.658

TABLE 3 Summary of results of multiple changepoint estimations under
(M1) and (M2) described in Section 4.4 with p € {0.8,1.2,1.6} and
k € {3,10,100}. The first nine rows of the table corresponds to setting
(M1) and the last nine rows corresponds to (M2). The columns of V — v
tabulates the difference in number of estimated and true changepoints
over 100 Monte Carlo repetitions. The ‘Haus’ and ‘ARI’ columns
measure the average Hausdorff distance and the average adjusted rand
index between the discovered partition and the true partition over 100
repetitions.

experiment. For definiteness and simpler presentation, we employ Algorithm 2 for both refinement steps
in the following numerical experiments.

We assume that the regression noise level ¢ is known and consider the following two multiple
changepoint specifications in our simulations: (M1) n = 1200, p =200, v = 3 and three changepoints
are located at z = (z1,22,23) = (240,540,900) with signal sizes (|0 |,][0® |2, [10P)(2) = Pmin X
(1,1.5,2) and sparsity |[8()]jg = [|0@||o = [|0©®)|o = k respectively for various ppi, and k; (M2) n =
2400, p = 400, v = 4 and four changepoints are located at z = (z1,22,23,24) = (720, 1320, 1800,2160)
with signal sizes (||01)]2,]|6@|2,]0|2,116@2) = Pmin x (1,1.15,1.45,2.18) and sparsity
1610 =1[|6@ o =160 = ||6™||o = k respectively for various ppi, and k.
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FIG. 5. Histogram of estimated changepoint locations in four settings. The true changes take place at z = (240,540, 900) for the
(n, p) = (1200,200) specifications in the above two panels with the signal strengths at respective changes being pmin x (1,1.5,2).
For the two panels below with (n, p) = (2400,400), z = (720, 1320, 1800,2160) with ppin x (1,1.15,1.45,2.175). The locations
of true changes are marked in lightly-colored dashed vertical lines in each plot.

Note that for (M2), the signal sizes are chosen such that

||6(i)||2 (Zi _Zifl)(ZiJrl —Zi)(Z,‘H —Zi—1 —p)
? (2it1 —zi-1)?

is approximately constant for each i € [v], which according to Gao and Wang [21] means that the
effective signal-to-noise ratio of testing for each changepoint z; within the interval (z;_1,z;+] is almost
constant. Table 3 reports the multiple changepoint estimation performances for both (M1) and (M2) with
Pmin € {0.8,1.2,1.6} and k € {3, 10, 100}. The multiple changepoint estimation accuracy is measured
in terms of the difference between the number of estimated and true changepoints, the average Hausdorff
distance between the sets {z; : i € [n]} and {2°"4 : j € [A]} and finally the average adjusted Rand index
(ARI) [39] of the estimated segments against the truth, over 100 Monte Carlo repetitions. We see from
Table 3 that the promising single changepoint estimation performance of our methodology carries over
to the multiple changepoint settings.
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Figure 5 visualizes the simulation results by showing the histograms of estimated changepoints in
four of the parameter settings shown in Table 3. It is worth noting that in the bottom two panels of the
figure, where the effective signal-to-noise ratios are chosen to be approximately constant for all the four
changepoints, we indeed see a similar number of times in identifications of each changepoint.

4.5. Real data example

In this subsection, we showcase how the charcoal algorithm can be applied to a single-cell gene
expression dataset from Suo et al. [43]. The original data consists of the logarithmic normalized gene
expression levels of 3211 genes measured in 11853 cells along the developmental trajectory from
proliferating double positive cells (DP(P) cells) to quiescent double positive cells (DP(Q) cells), o T
entry cells (ABT cells) and finally to CD4+ T cells. These cells have been ordered in pseudotime
according to their development stage in Suo et al. [43], which we use as our timeline (see Figure 6). We
are interested in understanding the change in the gene regulatory networks along this time trajectory.
We can estimate the changepoints by modeling the logarithmic normalized expressions using Gaussian
graphical models and seek changes in the nodewise regression coefficients of each gene against the
remaining genes. To speed up the computation, we preprocess the data by subsampling 1/3 of the original
cells and only using genes that have non-zero expression in at least 5% of the cells. The changepoints are
estimated using Algorithm 1 with tuning parameters chosen as suggested in Section 4.1. In Table 4, we
list the genes that reported most significant test statistics in their nodewise regression coefficients along
this pseudotime trajectory. From Figure 6, we see that most of the changes are identified immediately
before the boundary between the DP(P) and DP(Q) boundary, and most of the associated genes TK1,
CKAP2L, TTK, ARHGEF39, DEPDCI1, SPC25, GTSE1, HMMR, CENPA are well-known regulators for
cell proliferation in biology [7, 22, 36, 51, 53, see, e.g.]. The change in nodewise regression coefficient
of the RAG2 gene occurred immediately before the DP(Q) and ABT boundary, which agrees with the
existing literature that RAG?2 is a regulator for T cell development [27].
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©
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4 © DP(Q)
o ABT(ENTRY)
o | O CD4+T
o
T T T T T
0 1000 2000 3000 4000

cell ordered by pseudotime

FIG. 6. Ordered pseudotime of cells in the real data example of Section 4.5. Each plot point represents a cell, colored by its
annotated cell type. Vertical lines corresponds to estimated changepoint locations of the most significant changes in the nodewise
regression coefficients as described in Section 4.5.
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Gene Changepoint  Top interacting partners

TK1 495 PTP4A1, KIF20B, CENPF, SPRY1, ZWINT
CKAP2L 430 TOGARAMI1, DEPDCIB, AP001816.1, TUBA1C, FANCI
RAG2 1178 SMPD3, AL365440.2, LZTFL1, AEBP1, HISTIH2BJ
TTK 407 UBEZ2S, KNL1, CDC20, TRAV19, DDIT3
ARHGEF39 396 HJURP, CD1A, SLC25A25, CCDC152, MBTD1
DEPDC1 444 AL138899.1, USPL1, RIPK4, SERPINF1, EPHB6
SPC25 442 ATF3, ITGAE, CDC42EP3, AC136475.5, EPS8
GTSE1 437 MID1IP1, HISTIH2AG, GADD45G, PSRC1, FBLN5
HMMR 516 TAX1BP3, LAIR1, SERP2, LANCL2, MANEA-DT
CENPA 503 TRBV7-3, SOCS1, FRMD4B, CDKNI1A, FXYD2

TABLE 4 List of genes with most significant changes in the nodewise regression coefficients,
together with their changepoint locations and top 5 interacting partners.
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The supplementary materials collect the proofs of the main results of
Section A in the main text and the proofs of the ancillary results in Section B.

A  Proof of main results

Proof of Proposition 1. Define k1 = k1(n, z,p) := z(n — 2)(n — p)/n3, which
under Condition 2 is O(1). We decompose
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Define Q, = {||S51Sznllopl|S0.2/2]lop < v}. By Lemma 15, we have a
(1/2)-net N of By(¢) with cardinality at most (5ep/¢)* such that we have

P( sup |u'(Sos/t — So./2)SgnSznv] > )

uEBo(@)
< E[P(2 sup |uT(SO7t/t — Soyz/z)SO_,lLv| > x| Sz, S:n)la,] +P(SY)
ueN ’

l
< 52 (5?9> exp{—t?2?/(3220°}) + P(Q°),

where the first inequality holds by that €2, is measurable with respect to the
o-algebra generated by (Sp ., S, ) and the second by Lemma 13 and a union
bound. Define A\yin(A) and Ayax(A) for any generic symmetric matrix A to

1



be the smallest and largest eigenvalues of A, respectively. By Wainwright
(2019, Theorem 6.1), we have
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We define v := 16[(n — 2)/n](1 4+ 1/p/2)*(1 + +/p/(n — 2))*(1 — \/]%)*2. By

a union bound, we arrive at

n(l— n ?
P() = (Hso15zn“op||50,z/z\|opSV)SGXP<— ( SW ) )+2exp<—p/8>.

Combining the above displays and setting x := 16v4/¢z log(5ep/l)/t, we have
by a union bound that

IP’< sup |u' (Sos/t — So./2)Sgav] > x) < p T4 e UVPMPE L 9ppl8,
uGBo(f)

Taking another union bound over t € [z], and by the Borel-Cantelli lemma,
we have with probability 1, for all but finitely many p’s that
sup sup u (VVT (t/z)WTWZ)v < O,/ tplog(ep/t), (S.1)

te(z] ueBo(¥)

for some constant C] , > 0 that depends only on 7 and 7. By Gao and Wang
(2022, (22)), we have for all but finitely many p’s that

sup u' (WZ:;VZ p>u < (4+0(1))\/(€ +4) log(10ep/0) {(/ﬁ—i—f{z)\/%—i-m},

u€By(¢) n

where k9 > 0 is again a constant depending only on 7 and 7. This, together
with the first claim of Lemma 9, implies that with probability 1, for all but
finitely many p’s, we have

4tn T(W W,

sup sup —u
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The conclusion follows by combining (S.1) and (S.2), and the corresponding
inequality for t € [n — 1]\ [2]. O

Proof of Theorem 2. Applying Proposition 1, we have with probability 1 that
for all but finitely many p’s that

4t(n — z)(n — 0
sup sup u' (WtTWz A )(n—p) [p) il S:n\/pllogp.  (S.3)

te[z] u€Bo(¢) n?

Let S :=supp(f). Taking ¢ = k in (S.3), we have
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By (S.3) and the second claim of Lemma 9, with probability 1 that for all

but finitely many p’s,
At(n — _
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For any Q € OP, we have X = XQT =: X, and the latter has the
corresponding sketching matrix A = AQT because AT A = n—p and ATX =
QATXQ" = O(—p)xp- As such, for any @ € OP*? such that Qf = 6,
QW W.0) = (QW,QT)T(QW.QT)0 < W,”W.0. In particular, (W,”W.0) s
is spherically symmetric on RP~*. Hence, by Lemma 14 (with a choice of
§ = 2p~*), with probability 1 we have for all but finitely many p’s that
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Let X = QT be the QR decomposition of X and define B; := Q(T(M]Q(O7t]. By
Equation (16) in the proof of Gao and Wang (2022, Proposition 8), there



exists C,, > 0, depending only on 7 that for any fixed p and ¢ and j € [p],
with probability 1 — p~*, we have

Tll(WtTWt)j,j < 4tr(Bt( /log <iic, /log

where the final inequality follows from the fact that || B||op, < 1. Taking union
bounds over j € [p] and t € [z], and applying the Borel-Cantelli lemma, we
have with probability 1 that for all but finitely many p’s,

sup sup (WtTWt)j’j Sra L

an<t<z je[p| t(n — t)

Furthermore, applying the Gaussian tail bound followed by a union bound,
we have with probability 1 for all but finitely many p’s that
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We now work on the probability 1 event €2, such that (S.4), (S.5), (S.6)

all hold for all but finitely many p’s.
For sufficiently large ¢, o, we have the right-hand side of (S.5) and (S.6)
are both dominated by /2. Hence, on ), we have for all ¢t € [an, z] that
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Writing H, := H\/E(WJWZ)S,SHS
and (S.6) that on €,

, we have by the triangle inequality
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Recall the definition of ; in (3.3) and write
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Then by (S.4), we also have on € that

sup |ﬁt — | Srme /K log pl|0]]2 (S.8)

telon,z]

By a symmetric argument, both (S.7) and (S.8) hold for ¢ € [z, (1 — a)n]
and consequently for ¢ € [an, (1 — a)n] (with perhaps a slightly different
constant). Consequently, we have that with probability 1 for all but finitely

many p,
sup  |Hy — h| < C1(VEA + [k log pl|6]]2),

telan,(1—a)n|

where ' depends only on 7, n and .

If = 0, then h; = 0 for all ¢, and hence for sufficiently large C'. ,, ., we have
with probability 1 for all but finitely many p’s that sup;eian, (1—ayn [Hel < T
and thus the first conclusion holds.

For the second conclusion, we have for some Cy depending only on 7,7
and « that

|H.| > |h.| —  sup )]|Ht—ht] > /0|0 — CL(VEN + /K log p||0]]2)

telan,(1—a)n

> Co(1 = o(1))v/nl|6]l2 — CrerpaVElogp.

The signal size condition on ||f/]|]> then ensures that |H.| > (Cac), /2 —
/

Clcm],a)\/E log p. Hence, for sufficiently large ¢;, ,, we can ensure that with
probability 1 for all but finitely many p’s, we have maxX;cjan,(1-a)n [He| >

|H,| > T, completing the proof. ]

The following proposition shows that the estimated projection direction ©
is well-aligned with this oracle direction.

Proposition 7. Assume Conditions 1 and 2 and that data (X,Y) are gen-
erated according to (1.1) with v = 1. Suppose that k < p/2 and that
min(7,1 — 7) > a for some known «. There exists c:ya,Crpa > 0, de-
pending only on 7,m,c, such that if X > c¢;,max(1,||0||2)logp, then the
projection direction estimator 0 in Algorithm 1" (defined below Proposition 1)
satisfies with probability 1 for all but finitely many p’s that
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Proof. Define for each t € [an, (1—a)n] a vector Q; € R? such that (Q;)ge := 0
and

(Q1)s = (W,"W,)s,505.

t(n —1t)

By (S.5) and (5.6) and their symmetric results for t € [z, (1 — a)n|, we have
with probability 1 for all but finitely many p’s that

sup [|Qr — Qulloc Srpa max(L,[|6]2) log p (5.9)

an<t<(l—a)n

Recall the definition of 7 = (% ) cn—1] in (3.3). Applying (5.3) and its
symmetric result for ¢ > z with ¢ = 1, we have with probability 1 for all but
finitely many p’s that

sup HQt il Srna [10]121/10g p. (5.10)

ten—1

By symmetry, both (5.9) and (S.10) are still valid when we replace the
supremum over t € [z, (1 — a)n] instead. Define Q := (Qfany, - - > Q(1-ajn)) "
and v := (V¢)tcjan,(1—a)n]- We then have

1Q = 07"l < 11Q = Qllos + 1Q = 07 [|oc Srpe max(L, [|6]]2) log p. (S.11)

By Wang and Samworth (2018, Propositions 2 and 4 in the online supplement),
for ¢, large enough such that A > ||Q — 67" ||, we have
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whence the desired form follows by noting [|v|2 <-,.« n by Condition 2. [

sin Z(0,0) S

Proof of Theorem 5. To simplify exposition, all statements should be in-
terpreted as valid with probability 1 for all but finitely many p’s. Write
v = 0/]|0||> for simplicity, and note that |[v|lo = ||#][o < k. Since the
estimator Z is unchanged if we replace v by —0 in Algorithm 1, we may
assume without loss of generality that p := ¢'v > 0. Our strategy is
to view (0'Q; : t € [an,(1 — a)n]) as a perturbation of a multiple of
(v = t € [an,(1 — a)n]), which is maximized at z. By (S.11), we may



choose ¢, . large enough such that ||Q — 67" ||« < A. By Proposition 7, we
then have

omax [07(Qu = 0%)| < 1ol Q = 07 lmax < (ol + 112 = 0ll1)A
Srna (VE+ /b2 = v]2)A.
From Proposition 7, there exists C’ > 0, depending only on 7,7, v, such
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that
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We may further assume that
2
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<
Vollblla = vnlléls = C7, .

for all p’s, since for p where this is not satisfied the result is trivially true. Then,
sin Z(9,0) < 1/2 and thus p = {1 — sin® Z(9,0)}/2 > 1/2. Consequently,

from (S.13) and (S.14), increasing C7 , , if necessary, we have

42'2(n — 2)'(n — p) oT
> 2 max }"U (Qt - (9%)),

@TQPYZ = pH9H2 n3/2 - telan,(1—a)n

which implies in particular that ' Q; > 0. Now, since z = arg MaXer, 1) Vt
and 2 = arg maXe(,, (1_a)n 0 Qr, We have from (S.13) that
MVE

AT AT sT 57 0 (Qr —
9 z 9 z < z z 2 9 <T “ oy
vy vooy 0 Q 0 Qs+ tE[avrlr,l(aga)n]‘v <Qt ’Yt)‘ ~T H0H2

(S.15)
On the other hand, by Wang and Samworth (2018, Lemma 7), we have

@Te/yz B @TQ%S

inf 20 10l2v/n. S.16
t€[z—min{z,n—z}/2,24min{z,n—z}/2] |Z — t| ~TI || HQ\/_ ( )
We arrive at the conclusion by combining (S.15) and (S.16). O
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Proof of Theorem /. As in the proof of Theorem 3, all statements are valid
with probability 1 for all but finitely many p’s, and we may assume without
loss of generality that 9 Tv > 0. Let Q; be as in the proof of Proposition 7. The
main difference to the proof of Theorem 3 will be an improvement of (S.13)
using the independence between ¢ and Q); — 6~;. Specifically, since

{t(n —t)/n}"*07(Qr — Q1) = 0TW, (W.0 + &) — 05 (W, W.) 5,505
= 08 (W, W.0) 5 + 0T W,T€,

we have that

AT (A no T T
— —0 0)se
tE[oa{LI,l(alJ}_(a)n ‘ (Qt ,yt)’ tE[ain(%Xa)n} v (Qt ’Yt) + t(?’l — t) Y (Wt WZ )S
no L ToT
W, S.17
+ tE[oafLr,l(%}—{a)n] t(TL — t) v ¢ § ( )

We control the two terms on the right-hand side of (S.17) separately. By (S.10),
(S.5), the Cauchy—Schwarz inequality and finally (S.12), the first term from
the above display (S.17) is bounded by

1o (12 =01 e+ e o007 9.0)5

Srana (VE[llz + v/Bl[0 = vll2)[6]]2 1og p Srp0 AVE log p. (3-18)

On the other hand, since 0, W; and £ are mutually independent, we have
oTW,TE | (9, W) ~ N(O, HWt T112). By Gao and Wang (2022, (S.8)), we have

1
sup ~W,"W,

~T,N,x 1 :
telan,(1—a)n]|| T

op

Hence, by Gaussian tail bounds followed by a union bound, we have

ATW—rf

Srma \/10gD. (S.19)

t(n —t)

max
telan,(1—a)n]
Substituting (S.18) and (S.19) into (S.17), we have

Qi = 0| Srna AWhlogp. (S.20)

max s
telan,(1—a)n]



Following the same argument as in the proof of Theorem 3, with (S.20)
replacing (S.13), we arrive at the following counterpart to (S.15):

@TQ’YZ - @TQ’Y? < ﬁTQz - ’[)TQ,% +2 max ‘@T(Qt - 9’775)‘ 57'777,01 A\/Elogp

telan,(1—a)n]
(S.21)
Combining (S.21) with (S.16), the proof is complete. O

Proof of Theorem 5. First observe that since

Pr) <11 <1—]P’((sm,em] € zi)) < v(1-02/36)" < vexp(—A2M1/36).

i=1m=1

the second conclusion follows immediately from the first one. To establish
the first conclusion, we henceforth work on the event €2 N 2, N Oy N Q5.
For 0 < s < e < n, we define the following sets

Ml . — {m e [M]:s<s, <en<e},
REel .= {m S M(s’e] : w(D(sm—an,em—nw]) = 1}’
Z(s’e} = {Z - [V] 12 € (876]}7

Zéifc]l ={i € [V]: 2 € (s,¢,min{z; —s,e — 2z} >nA,/2},

Z}g‘;’g} ={i€[v]:2 € (se],min{z; —s,e — 2z} < nep;}.

Note that on the event €2y, we can associate each true changepoint z; with an
m; € [M] such that (s,,,, emn,] € Z;. On Qy, we have

{miriezpd} c RO, (S.22)
Recall the assumption ¢ < w. For any (s, eg] C (s, €] such that (sg, eo] N{z; :
i €[],z € (s,e]} C Zl()‘;’f], we have (o, 9] € Zp and hence (D sy 4nw,eo—nw]) =
0 on €.

For any set of changepoints Z, we can partition the original timeline (0, n]
into |Z | + 1 segments, which we call segments induced by Z. We now prove
by induction that as we update A throughout the recursion of Algorithm 3,
for any (s, e] induced by Z, we have Z(¢ = Zg(zf(]i U 229 The base case
is trivially true as at the beginning of the algorithm, Z =0, so the only
segment induced is (0,n] so Z(¢ = z4 and Zﬁiﬁ] = ) by our assumption

good
that z; — z;_; > nA, for alli € [v + 1].

9



Now assuming that the inductive hypothesis holds at some iteration of
the recursion in Algorithm 3. We show that the claimed statement still holds
if a new changepoint is estimated. Let Z be the set of changepoints identified
before this new changepoint, say Z,, is added to it. We necessarily have
2. = 2(D(y o) + &' for some (s, €'] € 25 where (s, €] is induced by Z. From
the inductive hypothesis, we have Z(#¢ = Zégfjiuzbad and Z (Ood is necessarily
non-empty, for otherwise all changepoints in (s, e] are Wlthln a distance of
n¢ to the boundary of the interval, which together with the fact that ¢ < w,
implies that Ml AR = @, Contradicting the fact that a new changepoint
is identified. Thus, there exists some 7’ € Z=€ which by (S.22) means that
my € R By the definition of mg in Line 6 of Algorithm 3, we have
€my — Smo < €m, — Sm, < nl;. Thus, from the condition of the theorem, we
have that (S, €m,] contains at most one changepoint. If (s, €m,] N{zi 17 €
Zel} = (), then on Oy, ¥(Dis,, +nw,emy—nw]) = 0, contradicting mg € R

ood’

If (Spmg, €mg] contains a single changepoint z; for i € Z}ij, then since ¢ < w,
we again have on )7 that ¢(D(Sm0+nw,em0_nw]) = 0, a contradiction. By the

inductive hypothesis, this implies that (s, emn,] contains exactly one true
(s.€]

sood a0d that min{e,, — iy, Ziy = Sme} > Nw.

change-point z;, for some iy € Z,°
Hence, (Smg, €my] € Liy, and thus on Qs, we have |2, — z;,| < ney,.

We finally check that the two new segments induced by Z U {2.}, say
(Zieft, 2] and (Zs, Zright] fOr Ziere < 2o < Zyignt, still satisfy the inductive hypo-
thesis. By symmetry, we may assume without loss of generality that 2, < z;,.
Since |z, — 2« < n¢, we have iy € Z]gzle“’z*] For any i € Z®e* such that

1 < iy, we have 2,—z; > z;,—2 > n/,, and thus z; € Zéifg’z*]Uszle“’Z*} by the

inductive hypothesis, consequently, Z (Gt — Zéﬁlgé“z*] U Zk()zle“’z* Similarly,
for i € ZG-&anl we have i > ig and z;— 2, > 2 — 25, — (3 — 25y) > N, — ¢ >
nA,/2. Again by the inductive hypothesis, Z*risn] = Zg(i’;f“g“] Zé:a’z“g“].
This completes the induction.

As a consequence of the above inductive argument, we have shown that a
new changepomt will be identified in Algorithm 3 if and only if (s,e] N {z; :
iezt OOd # (). Thus, from the inductive claim, at the end of the recursion,
each changepoint, say z;, must be less than n¢; away from one of the end
points of the segments induced by Z. This, as well as the assumption that
zi— zi—1 > nA, for all i € [v+ 1], means that |Z| = v and that |2; — z;| < ng;
as desired. O

10



Proof of Corollary 0. First we write ¢; = % and define g, €21, Q5 and
Q23 as in Theorem 5. Observe that €2y, {25 and (23 has implicit dependence on p,
whereas in the specific coupling (3.4) considered in this theorem, 2y does not
vary with p. We have from the proof of Theorem 5 that P(€g) > 1—ve 27M/36,
Hence, it suffices show that on £, we have for all but finitely many p’s that €,
Qs and 23 hold simultaneously. We keep in mind that M is fixed and finite,
and for the rest of the proof, we condition on a realization of (3,,, €,,)_, as
in (3.4) such that g holds.

Let Zy, Z; and Z: be defined as in Theorem 5. We first establish
and . For any interval (s,e|] with e —s < p, » = 0 by definition. For
every (s,e] € Up<i<, Z; whose length is longer than p, the fixed-ratio regime
Condition 2 is true by the generating mechanism of the intervals in (3.4), and
it is straightforward to verify that Theorem 2 applies. As a result, there exist
¢, ,C, which may depend on (s, e], such that the conclusion of Theorem 2
holds for each (s,e] € Up<i<, Z; with e — s > p. Inspecting the proof of
Theorem 2 shows that we can take the maximum of all such ¢, ¢, C’s so that
the conclusion of Theorem 2 holds for all intervals in Up<;<, Z; with length
longer than p. As such, we have, for all but finitely many p’s, ; and €2,
holds.

Now we turn to €23. Again, by reasoning similar to the above, we see the
conditions of Theorem 4 hold for each (s, e] € Z;, and for the above-mentioned
specific choices of ¢, which may depend on (s, €|, the conclusion of Theorem 4
holds for each (s,e] € Z;. We can again take the maximum of all such ¢’s so
that for all intervals in Z; for all i € [v], the conclusion of Theorem 4 holds,
i.e.,

MWElogp

v

Setting, e.g., C" = max;e[,) max, ez, C(; ), We have, for all but finitely many
p’s, 23 holds. Invoking Theorem 5 completes the proof. O]

2(D(s,q) — (2 — 5)
n

< Clae

B Ancillary results

We collect here the ancillary results and their proofs.

The following lemma shows our assumption p < n is necessary in the sense
that otherwise it is impossible to test the null § = 0 against the alternative
0 = 0* for any 0* € RP.

11



Lemma 8. Fizn,p € N, z € {1,...,n— 1}, 0 > 0 and a distribution
Px on R™P. For 3,0 € RP, define Pgy to be the joint distribution of
Ty oy Ty Y1, - - -, Yn generated by

(xl,...,:cn)T ~ PX

yi =2 (B4 01psy) + 6, 6 | (21,0, 0) = N(0,07).
Now, for a fized 0* # 0 € RP, set P := {Ps : f € RP} be the space of null
hypotheses and Q = {Pzg- : B € RP} the space of alternative hypotheses. If

n < p, then
inf{sup P(p=1)4+sup Q¢ = O)} =1,
¥ tpep QeQ
where the infimum is taken over all tests 1) : R x R™ — {0, 1}.

Proof. The left-hand side is trivially upper-bounded by 1 (e.g. taking 1 to be
constantly zero), hence it suffices to show that 1 is also a lower bound. Let
7 := N,(0,721,) be a prior on j3, for some 7 > 0, and define

P, ::/PB,OdW(ﬁ), 0. ::/PM* dr(B).

We then have by Le Cam’s two-point test lemma Samworth and Shah (2025,
Lemma 8.4)

inf{sup P( = 1)+ sup Qv = 0)} > inf{Pr( = 1) + Qu(¥ = 0)}
=1- dTV(Pﬂ'7 Qﬂ')?

where dtyv denotes the total variation distance. It remains to show that
drv(Pyr, Q) can be made arbitrarily close to 0 by taking appropriate values
of 7. Under P;, X = (21,...,2,)' has marginal distribution Px and Y =
(y1,--.,yn)" has conditional distribution

Y | X ~ N0, K), where K =02, +*XX".
Similarly, under @), X ~ Px and

Y| X~ N, K), where p= (Lysaya] 07)i,.

12



Hence,
drv(Pr.Qx) = [ dry(N(0, K), N (1, K)) dPx (X)
_ /}({1 . 2@(—;/MTK1M> } APy (X).

Since n < p, XX has full rank and is positive definite Px-almost surely,
which implies that the minimum eigenvalue of K diverges to infinity as 7 — co.
Thus, lim, o " K1t — 0 Px-almost surely, and by dominated convergence,
we have lim,_,, dpv(Pr, Q) = 0. O

Lemma 9. Fiz A € RP*? and k € [p]. The following are true.

1. If A is symmetric, then sup, ,cp, ) u' Av < SUD,e By (24) v Av.

2. SUPye g,y 1AVIl2 < \/D/ESUD, e gy iy ' Aw.

Proof. For the first claim, fix u,v € By(k) and let S and T be their respective
support. Then by the symmetry of A, we have

u' Av < |1 Asrllop < |Asur,sur|lop = sup U/TASUT,SUTU) < sup v'Av.
weS2k—1 vE By (2k)

The first claim then follows by taking supremum on the left-hand side.

For the second claim, define ¢ := sup,, ,e g, u' Aw. Write ([i]) ={S C
B :|S| = k}. For any v € By(k), let v := Av/||Av||2 and T := supp(v). Then
by the Cauchy—Schwarz inequality, we have

||AUH2 = ’f]TAU = pT Z QN)‘;—A&TUT S ﬁ Z ||’DS||2¢
(k—1) se() (k—l) se(%)

1 V2 1/2 5 5

<loms X sl e 3 ety <ol e = e

(i) (i) Bk
k—1) se(t) k—1) se(t)

Taking supremum over v on the left-hand side, we arrive at the conclusion. [

Suppose that X = (z1,...,2,)" is generated by independent z; ~ N, (0, %)
with n > p and some positive definite ¥. Write S = X ' X and S; = X(B’t]X((M].
By Mitra (1970), for any well-defined function ¢ : S — ¢(S) such that
#(9)SH(S)" = 1, U = ¢(S5)S16(9)7 is said to have a matrix-variate Beta
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distribution, i.e. U ~ Beta,(t/2, (n —t)/2). To the best of our knowledge,
it is unclear what happens when n < p in the literature. The following
Lemma 10 and Corollary 11 effectively generalize the existing matrix-variate
Beta distribution to the rank-deficient case of n < p.

Lemma 10. Suppose X € R™P has independent N(0,1) entries and write
r:=min{n,p}. There exists an almost surely unique way of writing X = QR
as its QR decomposition, where Q € Q™" and R € R™P such that R; ; = 0 for
alli > j and R;; > 0 for alli € [n]. We have that Q and R are independent
and Q ~ Unif(Q™"), R?, ~ x*(n —i+1) and R; ; ~ N(0,1) fori € [n] and
J € [p] with i < j. Furthermore, B := Q(To,t]Q(M ~ Beta,(t/2,(n —t)/2) and
is independent of X T X .

Proof. First we consider the case of n > p. Write the (almost surely) unique
QR decomposition of X by X = QR with Q € O™*? and R € RP*P being
an upper triangular matrix with R;; > 0 for all ¢ € [p|. For any fixed
HeOQO™" HX 4 X, whence HQR 4 QR. As such, the joint density of )
and R is constant for every possible value of @) € OP*", whence () and R are
independent and @ ~ Unif(QP*™). By (Muirhead, 2009, Theorem 3.2.14), we
have R}, ~ x*(n — i+ 1) and that R;; ~ N(0,1) and R; ; are independent
for all i < j. We define S := X' X, S, := X(B,t]X(o,t] and Sy = X(I’H}X(t’n}.
Define S/2 := RT, and by Mitra (1970),

B = QlyQuoy =S"251(S7*)T ~ Betay,(t/2, (n — )/2).

We note that B as a function of () is independent of X "X = R"R, by the
independence of ) and R.

Now we consider the case n < p. Write X as the jth column of X. Write
X = [Xy | Xg] where X1, = [X; |-+ | X,,] and Xg := [X,41 | -+ | Xp). For
X1, whose rank is almost surely n, there exists a unique QR decomposition
such that X1, = QRy. Take Rg := Q" Xy and R := [Ry, | Rg], and we
have X = @R, where both ) and R are almost surely unique. By the
same argument as the case of n > p, we have () and R are independent
and @ ~ Unif(O™*"). Applying the conclusion from the case of n > p
on X, = QRy, we have (Rr)i; ~ x*(n —i+ 1) and (Rp)i; ~ N(0,1).
Furthermore, since Rg = Q' Xg where both @ and Xy is independent of
X1, and @ is independent of Xy, all entries of R are standard normals
independent of Ry,.
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Applying the case of n > p on X, = QRy, we have B := Q(T(M]Q(Oyt] ~
Beta,(t/2,(n —t)/2). By the same argument as before, B is independent of
XTX. [

Corollary 11. Let X = (zy,...,2,)" where x; ~ N,(0,X) where ¥ is a
positive definite matriz. Write S = XX and S := X(—&t}X(O,t]- Let r :=
min{n, p} and ¢ : RP*P — RP*" be a function such that ¢(S)S¢(S)" = I, for
any positive semi-definite matriz S € RP*P of rank r. Then ¢(S)S16(S)" ~
Beta,(t/2, (n —t)/2) and is independent of S = XX .

Proof. By the positive definiteness of ¥, we find /2 € RP*? such that ¥ =
SY2(32Y2)T,. Find ©7Y2 such that X71/2%Y2 = [,. Define y; := X727, ~
N,(0,1,) and Y = X(X~?)T has independent N(0,1) entries. Let S :=
YTy = 212827 and S := 5/(&]3/(0,15] = Y7125 (27Y2)T whence
by the definition of ¢ we have ¢(S)Sé(S)T = ¢(S)E25(2V2)Tp(9)T = I,.
As such, we define ¢(S) := ¢(X/25(2"1/2)T)x1/2 which is a well-defined
function, and have ¢(S)S¢(S)" = I,.. Since ¢(5)S1¢(S)T can be defined by
Y with no dependence on ¥, it suffices to work on the case ¥ = I,,, which we
assume for the rest of the proof.

By Lemma 10, write the unique QR decomposition of X by X = QR with
Q € O™ and R € R"™?, whence S = R"R. Write B = Q(T(M]Q(Oyt]. Since
H(S)TRTR¢(S) = I, we have H := R¢(S) € O™, whence ¢(S)TS1¢(S) =
H'Q(nQuqH = H'BH. Since B as a function of @ is independent of
S and R, it is independent of H. By noting H' BH = ¢(5)S,¢(S)" and
B 2L HTBH because QH 4 Q@ for any H € O™". The independence between
#(5)S16(S) and S follows from the fact that the distribution of ¢(5)S1¢(S)
is invariant conditionally on S. m

Recall that Jig, a5 = (Jay41,++ »Ja,) " is the submatrix of J by taking
only the (a; + 1)-th to as-th rows for any matrix J. For the rest of the paper,
we define shorthand

a2
L T _ T
Sa17‘12 = Z rr; = X X(ahaﬂ

(alva‘Q]
1=a1+1
Define the scalar quantity n(n, p) := (E[z12{ (n"1So,,) 122, )11

Lemma 12. For allt <z, W,/W, = 480,1550_,,%54”, whence for z € [n] and
t € [2] we have

E[W,"W.] = 4t(n — 2)nn(n,p)I,.
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Furthermore, under Condition 2, (n”(z)p) — 1, i.e., n(n,p) = n as n,p — oo.

Proof. By the construction of A, we have AAT =1, — X(XTX)7'1XT. We

have
A X
T T T (0,2]
X(O,t] X(t,n]) <A(t n}) (A(O 2] A(z,n}) <_X(z n])

X
T T Tyy-1vyT (0,2]
X 0.4 X(t,n]) (L, —X(X ' X)"X") (—X(z n})

= (SO,t - St,z + Sz,n) - (SO,t - St,z - Sz,n)‘soirlL(SO,t + St,z - Sz,n)
= 2(50,15 - St,z - Sz,n)So_,;Sz,n + 252,71
— 45005180,

In particular, we have for all z € [n] and t € [z]

EW,"W, = 42 Z E[z;z] S} Wi T =4t(n — Z)E[mlxlTS&ixan],

=1 j=241

where we invoke the exchangeability of xixiTSOf ix]x]T forall 1 <i< j<mnin
the second equality.

We first note E[W,JW,] = 4z(n — 2)E[z2{ Sy pznz,) ], and then show that
E[W,W,] must be a scale of I,,. Since for any U € QP*P, xl-TU =z fori € [n],
whence we have UTWIW.U = 4U" S, U(U” S0, U) " UTS,,U < WIW.,.
In particular, W W, have identically distributed diagonals and identically
distributed off-diagonals. It suffices to verify that its off-diagonals have zero
mean.

Let X = QT be the almost surely unique QR decomposition of X, where
we only take non-negative diagonal entries in 7. By Equation (15) of Gao
and Wang (2022), we have W, W, = ATTVA(l, — A)V'T, where VAV =
Q(TOJ}Q(O’Z] is the eigendecomposition of B := Q(Tojt]Q(oﬂ. Note that V' ~
Unif(OP*P), A and T are mutually independent and 7' has independent
entries with T} ; = t; > 0 such that ¢7 ~ x2_;,, and Tj; = zj, ~ N(0, 1) for
j # k. For off-diagonals, it suffices to have

(EW,W.])12 = 4E [Z 1V — Aj)(t2Vja + zlzvj,l)}
42[ S = A ERJEV; V] + E[ZIQJEM?ID] o,
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where Ay > Ay > --- > ), are diagonal elements of A and E[V;,V],] =
(1/]9)2] 1Vj1Vj2 = 0 since V € QP*P.

Lastly, under Condition 2, by Proposition 8 of Gao and Wang (202 )
(WIW. )11 =2 (42(n — 2)(n — p))/n3. Noting (E[W,W.])11 = 4z(
z)nn(n,p), we conclude the convergence of n(n,p) — n. O
Lemma 13. Let xy,..., 2, S N, »(0,1,). Fix z € [n] and t € [z]. For any
nonrandom u,w € SP~1, we hcwe
1 t t2a?
P|~|u'{Sos——Soz ¢SgiSenw| > | Soz, Som| <52 - .
L ’ { MR } R ] - eXp{ 8z||so-,;sz,n||gp||so,z/z||zp}

Proof. For notational simplicity, we use P* and E* to denote the condi-
tional probability and expectation with respect to the o-algebra generated by
(So.2,S.0). Note that Sgy | (Soz, Sen) = Soy | So. and E2[So] = (£/2)S0...

Let r := min{z, p}. We note S, has (almost surely) rank r, and write
So.. = RTR for the (almost surely unique) Cholesky decomposition of Sy,
such that R € R"*? is an upper-triangular matrix with positive diagonal
entries. Write RT € RP*" for the (almost surely unique) Moore—Penrose
pseudo-inverse of R such that RR' = I,. By Corollary 11, the matrix B :=
(R") TSy R" ~ Beta,(t/2,(z —t)/2) has a matrix-variate Beta distribution,
and is independent of Sy , with (¢/2)I, as its (conditional) mean. Observe that
R"BR = (R'R)"Sy(RTR) = Sy, since R'R is a (symmetric) orthogonal
projection matrix onto the row space of X(q ., which contains the row space
of X(O,t]-

Define v = S5, ,w/|SonSsnwls. Writing @ := Ru/y/Zz and ¥ :=
Rv/\/z, we have

<

1 T
]u {So+ — IEZ(SOt)}SO 1SZ W > P ¥|uT{SO,t —E*(So4) }v| > ]

1S540 ller
z T
=P ﬁT<B—I>6 2}
(e 55450 er

N -

] x
<P = B-1 > .
N {|<HUH2> (f )H?sz 15,0 So,zHopIISO,z/ZHop}

Write shorthand v := ||:Sg1.S0,2||op|| 50, / 2| op, Which is measurable with respect
to the o-algebra generated by (Sp ., S..). There exists an orthogonal matrix
U such that Ud/||t||s = e; and Ud/||9||2 = ae; + Pes for real a and f such
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that o® + 3% = 1, where ¢; denotes the jth standard basis vector in R?. Using
the fact that B | (S0, S:.) 1 UTBU | (So.2,52n), we have for J = {1,2}

that
U T z v T
. Bl | >
(IIUHz) (t p)llvllz @D}

pz{
< ]P’Z{ §BM —1

<

x e x
Zm}+P{t'Bl’2'Zﬁ¢}
t tx
B— -1 >
|< < p)J,J op ﬂz¢}’

where the first inequality holds by noting |a| + |3] < (202 + 26%)'/2 = /2.
Note that {w € S : supp(w) C J} is isomorphic to S!, which contains a
(1/4)-net N of cardinality [mw = 13. By Gupta and Nagar (1999,
Theorem 5.3.12), for each w € N, we have w' Bw ~ Beta(t/2,(z — t)/2).

Hence, by Vershynin (2012, Lemma 5.4) and a union bound, we have

{5,

t t
> * }g]P’Z{sup wTBw—t/z‘z - }

op \/izw weN 2\/52”&
tx
< 13P*¢|By; —t >
<o = 55 )
1222
< 26 —
<o L)

where we have used Marchal and Arbel (2017, Theorem 2.1) in the final
inequality. [

Lemma 14. Let X = (X1,...,X,)" be uniformly distributed on the sphere
SP~1. Then, for § > e P16 we have

< po.

(X1 > )

Proof. Let Zy,...,Z, be independent N(0,1) random variables, then X 4
Z1/(Z3 + -+ + Z2)Y/2. By a standard Gaussian tail bound, we have

P{Z, > \/2log(1/8)} < 4.
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Moreover, >-%_, ij ~ Xz2)‘ Since we have § > e ?/16 by Laurent and Massart
(2000, Lemma 1),

P(i 72 < g) < P(Jf:l 72 <p- 2\/plog(1/5)> <.

The result follows by combining the above two bounds and applying a union
bound. O

Recall By(k) C RP is the set of k-sparse unit vectors.

Lemma 15. For any A € RP*P and any € € (0, 1), there exists an e-net N,
of Bo(k) of cardinality at most {(1+ 2/€)ep/k}* such that

sup u' Av < (1 — ) 'maxu' Av.
uEBo(k’) ueN.

Proof. By Vershynin (2012, Lemma 5.2), for each subset S C [p] of cardinality
k, there exists an e-net Ng of {v € By(k) : supp(v) C S} of cardinality at
most (1 + 2/e)*. Define N := Ugcpp)sj=x/Ns, then |N| < (i)(l +2e)F <
{(1+2€)ep/k}*. For any fixed x € By(k), find & € N, such that ||z — Z|]y < ¢
and ||z — Z||o < k. Thus,

v Av=(z—3) Av+ 2" Av

< |lz— ||, sup u'Av+ sup u' Av
u€Bo (k) uENe

<e sup u' Av+ sup u'Av.
u€Bo (k) uEN,

The desired result follows by taking supremum over x € By(k) above. O

C Additional simulation results
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k s p CP CL VPBS LB KJF LSS CO XWZY
3 3 1 79.8 105.3 122.8 665.2 4.5 22.0 126.3 39.1
2 8.8 14.1 33.0 493.1 21 6.2 17.3 10.4

4 3.3 3.4 8.3 38.0 1.2 24 131 24.8

8 1.6 1.6 2.5 0.4 1.2 0.6 156 37.3

3 1000 1 60.7 113.3 241.6 429.5 237.2 2273 2228 272.9
2 83 11.8 2434 4414 239.0 2282 923 298.8

4 29 4.0 239.5 366.9 2439 2306 96.6 304.9

8 24 1.4 2351 245.1 2622 230.7 539 312.7

31 31 1 2391 3339 1451 659.5 15.0 33.9 410.5 88.3
2  89.6 128.0 09.1 741.1 3.0 112 452.1 24.8

4 25.7 13.6 39.0 765.9 1.3 4.6 389.1 1.0

8 11.2 5.9 68.5 396.2 1.2 0.8 408.7 6.0

31 1000 1 300.3 364.9 2334 440.1 238.8 227.4 352.0 280.0
2 717 1409 2425 469.5 2389 228.3 398.1 294.5

4 16.0 12,5 251.3 3584 2389 2245 4187 308.6

8 13.7 4.6 2445 249.0 238.2 230.1 372.1 315.5

1000 1000 1 2755 359.8 2326 483.0 239.3 231.8 371.3 273.5
2 256.9 320.8 2384 4474 2389 229.2 348.2 296.1

4 2241 91.0 2427 3782 239.1 228.0 357.6 309.8

8§ 1945 39.6 246.4 2535 2424 226.7 393.9 311.4

Table S.1: Average loss of various changepoint methods under different
settings, similar to Table 2, except for p = 1000. Other parameters: n = 1200
and z = 360. The method with the least average loss in each line is marked

in bold.
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