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We introduce a new methodology ‘charcoal’ for estimating the location of sparse changes in high-
dimensional linear regression coefficients, without assuming that those coefficients are individually sparse.
The procedure works by constructing different sketches (projections) of the design matrix at each time
point so as to eliminate the possible dense nuisance parameters. The sequence of sketched design matrices
is then compared against a single sketched response vector to form a sequence of test statistics whose
behavior shows a surprising link to the well-known CUSUM statistics of univariate changepoint analysis.
The procedure is computationally attractive, and strong theoretical guarantees are derived for its estimation
accuracy. Simulations confirm that our methods perform well in extensive settings, and a real-world
application to a large single-cell RNA sequencing dataset showcases the practical relevance.
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1. Introduction

The past twenty years have witnessed rapid development of statistical methodologies for high-dimensional
data sets, where the number of variables of interest is often of comparable or even larger order of
magnitude than the number of observations. The most prominent example, perhaps, is the line of work
on sparse linear regression, which started from the seminal work of Tibshirani [44], and was developed
and generalized subsequently by many others (see, e.g. Bühlmann and van de Geer [8], Fan and Lv [16]
for a general overview of this area). In many of these works, the primary focus was on how to exploit the
sparsity of the regression coefficients for their successful estimation, and to achieve this, a homogeneous
data generating mechanism was often assumed for simplicity of analysis.

However, it is usually unrealistic in large, high-dimensional data sets to assume that the data
generating mechanism holds true throughout. In fact, heterogeneity is the norm rather than exception in
Big Data applications. Several attempts have been made to handle data heterogeneity in high-dimensional
linear models. For instance, Krishnamurthy et al. [31], Städler et al. [42], Yin et al. [50] considered
the problem of learning mixture of sparse linear regression, where the regression coefficient vector is
sampled from a small set of sparse regression coefficients. When observations have a temporal structure,
one common way to handle heterogeneity is to break the sequence of observations into shorter time
segments on which the data are more homogeneous. This line of thinking is the driving force behind the
recent revival of interest in changepoint analysis, which dates back to the early work of Page [38], but
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has seen growing interest recently in high-dimensional settings, see e.g., Bai [2], Chen et al. [9], Cho
[10], Cho and Fryzlewicz [11], Enikeeva and Klopp [15], Follain et al. [17], Horváth and Hušková
[24], Jirak [25], Lévy-Leduc and Roueff [34], Liu et al. [35], Wang and Samworth [48], Zhang et al.
[52].

In our linear regression setting, such a changepoint setup means that the sequence of regression
coefficient vectors has a piecewise constant structure. More precisely, for an unknown sequence of
changepoints 0 < z1 < · · ·< zν < n (for notational convenience, we also define z0 := 0 and zν+1 := n)
and an unknown sequence of a regression coefficients (β (r) : 1≤ r ≤ ν +1), we assume that the data
(xt ,yt) ∈ Rp×R, 1≤ t ≤ n are generated according to the following model

yt = x⊤t βt + εt , where βt = β
(r) for zr−1 < t ≤ zr, 1≤ r ≤ ν +1, (1.1)

and (εt)1≤t≤n are the observational errors distributed as N(0,σ2In) conditionally independent of (xt)1≤t≤n.
The goal is to locate the changepoints z1, . . . ,zν upon observing the response vector Y = (y1, . . . ,yn)

⊤

and the design matrix X = (x1, . . . ,xn)
⊤.

Classically, when the dimension p is far smaller than n, Bai [1], Bai and Perron [3], Julious [26]
showed that a least-square-based approach works well in the above changepoint problem, which is
equivalent to maximum-likelihood estimations under Gaussianity assumptions. Specifically, for a given ν ,
the maximum likelihood estimator finds the optimal partition of {1, . . . ,n} into ν +1 segments such that
residual sum of squares within each segment is minimized. The least-square (maximum-likelihood) fit
from different choices of ν can then be compared using for instance the Bayesian Information Criterion
(BIC) to choose the best ν , which is often solved algorithmically via dynamic programming.

In the high-dimensional setting, the above least-square approach no longer works. Several works
have appeared to analyze such regression changepoint problems in the high-dimensional context, see
for instance Kaul et al. [28], Lee et al. [32], Rinaldo et al. [40], Wang et al. [47] and references therein.
However, in addition to the modeling assumption in (1.1), these works also impose the additional
assumption that all regression coefficients (β (r) : 1 ≤ r ≤ ν + 1) are individually sparse. Given a
hypothesized set of changepoints, this additional assumption allows them to form estimators of β (r),
1 ≤ r ≤ ν + 1, which are in turn used to form goodness-of-fit statistics for the set of hypothesized
changepoints.

A major difference between this work and the aforementioned existing line of works is that we do
not assume that the regression coefficients within different stationary segments are individually sparse.
Instead, we make the less stringent assumption that the difference in the regression coefficient vectors
before and after each change, i.e., θ (r) := (β (r+1)−β (r))/2, are sparse in the sense that ∥θ (r)∥0 ≤ k,
for r = 1, . . . ,ν . We would argue that this is a more natural assumption, since it is the change in the
regression coefficients, rather than the pre- and post-change coefficients themselves, that is the quantity
of interest in this statistical problem. Practically, the assumption that all regression coefficients are
sparse can be violated in applications. For instance, Kraft and Hunter [30] argued that in genetic studies,
“many, rather than few, variant risk alleles are responsible for the majority of the inherited risk of each
common disease”, leading to non-sparse regression coefficients. However, in such examples, the task
of detecting sparse changes in these regression coefficients over time can still be of interest in, e.g.,
identifying different development stages in gene regulatory networks in species [23]. Furthermore, our
‘sparsity-in-change’ assumption is also more in line with the assumptions made in the high-dimensional
change-in-mean problem [see, e.g. 11, 25, 48], where the pre- and post-change mean vectors are regarded
as nuisance parameters and sparsity assumptions only need to be placed on vectors of changes for
successful detection and estimation of the changepoints. In other words, our paper falls into the broader
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category of statistical inference in the presence of nuisance parameter, where the goal is to extract
information of interest, e.g., the differences in regression coefficients θ (r)’s and associated changepoints
zr’s, which is often challenging to be disentangled from complex nuisance parameters, e.g., the exact
regression coefficients β (r)’s. The literature of statistical inference in the presence of nuisrance parameter
has a long history [37], but has received renewed interest in recent years, especially in high-dimensional
settings [5, 6]. We aim to solve our problem without the simplifying assumption that the nuisance
parameters are estimable in some way. Since the initial draft of this paper, we have also become aware of
a recent work [13] that addresses the setting with dense regression coefficients.

Allowing for dense pre- and post-change regression coefficients makes the changepoint estimation
problem considerably more challenging. In particular, the general strategy employed by existing works on
high-dimensional regression changepoints that relies on forming good estimators of (β (r) : r ∈ {1, . . . ,ν})
will unlikely be successful here. Our first contribution in this paper is to propose a novel methodology,
which we call charcoal (changepoint in regression via a complementary-sketching algorithm), and works
by forming a projected response vector and a sequence of projected design matrices to eliminate the
dense nuisance parameter. For simplicity of exposition, we consider the single changepoint scenario,
where βi = β (1)1{i≤z1}+β (2)1{i>z1}. Under the hypothesis that the true change takes place at time t, we
have {

Y(0,t] = X(0,t]β
(1)+ ε(0,t],

Y(t,n] = X(t,n]β
(2)+ ε(t,n],

(1.2)

where the subscript (0, t] indicates the concatenation of relating quantities on (1, . . . , t) and (t,n] that
of (t +1, . . . ,n). We may think of (1.2) as a two-sample problem with different regression coefficients
before and after t. We assume throughout the paper that n > p for otherwise it is impossible to estimate
the change when both pre- and post-change parameters are dense (see further discussion at the beginning
of Section 3). By invoking the complementary sketching method of Gao and Wang [21], we can find
matrices A(0,t] ∈ Rt×(n−p) and A(t,n] ∈ R(n−t)×(n−p) such that (A⊤(0,t],A

⊤
(t,n])

⊤ has orthogonal columns
spanning the orthogonal complement of the range of X . By forming the projected design matrix Wt :=
A⊤(0,t]X(0,t]−A⊤(t,n]X(t,n] and the projected response Z := A⊤(0,t]Y(0,t] +A⊤(t,n]Y(t,n], we can eliminate the

possibly dense nuisance parameter ζ := (β (2)+β (1))/2 and conduct tests on θ (1) = (β (2)−β (1))/2 is
zero against that it is non-zero and sparse.

In light of the true changepoint at time z1, the hypothesized model (1.2) is only correctly specified
when t = z1. The further t is away from z1, the less different the two samples (X(0,t],Y(0,t]) and (X(t,n],Y(t,n])
are, since one of the samples will be further contaminated by the data points assigned to the wrong
segment by the hypothesized changepoint. Intuitively, we would expect the aforementioned two-sample
test statistics to peak around t = z1, which can thus be used to estimate the location of the single
changepoint. Unfortunately, while good for testing, these two-sample test statistics have variances
too large for accurate changepoint estimation. Nevertheless, the general idea of using complementary
sketching to eliminate nuisance parameters is valid. We introduce in Section 2 several alternative
statistics based on the sketched design Wt and response Z that do lead to good changepoint estimation
performance. In particular, we will show in Section 3 that a variant of the charcoal procedure achieves a
rate of convergence of order k1/2/(n1/2∥θ (1)∥2), up to logarithmic factors. In the course of theoretical
investigations, we have developed new crucial results and proofs in understanding the asymptotic
behavior of the sketched design matrices by generalizing existing matrix-variate Beta distribution to
rank-deficient cases (Lemma 10 and Corollary 11) and extended sub-Gaussian bounds of Beta random
variables to the matrix variate case (Lemma 13). Both rely on novel proof techniques and may be of
independent interest. Particularly, the conditioning argument used in the proof of Lemma 13 seems rarely
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seen in the literature and may be an alternative way to establish concentration in similar scenarios. Last
but not least, for any generic multiple-changepoint estimation procedures obtained by combining the
narrowest-over-threshold methodology and a viable single-changepoint method, we provide a general
theorem 5 to establish rates of convergence, which may be useful in many other applications.

1.1. Outline of the paper

We present the methodology in detail in Section 2, including several algorithms that all use the
complementary sketching idea. Section 3 provides theoretical performance guarantees to the slight
variants of those proposed in Section 2. In the first part of Section 4, we conduct numerical experiments
on the charcoal methodology over a comprehensive range of settings for both single and multiple
changepoint estimation tasks and compare our methods with other changepoint estimation methods in the
high-dimensional linear regression context. In the second part of Section 4, we study a real data example
to identify changes for each gene in terms of its interaction with other genes in the gene regulatory
network across various development stages of T cells. The proofs of the main results and of the ancillary
results are collected in the supplementary materials.

1.2. Notation

For a positive integer p, [p] = {1, . . . , p} consists of all positive integers not exceeding p. For vector v =
(v1, . . . ,vp)

⊤, diag(v) is a p× p matrix such that (diag(v))i, j = 1{i= j}vi for i, j ∈ [p]. We follow the usual
definitions of ∥v∥0 = ∑i∈[p]1{vi ̸=0}, ∥v∥2 = (∑i∈[p] v2

i )
1/2, ∥v∥1 = ∑i∈[p] |vi| and ∥v∥∞ = maxi∈[p] |vi|.

Given a matrix A ∈ Rn×m, we make it a convention that A = (Ai, j)i∈[n], j∈[m] = [A1 | · · · | Am] =

(a1, . . . ,an)
⊤, where ai is the transpose of the ith row of A and A j is the jth column of A. Given any

set S ⊆ R, we write AS to be the submatrix of A with row indices in S. For instance, given positive
integers s, t such that 1≤ s < t ≤ n, A(s,t] := (as+1, . . . ,at)

⊤. We define the usual norms for A as follows
∥A∥op := supv∈Rm:∥v∥2=1 ∥Av∥2 and ∥A∥max := maxi∈[n], j∈[m] |Ai, j|. Assuming n = m in A, diag(A) is an
n×n matrix such that (diag(A))i, j := 1i= jAi, j for i ∈ [n] and tr(A) := ∑i∈[n] Ai,i.

For n ≥ m, On×m := {O ∈ Rn×m : O⊤O = Im}. We define S p−1 := {v ∈ Rp : ∥v∥2 = 1} and the
k-sparse unit ball as B0(k) := {v ∈ Rp : ∥v∥2 ≤ 1,∥v∥0 ≤ k}.

2. Methodology

In this section, we describe in detail our charcoal algorithm for identifying the changepoints in the
problem setup of (1.1).

2.1. Single changepoint estimation

We start by focusing on the setting of a single changepoint estimation, i.e., ν = 1, which captures the
essence of the difficulty of this problem. For simplicity, we denote z := z1 for the location of the only
changepoint and write m := n− p. The main idea is to use data-driven projections to sketch the design
matrix and the response vector to eliminate the effect of the nuisance parameters.

Recall the data generating model (1.1). At each time point t ∈ [n−1], we perform a two-sample test
for the equality of regression coefficients before and after t using data points (xi,yi)

t
i=1 and (xi,yi)

n
i=t+1

respectively. Motivated by [21], this can be achieved by constructing a matrix A ∈On×m whose columns
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span the orthogonal complement of the column space of X . We then define for any t ∈ [n−1]

Wt := A⊤(0,t]X(0,t]−A⊤(t,n]X(t,n] = 2A⊤(0,t]X(0,t] ∈ Rm×p,

Z := A⊤(0,t]Y(0,t]+A⊤(t,n]Y(t,n] = A⊤Y ∈ Rm.

We define θ = (β (1) − β (2))/2, ζ = (β (1) + β (2))/2 and ξ = A⊤ε ∼ Nm(0,σ2Im). By the model
construction, we have

Z = A⊤(0,z]Y(0,z]+A⊤(z,n]Y(z,n] = A⊤(0,z](X(0,z]β
(1)+ ε(0,z])+A⊤(z,n](X(z,n]β

(2)+ ε(z,n])

= A⊤(0,z]X(0,z](θ +ζ )−A⊤(z,n]X(z,n](θ −ζ )+ξ =Wzθ +ξ ,
(2.1)

whence we have eliminated the nuisance parameter ζ , and obtain the sketched data in the form of
(Z,(Wt)t∈[n−1]). By (2.1) and the sparsity assumption on θ , Z can be approximated by a sparse linear
combination of the columns of Wz. Therefore, the changepoint estimation problem is reduced to finding t
such that Wt forms a ‘best’ sparse linear approximation to Z.

As mentioned in the introduction, a naive way to achieve this would be based on the two-sample test
statistics introduced in Gao and Wang [21]. Specifically, let Q = (Q1, . . . ,Qn−1)

⊤ be defined such that

Qt := {diag(W⊤t Wt)}−1/2W⊤t Z.

We view Qt as the vector of the correlations between columns of Wt and Z, where we naturally seek to
find the time point t such that such correlations are as large as possible. To take into account of possible
observational errors, we first remove small entries of Qt via an entrywise hard-thresholding operation
hard(Qt ,λ ) for hard(v,λ ) : (vi)

p
i=1 7→ (vi1{|vi|≥λ})

p
i=1, where the threshold level λ is a tuning parameter.

This allows us to estimate the location of the changepoint via ẑhard := argmaxt∈[n−1] ∥hard(Qt ,λ )∥2.
Note that ∥hard(Qt ,λ )∥2 is the statistic from Gao and Wang [21] to test whether the two samples
(X(0,t],Y(0,t]) and (X(t,n],Y(t,n]) have the same regression coefficient against the alternative that there is a
sparse difference. As is argued before, we expect that two-sample testing statistics gives the strongest
signal against the null of no change at t = z — the only point where the two-sample problem is correctly
specified.

However, the changepoint estimator ẑhard is less than ideal in practice, as the discontinuity of the
hard-thresholding function creates large variabilities in the test statistics. Moreover, the theoretical
guarantees given in Gao and Wang [21] becomes increasingly inapplicable for test statistics away from
the true changepoint as one of the two samples contains a mixture of data both before and after the
change. Coupled with the fact that Wt has large variance when t is close to the boundary, Qt may have
a large number of entries above the hard-thresholding level λ = 2

√
log p as recommended in Gao and

Wang [21]. Empirically, this is evidenced by high variance of the test statistics near the two endpoints
of the interval for changepoint detection, as shown in Figure 1. Quite often, this boundary effect may
overwhelm the main signal near the true changepoint, leading to a spurious changepoint being estimated
near the boundary. One way to alleviate the instability problem of ẑhard is to replace the hard-thresholding
in ẑhard by a soft-thresholding operation on each entry of Q. The changepoint is then estimated by
ẑsoft = argmaxt∈[n−1] ∥soft(Qt ,λ )∥2, where soft(v,λ ) : (vi)

p
i=1 7→ (sign(vi)max(|vi| −λ ,0))p

i=1 with a
tuning parameter λ . The continuity of the soft-thresholding function reduces the variance in the test
statistics, and in the ensuing changepoint estimator. However, as also shown in Figure 1, the sequence
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FIG. 1. Visualization of different test statistics for changepoint estimation. We compare the hard-thresholded test statistics
∥hard(Qt ,λ )∥2 used to estimate ẑhard (denoted by hard), the soft-thresholded test statistics ∥soft(Qt ,λ )∥2 used to estimate ẑsoft

(denoted by soft) and the projected statistics |v̂⊤Qt | in Algorithm 1 (denoted by proj) over two random realizations. Here,
n = 600, p = 200, ∥β1−β2∥0 = 10, ∥β1−β2∥2 = 8, and the true change takes place at z = 180, as indicated by the dashed lines.
In both panels, we observe that both ∥hard(Qt ,λ )∥2 and ∥soft(Qt ,λ )∥2 exhibit relatively strong boundary effect.

of test statistics (∥soft(Qt ,λ )∥2)t∈[n−1] could still exhibit undesirably large, although less so than
(∥hard(Qt ,λ )∥2)t∈[n−1], variations when t is close to the boundary.

To avoid such boundary effect, we propose instead to aggregate the test statistics (Qt)t via a projection-
based approach. The key insight here is that, away from the boundary, the matrix Q = (Q1, . . . ,Qn−1) can
be well-approximated by a rank-one matrix whose leading left singular vector is proportional to θ . Hence,
by first estimating θ/∥θ∥2 via the leading left singular vector of soft(Q,λ ), we can aggregate each vector
of correlation Qt along the direction of v̂ and estimate the changepoint by ẑ := argmaxt∈[αn,(1−α)n] |v̂⊤Qt |.
This approach is summarized in Algorithm 1. We allow Algorithm 1 to output both the changepoint
estimator ẑ and a test statistic Hmax, which can be used in our multiple changepoint algorithm to determine
if an estimated changepoint is spurious.

To compute the sequence (Qt)t∈[n−1] in Algorithm 1, observe that the same A and Z can be used for
all t ∈ [n−1] and hence only need to be computed once. It is worth noting that we exploit the structures
of the sketched designs (Wt)t to greatly simplify their computations. Recall that at ∈ Rn−p is the tth
row vector of A, i.e., A = (a1, . . . ,an)

⊤. Wt are computed via the simple iterative scheme W0 = 0 and
Wt =Wt−1 +2atx⊤t for t ∈ [n−1]. As a common measure, we introduce the burn-in parameter α so that
we forgo the possibilities of having changepoints in (0,αn)∪ ((1−α)n,n).

While the main focus of our current work is the changepoint estimation problem, we remark that
Algorithm 1 can be easily adapted to test the existence of a single changepoint in the sequence of
regression coefficients. Specifically, we can construct the test

ψα,λ ,T := 1
{

max
t∈[αn,(1−α)n]

∥soft(Qt ,λ )∥ ≥ T
}
, (2.2)

where T is some appropriate threshold.
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Algorithm 1: Pseudocode for changepoint estimation
Input: X ∈ Rn×p,Y ∈ Rn satisfying n− p > 0, a soft threshold level λ ≥ 0, burn-in parameter

α ≥ 0
1 Set m← n− p
2 Form A ∈On×m with columns orthogonal to the column space of X
3 Compute Z← A⊤Y
4 Set W0 = 0m×p
5 for 1≤ t ≤ n−1 do
6 Compute Wt ←Wt−1 +2atx⊤t
7 Compute Qt = {diag(W⊤t Wt)}−1/2W⊤t Z
8 end
9 Form Q := (Q⌊αn⌋, . . . ,Q⌈(1−α)n⌉)

⊤

10 Compute v̂← the leading left singular vector of soft(Q,λ )

Output: ẑ := argmaxαn≤t≤(1−α)n |v̂⊤Qt | and Hmax := maxαn≤t≤(1−α)n ∥soft(Qt ,λ )∥.

Finally, we mention that another natural approach to find the Wt whose columns form the best
sparse linear approximation of Z =Wzθ +ξ is to fit a sparse linear model by regressing Z against Wt and
compare the goodness-of-fit across t via the Bayesian Information Criterion (BIC). We choose the BIC for
the model selection purpose, though it is conceivably straightforward to apply any other model selection
criteria. The pseudocode for this procedure is given in Algorithm 2. Specifically, for appropriately chosen
(λt)t∈[n−1], we compute first the Lasso solutions in Step 4 and then the corresponding BICs in Step 5. In
practice, the sequence of regularizing parameters (λt)t may be chosen via cross-validation for each t.

Algorithm 2: Pseudocode for changepoint estimation with Lasso with BIC
Input: X ∈ Rn×p,Y ∈ Rn satisfying n > p, α > 0 and a sequence (λt)t∈[n−1]

1 Follow Algorithm 1 until line 4
2 for 1≤ t ≤ n−1 do
3 Compute Wt ←Wt−1 +2atx⊤t
4 Compute the Lasso estimator θ̂t ← argminv∈Rp

{ 1
2m∥Z−Wtv∥2

2 +λt∥v∥1
}

5 Compute Ht ←−(∥Z−Wt θ̂t∥2
2 +∥θ̂t∥0 logm)

6 end
Output: ẑ := argmaxαn≤t≤(1−α)n Ht

Algorithm 1 has a computational complexity of O(n2 p), with the most computationally intensive
step being its Step 2 to form the sketching matrix A (e.g. via a QR decomposition). For Algorithm 2,
each Lasso step has a computational cost of O(k2n) [14], leading to an overall computational complexity
of O(n2(p+ k2)). It is remarkable that for sparse signals (k = O(

√
p)), the changepoint algorithms we

proposed here has essentially the same computational complexity as the complementary-sketching-based
two-sample test [21] for any hypothesized changepoint location t.
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2.2. Multiple changepoint estimation

The single changepoint estimation procedure described above can be combined with a generic top-down
multiple changepoint estimation method, such as binary segmentation [46], wild binary segmentation
[18] and its variants [e.g., 4, 20, 29], to iteratively identify multiple changepoints. For concreteness, we
describe an approach combining Algorithm 1 with the narrowest-over-threshold method of Baranowski
et al. [4]. Algorithm 3 is a slight generalization of Baranowski et al. [4, Algorithm 1]. It takes as input a
single changepoint estimation procedure ẑ and a testing procedure ψ . When the data D1, . . . ,Dn are the
covariate-response pair (Xi,Yi)i∈[n], we may apply Algorithm 1 or 2 to obtain ẑ and define ψ(X ,Y ) :=
1{Hmax>T} for some T using the output Hmax of Algorithm 1. However, note that both Algorithms 1 and 2
require the number of observations to be larger than the dimension for the complementary sketching to
work. If this is not satisfied, we simply define ẑ(X ,Y ) := 0 and ψ(X ,Y ) := 0.

Essentially, in Algorithm 3, we generate multiple intervals and run the single changepoint algorithm
on each interval to obtain candidate changepoint estimates and test results. We choose the candidate
changepoint associated with the narrowest interval for which the test rejects the null, and add that to the
set of estimated changepoints. We then segment the data at this estimated changepoint, and repeat the
above process recursively on the data to the left and right segments, using only intervals lying completely
within each segment. The process terminates when none of the tests reject the null. Furthermore, for
practical reasons, we recommend combining Algorithm 3 with some second-stage refinements, for which
we discuss in more details in Section 4.4.

Algorithm 3: Pseudocode for multiple changepoint estimation
Input: Data D1, . . . ,Dn, number of intervals M, burn-in parameter ϖ > 0, single changepoint

estimation procedure ẑ and a single changepoint testing procedure ψ

1 Set Ẑ← /0 and generate a set of M intervals M := {(s1,e1], . . . ,(sM,eM]} independently and
uniformly from {(a,b] : 0≤ a < b≤ n}.

2 Run NOT(0,n) where NOT is defined below.
3 Let ν̂ ← |Ẑ| and sort elements of Ẑ in increasing order to yield ẑ1 < · · ·< ẑν̂ .

Output: ẑ1, . . . , ẑν̂

4 Function NOT(s, e)
5 Set R(s,e]←{m : (sm,em]⊆ (s,e], ψ(D(sm+nϖ ,em−nϖ ]) = 1}
6 if R(s,e] ̸= /0 then
7 m0← argminm∈R(s,e](em− sm)

8 b← sm0 + ẑ(D(sm,em])

9 Ẑ← Ẑ∪{b}
10 NOT(s, b)
11 NOT(b, e)
12 end
13 end
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3. Theoretical guarantees

In this section, we establish theoretical guarantees for the changepoint procedures proposed in Section 2.
We start by focusing on the single changepoint estimation problem. For simplicity of analysis, we will
assume that the noise variance σ2 is known in this section, which by scale invariance can be further
assumed to be equal to 1. We discuss practical aspects of estimating σ2 in Section 4.1. We first present
two conditions, which we will need to establish the results in this section.

Condition 1 All entries of X are independent standard normals.

Condition 2 n,z, p satisfy that n > p, z/n→ τ ∈ (0,1) and (n− p)/n→ η ∈ (0,1) as min(z,n, p)→∞.

The design Condition 1 requires that the rows of the design matrix X = (x1, . . . ,xn)
⊤ follow the

isotropic Gaussian distribution. Condition 2 specifies the asymptotic regime we work in. Note that the
assumption n > p is necessary, since otherwise, even if z is known, it is impossible to test θ = 0 against
the alternative θ = θ ∗ for any fixed θ ∗ ∈ Rp (see Lemma 8). The key ingredient of our theoretical
analysis is the following proposition, which shows that W⊤t Wz is close to a multiple of identity in terms
of their actions on sparse vectors. We impose both conditions 1 and 2 only to enable the application of
the existing random matrix theory on the limiting spectral measure of matrix-variate Beta distributions in
the proof of Proposition 1. In principle, even if the above conditions are violated, the theoretical results
in the rest of the section hold for any data (X ,Y ) such that (3.1) is satisfied. In particular, we remark that
the empirical study in Section 4.3 has demonstrated that our methodology exhibits good finite-sample
performance even when the above two conditions do not hold.

Proposition 1 Suppose that Conditions 1 and 2 are satisfied and define

g(t;z) :=

{
4t(n− z)(n− p)/n2 if 1≤ t ≤ z,
4z(n− t)(n− p)/n2 if z < t ≤ n−1.

There exists a constant Cτ,η > 0, depending only on τ and η such that with probability 1, for any fixed
v ∈S p−1 and ℓ ∈ [p], we have for all but finitely many p’s that

sup
t∈[n−1]

sup
u∈B0(ℓ)

u⊤
{

W⊤t Wz−g(t;z)Ip
}

v≤Cτ,η

√
ℓn log p. (3.1)

Note that we suppress the dependence on n and t in the notation of g(t;z). Taking ℓ= 1 in the above
proposition, we would expect diag(W⊤t Wt) to concentrate around g(t; t)Ip = 4t(n− t)(n− p)n−2Ip for
each t. This would allow us to approximate the test statistics Qt = {diag(W⊤t Wt)}−1/2(W⊤t Wzθ +W⊤t ξ )
for a fixed t. However, due to a lack of non-asymptotic probabilistic bounds in random matrix theory
on the convergence of the spectral measures of matrix-variate Beta random matrices, we are unable to
establish the said convergence of diag(W⊤t Wt) uniformly over t ∈ [n−1]. As such, we instead show the
theoretical results for a slightly modified variant of Algorithm 1, where we replace the definition of Qt by

Qt :=
√

n
t(n− t)

W⊤t Z. (3.2)

We will henceforth refer to the above variant of Algorithm 1 as Algorithm 1′. It is worth noting that the
latter is merely a proof device, and in practice we always recommend applying Algorithm 1. Empirically,
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the primed variant has a slightly worse but comparable estimation accuracies than Algorithm 1, which
can be seen in Table 1 in Section 4.1.

With this alternative choice of Qt , after removing the perturbation introduced by observational errors
ξ ’s with an appropriate soft-thresholding tuning parameter λ , we expect

Ht := ∥soft(Qt ,λ )∥2 ≈ ht := ∥θ∥2γt ,

where γt is defined by

γt := g(t;z)
√

n
t(n− t)

=


4(n−p)

n

√
t

n(n−t) (n− z) if 1≤ t ≤ z,

4(n−p)
n

√
n−t
nt z if z < t ≤ n−1.

(3.3)

Interestingly, ht (or γt ) is proportional to the CUSUM statistic in the univariate change-in-mean problem,
whence ht attains its maximum at t = z [cf. 48, Equation (10)]. By exploiting the above observation,
we establish in Theorem 2 that the testing procedure (2.2) is capable of determining whether a (single)
changepoint is present in the regression data, as mentioned in Section 2.

Recall ζ :=(β (1)+β (2))/2 and θ :=(β (1)−β (2))/2, where we regard ζ as a possibly dense nuisance
parameter and wish to estimate the changepoint only assuming the difference parameter θ is sparse, i.e.,
∥θ∥0 ≤ k for some unknown but fixed k typically much smaller than p.

Theorem 2 Assume Conditions 1 and 2 and that data (X ,Y ) are generated according to (1.1) with
ν = 1. Suppose that ∥θ∥0 ≤ k satisfies (k log p)/n→ 0 and that min(τ,1− τ) ≥ α for some known
α . There exists cτ,η ,α ,Cτ,η ,α ,c′τ,η ,α > 0, depending only on τ,η ,α , such that for λ = cτ,η ,α log p,
T =Cτ,η ,α

√
k log p, the following holds.

1. If θ = 0, then ψα,λ ,T (X ,Y ) a.s.−−→ 0.

2. If ∥θ∥2 > c′τ,η ,α

√
k log p√

n , then ψα,λ ,T (X ,Y ) a.s.−−→ 1.

We now turn our attention to the estimation in Algorithm 1′. The key of understanding the
performance of Algorithm 1′ lies in an analysis of the estimated projection vector v̂ in Step 10 of
the algorithm. By Proposition 1 in the appendix, we expect Q = (Q1, . . . ,Qn−1) to be well-approximated
by the rank-one matrix θγ⊤, where γ = (γt)t∈[n−1] is defined in (3.3). Thus, the oracle projection direction
to aggregate Q is along θ/∥θ∥2. We are now in a position to state the convergence rate of the changepoint
estimator from Algorithm 1′.

Theorem 3 Assume Conditions 1 and 2 and that data (X ,Y ) are generated according to (1.1) with
ν = 1. Suppose that ∥θ∥2 ≤ 1, k ≤ p/2 and that min(τ,1− τ)≥ α > 0 for some known α . There exists
cτ,η ,α > 0, depending only on τ,η ,α , such that if λ > cτ,η ,α log p, then the output ẑ of Algorithm 1′

(defined below Proposition 1) with input (X ,Y ), λ and α satisfies with probability 1 for all but finitely
many p’s that

|ẑ− z|
n

≲τ,η ,α
λ 2
√

k
√

n∥θ∥2
2
.

Theorem 3 shows that with a tuning parameter choice of order log p, and when ∥θ∥2 is bounded
(which is the more difficult regime for estimation), Algorithm 1′ produces a consistent changepoint
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estimator with a rate of convergence of order k1/2n−1/2∥θ∥−2
2 up to logarithmic factors. However, in

light of the testing viewpoint of Theorem 2, in which it is possible to test apart the null of no change
against a sparse alternative if

√
n∥θ∥2/

√
k, up to logarithmic factors, is sufficiently large, the rate in the

above theorem appears to have an extra factor of ∥θ∥−1
2 . This additional factor is likely to arise from

the technical difficulty of controlling the weak, though complex, dependence between the estimated
projection direction v̂ and the sketched Gaussian noises (W⊤t ξ : t ∈ [n− 1]). Indeed, the following
theorem shows that if v̂ is estimated from an independent sample, then the estimator from Algorithm 1
has a rate of convergence that agrees with what is prescribed in Theorem 2, up to logarithmic factors.
Recall that the definition of Qt in Algorithm 1′ is replaced by (3.2).

Theorem 4 Assume the same conditions as in Theorem 3. Let (X̃ ,Ỹ ) be an independent copy of (X ,Y ).
Let Q be the matrix constructed in Step 7 of Algorithm 1′ (defined below Proposition 1) with input
(X ,Y ), λ and α . Suppose v̂ is computed in Step 9 of Algorithm 1′ with input (X̃ ,Ỹ ), λ and α . Then
ẑ := argmaxt∈[n−1] |v̂⊤Qt | satisfies with probability 1 for all but finitely many p’s that

|ẑ− z|
n

≲τ,η ,α
λ
√

k log p√
n∥θ∥2

.

This additional independent sample (X̃ ,Ỹ ) may be obtained in reality via a sample-splitting scheme.
For example, we may take all odd time points to construct the Q matrix, and then use the even time
points to estimate the projection direction v̂. However, such sample splitting is necessary only from a
technical viewpoint, and the algorithm typically performs better without sample splitting in practice.

We remark that the rate in the above Theorem 4 is slower compared to the usual results from change-
in-mean problems as well as under regression settings, where rates of order n−1∥θ∥−2

2 are achievable
under appropriate conditions [see e.g. 12, 45, 47, 48, 49]. Unlike the classical change-in-mean setting,
where the perturbation term (the CUSUM of the noise series) can be controlled both globally and locally,
with the local fluctuation admitting a modulus of continuity bound scaling as

√
δ for time increment

δ , our proof provides only a global perturbation bound. The local modulus of continuity bound seems
difficult to obtain with the current toolbox of random matrix theory we have. We believe that this lack
of local control of the perturbation is behind the apparent suboptimal rate. It remains to be seen if the
estimation rate can be improved via alternative and possibly more refined analysis routes.

We now turn our attention to theoretical guarantees in the multiple changepoint setting. The following
theorem shows that provided that we have a good single changepoint estimation and testing procedure in
any changepoint problem, combining the narrowest-over-threshold with the single change procedures
yields a multiple changepoint estimation procedure of similar accuracy with theoretical guarantees.

Theorem 5 Let D1, . . . ,Dn be a data sequence with changepoints 0 = z0 < z1 < · · ·< zν < zν+1 = n.
We assume that zi − zi−1 ≥ n∆τ for all i ∈ [ν + 1]. Let M be defined as in Algorithm 3. Write
I0 := {(s,e] ∈M : (s+ nϖ ,e− nϖ ]∩ {z1, . . . ,zν} = /0} and for i ∈ [ν ], define Ii := {(s,e] ∈M :
s ∈ [zi−n∆τ/2,zi−n∆τ/3],e ∈ [zi +n∆τ/3,zi +n∆τ/2]} and Ĩi := {(s,e] ∈M : min{zi− s,e− zi} ≥
n∆τ/6 and e− s ≤ n∆τ}. Let ẑ and ψ be the single changepoint estimation and testing procedure
used in Algorithm 3. Define the events Ω0 := {∀ i ∈ [ν ],∃m ∈ [M], s.t. (sm,em] ∈ Ii}, Ω1 :=
{ψ(D(s+nϖ ,e−nϖ ]) = 0 for all (s,e] ∈I0}, Ω2 :=

⋂
i∈[ν ]

{
ψ(D(s+nϖ ,e−nϖ ]) = 1 for all (s,e] ∈Ii

}
and

for some φ1, . . . ,φν > 0, Ω3 :=
⋂

i∈[ν ]
{
|ẑ(D(s,e])− (zi− s)| ≤ nφi for all (s,e] ∈ Ĩi

}
. Let ẑ1, . . . , ẑν̂ be

the output of Algorithm 3 with inputs D1, . . . ,Dn, M > 0, ϖ = ∆τ/6, ẑ and ψ . Assume further
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φ := maxi∈[ν ] φi < ϖ . We have on Ω0∩Ω1∩Ω2∩Ω3 that ν̂ = ν and n−1|ẑi− zi| ≤ φi for all i ∈ [ν ]. In
particular, we have

P
(
ν̂ = ν and n−1|ẑi− zi| ≤ φi for all i ∈ [ν ]

)
≥ 1−P(Ωc

1)−P(Ωc
2)−P(Ωc

3)−νe−∆2
τ M/36.

Note that the theorem is valid for any generic multiple changepoint estimation that combines
valid single changepoint estimation and testing procedures and the top-down narrowest-over-threshold
multiple changepoint estimation paradigm. Hence, it can be applied in contexts other than the linear
regression setting here. The statement of Theorem 5 is slightly stronger than the usual results on
narrowest-over-threshold procedures, where φi are taken identical.

Applying the above theorem to our specific problem, we extend the single changepoint estimation
result in Theorem 4 to the multiple changepoint setting and establish the estimation accuracy of
Algorithm 3. We first give the following condition, which is the equivalent of Condition 2 in the
multiple changepoint setting.

Condition 3 n, p satisfy n > p and that (n− p)/n → η as min(n, p) → ∞. Assume further the
changepoints satisfy 0 = z0 < z1 < · · · < zν < zν+1 = n and zi− zi−1 > n∆τ for all i ∈ [ν + 1] and
zi/n→ τi for 0≤ i≤ ν +1.

Due to the asymptotic nature of our theoretical results in the above, we consider a sequence of
Algorithm 3. To facilitate proof, we study a specific coupling of the random intervals {(sm,em] : m∈ [M]}
generated across this sequence as follows:

(s̃m, ẽm]
iid∼ Unif

(
{(ã, b̃] : 0≤ a < b≤ 1}

)
, ∀ m ∈ [M],

sm = ⌊ns̃m⌋, em = ⌈nẽm⌉ for m ∈ [M] and n ∈ N.
(3.4)

Note that the intervals generated by (3.4) have the same law as those generated in Algorithm 3.

Corollary 6 Let X and Y be generated by (1.1) and write Di := (Xi,Yi) for i ∈ [n]. Assume Conditions 1
and 3 hold. There exist c,C,c′,C′ > 0, depending only on α,∆τ ,η , such that the following holds.
For α < 1/6, λ = c log p, T = C

√
k log p, let ẑ = ẑα,λ be the sample-splitted version of the single

changepoint estimator defined in Algorithm 1′ and ψ = ψα,λ ,T be the testing procedure defined in (2.2).

If ∆τ > 3(1−η), c′
√

k log p√
n ≤ ∥θ (i)∥2 ≤ 1 and ∥θ (i)∥0 ≤ k such that k log p

n → 0, then the output ẑ1, . . . , ẑν̂

of Algorithm 3 with intervals {(sm,em] : m ∈ [M]} generated according to (3.4), inputs (Di)i∈[n], M > 0,

ϖ = τ/6, ẑα,λ and ψα,λ ,T satisfies with probability 1−νe−∆2
τ M/36 that for all but finitely many p’s,

ν̂ = ν and
|ẑi− zi|

n
≤ C′λ

√
k log p

√
n∥θ (i)∥2

for all i ∈ [ν ].

4. Numerical study

4.1. Tuning parameter choice and comparison of variants

Theoretical analysis in Section 3 have assumed that the noise variance σ2 is known. In practice, we may
obtain an upward-biased estimator σ̃ as the median absolute deviation of entries of the Q matrix. We
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note

Var(Qt) = E[Var{W̃⊤t (Wzθ +ξ ) | X}]+Var[E{W̃⊤t (Wzθ +ξ ) | X}]

= σ
2E(W̃⊤t W̃t)+Var(W̃⊤t Wzθ).

Since E(W̃⊤t W̃t) has all diagonal entries equal to 1, every entry of Q has a marginal variance of at least
σ2.
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FIG. 2. The effect of choosing different λ in a series of studies. Our recommendation of λ := 0.5log p is marked in dashed vertical
line in each panel. Unless specified otherwise in each one, the panels share the parameters n= 1200, p= 1000,τ = 0.3,k = 3,ρ = 2.

Algorithm 1 requires a soft-thresholding tuning parameter λ > 0 as an input. The theoretical
results in Section 3 suggests using λ = cσ log p for some c > 0. We investigate here the performance
of our algorithm at different soft-thresholding levels λ . Specifically, we computed the logarithmic
average loss |ẑ− z| of Algorithm 1 over 100 Monte Carlo repetitions for parameter settings of
n ∈ {600,1200,2400}, p ∈ {n/3,5n/6}, τ ∈ {0.2,0.3,0.4,0.5}, k ∈ {1,3,10,⌊√p⌋,⌊0.1p⌋,⌊0.2p⌋, p},
ρ := ∥θ∥2 ∈ {1,2,4,8}, σ = 1 and various choices of c ∈ [0.1,5]. In all our simulations here and
below, we sample the vector of change in the regression coefficients θ uniformly from the set
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{v : ∥v∥0 = k,∥v∥2 = ρ}, and generate dense pre-change vector from Np(0,max{1,ρ2}Ip). Figure 2
illustrates part of the simulation results where we vary one aspect of the parameters at a time. From the
figure, we see that a choice of c = 0.5 provides good statistical performance across the parameter settings
considered, and we will henceforth adopt this choice of λ = 0.5σ̃ log(p) in our subsequent numerical
studies.

We now compare the statistical performance of various versions of complementary-sketching-based
approaches proposed in the paper, including Algorithms 1 and 2 from Section 2 and the slight variant
Algorithm 1′ mentioned in Section 3 to facilitate theoretical analysis. For a demonstrative purpose, we
have also included the naive hard- and soft-thresholded changepoint estimators ẑhard and ẑsoft mentioned
just above Algorithm 1. We use the λ choice suggested in the previous paragraph for ẑhard and ẑsoft,
Algorithm 1 and its variant, and choose λt in Algorithm 2 via a five-fold cross-validation for each
t ∈ [n−1]. Empirical observations suggest that Algorithms 1, 1′ and 2 work well without any burn-in (i.e.
α = 0). However, both ẑsoft and ẑhard do suffer from more serious boundary effects, as seen in the large
root mean squared errors in Table 1. In addition, Algorithm 1 has roughly the same but slightly better
estimation accuracy compared to its primed variant. This justifies our recommendation of Algorithm 1
over its primed variant, and the similarity in performance further consolidates the relevance of our
theoretical analysis on the primed variant as a proof device.

n p k ρ ẑsoft ẑhard Alg1 Alg1′ Alg2

600 200 3 1 50.1 178.35 12.6 40.79 22.34
2 3.98 88.76 3.1 5.01 4.58
4 25.37 92.3 2.14 4.33 2.29

14 1 31.7 122.11 37.36 83.59 129.71
2 6.4 88.04 6.14 7.32 9.83
4 3.88 58.92 3.82 4.67 2.95

1200 400 3 1 11.24 196.81 10.95 13.34 19.54
2 3.15 136.02 3.69 4.58 4.96
4 35.65 101.17 1.67 4.36 2.09

20 1 39.17 146.98 18.14 37.63 168.56
2 5.06 144.5 7.29 7.59 15.51
4 4.72 106.84 2.72 2.93 4.47

TABLE 1 Comparisons of performances of ẑsoft, ẑhard,
Algorithms 1, 1′ and 2 in various settings in terms of root
mean squared error. No burn-in is applied anywhere (α = 0). The
true change takes place at 0.3n.

4.2. Comparisons with other methods

From the discussion above, we recommend using Algorithms 1 and 2 for their robustness against the
choice of the burn-in parameter α , and for the more accurate estimation of Algorithm 1 over its primed
variant. We will henceforth focus on Algorithms 1 and 2, which we call charcoalproj and charcoallasso,
respectively. In this section, we compare the performance of charcoalproj (CP) and charcoallasso (CL)
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with existing approaches in the literature. Specifically, we will compare against the VPBS algorithm of
Rinaldo et al. [40], two-sided Lasso-based approaches of Lee et al. [32] (LSS), Leonardi and Bühlmann
[33] (LB) and Cho and Owens [12], a two-stage refinement approach of Kaul et al. [28] (KJF), a
dynamic programming algorithm of Xu et al. [49]. We have used the authors’ own implementation for
VPBS, KJF, CO and XWZY, and Kaul et al. [28]’s implementation for LSS. We have implemented LB
ourselves using the recommended tuning parameter choices as in Leonardi and Bühlmann [33]. It is
worth noting that none of the six existing methods in the literature were designed to estimate changes in
the regression coefficients when both the pre- and post-change coefficients are dense. As such, we also
include simulation settings where the pre-change regression coefficient is s-sparse for s < p.

We compare the performance in terms of mean absolute loss of various methods in a single
changepoint estimation task for n = 1200, p = 400, τ = 0.3, k ∈ {3,⌊√p⌋, p}, s∈ {k, p}, ρ ∈ {1,2,4,8}
in Table 2 (we also include additional results for p = 1000 in Table S.1 in the supplement). We see
that when the pre-change coefficients are sparse, most existing methods works well and in particular,
KJF tends to have the best average loss, but our charcoalproj and charcoallasso remains comparable. In
contrast, if the pre-change regression coefficients are dense, our methods can significantly outperform
other approaches. Specifically, we see that none of VPBS, LB, KJF, LSS, CO or XWZY show any sign
of consistent estimation as their average loss do not decrease as the signal strength increases. On the
other hand, both charcoalproj and charcoallasso have shown highly promising performance in various
settings. It is surprising that our methods also seem to work even when the vector of change is dense. We
notice that charcoalproj does not perform as well as charcoallasso when the change is dense. This may
be related to the fact that the marginal correlation based test statistics Qt may suffer from larger bias due
to covariate collinearity in the transformed design W when the vector of change θ is dense. We further
note that charcoallasso shows better estimation accuracy when either the signal strength ρ is high or the
vector of change θ is dense.

4.3. Model misspecification

While we have focused on the Gaussian Orthogonal Ensemble (GOE) design (i.e. X has independent
N(0,1) entries) and Gaussian noise in the theoretical analysis, our methodology can be applied in more
general settings. In this subsection, we investigate the robustness of the estimation accuracy of our
method to deviations from this Gaussian distributional assumptions. Specifically for n = 1,200, p = 400,
τ = 0.3, k = 20 and ρ ∈ {1.50, . . . ,1.58}, we varied the design matrix X to have either Np(0,Σ) rows,
where Σ = (0.7|i− j|)i, j∈[p] has an autoregressive Toeplitz structure, or independent Rademacher entries.
We also vary the noise distribution to take t4, t6, centred Exp(1) or Rademacher distributions. Overall, we
see from Figure 3 that the performance of charcoallasso is robust to both non-GOE design matrices and
discrete, heavy-tailed or skewed noise distributions. Similar results hold for the charcoalproj method.

We further investigate the robustness of our procedure to more severe departure of the design
distribution from Condition 1, by allowing the covariate distributions to change over time. Specifically,
we consider the following three scenarios:

(a) For z′ = n− z, we draw xt ∼ N(0, Ip) for 1≤ t ≤ z′, and xt ∼ N(−100, Ip) for z′ < t ≤ n.

(b) We first draw x̃t
iid∼N(0, Ip), and then find a permutation π such that ∥x̃π(1)∥2 ≤ ·· · ≤ ∥x̃π(n)∥2. Finally,

we set xt = x̃π(t).

(c) For z′ = n− z, we draw xt ∼ N(0,γ ′t Ip), where γ ′t =
√

t
n(n−t) (n− z′) for t ≤ z′ and γ ′t =

√
n−t
nt z′ for

t > z′.
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k s ρ CP CL VPBS LB KJF LSS CO XWZY

3 3 1 6.2 12.6 50.3 549.5 3.8 17.5 87.6 14.1
2 2.0 4.2 7.6 53.5 1.6 4.3 12.5 7.3
4 0.9 1.3 2.6 0.7 1.1 2.2 11.5 0.5
8 1.0 0.8 1.1 0.3 1.0 0.8 10.5 3.2

3 400 1 7.2 13.2 452.4 556.1 238.8 472.2 247.3 254.6
2 2.2 3.5 476.3 569.2 239.3 364.1 86.5 315.0
4 1.1 1.5 434.2 532.8 239.1 272.1 29.4 325.1
8 0.7 0.8 326.3 496.8 239.1 310.8 62.2 327.0

20 20 1 13.5 96.4 55.2 716.7 5.8 33.1 373.3 18.2
2 4.2 12.2 10.2 675.5 1.8 6.9 315.1 2.7
4 1.6 2.6 2.9 69.8 1.4 2.6 174.3 7.7
8 1.4 1.1 3.1 0.6 1.2 1.0 111.3 2.0

20 400 1 12.4 85.4 422.7 528.8 238.9 479.5 387.0 273.5
2 3.0 9.2 494.9 546.8 238.9 284.5 364.8 316.2
4 2.0 2.6 431.9 553.1 239.1 268.5 367.0 321.8
8 1.9 0.8 356.2 513.3 239.3 261.5 397.1 322.0

400 400 1 162.2 344.2 477.8 569.8 238.8 429.9 406.9 263.7
2 46.3 338.4 504.0 583.2 238.8 252.4 408.5 313.9
4 25.3 13.3 446.3 554.1 238.9 285.6 392.3 323.4
8 20.7 3.0 355.6 487.6 239.1 250.1 374.2 324.8

TABLE 2 Average loss of various changepoint methods under different settings.
Other parameters: n = 1200, p = 400 and z = 360. The method with the least average
loss in each line is marked in bold.

As we see in Figure 4, our charcoallasso procedure shows remarkable robustness against possibly strong
design heterogeneity.

4.4. Multiple changepoints

As mentioned in Section 2, our charcoal algorithms can be easily combined with generic multiple
changepoint methods to deal with multiple changepoints, and we proposed a specific version in
Algorithm 3 of such a multiple changepoint estimation procedure. We run Algorithm 3 with ϖ = 0 and
M = 200. For the single changepoint estimator input ẑ in Algorithm 3, we employ Algorithm 1 with the
recommended value of λ in Section 4.1 and the burn-in parameter α = 0.05. For the testing procedure
input ψ of Algorithm 3, we run Algorithm 1 to obtain output Hmax and define ψ(X ,Y ) = 1{Hmax>T},
where the testing threshold T is chosen by a Monte Carlo simulation as follows. We generate B = 1000
pairs of (X ,Y ) under model (1.1) with ν = 0 (i.e. no changepoint), and run Algorithm 1 with these
synthetic (X ,Y ) pairs and the same λ and α choices as above. This would return B test statistics
(Hb

max)b∈[B], which are used to estimate an upper 0.01/M quantile by fitting a generalized extreme value
distribution [41].
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FIG. 4. Robustness to time-varying design distribution. See Section 4.3 for detailed setup of the three scenarios.

While Algorithm 3 already produces good estimators of multiple changepoints, its performance can
be further improved by the following post-processing procedures. Such post-processing has previously
been described in e.g., Fryzlewicz [19, Section 2 of online supplement].

Specifically, after we obtain an initial candidate set of changepoints using Algorithm 3, we iteratively
run the test prescribed by (2.2) on the largest time interval containing each candidate changepoint as the
only estimated changepoint, and remove that candidate changepoint if the test is non-significant. For the
remaining candidate changepoints ẑ1, . . . , ẑν̂ , we refine their estimated locations in two steps. We first
perform a ‘midpoint’ refinement, where we use (for instance) Algorithm 2 to output a refined estimator
z̃i based on data {(xt ,yt) : t ∈ ((ẑi−1 + ẑi)/2,(ẑi + ẑi+1)/2]} for each i ∈ [ν̂ ]. Here, we use the convention
that ẑ0 = 0 and ẑν̂+1 = n. Using midpoints between successive estimated changepoints ensures that
each ((ẑi−1 + ẑi)/2,(ẑi + ẑi+1)/2] contains with high probability at most one true changepoint. However,
it does not use the full data available around each true changepoint. As such, we perform a second
refinement step after this, where we use Algorithm 2 to output a further refined estimator ẑrefined

i based
on data {(xt ,yt) : t ∈ (z̃i−1 +αn, z̃i+1−αn]} for each i ∈ [ν̂ ] with α being the burn-in parameter as in
Algorithm 3. Again, we use the convention that z̃0 = 0 and z̃ν̂+1 = n. For both refinement steps, we may
also use Algorithm 1 in place of Algorithm 2, and they have very similar performances in our numerical
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n p k ρmin ν̂−ν value counts Haus ARI

−3 −2 −1 0 1

1200 200 3 0.8 0 0 96 4 0 292.8 0.742
1.2 0 0 22 78 0 75.4 0.918
1.6 0 0 0 98 2 8.8 0.978

10 0.8 0 2 97 1 0 304.9 0.710
1.2 0 0 42 55 3 141.1 0.856
1.6 0 0 1 96 3 18.0 0.960

100 0.8 3 67 30 0 0 591.7 0.303
1.2 0 4 88 8 0 319.3 0.611
1.6 0 0 52 46 2 217.1 0.759

2400 400 3 0.8 0 0 25 75 0 155.3 0.881
1.2 0 0 0 100 0 14.3 0.975
1.6 0 0 0 100 0 10.1 0.983

10 0.8 0 15 53 32 0 376.9 0.720
1.2 0 0 2 98 0 37.3 0.945
1.6 0 0 1 99 0 21.0 0.970

100 0.8 42 57 1 0 0 1154.9 0.184
1.2 0 32 54 14 0 647.0 0.457
1.6 0 0 14 84 2 376.9 0.658

TABLE 3 Summary of results of multiple changepoint estimations under
(M1) and (M2) described in Section 4.4 with ρ ∈ {0.8,1.2,1.6} and
k ∈ {3,10,100}. The first nine rows of the table corresponds to setting
(M1) and the last nine rows corresponds to (M2). The columns of ν̂−ν

tabulates the difference in number of estimated and true changepoints
over 100 Monte Carlo repetitions. The ‘Haus’ and ‘ARI’ columns
measure the average Hausdorff distance and the average adjusted rand
index between the discovered partition and the true partition over 100
repetitions.

experiment. For definiteness and simpler presentation, we employ Algorithm 2 for both refinement steps
in the following numerical experiments.

We assume that the regression noise level σ is known and consider the following two multiple
changepoint specifications in our simulations: (M1) n = 1200, p = 200, ν = 3 and three changepoints
are located at z = (z1,z2,z3) = (240,540,900) with signal sizes (∥θ (1)∥2,∥θ (2)∥2,∥θ (3)∥2) = ρmin×
(1,1.5,2) and sparsity ∥θ (1)∥0 = ∥θ (2)∥0 = ∥θ (3)∥0 = k respectively for various ρmin and k; (M2) n =
2400, p = 400, ν = 4 and four changepoints are located at z = (z1,z2,z3,z4) = (720,1320,1800,2160)
with signal sizes (∥θ (1)∥2,∥θ (2)∥2,∥θ (3)∥2,∥θ (4)∥2) = ρmin × (1,1.15,1.45,2.18) and sparsity
∥θ (1)∥0 = ∥θ (2)∥0 = ∥θ (3)∥0 = ∥θ (4)∥0 = k respectively for various ρmin and k.
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FIG. 5. Histogram of estimated changepoint locations in four settings. The true changes take place at z = (240,540,900) for the
(n, p) = (1200,200) specifications in the above two panels with the signal strengths at respective changes being ρmin× (1,1.5,2).
For the two panels below with (n, p) = (2400,400), z = (720,1320,1800,2160) with ρmin× (1,1.15,1.45,2.175). The locations
of true changes are marked in lightly-colored dashed vertical lines in each plot.

Note that for (M2), the signal sizes are chosen such that

∥θ (i)∥2
2
(zi− zi−1)(zi+1− zi)(zi+1− zi−1− p)

(zi+1− zi−1)2

is approximately constant for each i ∈ [ν ], which according to Gao and Wang [21] means that the
effective signal-to-noise ratio of testing for each changepoint zi within the interval (zi−1,zi+1] is almost
constant. Table 3 reports the multiple changepoint estimation performances for both (M1) and (M2) with
ρmin ∈ {0.8,1.2,1.6} and k ∈ {3,10,100}. The multiple changepoint estimation accuracy is measured
in terms of the difference between the number of estimated and true changepoints, the average Hausdorff
distance between the sets {zi : i ∈ [n]} and {ẑrefined

i : i ∈ [n̂]} and finally the average adjusted Rand index
(ARI) [39] of the estimated segments against the truth, over 100 Monte Carlo repetitions. We see from
Table 3 that the promising single changepoint estimation performance of our methodology carries over
to the multiple changepoint settings.
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Figure 5 visualizes the simulation results by showing the histograms of estimated changepoints in
four of the parameter settings shown in Table 3. It is worth noting that in the bottom two panels of the
figure, where the effective signal-to-noise ratios are chosen to be approximately constant for all the four
changepoints, we indeed see a similar number of times in identifications of each changepoint.

4.5. Real data example

In this subsection, we showcase how the charcoal algorithm can be applied to a single-cell gene
expression dataset from Suo et al. [43]. The original data consists of the logarithmic normalized gene
expression levels of 3211 genes measured in 11853 cells along the developmental trajectory from
proliferating double positive cells (DP(P) cells) to quiescent double positive cells (DP(Q) cells), αβT
entry cells (ABT cells) and finally to CD4+ T cells. These cells have been ordered in pseudotime
according to their development stage in Suo et al. [43], which we use as our timeline (see Figure 6). We
are interested in understanding the change in the gene regulatory networks along this time trajectory.
We can estimate the changepoints by modeling the logarithmic normalized expressions using Gaussian
graphical models and seek changes in the nodewise regression coefficients of each gene against the
remaining genes. To speed up the computation, we preprocess the data by subsampling 1/3 of the original
cells and only using genes that have non-zero expression in at least 5% of the cells. The changepoints are
estimated using Algorithm 1 with tuning parameters chosen as suggested in Section 4.1. In Table 4, we
list the genes that reported most significant test statistics in their nodewise regression coefficients along
this pseudotime trajectory. From Figure 6, we see that most of the changes are identified immediately
before the boundary between the DP(P) and DP(Q) boundary, and most of the associated genes TK1,
CKAP2L, TTK, ARHGEF39, DEPDC1, SPC25, GTSE1, HMMR, CENPA are well-known regulators for
cell proliferation in biology [7, 22, 36, 51, 53, see, e.g.]. The change in nodewise regression coefficient
of the RAG2 gene occurred immediately before the DP(Q) and ABT boundary, which agrees with the
existing literature that RAG2 is a regulator for T cell development [27].
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FIG. 6. Ordered pseudotime of cells in the real data example of Section 4.5. Each plot point represents a cell, colored by its
annotated cell type. Vertical lines corresponds to estimated changepoint locations of the most significant changes in the nodewise
regression coefficients as described in Section 4.5.
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Gene Changepoint Top interacting partners

TK1 495 PTP4A1, KIF20B, CENPF, SPRY1, ZWINT
CKAP2L 430 TOGARAM1, DEPDC1B, AP001816.1, TUBA1C, FANCI
RAG2 1178 SMPD3, AL365440.2, LZTFL1, AEBP1, HIST1H2BJ
TTK 407 UBE2S, KNL1, CDC20, TRAV19, DDIT3
ARHGEF39 396 HJURP, CD1A, SLC25A25, CCDC152, MBTD1
DEPDC1 444 AL138899.1, USPL1, RIPK4, SERPINF1, EPHB6
SPC25 442 ATF3, ITGAE, CDC42EP3, AC136475.5, EPS8
GTSE1 437 MID1IP1, HIST1H2AG, GADD45G, PSRC1, FBLN5
HMMR 516 TAX1BP3, LAIR1, SERP2, LANCL2, MANEA-DT
CENPA 503 TRBV7-3, SOCS1, FRMD4B, CDKN1A, FXYD2

TABLE 4 List of genes with most significant changes in the nodewise regression coefficients,
together with their changepoint locations and top 5 interacting partners.
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The supplementary materials collect the proofs of the main results of
Section A in the main text and the proofs of the ancillary results in Section B.

A Proof of main results
Proof of Proposition 1. Define 𝜅1 = 𝜅1(𝑛, 𝑧, 𝑝) := 𝑧(𝑛− 𝑧)(𝑛− 𝑝)/𝑛3, which
under Condition 2 is 𝑂(1). We decompose
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Define Ω𝜈 := {‖𝑆−1
0,𝑛𝑆𝑧,𝑛‖op‖𝑆0,𝑧/𝑧‖op ≤ 𝜈}. By Lemma 15, we have a

(1/2)-net 𝒩 of 𝐵0(ℓ) with cardinality at most (5𝑒𝑝/ℓ)ℓ such that we have

P( sup
𝑢∈𝐵0(ℓ)

|𝑢⊤(𝑆0,𝑡/𝑡− 𝑆0,𝑧/𝑧)𝑆−1
0,𝑛𝑆𝑧,𝑛𝑣| ≥ 𝑥)

≤ E[P(2 sup
𝑢∈𝒩

|𝑢⊤(𝑆0,𝑡/𝑡− 𝑆0,𝑧/𝑧)𝑆−1
0,𝑛𝑣| ≥ 𝑥 | 𝑆0,𝑧, 𝑆𝑧,𝑛)1Ω𝜈 ] + P(Ωc

𝜈)

≤ 52
(︃

5𝑒𝑝
ℓ

)︃ℓ
exp{−𝑡2𝑥2/(32𝑧𝜈2}) + P(Ωc

𝜈),

where the first inequality holds by that Ω𝜈 is measurable with respect to the
𝜎-algebra generated by (𝑆0,𝑧, 𝑆𝑧,𝑛) and the second by Lemma 13 and a union
bound. Define 𝜆min(𝐴) and 𝜆max(𝐴) for any generic symmetric matrix 𝐴 to

1



be the smallest and largest eigenvalues of 𝐴, respectively. By Wainwright
(2019, Theorem 6.1), we have
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a union bound, we arrive at

P(Ωc
𝜈) = P(‖𝑆−1

0,𝑛𝑆𝑧,𝑛‖op‖𝑆0,𝑧/𝑧‖op ≤ 𝜈) ≤ exp
(︃

−
𝑛
(︁
1 −

√︁
𝑝/𝑛

)︁2

8

)︃
+2 exp(−𝑝/8).

Combining the above displays and setting 𝑥 := 16𝜈
√︁
ℓ𝑧 log(5𝑒𝑝/ℓ)/𝑡, we have

by a union bound that

P
(︃

sup
𝑢∈𝐵0(ℓ)

|𝑢⊤(𝑆0,𝑡/𝑡− 𝑆0,𝑧/𝑧)𝑆−1
0,𝑛𝑣| ≥ 𝑥

)︃
≤ 𝑝−7 + 𝑒−𝑛(1−

√
𝑝/𝑛)2/8 + 2𝑒−𝑝/8.

Taking another union bound over 𝑡 ∈ [𝑧], and by the Borel–Cantelli lemma,
we have with probability 1, for all but finitely many 𝑝’s that

sup
𝑡∈[𝑧]

sup
𝑢∈𝐵0(ℓ)

𝑢⊤
(︁
𝑊⊤
𝑡 𝑊𝑧 − (𝑡/𝑧)𝑊⊤

𝑧 𝑊𝑧

)︁
𝑣 ≤ 𝐶 ′

𝜏,𝜂

√︁
ℓ𝑝 log(𝑒𝑝/ℓ), (S.1)

for some constant 𝐶 ′
𝜏,𝜂 > 0 that depends only on 𝜏 and 𝜂. By Gao and Wang

(2022, (22)), we have for all but finitely many 𝑝’s that

sup
𝑢∈𝐵0(ℓ)

𝑢⊤
(︃
𝑊⊤
𝑧 𝑊𝑧

4𝑛 −𝜅1𝐼𝑝

)︃
𝑢 ≤ (4+𝑜(1))

√︃
(ℓ+ 4) log(10𝑒𝑝/ℓ)

𝑛

{︁
(𝜅1+𝜅2)

√︁
𝑛/𝑝+𝜅1

}︁
,

where 𝜅2 > 0 is again a constant depending only on 𝜏 and 𝜂. This, together
with the first claim of Lemma 9, implies that with probability 1, for all but
finitely many 𝑝’s, we have

sup
𝑡∈[𝑧]

sup
𝑢∈𝐵0(ℓ)

4𝑡𝑛
𝑧
𝑢⊤
(︃
𝑊⊤
𝑧 𝑊𝑧

4𝑛 − 𝜅1𝐼𝑝

)︃
𝑣 ≤ 𝐶 ′′

𝜏,𝜂

√︁
ℓ𝑝 log(𝑒𝑝/ℓ). (S.2)
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The conclusion follows by combining (S.1) and (S.2), and the corresponding
inequality for 𝑡 ∈ [𝑛− 1] ∖ [𝑧].

Proof of Theorem 2. Applying Proposition 1, we have with probability 1 that
for all but finitely many 𝑝’s that

sup
𝑡∈[𝑧]

sup
𝑢∈𝐵0(ℓ)

𝑢⊤
(︃
𝑊⊤
𝑡 𝑊𝑧 − 4𝑡(𝑛− 𝑧)(𝑛− 𝑝)

𝑛2 𝐼𝑝

)︃
𝜃

‖𝜃‖2
≲𝜏,𝜂

√︁
𝑝ℓ log 𝑝. (S.3)

Let 𝑆 := supp(𝜃). Taking ℓ = 𝑘 in (S.3), we have

sup
𝛼𝑛≤𝑡≤𝑧

⃦⃦⃦⃦
⃦
√︃

𝑛

𝑡(𝑛− 𝑡)

(︃(︃
𝑊⊤
𝑡 𝑊𝑧 − 4𝑡(𝑛− 𝑧)(𝑛− 𝑝)

𝑛2 𝐼𝑝

)︃
𝜃

)︃
𝑆

⃦⃦⃦⃦
⃦

2

≤ sup
𝛼𝑛≤𝑡≤𝑧

sup
𝑢∈𝐵0(𝑘)

𝑢⊤
(︃√︃

𝑛

𝑡(𝑛− 𝑡)𝑊
⊤
𝑡 𝑊𝑧 − 4𝑡1/2(𝑛− 𝑧)(𝑛− 𝑝)

𝑛3/2(𝑛− 𝑡)1/2 𝐼𝑝

)︃
𝜃

≲𝜏,𝜂,𝛼

√︁
𝑘 log 𝑝‖𝜃‖2. (S.4)

By (S.3) and the second claim of Lemma 9, with probability 1 that for all
but finitely many 𝑝’s,

sup
𝑡∈[𝑧]

‖(𝑊⊤
𝑡 𝑊𝑧𝜃)𝑆𝑐‖2 = sup

𝑡∈[𝑧]

⃦⃦⃦⃦
⃦
(︃{︃

𝑊⊤
𝑡 𝑊𝑧 − 4𝑡(𝑛− 𝑧)(𝑛− 𝑝)

𝑛2 𝐼𝑝

}︃
𝜃

)︃
𝑆𝑐

⃦⃦⃦⃦
⃦

2

≲𝜏,𝜂 𝑝
√︁

log 𝑝‖𝜃‖2.

For any 𝑄 ∈ O𝑝×𝑝, we have 𝑋
d= 𝑋𝑄⊤ =: 𝑋̃, and the latter has the

corresponding sketching matrix 𝐴 = 𝐴𝑄⊤ because 𝐴⊤𝐴 = 𝐼𝑛−𝑝 and 𝐴⊤𝑋̃ =
𝑄𝐴⊤𝑋𝑄⊤ = 0(𝑛−𝑝)×𝑝. As such, for any 𝑄 ∈ O𝑝×𝑝 such that 𝑄𝜃 = 𝜃,
𝑄(𝑊⊤

𝑡 𝑊𝑧𝜃) = (𝑄𝑊𝑡𝑄
⊤)⊤(𝑄𝑊𝑧𝑄

⊤)𝜃 d= 𝑊⊤
𝑡 𝑊𝑧𝜃. In particular, (𝑊⊤

𝑡 𝑊𝑧𝜃)𝑆𝑐

is spherically symmetric on R𝑝−𝑘. Hence, by Lemma 14 (with a choice of
𝛿 = 2𝑝−4), with probability 1 we have for all but finitely many 𝑝’s that

sup
𝛼𝑛≤𝑡≤𝑧

⃦⃦⃦⃦
⃦
√︃

𝑛

𝑡(𝑛− 𝑡)(𝑊⊤
𝑡 𝑊𝑧𝜃)𝑆𝑐

⃦⃦⃦⃦
⃦

∞
≤ sup

𝛼𝑛≤𝑡≤𝑧
‖(𝑊⊤

𝑡 𝑊𝑧𝜃)𝑆𝑐‖2

√︃
𝑛

𝑡(𝑛− 𝑡)
4
√

log 𝑝√
𝑝− 𝑘

≲𝜏,𝜂,𝛼 ‖𝜃‖2 log 𝑝 (S.5)

Let 𝑋 = 𝑄𝑇 be the QR decomposition of 𝑋 and define 𝐵𝑡 := 𝑄⊤
(0,𝑡]𝑄(0,𝑡]. By

Equation (16) in the proof of Gao and Wang (2022, Proposition 8), there
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exists 𝐶𝜂 > 0, depending only on 𝜂 that for any fixed 𝑝 and 𝑡 and 𝑗 ∈ [𝑝],
with probability 1 − 𝑝−4, we have

1
𝑛

(𝑊⊤
𝑡 𝑊𝑡)𝑗,𝑗 ≤ 4tr(𝐵𝑡(𝐼𝑝 −𝐵𝑡))

𝑝
+ 𝐶𝜂

√︃
log 𝑝
𝑛

≤ 1 + 𝐶𝜂

√︃
log 𝑝
𝑛

,

where the final inequality follows from the fact that ‖𝐵𝑡‖op ≤ 1. Taking union
bounds over 𝑗 ∈ [𝑝] and 𝑡 ∈ [𝑧], and applying the Borel–Cantelli lemma, we
have with probability 1 that for all but finitely many 𝑝’s,

sup
𝛼𝑛≤𝑡≤𝑧

sup
𝑗∈[𝑝]

𝑛

𝑡(𝑛− 𝑡)(𝑊⊤
𝑡 𝑊𝑡)𝑗,𝑗 ≲𝜏,𝛼 1.

Furthermore, applying the Gaussian tail bound followed by a union bound,
we have with probability 1 for all but finitely many 𝑝’s that

sup
𝛼𝑛≤𝑡≤𝑧

⃦⃦⃦⃦
⃦
√︃

𝑛

𝑡(𝑛− 𝑡)𝑊
⊤
𝑡 𝜉

⃦⃦⃦⃦
⃦

∞
≤ 4

√︁
log 𝑝 sup

𝛼𝑛≤𝑡≤𝑧
sup
𝑗∈[𝑝]

𝑛

𝑡(𝑛− 𝑡)(𝑊⊤
𝑡 𝑊𝑡)𝑗,𝑗 ≲𝜏,𝛼

√︁
log 𝑝.

(S.6)
We now work on the probability 1 event Ω, such that (S.4), (S.5), (S.6)

all hold for all but finitely many 𝑝’s.
For sufficiently large 𝑐𝜏,𝜂,𝛼, we have the right-hand side of (S.5) and (S.6)

are both dominated by 𝜆/2. Hence, on Ω, we have for all 𝑡 ∈ [𝛼𝑛, 𝑧] that

𝐻𝑡 =
⃦⃦⃦⃦
⃦soft

(︃√︃
𝑛

𝑡(𝑛− 𝑡)𝑊
⊤
𝑡 (𝑊𝑧𝜃 + 𝜉), 𝜆

)︃⃦⃦⃦⃦
⃦

2

=
⃦⃦⃦⃦
⃦soft

(︃√︃
𝑛

𝑡(𝑛− 𝑡)(𝑊⊤
𝑡 𝑊𝑧)𝑆,𝑆𝜃𝑆 +

√︃
𝑛

𝑡(𝑛− 𝑡)(𝑊⊤
𝑡 𝜉)𝑆, 𝜆

)︃⃦⃦⃦⃦
⃦

2

Writing 𝐻̃𝑡 :=
⃦⃦⃦√︁

𝑛
𝑡(𝑛−𝑡)(𝑊

⊤
𝑡 𝑊𝑧)𝑆,𝑆𝜃𝑆

⃦⃦⃦
2
, we have by the triangle inequality

and (S.6) that on Ω,

sup
𝑡∈[𝛼𝑛,𝑧]

⃒⃒⃒
𝐻𝑡 − 𝐻̃𝑡

⃒⃒⃒
≲𝜏,𝛼

√
𝑘𝜆+

√︁
𝑘 log 𝑝. (S.7)

Recall the definition of 𝛾𝑡 in (3.3) and write

ℎ𝑡 := 𝛾𝑡‖𝜃‖2 = 4𝑡1/2(𝑛− 𝑧)(𝑛− 𝑝)
𝑛3/2(𝑛− 𝑡)1/2 ‖𝜃‖2 = 4(𝑛− 𝑝)

𝑛

√︃
𝑡

𝑛(𝑛− 𝑡)(𝑛− 𝑧)‖𝜃‖2.
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Then by (S.4), we also have on Ω that

sup
𝑡∈[𝛼𝑛,𝑧]

|𝐻̃𝑡 − ℎ𝑡| ≲𝜏,𝜂,𝛼

√︁
𝑘 log 𝑝‖𝜃‖2. (S.8)

By a symmetric argument, both (S.7) and (S.8) hold for 𝑡 ∈ [𝑧, (1 − 𝛼)𝑛]
and consequently for 𝑡 ∈ [𝛼𝑛, (1 − 𝛼)𝑛] (with perhaps a slightly different
constant). Consequently, we have that with probability 1 for all but finitely
many 𝑝,

sup
𝑡∈[𝛼𝑛,(1−𝛼)𝑛]

|𝐻𝑡 − ℎ𝑡| ≤ 𝐶1
(︁√

𝑘𝜆+
√︁
𝑘 log 𝑝‖𝜃‖2

)︁
,

where 𝐶1 depends only on 𝜏 , 𝜂 and 𝛼.
If 𝜃 = 0, then ℎ𝑡 = 0 for all 𝑡, and hence for sufficiently large 𝐶𝜏,𝜂,𝛼, we have

with probability 1 for all but finitely many 𝑝’s that sup𝑡∈[𝛼𝑛,(1−𝛼)𝑛] |𝐻𝑡| ≤ 𝑇
and thus the first conclusion holds.

For the second conclusion, we have for some 𝐶2 depending only on 𝜏, 𝜂
and 𝛼 that

|𝐻𝑧| ≥ |ℎ𝑧| − sup
𝑡∈[𝛼𝑛,(1−𝛼)𝑛]

|𝐻𝑡 − ℎ𝑡| ≥ 𝐶2
√
𝑛‖𝜃‖2 − 𝐶1(

√
𝑘𝜆+

√︁
𝑘 log 𝑝‖𝜃‖2)

≥ 𝐶2(1 − 𝑜(1))
√
𝑛‖𝜃‖2 − 𝐶1𝑐𝜏,𝜂,𝛼

√
𝑘 log 𝑝.

The signal size condition on ‖𝜃‖2 then ensures that |𝐻𝑧| ≥ (𝐶2𝑐
′
𝜏,𝜂,𝛼/2 −

𝐶1𝑐𝜏,𝜂,𝛼)
√
𝑘 log 𝑝. Hence, for sufficiently large 𝑐′

𝜏,𝜂,𝛼, we can ensure that with
probability 1 for all but finitely many 𝑝’s, we have max𝑡∈[𝛼𝑛,(1−𝛼)𝑛] |𝐻𝑡| ≥
|𝐻𝑧| ≥ 𝑇 , completing the proof.

The following proposition shows that the estimated projection direction 𝑣
is well-aligned with this oracle direction.

Proposition 7. Assume Conditions 1 and 2 and that data (𝑋, 𝑌 ) are gen-
erated according to (1.1) with 𝜈 = 1. Suppose that 𝑘 ≤ 𝑝/2 and that
min(𝜏, 1 − 𝜏) ≥ 𝛼 for some known 𝛼. There exists 𝑐𝜏,𝜂,𝛼, 𝐶𝜏,𝜂,𝛼 > 0, de-
pending only on 𝜏, 𝜂, 𝛼, such that if 𝜆 > 𝑐𝜏,𝜂,𝛼 max(1, ‖𝜃‖2) log 𝑝, then the
projection direction estimator 𝑣 in Algorithm 1′ (defined below Proposition 1)
satisfies with probability 1 for all but finitely many 𝑝’s that

sin∠(𝑣, 𝜃) ≤ 𝐶𝜏,𝜂,𝛼
𝜆

√
𝑘√

𝑛‖𝜃‖2
.
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Proof. Define for each 𝑡 ∈ [𝛼𝑛, (1−𝛼)𝑛] a vector 𝑄̃𝑡 ∈ R𝑝 such that (𝑄̃𝑡)𝑆c := 0
and

(𝑄̃𝑡)𝑆 :=
√︃

𝑛

𝑡(𝑛− 𝑡)(𝑊⊤
𝑡 𝑊𝑧)𝑆,𝑆𝜃𝑆.

By (S.5) and (S.6) and their symmetric results for 𝑡 ∈ [𝑧, (1 − 𝛼)𝑛], we have
with probability 1 for all but finitely many 𝑝’s that

sup
𝛼𝑛≤𝑡≤(1−𝛼)𝑛

‖𝑄𝑡 − 𝑄̃𝑡‖∞ ≲𝜏,𝜂,𝛼 max(1, ‖𝜃‖2) log 𝑝 (S.9)

Recall the definition of 𝛾 = (𝛾𝑡)𝑡∈[𝑛−1] in (3.3). Applying (S.3) and its
symmetric result for 𝑡 ≥ 𝑧 with ℓ = 1, we have with probability 1 for all but
finitely many 𝑝’s that

sup
𝑡∈[𝑛−1]

‖𝑄̃𝑡 − 𝜃𝛾𝑡‖∞ ≲𝜏,𝜂,𝛼 ‖𝜃‖2

√︁
log 𝑝. (S.10)

By symmetry, both (S.9) and (S.10) are still valid when we replace the
supremum over 𝑡 ∈ [𝑧, (1 − 𝛼)𝑛] instead. Define 𝑄̃ := (𝑄̃⌈𝛼𝑛⌉, . . . , 𝑄̃⌊(1−𝛼)𝑛⌋)⊤

and 𝛾 := (𝛾𝑡)𝑡∈[𝛼𝑛,(1−𝛼)𝑛]. We then have

‖𝑄− 𝜃𝛾⊤‖∞ ≤ ‖𝑄− 𝑄̃‖∞ + ‖𝑄̃− 𝜃𝛾⊤‖∞ ≲𝜏,𝜂,𝛼 max(1, ‖𝜃‖2) log 𝑝. (S.11)

By Wang and Samworth (2018, Propositions 2 and 4 in the online supplement),
for 𝑐𝜏,𝜂,𝛼 large enough such that 𝜆 ≥ ‖𝑄− 𝜃𝛾⊤‖∞, we have

sin∠(𝑣, 𝜃) ≲𝜏,𝜂,𝛼
𝜆

√
𝑘𝑛

‖𝜃‖2‖𝛾‖2
,

whence the desired form follows by noting ‖𝛾‖2 ≍𝜏,𝜂,𝛼 𝑛 by Condition 2.

Proof of Theorem 3. To simplify exposition, all statements should be in-
terpreted as valid with probability 1 for all but finitely many 𝑝’s. Write
𝑣 := 𝜃/‖𝜃‖2 for simplicity, and note that ‖𝑣‖0 = ‖𝜃‖0 ≤ 𝑘. Since the
estimator 𝑧 is unchanged if we replace 𝑣 by −𝑣 in Algorithm 1, we may
assume without loss of generality that 𝜌 := 𝑣⊤𝑣 ≥ 0. Our strategy is
to view (𝑣⊤𝑄𝑡 : 𝑡 ∈ [𝛼𝑛, (1 − 𝛼)𝑛]) as a perturbation of a multiple of
(𝛾𝑡 : 𝑡 ∈ [𝛼𝑛, (1 − 𝛼)𝑛]), which is maximized at 𝑧. By (S.11), we may
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choose 𝑐𝜏,𝜂,𝛼 large enough such that ‖𝑄− 𝜃𝛾⊤‖∞ ≤ 𝜆. By Proposition 7, we
then have

max
𝑡∈[𝛼𝑛,(1−𝛼)𝑛]

⃒⃒⃒
𝑣⊤(𝑄𝑡 − 𝜃𝛾𝑡)

⃒⃒⃒
≤ ‖𝑣‖1‖𝑄− 𝜃𝛾⊤‖max ≤ (‖𝑣‖1 + ‖𝑣 − 𝑣‖1)𝜆

≲𝜏,𝜂,𝛼 (
√
𝑘 + √

𝑝‖𝑣 − 𝑣‖2)𝜆.

From Proposition 7, there exists 𝐶 ′
𝜏,𝜂,𝛼 > 0, depending only on 𝜏, 𝜂, 𝛼, such

that
‖𝑣 − 𝑣‖2 ≤ 2 sin∠(𝑣, 𝜃) ≤ 𝐶 ′

𝜏,𝜂,𝛼

𝜆
√
𝑘√

𝑛‖𝜃‖2
, (S.12)

which implies that

max
𝑡∈[𝛼𝑛,(1−𝛼)𝑛]

⃒⃒⃒
𝑣⊤(𝑄𝑡 − 𝜃𝛾𝑡)

⃒⃒⃒
≲𝜏,𝜂,𝛼

𝜆2
√
𝑘

‖𝜃‖2
. (S.13)

We may further assume that

𝜆
√
𝑘√

𝑛‖𝜃‖2
≤ 𝜆2

√
𝑘√

𝑛‖𝜃‖2
2

≤ 1
𝐶 ′
𝜏,𝜂,𝛼

(S.14)

for all 𝑝’s, since for 𝑝 where this is not satisfied the result is trivially true. Then,
sin∠(𝑣, 𝜃) ≤ 1/2 and thus 𝜌 = {1 − sin2 ∠(𝑣, 𝜃)}1/2 ≥ 1/2. Consequently,
from (S.13) and (S.14), increasing 𝐶 ′

𝜏,𝜂,𝛼 if necessary, we have

𝑣⊤𝜃𝛾𝑧 = 𝜌‖𝜃‖2
4𝑧1/2(𝑛− 𝑧)1/2(𝑛− 𝑝)

𝑛3/2 ≥ 2 max
𝑡∈[𝛼𝑛,(1−𝛼)𝑛]

⃒⃒⃒
𝑣⊤(𝑄𝑡 − 𝜃𝛾𝑡)

⃒⃒⃒
,

which implies in particular that 𝑣⊤𝑄𝑧 > 0. Now, since 𝑧 = arg max𝑡∈[𝑛−1] 𝛾𝑡
and 𝑧 = arg max𝑡∈[𝛼𝑛,(1−𝛼)𝑛] 𝑣

⊤𝑄𝑡, we have from (S.13) that

𝑣⊤𝜃𝛾𝑧 − 𝑣⊤𝜃𝛾𝑧 ≤ 𝑣⊤𝑄𝑧 − 𝑣⊤𝑄𝑧 + 2 max
𝑡∈[𝛼𝑛,(1−𝛼)𝑛]

⃒⃒⃒
𝑣⊤(𝑄𝑡 − 𝜃𝛾𝑡)

⃒⃒⃒
≲𝜏,𝜂,𝛼

𝜆2
√
𝑘

‖𝜃‖2
.

(S.15)
On the other hand, by Wang and Samworth (2018, Lemma 7), we have

inf
𝑡∈[𝑧−min{𝑧,𝑛−𝑧}/2,𝑧+min{𝑧,𝑛−𝑧}/2]

𝑣⊤𝜃𝛾𝑧 − 𝑣⊤𝜃𝛾𝑡
|𝑧 − 𝑡|

≳𝜏,𝜂 ‖𝜃‖2
√
𝑛. (S.16)

We arrive at the conclusion by combining (S.15) and (S.16).
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Proof of Theorem 4. As in the proof of Theorem 3, all statements are valid
with probability 1 for all but finitely many 𝑝’s, and we may assume without
loss of generality that 𝑣⊤𝑣 ≥ 0. Let 𝑄̃𝑡 be as in the proof of Proposition 7. The
main difference to the proof of Theorem 3 will be an improvement of (S.13)
using the independence between 𝑣 and 𝑄𝑡 − 𝜃𝛾𝑡. Specifically, since

{𝑡(𝑛− 𝑡)/𝑛}1/2𝑣⊤(𝑄𝑡 − 𝑄̃𝑡) = 𝑣⊤𝑊⊤
𝑡 (𝑊𝑧𝜃 + 𝜉) − 𝑣⊤

𝑆 (𝑊⊤
𝑡 𝑊𝑧)𝑆,𝑆𝜃𝑆

= 𝑣⊤
𝑆𝑐(𝑊⊤

𝑡 𝑊𝑧𝜃)𝑆𝑐 + 𝑣⊤𝑊⊤
𝑡 𝜉,

we have that

max
𝑡∈[𝛼𝑛,(1−𝛼)𝑛]

⃒⃒⃒
𝑣⊤(𝑄𝑡 − 𝜃𝛾𝑡)

⃒⃒⃒
≤ max

𝑡∈[𝛼𝑛,(1−𝛼)𝑛]

⃒⃒⃒⃒
⃒𝑣⊤(𝑄̃𝑡 − 𝜃𝛾𝑡) +

√︃
𝑛

𝑡(𝑛− 𝑡)𝑣
⊤(𝑊⊤

𝑡 𝑊𝑧𝜃)𝑆𝑐

⃒⃒⃒⃒
⃒

+ max
𝑡∈[𝛼𝑛,(1−𝛼)𝑛]

⃒⃒⃒⃒
⃒
√︃

𝑛

𝑡(𝑛− 𝑡)𝑣
⊤𝑊⊤

𝑡 𝜉

⃒⃒⃒⃒
⃒ (S.17)

We control the two terms on the right-hand side of (S.17) separately. By (S.10),
(S.5), the Cauchy–Schwarz inequality and finally (S.12), the first term from
the above display (S.17) is bounded by

‖𝑣‖1

(︃
‖𝑄̃− 𝜃𝛾⊤‖max + max

𝑡∈[𝛼𝑛,(1−𝛼)𝑛]

⃦⃦⃦⃦
⃦
√︃

𝑛

𝑡(𝑛− 𝑡)‖𝑣‖2‖(𝑊⊤
𝑡 𝑊𝑧𝜃)𝑆𝑐‖2

⃦⃦⃦⃦
⃦

∞

)︃
≲𝜏,𝜂,𝛼 (

√
𝑘‖𝑣‖2 + √

𝑝‖𝑣 − 𝑣‖2)‖𝜃‖2 log 𝑝 ≲𝜏,𝜂,𝛼 𝜆
√
𝑘 log 𝑝. (S.18)

On the other hand, since 𝑣, 𝑊𝑡 and 𝜉 are mutually independent, we have
𝑣⊤𝑊⊤

𝑡 𝜉 | (𝑣,𝑊𝑡) ∼ 𝑁(0, ‖𝑊𝑡𝑣
⊤‖2

2). By Gao and Wang (2022, (S.8)), we have

sup
𝑡∈[𝛼𝑛,(1−𝛼)𝑛]

⃦⃦⃦⃦
⃦ 1
𝑛
𝑊⊤
𝑡 𝑊𝑡

⃦⃦⃦⃦
⃦

op
≲𝜏,𝜂,𝛼 1.

Hence, by Gaussian tail bounds followed by a union bound, we have

max
𝑡∈[𝛼𝑛,(1−𝛼)𝑛]

⃒⃒⃒⃒
⃒
√︃

𝑛

𝑡(𝑛− 𝑡)𝑣
⊤𝑊⊤

𝑡 𝜉

⃒⃒⃒⃒
⃒ ≲𝜏,𝜂,𝛼

√︁
log 𝑝. (S.19)

Substituting (S.18) and (S.19) into (S.17), we have

max
𝑡∈[𝛼𝑛,(1−𝛼)𝑛]

⃒⃒⃒
𝑣⊤(𝑄𝑡 − 𝜃𝛾𝑡)

⃒⃒⃒
≲𝜏,𝜂,𝛼 𝜆

√
𝑘 log 𝑝. (S.20)
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Following the same argument as in the proof of Theorem 3, with (S.20)
replacing (S.13), we arrive at the following counterpart to (S.15):

𝑣⊤𝜃𝛾𝑧 − 𝑣⊤𝜃𝛾𝑧 ≤ 𝑣⊤𝑄𝑧 − 𝑣⊤𝑄𝑧 + 2 max
𝑡∈[𝛼𝑛,(1−𝛼)𝑛]

⃒⃒⃒
𝑣⊤(𝑄𝑡 − 𝜃𝛾𝑡)

⃒⃒⃒
≲𝜏,𝜂,𝛼 𝜆

√
𝑘 log 𝑝.
(S.21)

Combining (S.21) with (S.16), the proof is complete.

Proof of Theorem 5. First observe that since

P(Ω𝑐
0) ≤

𝜈∑︁
𝑖=1

𝑀∏︁
𝑚=1

(︂
1−P

(︁
(𝑠𝑚, 𝑒𝑚] ∈ ℐ𝑖

)︁)︂
≤ 𝜈

(︁
1−Δ2

𝜏/36
)︁𝑀

≤ 𝜈 exp(−Δ2
𝜏𝑀/36),

the second conclusion follows immediately from the first one. To establish
the first conclusion, we henceforth work on the event Ω0 ∩ Ω1 ∩ Ω2 ∩ Ω3.

For 0 ≤ 𝑠 < 𝑒 ≤ 𝑛, we define the following sets

ℳ(𝑠,𝑒] := {𝑚 ∈ [𝑀 ] : 𝑠 ≤ 𝑠𝑚 < 𝑒𝑚 ≤ 𝑒},
ℛ(𝑠,𝑒] := {𝑚 ∈ ℳ(𝑠,𝑒] : 𝜓(𝐷(𝑠𝑚+𝑛𝜛,𝑒𝑚−𝑛𝜛]) = 1},
𝒵(𝑠,𝑒] := {𝑖 ∈ [𝜈] : 𝑧𝑖 ∈ (𝑠, 𝑒]},
𝒵(𝑠,𝑒]

good := {𝑖 ∈ [𝜈] : 𝑧𝑖 ∈ (𝑠, 𝑒],min{𝑧𝑖 − 𝑠, 𝑒− 𝑧𝑖} ≥ 𝑛Δ𝜏/2},

𝒵(𝑠,𝑒]
bad := {𝑖 ∈ [𝜈] : 𝑧𝑖 ∈ (𝑠, 𝑒],min{𝑧𝑖 − 𝑠, 𝑒− 𝑧𝑖} < 𝑛𝜑𝑖}.

Note that on the event Ω0, we can associate each true changepoint 𝑧𝑖 with an
𝑚𝑖 ∈ [𝑀 ] such that (𝑠𝑚𝑖

, 𝑒𝑚𝑖
] ∈ ℐ𝑖. On Ω2, we have{︁

𝑚𝑖 : 𝑖 ∈ 𝒵(𝑠,𝑒]
good

}︁
⊆ ℛ(𝑠,𝑒]. (S.22)

Recall the assumption 𝜑 < 𝜛. For any (𝑠0, 𝑒0] ⊂ (𝑠, 𝑒] such that (𝑠0, 𝑒0] ∩ {𝑧𝑖 :
𝑖 ∈ [𝜈], 𝑧𝑖 ∈ (𝑠, 𝑒]} ⊆ 𝒵(𝑠,𝑒]

bad , we have (𝑠0, 𝑒0] ∈ ℐ0 and hence 𝜓(𝐷(𝑠0+𝑛𝜛,𝑒0−𝑛𝜛]) =
0 on Ω1.

For any set of changepoints 𝑍, we can partition the original timeline (0, 𝑛]
into |𝑍| + 1 segments, which we call segments induced by 𝑍. We now prove
by induction that as we update 𝑍 throughout the recursion of Algorithm 3,
for any (𝑠, 𝑒] induced by 𝑍, we have 𝒵(𝑠,𝑒] = 𝒵(𝑠,𝑒]

good ∪ 𝒵(𝑠,𝑒]
bad . The base case

is trivially true as at the beginning of the algorithm, 𝑍 = ∅, so the only
segment induced is (0, 𝑛] so 𝒵(𝑠,𝑒] = 𝒵(𝑠,𝑒]

good and 𝒵(𝑠,𝑒]
bad = ∅ by our assumption

that 𝑧𝑖 − 𝑧𝑖−1 ≥ 𝑛Δ𝜏 for all 𝑖 ∈ [𝜈 + 1].
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Now assuming that the inductive hypothesis holds at some iteration of
the recursion in Algorithm 3. We show that the claimed statement still holds
if a new changepoint is estimated. Let 𝑍 be the set of changepoints identified
before this new changepoint, say 𝑧*, is added to it. We necessarily have
𝑧* = 𝑧(𝐷(𝑠′,𝑒′]) + 𝑠′ for some (𝑠′, 𝑒′] ∈ 𝒵(𝑠,𝑒] where (𝑠, 𝑒] is induced by 𝑍. From
the inductive hypothesis, we have 𝒵(𝑠,𝑒] = 𝒵(𝑠,𝑒]

good∪𝒵(𝑠,𝑒]
bad and 𝒵(𝑠,𝑒]

good is necessarily
non-empty, for otherwise all changepoints in (𝑠, 𝑒] are within a distance of
𝑛𝜑 to the boundary of the interval, which together with the fact that 𝜑 < 𝜛,
implies that ℳ(𝑠,𝑒] ∩ ℛ(𝑠,𝑒] = ∅, contradicting the fact that a new changepoint
is identified. Thus, there exists some 𝑖′ ∈ 𝒵(𝑠,𝑒]

good, which by (S.22) means that
𝑚𝑖′ ∈ ℛ(𝑠,𝑒]. By the definition of 𝑚0 in Line 6 of Algorithm 3, we have
𝑒𝑚0 − 𝑠𝑚0 ≤ 𝑒𝑚𝑖′ − 𝑠𝑚𝑖′ ≤ 𝑛Δ𝜏 . Thus, from the condition of the theorem, we
have that (𝑠𝑚0 , 𝑒𝑚0 ] contains at most one changepoint. If (𝑠𝑚0 , 𝑒𝑚0 ] ∩ {𝑧𝑖 : 𝑖 ∈
𝒵(𝑠,𝑒]} = ∅, then on Ω1, 𝜓(𝐷(𝑠𝑚0 +𝑛𝜛,𝑒𝑚0 −𝑛𝜛]) = 0, contradicting 𝑚0 ∈ ℛ(𝑠,𝑒].
If (𝑠𝑚0 , 𝑒𝑚0 ] contains a single changepoint 𝑧𝑖 for 𝑖 ∈ 𝒵(𝑠,𝑒]

bad , then since 𝜑 < 𝜛,
we again have on Ω1 that 𝜓(𝐷(𝑠𝑚0 +𝑛𝜛,𝑒𝑚0 −𝑛𝜛]) = 0, a contradiction. By the
inductive hypothesis, this implies that (𝑠𝑚0 , 𝑒𝑚0 ] contains exactly one true
change-point 𝑧𝑖0 for some 𝑖0 ∈ 𝒵(𝑠,𝑒]

good and that min{𝑒𝑚0 − 𝑧𝑖0 , 𝑧𝑖0 − 𝑠𝑚0} ≥ 𝑛𝜛.
Hence, (𝑠𝑚0 , 𝑒𝑚0 ] ∈ ℐ̃𝑖0 , and thus on Ω3, we have |𝑧* − 𝑧𝑖0| ≤ 𝑛𝜑𝑖0 .

We finally check that the two new segments induced by 𝑍 ∪ {𝑧*}, say
(𝑧left, 𝑧*] and (𝑧*, 𝑧right] for 𝑧left < 𝑧* < 𝑧right, still satisfy the inductive hypo-
thesis. By symmetry, we may assume without loss of generality that 𝑧* ≤ 𝑧𝑖0 .
Since |𝑧𝑖0 − 𝑧*| ≤ 𝑛𝜑, we have 𝑖0 ∈ 𝒵(𝑧left,𝑧*]

bad . For any 𝑖 ∈ 𝒵(𝑧left,𝑧*] such that
𝑖 < 𝑖0, we have 𝑧*−𝑧𝑖 ≥ 𝑧𝑖0−𝑧𝑖 ≥ 𝑛Δ𝜏 , and thus 𝑧𝑖 ∈ 𝒵(𝑧left,𝑧*]

good ∪𝒵(𝑧left,𝑧*]
bad by the

inductive hypothesis, consequently, 𝒵(𝑧left,𝑧*] = 𝒵(𝑧left,𝑧*]
good ∪ 𝒵(𝑧left,𝑧*]

bad . Similarly,
for 𝑖 ∈ 𝒵(𝑧*,𝑧right], we have 𝑖 > 𝑖0 and 𝑧𝑖−𝑧* ≥ 𝑧𝑖−𝑧𝑖0 −(𝑧* −𝑧𝑖0) ≥ 𝑛Δ𝜏 −𝜑 ≥
𝑛Δ𝜏/2. Again by the inductive hypothesis, 𝒵(𝑧*,𝑧right] = 𝒵(𝑧*,𝑧right]

good ∪ 𝒵(𝑧*,𝑧right]
bad .

This completes the induction.
As a consequence of the above inductive argument, we have shown that a

new changepoint will be identified in Algorithm 3 if and only if (𝑠, 𝑒] ∩ {𝑧𝑖 :
𝑖 ∈ 𝒵(𝑠,𝑒]

good} ≠ ∅. Thus, from the inductive claim, at the end of the recursion,
each changepoint, say 𝑧𝑖, must be less than 𝑛𝜑𝑖 away from one of the end
points of the segments induced by 𝑍. This, as well as the assumption that
𝑧𝑖 − 𝑧𝑖−1 ≥ 𝑛Δ𝜏 for all 𝑖 ∈ [𝜈+ 1], means that |𝑍| = 𝜈 and that |𝑧𝑖 − 𝑧𝑖| ≤ 𝑛𝜑𝑖
as desired.
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Proof of Corollary 6. First we write 𝜑𝑖 = 𝐶′𝜆
√
𝑘 log 𝑝√

𝑛‖𝜃(𝑖)‖2
and define Ω0, Ω1, Ω2 and

Ω3 as in Theorem 5. Observe that Ω1, Ω2 and Ω3 has implicit dependence on 𝑝,
whereas in the specific coupling (3.4) considered in this theorem, Ω0 does not
vary with 𝑝. We have from the proof of Theorem 5 that P(Ω0) ≥ 1−𝜈𝑒−Δ2

𝜏𝑀/36.
Hence, it suffices show that on Ω0, we have for all but finitely many 𝑝’s that Ω1,
Ω2 and Ω3 hold simultaneously. We keep in mind that 𝑀 is fixed and finite,
and for the rest of the proof, we condition on a realization of (𝑠𝑚, 𝑒𝑚)𝑀𝑚=1 as
in (3.4) such that Ω0 holds.

Let ℐ0, ℐ𝑖 and ℐ̃𝑖 be defined as in Theorem 5. We first establish Ω1
and Ω2. For any interval (𝑠, 𝑒] with 𝑒 − 𝑠 ≤ 𝑝, 𝜓 = 0 by definition. For
every (𝑠, 𝑒] ∈ ∪0≤𝑖≤𝜈 ℐ𝑖 whose length is longer than 𝑝, the fixed-ratio regime
Condition 2 is true by the generating mechanism of the intervals in (3.4), and
it is straightforward to verify that Theorem 2 applies. As a result, there exist
𝑐, 𝑐′, 𝐶, which may depend on (𝑠, 𝑒], such that the conclusion of Theorem 2
holds for each (𝑠, 𝑒] ∈ ∪0≤𝑖≤𝜈 ℐ𝑖 with 𝑒 − 𝑠 > 𝑝. Inspecting the proof of
Theorem 2 shows that we can take the maximum of all such 𝑐, 𝑐′, 𝐶’s so that
the conclusion of Theorem 2 holds for all intervals in ∪0≤𝑖≤𝜈 ℐ𝑖 with length
longer than 𝑝. As such, we have, for all but finitely many 𝑝’s, Ω1 and Ω2
holds.

Now we turn to Ω3. Again, by reasoning similar to the above, we see the
conditions of Theorem 4 hold for each (𝑠, 𝑒] ∈ ℐ̃𝑖, and for the above-mentioned
specific choices of 𝑐, which may depend on (𝑠, 𝑒], the conclusion of Theorem 4
holds for each (𝑠, 𝑒] ∈ ℐ̃𝑖. We can again take the maximum of all such 𝑐’s so
that for all intervals in ℐ̃𝑖 for all 𝑖 ∈ [𝜈], the conclusion of Theorem 4 holds,
i.e.,

𝑧(𝐷(𝑠,𝑒]) − (𝑧𝑖 − 𝑠)
𝑛

≤ 𝐶 ′
(𝑠,𝑒]

𝜆
√
𝑘 log 𝑝√
𝑛‖𝜃‖2

.

Setting, e.g., 𝐶 ′ = max𝑖∈[𝜈] max(𝑠,𝑒]∈ℐ̃𝑖
𝐶 ′

(𝑠,𝑒], we have, for all but finitely many
𝑝’s, Ω3 holds. Invoking Theorem 5 completes the proof.

B Ancillary results
We collect here the ancillary results and their proofs.

The following lemma shows our assumption 𝑝 < 𝑛 is necessary in the sense
that otherwise it is impossible to test the null 𝜃 = 0 against the alternative
𝜃 = 𝜃* for any 𝜃* ∈ R𝑝.
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Lemma 8. Fix 𝑛, 𝑝 ∈ N, 𝑧 ∈ {1, . . . , 𝑛 − 1}, 𝜎 > 0 and a distribution
𝑃𝑋 on R𝑛×𝑝. For 𝛽, 𝜃 ∈ R𝑝, define 𝑃𝛽,𝜃 to be the joint distribution of
𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛 generated by

(𝑥1, . . . , 𝑥𝑛)⊤ ∼ 𝑃𝑋

𝑦𝑖 = 𝑥⊤
𝑖 (𝛽 + 𝜃1{𝑖>𝑧}) + 𝜖𝑖, 𝜖𝑖 | (𝑥1, . . . , 𝑥𝑛) iid∼ 𝑁(0, 𝜎2).

Now, for a fixed 𝜃* ≠ 0 ∈ R𝑝, set 𝒫 := {𝑃𝛽,0 : 𝛽 ∈ R𝑝} be the space of null
hypotheses and 𝒬 = {𝑃𝛽,𝜃* : 𝛽 ∈ R𝑝} the space of alternative hypotheses. If
𝑛 ≤ 𝑝, then

inf
𝜓

{︁
sup
𝑃∈𝒫

𝑃 (𝜓 = 1) + sup
𝑄∈𝒬

𝑄(𝜓 = 0)
}︁

= 1,

where the infimum is taken over all tests 𝜓 : R𝑝𝑛 × R𝑛 → {0, 1}.

Proof. The left-hand side is trivially upper-bounded by 1 (e.g. taking 𝜓 to be
constantly zero), hence it suffices to show that 1 is also a lower bound. Let
𝜋 := 𝑁𝑝(0, 𝜏 2𝐼𝑝) be a prior on 𝛽, for some 𝜏 > 0, and define

𝑃𝜋 :=
∫︁
𝑃𝛽,0 𝑑𝜋(𝛽), 𝑄𝜋 :=

∫︁
𝑃𝛽,𝜃* 𝑑𝜋(𝛽).

We then have by Le Cam’s two-point test lemma Samworth and Shah (2025,
Lemma 8.4)

inf
𝜓

{︁
sup
𝑃∈𝒫

𝑃 (𝜓 = 1) + sup
𝑄∈𝒬

𝑄(𝜓 = 0)
}︁

≥ inf
𝜓

{︁
𝑃𝜋(𝜓 = 1) +𝑄𝜋(𝜓 = 0)

}︁
= 1 − 𝑑TV(𝑃𝜋, 𝑄𝜋),

where 𝑑TV denotes the total variation distance. It remains to show that
𝑑TV(𝑃𝜋, 𝑄𝜋) can be made arbitrarily close to 0 by taking appropriate values
of 𝜏 . Under 𝑃𝜋, 𝑋 = (𝑥1, . . . , 𝑥𝑛)⊤ has marginal distribution 𝑃𝑋 and 𝑌 =
(𝑦1, . . . , 𝑦𝑛)⊤ has conditional distribution

𝑌 | 𝑋 ∼ 𝑁(0, 𝐾), where 𝐾 = 𝜎2𝐼𝑛 + 𝜏 2𝑋𝑋⊤.

Similarly, under 𝑄𝜋, 𝑋 ∼ 𝑃𝑋 and

𝑌 | 𝑋 ∼ 𝑁(𝜇,𝐾), where 𝜇 = (1{𝑖>𝑧}𝑥
⊤
𝑖 𝜃

*)𝑛𝑖=1.
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Hence,

𝑑TV(𝑃𝜋, 𝑄𝜋) =
∫︁
𝑋
𝑑𝑇𝑉

(︁
𝑁(0, 𝐾), 𝑁(𝜇,𝐾)

)︁
𝑑𝑃𝑋(𝑋)

=
∫︁
𝑋

{︃
1 − 2Φ

(︂
−1

2

√︁
𝜇⊤𝐾−1𝜇

)︂}︃
𝑑𝑃𝑋(𝑋).

Since 𝑛 ≤ 𝑝, 𝑋𝑋⊤ has full rank and is positive definite 𝑃𝑋-almost surely,
which implies that the minimum eigenvalue of 𝐾 diverges to infinity as 𝜏 → ∞.
Thus, lim𝜏→∞ 𝜇⊤𝐾−1𝜇 → 0 𝑃𝑋-almost surely, and by dominated convergence,
we have lim𝜏→∞ 𝑑TV(𝑃𝜋, 𝑄𝜋) = 0.

Lemma 9. Fix 𝐴 ∈ R𝑝×𝑝 and 𝑘 ∈ [𝑝]. The following are true.

1. If 𝐴 is symmetric, then sup𝑢,𝑣∈𝐵0(𝑘) 𝑢
⊤𝐴𝑣 ≤ sup𝑣∈𝐵0(2𝑘) 𝑣

⊤𝐴𝑣.

2. sup𝑣∈𝐵0(𝑘) ‖𝐴𝑣‖2 ≤
√︁
𝑝/𝑘 sup𝑢,𝑤∈𝐵0(𝑘) 𝑢

⊤𝐴𝑤.

Proof. For the first claim, fix 𝑢, 𝑣 ∈ 𝐵0(𝑘) and let 𝑆 and 𝑇 be their respective
support. Then by the symmetry of 𝐴, we have

𝑢⊤𝐴𝑣 ≤ ‖𝐴𝑆,𝑇‖op ≤ ‖𝐴𝑆∪𝑇,𝑆∪𝑇‖op = sup
𝑤∈𝒮2𝑘−1

𝑤⊤𝐴𝑆∪𝑇,𝑆∪𝑇𝑤 ≤ sup
𝑣∈𝐵0(2𝑘)

𝑣⊤𝐴𝑣.

The first claim then follows by taking supremum on the left-hand side.
For the second claim, define 𝜓 := sup𝑢,𝑤∈𝐵0(𝑘) 𝑢

⊤𝐴𝑤. Write
(︁

[𝑝]
𝑘

)︁
:= {𝑆 ⊆

𝐵 : |𝑆| = 𝑘}. For any 𝑣 ∈ 𝐵0(𝑘), let 𝑣 := 𝐴𝑣/‖𝐴𝑣‖2 and 𝑇 := supp(𝑣). Then
by the Cauchy–Schwarz inequality, we have

‖𝐴𝑣‖2 = 𝑣⊤𝐴𝑣 = 1(︁
𝑝−1
𝑘−1

)︁ ∑︁
𝑆∈([𝑝]

𝑘 )
𝑣⊤
𝑆𝐴𝑆,𝑇𝑣𝑇 ≤ 1(︁

𝑝−1
𝑘−1

)︁ ∑︁
𝑆∈([𝑝]

𝑘 )
‖𝑣𝑆‖2𝜓

≤
{︃

1(︁
𝑝−1
𝑘−1

)︁ ∑︁
𝑆∈([𝑝]

𝑘 )
‖𝑣𝑆‖2

2

}︃1/2{︃ 1(︁
𝑝−1
𝑘−1

)︁ ∑︁
𝑆∈([𝑝]

𝑘 )
𝜓2
}︃1/2

≤ ‖𝑣‖2 ·
√︂
𝑝

𝑘
𝜓 =

√︂
𝑝

𝑘
𝜓.

Taking supremum over 𝑣 on the left-hand side, we arrive at the conclusion.

Suppose that 𝑋 = (𝑥1, . . . , 𝑥𝑛)⊤ is generated by independent 𝑥𝑖 ∼ 𝑁𝑝(0,Σ)
with 𝑛 ≥ 𝑝 and some positive definite Σ. Write 𝑆 = 𝑋⊤𝑋 and 𝑆1 = 𝑋⊤

(0,𝑡]𝑋(0,𝑡].
By Mitra (1970), for any well-defined function 𝜑 : 𝑆 ↦→ 𝜑(𝑆) such that
𝜑(𝑆)𝑆𝜑(𝑆)⊤ = 𝐼𝑝, 𝑈 = 𝜑(𝑆)𝑆1𝜑(𝑆)⊤ is said to have a matrix-variate Beta
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distribution, i.e. 𝑈 ∼ Beta𝑝(𝑡/2, (𝑛 − 𝑡)/2). To the best of our knowledge,
it is unclear what happens when 𝑛 < 𝑝 in the literature. The following
Lemma 10 and Corollary 11 effectively generalize the existing matrix-variate
Beta distribution to the rank-deficient case of 𝑛 < 𝑝.

Lemma 10. Suppose 𝑋 ∈ R𝑛×𝑝 has independent 𝑁(0, 1) entries and write
𝑟 := min{𝑛, 𝑝}. There exists an almost surely unique way of writing 𝑋 = 𝑄𝑅
as its QR decomposition, where 𝑄 ∈ O𝑛×𝑟 and 𝑅 ∈ R𝑟×𝑝 such that 𝑅𝑖,𝑗 = 0 for
all 𝑖 > 𝑗 and 𝑅𝑖,𝑖 ≥ 0 for all 𝑖 ∈ [𝑛]. We have that 𝑄 and 𝑅 are independent
and 𝑄 ∼ Unif(O𝑛×𝑛), 𝑅2

𝑖,𝑖 ∼ 𝜒2(𝑛− 𝑖+ 1) and 𝑅𝑖,𝑗 ∼ 𝑁(0, 1) for 𝑖 ∈ [𝑛] and
𝑗 ∈ [𝑝] with 𝑖 < 𝑗. Furthermore, 𝐵 := 𝑄⊤

(0,𝑡]𝑄(0,𝑡] ∼ Beta𝑟(𝑡/2, (𝑛− 𝑡)/2) and
is independent of 𝑋⊤𝑋.

Proof. First we consider the case of 𝑛 ≥ 𝑝. Write the (almost surely) unique
QR decomposition of 𝑋 by 𝑋 = 𝑄𝑅 with 𝑄 ∈ O𝑛×𝑝 and 𝑅 ∈ R𝑝×𝑝 being
an upper triangular matrix with 𝑅𝑖,𝑖 ≥ 0 for all 𝑖 ∈ [𝑝]. For any fixed
𝐻 ∈ O𝑛×𝑛, 𝐻𝑋 d= 𝑋, whence 𝐻𝑄𝑅 d= 𝑄𝑅. As such, the joint density of 𝑄
and 𝑅 is constant for every possible value of 𝑄 ∈ O𝑝×𝑛, whence 𝑄 and 𝑅 are
independent and 𝑄 ∼ Unif(O𝑝×𝑛). By (Muirhead, 2009, Theorem 3.2.14), we
have 𝑅2

𝑖,𝑖 ∼ 𝜒2(𝑛 − 𝑖 + 1) and that 𝑅𝑖,𝑗 ∼ 𝑁(0, 1) and 𝑅𝑖,𝑗 are independent
for all 𝑖 ≤ 𝑗. We define 𝑆 := 𝑋⊤𝑋, 𝑆1 := 𝑋⊤

(0,𝑡]𝑋(0,𝑡] and 𝑆2 := 𝑋⊤
(𝑡,𝑛]𝑋(𝑡,𝑛].

Define 𝑆1/2 := 𝑅⊤, and by Mitra (1970),

𝐵 := 𝑄⊤
(0,𝑡]𝑄(0,𝑡] = 𝑆−1/2𝑆1(𝑆−1/2)⊤ ∼ Beta𝑝(𝑡/2, (𝑛− 𝑡)/2).

We note that 𝐵 as a function of 𝑄 is independent of 𝑋⊤𝑋 = 𝑅⊤𝑅, by the
independence of 𝑄 and 𝑅.

Now we consider the case 𝑛 < 𝑝. Write 𝑋𝑗 as the 𝑗th column of 𝑋. Write
𝑋 = [𝑋L | 𝑋R] where 𝑋L = [𝑋1 | · · · | 𝑋𝑛] and 𝑋R := [𝑋𝑛+1 | · · · | 𝑋𝑝]. For
𝑋L whose rank is almost surely 𝑛, there exists a unique QR decomposition
such that 𝑋L = 𝑄𝑅L. Take 𝑅R := 𝑄⊤𝑋R and 𝑅 := [𝑅L | 𝑅R], and we
have 𝑋 = 𝑄𝑅, where both 𝑄 and 𝑅 are almost surely unique. By the
same argument as the case of 𝑛 ≥ 𝑝, we have 𝑄 and 𝑅 are independent
and 𝑄 ∼ Unif(O𝑛×𝑛). Applying the conclusion from the case of 𝑛 ≥ 𝑝
on 𝑋L = 𝑄𝑅L, we have (𝑅𝐿)𝑖,𝑖 ∼ 𝜒2(𝑛 − 𝑖 + 1) and (𝑅𝐿)𝑖,𝑗 ∼ 𝑁(0, 1).
Furthermore, since 𝑅R = 𝑄⊤𝑋R where both 𝑄 and 𝑋R is independent of
𝑋L and 𝑄 is independent of 𝑋R, all entries of 𝑅R are standard normals
independent of 𝑅L.
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Applying the case of 𝑛 ≥ 𝑝 on 𝑋L = 𝑄𝑅L, we have 𝐵 := 𝑄⊤
(0,𝑡]𝑄(0,𝑡] ∼

Beta𝑛(𝑡/2, (𝑛− 𝑡)/2). By the same argument as before, 𝐵 is independent of
𝑋⊤𝑋.
Corollary 11. Let 𝑋 = (𝑥1, . . . , 𝑥𝑛)⊤ where 𝑥𝑖 ∼ 𝑁𝑝(0,Σ) where Σ is a
positive definite matrix. Write 𝑆 = 𝑋⊤𝑋 and 𝑆1 := 𝑋⊤

(0,𝑡]𝑋(0,𝑡]. Let 𝑟 :=
min{𝑛, 𝑝} and 𝜑 : R𝑝×𝑝 → R𝑝×𝑟 be a function such that 𝜑(𝑆)𝑆𝜑(𝑆)⊤ = 𝐼𝑟 for
any positive semi-definite matrix 𝑆 ∈ R𝑝×𝑝 of rank 𝑟. Then 𝜑(𝑆)𝑆1𝜑(𝑆)⊤ ∼
Beta𝑟(𝑡/2, (𝑛− 𝑡)/2) and is independent of 𝑆 = 𝑋⊤𝑋.
Proof. By the positive definiteness of Σ, we find Σ1/2 ∈ R𝑝×𝑝 such that Σ =
Σ1/2(Σ1/2)⊤. Find Σ−1/2 such that Σ−1/2Σ1/2 = 𝐼𝑝. Define 𝑦𝑖 := Σ−1/2𝑥𝑖 ∼
𝑁𝑝(0, 𝐼𝑝) and 𝑌 = 𝑋(Σ−1/2)⊤ has independent 𝑁(0, 1) entries. Let 𝑆 :=
𝑌 ⊤𝑌 = Σ−1/2𝑆(Σ−1/2)⊤ and 𝑆1 := 𝑌 ⊤

(0,𝑡]𝑌(0,𝑡] = Σ−1/2𝑆1(Σ−1/2)⊤, whence
by the definition of 𝜑 we have 𝜑(𝑆)𝑆𝜑(𝑆)⊤ = 𝜑(𝑆)Σ1/2𝑆(Σ1/2)⊤𝜑(𝑆)⊤ = 𝐼𝑟.
As such, we define 𝜑(𝑆) := 𝜑(Σ1/2𝑆(Σ−1/2)⊤)Σ1/2, which is a well-defined
function, and have 𝜑(𝑆)𝑆𝜑(𝑆)⊤ = 𝐼𝑟. Since 𝜑(𝑆)𝑆1𝜑(𝑆)⊤ can be defined by
𝑌 with no dependence on Σ, it suffices to work on the case Σ = 𝐼𝑝, which we
assume for the rest of the proof.

By Lemma 10, write the unique QR decomposition of 𝑋 by 𝑋 = 𝑄𝑅 with
𝑄 ∈ O𝑛×𝑟 and 𝑅 ∈ R𝑟×𝑝, whence 𝑆 = 𝑅⊤𝑅. Write 𝐵 = 𝑄⊤

(0,𝑡]𝑄(0,𝑡]. Since
𝜑(𝑆)⊤𝑅⊤𝑅𝜑(𝑆) = 𝐼𝑟, we have 𝐻 := 𝑅𝜑(𝑆) ∈ O𝑟×𝑟, whence 𝜑(𝑆)⊤𝑆1𝜑(𝑆) =
𝐻⊤𝑄⊤

(0,𝑡]𝑄(0,𝑡]𝐻 = 𝐻⊤𝐵𝐻. Since 𝐵 as a function of 𝑄 is independent of
𝑆 and 𝑅, it is independent of 𝐻. By noting 𝐻⊤𝐵𝐻 = 𝜑(𝑆)𝑆1𝜑(𝑆)⊤ and
𝐵

d= 𝐻⊤𝐵𝐻 because 𝑄𝐻 d= 𝑄 for any 𝐻 ∈ O𝑟×𝑟. The independence between
𝜑(𝑆)𝑆1𝜑(𝑆) and 𝑆 follows from the fact that the distribution of 𝜑(𝑆)𝑆1𝜑(𝑆)
is invariant conditionally on 𝑆.

Recall that 𝐽(𝑎1,𝑎2] := (𝐽𝑎1+1, · · · , 𝐽𝑎2)⊤ is the submatrix of 𝐽 by taking
only the (𝑎1 + 1)-th to 𝑎2-th rows for any matrix 𝐽 . For the rest of the paper,
we define shorthand

𝑆𝑎1,𝑎2 :=
𝑎2∑︁

𝑖=𝑎1+1
𝑥𝑖𝑥

⊤
𝑖 = 𝑋⊤

(𝑎1,𝑎2]𝑋(𝑎1,𝑎2]

Define the scalar quantity 𝜂(𝑛, 𝑝) := (E[𝑥1𝑥
⊤
1 (𝑛−1𝑆0,𝑛)−1𝑥𝑛𝑥

⊤
𝑛 ])1,1.

Lemma 12. For all 𝑡 ≤ 𝑧, 𝑊⊤
𝑡 𝑊𝑧 = 4𝑆0,𝑡𝑆

−1
0,𝑛𝑆𝑧,𝑛, whence for 𝑧 ∈ [𝑛] and

𝑡 ∈ [𝑧] we have

E[𝑊⊤
𝑡 𝑊𝑧] = 4𝑡(𝑛− 𝑧)𝑛𝜂(𝑛, 𝑝)𝐼𝑝.

15



Furthermore, under Condition 2, 𝜂(𝑛,𝑝)
(𝑛−𝑝)𝑛−1 → 1, i.e., 𝜂(𝑛, 𝑝) → 𝜂 as 𝑛, 𝑝 → ∞.

Proof. By the construction of 𝐴, we have 𝐴𝐴⊤ = 𝐼𝑛 −𝑋(𝑋⊤𝑋)−1𝑋⊤. We
have

𝑊⊤
𝑡 𝑊𝑧 =

(︁
𝑋⊤

(0,𝑡] −𝑋⊤
(𝑡,𝑛]

)︁(︃𝐴(0,𝑡]
𝐴(𝑡,𝑛]

)︃(︁
𝐴⊤

(0,𝑧] 𝐴⊤
(𝑧,𝑛]

)︁(︃ 𝑋(0,𝑧]
−𝑋(𝑧,𝑛]

)︃

=
(︁
𝑋⊤

(0,𝑡] −𝑋⊤
(𝑡,𝑛]

)︁
(𝐼𝑛 −𝑋(𝑋⊤𝑋)−1𝑋⊤)

(︃
𝑋(0,𝑧]

−𝑋(𝑧,𝑛]

)︃
= (𝑆0,𝑡 − 𝑆𝑡,𝑧 + 𝑆𝑧,𝑛) − (𝑆0,𝑡 − 𝑆𝑡,𝑧 − 𝑆𝑧,𝑛)𝑆−1

0,𝑛(𝑆0,𝑡 + 𝑆𝑡,𝑧 − 𝑆𝑧,𝑛)
= 2(𝑆0,𝑡 − 𝑆𝑡,𝑧 − 𝑆𝑧,𝑛)𝑆−1

0,𝑛𝑆𝑧,𝑛 + 2𝑆𝑧,𝑛
= 4𝑆0,𝑡𝑆

−1
0,𝑛𝑆𝑧,𝑛.

In particular, we have for all 𝑧 ∈ [𝑛] and 𝑡 ∈ [𝑧]

E𝑊⊤
𝑡 𝑊𝑧 = 4

𝑡∑︁
𝑖=1

𝑛∑︁
𝑗=𝑧+1

E[𝑥𝑖𝑥⊤
𝑖 𝑆

−1
0,𝑛𝑥𝑗𝑥

⊤
𝑗 ] = 4𝑡(𝑛− 𝑧)E[𝑥1𝑥

⊤
1 𝑆

−1
0,𝑛𝑥𝑛𝑥

⊤
𝑛 ],

where we invoke the exchangeability of 𝑥𝑖𝑥⊤
𝑖 𝑆

−1
0,𝑛𝑥𝑗𝑥

⊤
𝑗 for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 in

the second equality.
We first note E[𝑊⊤

𝑧 𝑊𝑧] = 4𝑧(𝑛− 𝑧)E[𝑥1𝑥
⊤
1 𝑆

−1
0,𝑛𝑥𝑛𝑥

⊤
𝑛 ], and then show that

E[𝑊⊤
𝑧 𝑊𝑧] must be a scale of 𝐼𝑝. Since for any 𝑈 ∈ O𝑝×𝑝, 𝑥⊤

𝑖 𝑈
d= 𝑥⊤

𝑖 for 𝑖 ∈ [𝑛],
whence we have 𝑈⊤𝑊⊤

𝑧 𝑊𝑧𝑈 = 4𝑈⊤𝑆0,𝑡𝑈(𝑈⊤𝑆0,𝑛𝑈)−1𝑈⊤𝑆𝑧,𝑛𝑈
d= 𝑊⊤

𝑧 𝑊𝑧.
In particular, 𝑊⊤

𝑧 𝑊𝑧 have identically distributed diagonals and identically
distributed off-diagonals. It suffices to verify that its off-diagonals have zero
mean.

Let 𝑋 = 𝑄𝑇 be the almost surely unique QR decomposition of 𝑋, where
we only take non-negative diagonal entries in 𝑇 . By Equation (15) of Gao
and Wang (2022), we have 𝑊⊤

𝑧 𝑊𝑧 = 4𝑇⊤𝑉 Λ(𝐼𝑝 − Λ)𝑉 ⊤𝑇 , where 𝑉 Λ𝑉 ⊤ =
𝑄⊤

(0,𝑧]𝑄(0,𝑧] is the eigendecomposition of 𝐵 := 𝑄⊤
(0,𝑡]𝑄(0,𝑡]. Note that 𝑉 ∼

Unif(O𝑝×𝑝), Λ and 𝑇 are mutually independent and 𝑇 has independent
entries with 𝑇𝑗,𝑗 = 𝑡𝑗 > 0 such that 𝑡2𝑗 ∼ 𝜒2

𝑛−𝑗+1 and 𝑇𝑗,𝑘 = 𝑧𝑗𝑘 ∼ 𝑁(0, 1) for
𝑗 ̸= 𝑘. For off-diagonals, it suffices to have

(E[𝑊⊤
𝑧 𝑊𝑧])1,2 = 4E

[︃ 𝑝∑︁
𝑗=1

𝑡1𝑉𝑗,1𝜆𝑗(1 − 𝜆𝑗)(𝑡2𝑉𝑗,2 + 𝑧12𝑉𝑗,1)
]︃

= 4
𝑝∑︁
𝑗=1

[︃
E[𝑡1]E[𝜆𝑗(1 − 𝜆𝑗)](E[𝑡2]E[𝑉𝑗,1𝑉𝑗,2] + E[𝑧12]E[𝑉 2

𝑗,1])
]︃

= 0,
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where 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑝 are diagonal elements of Λ and E[𝑉𝑗,1𝑉𝑗,2] =
(1/𝑝)∑︀𝑝

𝑗=1 𝑉𝑗,1𝑉𝑗,2 = 0 since 𝑉 ∈ O𝑝×𝑝.
Lastly, under Condition 2, by Proposition 8 of Gao and Wang (2022),

(𝑊⊤
𝑧 𝑊𝑧)1,1

a.s.−−→ (4𝑧(𝑛 − 𝑧)(𝑛 − 𝑝))/𝑛3. Noting (E[𝑊⊤
𝑧 𝑊𝑧])1,1 = 4𝑧(𝑛 −

𝑧)𝑛𝜂(𝑛, 𝑝), we conclude the convergence of 𝜂(𝑛, 𝑝) → 𝜂.

Lemma 13. Let 𝑥1, . . . , 𝑥𝑛
iid∼ 𝑁𝑝(0, 𝐼𝑝). Fix 𝑧 ∈ [𝑛] and 𝑡 ∈ [𝑧]. For any

nonrandom 𝑢,𝑤 ∈ 𝒮𝑝−1, we have

P
[︃

1
𝑡

⃒⃒⃒⃒
⃒𝑢⊤

{︃
𝑆0,𝑡−

𝑡

𝑧
𝑆0,𝑧

}︃
𝑆−1

0,𝑛𝑆𝑧,𝑛𝑤

⃒⃒⃒⃒
⃒ ≥ 𝑥

⃒⃒⃒⃒
⃒ 𝑆0,𝑧, 𝑆𝑧,𝑛

]︃
≤ 52 exp

{︃
− 𝑡2𝑥2

8𝑧‖𝑆−1
0,𝑛𝑆𝑧,𝑛‖2

op‖𝑆0,𝑧/𝑧‖2
op

}︃
.

Proof. For notational simplicity, we use P𝑧 and E𝑧 to denote the condi-
tional probability and expectation with respect to the 𝜎-algebra generated by
(𝑆0,𝑧, 𝑆𝑧,𝑛). Note that 𝑆0,𝑡 | (𝑆0,𝑧, 𝑆𝑧,𝑛) d= 𝑆0,𝑡 | 𝑆0,𝑧 and E𝑧[𝑆0,𝑡] = (𝑡/𝑧)𝑆0,𝑧.

Let 𝑟 := min{𝑧, 𝑝}. We note 𝑆0,𝑧 has (almost surely) rank 𝑟, and write
𝑆0,𝑧 = 𝑅⊤𝑅 for the (almost surely unique) Cholesky decomposition of 𝑆0,𝑧
such that 𝑅 ∈ R𝑟×𝑝 is an upper-triangular matrix with positive diagonal
entries. Write 𝑅† ∈ R𝑝×𝑟 for the (almost surely unique) Moore–Penrose
pseudo-inverse of 𝑅 such that 𝑅𝑅† = 𝐼𝑝. By Corollary 11, the matrix 𝐵 :=
(𝑅†)⊤𝑆0,𝑡𝑅

† ∼ Beta𝑟(𝑡/2, (𝑧 − 𝑡)/2) has a matrix-variate Beta distribution,
and is independent of 𝑆0,𝑧 with (𝑡/𝑧)𝐼𝑝 as its (conditional) mean. Observe that
𝑅⊤𝐵𝑅 = (𝑅†𝑅)⊤𝑆0,𝑡(𝑅†𝑅) = 𝑆0,𝑡, since 𝑅†𝑅 is a (symmetric) orthogonal
projection matrix onto the row space of 𝑋(0,𝑧], which contains the row space
of 𝑋(0,𝑡].

Define 𝑣 := 𝑆−1
0,𝑛𝑆𝑧,𝑛𝑤/‖𝑆−1

0,𝑛𝑆𝑧,𝑛𝑤‖2. Writing 𝑢̃ := 𝑅𝑢/
√
𝑧 and 𝑣 :=

𝑅𝑣/
√
𝑧, we have

P𝑧
[︃

1
𝑡
|𝑢⊤{𝑆0,𝑡 − E𝑧(𝑆0,𝑡)}𝑆−1

0,𝑛𝑆𝑧,𝑛𝑤| ≥ 𝑥

]︃
≤ P𝑧

[︃
1
𝑡
|𝑢⊤{𝑆0,𝑡 − E𝑧(𝑆0,𝑡)}𝑣| ≥ 𝑥

‖𝑆−1
0,𝑛𝑆0,𝑧‖op

]︃

= P𝑧
{︃⃒⃒⃒⃒
⃒𝑢̃⊤

(︃
𝑧

𝑡
𝐵 − 𝐼𝑝

)︃
𝑣

⃒⃒⃒⃒
⃒ ≥ 𝑥

‖𝑆−1
0,𝑛𝑆0,𝑧‖op

}︃

≤ P𝑧
{︃⃒⃒⃒⃒
⃒
(︃

𝑢̃

‖𝑢̃‖2

)︃⊤(︃
𝑧

𝑡
𝐵 − 𝐼𝑝

)︃
𝑣

‖𝑣‖2

⃒⃒⃒⃒
⃒ ≥ 𝑥

‖𝑆−1
0,𝑛𝑆0,𝑧‖op‖𝑆0,𝑧/𝑧‖op

}︃
.

Write shorthand 𝜓 := ‖𝑆−1
0,𝑛𝑆0,𝑧‖op‖𝑆0,𝑧/𝑧‖op, which is measurable with respect

to the 𝜎-algebra generated by (𝑆0,𝑧, 𝑆𝑧,𝑛). There exists an orthogonal matrix
𝑈 such that 𝑈𝑢̃/‖𝑢̃‖2 = 𝑒1 and 𝑈𝑣/‖𝑣‖2 = 𝛼𝑒1 + 𝛽𝑒2 for real 𝛼 and 𝛽 such
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that 𝛼2 +𝛽2 = 1, where 𝑒𝑗 denotes the 𝑗th standard basis vector in R𝑝. Using
the fact that 𝐵 | (𝑆0,𝑧, 𝑆𝑧,𝑛) d= 𝑈⊤𝐵𝑈 | (𝑆0,𝑧, 𝑆𝑧,𝑛), we have for 𝐽 = {1, 2}
that

P𝑧
{︃⃒⃒⃒⃒
⃒
(︃

𝑢̃

‖𝑢̃‖2

)︃⊤(︃
𝑧

𝑡
𝐵 − 𝐼𝑝

)︃
𝑣

‖𝑣‖2

⃒⃒⃒⃒
⃒ ≥ 𝑥

𝜓

}︃

≤ P𝑧
{︃⃒⃒⃒⃒
⃒𝑧𝑡 𝐵1,1 − 1

⃒⃒⃒⃒
⃒ ≥ 𝑥√

2𝜓

}︃
+ P𝑧

{︃
𝑧

𝑡
|𝐵1,2| ≥ 𝑥√

2𝜓

}︃

≤ 2P𝑧
{︃⃦⃦⃦⃦
⃦
(︃
𝐵 − 𝑡

𝑧
𝐼𝑝

)︃
𝐽,𝐽

⃦⃦⃦⃦
⃦

op
≥ 𝑡𝑥√

2𝑧𝜓

}︃
,

where the first inequality holds by noting |𝛼| + |𝛽| ≤ (2𝛼2 + 2𝛽2)1/2 =
√

2.
Note that {𝑤 ∈ 𝒮𝑝−1 : supp(𝑤) ⊆ 𝐽} is isomorphic to 𝑆1, which contains a
(1/4)-net 𝒩 of cardinality ⌈ 2𝜋

4 arcsin(1/8)⌉ = 13. By Gupta and Nagar (1999,
Theorem 5.3.12), for each 𝑤 ∈ 𝒩 , we have 𝑤⊤𝐵𝑤 ∼ Beta(𝑡/2, (𝑧 − 𝑡)/2).
Hence, by Vershynin (2012, Lemma 5.4) and a union bound, we have

P𝑧
{︃⃦⃦⃦⃦
⃦
(︃
𝐵 − 𝑡

𝑧
𝐼𝑝

)︃
𝐽,𝐽

⃦⃦⃦⃦
⃦

op
≥ 𝑡𝑥√

2𝑧𝜓

}︃
≤ P𝑧

{︃
sup
𝑤∈𝒩

⃒⃒⃒
𝑤⊤𝐵𝑤 − 𝑡/𝑧

⃒⃒⃒
≥ 𝑡𝑥

2
√

2𝑧𝜓

}︃

≤ 13P𝑧
{︃⃒⃒⃒
𝐵1,1 − 𝑡/𝑧

⃒⃒⃒
≥ 𝑡𝑥

2
√

2𝑧𝜓

}︃

≤ 26 exp
{︃

− 𝑡2𝑥2

8𝑧𝜓2

}︃
,

where we have used Marchal and Arbel (2017, Theorem 2.1) in the final
inequality.

Lemma 14. Let 𝑋 = (𝑋1, . . . , 𝑋𝑝)⊤ be uniformly distributed on the sphere
𝒮𝑝−1. Then, for 𝛿 ≥ 𝑒−𝑝/16, we have

P
(︃

‖𝑋‖∞ >

√︃
4 log(2/𝛿)

𝑝

)︃
≤ 𝑝𝛿.

Proof. Let 𝑍1, . . . , 𝑍𝑝 be independent 𝑁(0, 1) random variables, then 𝑋1
d=

𝑍1/(𝑍2
1 + · · · + 𝑍2

𝑝)1/2. By a standard Gaussian tail bound, we have

P
{︁
𝑍1 >

√︁
2 log(1/𝛿)

}︁
≤ 𝛿.
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Moreover, ∑︀𝑝
𝑗=1 𝑍

2
𝑗 ∼ 𝜒2

𝑝. Since we have 𝛿 ≥ 𝑒−𝑝/16, by Laurent and Massart
(2000, Lemma 1),

P
(︃ 𝑝∑︁
𝑗=1

𝑍2
𝑗 <

𝑝

2

)︃
≤ P

(︃ 𝑝∑︁
𝑗=1

𝑍2
𝑗 < 𝑝− 2

√︁
𝑝 log(1/𝛿)

)︃
≤ 𝛿.

The result follows by combining the above two bounds and applying a union
bound.

Recall 𝐵0(𝑘) ⊆ R𝑝 is the set of 𝑘-sparse unit vectors.

Lemma 15. For any 𝐴 ∈ R𝑝×𝑝, and any 𝜖 ∈ (0, 1), there exists an 𝜖-net 𝒩𝜖

of 𝐵0(𝑘) of cardinality at most {(1 + 2/𝜖)𝑒𝑝/𝑘}𝑘 such that

sup
𝑢∈𝐵0(𝑘)

𝑢⊤𝐴𝑣 ≤ (1 − 𝜖)−1 max
𝑢∈𝒩𝜖

𝑢⊤𝐴𝑣.

Proof. By Vershynin (2012, Lemma 5.2), for each subset 𝑆 ⊆ [𝑝] of cardinality
𝑘, there exists an 𝜖-net 𝒩𝑆 of {𝑣 ∈ 𝐵0(𝑘) : supp(𝑣) ⊆ 𝑆} of cardinality at
most (1 + 2/𝜖)𝑘. Define 𝒩𝜖 := ∪𝑆⊆[𝑝]:|𝑆|=𝑘𝒩𝑆, then |𝒩𝜖| ≤

(︁
𝑝
𝑘

)︁
(1 + 2𝜖)𝑘 ≤

{(1 + 2𝜖)𝑒𝑝/𝑘}𝑘. For any fixed 𝑥 ∈ 𝐵0(𝑘), find 𝑥̃ ∈ 𝒩𝜖 such that ‖𝑥− 𝑥̃‖2 ≤ 𝜖
and ‖𝑥− 𝑥̃‖0 ≤ 𝑘. Thus,

𝑥⊤𝐴𝑣 = (𝑥− 𝑥̃)⊤𝐴𝑣 + 𝑥̃⊤𝐴𝑣

≤ ‖𝑥− 𝑥̃‖2 sup
𝑢∈𝐵0(𝑘)

𝑢⊤𝐴𝑣 + sup
𝑢∈𝒩𝜖

𝑢⊤𝐴𝑣

≤ 𝜖 sup
𝑢∈𝐵0(𝑘)

𝑢⊤𝐴𝑣 + sup
𝑢∈𝒩𝜖

𝑢⊤𝐴𝑣.

The desired result follows by taking supremum over 𝑥 ∈ 𝐵0(𝑘) above.

C Additional simulation results
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𝑘 𝑠 𝜌 CP CL VPBS LB KJF LSS CO XWZY
3 3 1 79.8 105.3 122.8 665.2 4.5 22.0 126.3 39.1

2 8.8 14.1 33.0 493.1 2.1 6.2 17.3 10.4
4 3.3 3.4 8.3 38.0 1.2 2.4 13.1 24.8
8 1.6 1.6 2.5 0.4 1.2 0.6 15.6 37.3

3 1000 1 60.7 113.3 241.6 429.5 237.2 227.3 222.8 272.9
2 8.3 11.8 243.4 441.4 239.0 228.2 92.3 298.8
4 2.9 4.0 239.5 366.9 243.9 230.6 96.6 304.9
8 2.4 1.4 235.1 245.1 262.2 230.7 53.9 312.7

31 31 1 239.1 333.9 145.1 659.5 15.0 33.9 410.5 88.3
2 89.6 128.0 59.1 741.1 3.0 11.2 452.1 24.8
4 25.7 13.6 39.0 765.9 1.3 4.6 389.1 1.0
8 11.2 5.9 68.5 396.2 1.2 0.8 408.7 6.0

31 1000 1 300.3 364.9 233.4 440.1 238.8 227.4 352.0 280.0
2 71.7 140.9 242.5 469.5 238.9 228.3 398.1 294.5
4 16.0 12.5 251.3 358.4 238.9 224.5 418.7 308.6
8 13.7 4.6 244.5 249.0 238.2 230.1 372.1 315.5

1000 1000 1 275.5 359.8 232.6 483.0 239.3 231.8 371.3 273.5
2 256.9 320.8 238.4 447.4 238.9 229.2 348.2 296.1
4 224.1 91.0 242.7 378.2 239.1 228.0 357.6 309.8
8 194.5 39.6 246.4 253.5 242.4 226.7 393.9 311.4

Table S.1: Average loss of various changepoint methods under different
settings, similar to Table 2, except for 𝑝 = 1000. Other parameters: 𝑛 = 1200
and 𝑧 = 360. The method with the least average loss in each line is marked
in bold.
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