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Abstract

We introduce a new methodology ‘charcoal’ for estimating the location of sparse
changes in high-dimensional linear regression coefficients, without assuming that
those coefficients are individually sparse. The procedure works by constructing
different sketches (projections) of the design matrix at each time point, where
consecutive projection matrices differ in sign in exactly one column. The sequence of
sketched design matrices is then compared against a single sketched response vector
to form a sequence of test statistics whose behaviour shows a surprising link to the
well-known CUSUM statistics of univariate changepoint analysis. The procedure
is computationally attractive, and strong theoretical guarantees are derived for its
estimation accuracy. Simulations confirm that our methods perform well in extensive
settings, and a real-world application to a large single-cell RNA sequencing dataset
showcases the practical relevance.

1 Introduction
The past twenty years have witnessed rapid development of statistical methodologies
for high-dimensional data sets, where the number of variables of interest is often of
comparable or even larger order of magnitude than the number of observations available.
The most prominent example, perhaps, is the line of work on sparse linear regression, which
started from the seminal work of Tibshirani (1996), and was developed and generalized
subsequently by many others (see, e.g. Fan and Lv (2010); Bühlmann and van de Geer
(2011) for a general overview of this area). In many of these works, the primary focus was
on how to exploit the sparsity of the regression coefficients for their successful estimation,
and to achieve this, a homogeneous data generating mechanism was often assumed for
simplicity of analysis.

However, it is usually unrealistic in large, high-dimensional data sets to assume that
the data generating mechanism holds true throughout. In fact, heterogeneity is the norm
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rather than exception in Big Data applications. Several attempts have been made to
handle data heterogeneity in high-dimensional linear models. For instance, Städler et al.
(2010); Yin et al. (2018); Krishnamurthy et al. (2019) considered the problem of learning
mixture of sparse linear regression, where the regression coefficient vector is sampled from
a small set of sparse regression coefficients. When observations have a temporal structure,
one common way to handle heterogeneity is to break the sequence of observations into
shorter time segments on which the data are more homogeneous. This line of thinking
is the driving force behind the recent revival of interest in changepoint analysis, which
dates back to the early work of Page (1955), but has seen growing interest recently in
high-dimensional settings, see e.g., Lévy-Leduc and Roueff (2009); Bai (2010); Zhang et al.
(2010); Horváth and Hušková (2012); Cho and Fryzlewicz (2014); Jirak (2015); Cho (2016);
Wang and Samworth (2018); Enikeeva and Klopp (2021); Liu et al. (2021); Follain et al.
(2022); Chen et al. (2022).

In our linear regression setting, such a changepoint setup means that the sequence of
regression coefficient vectors has a piecewise constant structure. More precisely, for an
unknown sequence of changepoints 0 < 𝑧1 < · · · < 𝑧𝜈 < 𝑛 (for notational convenience, we
also define 𝑧0 := 0 and 𝑧𝜈+1 := 𝑛) and an unknown sequence of a regression coefficients
(𝛽(𝑟) : 1 ≤ 𝑟 ≤ 𝜈 + 1), we assume that the data (𝑥𝑡, 𝑦𝑡) ∈ R𝑝 × R, 1 ≤ 𝑡 ≤ 𝑛 are generated
according to the following model

𝑦𝑡 = 𝑥⊤
𝑡 𝛽𝑡 + 𝜖𝑡, where 𝛽𝑡 = 𝛽(𝑟) for 𝑧𝑟−1 < 𝑡 ≤ 𝑧𝑟, 1 ≤ 𝑟 ≤ 𝜈 + 1, (1)

and (𝜖𝑡)1≤𝑡≤𝑛 are the observational errors distributed as 𝑁(0, 𝜎2𝐼𝑛) conditionally inde-
pendent of (𝑥𝑡)1≤𝑡≤𝑛. The goal is to locate the changepoints 𝑧1, . . . , 𝑧𝜈 upon observing the
response vector 𝑌 = (𝑦1, . . . , 𝑦𝑛)⊤ and the design matrix 𝑋 = (𝑥1, . . . , 𝑥𝑛)⊤.

Classically, when the dimension 𝑝 is far smaller than 𝑛, Bai (1997); Bai and Per-
ron (1998); Julious (2001) showed that a least-square-based approach works well in the
above changepoint problem, which is equivalent to maximum-likelihood estimations under
Gaussianity assumptions. Specifically, for a given 𝜈, the maximum likelihood estimator
finds the optimal partition of {1, . . . , 𝑛} into 𝜈 + 1 segments such that residual sum of
squares from the least-square fit within each segment is minimized. The least-square
(maximum-likelihood) fit from different choices of 𝜈 can then be compared using for
instance the Bayesian Information Criterion (BIC) to choose the best 𝜈, which is often
solved algorithmically via dynamic programming.

In the high-dimensional setting, the above maximum-likelihood/least-square approach
no longer works. Several works have appeared to analyse such regression changepoint
problems in the high-dimensional context, see for instance Rinaldo et al. (2021); Wang
et al. (2021); Lee et al. (2016); Kaul et al. (2019) and references therein. However, in
addition to the modelling assumption in (1), these works also impose the additional
assumption that all regression coefficients (𝛽(𝑟) : 1 ≤ 𝑟 ≤ 𝜈 + 1) are individually sparse.
Given a hypothesized set of changepoints, this additional assumption allows them to form
estimators of 𝛽(𝑟), 1 ≤ 𝑟 ≤ 𝜈 + 1, which are in turn used to form goodness-of-fit statistics
for the set of hypothesized changepoints.

A major difference between this work and the aforementioned existing line of works is
that we do not assume that the regression coefficients within different stationary segments
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are individually sparse. Instead, we make the less stringent assumption that the difference in
the regression coefficient vectors before and after each change, i.e., 𝜃(𝑟) := (𝛽(𝑟+1)−𝛽(𝑟))/2,
are sparse in the sense that ‖𝜃(𝑟)‖0 ≤ 𝑘, for 𝑟 = 1, . . . , 𝜈. We would argue that this is a
more natural assumption, since it is the change in the regression coefficients, rather than
the pre- and post-change coefficients themselves, that is the quantity of interest in this
statistical problem. Practically, the assumption that all regression coefficients are sparse
can be violated in applications. For instance, Kraft and Hunter (2009) argued that in
genetic studies, “many, rather than few, variant risk alleles are responsible for the majority
of the inherited risk of each common disease”, leading to non-sparse regression coefficients.
However, in such examples, the task of detecting sparse changes in these regression
coefficients over time can still be of interest in, e.g., identifying different development
stages in gene regulatory networks in species (Hatleberg and Hinman, 2021). Furthermore,
our ‘sparsity-in-change’ assumption is also more in line with the assumptions made in the
high-dimensional change-in-mean problem (see, e.g. Cho and Fryzlewicz, 2014; Jirak, 2015;
Wang and Samworth, 2018), where the pre- and post-change mean vectors are regarded
as nuisance parameters and sparsity assumptions only need to be placed on vectors of
changes for successful detection and localization of the changepoints.

Allowing for dense pre- and post-change regression coefficients makes the changepoint
estimation problem considerably more challenging. In particular, the general strategy
employed by existing works on high-dimensional regression changepoints that relies on
forming good estimators of (𝛽(𝑟) : 𝑟 ∈ {1, . . . , 𝜈}) will unlikely be successful here. Our
first contribution in this paper is to propose a novel methodology, which we call charcoal
(changepoint in regression via a complementary-sketching algorithm), and works by forming
a projected response vector and a sequence of projected design matrices to eliminate the
dense nuisance parameter. For simplicity of exposition, we consider the single changepoint
scenario, where 𝛽𝑖 = 𝛽(1)1{𝑖≤𝑧1} + 𝛽(2)1{𝑖>𝑧1}. Under the hypothesis that the true change
takes place at time 𝑡, we have⎧⎨⎩𝑌(0,𝑡] = 𝑋(0,𝑡]𝛽

(1) + 𝜖(0,𝑡],

𝑌(𝑡,𝑛] = 𝑋(𝑡,𝑛]𝛽
(2) + 𝜖(𝑡,𝑛],

(2)

where the subscript (0, 𝑡] indicates the concatenation of relating quantities on (1, . . . , 𝑡) and
(𝑡, 𝑛] that of (𝑡+ 1, . . . , 𝑛). We may think of (2) as a two-sample problem with different
regression coefficients before and after 𝑡. We assume throughout the paper that 𝑛 > 𝑝
for otherwise it is impossible to estimate the change when both pre- and post-change
parameters are dense (see further discussion at the beginning of Section 3). By invoking
the complementary sketching method of Gao and Wang (2022), we can find matrices
𝐴(0,𝑡] ∈ R𝑡×(𝑛−𝑝) and 𝐴(𝑡,𝑛] ∈ R(𝑛−𝑡)×(𝑛−𝑝) such that (𝐴⊤

(0,𝑡], 𝐴
⊤
(𝑡,𝑛])⊤ has orthogonal columns

spanning the orthogonal complement of the range of 𝑋. By forming the projected design
matrix 𝑊𝑡 := 𝐴⊤

(0,𝑡]𝑋(0,𝑡]−𝐴⊤
(𝑡,𝑛]𝑋(𝑡,𝑛] and the projected response 𝑍 := 𝐴⊤

(0,𝑡]𝑌(0,𝑡]+𝐴⊤
(𝑡,𝑛]𝑌(𝑡,𝑛],

we can eliminate the possibly dense nuisance parameter 𝜁 := (𝛽(2) + 𝛽(1))/2 and conduct
tests on 𝜃(1) = (𝛽(2) − 𝛽(1))/2 is zero against that it is non-zero and sparse.

In light of the true changepoint at time 𝑧1, the hypothesized model (2) is only correctly
specified when 𝑡 = 𝑧1. The further 𝑡 is away from 𝑧1, the less different the two samples
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(𝑋(0,𝑡], 𝑌(0,𝑡]) and (𝑋(𝑡,𝑛], 𝑌(𝑡,𝑛]) are, since one of the samples will be further contaminated by
the data points assigned to the wrong segment by the hypothesized changepoint. Intuitively,
we would expect the aforementioned two-sample test statistics to peak around 𝑡 = 𝑧1,
which can thus be used to estimate the location of the single changepoint. Unfortunately,
while good for testing, these two-sample test statistics have variances too large for accurate
changepoint localization. Nevertheless, the general idea of using complementary sketching
to eliminate nuisance parameters is valid. We introduce in Section 2 several alternative
statistics based on the sketched design 𝑊𝑡 and response 𝑍 that do lead to good changepoint
estimation performance. In particular, we will show in Section 3 that a variant of the
charcoal procedure achieves a rate of convergence of order

√︁
𝑘/(𝑛‖𝜃(1)‖2

2), up to logarithmic
factors. In the course of investigating the theoretical properties, we have developed new
results in understanding the asymptotic behaviour of the sketched design matrices by
generalizing existing matrix-variate Beta distribution to rank-deficient cases (Lemma 9
and Corollary 10) and extended sub-Gaussian bounds of Beta random variables to the
matrix variate case (Lemma 12), both of which may be of independent interest.

1.1 Outline of the paper
We present the methodology in detail in Section 2, including several algorithms that all use
the complementary sketching idea. Section 3 provides theoretical performance guarantees
to the slight variants of those proposed in Section 2. In the first part of Section 4,
we conduct numerical experiments on the charcoal methodology over a comprehensive
range of settings for both single and multiple changepoint estimation tasks and compare
our methods with other changepoint localization methods in the high-dimensional linear
regression context. In the second part of Section 4, we study a real data example to
identify changes for each gene in terms of its interaction with other genes in the gene
regulatory network across various development stages of T cells. Section 5 collects the
proofs of the main results while we gather the proofs of the ancillary results in Section 6.

1.2 Notation
For a positive integer 𝑝, [𝑝] = {1, . . . , 𝑝} consists of all positive integers not exceeding 𝑝.
For vector 𝑣 = (𝑣1, . . . , 𝑣𝑝)⊤, diag(𝑣) is a 𝑝× 𝑝 matrix such that (diag(𝑣))𝑖,𝑗 = 1{𝑖=𝑗}𝑣𝑖 for
𝑖, 𝑗 ∈ [𝑝]. We follow the usual definitions of ‖𝑣‖0 = ∑︀

𝑖∈[𝑝] 1{𝑣𝑖 ̸=0}, ‖𝑣‖2 = (∑︀𝑖∈[𝑝] 𝑣
2
𝑖 )1/2,

‖𝑣‖1 = ∑︀
𝑖∈[𝑝] |𝑣𝑖| and ‖𝑣‖∞ = max𝑖∈[𝑝] |𝑣𝑖|.

Given a matrix 𝐴 ∈ R𝑛×𝑚, we make it a convention that 𝐴 = (𝐴𝑖,𝑗)𝑖∈[𝑛],𝑗∈[𝑚] = [𝐴1 |
· · · | 𝐴𝑚] = (𝑎1, . . . , 𝑎𝑛)⊤, where 𝑎𝑖 is the transpose of the 𝑖th row of 𝐴 and 𝐴𝑗 is the
𝑗th column of 𝐴. Given any set 𝑆 ⊆ R, we write 𝐴𝑆 to be the submatrix of 𝐴 with row
indices in 𝑆. For instance, given positive integers 𝑠, 𝑡 such that 1 ≤ 𝑠 < 𝑡 ≤ 𝑛, 𝐴(𝑠,𝑡] :=
(𝑎𝑠+1, . . . , 𝑎𝑡)⊤. We define the usual norms for 𝐴 as follows ‖𝐴‖op := sup𝑣∈R𝑚:‖𝑣‖2=1 ‖𝐴𝑣‖2
and ‖𝐴‖max := max𝑖∈[𝑛],𝑗∈[𝑚] |𝐴𝑖,𝑗|. Assuming 𝑛 = 𝑚 in 𝐴, diag(𝐴) is an 𝑛 × 𝑛 matrix
such that (diag(𝐴))𝑖,𝑗 := 1𝑖=𝑗𝐴𝑖,𝑗 for 𝑖 ∈ [𝑛] and tr(𝐴) := ∑︀

𝑖∈[𝑛] 𝐴𝑖,𝑖.
For 𝑛 ≥ 𝑚, O𝑛×𝑚 := {𝑂 ∈ R𝑛×𝑚 : 𝑂⊤𝑂 = 𝐼𝑚}. We define 𝒮𝑝−1 := {𝑣 ∈ R𝑝 : ‖𝑣‖2 = 1}

and the 𝑘-sparse unit ball as 𝐵0(𝑘) := {𝑣 ∈ R𝑝 : ‖𝑣‖2 ≤ 1, ‖𝑣‖0 ≤ 𝑘}.
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2 Methodology
In this section, we describe in detail our charcoal algorithm for identifying the changepoints
in the problem setup of (1).

2.1 Single changepoint estimation
We start by focusing on the setting of a single changepoint estimation, i.e., 𝜈 = 1, which
captures the essence of the difficulty of this problem. For simplicity, we denote 𝑧 := 𝑧1
for the location of the only changepoint and write 𝑚 := 𝑛− 𝑝. The main idea is to use
data-driven projections to sketch the design matrix and the response vector to eliminate
the effect of the nuisance parameters.

Recall the data generating model (1). At each time point 𝑡 ∈ [𝑛 − 1], we perform a
two-sample test for the equality of regression coefficients before and after 𝑡 using data
points (𝑥𝑖, 𝑦𝑖)𝑡

𝑖=1 and (𝑥𝑖, 𝑦𝑖)𝑛
𝑖=𝑡+1 respectively. Motivated by Gao and Wang (2022), this

can be achieved by constructing a matrix 𝐴 ∈ O𝑛×𝑚 whose columns span the orthogonal
complement of the column space of 𝑋. We then define for any 𝑡 ∈ [𝑛− 1]

𝑊𝑡 := 𝐴⊤
(0,𝑡]𝑋(0,𝑡] − 𝐴⊤

(𝑡,𝑛]𝑋(𝑡,𝑛] = 2𝐴⊤
(0,𝑡]𝑋(0,𝑡] ∈ R𝑚×𝑝

𝑍 := 𝐴⊤
(0,𝑡]𝑌(0,𝑡] + 𝐴⊤

(𝑡,𝑛]𝑌(𝑡,𝑛] = 𝐴⊤𝑌 ∈ R𝑚.

We define 𝜃 = (𝛽(1) − 𝛽(2))/2, 𝜁 = (𝛽(1) + 𝛽(2))/2 and 𝜉 = 𝐴⊤𝜖 ∼ 𝑁𝑚(0, 𝜎2𝐼𝑚). By the
model construction, we have

𝑍 = 𝐴⊤
(0,𝑧]𝑌(0,𝑧] + 𝐴⊤

(𝑧,𝑛]𝑌(𝑧,𝑛] = 𝐴⊤
(0,𝑧](𝑋(0,𝑧]𝛽

(1) + 𝜖(0,𝑧]) + 𝐴⊤
(𝑧,𝑛](𝑋(𝑧,𝑛]𝛽

(2) + 𝜖(𝑧,𝑛])
= 𝐴⊤

(0,𝑧]𝑋(0,𝑧](𝜃 + 𝜁)− 𝐴⊤
(𝑧,𝑛]𝑋(𝑧,𝑛](𝜃 − 𝜁) + 𝜉 = 𝑊𝑧𝜃 + 𝜉,

(3)

whence we have eliminated the nuisance parameter 𝜁, and obtain the sketched data in the
form of (𝑍, (𝑊𝑡)𝑡∈[𝑛−1]). By (3) and the sparsity assumption on 𝜃, 𝑍 can be approximated by
a sparse linear combination of the columns of 𝑊𝑧. Therefore, the changepoint localization
problem is reduced to finding 𝑡 such that 𝑊𝑡 forms a ‘best’ sparse linear approximation to
𝑍.

As mentioned in the introduction, a naive way to achieve this would be based on
the two-sample test statistics introduced in Gao and Wang (2022). Specifically, let
𝑄 = (𝑄1, . . . , 𝑄𝑛−1)⊤ be defined such that

𝑄𝑡 := {diag(𝑊⊤
𝑡 𝑊𝑡)}−1/2𝑊⊤

𝑡 𝑍.

We view 𝑄𝑡 as the vector of the correlations between columns of 𝑊𝑡 and 𝑍, where we
naturally seek to find the time point 𝑡 such that such correlations are as large as possible. To
take into account of possible observational errors, we first remove small entries of 𝑄𝑡 via an
entrywise hard-thresholding operation hard(𝑄𝑡, 𝜆) for hard(𝑣, 𝜆) : (𝑣𝑖)𝑝

𝑖=1 ↦→ (𝑣𝑖1{|𝑣𝑖|≥𝜆})𝑝
𝑖=1,

where the threshold level 𝜆 is a tuning parameter. This allows us to estimate the location
of the changepoint via 𝑧hard := arg max𝑡∈[𝑛−1] ‖ hard(𝑄𝑡, 𝜆)‖2. Note that ‖ hard(𝑄𝑡, 𝜆)‖2 is
the statistic from Gao and Wang (2022) to test whether the two samples (𝑋(0,𝑡], 𝑌(0,𝑡]) and
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(𝑋(𝑡,𝑛], 𝑌(𝑡,𝑛]) have the same regression coefficient against the alternative that there is a
sparse difference. As is argued before, we expect that two-sample testing statistics gives
the strongest signal against the null of no change at 𝑡 = 𝑧 — the only point where the
two-sample problem is correctly specified.

However, the changepoint estimator 𝑧hard is less than ideal in practice, as the discon-
tinuity of the hard-thresholding function creates large variabilities in the test statistics.
Moreover, the theoretical guarantees given in Gao and Wang (2022) becomes increasingly
inapplicable for test statistics away from the true changepoint as one of the two samples
contains a mixture of data both before and after the change. Coupled with the fact that 𝑊𝑡

has large variance when 𝑡 is close to the boundary, 𝑄𝑡 may have a large number of entries
above the hard-thresholding level 𝜆 = 2

√
log 𝑝 as recommended in Gao and Wang (2022).

Empirically, this is evidenced by high variance of the test statistics near the two endpoints
of the interval for changepoint detection, as shown in Figure 1. Quite often, this boundary
effect may overwhelm the main signal near the true changepoint, leading to a spurious
changepoint being estimated near the boundary. One way to alleviate the instability prob-
lem of 𝑧hard is to replace the hard-thresholding in 𝑧hard by a soft-thresholding operation on
each entry of 𝑄. The changepoint is then estimated by 𝑧soft = arg max𝑡∈[𝑛−1] ‖ soft(𝑄𝑡, 𝜆)‖2,
where soft(𝑣, 𝜆) : (𝑣𝑖)𝑝

𝑖=1 ↦→ (sign(𝑣𝑖) max(|𝑣𝑖| − 𝜆, 0))𝑝
𝑖=1 with a tuning parameter 𝜆. The

continuity of the soft-thresholding function reduces the variance in the test statistics, and
in the ensuing changepoint estimator. However, as also shown in Figure 1, the sequence of
test statistics (‖ soft(𝑄𝑡, 𝜆)‖2)𝑡∈[𝑛−1] could still exhibit undesirably large, although less so
than (‖ hard(𝑄𝑡, 𝜆)‖2)𝑡∈[𝑛−1], variations when 𝑡 is close to the boundary.

To avoid such boundary effect, we propose instead to aggregate the test statistics (𝑄𝑡)𝑡

via a projection-based approach. The key insight here is that, away from the boundary,
the matrix 𝑄 = (𝑄1, . . . , 𝑄𝑛−1) can be well-approximated by a rank-one matrix whose
leading left singular vector is proportional to 𝜃. Hence, by first estimating 𝜃/‖𝜃‖2 via the
leading left singular vector of soft(𝑄, 𝜆), we can aggregate each vector of correlation 𝑄𝑡

along the direction of 𝑣 and estimate the changepoint by 𝑧 := arg max𝑡∈[𝛼𝑛,(1−𝛼)𝑛] |𝑣⊤𝑄𝑡|.
This approach is summarized in Algorithm 1. We allow Algorithm 1 to output both the
changepoint estimator 𝑧 and a test statistic 𝐻max, which can be used in our multiple
changepoint algorithm to determine if an estimated changepoint is spurious.

To compute the sequence (𝑄𝑡)𝑡∈[𝑛−1] in Algorithm 1, observe that the same 𝐴 and 𝑍
can be used for all 𝑡 ∈ [𝑛 − 1] and hence only need to be computed once. It is worth
noting that we exploit the structures of the sketched designs (𝑊𝑡)𝑡 to greatly simplify their
computations. Recall that 𝑎𝑡 ∈ R𝑛−𝑝 is the 𝑡th row vector of 𝐴, i.e., 𝐴 = (𝑎1, . . . , 𝑎𝑛)⊤.
𝑊𝑡 are computed via the simple iterative scheme 𝑊0 = 0 and 𝑊𝑡 = 𝑊𝑡−1 + 2𝑎𝑡𝑥

⊤
𝑡 for

𝑡 ∈ [𝑛− 1]. As a common measure, we introduce the burn-in parameter 𝛼 so that we forgo
the possibilities of having changepoints in (0, 𝛼𝑛) ∪ ((1− 𝛼)𝑛, 𝑛).

While the main focus of our current work is the changepoint localization problem, we
remark that Algorithm 1 can be easily adapted to test the existence of a single changepoint
in the sequence of regression coefficients. Specifically, we can construct the test

𝜓𝛼,𝜆,𝑇 := 1
{︂

max
𝑡∈[𝛼𝑛,(1−𝛼)𝑛]

‖ soft(𝑄𝑡, 𝜆)‖ ≥ 𝑇
}︂
, (4)
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Figure 1: Visualization of different test statistics for changepoint localization. We compare
the hard-thresholded test statistics ‖ hard(𝑄𝑡, 𝜆)‖2 used to estimate 𝑧hard (denoted by
hard), the soft-thresholded test statistics ‖soft(𝑄𝑡, 𝜆)‖2 used to estimate 𝑧soft (denoted
by soft) and the projected statistics |𝑣⊤𝑄𝑡| in Algorithm 1 (denoted by proj) over two
random realizations. Here, 𝑛 = 600, 𝑝 = 200, ‖𝛽1 − 𝛽2‖0 = 10, ‖𝛽1 − 𝛽2‖2 = 8, and the
true change takes place at 𝑧 = 180, as indicated by the dashed lines. In both panels, we
observe that both ‖ hard(𝑄𝑡, 𝜆)‖2 and ‖soft(𝑄𝑡, 𝜆)‖2 exhibit relatively strong boundary
effect.
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where 𝑇 is some appropriate threshold.

Algorithm 1: Pseudocode for changepoint estimation
Input: 𝑋 ∈ R𝑛×𝑝, 𝑌 ∈ R𝑛 satisfying 𝑛− 𝑝 > 0, a soft threshold level 𝜆 ≥ 0,

burn-in parameter 𝛼 ≥ 0
1 Set 𝑚← 𝑛− 𝑝
2 Form 𝐴 ∈ O𝑛×𝑚 with columns orthogonal to the column space of 𝑋
3 Compute 𝑍 ← 𝐴⊤𝑌
4 Set 𝑊0 = 0𝑚×𝑝

5 for 1 ≤ 𝑡 ≤ 𝑛− 1 do
6 Compute 𝑊𝑡 ← 𝑊𝑡−1 + 2𝑎𝑡𝑥

⊤
𝑡

7 Compute 𝑄𝑡 = {diag(𝑊⊤
𝑡 𝑊𝑡)}−1/2𝑊⊤

𝑡 𝑍

8 end
9 Form 𝑄 := (𝑄⌊𝛼𝑛⌋, . . . , 𝑄⌈(1−𝛼)𝑛⌉)⊤

10 Compute 𝑣 ← the leading left singular vector of soft(𝑄, 𝜆)
Output: 𝑧 := arg max𝛼𝑛≤𝑡≤(1−𝛼)𝑛 |𝑣⊤𝑄𝑡| and

𝐻max := max𝛼𝑛≤𝑡≤(1−𝛼)𝑛 ‖ soft(𝑄𝑡, 𝜆)‖.

Finally, we mention that another natural approach to find the 𝑊𝑡 whose columns
form the best sparse linear approximation of 𝑍 = 𝑊𝑧𝜃 + 𝜉 is to fit a sparse linear model
by regressing 𝑍 against 𝑊𝑡 and compare the goodness-of-fit across 𝑡 via the Bayesian
Information Criterion (BIC). We choose the BIC for the model selection purpose, though it
is conceivably straightforward to apply any other model selection criteria. The pseudocode
for this procedure is given in Algorithm 2. Specifically, for appropriately chosen (𝜆𝑡)𝑡∈[𝑛−1],
we compute first the Lasso solutions in Step 4 and then the corresponding BICs in Step 5.
In practice, the sequence of regularizing parameters (𝜆𝑡)𝑡 may be chosen via cross-validation
for each 𝑡.

Algorithm 2: Pseudocode for changepoint estimation with Lasso with BIC
Input: 𝑋 ∈ R𝑛×𝑝, 𝑌 ∈ R𝑛 satisfying 𝑛 > 𝑝, 𝛼 > 0 and a sequence (𝜆𝑡)𝑡∈[𝑛−1]

1 Follow Algorithm 1 until line 4
2 for 1 ≤ 𝑡 ≤ 𝑛− 1 do
3 Compute 𝑊𝑡 ← 𝑊𝑡−1 + 2𝑎𝑡𝑥

⊤
𝑡

4 Compute the Lasso estimator 𝜃𝑡 ← arg min𝑣∈R𝑝

{︁
1

2𝑚
‖𝑍 −𝑊𝑡𝑣‖2

2 + 𝜆𝑡‖𝑣‖1
}︁

5 Compute 𝐻𝑡 ← −(‖𝑍 −𝑊𝑡𝜃𝑡‖2
2 + ‖𝜃𝑡‖0 log𝑚)

6 end
Output: 𝑧 := arg max𝛼𝑛≤𝑡≤(1−𝛼)𝑛 𝐻𝑡

Algorithm 1 has a computational complexity of 𝑂(𝑛2𝑝), with the most computationally
intensive step being its Step 2 to form the sketching matrix 𝐴 (e.g. via a QR decomposition).
For Algorithm 2, each Lasso step has a computational cost of 𝑂(𝑘2𝑛) (Efron et al., 2004),
leading to an overall computational complexity of 𝑂(𝑛2(𝑝+ 𝑘2)). It is remarkable that for
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sparse signals (𝑘 = 𝑂(√𝑝)), the changepoint algorithms we proposed here has essentially
the same computational complexity as the complementary-sketching-based two-sample
test (Gao and Wang, 2022) for any hypothesized changepoint location 𝑡.

2.2 Multiple changepoint estimation
The single changepoint estimation procedure described above can be combined with a
generic top-down multiple changepoint localization method, such as binary segmentation
(Vostrikova, 1981), wild binary segmentation (Fryzlewicz, 2014) and its variants (e.g.,
Baranowski et al., 2019; Kovács et al., 2020; Fryzlewicz, 2020), to iteratively identify
multiple changepoints. For concreteness, we describe an approach combining Algorithm 1
with the narrowest-over-threshold method of Baranowski et al. (2019). Algorithm 3 is a
slight generalisation of Baranowski et al. (2019, Algorithm 1). It takes as input a single
changepoint estimation procedure 𝑧 and a testing procedure 𝜓. When the data 𝐷1, . . . , 𝐷𝑛

are the covariate-response pair (𝑋𝑖, 𝑌𝑖)𝑖∈[𝑛], we may apply Algorithm 1 or 2 to obtain 𝑧 and
define 𝜓(𝑋, 𝑌 ) := 1{𝐻max>𝑇 } for some 𝑇 using the output 𝐻max of Algorithm 1. However,
note that both Algorithms 1 and 2 require the number of observations to be larger than
the dimension for the complementary sketching to work. If this is not satisfied, we simply
define 𝑧(𝑋, 𝑌 ) := 0 and 𝜓(𝑋, 𝑌 ) := 0.

Essentially, in Algorithm 3, we generate multiple intervals and run the single changepoint
algorithm on each interval to obtain candidate changepoint estimates and test results. We
choose the candidate changepoint associated with the narrowest interval for which the test
rejects the null, and add that to the set of estimated changepoints. We then segment the
data at this estimated changepoint, and repeat the above process recursively on the data
to the left and right segments, using only intervals lying completely within each segment.
The process terminates when none of the tests reject the null. Furthermore, for practical
reasons, we recommend combining Algorithm 3 with some second-stage refinements, for
which we discuss in more details in Section 4.4.

3 Theoretical guarantees
In this section, we establish theoretical guarantees for the changepoint procedures proposed
in Section 2. We start by focusing on the single changepoint estimation problem. For
simplicity of analysis, we will assume that the noise variance 𝜎2 is known in this section,
which by scale invariance can be further assumed to be equal to 1. We discuss practical
aspects of estimating 𝜎2 in Section 4.1. We first present two conditions, which we will
need to establish the results in this section.

Condition 1. All entries of 𝑋 are independent standard normals.

Condition 2. 𝑛, 𝑧, 𝑝 satisfy that 𝑛 > 𝑝, 𝑧/𝑛→ 𝜏 ∈ (0, 1) and (𝑛− 𝑝)/𝑛→ 𝜂 ∈ (0, 1) as
min(𝑧, 𝑛, 𝑝)→∞.

The design Condition 1 requires that the rows of the design matrix 𝑋 = (𝑥1, . . . , 𝑥𝑛)⊤

follow the isotropic Gaussian distribution. Condition 2 specifies the asymptotic regime
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Algorithm 3: Pseudocode for multiple changepoint estimation
Input: Data 𝐷1, . . . , 𝐷𝑛, number of intervals 𝑀 , burn-in parameter 𝜛 > 0, single

changepoint estimation procedure 𝑧 and a single changepoint testing
procedure 𝜓

1 Set 𝑍 ← ∅ and generate a set of 𝑀 intervals ℳ := {(𝑠1, 𝑒1], . . . , (𝑠𝑀 , 𝑒𝑀 ]}
independently and uniformly from {(𝑎, 𝑏] : 0 ≤ 𝑎 < 𝑏 ≤ 𝑛}.

2 Run NOT(0, 𝑛) where NOT is defined below.
3 Let 𝜈 ← |𝑍| and sort elements of 𝑍 in increasing order to yield 𝑧1 < · · · < 𝑧𝜈 .

Output: 𝑧1, . . . , 𝑧𝜈

4 Function NOT(𝑠, 𝑒)
5 Set ℛ(𝑠,𝑒] ← {𝑚 : (𝑠𝑚, 𝑒𝑚] ⊆ (𝑠, 𝑒], 𝜓(𝐷(𝑠𝑚+𝑛𝜛,𝑒𝑚−𝑛𝜛]) = 1}
6 if ℛ(𝑠,𝑒] ̸= ∅ then
7 𝑚0 ← arg min𝑚∈ℛ(𝑠,𝑒](𝑒𝑚 − 𝑠𝑚)
8 𝑏← 𝑠𝑚0 + 𝑧(𝐷(𝑠𝑚,𝑒𝑚])
9 𝑍 ← 𝑍 ∪ {𝑏}

10 NOT(𝑠, 𝑏)
11 NOT(𝑏, 𝑒)
12 end
13 end

we work in. Note that the assumption 𝑛 > 𝑝 is necessary, since otherwise, even if 𝑧 is
known, it is impossible to test if ‖𝜃‖2 = 0 against a sparse alternative (see the discussion
of condition (C2) in Gao and Wang (2022)). The key ingredient of our theoretical analysis
is the following proposition, which shows that 𝑊⊤

𝑡 𝑊𝑧 is close to a multiple of identity in
terms of their actions on sparse vectors. We impose both conditions 1 and 2 only to enable
the application of the existing random matrix theory on the limiting spectral measure
of matrix-variate Beta distributions in the proof of Proposition 1. In principle, even if
the above conditions are violated, the theoretical results in the rest of the section hold
for any data (𝑋, 𝑌 ) such that (5) is satisfied. In particular, we remark that the empirical
study in Section 4.3 has demonstrated that our methodology exhibits good finite-sample
performance even when the above two conditions do not hold.
Proposition 1. Suppose that Conditions 1 and 2 are satisfied and define

𝑔(𝑡; 𝑧) :=

⎧⎨⎩4𝑡(𝑛− 𝑧)(𝑛− 𝑝)/𝑛2 if 1 ≤ 𝑡 ≤ 𝑧,

4𝑧(𝑛− 𝑡)(𝑛− 𝑝)/𝑛2 if 𝑧 < 𝑡 ≤ 𝑛− 1.

There exists a constant 𝐶𝜏,𝜂 > 0, depending only on 𝜏 and 𝜂 such that with probability 1,
for any fixed 𝑣 ∈ 𝒮𝑝−1 and ℓ ∈ [𝑝], we have for all but finitely many 𝑝’s that

sup
𝑡∈[𝑛−1]

sup
𝑢∈𝐵0(ℓ)

𝑢⊤
{︁
𝑊⊤

𝑡 𝑊𝑧 − 𝑔(𝑡; 𝑧)𝐼𝑝

}︁
𝑣 ≤ 𝐶𝜏,𝜂

√︁
ℓ𝑛 log 𝑝. (5)

Note that we suppress the dependence on 𝑛 and 𝑡 in the notation of 𝑔(𝑡; 𝑧). Taking
ℓ = 1 in the above proposition, we would expect diag(𝑊⊤

𝑡 𝑊𝑡) to concentrate around

10



𝑔(𝑡; 𝑡)𝐼𝑝 = 4𝑡(𝑛− 𝑡)(𝑛− 𝑝)𝑛−2𝐼𝑝 for each 𝑡. This would allow us to approximate the test
statistics 𝑄𝑡 = {diag(𝑊⊤

𝑡 𝑊𝑡)}−1/2(𝑊⊤
𝑡 𝑊𝑧𝜃 +𝑊⊤

𝑡 𝜉) for a fixed 𝑡. However, due to a lack
of non-asymptotic probabilistic bounds in random matrix theory on the convergence of
the spectral measures of matrix-variate Beta random matrices, we are unable to establish
the said convergence of diag(𝑊⊤

𝑡 𝑊𝑡) uniformly over 𝑡 ∈ [𝑛− 1]. As such, we instead show
the theoretical results for a slightly modified variant of Algorithm 1, where we replace the
definition of 𝑄𝑡 by

𝑄𝑡 :=
√︃

𝑛

𝑡(𝑛− 𝑡)𝑊
⊤
𝑡 𝑍.

We will henceforth refer to the above variant of Algorithm 1 as Algorithm 1′. It is worth
noting that the latter is merely a proof device, and in practice we always recommend
applying Algorithm 1. Empirically, the primed variant has a slightly worse but comparable
estimation accuracies than Algorithm 1, which can be seen in Table 1 in Section 4.1.

With this alternative choice of 𝑄𝑡, after removing the perturbation introduced by
observational errors 𝜉’s with an appropriate soft-thresholding tuning parameter 𝜆, we
expect

𝐻𝑡 := ‖soft(𝑄𝑡, 𝜆)‖2 ≈ ℎ𝑡 := ‖𝜃‖2𝛾𝑡,

where 𝛾𝑡 is defined by

𝛾𝑡 := 𝑔(𝑡; 𝑡)
√︃

𝑛

𝑡(𝑛− 𝑡) =

⎧⎪⎨⎪⎩
4(𝑛−𝑝)

𝑛

√︁
𝑡

𝑛(𝑛−𝑡)(𝑛− 𝑧) if 1 ≤ 𝑡 ≤ 𝑧,

4(𝑛−𝑝)
𝑛

√︁
𝑛−𝑡
𝑛𝑡
𝑧 if 𝑧 < 𝑡 ≤ 𝑛− 1.

(6)

Interestingly, ℎ𝑡 (or 𝛾𝑡) is proportional to the CUSUM statistic in the univariate change-
in-mean problem, whence ℎ𝑡 attains its maximum at 𝑡 = 𝑧 (cf. Wang and Samworth, 2018,
Equation (10)). By exploiting the above observation, we establish in Theorem 2 that the
testing procedure (4) is capable of determining whether a (single) changepoint is present
in the regression data, as mentioned in Section 2.

Recall 𝜁 := (𝛽(1) + 𝛽(2))/2 and 𝜃 := (𝛽(1) − 𝛽(2))/2, where we regard 𝜁 as a possibly
dense nuisance parameter and wish to localize the changepoint only assuming the difference
parameter 𝜃 is sparse, i.e., ‖𝜃‖0 ≤ 𝑘 for some unknown but fixed 𝑘 typically much smaller
than 𝑝.

Theorem 2. Assume Conditions 1 and 2 and that data (𝑋, 𝑌 ) are generated according
to (1) with 𝜈 = 1. Suppose that ‖𝜃‖0 ≤ 𝑘 satisfies (𝑘 log 𝑝)/𝑛→ 0 and that min(𝜏, 1−𝜏) ≥ 𝛼
for some known 𝛼. There exists 𝑐𝜏,𝜂,𝛼, 𝐶𝜏,𝜂,𝛼, 𝑐

′
𝜏,𝜂,𝛼 > 0, depending only on 𝜏, 𝜂, 𝛼, such

that for 𝜆 = 𝑐𝜏,𝜂,𝛼 log 𝑝, 𝑇 = 𝐶𝜏,𝜂,𝛼

√
𝑘 log 𝑝, the following holds.

1. If 𝜃 = 0, then 𝜓𝛼,𝜆,𝑇 (𝑋, 𝑌 ) a.s.−−→ 0.

2. If ‖𝜃‖2 > 𝑐′
𝜏,𝜂,𝛼

√
𝑘 log 𝑝√

𝑛
, then 𝜓𝛼,𝜆,𝑇 (𝑋, 𝑌 ) a.s.−−→ 1.

We now turn our attention to the estimation in Algorithm 1. The key of understanding
the performance of Algorithm 1′ lies in an analysis of the estimated projection vector 𝑣
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in Step 10 of the algorithm. By Proposition 1, we expect 𝑄 = (𝑄1, . . . , 𝑄𝑛−1) to be well-
approximated by the rank-one matrix 𝜃𝛾⊤, where 𝛾 = (𝛾𝑡)𝑡∈[𝑛−1] is defined in (6). Thus,
the oracle projection direction to aggregate 𝑄 is along 𝜃/‖𝜃‖2. The following proposition
shows that the estimated projection direction 𝑣 is well-aligned with this oracle direction.

Proposition 3. Assume Conditions 1 and 2 and that data (𝑋, 𝑌 ) are generated ac-
cording to (1) with 𝜈 = 1. Suppose that 𝑘 ≤ 𝑝/2 and that min(𝜏, 1 − 𝜏) ≥ 𝛼 for
some known 𝛼. There exists 𝑐𝜏,𝜂,𝛼, 𝐶𝜏,𝜂,𝛼 > 0, depending only on 𝜏, 𝜂, 𝛼, such that if
𝜆 > 𝑐𝜏,𝜂,𝛼 max(1, ‖𝜃‖2) log 𝑝, then the projection direction estimator 𝑣 in Algorithm 1′

satisfies with probability 1 for all but finitely many 𝑝’s that

sin∠(𝑣, 𝜃) ≤ 𝐶𝜏,𝜂,𝛼
𝜆
√
𝑘√

𝑛‖𝜃‖2
.

Equipped with Proposition 3, we are now in a position to state the convergence rate of
the changepoint estimator from Algorithm 1′.

Theorem 4. Assume Conditions 1 and 2 and that data (𝑋, 𝑌 ) are generated according
to (1) with 𝜈 = 1. Suppose that ‖𝜃‖2 ≤ 1, 𝑘 ≤ 𝑝/2 and that min(𝜏, 1−𝜏) ≥ 𝛼 > 0 for some
known 𝛼. There exists 𝑐𝜏,𝜂,𝛼 > 0, depending only on 𝜏, 𝜂, 𝛼, such that if 𝜆 > 𝑐𝜏,𝜂,𝛼 log 𝑝,
then the output 𝑧 of Algorithm 1′ with input (𝑋, 𝑌 ), 𝜆 and 𝛼 satisfies with probability 1
for all but finitely many 𝑝’s that

|𝑧 − 𝑧|
𝑛

≲𝜏,𝜂,𝛼
𝜆2
√
𝑘√

𝑛‖𝜃‖2
2
.

Theorem 4 shows that with a tuning parameter choice of order log 𝑝, and when ‖𝜃‖2
is bounded (which is the more difficult regime for estimation), Algorithm 1′ produces a
consistent changepoint estimator with a rate of convergence of order 𝑘1/2𝑛−1/2‖𝜃‖−2

2 up to
logarithmic factors. However, in light of the testing viewpoint of Theorem 2, in which it
is possible to test apart the null of no change against a sparse alternative if

√
𝑛‖𝜃‖2/

√
𝑘,

up to logarithmic factors, is sufficiently large, the rate in the above theorem appears to
have an extra factor of ‖𝜃‖−1

2 . This additional factor is likely to arise from the technical
difficulty of controlling the weak, though complex, dependence between the estimated
projection direction 𝑣 and the sketched Gaussian noises (𝑊⊤

𝑡 𝜉 : 𝑡 ∈ [𝑛− 1]). Indeed, the
following theorem shows that if 𝑣 is estimated from an independent sample, then the
estimator from Algorithm 1 has a rate of convergence that agrees with what is prescribed
in Theorem 2, up to logarithmic factors.

Theorem 5. Assume the same conditions as in Theorem 4. Let (�̃�, 𝑌 ) be an independent
copy of (𝑋, 𝑌 ). Let 𝑄 be the matrix constructed in Step 8 of Algorithm 1′ with input
(𝑋, 𝑌 ), 𝜆 and 𝛼. Suppose 𝑣 is computed in Step 9 of Algorithm 1′ with input (�̃�, 𝑌 ), 𝜆
and 𝛼. Then 𝑧 := arg max𝑡∈[𝑛−1] |𝑣⊤𝑄𝑡| satisfies with probability 1 for all but finitely many
𝑝’s that

|𝑧 − 𝑧|
𝑛

≲𝜏,𝜂,𝛼
𝜆
√
𝑘 log 𝑝√
𝑛‖𝜃‖2

.
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This additional independent sample (�̃�, 𝑌 ) may be obtained in reality via a sample-
splitting scheme. For example, we may take all odd time points to construct the 𝑄 matrix,
and then use the even time points to estimate the projection direction 𝑣. However, such
sample splitting is necessary only from a technical viewpoint, and the algorithm typically
performs better without sample splitting in practice.

We remark that the rate in the above Theorem 5 is slower compared to the usual
results from change-in-mean problems, where rates of order 𝑛−1‖𝜃‖−2

2 are achievable under
appropriate conditions (see e.g. Wang and Samworth, 2018; Verzelen et al., 2020). Our
slower rate arises essentially from the approximation step in Proposition 1, which would
not be needed in a change-in-mean problem. It remains to be seen if the estimation rate
can be improved via alternative and possibly more refined analysis routes.

We now turn our attention to theoretical guarantees in the multiple changepoint
setting. The following theorem shows that provided that we have a good single changepoint
estimation and testing procedure in any changepoint problem, combining the narrowest-
over-threshold with the single change procedures yields a multiple changepoint estimation
procedure of similar accuracy with theoretical guarantees.

Theorem 6. Let 𝐷1, . . . , 𝐷𝑛 be a data sequence with changepoints 0 = 𝑧0 < 𝑧1 < · · · <
𝑧𝜈 < 𝑧𝜈+1 = 𝑛. We assume that 𝑧𝑖− 𝑧𝑖−1 ≥ 𝑛Δ𝜏 for all 𝑖 ∈ [𝜈 + 1]. Let ℳ be defined as in
Algorithm 3. Write ℐ0 := {(𝑠, 𝑒] ∈ℳ : (𝑠+𝑛𝜛, 𝑒−𝑛𝜛]∩{𝑧1, . . . , 𝑧𝜈} = ∅} and for 𝑖 ∈ [𝜈],
define ℐ𝑖 := {(𝑠, 𝑒] ∈ℳ : 𝑠 ∈ [𝑧𝑖 − 𝑛Δ𝜏/2, 𝑧𝑖 − 𝑛Δ𝜏/3], 𝑒 ∈ [𝑧𝑖 + 𝑛Δ𝜏/3, 𝑧𝑖 + 𝑛Δ𝜏/2]} and
ℐ̃𝑖 := {(𝑠, 𝑒] ∈ ℳ : min{𝑧𝑖 − 𝑠, 𝑒 − 𝑧𝑖} ≥ 𝑛Δ𝜏/6 and 𝑒 − 𝑠 ≤ 𝑛Δ𝜏}. Let 𝑧 and 𝜓 be the
single changepoint estimation and testing procedure used in Algorithm 3. Define the events

Ω0 := {∀ 𝑖 ∈ [𝜈],∃𝑚 ∈ [𝑀 ], s.t. (𝑠𝑚, 𝑒𝑚] ∈ ℐ𝑖},
Ω1 := {𝜓(𝐷(𝑠+𝑛𝜛,𝑒−𝑛𝜛]) = 0 for all (𝑠, 𝑒] ∈ ℐ0},
Ω2 :=

⋂︁
𝑖∈[𝜈]

{︁
𝜓(𝐷(𝑠+𝑛𝜛,𝑒−𝑛𝜛]) = 1 for all (𝑠, 𝑒] ∈ ℐ𝑖

}︁

and for some 𝜑1, . . . , 𝜑𝜈 > 0,

Ω3 :=
⋂︁

𝑖∈[𝜈]

{︁
|𝑧(𝐷(𝑠,𝑒])− (𝑧𝑖 − 𝑠)| ≤ 𝑛𝜑𝑖 for all (𝑠, 𝑒] ∈ ℐ̃𝑖

}︁
.

Let 𝑧1, . . . , 𝑧𝜈 be the output of Algorithm 3 with inputs 𝐷1, . . . , 𝐷𝑛, 𝑀 > 0, 𝜛 = Δ𝜏/6, 𝑧
and 𝜓. Assume further 𝜑 := max𝑖∈[𝜈] 𝜑𝑖 < 𝜛. We have on Ω0 ∩ Ω1 ∩ Ω2 ∩ Ω3 that

𝜈 = 𝜈 and 𝑛−1|𝑧𝑖 − 𝑧𝑖| ≤ 𝜑𝑖 for all 𝑖 ∈ [𝜈].

In particular, we have

P
(︁
𝜈 = 𝜈 and 𝑛−1|𝑧𝑖 − 𝑧𝑖| ≤ 𝜑𝑖 for all 𝑖 ∈ [𝜈]

)︁
≥ 1− P(Ω𝑐

1)− P(Ω𝑐
2)− P(Ω𝑐

3)− 𝜈𝑒−Δ2
𝜏 𝑀/36.

Note that the theorem is valid for any generic multiple changepoint estimation that
combines valid single changepoint estimation and testing procedures and the top-down
narrowest-over-threshold multiple changepoint estimation paradigm. Hence, it can be
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applied in contexts other than the linear regression setting here. The statement of
Theorem 6 is slightly stronger than the usual results on narrowest-over-threshold procedures,
where 𝜑𝑖 are taken identical.

Applying the above theorem to our specific problem, we extend the single changepoint
estimation result in Theorem 5 to the multiple changepoint setting and establish the
estimation accuracy of Algorithm 3. We first give the following condition, which is the
equivalent of Condition 2 in the multiple changepoint setting.

Condition 3. 𝑛, 𝑝 satisfy 𝑛 > 𝑝 and that (𝑛 − 𝑝)/𝑛 → 𝜂 as min(𝑛, 𝑝) → ∞. Assume
further the changepoints satisfy 0 = 𝑧0 < 𝑧1 < · · · < 𝑧𝜈 < 𝑧𝜈+1 = 𝑛 and 𝑧𝑖 − 𝑧𝑖−1 > 𝑛Δ𝜏

for all 𝑖 ∈ [𝜈 + 1] and 𝑧𝑖/𝑛→ 𝜏𝑖 for 0 ≤ 𝑖 ≤ 𝜈 + 1.

Due to the asymptotic nature of our theoretical results in the above, we consider a
sequence of Algorithm 3. To facilitate proof, we study a specific coupling of the random
intervals {(𝑠𝑚, 𝑒𝑚] : 𝑚 ∈ [𝑀 ]} generated across this sequence as follows:

(𝑠𝑚, 𝑒𝑚] iid∼ Unif
(︁
{(�̃�, �̃�] : 0 ≤ 𝑎 < 𝑏 ≤ 1}

)︁
, ∀ 𝑚 ∈ [𝑀 ],

𝑠𝑚 = ⌊𝑛𝑠𝑚⌋, 𝑒𝑚 = ⌈𝑛𝑒𝑚⌉ for 𝑚 ∈ [𝑀 ] and 𝑛 ∈ N.
(7)

Note that the intervals generated by (7) have the same law as those generated in Al-
gorithm 3.

Corollary 7. Let 𝑋 and 𝑌 be generated by (1) and write 𝐷𝑖 := (𝑋𝑖, 𝑌𝑖) for 𝑖 ∈ [𝑛].
Assume Conditions 1 and 3 hold. There exist 𝑐, 𝐶, 𝑐′, 𝐶 ′ > 0, depending only on 𝛼,Δ𝜏 , 𝜂,
such that the following holds. For 𝛼 < 1/6, 𝜆 = 𝑐 log 𝑝, 𝑇 = 𝐶

√
𝑘 log 𝑝, let 𝑧 = 𝑧𝛼,𝜆 be the

sample-splitted version of the single changepoint estimator defined in Algorithm 1′ and
𝜓 = 𝜓𝛼,𝜆,𝑇 be the testing procedure defined in (4). If Δ𝜏 > 3(1− 𝜂), 𝑐′√𝑘 log 𝑝√

𝑛
≤ ‖𝜃(𝑖)‖2 ≤ 1

and ‖𝜃(𝑖)‖0 ≤ 𝑘 such that 𝑘 log 𝑝
𝑛
→ 0, then the output 𝑧1, . . . , 𝑧𝜈 of Algorithm 3 with intervals

{(𝑠𝑚, 𝑒𝑚] : 𝑚 ∈ [𝑀 ]} generated according to (7), inputs (𝐷𝑖)𝑖∈[𝑛], 𝑀 > 0, 𝜛 = 𝜏/6, 𝑧𝛼,𝜆

and 𝜓𝛼,𝜆,𝑇 satisfies with probability 1− 𝜈𝑒−Δ2
𝜏 𝑀/36 that for all but finitely many 𝑝’s,

𝜈 = 𝜈 and |𝑧𝑖 − 𝑧𝑖|
𝑛

≤ 𝐶 ′𝜆
√
𝑘 log 𝑝√

𝑛‖𝜃(𝑖)‖2
for all 𝑖 ∈ [𝜈].

4 Numerical study
The implementation of our single- and multiple-changepoint algorithms are both available
in our GitHub repository.1

4.1 Tuning parameter choice and comparison of variants
Theoretical analysis in Section 3 have assumed that the noise variance 𝜎2 is known. In
practice, we may obtain an upward-biased estimator �̃� as the median absolute deviation

1https://github.com/gaofengnan/charcoal
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of entries of the 𝑄 matrix. We note

Var(𝑄𝑡) = E[Var{�̃�⊤
𝑡 (𝑊𝑧𝜃 + 𝜉) | 𝑋}] + Var[E{�̃�⊤

𝑡 (𝑊𝑧𝜃 + 𝜉) | 𝑋}]
= 𝜎2E(�̃�⊤

𝑡 �̃�𝑡) + Var(�̃�⊤
𝑡 𝑊𝑧𝜃).

Since E(�̃�⊤
𝑡 �̃�𝑡) has all diagonal entries equal to 1, every entry of 𝑄 has a marginal

variance of at least 𝜎2.
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Figure 2: The effect of choosing different 𝜆 in a series of studies. Our recommendation of
𝜆 := 0.5 log 𝑝 is marked in dashed vertical line in each panel. Unless specified otherwise in
each one, the panels share the parameters 𝑛 = 1200, 𝑝 = 1000, 𝜏 = 0.3, 𝑘 = 3, 𝜌 = 2.

Algorithm 1 requires a soft-thresholding tuning parameter 𝜆 > 0 as an input. The the-
oretical results in Section 3 suggests using 𝜆 = 𝑐𝜎 log 𝑝 for some 𝑐 > 0. We investigate here
the performance of our algorithm at different soft-thresholding levels 𝜆. Specifically, we com-
puted the logarithmic average loss |𝑧− 𝑧| of Algorithm 1 over 100 Monte Carlo repetitions
for parameter settings of 𝑛 ∈ {600, 1200, 2400}, 𝑝 ∈ {𝑛/3, 5𝑛/6}, 𝜏 ∈ {0.2, 0.3, 0.4, 0.5},
𝑘 ∈ {1, 3, 10, ⌊√𝑝⌋, ⌊0.1𝑝⌋, ⌊0.2𝑝⌋, 𝑝}, 𝜌 := ‖𝜃‖2 ∈ {1, 2, 4, 8}, 𝜎 = 1 and various choices
of 𝑐 ∈ [0.1, 5]. In all our simulations here and below, we sample the vector of change
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in the regression coefficients 𝜃 uniformly from the set {𝑣 : ‖𝑣‖0 = 𝑘, ‖𝑣‖2 = 𝜌}, and
generate dense pre-change vector from 𝑁𝑝(0,max{1, 𝜌2}𝐼𝑝). Figure 2 illustrates part of
the simulation results where we vary one aspect of the parameters at a time. From the
figure, we see that a choice of 𝑐 = 0.5 provides good statistical performance across the
parameter settings considered, and we will henceforth adopt this choice of 𝜆 = 0.5�̃� log(𝑝)
in our subsequent numerical studies.

We now compare the statistical performance of various versions of complementary-
sketching-based approaches proposed in the paper, including Algorithms 1 and 2 from
Section 2 and the slight variant Algorithm 1′ mentioned in Section 3 to facilitate theoretical
analysis. For a demonstrative purpose, we have also included the naive hard- and soft-
thresholded changepoint estimators 𝑧hard and 𝑧soft mentioned just above Algorithm 1. We
use the 𝜆 choice suggested in the previous paragraph for 𝑧hard and 𝑧soft, Algorithm 1 and
its variant, and choose 𝜆𝑡 in Algorithm 2 via a five-fold cross-validation for each 𝑡 ∈ [𝑛− 1].
Empirical observations suggest that Algorithms 1, 1′ and 2 work well without any burn-in
(i.e. 𝛼 = 0). However, both 𝑧soft and 𝑧hard do suffer from more serious boundary effects, as
seen in the large root mean squared errors in Table 1. In addition, Algorithm 1 has roughly
the same but slightly better estimation accuracy compared to its primed variant. This
justifies our recommendation of Algorithm 1 over its primed variant, and the similarity in
performance further consolidates the relevance of our theoretical analysis on the primed
variant as a proof device.

𝑛 𝑝 𝑘 𝜌 𝑧soft 𝑧hard Alg1 Alg1′ Alg2
600 200 3 1 50.1 178.35 12.6 40.79 22.34

2 3.98 88.76 3.1 5.01 4.58
4 25.37 92.3 2.14 4.33 2.29

14 1 31.7 122.11 37.36 83.59 129.71
2 6.4 88.04 6.14 7.32 9.83
4 3.88 58.92 3.82 4.67 2.95

1200 400 3 1 11.24 196.81 10.95 13.34 19.54
2 3.15 136.02 3.69 4.58 4.96
4 35.65 101.17 1.67 4.36 2.09

20 1 39.17 146.98 18.14 37.63 168.56
2 5.06 144.5 7.29 7.59 15.51
4 4.72 106.84 2.72 2.93 4.47

Table 1: Comparisons of performances of 𝑧soft, 𝑧hard, Algorithms 1, 1′ and 2 in various
settings in terms of root mean squared error. No burn-in is applied anywhere (𝛼 = 0).
The true change takes place at 0.3𝑛.
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4.2 Comparisons with other methods
From the discussion above, we recommend using Algorithms 1 and 2 for their robustness
against the choice of the burn-in parameter 𝛼, and for the more accurate estimation of
Algorithm 1 over its primed variant. We will henceforth focus on Algorithms 1 and 2,
which we call charcoalproj and charcoallasso, respectively. In this section, we compare the
performance of charcoalproj and charcoallasso with existing approaches in the literature.
Specifically, we will compare against the VPBS algorithm of Rinaldo et al. (2021), two-
sided Lasso-based approaches of Lee et al. (2016) (LSS) and Leonardi and Bühlmann (2016)
(LB), and a two-stage refinement approach of Kaul et al. (2019) (KJF). We have used the
authors’ own implementation for VPBS and KJF, and Kaul et al. (2019)’s implementation
for LSS. We have implemented LB ourselves using the recommended tuning parameter
choices as in Leonardi and Bühlmann (2016). It is worth noting that none of the four
existing methods in the literature were designed to estimate changes in the regression
coefficients when both the pre- and post-change coefficients are dense.

We compare the performance in terms of mean absolute loss of various methods in a
single changepoint estimation task for 𝑛 ∈ {600, 1200}, 𝑝 ∈ {𝑛/3, 5𝑛/6}, 𝜏 ∈ {0.1, 0.3, 0.5},
𝑘 ∈ {3, ⌊√𝑝⌋, 𝑝}, 𝜌 ∈ {1, 2, 4, 8}. Table 2 shows a representative subset of these simulation
results. We see that none of VPBS, LB, KJF and LSS show any sign of consistent
estimation as their average loss do not decrease as the signal strength increases. On the
other hand, both charcoalproj and charcoallasso have shown highly promising performance in
various settings. It is surprising that charcoalproj and charcoallasso also seem to work even
when the vector of change is dense. We notice that charcoallasso shows better estimation
accuracy when either the signal strength 𝜌 is high or the vector of change 𝜃 is dense.

4.3 Model misspecification
While we have focused on the Gaussian Orthogonal Ensemble (GOE) design (i.e. 𝑋
has independent 𝑁(0, 1) entries) and Gaussian noise in the theoretical analysis, our
methodology can be applied in more general settings. In this subsection, we investigate
the robustness of the estimation accuracy of our method to deviations from this Gaussian
distributional assumptions. Specifically for 𝑛 = 1, 200, 𝑝 = 400, 𝜏 = 0.3, 𝑘 = 20 and
𝜌 ∈ {1.50, . . . , 1.58}, we varied the design matrix 𝑋 to have either 𝑁𝑝(0,Σ) rows, where
Σ = (0.7|𝑖−𝑗|)𝑖,𝑗∈[𝑝] has an autoregressive Toeplitz structure, or independent Rademacher
entries. We also vary the noise distribution to take 𝑡4, 𝑡6, centred Exp(1) or Rademacher
distributions. Overall, we see from Figure 3 that the performance of charcoallasso is robust
to both non-GOE design matrices and discrete, heavy-tailed or skewed noise distributions.
Similar results hold for the charcoalproj method.

4.4 Multiple changepoints
As mentioned in Section 2, our charcoal algorithms can be easily combined with generic
multiple changepoint methods to deal with multiple changepoints, and we proposed a
specific version in Algorithm 3 of such a multiple changepoint localization procedure. We
run Algorithm 3 with 𝜛 = 0 and 𝑀 = 200. For the single changepoint estimator input 𝑧
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𝑝 𝑘 𝜌 charcoalproj charcoallasso VPBS LB KJF LSS
400 3 1 7.2 13.2 452.4 556.1 238.8 472.2

2 2.2 3.5 476.3 569.2 239.3 364.1
4 1.1 1.5 434.2 532.8 239.1 272.1
8 0.7 0.8 326.3 496.8 239.1 310.8

20 1 12.4 85.4 422.7 528.8 238.9 479.5
2 3.0 9.2 494.9 546.8 238.9 284.5
4 2.0 2.6 431.9 553.1 239.1 268.5
8 1.9 0.8 356.2 513.3 239.3 261.5

400 1 162.2 344.2 477.8 569.8 238.8 429.9
2 46.3 338.4 504.0 583.2 238.8 252.4
4 25.3 13.3 446.3 554.1 238.9 285.6
8 20.7 3.0 355.6 487.6 239.1 250.1

1000 3 1 60.7 113.3 241.6 429.5 237.2 227.3
2 8.3 11.8 243.4 441.4 239.0 228.2
4 2.9 4.0 239.5 366.9 243.9 230.6
8 2.4 1.4 235.1 245.1 262.2 230.7

31 1 300.3 364.9 233.4 440.1 238.8 227.4
2 71.7 140.9 242.5 469.5 238.9 228.3
4 16.0 12.5 251.3 358.4 238.9 224.5
8 13.7 4.6 244.5 249.0 238.2 230.1

1000 1 275.5 359.8 232.6 483.0 239.3 231.8
2 256.9 320.8 238.4 447.4 238.9 229.2
4 224.1 91.0 242.7 378.2 239.1 228.0
8 194.5 39.6 246.4 253.5 242.4 226.7

Table 2: Average loss of various changepoint methods under different settings. Other
parameters: 𝑛 = 1200, 𝑧 = 360. The method with the least average loss in each line is
marked in bold.
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Figure 3: Robustness to varying design matrices and noise distributions.

in Algorithm 3, we employ Algorithm 1 with the recommended value of 𝜆 in Section 4.1
and the burn-in parameter 𝛼 = 0.05. For the testing procedure input 𝜓 of Algorithm 3, we
run Algorithm 1 to obtain output 𝐻max and define 𝜓(𝑋, 𝑌 ) = 1{𝐻max>𝑇 }, where the testing
threshold 𝑇 is chosen by a Monte Carlo simulation as follows. We generate 𝐵 = 1000 pairs
of (𝑋, 𝑌 ) under model (1) with 𝜈 = 0 (i.e. no changepoint), and run Algorithm 1 with
these synthetic (𝑋, 𝑌 ) pairs and the same 𝜆 and 𝛼 choices as above. This would return 𝐵
test statistics (𝐻𝑏

max)𝑏∈[𝐵], which are used to estimate an upper 0.01/𝑀 quantile by fitting
a generalized extreme value distribution (Smith, 1985).

While Algorithm 3 already produces good estimators of multiple changepoints, its
performance can be further improved by the following post-processing procedures. Such
post-processing has previously been described in e.g., Fryzlewicz (2018, Section 2 of online
supplement).

Specifically, after we obtain an initial candidate set of changepoints using Algorithm 3,
we iteratively run the test prescribed by (4) on the largest time interval containing each
candidate changepoint as the only estimated changepoint, and remove that candidate
changepoint if the test is non-significant. For the remaining candidate changepoints
𝑧1, . . . , 𝑧𝜈 , we refine their estimated locations in two steps. We first perform a ‘midpoint’
refinement, where we use (for instance) Algorithm 2 to output a refined estimator 𝑧𝑖

based on data {(𝑥𝑡, 𝑦𝑡) : 𝑡 ∈ ((𝑧𝑖−1 + 𝑧𝑖)/2, (𝑧𝑖 + 𝑧𝑖+1)/2]} for each 𝑖 ∈ [𝜈]. Here, we
use the convention that 𝑧0 = 0 and 𝑧𝜈+1 = 𝑛. Using midpoints between successive
estimated changepoints ensures that each ((𝑧𝑖−1 + 𝑧𝑖)/2, (𝑧𝑖 + 𝑧𝑖+1)/2] contains with high
probability at most one true changepoint. However, it does not use the full data available
around each true changepoint. As such, we perform a second refinement step after this,
where we use Algorithm 2 to output a further refined estimator 𝑧refined

𝑖 based on data
{(𝑥𝑡, 𝑦𝑡) : 𝑡 ∈ (𝑧𝑖−1 + 𝛼𝑛, 𝑧𝑖+1 − 𝛼𝑛]} for each 𝑖 ∈ [𝜈] with 𝛼 being the burn-in parameter
as in Algorithm 3. Again, we use the convention that 𝑧0 = 0 and 𝑧𝜈+1 = 𝑛. For both
refinement steps, we may also use Algorithm 1 in place of Algorithm 2, and they have
very similar performances in our numerical experiment. For definiteness and simpler
presentation, we employ Algorithm 2 for both refinement steps in the following numerical
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experiments.

𝑛 𝑝 𝑘 𝜌min 𝜈 − 𝜈 value counts Haus ARI
−3 −2 −1 0 1

1200 200 3 0.8 0 0 96 4 0 292.8 0.742
1.2 0 0 22 78 0 75.4 0.918
1.6 0 0 0 98 2 8.8 0.978

10 0.8 0 2 97 1 0 304.9 0.710
1.2 0 0 42 55 3 141.1 0.856
1.6 0 0 1 96 3 18.0 0.960

100 0.8 3 67 30 0 0 591.7 0.303
1.2 0 4 88 8 0 319.3 0.611
1.6 0 0 52 46 2 217.1 0.759

2400 400 3 0.8 0 0 25 75 0 155.3 0.881
1.2 0 0 0 100 0 14.3 0.975
1.6 0 0 0 100 0 10.1 0.983

10 0.8 0 15 53 32 0 376.9 0.720
1.2 0 0 2 98 0 37.3 0.945
1.6 0 0 1 99 0 21.0 0.970

100 0.8 42 57 1 0 0 1154.9 0.184
1.2 0 32 54 14 0 647.0 0.457
1.6 0 0 14 84 2 376.9 0.658

Table 3: Summary of results of multiple changepoint estimations under (M1) and (M2)
described in Section 4.4 with 𝜌 ∈ {0.8, 1.2, 1.6} and 𝑘 ∈ {3, 10, 100}. The first nine rows
of the table corresponds to setting (M1) and the last nine rows corresponds to (M2). The
columns of 𝜈 − 𝜈 tabulates the difference in number of estimated and true changepoints
over 100 Monte Carlo repetitions. The ‘Haus’ and ‘ARI’ columns measure the average
Hausdorff distance and the average adjusted rand index between the discovered partition
and the true partition over 100 repetitions.

We assume that the regression noise level 𝜎 is known and consider the following
two multiple changepoint specifications in our simulations: (M1) 𝑛 = 1200, 𝑝 = 200,
𝜈 = 3 and three changepoints are located at 𝑧 = (𝑧1, 𝑧2, 𝑧3) = (240, 540, 900) with
signal sizes (‖𝜃(1)‖2, ‖𝜃(2)‖2, ‖𝜃(3)‖2) = 𝜌min × (1, 1.5, 2) and sparsity ‖𝜃(1)‖0 = ‖𝜃(2)‖0 =
‖𝜃(3)‖0 = 𝑘 respectively for various 𝜌min and 𝑘; (M2) 𝑛 = 2400, 𝑝 = 400, 𝜈 = 4 and
four changepoints are located at 𝑧 = (𝑧1, 𝑧2, 𝑧3, 𝑧4) = (720, 1320, 1800, 2160) with signal
sizes (‖𝜃(1)‖2, ‖𝜃(2)‖2, ‖𝜃(3)‖2, ‖𝜃(4)‖2) = 𝜌min × (1, 1.15, 1.45, 2.18) and sparsity ‖𝜃(1)‖0 =
‖𝜃(2)‖0 = ‖𝜃(3)‖0 = ‖𝜃(4)‖0 = 𝑘 respectively for various 𝜌min and 𝑘.
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Note that for (M2), the signal sizes are chosen such that

‖𝜃(𝑖)‖2
2
(𝑧𝑖 − 𝑧𝑖−1)(𝑧𝑖+1 − 𝑧𝑖)(𝑧𝑖+1 − 𝑧𝑖−1 − 𝑝)

(𝑧𝑖+1 − 𝑧𝑖−1)2

is approximately constant for each 𝑖 ∈ [𝜈], which according to Gao and Wang (2022)
means that the effective signal-to-noise ratio of testing for each changepoint 𝑧𝑖 within the
interval (𝑧𝑖−1, 𝑧𝑖+1] is almost constant. Table 3 reports the multiple changepoint estimation
performances for both (M1) and (M2) with 𝜌min ∈ {0.8, 1.2, 1.6} and 𝑘 ∈ {3, 10, 100}.
The multiple changepoint estimation accuracy is measured in terms of the difference
between the number of estimated and true changepoints, the average Hausdorff distance
between the sets {𝑧𝑖 : 𝑖 ∈ [𝑛]} and {𝑧refined

𝑖 : 𝑖 ∈ [�̂�]} and finally the average adjusted Rand
index (ARI) (Rand, 1971) of the estimated segments against the truth, over 100 Monte
Carlo repetitions. We see from Table 3 that the promising single changepoint estimation
performance of our methodology carries over to the multiple changepoint settings.

Figure 4 visualizes the simulation results by showing the histograms of estimated
changepoints in four of the parameter settings shown in Table 3. It is worth noting that in
the bottom two panels of the figure, where the effective signal-to-noise ratios are chosen to
be approximately constant for all the four changepoints, we indeed see a similar number
of times in identifications of each changepoint.

4.5 Real data example
In this subsection, we showcase how the charcoal algorithm can be applied to a single-
cell gene expression dataset from Suo et al. (2023). The original data consists of the
logarithmic normalized gene expression levels of 3211 genes measured in 11853 cells along
the developmental trajectory from proliferating double positive cells (DP(P) cells) to
quiescent double positive cells (DP(Q) cells), 𝛼𝛽T entry cells (ABT cells) and finally to
CD4+ T cells. These cells have been ordered in pseudotime according to their development
stage in Suo et al. (2023), which we use as our timeline (see Figure 5). We are interested in
understanding the change in the gene regulatory networks along this time trajectory. We
can estimate the changepoints by modelling the logarithmic normalized expressions using
Gaussian graphical models and seek changes in the nodewise regression coefficients of each
gene against the remaining genes. To speed up the computation, we preprocess the data by
subsampling 1/3 of the original cells and only using genes that have non-zero expression in
at least 5% of the cells. Our preprocessed data is available on the GitHub repository. The
changepoints are estimated using Algorithm 1 with tuning parameters chosen as suggested
in Section 4.1. In Table 4, we list the genes that reported most significant test statistics
in their nodewise regression coefficients along this pseudotime trajectory. From Figure 5,
we see that most of the changes are identified immediately before the boundary between
the DP(P) and DP(Q) boundary, and most of the associated genes TK1, CKAP2L, TTK,
ARHGEF39, DEPDC1, SPC25, GTSE1, HMMR, CENPA are well-known regulators for
cell proliferation in biology (Bitter et al., 2020; Mills et al., 1992; Zhou et al., 2018; Zhang
et al., 2019; Guo et al., 2016, see, e.g.). The change in nodewise regression coefficient of
the RAG2 gene occurred immediately before the DP(Q) and ABT boundary, which agrees
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(b) 𝑛 = 1200, 𝑝 = 200, 𝑘 = 3, 𝜌min = 1.6
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(c) 𝑛 = 2400, 𝑝 = 400, 𝑘 = 10, 𝜌min = 0.8
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(d) 𝑛 = 2400, 𝑝 = 400, 𝑘 = 10, 𝜌min = 1.6

Figure 4: Histogram of estimated changepoint locations in four settings. The true
changes take place at 𝑧 = (240, 540, 900) for the (𝑛, 𝑝) = (1200, 200) specifications in the
above two panels with the signal strengths at respective changes being 𝜌min × (1, 1.5, 2).
For the two panels below with (𝑛, 𝑝) = (2400, 400), 𝑧 = (720, 1320, 1800, 2160) with
𝜌min × (1, 1.15, 1.45, 2.175). The locations of true changes are marked in lightly-coloured
dashed vertical lines in each plot.
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with the existing literature that RAG2 is a regulator for T cell development (Kalman
et al., 2004).
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Figure 5: Ordered pseudotime of cells in the real data example of Section 4.5. Each plot
point represents a cell, coloured by its annotated cell type. Vertical lines corresponds to
estimated changepoint locations of the most significant changes in the nodewise regression
coefficients as described in Section 4.5.
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Gene Changepoint Top interacting partners

TK1 495 PTP4A1, KIF20B, CENPF, SPRY1, ZWINT,
CALCRL, RHPN1, LYPD3, COMMD3, LINC00672

CKAP2L 430 TOGARAM1, DEPDC1B, AP001816.1, TUBA1C,
FANCI, IGF2BP2, REC8, TOB1, ZMAT3, STK11IP

RAG2 1178 SMPD3, AL365440.2, LZTFL1, AEBP1, HIST1H2BJ,
MTSS1, CD1C, CSNK2B, CASC15, SLC29A1

TTK 407 UBE2S, KNL1, CDC20, TRAV19, DDIT3, AC023157.3,
AC012360.3, IL23A, DNTT, USP53

ARHGEF39 396 HJURP, CD1A, SLC25A25, CCDC152, MBTD1, PON1,
H1F0, RNF125, APH1B, DDX3Y

DEPDC1 444 AL138899.1, USPL1, RIPK4, SERPINF1, EPHB6,
MTSS1, SLC8A1-AS1, SLC5A3, HDAC4, SGK1

SPC25 442 ATF3, ITGAE, CDC42EP3, AC136475.5, EPS8, NINJ2,
NDC80, ZNF280D, L3MBTL3, FBLN5

GTSE1 437 MID1IP1, HIST1H2AG, GADD45G, PSRC1, FBLN5,
HIST1H2BN, CCDC171, ARMH1, SERTAD2, DDX3Y

HMMR 516 TAX1BP3, LAIR1, SERP2, LANCL2, MANEA-DT,
TIMP1, CSRNP1, TSGA10, CKAP5, RGS16

CENPA 503 TRBV7-3, SOCS1, FRMD4B, CDKN1A, FXYD2,
PTPN12, NLGN4X, NINL, KLRG1, SWT1

Table 4: List of genes with most significant changes in the nodewise regression coefficients,
together with their changepoint locations and top 10 interacting partners.

24



5 Proof of main results
Proof of Proposition 1. Define 𝜅1 = 𝜅1(𝑛, 𝑧, 𝑝) := 𝑧(𝑛− 𝑧)(𝑛− 𝑝)/𝑛3, which under Condi-
tion 2 is 𝑂(1). We decompose

𝑊⊤
𝑡 𝑊𝑧 −

4𝑡𝑛𝜅1

𝑧
𝐼𝑝 = 𝑊⊤

𝑡 𝑊𝑧 −
𝑡

𝑧
𝑊⊤

𝑧 𝑊𝑧 + 𝑡

𝑧
𝑊⊤

𝑧 𝑊𝑧 −
4𝑡𝑛𝜅1

𝑧
𝐼𝑝

= 4𝑡
{︃(︃

𝑆0,𝑡

𝑡
− 𝑆0,𝑧

𝑧

)︃
𝑆−1

0,𝑛𝑆𝑧,𝑛 + 𝑛

𝑧

(︃
𝑊⊤

𝑧 𝑊𝑧

4𝑛 − 𝜅1𝐼𝑝

)︃}︃
.

Define Ω𝜈 := {‖𝑆−1
0,𝑛𝑆𝑧,𝑛‖op‖𝑆0,𝑧/𝑧‖op ≤ 𝜈}. By Lemma 14, we have a (1/2)-net 𝒩 of

𝐵0(ℓ) with cardinality at most (5𝑒𝑝/ℓ)ℓ such that we have

P( sup
𝑢∈𝐵0(ℓ)

|𝑢⊤(𝑆0,𝑡/𝑡− 𝑆0,𝑧/𝑧)𝑆−1
0,𝑛𝑆𝑧,𝑛𝑣| ≥ 𝑥)

≤ E[P(2 sup
𝑢∈𝒩
|𝑢⊤(𝑆0,𝑡/𝑡− 𝑆0,𝑧/𝑧)𝑆−1

0,𝑛𝑣| ≥ 𝑥 | 𝑆0,𝑧, 𝑆𝑧,𝑛)1Ω𝜈 ] + P(Ωc
𝜈)

≤ 52
(︃

5𝑒𝑝
ℓ

)︃ℓ

exp{−𝑡2𝑥2/(32𝑧𝜈2}) + P(Ωc
𝜈),

where the first inequality holds by that Ω𝜈 is measurable with respect to the 𝜎-algebra
generated by (𝑆0,𝑧, 𝑆𝑧,𝑛) and the second by Lemma 12 and a union bound. Define 𝜆min(𝐴)
and 𝜆max(𝐴) for any generic symmetric matrix 𝐴 to be the smallest and largest eigenvalues
of 𝐴, respectively. By Wainwright (2019, Theorem 6.1), we have

P
(︃
𝜆max

(︃
𝑆𝑧,𝑛

𝑛− 𝑧

)︃
≥ 2

(︁
1 +

√︁
𝑝/(𝑛− 𝑧)

)︁2
)︃
≤ exp

(︃
−

(𝑛− 𝑧)
(︁
1 +

√︁
𝑝/(𝑛− 𝑧)

)︁2

8

)︃
,

P
(︃
𝜆max

(︃
𝑆0,𝑧

𝑧

)︃
≥ 2

(︁
1 +

√︁
𝑝/𝑧

)︁2
)︃
≤ exp

(︃
−
𝑧
(︁
1 +

√︁
𝑝/𝑧

)︁2

8

)︃
,

P
(︃
𝜆min

(︃
𝑆0,𝑛

𝑛

)︃
≤

(1−
√︁
𝑝/𝑛)2

4

)︃
≤ exp

(︃
−
𝑛(1−

√︁
𝑝/𝑛)2

8

)︃
.

We define 𝜈 := 16[(𝑛 − 𝑧)/𝑛](1 +
√︁
𝑝/𝑧)2(1 +

√︁
𝑝/(𝑛− 𝑧))2(1 −

√︁
𝑝/𝑛)−2. By a union

bound, we arrive at

P(Ωc
𝜈) = P(‖𝑆−1

0,𝑛𝑆𝑧,𝑛‖op‖𝑆0,𝑧/𝑧‖op ≤ 𝜈) ≤ exp
(︃
−
𝑛
(︁
1−

√︁
𝑝/𝑛

)︁2

8

)︃
+ 2 exp(−𝑝/8).

Combining the above displays and setting 𝑥 := 16𝜈
√︁
ℓ𝑧 log(5𝑒𝑝/ℓ)/𝑡, we have by a union

bound that

P
(︃

sup
𝑢∈𝐵0(ℓ)

|𝑢⊤(𝑆0,𝑡/𝑡− 𝑆0,𝑧/𝑧)𝑆−1
0,𝑛𝑣| ≥ 𝑥

)︃
≤ 𝑝−7 + 𝑒−𝑛(1−

√
𝑝/𝑛)2/8 + 2𝑒−𝑝/8.
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Taking another union bound over 𝑡 ∈ [𝑧], and by the Borel–Cantelli lemma, we have with
probability 1, for all but finitely many 𝑝’s that

sup
𝑡∈[𝑧]

sup
𝑢∈𝐵0(ℓ)

𝑢⊤
(︁
𝑊⊤

𝑡 𝑊𝑧 − (𝑡/𝑧)𝑊⊤
𝑧 𝑊𝑧

)︁
𝑣 ≤ 𝐶 ′

𝜏,𝜂

√︁
ℓ𝑝 log(𝑒𝑝/ℓ), (8)

for some constant 𝐶 ′
𝜏,𝜂 > 0 that depends only on 𝜏 and 𝜂. By Gao and Wang (2022, (22)),

we have for all but finitely many 𝑝’s that

sup
𝑢∈𝐵0(ℓ)

𝑢⊤
(︃
𝑊⊤

𝑧 𝑊𝑧

4𝑛 − 𝜅1𝐼𝑝

)︃
𝑢 ≤ (4 + 𝑜(1))

√︃
(ℓ+ 4) log(10𝑒𝑝/ℓ)

𝑛

{︁
(𝜅1 + 𝜅2)

√︁
𝑛/𝑝+ 𝜅1

}︁
,

where 𝜅2 > 0 is again a constant depending only on 𝜏 and 𝜂. This, together with the first
claim of Lemma 8, implies that with probability 1, for all but finitely many 𝑝’s, we have

sup
𝑡∈[𝑧]

sup
𝑢∈𝐵0(ℓ)

4𝑡𝑛
𝑧
𝑢⊤
(︃
𝑊⊤

𝑧 𝑊𝑧

4𝑛 − 𝜅1𝐼𝑝

)︃
𝑣 ≤ 𝐶 ′′

𝜏,𝜂

√︁
ℓ𝑝 log(𝑒𝑝/ℓ). (9)

The conclusion follows by combining (8) and (9), and the corresponding inequality for
𝑡 ∈ [𝑛− 1] ∖ [𝑧].

Proof of Theorem 2. Applying Proposition 1, we have with probability 1 that for all but
finitely many 𝑝’s that

sup
𝑡∈[𝑧]

sup
𝑢∈𝐵0(ℓ)

𝑢⊤
(︃
𝑊⊤

𝑡 𝑊𝑧 −
4𝑡(𝑛− 𝑧)(𝑛− 𝑝)

𝑛2 𝐼𝑝

)︃
𝜃

‖𝜃‖2
≲𝜏,𝜂

√︁
𝑝ℓ log 𝑝. (10)

Let 𝑆 := supp(𝜃). Taking ℓ = 𝑘 in (10), we have

sup
𝛼𝑛≤𝑡≤𝑧

⃦⃦⃦⃦
⃦
√︃

𝑛

𝑡(𝑛− 𝑡)

(︃(︃
𝑊⊤

𝑡 𝑊𝑧 −
4𝑡(𝑛− 𝑧)(𝑛− 𝑝)

𝑛2 𝐼𝑝

)︃
𝜃

)︃
𝑆

⃦⃦⃦⃦
⃦

2

≤ sup
𝛼𝑛≤𝑡≤𝑧

sup
𝑢∈𝐵0(𝑘)

𝑢⊤
(︃√︃

𝑛

𝑡(𝑛− 𝑡)𝑊
⊤
𝑡 𝑊𝑧 −

4𝑡1/2(𝑛− 𝑧)(𝑛− 𝑝)
𝑛3/2(𝑛− 𝑡)1/2 𝐼𝑝

)︃
𝜃

≲𝜏,𝜂,𝛼

√︁
𝑘 log 𝑝‖𝜃‖2. (11)

By (10) and the second claim of Lemma 8, with probability 1 that for all but finitely
many 𝑝’s,

sup
𝑡∈[𝑧]
‖(𝑊⊤

𝑡 𝑊𝑧𝜃)𝑆𝑐‖2 = sup
𝑡∈[𝑧]

⃦⃦⃦⃦
⃦
(︃{︃

𝑊⊤
𝑡 𝑊𝑧 −

4𝑡(𝑛− 𝑧)(𝑛− 𝑝)
𝑛2 𝐼𝑝

}︃
𝜃

)︃
𝑆𝑐

⃦⃦⃦⃦
⃦

2

≲𝜏,𝜂 𝑝
√︁

log 𝑝‖𝜃‖2.

For any 𝑄 ∈ O𝑝×𝑝, we have 𝑋 d= 𝑋𝑄⊤ =: �̃�, and the latter has the corresponding sketching
matrix 𝐴 = 𝐴𝑄⊤ because 𝐴⊤𝐴 = 𝐼𝑛−𝑝 and 𝐴⊤�̃� = 𝑄𝐴⊤𝑋𝑄⊤ = 0(𝑛−𝑝)×𝑝. As such, for
any 𝑄 ∈ O𝑝×𝑝 such that 𝑄𝜃 = 𝜃, 𝑄(𝑊⊤

𝑡 𝑊𝑧𝜃) = (𝑄𝑊𝑡𝑄
⊤)⊤(𝑄𝑊𝑧𝑄

⊤)𝜃 d= 𝑊⊤
𝑡 𝑊𝑧𝜃. In
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particular, (𝑊⊤
𝑡 𝑊𝑧𝜃)𝑆𝑐 is spherically symmetric on R𝑝−𝑘. Hence, by Lemma 13 (with a

choice of 𝛿 = 2𝑝−4), with probability 1 we have for all but finitely many 𝑝’s that

sup
𝛼𝑛≤𝑡≤𝑧

⃦⃦⃦⃦
⃦
√︃

𝑛

𝑡(𝑛− 𝑡)(𝑊⊤
𝑡 𝑊𝑧𝜃)𝑆𝑐

⃦⃦⃦⃦
⃦

∞
≤ sup

𝛼𝑛≤𝑡≤𝑧
‖(𝑊⊤

𝑡 𝑊𝑧𝜃)𝑆𝑐‖2

√︃
𝑛

𝑡(𝑛− 𝑡)
4
√

log 𝑝√
𝑝− 𝑘

≲𝜏,𝜂,𝛼 ‖𝜃‖2 log 𝑝 (12)

Let 𝑋 = 𝑄𝑇 be the QR decomposition of 𝑋 and define 𝐵𝑡 := 𝑄⊤
(0,𝑡]𝑄(0,𝑡]. By Equation

(16) in the proof of Gao and Wang (2022, Proposition 8), there exists 𝐶𝜂 > 0, depending
only on 𝜂 that for any fixed 𝑝 and 𝑡 and 𝑗 ∈ [𝑝], with probability 1− 𝑝−4, we have

1
𝑛

(𝑊⊤
𝑡 𝑊𝑡)𝑗,𝑗 ≤

4tr(𝐵𝑡(𝐼𝑝 −𝐵𝑡))
𝑝

+ 𝐶𝜂

√︃
log 𝑝
𝑛
≤ 1 + 𝐶𝜂

√︃
log 𝑝
𝑛

,

where the final inequality follows from the fact that ‖𝐵𝑡‖op ≤ 1. Taking union bounds
over 𝑗 ∈ [𝑝] and 𝑡 ∈ [𝑧], and applying the Borel–Cantelli lemma, we have with probability
1 that for all but finitely many 𝑝’s,

sup
𝛼𝑛≤𝑡≤𝑧

sup
𝑗∈[𝑝]

𝑛

𝑡(𝑛− 𝑡)(𝑊⊤
𝑡 𝑊𝑡)𝑗,𝑗 ≲𝜏,𝛼 1.

Furthermore, applying the Gaussian tail bound followed by a union bound, we have with
probability 1 for all but finitely many 𝑝’s that

sup
𝛼𝑛≤𝑡≤𝑧

⃦⃦⃦⃦
⃦
√︃

𝑛

𝑡(𝑛− 𝑡)𝑊
⊤
𝑡 𝜉

⃦⃦⃦⃦
⃦

∞
≤ 4

√︁
log 𝑝 sup

𝛼𝑛≤𝑡≤𝑧
sup
𝑗∈[𝑝]

𝑛

𝑡(𝑛− 𝑡)(𝑊⊤
𝑡 𝑊𝑡)𝑗,𝑗 ≲𝜏,𝛼

√︁
log 𝑝. (13)

We now work on the probability 1 event Ω, such that (11), (12), (13) all hold for all
but finitely many 𝑝’s.

For sufficiently large 𝑐𝜏,𝜂,𝛼, we have the right-hand side of (12) and (13) are both
dominated by 𝜆/2. Hence, on Ω, we have for all 𝑡 ∈ [𝛼𝑛, 𝑧] that

𝐻𝑡 =
⃦⃦⃦⃦
⃦soft

(︃√︃
𝑛

𝑡(𝑛− 𝑡)𝑊
⊤
𝑡 (𝑊𝑧𝜃 + 𝜉), 𝜆

)︃⃦⃦⃦⃦
⃦

2

=
⃦⃦⃦⃦
⃦soft

(︃√︃
𝑛

𝑡(𝑛− 𝑡)(𝑊⊤
𝑡 𝑊𝑧)𝑆,𝑆𝜃𝑆 +

√︃
𝑛

𝑡(𝑛− 𝑡)(𝑊⊤
𝑡 𝜉)𝑆, 𝜆

)︃⃦⃦⃦⃦
⃦

2

Writing �̃�𝑡 :=
⃦⃦⃦√︁

𝑛
𝑡(𝑛−𝑡)(𝑊

⊤
𝑡 𝑊𝑧)𝑆,𝑆𝜃𝑆

⃦⃦⃦
2
, we have by the triangle inequality and (13) that

on Ω,
sup

𝑡∈[𝛼𝑛,𝑧]

⃒⃒⃒
𝐻𝑡 − �̃�𝑡

⃒⃒⃒
≲𝜏,𝛼

√
𝑘𝜆+

√︁
𝑘 log 𝑝. (14)

Recall the definition of 𝛾𝑡 in (6) and write

ℎ𝑡 := 𝛾𝑡‖𝜃‖2 = 4𝑡1/2(𝑛− 𝑧)(𝑛− 𝑝)
𝑛3/2(𝑛− 𝑡)1/2 ‖𝜃‖2 = 4(𝑛− 𝑝)

𝑛

√︃
𝑡

𝑛(𝑛− 𝑡)(𝑛− 𝑧)‖𝜃‖2.
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Then by (11), we also have on Ω that

sup
𝑡∈[𝛼𝑛,𝑧]

|�̃�𝑡 − ℎ𝑡| ≲𝜏,𝜂,𝛼

√︁
𝑘 log 𝑝‖𝜃‖2. (15)

By a symmetric argument, both (14) and (15) hold for 𝑡 ∈ [𝑧, (1−𝛼)𝑛] and consequently
for 𝑡 ∈ [𝛼𝑛, (1− 𝛼)𝑛] (with perhaps a slightly different constant). Consequently, we have
that with probability 1 for all but finitely many 𝑝,

sup
𝑡∈[𝛼𝑛,(1−𝛼)𝑛]

|𝐻𝑡 − ℎ𝑡| ≤ 𝐶1
(︁√

𝑘𝜆+
√︁
𝑘 log 𝑝‖𝜃‖2

)︁
,

where 𝐶1 depends only on 𝜏 , 𝜂 and 𝛼.
If 𝜃 = 0, then ℎ𝑡 = 0 for all 𝑡, and hence for sufficiently large 𝐶𝜏,𝜂,𝛼, we have with

probability 1 for all but finitely many 𝑝’s that sup𝑡∈[𝛼𝑛,(1−𝛼)𝑛] |𝐻𝑡| ≤ 𝑇 and thus the first
conclusion holds.

For the second conclusion, we have for some 𝐶2 depending only on 𝜏, 𝜂 and 𝛼 that

|𝐻𝑧| ≥ |ℎ𝑧| − sup
𝑡∈[𝛼𝑛,(1−𝛼)𝑛]

|𝐻𝑡 − ℎ𝑡| ≥ 𝐶2
√
𝑛‖𝜃‖2 − 𝐶1(

√
𝑘𝜆+

√︁
𝑘 log 𝑝‖𝜃‖2)

≥ 𝐶2(1− 𝑜(1))
√
𝑛‖𝜃‖2 − 𝐶1𝑐𝜏,𝜂,𝛼

√
𝑘 log 𝑝.

The signal size condition on ‖𝜃‖2 then ensures that |𝐻𝑧| ≥ (𝐶2𝑐
′
𝜏,𝜂,𝛼/2− 𝐶1𝑐𝜏,𝜂,𝛼)

√
𝑘 log 𝑝.

Hence, for sufficiently large 𝑐′
𝜏,𝜂,𝛼, we can ensure that with probability 1 for all but finitely

many 𝑝’s, we have max𝑡∈[𝛼𝑛,(1−𝛼)𝑛] |𝐻𝑡| ≥ |𝐻𝑧| ≥ 𝑇 , completing the proof.

Proof of Proposition 3. Define for each 𝑡 ∈ [𝛼𝑛, (1 − 𝛼)𝑛] a vector �̃�𝑡 ∈ R𝑝 such that
(�̃�𝑡)𝑆c := 0 and

(�̃�𝑡)𝑆 :=
√︃

𝑛

𝑡(𝑛− 𝑡)(𝑊⊤
𝑡 𝑊𝑧)𝑆,𝑆𝜃𝑆.

By (12) and (13) and their symmetric results for 𝑡 ∈ [𝑧, (1−𝛼)𝑛], we have with probability
1 for all but finitely many 𝑝’s that

sup
𝛼𝑛≤𝑡≤(1−𝛼)𝑛

‖𝑄𝑡 − �̃�𝑡‖∞ ≲𝜏,𝜂,𝛼 max(1, ‖𝜃‖2) log 𝑝 (16)

Recall the definition of 𝛾 = (𝛾𝑡)𝑡∈[𝑛−1] in (6). Applying (10) and its symmetric result for
𝑡 ≥ 𝑧 with ℓ = 1, we have with probability 1 for all but finitely many 𝑝’s that

sup
𝑡∈[𝑛−1]

‖�̃�𝑡 − 𝜃𝛾𝑡‖∞ ≲𝜏,𝜂,𝛼 ‖𝜃‖2

√︁
log 𝑝. (17)

By symmetry, both (16) and (17) are still valid when we replace the supremum over
𝑡 ∈ [𝑧, (1−𝛼)𝑛] instead. Define �̃� := (�̃�⌈𝛼𝑛⌉, . . . , �̃�⌊(1−𝛼)𝑛⌋)⊤ and 𝛾 := (𝛾𝑡)𝑡∈[𝛼𝑛,(1−𝛼)𝑛]. We
then have

‖𝑄− 𝜃𝛾⊤‖∞ ≤ ‖𝑄− �̃�‖∞ + ‖�̃�− 𝜃𝛾⊤‖∞ ≲𝜏,𝜂,𝛼 max(1, ‖𝜃‖2) log 𝑝. (18)
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By Wang and Samworth (2018, Propositions 2 and 4 in the online supplement), for 𝑐𝜏,𝜂,𝛼

large enough such that 𝜆 ≥ ‖𝑄− 𝜃𝛾⊤‖∞, we have

sin∠(𝑣, 𝜃) ≲𝜏,𝜂,𝛼
𝜆
√
𝑘𝑛

‖𝜃‖2‖𝛾‖2
,

whence the desired form follows by noting ‖𝛾‖2 ≍𝜏,𝜂,𝛼 𝑛 by Condition 2.

Proof of Theorem 4. To simplify exposition, all statements should be interpreted as valid
with probability 1 for all but finitely many 𝑝’s. Write 𝑣 := 𝜃/‖𝜃‖2 for simplicity, and
note that ‖𝑣‖0 = ‖𝜃‖0 ≤ 𝑘. Since the estimator 𝑧 is unchanged if we replace 𝑣 by
−𝑣 in Algorithm 1, we may assume without loss of generality that 𝜌 := 𝑣⊤𝑣 ≥ 0.
Our strategy is to view (𝑣⊤𝑄𝑡 : 𝑡 ∈ [𝛼𝑛, (1 − 𝛼)𝑛]) as a perturbation of a multiple of
(𝛾𝑡 : 𝑡 ∈ [𝛼𝑛, (1 − 𝛼)𝑛]), which is maximized at 𝑧. By (18), we may choose 𝑐𝜏,𝜂,𝛼 large
enough such that ‖𝑄− 𝜃𝛾⊤‖∞ ≤ 𝜆. By Proposition 3, we then have

max
𝑡∈[𝛼𝑛,(1−𝛼)𝑛]

⃒⃒⃒
𝑣⊤(𝑄𝑡 − 𝜃𝛾𝑡)

⃒⃒⃒
≤ ‖𝑣‖1‖𝑄− 𝜃𝛾⊤‖max ≤ (‖𝑣‖1 + ‖𝑣 − 𝑣‖1)𝜆

≲𝜏,𝜂,𝛼 (
√
𝑘 +√𝑝‖𝑣 − 𝑣‖2)𝜆.

From Proposition 3, there exists 𝐶 ′
𝜏,𝜂,𝛼 > 0, depending only on 𝜏, 𝜂, 𝛼, such that

‖𝑣 − 𝑣‖2 ≤ 2 sin∠(𝑣, 𝜃) ≤ 𝐶 ′
𝜏,𝜂,𝛼

𝜆
√
𝑘√

𝑛‖𝜃‖2
, (19)

which implies that

max
𝑡∈[𝛼𝑛,(1−𝛼)𝑛]

⃒⃒⃒
𝑣⊤(𝑄𝑡 − 𝜃𝛾𝑡)

⃒⃒⃒
≲𝜏,𝜂,𝛼

𝜆2
√
𝑘

‖𝜃‖2
. (20)

We may further assume that

𝜆
√
𝑘√

𝑛‖𝜃‖2
≤ 𝜆2

√
𝑘√

𝑛‖𝜃‖2
2
≤ 1
𝐶 ′

𝜏,𝜂,𝛼

(21)

for all 𝑝’s, since for 𝑝 where this is not satisfied the result is trivially true. Then,
sin∠(𝑣, 𝜃) ≤ 1/2 and thus 𝜌 = {1− sin2 ∠(𝑣, 𝜃)}1/2 ≥ 1/2. Consequently, from (20) and
(21), increasing 𝐶 ′

𝜏,𝜂,𝛼 if necessary, we have

𝑣⊤𝜃𝛾𝑧 = 𝜌‖𝜃‖2
4𝑧1/2(𝑛− 𝑧)1/2(𝑛− 𝑝)

𝑛3/2 ≥ 2 max
𝑡∈[𝛼𝑛,(1−𝛼)𝑛]

⃒⃒⃒
𝑣⊤(𝑄𝑡 − 𝜃𝛾𝑡)

⃒⃒⃒
,

which implies in particular that 𝑣⊤𝑄𝑧 > 0. Now, since 𝑧 = arg max𝑡∈[𝑛−1] 𝛾𝑡 and 𝑧 =
arg max𝑡∈[𝛼𝑛,(1−𝛼)𝑛] 𝑣

⊤𝑄𝑡, we have from (20) that

𝑣⊤𝜃𝛾𝑧 − 𝑣⊤𝜃𝛾𝑧 ≤ 𝑣⊤𝑄𝑧 − 𝑣⊤𝑄𝑧 + 2 max
𝑡∈[𝛼𝑛,(1−𝛼)𝑛]

⃒⃒⃒
𝑣⊤(𝑄𝑡 − 𝜃𝛾𝑡)

⃒⃒⃒
≲𝜏,𝜂,𝛼

𝜆2
√
𝑘

‖𝜃‖2
. (22)
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On the other hand, by Wang and Samworth (2018, Lemma 7), we have

inf
𝑡∈[𝑧−min{𝑧,𝑛−𝑧}/2,𝑧+min{𝑧,𝑛−𝑧}/2]

𝑣⊤𝜃𝛾𝑧 − 𝑣⊤𝜃𝛾𝑡

|𝑧 − 𝑡|
≳𝜏,𝜂 ‖𝜃‖2

√
𝑛. (23)

We arrive at the conclusion by combining (22) and (23).

Proof of Theorem 5. As in the proof of Theorem 4, all statements are valid with probability
1 for all but finitely many 𝑝’s, and we may assume without loss of generality that 𝑣⊤𝑣 ≥ 0.
Let �̃�𝑡 be as in the proof of Proposition 3. The main difference to the proof of Theorem 4
will be an improvement of (20) using the independence between 𝑣 and 𝑄𝑡−𝜃𝛾𝑡. Specifically,
since

{𝑡(𝑛− 𝑡)/𝑛}1/2𝑣⊤(𝑄𝑡 − �̃�𝑡) = 𝑣⊤𝑊⊤
𝑡 (𝑊𝑧𝜃 + 𝜉)− 𝑣⊤

𝑆 (𝑊⊤
𝑡 𝑊𝑧)𝑆,𝑆𝜃𝑆

= 𝑣⊤
𝑆𝑐(𝑊⊤

𝑡 𝑊𝑧𝜃)𝑆𝑐 + 𝑣⊤𝑊⊤
𝑡 𝜉,

we have that

max
𝑡∈[𝛼𝑛,(1−𝛼)𝑛]

⃒⃒⃒
𝑣⊤(𝑄𝑡 − 𝜃𝛾𝑡)

⃒⃒⃒
≤ max

𝑡∈[𝛼𝑛,(1−𝛼)𝑛]

⃒⃒⃒⃒
⃒𝑣⊤(�̃�𝑡 − 𝜃𝛾𝑡) +

√︃
𝑛

𝑡(𝑛− 𝑡)𝑣
⊤(𝑊⊤

𝑡 𝑊𝑧𝜃)𝑆𝑐

⃒⃒⃒⃒
⃒

+ max
𝑡∈[𝛼𝑛,(1−𝛼)𝑛]

⃒⃒⃒⃒
⃒
√︃

𝑛

𝑡(𝑛− 𝑡)𝑣
⊤𝑊⊤

𝑡 𝜉

⃒⃒⃒⃒
⃒ (24)

We control the two terms on the right-hand side of (24) separately. By (17), (12), the
Cauchy–Schwarz inequality and finally (19), the first term from the above display (24) is
bounded by

‖𝑣‖1

(︃
‖�̃�− 𝜃𝛾⊤‖max + max

𝑡∈[𝛼𝑛,(1−𝛼)𝑛]

⃦⃦⃦⃦
⃦
√︃

𝑛

𝑡(𝑛− 𝑡)‖𝑣‖2‖(𝑊⊤
𝑡 𝑊𝑧𝜃)𝑆𝑐‖2

⃦⃦⃦⃦
⃦

∞

)︃
≲𝜏,𝜂,𝛼 (

√
𝑘‖𝑣‖2 +√𝑝‖𝑣 − 𝑣‖2)‖𝜃‖2 log 𝑝 ≲𝜏,𝜂,𝛼 𝜆

√
𝑘 log 𝑝. (25)

On the other hand, since 𝑣, 𝑊𝑡 and 𝜉 are mutually independent, we have 𝑣⊤𝑊⊤
𝑡 𝜉 |

(𝑣,𝑊𝑡) ∼ 𝑁(0, ‖𝑊𝑡𝑣
⊤‖2

2). By Gao and Wang (2022, (22)), we have

sup
𝑡∈[𝛼𝑛,(1−𝛼)𝑛]

⃦⃦⃦⃦
⃦ 1
𝑛
𝑊⊤

𝑡 𝑊𝑡

⃦⃦⃦⃦
⃦

op
≲𝜏,𝜂,𝛼 1.

Hence, by Gaussian tail bounds followed by a union bound, we have

max
𝑡∈[𝛼𝑛,(1−𝛼)𝑛]

⃒⃒⃒⃒
⃒
√︃

𝑛

𝑡(𝑛− 𝑡)𝑣
⊤𝑊⊤

𝑡 𝜉

⃒⃒⃒⃒
⃒ ≲𝜏,𝜂,𝛼

√︁
log 𝑝. (26)

Substituting (25) and (26) into (24), we have

max
𝑡∈[𝛼𝑛,(1−𝛼)𝑛]

⃒⃒⃒
𝑣⊤(𝑄𝑡 − 𝜃𝛾𝑡)

⃒⃒⃒
≲𝜏,𝜂,𝛼 𝜆

√
𝑘 log 𝑝. (27)
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Following the same argument as in the proof of Theorem 4, with (27) replacing (20), we
arrive at the following counterpart to (22):

𝑣⊤𝜃𝛾𝑧 − 𝑣⊤𝜃𝛾𝑧 ≤ 𝑣⊤𝑄𝑧 − 𝑣⊤𝑄𝑧 + 2 max
𝑡∈[𝛼𝑛,(1−𝛼)𝑛]

⃒⃒⃒
𝑣⊤(𝑄𝑡 − 𝜃𝛾𝑡)

⃒⃒⃒
≲𝜏,𝜂,𝛼 𝜆

√
𝑘 log 𝑝. (28)

Combining (28) with (23), the proof is complete.

Proof of Theorem 6. First observe that since

P(Ω𝑐
0) ≤

𝜈∑︁
𝑖=1

𝑀∏︁
𝑚=1

(︂
1− P

(︁
(𝑠𝑚, 𝑒𝑚] ∈ ℐ𝑖

)︁)︂
≤ 𝜈

(︁
1−Δ2

𝜏/36
)︁𝑀
≤ 𝜈 exp(−Δ2

𝜏𝑀/36),

the second conclusion follows immediately from the first one. To establish the first
conclusion, we henceforth work on the event Ω0 ∩ Ω1 ∩ Ω2 ∩ Ω3.

For 0 ≤ 𝑠 < 𝑒 ≤ 𝑛, we define the following sets

ℳ(𝑠,𝑒] := {𝑚 ∈ [𝑀 ] : 𝑠 ≤ 𝑠𝑚 < 𝑒𝑚 ≤ 𝑒},
ℛ(𝑠,𝑒] := {𝑚 ∈ℳ(𝑠,𝑒] : 𝜓(𝐷(𝑠𝑚+𝑛𝜛,𝑒𝑚−𝑛𝜛]) = 1},
𝒵(𝑠,𝑒] := {𝑖 ∈ [𝜈] : 𝑧𝑖 ∈ (𝑠, 𝑒]},
𝒵(𝑠,𝑒]

good := {𝑖 ∈ [𝜈] : 𝑧𝑖 ∈ (𝑠, 𝑒],min{𝑧𝑖 − 𝑠, 𝑒− 𝑧𝑖} ≥ 𝑛Δ𝜏/2},
𝒵(𝑠,𝑒]

bad := {𝑖 ∈ [𝜈] : 𝑧𝑖 ∈ (𝑠, 𝑒],min{𝑧𝑖 − 𝑠, 𝑒− 𝑧𝑖} < 𝑛𝜑𝑖}.

Note that on the event Ω0, we can associate each true changepoint 𝑧𝑖 with an 𝑚𝑖 ∈ [𝑀 ]
such that (𝑠𝑚𝑖

, 𝑒𝑚𝑖
] ∈ ℐ𝑖. On Ω2, we have{︁

𝑚𝑖 : 𝑖 ∈ 𝒵(𝑠,𝑒]
good

}︁
⊆ ℛ(𝑠,𝑒]. (29)

Recall the assumption 𝜑 < 𝜛. For any (𝑠0, 𝑒0] ⊂ (𝑠, 𝑒] such that (𝑠0, 𝑒0] ∩ {𝑧𝑖 : 𝑖 ∈ [𝜈], 𝑧𝑖 ∈
(𝑠, 𝑒]} ⊆ 𝒵(𝑠,𝑒]

bad , we have (𝑠0, 𝑒0] ∈ ℐ0 and hence 𝜓(𝐷(𝑠0+𝑛𝜛,𝑒0−𝑛𝜛]) = 0 on Ω1.
For any set of changepoints 𝑍, we can partition the original timeline (0, 𝑛] into |𝑍|+ 1

segments, which we call segments induced by 𝑍. We now prove by induction that as
we update 𝑍 throughout the recursion of Algorithm 3, for any (𝑠, 𝑒] induced by 𝑍, we
have 𝒵(𝑠,𝑒] = 𝒵(𝑠,𝑒]

good ∪ 𝒵
(𝑠,𝑒]
bad . The base case is trivially true as at the beginning of the

algorithm, 𝑍 = ∅, so the only segment induced is (0, 𝑛] so 𝒵(𝑠,𝑒] = 𝒵(𝑠,𝑒]
good and 𝒵(𝑠,𝑒]

bad = ∅ by
our assumption that 𝑧𝑖 − 𝑧𝑖−1 ≥ 𝑛Δ𝜏 for all 𝑖 ∈ [𝜈 + 1].

Now assuming that the inductive hypothesis holds at some iteration of the recursion
in Algorithm 3. We show that the claimed statement still holds if a new changepoint is
estimated. Let 𝑍 be the set of changepoints identified before this new changepoint, say 𝑧*,
is added to it. We necessarily have 𝑧* = 𝑧(𝐷(𝑠′,𝑒′]) + 𝑠′ for some (𝑠′, 𝑒′] ∈ 𝒵(𝑠,𝑒] where (𝑠, 𝑒]
is induced by 𝑍. From the inductive hypothesis, we have 𝒵(𝑠,𝑒] = 𝒵(𝑠,𝑒]

good ∪ 𝒵
(𝑠,𝑒]
bad and 𝒵(𝑠,𝑒]

good
is necessarily non-empty, for otherwise all changepoints in (𝑠, 𝑒] are within a distance of
𝑛𝜑 to the boundary of the interval, which together with the fact that 𝜑 < 𝜛, implies
that ℳ(𝑠,𝑒] ∩ℛ(𝑠,𝑒] = ∅, contradicting the fact that a new changepoint is identified. Thus,
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there exists some 𝑖′ ∈ 𝒵(𝑠,𝑒]
good, which by (29) means that 𝑚𝑖′ ∈ ℛ(𝑠,𝑒]. By the definition

of 𝑚0 in Line 6 of Algorithm 3, we have 𝑒𝑚0 − 𝑠𝑚0 ≤ 𝑒𝑚𝑖′ − 𝑠𝑚𝑖′ ≤ 𝑛Δ𝜏 . Thus, from
the condition of the theorem, we have that (𝑠𝑚0 , 𝑒𝑚0 ] contains at most one changepoint.
If (𝑠𝑚0 , 𝑒𝑚0 ] ∩ {𝑧𝑖 : 𝑖 ∈ 𝒵(𝑠,𝑒]} = ∅, then on Ω1, 𝜓(𝐷(𝑠𝑚0 +𝑛𝜛,𝑒𝑚0 −𝑛𝜛]) = 0, contradicting
𝑚0 ∈ ℛ(𝑠,𝑒]. If (𝑠𝑚0 , 𝑒𝑚0 ] contains a single changepoint 𝑧𝑖 for 𝑖 ∈ 𝒵(𝑠,𝑒]

bad , then since 𝜑 < 𝜛,
we again have on Ω1 that 𝜓(𝐷(𝑠𝑚0 +𝑛𝜛,𝑒𝑚0 −𝑛𝜛]) = 0, a contradiction. By the inductive
hypothesis, this implies that (𝑠𝑚0 , 𝑒𝑚0 ] contains exactly one true change-point 𝑧𝑖0 for some
𝑖0 ∈ 𝒵(𝑠,𝑒]

good and that min{𝑒𝑚0 − 𝑧𝑖0 , 𝑧𝑖0 − 𝑠𝑚0} ≥ 𝑛𝜛. Hence, (𝑠𝑚0 , 𝑒𝑚0 ] ∈ ℐ̃𝑖0 , and thus on
Ω3, we have |𝑧* − 𝑧𝑖0| ≤ 𝑛𝜑𝑖0 .

We finally check that the two new segments induced by 𝑍 ∪ {𝑧*}, say (𝑧left, 𝑧*] and
(𝑧*, 𝑧right] for 𝑧left < 𝑧* < 𝑧right, still satisfy the inductive hypothesis. By symmetry, we may
assume without loss of generality that 𝑧* ≤ 𝑧𝑖0 . Since |𝑧𝑖0−𝑧*| ≤ 𝑛𝜑, we have 𝑖0 ∈ 𝒵(𝑧left,𝑧*]

bad .
For any 𝑖 ∈ 𝒵(𝑧left,𝑧*] such that 𝑖 < 𝑖0, we have 𝑧* − 𝑧𝑖 ≥ 𝑧𝑖0 − 𝑧𝑖 ≥ 𝑛Δ𝜏 , and thus 𝑧𝑖 ∈
𝒵(𝑧left,𝑧*]

good ∪𝒵(𝑧left,𝑧*]
bad by the inductive hypothesis, consequently, 𝒵(𝑧left,𝑧*] = 𝒵(𝑧left,𝑧*]

good ∪𝒵(𝑧left,𝑧*]
bad .

Similarly, for 𝑖 ∈ 𝒵(𝑧*,𝑧right], we have 𝑖 > 𝑖0 and 𝑧𝑖 − 𝑧* ≥ 𝑧𝑖 − 𝑧𝑖0 − (𝑧* − 𝑧𝑖0) ≥ 𝑛Δ𝜏 − 𝜑 ≥
𝑛Δ𝜏/2. Again by the inductive hypothesis, 𝒵(𝑧*,𝑧right] = 𝒵(𝑧*,𝑧right]

good ∪ 𝒵(𝑧*,𝑧right]
bad . This

completes the induction.
As a consequence of the above inductive argument, we have shown that a new change-

point will be identified in Algorithm 3 if and only if (𝑠, 𝑒] ∩ {𝑧𝑖 : 𝑖 ∈ 𝒵(𝑠,𝑒]
good} ≠ ∅. Thus,

from the inductive claim, at the end of the recursion, each changepoint, say 𝑧𝑖, must be
less than 𝑛𝜑𝑖 away from one of the end points of the segments induced by 𝑍. This, as well
as the assumption that 𝑧𝑖 − 𝑧𝑖−1 ≥ 𝑛Δ𝜏 for all 𝑖 ∈ [𝜈 + 1], means that |𝑍| = 𝜈 and that
|𝑧𝑖 − 𝑧𝑖| ≤ 𝑛𝜑𝑖 as desired.

Proof of Corollary 7. First we write 𝜑𝑖 = 𝐶′𝜆
√

𝑘 log 𝑝√
𝑛‖𝜃(𝑖)‖2

and define Ω0, Ω1, Ω2 and Ω3 as in
Theorem 6. Observe that Ω1, Ω2 and Ω3 has implicit dependence on 𝑝, whereas in the
specific coupling (7) considered in this theorem, Ω0 does not vary with 𝑝. We have from
the proof of Theorem 6 that P(Ω0) ≥ 1− 𝜈𝑒−Δ2

𝜏 𝑀/36. Hence, it suffices show that on Ω0,
we have for all but finitely many 𝑝’s that Ω1, Ω2 and Ω3 hold simultaneously. We keep in
mind that 𝑀 is fixed and finite, and for the rest of the proof, we condition on a realization
of (𝑠𝑚, 𝑒𝑚)𝑀

𝑚=1 as in (7) such that Ω0 holds.
Let ℐ0, ℐ𝑖 and ℐ̃𝑖 be defined as in Theorem 6. We first establish Ω1 and Ω2. For any

interval (𝑠, 𝑒] with 𝑒− 𝑠 ≤ 𝑝, 𝜓 = 0 by definition. For every (𝑠, 𝑒] ∈ ∪0≤𝑖≤𝜈 ℐ𝑖 whose length
is longer than 𝑝, the fixed-ratio regime Condition 2 is true by the generating mechanism of
the intervals in (7), and it is straightforward to verify that Theorem 2 applies. As a result,
there exist 𝑐, 𝑐′, 𝐶, which may depend on (𝑠, 𝑒], such that the conclusion of Theorem 2
holds for each (𝑠, 𝑒] ∈ ∪0≤𝑖≤𝜈 ℐ𝑖 with 𝑒− 𝑠 > 𝑝. Inspecting the proof of Theorem 2 shows
that we can take the maximum of all such 𝑐, 𝑐′, 𝐶’s so that the conclusion of Theorem 2
holds for all intervals in ∪0≤𝑖≤𝜈 ℐ𝑖 with length longer than 𝑝. As such, we have, for all but
finitely many 𝑝’s, Ω1 and Ω2 holds.

Now we turn to Ω3. Again, by reasoning similar to the above, we see the conditions
of Theorem 5 hold for each (𝑠, 𝑒] ∈ ℐ̃𝑖, and for the above-mentioned specific choices of 𝑐,
which may depend on (𝑠, 𝑒], the conclusion of Theorem 5 holds for each (𝑠, 𝑒] ∈ ℐ̃𝑖. We
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can again take the maximum of all such 𝑐’s so that for all intervals in ℐ̃𝑖 for all 𝑖 ∈ [𝜈], the
conclusion of Theorem 5 holds, i.e.,

𝑧(𝐷(𝑠,𝑒])− (𝑧𝑖 − 𝑠)
𝑛

≤ 𝐶 ′
(𝑠,𝑒]

𝜆
√
𝑘 log 𝑝√
𝑛‖𝜃‖2

.

Setting, e.g., 𝐶 ′ = max𝑖∈[𝜈] max(𝑠,𝑒]∈ℐ̃𝑖
𝐶 ′

(𝑠,𝑒], we have, for all but finitely many 𝑝’s, Ω3 holds.
Invoking Theorem 6 completes the proof.

6 Ancillary results
We collect here the ancillary results and their proofs.

Lemma 8. Fix 𝐴 ∈ R𝑝×𝑝 and 𝑘 ∈ [𝑝]. The following are true.

1. If 𝐴 is symmetric, then sup𝑢,𝑣∈𝐵0(𝑘) 𝑢
⊤𝐴𝑣 ≤ sup𝑣∈𝐵0(2𝑘) 𝑣

⊤𝐴𝑣.

2. sup𝑣∈𝐵0(𝑘) ‖𝐴𝑣‖2 ≤
√︁
𝑝/𝑘 sup𝑢,𝑤∈𝐵0(𝑘) 𝑢

⊤𝐴𝑤.

Proof. For the first claim, fix 𝑢, 𝑣 ∈ 𝐵0(𝑘) and let 𝑆 and 𝑇 be their respective support.
Then by the symmetry of 𝐴, we have

𝑢⊤𝐴𝑣 ≤ ‖𝐴𝑆,𝑇‖op ≤ ‖𝐴𝑆∪𝑇,𝑆∪𝑇‖op = sup
𝑤∈𝒮2𝑘−1

𝑤⊤𝐴𝑆∪𝑇,𝑆∪𝑇𝑤 ≤ sup
𝑣∈𝐵0(2𝑘)

𝑣⊤𝐴𝑣.

The first claim then follows by taking supremum on the left-hand side.
For the second claim, define 𝜓 := sup𝑢,𝑤∈𝐵0(𝑘) 𝑢

⊤𝐴𝑤. Write
(︁

[𝑝]
𝑘

)︁
:= {𝑆 ⊆ 𝐵 : |𝑆| = 𝑘}.

For any 𝑣 ∈ 𝐵0(𝑘), let 𝑣 := 𝐴𝑣/‖𝐴𝑣‖2 and 𝑇 := supp(𝑣). Then by the Cauchy–Schwarz
inequality, we have

‖𝐴𝑣‖2 = 𝑣⊤𝐴𝑣 = 1(︁
𝑝−1
𝑘−1

)︁ ∑︁
𝑆∈([𝑝]

𝑘 )
𝑣⊤

𝑆𝐴𝑆,𝑇𝑣𝑇 ≤
1(︁

𝑝−1
𝑘−1

)︁ ∑︁
𝑆∈([𝑝]

𝑘 )
‖𝑣𝑆‖2𝜓

≤
{︃

1(︁
𝑝−1
𝑘−1

)︁ ∑︁
𝑆∈([𝑝]

𝑘 )
‖𝑣𝑆‖2

2

}︃1/2{︃ 1(︁
𝑝−1
𝑘−1

)︁ ∑︁
𝑆∈([𝑝]

𝑘 )
𝜓2
}︃1/2

≤ ‖𝑣‖2 ·
√︂
𝑝

𝑘
𝜓 =

√︂
𝑝

𝑘
𝜓.

Taking supremum over 𝑣 on the left-hand side, we arrive at the conclusion.

Suppose that 𝑋 = (𝑥1, . . . , 𝑥𝑛)⊤ is generated by independent 𝑥𝑖 ∼ 𝑁𝑝(0,Σ) with 𝑛 ≥ 𝑝
and some positive definite Σ. Write 𝑆 = 𝑋⊤𝑋 and 𝑆1 = 𝑋⊤

(0,𝑡]𝑋(0,𝑡]. By Mitra (1970), for
any well-defined function 𝜑 : 𝑆 ↦→ 𝜑(𝑆) such that 𝜑(𝑆)𝑆𝜑(𝑆)⊤ = 𝐼𝑝, 𝑈 = 𝜑(𝑆)𝑆1𝜑(𝑆)⊤

is said to have a matrix-variate Beta distribution, i.e. 𝑈 ∼ Beta𝑝(𝑡/2, (𝑛− 𝑡)/2). To the
best of our knowledge, it is unclear what happens when 𝑛 < 𝑝 in the literature. The
following Lemma 9 and Corollary 10 effectively generalize the existing matrix-variate Beta
distribution to the rank-deficient case of 𝑛 < 𝑝.
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Lemma 9. Suppose 𝑋 ∈ R𝑛×𝑝 has independent 𝑁(0, 1) entries and write 𝑟 := min{𝑛, 𝑝}.
There exists an almost surely unique way of writing 𝑋 = 𝑄𝑅 as its QR decomposition,
where 𝑄 ∈ O𝑛×𝑟 and 𝑅 ∈ R𝑟×𝑝 such that 𝑅𝑖,𝑗 = 0 for all 𝑖 > 𝑗 and 𝑅𝑖,𝑖 ≥ 0 for all
𝑖 ∈ [𝑛]. We have that 𝑄 and 𝑅 are independent and 𝑄 ∼ Unif(O𝑛×𝑛). Furthermore,
𝑅2

𝑖,𝑖 ∼ 𝜒2(𝑛 − 𝑖 + 1) and 𝑅𝑖,𝑗 ∼ 𝑁(0, 1) for 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑝] with 𝑖 < 𝑗. Then
𝐵 := 𝑄⊤

(0,𝑡]𝑄(0,𝑡] ∼ Beta𝑟(𝑡/2, (𝑛− 𝑡)/2) and is independent of 𝑋⊤𝑋.

Proof. First we consider the case of 𝑛 ≥ 𝑝. Write the (almost surely) unique QR decom-
position of 𝑋 by 𝑋 = 𝑄𝑅 with 𝑄 ∈ O𝑛×𝑝 and 𝑅 ∈ R𝑝×𝑝 being an upper triangular matrix
with 𝑅𝑖,𝑖 ≥ 0 for all 𝑖 ∈ [𝑝]. For any fixed 𝐻 ∈ O𝑛×𝑛, 𝐻𝑋 d= 𝑋, whence 𝐻𝑄𝑅 d= 𝑄𝑅.
As such, the joint density of 𝑄 and 𝑅 is constant for every possible value of 𝑄 ∈ O𝑝×𝑛,
whence 𝑄 and 𝑅 are independent and 𝑄 ∼ Unif(O𝑝×𝑛). By (Muirhead, 2009, Theorem
3.2.14), we have 𝑅2

𝑖,𝑖 ∼ 𝜒2(𝑛− 𝑖+ 1) and 𝑅𝑖,𝑗 ∼ 𝑁(0, 1) and 𝑅𝑖,𝑗 are independent for all
𝑖 ≤ 𝑗. We define 𝑆 := 𝑋⊤𝑋 and 𝑆1 = 𝑋⊤

(0,𝑡]𝑋(0,𝑡] and 𝑆2 = 𝑋⊤
(𝑡,𝑛]𝑋(𝑡,𝑛]. Define 𝑆1/2 := 𝑅⊤,

and by Mitra (1970),

𝐵 := 𝑄⊤
(0,𝑡]𝑄(0,𝑡] = 𝑆−1/2𝑆1(𝑆−1/2)⊤ ∼ Beta𝑝(𝑡/2, (𝑛− 𝑡)/2).

We note that 𝐵 as a function of 𝑄 is independent of 𝑋⊤𝑋 = 𝑅⊤𝑅, by the independence
of 𝑄 and 𝑅.

Now we consider the case 𝑛 < 𝑝. Write𝑋𝑗 as the 𝑗th column of𝑋. Write𝑋 = [𝑋L | 𝑋R]
where 𝑋L = [𝑋1 | · · · | 𝑋𝑛] and 𝑋R := [𝑋𝑛+1 | · · · | 𝑋𝑝]. For 𝑋L whose rank is almost
surely 𝑛, there exists a unique QR decomposition such that 𝑋L = 𝑄𝑅L. Take 𝑅R := 𝑄⊤𝑋R
and 𝑅 := [𝑅L | 𝑅R], and we have 𝑋 = 𝑄𝑅, where both 𝑄 and 𝑅 are almost surely unique.
By the same argument as the case of 𝑛 ≥ 𝑝, we have 𝑄 and 𝑅 are independent and
𝑄 ∼ Unif(O𝑛×𝑛). Applying the conclusion from the case of 𝑛 ≥ 𝑝 on 𝑋L = 𝑄𝑅L, we have
(𝑅𝐿)𝑖,𝑖 ∼ 𝜒2(𝑛 − 𝑖 + 1) and (𝑅𝐿)𝑖,𝑗 ∼ 𝑁(0, 1). Furthermore, since 𝑅R = 𝑄⊤𝑋R where
both 𝑄 and 𝑋R is independent of 𝑋L and 𝑄 is independent of 𝑋R, all entries of 𝑅R are
standard normals independent of 𝑅L.

Applying the case of 𝑛 ≥ 𝑝 on 𝑋L = 𝑄𝑅L, we have 𝐵 := 𝑄⊤
(0,𝑡]𝑄(0,𝑡] ∼ Beta𝑛(𝑡/2, (𝑛−

𝑡)/2). By the same argument as before, 𝐵 is independent of 𝑋⊤𝑋.

Corollary 10. Let 𝑋 = (𝑥1, . . . , 𝑥𝑛)⊤ where 𝑥𝑖 ∼ 𝑁𝑝(0,Σ) where Σ is a positive definite
matrix. Write 𝑆 = 𝑋⊤𝑋 and 𝑆1 := 𝑋⊤

(0,𝑡]𝑋(0,𝑡]. Let 𝑟 := min{𝑛, 𝑝} and 𝜑 : R𝑝×𝑝 → R𝑝×𝑟

be a function such that 𝜑(𝑆)𝑆𝜑(𝑆)⊤ = 𝐼𝑟 for any positive semi-definite matrix 𝑆 ∈ R𝑝×𝑝

of rank 𝑟. Then 𝜑(𝑆)𝑆1𝜑(𝑆)⊤ ∼ Beta𝑟(𝑡/2, (𝑛− 𝑡)/2) and is independent of 𝑆 = 𝑋⊤𝑋.

Proof. By the positive definiteness of Σ, we find Σ1/2 ∈ R𝑝×𝑝 such that Σ = Σ1/2(Σ1/2)⊤.
Find Σ−1/2 such that Σ−1/2Σ1/2 = 𝐼𝑝. Define 𝑦𝑖 := Σ−1/2𝑥𝑖 ∼ 𝑁𝑝(0, 𝐼𝑝) and 𝑌 =
𝑋(Σ−1/2)⊤ has independent 𝑁(0, 1) entries. Let 𝑆 = 𝑌 ⊤𝑌 = Σ−1/2𝑆(Σ−1/2)⊤ and
𝑆1 = 𝑌 ⊤

(0,𝑡]𝑌(0,𝑡] = Σ−1/2𝑆1(Σ−1/2)⊤, whence by the definition of 𝜑 we have 𝜑(𝑆)𝑆𝜑(𝑆)⊤ =
𝜑(𝑆)Σ1/2𝑆(Σ1/2)⊤𝜑(𝑆)⊤ = 𝐼𝑟. As such, we define 𝜑(𝑆) := 𝜑(Σ1/2𝑆(Σ−1/2)⊤)Σ1/2, which is
a well-defined function, and have 𝜑(𝑆)𝑆𝜑(𝑆)⊤ = 𝐼𝑟. Since 𝜑(𝑆)𝑆1𝜑(𝑆)⊤ can be defined by
𝑌 with no dependence on Σ, it suffices to work on the case Σ = 𝐼𝑝, which we assume for
the rest of the proof.
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By Lemma 9, write the unique QR decomposition of 𝑋 by 𝑋 = 𝑄𝑅 with 𝑄 ∈ O𝑛×𝑟

and 𝑅 ∈ R𝑟×𝑝, whence 𝑆 = 𝑅⊤𝑅. Write 𝐵 = 𝑄⊤
(0,𝑡]𝑄(0,𝑡]. Since 𝜑(𝑆)⊤𝑅⊤𝑅𝜑(𝑆) = 𝐼𝑟,

𝐻 := 𝑅𝜑(𝑆) ∈ O𝑟×𝑟, whence 𝜑(𝑆)⊤𝑆1𝜑(𝑆) = 𝐻⊤𝑄⊤
(0,𝑡]𝑄(0,𝑡]𝐻 = 𝐻⊤𝐵𝐻. Since 𝐵

as a function of 𝑄 is independent of 𝑆 and 𝑅, it is independent of 𝐻. By noting
𝐻⊤𝐵𝐻 = 𝜑(𝑆)𝑆1𝜑(𝑆)⊤ and 𝐵

d= 𝐻⊤𝐵𝐻 because 𝑄𝐻 d= 𝑄 for any 𝐻 ∈ O𝑟×𝑟. The
independence between 𝜑(𝑆)𝑆1𝜑(𝑆) and 𝑆 follows from the fact that the distribution of
𝜑(𝑆)𝑆1𝜑(𝑆) is invariant conditionally on 𝑆.

Recall that 𝐽(𝑎1,𝑎2] := (𝐽𝑎1+1, · · · , 𝐽𝑎2)⊤ is the submatrix of 𝐽 by taking only the
(𝑎1 + 1)-th to 𝑎2-th rows for any matrix 𝐽 . For the rest of the paper, we define shorthand

𝑆𝑎1,𝑎2 :=
𝑎2∑︁

𝑖=𝑎1+1
𝑥𝑖𝑥

⊤
𝑖 = 𝑋⊤

(𝑎1,𝑎2]𝑋(𝑎1,𝑎2]

Define the scalar quantity 𝜂(𝑛, 𝑝) := (E[𝑥1𝑥
⊤
1 (𝑛−1𝑆0,𝑛)−1𝑥𝑛𝑥

⊤
𝑛 ])1,1.

Lemma 11. For all 𝑡 ≤ 𝑧, 𝑊⊤
𝑡 𝑊𝑧 = 4𝑆0,𝑡𝑆

−1
0,𝑛𝑆𝑧,𝑛, whence for 𝑧 ∈ [𝑛] and 𝑡 ∈ [𝑧] we have

E[𝑊⊤
𝑡 𝑊𝑧] = 4𝑡(𝑛− 𝑧)𝑛𝜂(𝑛, 𝑝)𝐼𝑝.

Furthermore, under Condition 2, 𝜂(𝑛,𝑝)
(𝑛−𝑝)𝑛−1 → 1, i.e., 𝜂(𝑛, 𝑝)→ 𝜂 as 𝑛, 𝑝→∞.

Proof. By the construction of 𝐴, we have 𝐴𝐴⊤ = 𝐼𝑛 −𝑋(𝑋⊤𝑋)−1𝑋⊤. We have

𝑊⊤
𝑡 𝑊𝑧 =

(︁
𝑋⊤

(0,𝑡] −𝑋⊤
(𝑡,𝑛]

)︁(︃𝐴(0,𝑡]
𝐴(𝑡,𝑛]

)︃(︁
𝐴⊤

(0,𝑧] 𝐴⊤
(𝑧,𝑛]

)︁(︃ 𝑋(0,𝑧]
−𝑋(𝑧,𝑛]

)︃

=
(︁
𝑋⊤

(0,𝑡] −𝑋⊤
(𝑡,𝑛]

)︁
(𝐼𝑛 −𝑋(𝑋⊤𝑋)−1𝑋⊤)

(︃
𝑋(0,𝑧]
−𝑋(𝑧,𝑛]

)︃
= (𝑆0,𝑡 − 𝑆𝑡,𝑧 + 𝑆𝑧,𝑛)− (𝑆0,𝑡 − 𝑆𝑡,𝑧 − 𝑆𝑧,𝑛)𝑆−1

0,𝑛(𝑆0,𝑡 + 𝑆𝑡,𝑧 − 𝑆𝑧,𝑛)
= 2(𝑆0,𝑡 − 𝑆𝑡,𝑧 − 𝑆𝑧,𝑛)𝑆−1

0,𝑛𝑆𝑧,𝑛 + 2𝑆𝑧,𝑛

= 4𝑆0,𝑡𝑆
−1
0,𝑛𝑆𝑧,𝑛.

In particular, we have for all 𝑧 ∈ [𝑛] and 𝑡 ∈ [𝑧]

E𝑊⊤
𝑡 𝑊𝑧 = 4

𝑡∑︁
𝑖=1

𝑛∑︁
𝑗=𝑧+1

E[𝑥𝑖𝑥
⊤
𝑖 𝑆

−1
0,𝑛𝑥𝑗𝑥

⊤
𝑗 ] = 4𝑡(𝑛− 𝑧)E[𝑥1𝑥

⊤
1 𝑆

−1
0,𝑛𝑥𝑛𝑥

⊤
𝑛 ],

where we invoke the exchangeability of 𝑥𝑖𝑥
⊤
𝑖 𝑆

−1
0,𝑛𝑥𝑗𝑥

⊤
𝑗 for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 in the second

equality.
We first note E[𝑊⊤

𝑧 𝑊𝑧] = 4𝑧(𝑛− 𝑧)E[𝑥1𝑥
⊤
1 𝑆

−1
0,𝑛𝑥𝑛𝑥

⊤
𝑛 ], and then show that E[𝑊⊤

𝑧 𝑊𝑧]
must be a scale of 𝐼𝑝. Since for any 𝑈 ∈ O𝑝×𝑝, 𝑥⊤

𝑖 𝑈
d= 𝑥⊤

𝑖 for 𝑖 ∈ [𝑛], whence we
have 𝑈⊤𝑊⊤

𝑧 𝑊𝑧𝑈 = 4𝑈⊤𝑆0,𝑡𝑈(𝑈⊤𝑆0,𝑛𝑈)−1𝑈⊤𝑆𝑧,𝑛𝑈
d= 𝑊⊤

𝑧 𝑊𝑧. In particular, 𝑊⊤
𝑧 𝑊𝑧 have

identically distributed diagonals and identically distributed off-diagonals. It suffices to
verify that its off-diagonals have zero mean.
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Let 𝑋 = 𝑄𝑇 be the almost surely unique QR decomposition of 𝑋, where we only take
non-negative diagonal entries in 𝑇 . By Equation (15) of Gao and Wang (2022), we have
𝑊⊤

𝑧 𝑊𝑧 = 4𝑇⊤𝑉 Λ(𝐼𝑝 − Λ)𝑉 ⊤𝑇 , where 𝑉 Λ𝑉 ⊤ = 𝑄⊤
(0,𝑧]𝑄(0,𝑧] is the eigendecomposition of

𝐵 := 𝑄⊤
(0,𝑡]𝑄(0,𝑡]. Note that 𝑉 ∼ Unif(O𝑝×𝑝), Λ and 𝑇 are mutually independent and 𝑇

has independent entries with 𝑇𝑗,𝑗 = 𝑡𝑗 > 0 such that 𝑡2𝑗 ∼ 𝜒2
𝑛−𝑗+1 and 𝑇𝑗,𝑘 = 𝑧𝑗𝑘 ∼ 𝑁(0, 1)

for 𝑗 ̸= 𝑘. For off-diagonals, it suffices to have

(E[𝑊⊤
𝑧 𝑊𝑧])1,2 = 4E

[︃ 𝑝∑︁
𝑗=1

𝑡1𝑉𝑗,1𝜆𝑗(1− 𝜆𝑗)(𝑡2𝑉𝑗,2 + 𝑧12𝑉𝑗,1)
]︃

= 4
𝑝∑︁

𝑗=1

[︃
E[𝑡1]E[𝜆𝑗(1− 𝜆𝑗)](E[𝑡2]E[𝑉𝑗,1𝑉𝑗,2] + E[𝑧12]E[𝑉 2

𝑗,1])
]︃

= 0,

where 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑝 are diagonal elements of Λ and E[𝑉𝑗,1𝑉𝑗,2] = (1/𝑝)∑︀𝑝
𝑗=1 𝑉𝑗,1𝑉𝑗,2 =

0 since 𝑉 ∈ O𝑝×𝑝.
Lastly, under Condition 2, by Proposition 8 of Gao and Wang (2022), (𝑊⊤

𝑧 𝑊𝑧)1,1
a.s.−−→

(4𝑧(𝑛 − 𝑧)(𝑛 − 𝑝))/𝑛3. Noting (E[𝑊⊤
𝑧 𝑊𝑧])1,1 = 4𝑧(𝑛 − 𝑧)𝑛𝜂(𝑛, 𝑝), we conclude the

convergence of 𝜂(𝑛, 𝑝)→ 𝜂.

Lemma 12. Let 𝑥1, . . . , 𝑥𝑛
iid∼ 𝑁𝑝(0, 𝐼𝑝). Fix 𝑧 ∈ [𝑛] and 𝑡 ∈ [𝑧]. For any nonrandom

𝑢,𝑤 ∈ 𝒮𝑝−1, we have

P
[︃

1
𝑡

⃒⃒⃒⃒
⃒𝑢⊤

{︃
𝑆0,𝑡 −

𝑡

𝑧
𝑆0,𝑧

}︃
𝑆−1

0,𝑛𝑆𝑧,𝑛𝑤

⃒⃒⃒⃒
⃒ ≥ 𝑥

⃒⃒⃒⃒
⃒ 𝑆0,𝑧, 𝑆𝑧,𝑛

]︃
≤ 52 exp

{︃
− 𝑡2𝑥2

8𝑧‖𝑆−1
0,𝑛𝑆𝑧,𝑛‖2

op‖𝑆0,𝑧/𝑧‖2
op

}︃
.

Proof. For notational simplicity, we use P𝑧 and E𝑧 to denote the conditional probability
and expectation with respect to the 𝜎-algebra generated by (𝑆0,𝑧, 𝑆𝑧,𝑛). Note that 𝑆0,𝑡 |
(𝑆0,𝑧, 𝑆𝑧,𝑛) d= 𝑆0,𝑡 | 𝑆0,𝑧 and E𝑧[𝑆0,𝑡] = (𝑡/𝑧)𝑆0,𝑧.

Let 𝑟 := min{𝑧, 𝑝}. We note 𝑆0,𝑧 has (almost surely) rank 𝑟, and write 𝑆0,𝑧 = 𝑅⊤𝑅
for the (almost surely unique) Cholesky decomposition of 𝑆0,𝑧 such that 𝑅 ∈ R𝑟×𝑝 is
an upper-triangular matrix with positive diagonal entries. Write 𝑅† ∈ R𝑝×𝑟 for the
(almost surely unique) Moore–Penrose pseudo-inverse of 𝑅 such that 𝑅𝑅† = 𝐼𝑝. By
Corollary 10, the matrix 𝐵 := (𝑅†)⊤𝑆0,𝑡𝑅

† ∼ Beta𝑟(𝑡/2, (𝑧 − 𝑡)/2) has a matrix-variate
Beta distribution, and is independent of 𝑆0,𝑧 with (𝑡/𝑧)𝐼𝑝 as its (conditional) mean. Observe
that 𝑅⊤𝐵𝑅 = (𝑅†𝑅)⊤𝑆0,𝑡(𝑅†𝑅) = 𝑆0,𝑡, since 𝑅†𝑅 is a (symmetric) orthogonal projection
matrix onto the row space of 𝑋(0,𝑧], which contains the row space of 𝑋(0,𝑡].

Define 𝑣 := 𝑆−1
0,𝑛𝑆𝑧,𝑛𝑤/‖𝑆−1

0,𝑛𝑆𝑧,𝑛𝑤‖2. Writing �̃� := 𝑅𝑢/
√
𝑧 and 𝑣 := 𝑅𝑣/

√
𝑧, we have

P𝑧

[︃
1
𝑡
|𝑢⊤{𝑆0,𝑡 − E𝑧(𝑆0,𝑡)}𝑆−1

0,𝑛𝑆𝑧,𝑛𝑤| ≥ 𝑥

]︃
≤ P𝑧

[︃
1
𝑡
|𝑢⊤{𝑆0,𝑡 − E𝑧(𝑆0,𝑡)}𝑣| ≥

𝑥

‖𝑆−1
0,𝑛𝑆0,𝑧‖op

]︃

= P𝑧

{︃⃒⃒⃒⃒
⃒�̃�⊤

(︃
𝑧

𝑡
𝐵 − 𝐼𝑝

)︃
𝑣

⃒⃒⃒⃒
⃒ ≥ 𝑥

‖𝑆−1
0,𝑛𝑆0,𝑧‖op

}︃

≤ P𝑧

{︃⃒⃒⃒⃒
⃒
(︃

�̃�

‖�̃�‖2

)︃⊤(︃
𝑧

𝑡
𝐵 − 𝐼𝑝

)︃
𝑣

‖𝑣‖2

⃒⃒⃒⃒
⃒ ≥ 𝑥

‖𝑆−1
0,𝑛𝑆0,𝑧‖op‖𝑆0,𝑧/𝑧‖op

}︃
.
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Write shorthand 𝜓 := ‖𝑆−1
0,𝑛𝑆0,𝑧‖op‖𝑆0,𝑧/𝑧‖op, which is measurable with respect to the 𝜎-

algebra generated by (𝑆0,𝑧, 𝑆𝑧,𝑛). There exists an orthogonal matrix 𝑈 such that 𝑈�̃�/‖�̃�‖2 =
𝑒1 and 𝑈𝑣/‖𝑣‖2 = 𝛼𝑒1 + 𝛽𝑒2 for real 𝛼 and 𝛽 such that 𝛼2 + 𝛽2 = 1, where 𝑒𝑗 denotes the
𝑗th standard basis vector in R𝑝. Using the fact that 𝐵 | (𝑆0,𝑧, 𝑆𝑧,𝑛) d= 𝑈⊤𝐵𝑈 | (𝑆0,𝑧, 𝑆𝑧,𝑛),
we have for 𝐽 = {1, 2} that

P𝑧

{︃⃒⃒⃒⃒
⃒
(︃

�̃�

‖�̃�‖2

)︃⊤(︃
𝑧

𝑡
𝐵 − 𝐼𝑝

)︃
𝑣

‖𝑣‖2

⃒⃒⃒⃒
⃒ ≥ 𝑥

𝜓

}︃

≤ P𝑧

{︃⃒⃒⃒⃒
⃒𝑧𝑡 𝐵1,1 − 1

⃒⃒⃒⃒
⃒ ≥ 𝑥√

2𝜓

}︃
+ P𝑧

{︃
𝑧

𝑡
|𝐵1,2| ≥

𝑥√
2𝜓

}︃

≤ 2P𝑧

{︃⃦⃦⃦⃦
⃦
(︃
𝐵 − 𝑡

𝑧
𝐼𝑝

)︃
𝐽,𝐽

⃦⃦⃦⃦
⃦

op
≥ 𝑡𝑥√

2𝑧𝜓

}︃
,

where the first inequality holds by noting |𝛼| + |𝛽| ≤ (2𝛼2 + 2𝛽2)1/2 =
√

2. Note that
{𝑤 ∈ 𝒮𝑝−1 : supp(𝑤) ⊆ 𝐽} is isomorphic to 𝑆1, which contains a (1/4)-net 𝒩 of cardinality
⌈ 2𝜋

4 arcsin(1/8)⌉ = 13. By Gupta and Nagar (1999, Theorem 5.3.12), for each 𝑤 ∈ 𝒩 , we
have 𝑤⊤𝐵𝑤 ∼ Beta(𝑡/2, (𝑧 − 𝑡)/2). Hence, by Vershynin (2012, Lemma 5.4) and a union
bound, we have

P𝑧

{︃⃦⃦⃦⃦
⃦
(︃
𝐵 − 𝑡

𝑧
𝐼𝑝

)︃
𝐽,𝐽

⃦⃦⃦⃦
⃦

op
≥ 𝑡𝑥√

2𝑧𝜓

}︃
≤ P𝑧

{︃
sup
𝑤∈𝒩

⃒⃒⃒
𝑤⊤𝐵𝑤 − 𝑡/𝑧

⃒⃒⃒
≥ 𝑡𝑥

2
√

2𝑧𝜓

}︃

≤ 13P𝑧

{︃⃒⃒⃒
𝐵1,1 − 𝑡/𝑧

⃒⃒⃒
≥ 𝑡𝑥

2
√

2𝑧𝜓

}︃

≤ 26 exp
{︃
− 𝑡2𝑥2

8𝑧𝜓2

}︃
,

where we have used Marchal and Arbel (2017, Theorem 2.1) in the final inequality.

Lemma 13. Let 𝑋 = (𝑋1, . . . , 𝑋𝑝)⊤ be uniformly distributed on the sphere 𝒮𝑝−1. Then,
for 𝛿 ≥ 𝑒−𝑝/16, we have

P
(︃
‖𝑋‖∞ >

√︃
4 log(2/𝛿)

𝑝

)︃
≤ 𝑝𝛿.

Proof. Let 𝑍1, . . . , 𝑍𝑝 be independent 𝑁(0, 1) random variables, then 𝑋1
d= 𝑍1/(𝑍2

1 + · · ·+
𝑍2

𝑝)1/2. By a standard Gaussian tail bound, we have

P
{︁
𝑍1 >

√︁
2 log(1/𝛿)

}︁
≤ 𝛿.

Moreover, ∑︀𝑝
𝑗=1 𝑍

2
𝑗 ∼ 𝜒2

𝑝. Since we have 𝛿 ≥ 𝑒−𝑝/16, by Laurent and Massart (2000,
Lemma 1),

P
(︃ 𝑝∑︁

𝑗=1
𝑍2

𝑗 <
𝑝

2

)︃
≤ P

(︃ 𝑝∑︁
𝑗=1

𝑍2
𝑗 < 𝑝− 2

√︁
𝑝 log(1/𝛿)

)︃
≤ 𝛿.

The result follows by combining the above two bounds and applying a union bound.
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Recall 𝐵0(𝑘) ⊆ R𝑝 is the set of 𝑘-sparse unit vectors.

Lemma 14. For any 𝐴 ∈ R𝑝×𝑝, and any 𝜖 ∈ (0, 1), there exists an 𝜖-net 𝒩𝜖 of 𝐵0(𝑘) of
cardinality at most {(1 + 2/𝜖)𝑒𝑝/𝑘}𝑘 such that

sup
𝑢∈𝐵0(𝑘)

𝑢⊤𝐴𝑣 ≤ (1− 𝜖)−1 max
𝑢∈𝒩𝜖

𝑢⊤𝐴𝑣.

Proof. By Vershynin (2012, Lemma 5.2), for each subset 𝑆 ⊆ [𝑝] of cardinality 𝑘, there
exists an 𝜖-net 𝒩𝑆 of {𝑣 ∈ 𝐵0(𝑘) : supp(𝑣) ⊆ 𝑆} of cardinality at most (1 + 2/𝜖)𝑘. Define
𝒩𝜖 := ∪𝑆⊆[𝑝]:|𝑆|=𝑘𝒩𝑆, then |𝒩𝜖| ≤

(︁
𝑝
𝑘

)︁
(1 + 2𝜖)𝑘 ≤ {(1 + 2𝜖)𝑒𝑝/𝑘}𝑘. For any fixed 𝑥 ∈ 𝐵0(𝑘),

find �̃� ∈ 𝒩𝜖 such that ‖𝑥− �̃�‖2 ≤ 𝜖 and ‖𝑥− �̃�‖0 ≤ 𝑘. Thus,

𝑥⊤𝐴𝑣 = (𝑥− �̃�)⊤𝐴𝑣 + �̃�⊤𝐴𝑣

≤ ‖𝑥− �̃�‖2 sup
𝑢∈𝐵0(𝑘)

𝑢⊤𝐴𝑣 + sup
𝑢∈𝒩𝜖

𝑢⊤𝐴𝑣

≤ 𝜖 sup
𝑢∈𝐵0(𝑘)

𝑢⊤𝐴𝑣 + sup
𝑢∈𝒩𝜖

𝑢⊤𝐴𝑣.

The desired result follows by taking supremum over 𝑥 ∈ 𝐵0(𝑘) above.
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