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Abstract

We study the effects of missingness on the estimation of population parameters.
Moving beyond restrictive missing completely at random (MCAR) assumptions, we
first formulate a missing data analogue of Huber’s arbitrary ϵ-contamination model.
For mean estimation with respect to squared Euclidean error loss, we show that the
minimax quantiles decompose as a sum of the corresponding minimax quantiles under
a heterogeneous, MCAR assumption, and a robust error term, depending on ϵ, that
reflects the additional error incurred by departure from MCAR.

We next introduce natural classes of realisable ϵ-contamination models, where an
MCAR version of a base distribution P is contaminated by an arbitrary missing not
at random (MNAR) version of P . These classes are rich enough to capture various
notions of biased sampling and sensitivity conditions, yet we show that they enjoy
improved minimax performance relative to our earlier arbitrary contamination classes
for both parametric and nonparametric classes of base distributions. For instance, with
a univariate Gaussian base distribution, consistent mean estimation over realisable
ϵ-contamination classes is possible even when ϵ and the proportion of missingness
converge (slowly) to 1. Finally, we extend our results to the setting of departures
from missing at random (MAR) in normal linear regression with a realisable missing
response.

1 Introduction

A major theme of modern statistical research concerns problems where we wish to make
inference about (some aspect of) a target population, but do not have access to an inde-
pendent sample of size n from this distribution. Departures from this idealised scenario
may take many different forms: spatial, temporal or some other form of dependence may
be present (Cressie, 2015; Brockwell and Davis, 1991), or (some of) our data may be drawn
from a source distribution that is different from, but related to, our target population, as in
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transfer learning (Cai and Wei, 2021; Reeve, Cannings and Samworth, 2021). In a similar
vein, the field of robust statistics aims to draw reliable inference when some of our data may
be contaminated (Huber, 1964).

One of the most common ways in which observed data may fail to represent a sample
from a target population is when components may be missing or unobserved. Even the
relatively benign setting where data are missing completely at random (MCAR)—that is,
when the data generating and missingness mechanisms are independent—presents substantial
challenges for practitioners and theoreticians alike. A significant, ongoing research effort
has therefore sought to introduce appropriate methodology under the MCAR hypothesis
in several contemporary statistical problems, including sparse linear regression (Loh and
Wainwright, 2012; Belloni, Rosenbaum and Tsybakov, 2017), classification (Cai and Zhang,
2019; Sell, Berrett and Cannings, 2024), sparse or high-dimensional principal component
analysis (Elsener and van de Geer, 2019; Zhu, Wang and Samworth, 2022; Yan, Chen and
Fan, 2024), covariance and precision matrix estimation (Lounici, 2014; Loh and Tan, 2018)
and high-dimensional changepoint estimation (Xie, Huang and Willett, 2012; Follain, Wang
and Samworth, 2022).

Despite this progress, it is frequently argued that MCAR should be regarded very much
as the exception rather than the rule in applications. For instance, supporters of one political
party may be less likely than other voters to respond to survey requests (Kennedy et al.,
2018), while in education, efforts to model the value added by teachers may be hindered by
large numbers of students with incomplete records and the tendency for those students to
be lower achieving (McCaffrey and Lockwood, 2011). Likewise, in epidemiology, individuals
with depression may be less likely to participate in a survey than those without depres-
sion (Prince, 2012), while metabolomic data are typically subject to a high proportion of
non-MCAR missingness due to a metabolite-specific missingness mechanism in which more
abundant analytes are more likely to be observed (Do et al., 2018; McKennan, Ober and
Nicolae, 2020).

The most well-studied alternative to MCAR is the missing at random (MAR) hypothe-
sis (Little and Rubin, 2014; Seaman et al., 2013; Farewell, Daniel and Seaman, 2022). The
main virtue of this assumption is that, in well-specified, identifiable parametric models,
likelihood-based methods may retain parametric rates of convergence to population esti-
mands. On the other hand, it also has several drawbacks: first, it may well still be too
restrictive as an appropriate missingness model for practical data sets (e.g. in the examples
of the previous paragraph). Second, its links to likelihood-based methods and simple miss-
ingness patterns limit its applicability; third, even in simple parametric models, population
parameters may be unidentifiable under MAR (see Section 2.2.1); and finally, it fails to mea-
sure proximity to the MCAR class in an appropriate, continuous fashion, and may therefore
be unable to capture the essence of a given statistical challenge.

Our goal in this paper is to commence a line of work that seeks to understand the extent
to which (non-MCAR) missingness affects our ability to estimate population parameters.
We primarily focus here on the most basic statistical problem of mean estimation, though
we extend our results to regression settings where the response variable may be missing
in Section 5. In order to address the fundamental difficulty of the challenge, we introduce
Huber-style models that interpolate between MCAR and larger classes that allow much more
general dependence relationships between the data generating and missingness mechanisms.
We measure performance of estimators via their squared Euclidean error, but since this loss
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function is unbounded and we have a positive probability under our models of observing no
data, the minimax risk is infinite (so uninformative for the purposes of comparing estimators).
Instead, we work with the recently-developed minimax quantile framework; see Section 2.4.

We begin in Section 2 by introducing a formal framework for studying missing data
via extended measurable spaces, which allow for missing components. Our main statistical
models are what we refer to as arbitrary ϵ-contamination and realisable ϵ-contamination
models. In the former, we perturb a distribution P that is subject to MCAR missingness
by an additional mixture component (having corresponding mixture proportion ϵ) that may
be an arbitrary distribution on our extended measurable space; in particular, this latter
mixture component may be viewed as an MNAR version of an arbitrary distribution P ′.
On the other hand, in our realisable classes, although we again allow mixture perturbations
of a base distribution P subject to MCAR missingness, we now require the contamination
component to be an MNAR version of P itself. Although we are not aware of previous studies
of these realisable classes, we believe that in many practical settings, it is appropriate to
regard our data (whether observed or not) as arising from a particular base distribution, and
the missingness mechanism only playing a role thereafter (even if it is potentially dependent
on the data). Such a setting would result in our observed data as being from a realisable
model, and these classes therefore form a natural way to restrict the vast array of different
possible dependence relationships between data generating and missingness mechanisms. As
we establish in this work, they also offer the potential for improved performance guarantees
relative to those available for arbitrary contamination models.

In Section 3, we study the minimax quantiles of our squared Euclidean error loss func-
tion over arbitrary ϵ-contamination models. Theorem 3 provides an upper bound via an
iterative imputation version of the robust descent algorithm of Depersin and Lecué (2022b).
This bound decomposes as a sum of an MCAR term and a term quantifying the effect of
contamination from MCAR. A corresponding lower bound on the minimax quantile given
in Theorem 4 reveals that, at least when the covariance matrix of our base distribution is
diagonal, the upper bound in Theorem 3 is optimal up to multiplicative constants in terms
of its behaviour under departures from MCAR, and is optimal up to logarithmic factors in
the dimension and quantile level in the MCAR term.

We turn our attention in Section 4.1 to realisable contamination of a Gaussian base dis-
tribution. Focusing for now on the univariate case for simplicity of exposition, we introduce
a minimum Kolmogorov distance estimator, and show in Theorems 6 and 7 that it achieves
the minimax optimal rate for both the MCAR and MCAR departure terms, except for a
possible logarithmic dependence in an intermediate effective contamination level regime that
vanishes with the effective sample size. This latter result also reveals the surprising fact that
consistent mean estimation is possible in this model even in settings where the proportion of
missingness and the proportion of MNAR contamination converge (slowly) to 1. Section 4.2
concerns more general realisable models, where our base distribution is only required to sat-
isfy moment or ψr-Orlicz norm conditions with r ≥ 1. Theorems 10 and 11 provide upper
and lower bounds on the minimax quantiles that match up to universal constants under both
conditions. For both our Gaussian and our nonparametric classes of base distributions, we
also discuss multivariate extensions of these results.

Table 1 presents a selection of our findings for univariate mean estimation problems.
These illustrate the benefits in terms of improved worst-case performance of working with
realisable, as opposed to arbitrary, contamination. It is interesting to see, for instance, that
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when the effective contamination level κ is small, the minimax quantile rate for a Gaussian
distribution under arbitrary contamination agrees with the corresponding rate for a general
distribution with finite variance under realisable contamination. It is also notable that, while
under arbitrary contamination the minimax quantiles are infinite as soon as ϵ ≥ q/(1 + q),
where q denotes the MCAR observation proportion, under realisable contamination this
threshold converges to 1 with the sample size.

Arbitrary contamination Realisable contamination

Base distribution Minimax rate ϵ condition Minimax rate ϵ condition

Gaussian M0 + σ2κ2 ϵ <
q

1 + q
M0 +

σ2 log2(1 + κ)

log{nq(1− ϵ)} ϵ < 1− on(1)

Sub-Gaussian M0 + σ2κ2 log
(
1
κ

)
ϵ <

q

1 + q
M0 + σ2

(
κ2 ∧ log(1 + κ)

)
ϵ < 1− on(1)

Finite variance M0 + σ2κ ϵ <
q

1 + q
M0 + σ2(κ2 ∧ κ) ϵ < 1− on(1)

Table 1: A comparison of minimax rates under arbitrary and realisable ϵ-contamination for different

univariate base distribution classes. Here, M0 := σ2 log(1/δ)
nq(1−ϵ) denotes the MCAR minimax (1− δ)th

quantile rate for estimating the mean of a base distribution P having variance (or squared sub-

Gaussian norm) σ2 based on Z1, . . . , Zn
iid∼ MCAR(q(1−ϵ),P ) (see (1) below), and κ := ϵ

q(1−ϵ) denotes
the effective contamination level. In the Gaussian realisable rate, we have ignored a potential
logarithmic multiplicative factor in a regime where the overall rate remains polynomial in the
effective sample size nq(1− ϵ). The results for arbitrary contamination are provided in Section C.3
and Theorem 4, while the results for realisable contamination are given in Section 4.

Extensions of our results to normal linear regression models with realisable missing re-
sponses are discussed in Section 5. Here, we show that even when the contamination pro-
portion ϵ is allowed to grow slowly to 1, consistent estimation of the vector of regression
coefficients remains achievable under a mild regularity assumption on the design.

All of our proofs are deferred to the Appendix.

1.1 Related work

The ϵ-contamination models that form the bedrock of our framework for the analysis of
the effects of missing data are inspired by related models in the robust statistics literature
(Huber, 1964). Recently, there has been a concentration of research effort attempting to
argue that statistical procedures achieve the optimal dependence on ϵ in different statistical
problems, thereby providing evidence of their robustness. For instance, for fully observed
data, Chen, Gao and Ren (2018) demonstrate the optimality in this sense of the Tukey
median (Tukey, 1975) for mean estimation, as well as a matrix depth estimator of a covariance
matrix. Since the Tukey median is computationally intractable, various alternatives have
been considered in the both the statistics and theoretical computer science literature (see,
e.g., Diakonikolas and Kane, 2023, and references therein). Other problems studied within
this framework include linear regression (Bakshi and Prasad, 2021; Pensia, Jog and Loh,
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2024+), nonparametric regression (Gao, 2020) and robust clustering (Liu and Moitra, 2023;
Jana, Fan and Kulkarni, 2024).

Our realisable contamination models are related to several previous attempts to study
restricted forms of missing not at random and biased sampling. For instance, Vardi (1985)
introduced a biased sampling model and, under the assumption that the sampling mechanism
is known, studied nonparametric estimation of the distribution function. Under this oracle
model, Gill, Vardi and Wellner (1988) studied classical asymptotics and efficiency guarantees
for the nonparametric maximum likelihood estimator; see also Bickel and Ritov (1991) for
similar guarantees in a linear regression setting. Later, Aronow and Lee (2013) and Sahoo,
Lei and Wager (2022) introduced likelihood ratio constraints to perform estimation in situ-
ations where the sampling mechanism may be unknown. In the causal inference literature,
efforts to restrict unobserved confounding have led to the introduction of similar restrictions
known as sensitivity conditions (Rosenbaum, 1987; Zhao, Small and Bhattacharya, 2019). As
we show in our discussion following Proposition 2, our realisable contamination classes can
be understood as generalisations of these notions. In a different direction, and with a view
towards computational efficiency, Daskalakis et al. (2018) considered estimating population
parameters in a biased sampling model induced by truncation to a known set; Kontonis,
Tzamos and Zampetakis (2019) and Diakonikolas et al. (2024) studied the computational
and statistical consequences of the absence of knowledge of this truncation set. Distributions
obtained by truncation are missing not at random and as such can be captured when ϵ = 1
by our realisable ϵ-contamination classes.

1.2 Notation

For d ∈ N, we let [d] := {1, . . . , d} and write 2[d] for the power set of [d]. For a, b ∈ R, we let
a ∨ b := max{a, b} and a ∧ b := min{a, b}. We also define log+(x) := log(x) ∨ 1 for x > 0. If
I is an arbitrary index set, then for functions f, g : I → R, we write f ≳ g if there exists a
universal constant c > 0 such that f(i) ≥ cg(i) for all i ∈ I, and write f ≲ g if there exists
a universal constant C > 0 such that f(i) ≤ Cg(i) for all i ∈ I.

For S ⊆ [d], we define 1S ∈ {0, 1}d by (1S)j := 1{j∈S}; for j ∈ [d], we write ej ∈ Rd

for the jth standard basis vector. We denote the unit Euclidean sphere in Rd by Sd−1. The
sets Sd×d, Sd×d+ and Sd×d++ denote the set of symmetric, symmetric positive semidefinite and
symmetric positive definite matrices in Rd×d respectively. For A ∈ Rd×d, we write ∥A∥op
for its operator (spectral) norm and ∥A∥∞ for its maximum absolute entry. Further, for
A ∈ Sd×d+ , we let r(A) := tr(A)/∥A∥op denote the effective rank of A, with the convention
that 0/0 := 0. Given (a1, . . . , ad)

⊤ ∈ Rd, let diag(a1, . . . , ad) ∈ Rd×d denote the diagonal
matrix with entries a1, . . . ad, and let Id := diag(1, . . . , 1) denote the identity matrix in Rd×d.

For a topological space (X , τ), we let B(X ) denote the Borel σ-algebra of X , and let
P(X ) denote the set of all probability measures on

(
X ,B(X )

)
. For two measures µ1, µ2

on
(
X ,B(X )

)
, we write µ1 ≪ µ2 if µ1 is absolutely continuous with respect to µ2. We

write λ ∈ P(R) for Lebesgue measure on R. Given a collection Q of distributions, we define
Q⊗n := {Q⊗n : Q ∈ Q}. For a random variableX taking values in X , we let Law(X) ∈ P(X )
denote the distribution of X, and supp(X) ⊆ X denote the support of X, i.e. the intersection
of all closed sets C ⊆ X with P(X ∈ C) = 1.

For θ ∈ R and σ ∈ [0,∞), we let Φ(θ,σ)(·) and ϕ(θ,σ)(·) denote the distribution and density
functions of the N(θ, σ2) distribution respectively, with the shorthand that Φ := Φ(0,1) and
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ϕ := ϕ(0,1).

2 Statistical setting

2.1 The extended space X⋆ and classical models of missing data

In this section, we introduce spaces that are convenient for models of missing data. Let d ∈ N
and, for j ∈ [d], let (Xj, τj) denote a topological space equipped with its Borel σ-algebra
B(Xj). We use the symbol ⋆ to denote a missing element1 and define, for each j ∈ [d], the
extended space Xj,⋆ := Xj ∪ {⋆}, equipped with the topology τj,⋆ := τj ∪ {A ∪ {⋆} : A ∈ τj}
and corresponding Borel σ-algebra B(Xj,⋆) = B(Xj) ∪ {A ∪ {⋆} : A ∈ B(Xj)}. Given a
measure µj on

(
Xj,B(Xj)

)
, we define the extended measure µj,⋆ on

(
Xj,⋆,B(Xj,⋆)

)
by

µj,⋆(A) := µj(A) and µj,⋆(A ∪ {⋆}) := µj(A) + 1

for A ∈ B(Xj). It is also convenient to define the product spaces X :=
∏d

j=1Xj and

X⋆ :=
∏d

j=1Xj,⋆, equipped with their product σ-algebras B(X ) := ⊗j∈[d]B(Xj) and B(X⋆) :=
⊗j∈[d]B(Xj,⋆) respectively.

We will often reason about missing data via revelation vectors ω ∈ {0, 1}d, which together
with an element x ∈ X induce an element of the extended space X⋆ through the binary
operator ⃝⋆ : X × {0, 1}d → X⋆, where the jth component of x⃝⋆ ω is defined by

(x⃝⋆ ω)j :=

{
xj if ωj = 1

⋆ if ωj = 0,

for j ∈ [d]. The following example gives a concrete illustration of the abstract notation.

Example 1. Let X ∼ N(0, 1) and let Ω be a binary random variable satisfying P(Ω =
1 |X = x) = g(x) for some Borel measurable function g : R → [0, 1]. Then the R⋆-valued
random variable X ⃝⋆ Ω admits a density f⋆ : R⋆ → [0,∞) with respect to the extended
Lebesgue measure λ⋆, where

f⋆(z) :=

{
g(z)ϕ(z) if z ∈ R
1−

∫
R g(x)ϕ(x) dx if z = ⋆.

♢

An advantage of working with the extended measurable space X⋆ is that it allows us
to give succinct definitions of three classical models of missingness: missing completely at
random (MCAR), missing at random (MAR) and missing not at random (MNAR). For each
definition, we will let X ∼ P ∈ P(X ) and π ∈ P(2[d]). To define the MCAR distribution,
let Ω be a random vector in {0, 1}d, independent of X, such that P(Ω = 1S) = π(S) for
S ⊆ [d], and define2

MCAR(π,P ) := Law(X ⃝⋆ Ω) ∈ P(X⋆). (1)

1When Xj = R, we adopt the conventions that ⋆ · 0 := 0 =: 0 · ⋆, that x · ⋆ := ⋆ =: ⋆ · x for x ∈ X⋆ \ {0}
and that ⋆+ x = ⋆ for x ∈ X⋆.

2When d = 1, we may identify π with q := π({1}), and write MCAR(q,P ) in place of MCAR(π,P ).
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Next, the family of MAR distributions is the subset of P(X⋆) given by3

MAR(π,P ) :=
{
Law(X ⃝⋆ Ω′) : X ∼ P, P(Ω′ = 1S) = π(S) ∀S ⊆ [d], (2)

P(Ω′ = ω |X = x) = P(Ω′ = ω |X ⃝⋆ ω = x⃝⋆ ω) ∀ω ∈ {0, 1}d, P -a.e. x ∈ X
}
.

The missing at random definition captures the intuitive idea that ‘missingness depends only
on the observed variables’ and is tailored toward likelihood-based methods for which it implies
the so-called ignorability of the missingness mechanism (Seaman et al., 2013, Section 5).
Finally, we define the corresponding family of MNAR distributions MNAR(π,P ) ⊆ P(X⋆) as

MNAR(π,P ) :=
{
Law(X ⃝⋆ Ω′) : X ∼ P,P(Ω′ = 1S) = π(S) ∀S ⊆ [d]

}
⊆ P(X⋆), (3)

According to these definitions, MCAR(π,P ) ∈ MAR(π,P ) ⊆ MNAR(π,P ). When the distribu-
tion π is not fixed, we let

MARP :=
⋃

ρ∈P(2[d])

MAR(ρ,P ) and MNARP :=
⋃

ρ∈P(2[d])

MNAR(ρ,P ). (4)

2.2 Models of departures from M(C)AR

2.2.1 Identifiability issues under the missing at random assumption

The MAR assumption (2) is arguably the most widely adopted form of departure from the
restrictive MCAR assumption in statistical practice. However, in Example 2 below, we
show that even in simple parametric scenarios, this can lead to identifiability issues that
preclude consistent estimation; in particular, even though the the MAR assumption holds,
it is nonetheless impossible to identify the population mean.

Example 2. For θ = (θ1, θ2)
⊤ ∈ [0, 1]2, define Pθ ∈ P

(
{0, 1}3

)
such that for X :=

(X1, X2, X3)
⊤ ∼ Pθ, we have X1 ∼ Ber(θ1), X2 ∼ Ber(θ2) independently, and X3 =

X1 +X2 (mod 2). We next specify a missingness mechanism via

Ω | X =


(0, 0, 1) if X3 = 1,

(0, 1, 1) with probability 1/2 if X3 = 0,

(1, 0, 1) with probability 1/2 if X3 = 0,

and note that if X ∼ Pθ, then Rθ := Law(X ⃝⋆ Ω) ∈ MARPθ
. We have

Rθ

(
{(⋆, ⋆, 1)}

)
= θ1(1− θ2) + (1− θ1)θ2, Rθ

(
{(⋆, 1, 0)}

)
= Rθ

(
{(1, ⋆, 0)}

)
=
θ1θ2
2

and

Rθ

(
{(⋆, 0, 0)}

)
= Rθ

(
{(0, ⋆, 0)}

)
=

(1− θ1)(1− θ2)
2

.

Thus, R(θ1,θ2) = R(θ2,θ1) for all (θ1, θ2)
⊤ ∈ [0, 1]2, so that it is impossible to identify the

parameter. This symmetry additionally implies that the population log-likelihood may not
admit a unique global maximiser. Indeed, letting θ∗ ∈ [0, 1]2 denote the true parameter, the
population log-likelihood is given by L(θ) := logEθ∗

{
Rθ({X ⃝⋆ ω})

}
, which is symmetric in

the components of θ. ♢
3A formal definition of the conditional probabilities in (2) can be provided through the notion of disinte-

grations, whose existence is assumed here (and is guaranteed when Xj is a Polish space for each j ∈ [d]); see
Section G.
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ϵ = 0.25

ϵ = 0.5

ϵ = 0.75

ϵ = 1

ϵ = 0

MCAR(π,P )

MARP

MNARPP(X⋆)

Figure 1: An illustration of the arbitrary ϵ-contamination model Parb(P, ϵ, π), which interpolates
between MCAR(π,P ) and P(X⋆).

2.2.2 Huber-style models of departure from MCAR

Given the failure of the MAR assumption to ensure the tractability of the mean estimation
problem, and in light of dual representation of the incompatibility index given by Berrett
and Samworth (2023, Theorem 2), it is natural to model departures from MCAR via a
nonparametric, Huber-style contamination model. In particular, given P ∈ P(X ), ϵ ∈ [0, 1]
and π ∈ P(2[d]), we define the arbitrary ϵ-contamination model

Parb(P, ϵ, π) :=
{
(1− ϵ)MCAR(π,P ) + ϵQ : Q ∈ P(X⋆)

}
. (5)

This family comprises mixture distributions in which one of the mixture components can
be an arbitrary distribution on X⋆. One way to think about such distributions is via the
following algorithm for drawing an observation Z ∼ (1−ϵ)MCAR(π,P )+ϵQ, where Q ∈ P(X⋆).
We first generate W ∼ Ber(ϵ); if W = 0, we then draw Ω and X independently, according to
P(Ω = 1S |W = 0) = π(S) for S ⊆ [d] and X | {W = 0} ∼ P , and finally set Z := X⃝⋆ Ω. On
the other hand, if W = 1, then we draw Z | {W = 1} ∼ Q. The arbitrary ϵ-contamination
model allows us to interpolate in a continuous way between Parb(P, 0, π) = MCAR(π,P ) and
Parb(P, 1, π) = P(X⋆); see Figure 1.

An attraction of the arbitrary contamination model is its generality. Nevertheless, in
many practical settings where one considers data arising from a particular distribution that
are then subjected to some form of missingness, it may be preferable to seek classes to
interpolate between MCAR(π,P ) and MNARP . To this end, a key definition in our framework
is that of the realisable ϵ-contamination model

R(P, ϵ, π) :=
{
(1− ϵ)MCAR(π,P ) + ϵQ : Q ∈ MNARP

}
; (6)

see Figure 2. In this model, the contamination mixture component is restricted to being
a partially-observed version of X ∼ P , where nevertheless the observation pattern may
both be different from that in the uncontaminated component, and dependent on X. Thus,
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ϵ = 0.25
ϵ = 0.5
ϵ = 0.75
ϵ = 1

ϵ = 0

MCAR(π,P )

MARP

MNARPP(X⋆)

Figure 2: An illustration of the realisable ϵ-contamination model R(P, ϵ, π), which interpolates
between MCAR(π,P ) and MNARP .

the realisable contamination model R(P, ϵ, π) represents a (still nonparametric) subclass of
Parb(P, ϵ, π), with the potential to yield improved rates of mean estimation. On the other
hand, noting thatR(P, 1, π) = MNARP , in Example 2, the distributionRθ belongs toMNARP
but not to R(P, ϵ, π) for any ϵ ∈ [0, 1), so the inability to estimate its mean consistently does
not contradict our minimax upper bounds established in Theorem 10.

2.2.3 Regression with missing response

A practical application of our framework for mean estimation with missingness is to re-
gression problems where the response variable may be missing. Here, we consider a d-
dimensional (random) covariate vector and a real-valued response variable Y . Given a dis-
integration (PY |x)x∈Rd of the joint distribution of (X, Y ) into conditional distributions on R,
and q ∈ (0, 1], we define the collection of missing at random (MAR) response distributions
as

MARRes
(q,PY |X) :=

{
Law(Y ⃝⋆ Ω |X) : Y | X ∼ PY |X , supp(Ω) = {0, 1},

Ω ⊥⊥ Y |X and P(Ω = 1 |X) ≥ q
}
, (7)

and the corresponding collection of missing not at random (MNAR) response distributions
as

MNARRes
(PY |X) :=

{
Law(Y ⃝⋆ Ω |X) : Y | X ∼ PY |X and supp(Ω) = {0, 1}

}
. (8)

We note two crucial differences between the classes defined in (7) and (8) above. First, in
the missing at random setting, we require that the missingness mechanism Ω is conditionally
independent of the response Y given the covariate vector X, whereas in the latter setting, the
mechanism may depend arbitrarily on the response as well as the covariate. Second, under
the missing at random setting, we require a lower bound on the probability of observing a
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particular response given its corresponding covariate vector X. This latter condition implies
a one-sided version of a so-called strict overlap condition (see, e.g., Hirano, Imbens and
Ridder, 2003, Assumption 4(ii)). By contrast, we impose no such assumption in the missing
not at random setting. Given ϵ ∈ [0, 1], we define our realisable ϵ-contamination model with
a missing response as

RRes(PY |X , ϵ, q) :=
{
(1− ϵ)MARRes

(q,PY |X) + ϵQ : Q ∈ MNARRes
(PY |X)

}
. (9)

2.3 Characterisation of realisability

As we have argued previously, the realisable ϵ-contamination model is often very natural in
settings where our data are observed subject to missingness. It is therefore of great interest to
characterise distributions R ∈ R(P, ϵ, π), and this is achieved in Theorem 1 below through
integrals of bounded, continuous functions with respect to R. Given a topological space
(Z, τZ), it is convenient to write Cb(Z) for the set of bounded, continuous functions on Z.
For f ∈ Cb(X⋆), we also define fmax : X → R by fmax(x) := maxω∈{0,1}d f(x⃝⋆ ω).

Theorem 1. Let X1, . . . ,Xd be locally compact Hausdorff spaces4 and let X :=
∏d

j=1Xj.
Assume that every open set in X is σ-compact. Fix P ∈ P(X ), ϵ ∈ (0, 1], π ∈ P(2[d]). Let
R ∈ P(X⋆), and define a signed measure on X⋆ by Q := ϵ−1{R − (1 − ϵ)MCAR(π,P )}. Then
R ∈ R(P, ϵ, π) if and only if Q ∈ P(X⋆) and

P (fmax) ≥ Q(f) (10)

for all f ∈ Cb(X⋆).

An important special case of Theorem 1, and indeed the main content of its proof,
concerns the setting where ϵ = 1. Here, the result states that a distribution Q belongs to
MNARP if and only if (10) holds, and is a consequence of a generalised version of Farkas’s
lemma (Farkas, 1902), due to Craven and Koliha (1977). An explanation of the relevance of
this seemingly-unrelated lemma, which amounts to a proof of the theorem in the case where
X is finite, is provided before the proof of the full result in Section B.1.

In the univariate case with X = R, Proposition 2 below provides a more explicit charac-
terisation of realisability. It is also convenient here to write R(P, ϵ, q) in place of R(P, ϵ, π)
when q := π({1}).

Proposition 2. Let P ∈ P(R) and assume that P has density p with respect to a Borel
measure µ. Let ϵ ∈ [0, 1], π ∈ P

({
∅, {1}

})
, and define q := π({1}). Then R ∈ R(P, ϵ, q) if

and only if R≪ µ⋆ and there exists a Borel measurable function m : R→ [0, 1] such that

dR

dµ⋆
(z) =

{
q(1− ϵ) · p(z) + ϵ ·m(z)p(z) if z ∈ R
1− q(1− ϵ)− ϵ

∫
Rm(x)p(x) dµ(x) if z = ⋆.

(11)

In a similar fashion to the quantityM in the discussion following Theorem 1, the function
m : R → [0, 1] admits an interpretation as a missingness mechanism for the MNAR com-
ponent. More generally, Proposition 2 reveals that univariate realisability is characterised

4For the convenience of the reader, definitions of these terms from topology are provided in Section B.1.
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via rejection sampling. To see this in the extreme case when ϵ = 1, consider a distribu-
tion R ∈ P(R⋆) such that R ≪ µ⋆, and for Z ∼ R, let g denote the conditional density
with respect to µ of Z given that {Z ̸= ⋆}. By Proposition 2, R ∈ MNARP if and only if
g(x)/p(x) ≤ 1/R

(
{⋆}

)
for µ-almost all x ∈ R. Thus any R ∈ MNARP can be obtained via

rejection sampling from P .
Let us now compare our realisable class in (6) with related notions in the (primarily

causal inference) literature, in the univariate case. Let Z := X ⃝⋆ Ω, where X ∼ P ≪ µ and
where Ω is a random variable taking values in {0, 1} that need not be independent of X.
Define h : R→ [0, 1] by

h(x) := P(Z ̸= ⋆ |X = x).

Proposition 2 yields that Law(Z) ∈ R(P, ϵ, q) if and only if q(1− ϵ) ≤ h(x) ≤ q(1− ϵ)+ ϵ for
µ-almost all x ∈ R. The notion of Γ-biased sampling of Sahoo, Lei and Wager (2022) (see
also Aronow and Lee (2013)) can be stated as the condition on h and q := P(Z ̸= ⋆) that
Γ−1 ≤ h(x)/q ≤ Γ for some Γ ≥ 1 and µ-almost all x ∈ R. In a similar spirit, the marginal
sensitivity condition of Zhao, Small and Bhattacharya (2019, Definition 1) asks that there
exists Λ ≥ 1 such that

1

Λ
≤ h(x)

1− h(x) ·
1− q
q
≤ Λ

for µ-almost all x ∈ R, while the classical sensitivity condition of Rosenbaum (1987) reads
as

1

Λ
≤ h(x1)

1− h(x1)
· 1− h(x2)

h(x2)
≤ Λ

for (µ ⊗ µ)-almost all (x1, x2) ∈ R2. These classes all belong to R(P, ϵ, q) for some ϵ ∈
[0, 1) and q ∈ (0, 1]. Here, for simplicity of exposition, we have presented versions of these
conditions without covariates. Nevertheless the comparison remains valid when covariates
are included; see Section 5.

2.4 Minimax quantile framework

In a traditional minimax analysis, the randomness in the loss function evaluated at our data
is handled via a reduction to its expectation, namely the minimax risk. As mentioned in
the introduction, this minimax risk is infinite in the problems that we consider, so does not
provide a meaningful way of comparing different statistical procedures. We therefore adopt
the minimax quantile framework of Ma, Verchand and Samworth (2024), which also offers
the benefit of retaining all of the distributional information, e.g. regarding tail behaviour, in
the loss function.

To introduce this paradigm in generality, we let (Θ, d) be a non-empty pseudo-metric
space and for θ ∈ Θ, let Pθ denote a family of probability measures on a measurable space
(Z, C). Further, let g : [0,∞) → [0,∞) denote an increasing function and define the loss

L : Θ×Θ→ [0,∞) by L(θ, θ′) := g
(
d(θ, θ′)

)
. Write Θ̂ for the set of estimators of θ, i.e. the

set of measurable functions from Z to Θ. For θ̂ ∈ Θ̂, Pθ ∈ Pθ and a quantile level δ ∈ (0, 1],
we write

Quantile
(
1− δ;Pθ, L(θ̂, θ)

)
:= inf

{
r ∈ [0,∞) : Pθ

{
L(θ̂, θ) ≤ r

}
≥ 1− δ

}
,

11



and consider the minimax (1− δ)th quantile, defined as

M(δ,PΘ, L) := inf
θ̂∈Θ̂

sup
θ∈Θ

sup
Pθ∈Pθ

Quantile
(
1− δ;Pθ, L(θ̂, θ)

)
, (12)

where PΘ := {Pθ : θ ∈ Θ}. If there exists θ̂ ∈ Θ̂ such that with Pθ-probability at least 1− δ,
we have L(θ̂, θ) ≤ UB(δ) for all θ ∈ Θ and Pθ ∈ Pθ, then M(δ,PΘ, L) ≤ UB(δ). For the

squared Euclidean error loss L(θ̂, θ) = ∥θ̂ − θ∥22, we will slightly abuse notation by writing
M

(
δ,PΘ, ∥ · ∥22

)
in place ofM(δ,PΘ, L).

3 Mean estimation under arbitrary contamination

Throughout this section, we take X = Rd. The set of distributions on Rd with mean vector
θ ∈ Rd and covariance matrix Σ ∈ Sd×d+ is denoted

P(θ,Σ) :=
{
P ∈ P(Rd) : EP (X) = θ, CovP (X) = Σ

}
. (13)

Given ϵ ∈ [0, 1] and π ∈ P(2[d]), it is convenient to define a specialised version of our arbitrary
contamination model by

Parb(θ,Σ, ϵ, π) :=
⋃

P∈P(θ,Σ)

Parb(P, ϵ, π). (14)

We now describe the robust descent algorithm with iterative imputation in Algorithm 1,
and quantify its performance in Theorem 3. This algorithm depends on universal constants
A−1

1 , A2, A3 > 0; sufficiently large values for our theoretical guarantees can be determined
from Theorem 3 and Lemma 17 as well as Depersin and Lecué (2022b, Theorem 2.1), though
these values are probably far from optimal. The performance of Algorithm 1 is governed by
the matrix ΣIPW ∈ Sd×d+ , with entries(

ΣIPW
)
jk

:=
qjk
qjqk
· Σjk,

for j, k ∈ [d], where qjk :=
∑

S⊆[d]:{j,k}⊆S π(S) and qj := qjj. Further define qmin := minj∈[d] qj.

Theorem 3. Let ϵ ∈ [0, 1/2), n ∈ N and δ ∈ (0, 1). Let Z1, . . . , Zn
iid∼ P ∈ Parb

(
θ0,Σ, ϵ, π

)
and let θ̂n = Iterative Robust Descent(Z1, . . . , Zn; ϵ, δ) from Algorithm 1, with A1 =
10−9, A2 = 300 and A3 = 180,000. Taking

T := 1 +
⌈
log+

(
A1 · {r(ΣIPW) + log(24d/δ)}

)⌉
,

as in the algorithm, we have that if both

qmin ≥ 1013 ·
{(

ϵ+
T log(3T/δ)

n

)
∨ 300T log(6T/δ)

n

}
∨ 8 log(6d/δ)

n

and δ ≥ 6Te−n/(720,000T ) ∨ de−n/(2T ), then there exists a universal constant C > 0 such that,
with probability at least 1− δ,

∥θ̂n − θ0∥22 ≤ C

(
T tr(ΣIPW)

n
+
T∥ΣIPW∥op log(6T/δ)

n
+ ∥ΣIPW∥opϵ

)
.
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Algorithm 1 Iterative Robust Descent for robust mean estimation with iterative
imputation

Input: Data z1, . . . , zn ∈ Rd
⋆, contamination parameter ϵ ≥ 0, and tolerance parameter

δ > 0
Output: An estimator θ̂n of θ0

1: function Iterative Robust Descent(z1, . . . , zn; ϵ, δ)
2: T ← 1 +

⌈
log+

(
A1{r(ΣIPW) + log(24d/δ)}

)⌉
, ϵ′ ← 2ϵ+ 2T log(3T/δ)/n and

M ←
⌈
(A2nϵ

′/T ) ∨ A3 log(6T/δ)
⌉

3: for i ∈ [n] and j ∈ [d] do
4: ωij ← 1{zij ̸=⋆}
5: end for
6: Randomly partition

[
T ⌊n/T ⌋

]
into T disjoint sets (S(t))t∈[T ] of equal cardinality

7: for j ∈ [d] do
8: Ij ← {i ∈ S(1) : ωij = 1}
9: θ̂

(1)
j ← Univariate Trimmed Mean

(
(zij)i∈Ij ; ϵ, δ

)
; see Algorithm 3

10: end for
11: for t ∈ {2, . . . , T} do
12: Randomly partition S(t) into M + 1 disjoint sets (B

(t)
m )m∈[M+1], where the first

M have cardinality ⌊|S(t)|/M⌋
13: for (m, j) ∈ [M ]× [d] do

14: ω
(t)
mj ← 1{

∑
i∈B

(t)
m

ωij>0}

15: z
(t)
mj ← ω

(t)
mj ·

∑
i∈B(t)

m
ωijzij∑

i∈B(t)
m
ωij

+ (1− ω(t)
mj) · θ̂(t−1)

j

16: end for
17: θ̂(t) ← Robust Block Descent(z

(t)
1 , . . . , z

(t)
M ); see Algorithm 4

18: end for
19: return θ̂n ← θ̂(T )

20: end function

Since
T ≤ 1 + log+

(
A1{d+ log(24d/δ)}

)
≲ log d+ log+ log(1/δ),

Theorem 3 yields that, with Parb
Θ :=

{
Parb(θ,Σ, ϵ, π) : θ ∈ Θ

}
,

M
(
δ,Parb

Θ , ∥ · ∥22
)
≲

{
log d+log+ log(1/δ)

}{tr(ΣIPW)

n
+
∥ΣIPW∥op log(1/δ)

n︸ ︷︷ ︸
MCAR term

}
+ ∥ΣIPW∥opϵ︸ ︷︷ ︸

MCAR departure

.

As indicated, our upper bound decomposes into a sum of two distinct components: an MCAR
term and an ϵ-dependent term that captures the effect of departure from MCAR. The first
of these terms further decomposes as the sum of a risk component5 and a term that captures
the dependence on the quantile level δ.

5Strictly speaking, this is a slight abuse of terminology, since the MCAR risk is infinite whenever qmin < 1;
however, it is the risk when qmin = 1, and the terminology reflects the fact that the term does not depend
on the quantile level δ.
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In the strong contamination model, Hu and Reingold (2021, Theorem 2) provide an

estimator θ̂HR satisfying the upper bound

∥θ̂HR − θ0∥22 ≲
d∥Σ∥op log d

nqmin

+
d∥Σ∥op log(1/δ)

nqmin

+
∥Σ∥opϵ
qmin

with probability at least 1− δ, provided that δ ≳ de−cnqmin for an appropriately small c > 0.
Since our Algorithm 1 applies the Robust Block Descent algorithm of Depersin and
Lecué (2022b) iteratively, and since that algorithm has performance guarantees under the
strong contamination model, it follows that our bound in Theorem 3 also holds in the strong
contamination model, and this facilitates a comparison of our conclusion with that of Hu
and Reingold (2021). The improvements of our bound when δ ≥ exp(−ed) arise from the
facts that

tr(ΣIPW) ≤ d∥ΣIPW∥op, ∥ΣIPW∥op ≤
∥Σ∥op
qmin

,

and

log
(
d log(1/δ)

){tr(ΣIPW)

n
+
∥ΣIPW∥op log(1/δ)

n

}
≤ 2

{
d∥Σ∥op log d

nqmin

+
d∥Σ∥op log(1/δ)

nqmin

}
.

These gains may be significant: for instance, when δ = e−d, we obtain that with probability
at least 1− δ,

∥θ̂n − θ0∥22 ≲
d∥ΣIPW∥op log d

n
+ ∥ΣIPW∥op · ϵ.

By contrast, Hu and Reingold (2021) obtain that with probability at least 1− δ,

∥θ̂HR − θ0∥22 ≲
d2∥Σ∥op
nqmin

+
∥Σ∥op
qmin

· ϵ.

As another example, to illustrate the effect of heterogeneous missingness across coordinates,
if d ≥ 2, Σ = Id + 1[d]1

⊤
[d], q1 = 1/d and qj = 1 for j ≥ 2, then

∥ΣIPW∥op = ∥Id + 1[d]1
⊤
[d] + (2d− 2)e1e

⊤
1 ∥op ≤ 1 + tr

(
1[d]1

⊤
[d] + (2d− 2)e1e

⊤
1

)
= 3d− 1 ≤ d(d+ 1) =

∥Σ∥op
qmin

.

On the other hand, due to the sample splitting in Algorithm 1, our condition on δ may be
slightly stronger than that of Hu and Reingold (2021), e.g. when qmin ≳ 1/T .

The optimality of our procedure can be deduced from the following minimax lower bound.

Theorem 4. Let Σ ∈ Sd×d++ be diagonal, π ∈ P(2[d]), ϵ ∈ [0, 1], δ ∈ (0, 1/4], Θ := Rd and
Pθ := Parb(θ,Σ, ϵ, π)⊗n for θ ∈ Θ. Then

M
(
δ,PΘ, ∥ · ∥22

)≳
tr(ΣIPW)

n
+
∥ΣIPW∥op log(1/δ)

n
+ ϵ∥ΣIPW∥op if ϵ < qmin

1+qmin

=∞ if ϵ ≥ qmin

1+qmin
.
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From Theorem 4, we see that up to multiplicative universal constants and when Σ is
diagonal, Algorithm 1 has optimal behaviour under departures from MCAR and, up to a
logarithmic factor in d and an iterated logarithmic factor in 1/δ, it adapts to the MCAR
minimax quantile rate in settings where the MCAR term dominates. In Theorem 3, we im-
posed a condition of the form qmin ≳ ϵ+T log(d/δ)/n for our upper bound, where the second
part of this condition asks for the expected number of MCAR observations per coordinate
to be at least poly-logarithmic in d and 1/δ. On the other hand, from Theorem 4, we see
that qmin > ϵ/(1− ϵ) is necessary to ensure finite error with high probability.

4 Mean estimation under realisable contamination

In the arbitrary contamination setting of Section 3, we saw that the contamination fraction
ϵ has a severe effect on our ability to estimate a population mean. The aim of this section,
then, is to explore the potential benefits of restricting the form of contamination to MNAR
observations from the same base distribution as our uncontaminated observations.

4.1 Gaussian realisable model

4.1.1 Univariate case

In this subsection, we consider Gaussian base distributions, and for θ ∈ R, as well as fixed
σ > 0, ϵ ∈ [0, 1) and q ∈ (0, 1], we write R(θ) := R

(
N(θ, σ2), ϵ, q

)
as shorthand. To gain

intuition, recall the characterisation of univariate realisable distributions in Proposition 2:
R ∈ R(θ) if and only if both R ≪ λ⋆ and the restriction h : R → [0,∞) of dR/dλ⋆ to R
satisfies

h(x) ∈
[
q(1− ϵ)ϕ(θ,σ)(x), {q(1− ϵ) + ϵ} · ϕ(θ,σ)(x)

]
, (15)

for λ-almost all x. In Figure 3(a), we plot a N(0, 1)-realisable h; on the other hand, in
Figure 3(b), we consider the same function h and demonstrate that h is not N(1/2, 1)-
realisable. This suggests that it may be possible to identify the mean by checking whether
the condition in (15) is verified. Indeed, if R ∈ R(θ0), then for any θ ̸= θ0 and for |x − θ0|
sufficiently large, we have

h(x) /∈
[
q(1− ϵ)ϕ(θ,σ)(x), {q(1− ϵ) + ϵ} · ϕ(θ,σ)(x)

]
.

Motivated by this observation, and given data Z1, . . . , Zn ∈ R⋆, we define D := {i ∈ [n] :

Zi ̸= ⋆} and define an estimator θ̂AE
n as

θ̂AE
n (Z1, . . . , Zn) :=

1

2
·
(
max
i∈D

Zi +min
i∈D

Zi

)
, (16)

where we adopt the convention that θ̂AE
n := 0 when D = ∅. Thus, θ̂AE simply outputs the

average of the extreme observed values. In the realisable model R(θ0), its performance as
an estimator of θ0 is summarised in the following theorem.
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Figure 3: An example of a Gaussian-realisable distribution. Let q = 1 and ϵ = 0.8. Panel (a) plots
(i) {q(1− ϵ) + ϵ} · ϕ(x) as a solid black curve, (ii) q(1− ϵ) · ϕ(x) as a dashed black curve and (iii)
{q(1 − ϵ) +m(x)} · ϕ(x) as a solid red curve, for some m : R → [0, 1]. Note that the red curve is
realisable by N(0, 1). By contrast, panel (b) plots the red curve with no changes and uses ϕ(x−1/2)
in place of ϕ(x) for the two black curves. In this case, the red curve is not realisable by N(1/2, 1).

Theorem 5. Let θ0 ∈ R, ϵ ∈ [0, 1), q ∈ (0, 1], σ > 0, n ∈ N, δ ∈ [4e−nq(1−ϵ)/8, 1], and

consider Z1, . . . , Zn
iid∼ R ∈ R(θ0). Then with probability at least 1− δ,

(
θ̂AE
n − θ0

)2
≲

σ2 log2(8/δ)

log
(
nq(1− ϵ)

) +
σ2 log2

(
1 + 6ϵ

q(1−ϵ)

)
log

(
nq(1− ϵ)

) .

We can interpret nq(1 − ϵ) as the effective sample size from the MCAR component
of R: on average, a proportion 1− ϵ of our observations come from this MCAR component,
and a proportion q of these are not missing. The condition δ ≥ 4e−nq(1−ϵ)/8 is therefore an
effective sample size condition that asks for more MCAR observations for a higher confidence
guarantee. Some condition of this form is necessary for the finiteness of the minimax quantile;
see Theorem 6 below. One of the interesting features of the conclusion of Theorem 5 is that,
if we consider ϵ and q as fixed, then consistent mean estimation in the Gaussian realisable
modelR(θ0) is possible. In fact, we can even achieve consistency when ϵ converges slowly to 1
and q converges slowly to zero, a stark contrast with the conclusions drawn in the arbitrary
contamination model of Section 3. Moreover, these results are achievable via a very simple
estimator that does not require knowledge of ϵ (or q or δ). On the other hand, the rate of
convergence is only guaranteed to be logarithmic in the effective sample size (with the other
problem parameters held fixed). Nevertheless, our high-probability minimax lower bound in
Theorem 6 below shows that this is the best that one can hope for within this model, at
least when ϵ is a positive constant.
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Theorem 6. Let ϵ ∈ [0, 1), q ∈ (0, 1], σ > 0, δ ∈ (0, 1/4] and n ∈ N. Suppose further that

log

(
1 +

ϵ

q(1− ϵ)

)
≤ log

(
nq(1− ϵ)

)
. (17)

Then, writing Θ := R, as well as Pθ :=
{
R⊗n : R ∈ R(θ)

}
for θ ∈ Θ, we have

M
(
δ,PΘ, | · |2

)
≥ σ2 log(1/δ)

40nq(1− ϵ) +
σ2 log2

(
1 + ϵ

q(1−ϵ)

)
32 log

(
nq(1− ϵ)

) if δ ≥ {1− q(1− ϵ)}
n

2

=∞ if δ <
{1− q(1− ϵ)}n

2
.

Condition (17) is a mild effective sample size assumption. When q(1− ϵ) ≥ 1/2, we have
{1− q(1− ϵ)}n ∈ [e−2nq(1−ϵ), e−nq(1−ϵ)], so the range of δ for which we have a finite minimax
(1 − δ)th quantile guarantee in Theorem 5 is almost optimal. Comparing the bounds in
Theorem 6 with those in Theorem 5, we see that the second terms match up to a universal
constant multiplicative factor. On the other hand, the first term in the lower bound in
Theorem 6 may be much smaller than the corresponding term in Theorem 5, both in terms
of its dependence on the effective sample size and on the quantile level.

To address the potential deficiency of the average of extremes estimator highlighted
in the previous paragraph, we now introduce a minimum Kolmogorov distance estimator.
Let R̂n ∈ P(R⋆) denote the empirical distribution of Z1, . . . , Zn ∈ R⋆, so that

R̂n(B) :=
1

n

n∑
i=1

1{Zi∈B} for B ∈ B(R⋆).

Let A := {(−∞, t] : t ∈ R} denote the set of all closed lower half intervals on R. For
R1, R2 ∈ P(R⋆) and Q ⊆ P(R⋆), define

dK(R1, R2) := sup
A∈A

∣∣R1(A)−R2(A)
∣∣ and dK(R1,Q) := inf

Q∈Q
dK(R1, Q)

to be the Kolmogorov distance between R1 and R2, and the Kolmogorov distance between R1

and the set Q respectively. Then, the minimum Kolmogorov distance estimator θ̂Kn for the
Gaussian realisable class is defined as

θ̂Kn := sargmin
θ∈R

dK
(
R̂n,R(θ)

)
,

where sargmin denotes the smallest element of the argmin set; this is well-defined since
the function θ 7→ dK

(
R̂n,R(θ)

)
is continuous with dK

(
R̂n,R(θ)

)
→ 1 as |θ| → ∞ and

dK
(
R̂n,R(0)

)
< 1. We illustrate the Kolmogorov projection in Figure 4, and discuss its

computation via a linear program in Section 4.1.3.

Theorem 7. Let θ0 ∈ R, ϵ ∈ [0, 1), q ∈ (0, 1], σ > 0, δ ∈ (0, 1], n ≥ e
q(1−ϵ) and consider

Z1, . . . , Zn
iid∼ R ∈ R(θ0). Suppose that

δ ≥ 4 exp

{
−

{
nq(1− ϵ)

}31/36

6400 log
(
nq(1− ϵ)

)}, (18)
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R̂n

R(θ1) R(θ2)

Figure 4: Illustration of the Kolmogorov projection onto two distinct realisable sets. The realisable
sets are disjoint when θ1 ̸= θ2, by Lemma 24.

and

log

(
1 +

4ϵ

q(1− ϵ)

)
≤ 5

216
log

(
nq(1− ϵ)

)
. (19)

Then with probability at least 1− δ,

(θ̂Kn − θ0)2 ≲ Cn,q,ϵ,δ

{
σ2 log(4/δ)

nq(1− ϵ) +
σ2 log2

(
1 + 4ϵ

q(1−ϵ)

)
log

(
nq(1− ϵ)

) }
, (20)

where

Cn,q,ϵ,δ :=


1 if log

(
1 + 4ϵ

q(1−ϵ)

)
≤ 2

√
log(4/δ)
nq(1−ϵ)

log
(
nq(1− ϵ)

)
if 2

√
log(4/δ)
nq(1−ϵ) < log

(
1 + 4ϵ

q(1−ϵ)

)
≤ 4

√
log(nq(1−ϵ)) log(4/δ)

{nq(1−ϵ)}31/36

1 if log
(
1 + 4ϵ

q(1−ϵ)

)
> 4

√
log(nq(1−ϵ)) log(4/δ)

{nq(1−ϵ)}31/36 .

The lower bound (18) on δ and the effective sample size condition (19) are both similar
to those seen in Theorems 5 and 6. The main benefit of the minimum Kolmogorov distance
estimator is that it is able to match both terms in the high-probability minimax lower bound
of Theorem 6 up to a multiplicative universal constant, except in an intermediate parameter
regime, where it may incur a multiplicative factor that is logarithmic in the effective sample
size. Even in this middle regime, which covers the phase transition where the two terms in
the bound (20) are equal, the rate remains polynomial in the effective sample size.

4.1.2 Multivariate extension

We now consider a simple multivariate extension of the Gaussian realisable model from the
previous subsection, where for each observation, we either observe all coordinates simulta-
neously or none of them. Thus, for P ∈ P(Rd), ϵ ∈ [0, 1) and π ∈ P({∅, [d]}), we define

R∅,[d](P, ϵ, π) :=
{
(1− ϵ)MCAR(π,P ) + ϵQ : Q ∈ MNAR(ρ,P ), ρ ∈ P

(
{∅, [d]}

)}
. (21)
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For θ ∈ Rd, Σ ∈ Sd×d++ , we write R∅,[d](θ) := R∅,[d]
(
Nd(θ,Σ), ϵ, π

)
. Given Z1, . . . , Zn ∈ Rd

⋆ and

v ∈ Sd−1, let θ̂Kn (v) denote the one-dimensional minimum Kolmogorov distance estimator

based on Z
(v)
1 , . . . , Z

(v)
n , where Z

(v)
i := v⊤Zi · 1{Zi∈Rd} + ⋆ · 1{Zi /∈Rd} for i ∈ [n]. Let N denote

a (1/4)-net in Euclidean norm of Sd−1 with |N | ≤ 9d, which exists by, e.g., Vershynin (2018,

Corollary 4.2.13). We define the multivariate minimum Kolmogorov distance estimator θ̂MK
n

as

θ̂MK
n := sargmin

θ∈Rd

max
v∈N

(
v⊤θ − θ̂Kn (v)

)2
,

where sargmin here denotes the smallest element of the argmin set in the lexicographic
ordering.

Theorem 8. Fix d, n ∈ N, θ0 ∈ Rd, Σ ∈ Sd×d++ , ϵ ∈ [0, 1), δ ∈ (0, 1], π ∈ P({∅, [d]}) and let

Z1, . . . , Zn
iid∼ R ∈ R∅,[d](θ0). Writing q := π([d]), suppose that nq(1− ϵ) ≥ e,

δ ≥ 4 exp

{
d log 9−

{
nq(1− ϵ)

}31/36

6400 log
(
nq(1− ϵ)

)},
and

log

(
1 +

4ϵ

q(1− ϵ)

)
≤ 5

216
log

(
nq(1− ϵ)

)
.

Then with probability at least 1− δ,

∥θ̂MK
n − θ0∥22 ≲ Cn,q,ϵ,δ/(4·9d)

{∥Σ∥op(d+ log(4/δ)
)

nq(1− ϵ) +
∥Σ∥op log2

(
1 + 4ϵ

q(1−ϵ)

)
log

(
nq(1− ϵ)

) }
,

where Cn,q,ϵ,δ > 0 was defined in Theorem 7.

Theorem 8 reveals in particular that if we treat ϵ, q, δ, ∥Σ∥op as constants and if d logn
n31/36 → 0

as n→∞, then θ̂MK
n is a consistent estimator of θ0. To facilitate comparisons with alternative

estimators, we take Σ = σ2Id for simplicity. A naive application of the univariate minimum
Kolmogorov distance estimator in each coordinate would, via Theorem 7 and a union bound,
only yield a squared Euclidean error bound of order

Cn,q,ϵ,δ/d

{
dσ2 log(4d/δ)

nq(1− ϵ) +
dσ2 log2

(
1 + 4ϵ

q(1−ϵ)

)
log

(
nq(1− ϵ)

) }
with probability at least 1 − δ. Thus, in the first term, the dimension and quantile terms
appear in a multiplicative as opposed to additive way, and the second term is inflated by a
factor d. Similarly, if we were to apply the average of extremes estimator in each coordinate,
then Theorem 5 and a union bound would give a squared Euclidean error bound of order

dσ2 log2(8d/δ)

log
(
nq(1− ϵ)

) +
dσ2 log2

(
1 + 6ϵ

q(1−ϵ)

)
log

(
nq(1− ϵ)

) .
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In fact, a high-probability minimax lower bound is available in this setting: letting Pθ :={
R⊗n : R ∈ R∅,[d]

(
Nd(θ, σ

2Id), ϵ, π
)}

, we have by combining Proposition 47 and Theorem 6
that

M(δ,PΘ, ∥ · ∥22) ≳
σ2
(
d+ log(1/δ)

)
nq(1− ϵ) +

σ2 log2
(
1 + ϵ

q(1−ϵ)

)
log

(
nq(1− ϵ)

) .

Thus, up to the logarithmic factor in the effective sample size in the middle regime of the
bound in Theorem 8, the multivariate minimum Kolmogorov distance estimator is minimax
rate optimal in this setting.

4.1.3 Computing the Kolmogorov distance between the empirical distribution
and a realisable set

Let Z1, . . . , Zn ∈ R⋆, let m :=
∑n

i=1 1{Zi ̸=⋆} and let −∞ =: Z(0) < Z(1) ≤ · · · ≤ Z(m) <

Z(m+1) :=∞ denote the ordered observed data. Further let R̂n be the empirical distribution
of Z1, . . . , Zn and let P ∈ P(R) be such that P ≪ λ. The following lemma and subsequent

discussion provide an efficient way of computing the Kolmogorov distance between R̂n and
the realisable set R(P, ϵ, q) via linear programming.

Lemma 9. Let ϵ ∈ [0, 1) and q ∈ [0, 1]. Writing V0 := 0 and letting V denote the set of
(V1, . . . , Vm+1)

⊤ ∈ [0, 1]m+1 such that

q(1− ϵ) · P
(
(Z(i), Z(i+1))

)
≤ Vi+1 − Vi ≤ {q(1− ϵ) + ϵ} · P

(
(Z(i), Z(i+1))

)
(22)

for all i ∈ {0} ∪ [m], we have

dK
(
R̂n,R(P, ϵ, q)

)
= inf

(V1,...,Vm+1)⊤∈V
max

i∈{0}∪[m]

{∣∣∣ i
n
− Vi

∣∣∣ ∨ ∣∣∣ i
n
− Vi+1

∣∣∣}. (23)

We can now rewrite the optimisation problem (23) as the following linear program:

minimise t

subject to − t ≤ i

n
− Vi ≤ t, i ∈ {0} ∪ [m]

− t ≤ i

n
− Vi+1 ≤ t, i ∈ {0} ∪ [m]

q(1− ϵ) · P
(
(Z(i), Z(i+1))

)
≤ Vi+1 − Vi

≤ {q(1− ϵ) + ϵ} · P
(
(Z(i), Z(i+1))

)
, i ∈ {0} ∪ [m].

This can be solved efficiently using standard software, e.g. lpSolve (Berkelaar et al., 2023)
in R.

4.2 Nonparametric realisable models

4.2.1 Univariate case

We now broaden our scope from the Gaussian realisable setting of Section 4.1 and seek
to determine the minimax quantiles for mean estimation, again over realisable classes, but
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now with nonparametric families of base distributions, subject only to moment or tail decay
conditions. To this end, for θ ∈ R, σ > 0 and r ≥ 2, we define the class of distributions
PLr(θ, σ2) with a finite rth moment:

PLr(θ, σ2) :=
{
P ∈ P(R) : EP (X) = θ, EP

(
|X − θ|r

)
≤ σr

}
. (24)

Similarly, for r ≥ 1, we consider tail decay conditions specified by Orlicz norms with Orlicz
functions ψr : t 7→ et

r − 1, and define

Pψr(θ, σ
2) :=

{
P ∈ P(R) : EP (X) = θ, EP

{
ψr(|X − θ|/σ)

}
≤ 1

}
. (25)

Thus, if X ∼ P and we write ∥X∥ψr
:= inf

{
t > 0 : E

(
ψr(|X|/t)

)
≤ 1

}
, then P ∈ Pψr(θ, σ

2)
if and only if E(X) = θ and ∥X − θ∥ψr ≤ σ. We also remark that Pψ1(θ, σ

2) and Pψ2(θ, σ
2)

correspond to classes of sub-exponential and sub-Gaussian distributions with mean θ respec-
tively.

Upper bounds on the minimax quantiles for mean estimation over realisable classes with
base distributions belonging to the classes in (24) and (25) are provided in Theorem 10
below. In the general setting of Theorem 10(a) where we only have a moment bound on the
base distribution, the median of means estimator from Algorithm 2 is employed to obtain
the logarithmic dependence on the quantile level δ, though this comes at the expense of
the estimator being δ-dependent. On the other hand, in the more specialised setting of
Theorem 10(b), the sample mean of the observed data (which is δ-independent) suffices to
obtain the logarithmic dependence on δ.

Theorem 10. Let θ0 ∈ R, ϵ ∈ [0, 1), q ∈ (0, 1], σ > 0 and δ ∈ (0, 1].

(a) Let r ≥ 2, P ∈ PLr(θ0, σ
2) and Z1, . . . , Zn

iid∼ R ∈ R(P, ϵ, q). Assume further that
δ ≥ 2 exp

(
1 − nq(1 − ϵ)/8

)
. Let M := ⌈log(2/δ)⌉, D := {i ∈ [n] : Zi ̸= ⋆} and

θ̂MoM
n := Median of Means

(
(Zi)i∈D;M

)
from Algorithm 2. Then, with probability

at least 1− δ,

(
θ̂MoM
n − θ0

)2
≲
σ2 log(2e/δ)

nq(1− ϵ) + σ2 ·
{(

ϵ

q(1− ϵ)

)2

∧
(

ϵ

q(1− ϵ)

)2/r}
.

(b) Let r ≥ 1, P ∈ Pψr(θ0, σ
2), R ∈ R(P, ϵ, q) and Z1, . . . , Zn

iid∼ R. Assume further that

δ ≥ 8 exp
(
−nq(1− ϵ)/8

)
. Let D := {i ∈ [n] : Zi ̸= ⋆} and θ̂n := |D|−1

∑
i∈D Zi. Then,

with probability at least 1− δ,

(θ̂n − θ0)2 ≲
σ2 log(8/δ)

nq(1− ϵ) + σ2 ·
{(

ϵ

q(1− ϵ)

)2

∧ log2/r
(
2 +

2ϵ

q(1− ϵ)

)}
.

In both parts of Theorem 10, the first term in the bound reflects the error incurred in
estimating the mean of a distribution P belonging to either of the classes in (24) or (25)
based on a sample of size ⌈n(1 − ϵ)⌉ from MCAR(q,P ). The second terms arise from the
contamination present in distributions R ∈ R(P, ϵ, q). When the effective contamination
level κ := ϵ

q(1−ϵ) is small in the sense that κ ≤ 1, in both parts of the theorem, the error
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incurred from the contamination is at most of order σ2κ2. This is a substantial improvement
on the corresponding term in the lower bound in Theorem 4 over arbitrary (non-realisable)
contaminations of PL2(θ0, σ), which is of order σ2κ. On the other hand, when κ > 1, the
contribution to the error from the contamination term depends on the tail behaviour of P :
when P ∈ PLr(θ0, σ

2), it is at most of order σ2κ2/r, whereas when P ∈ Pψr(θ0, σ
2) the bound

can be improved to order log2/r(2+2κ). Again, these bounds represent a stark contrast with
the lower bound in the arbitrary contamination model setting of Theorem 4, which is infinite
in this regime. Finally, we remark that an attractive feature of the methods employed in
Theorem 10 is that they do no require knowledge of κ.

Theorem 11 provides a complementary lower bound on the minimax quantiles in this
realisable setting:

Theorem 11. Let ϵ ∈ [0, 1), q ∈ (0, 1], σ > 0 and δ ∈ (0, 1/4].

(a) Let r ≥ 2, Θ := R and Pθ :=
{
R⊗n : R ∈ R(P, ϵ, q), P ∈ PLr(θ, σ2)

}
for θ ∈ Θ. Then

M(δ,PΘ, | · |2)


≳
σ2 log(1/δ)

nq(1− ϵ) + σ2 ·
{(

ϵ

q(1− ϵ)

)2

∧
(

ϵ

q(1− ϵ)

)2/r}
if δ ≥ e−nq(1−ϵ)/2

=∞ if δ < (1−q(1−ϵ))n
2

.

(b) Let r ≥ 1, Θ := R and Pθ :=
{
R⊗n : R ∈ R(P, ϵ, q), P ∈ Pψr(θ, σ

2)
}
for θ ∈ Θ. Then

M(δ,PΘ, | · |2)


≳
σ2 log(1/δ)

nq(1− ϵ) + σ2 ·
{(

ϵ

q(1− ϵ)

)2

∧ log2/r
(
2 +

2ϵ

q(1− ϵ)

)}
if δ ≥ e−nq(1−ϵ)/2

=∞ if δ < (1−q(1−ϵ))n
2

.

When q(1 − ϵ) ≤ c < 1, we have {1 − q(1 − ϵ)}n > e−c
′nq(1−ϵ) for some c′ depending

only on c, which reveals that the lower bound on δ in Theorem 10 for which can control the
(1−δ)th minimax quantile is essentially optimal. Thus, taken together, Theorems 10 and 11
determine the minimax quantiles of the quadratic loss function for mean estimation over
our realisable classes up to universal constants. As a special case, these results demonstrate
that when the effective contamination level κ is less than 1, the minimax quantile over
realisable classes with base distribution P ∈ PL2(θ0, σ) scales as σ

2κ2, which coincides with
the minimax rate of mean estimation over Gaussian classes in the arbitrary contamination
model; see Section C.3. Theorem 11(b) further reveals that, while careful examination of
the tails enabled consistent estimation in the Gaussian realisable setting of Section 4.1, no
such strategy can yield consistent estimation when the class is broadened to include all sub-
Gaussian distributions with a fixed sub-Gaussian norm. More generally, the optimal rates
of Theorems 10 and 11 provide a quantification of the benefits of realisable classes in terms
of improved rates of mean estimation compared with the arbitrary contamination models of
Section 3.

22



4.2.2 Multivariate extension

The aim of this subsection is to show that the univariate results of Section 4.2.1 extend to
the problem of estimating a multivariate mean, under the same simplifying assumption on
the set of possible observation patterns as that considered in Section 4.1.2. To this end, and
by analogy with (24) and (25), for d ∈ N, θ ∈ Rd, Σ ∈ Sd×d++ and r > 0, define

Pd,Lr(θ,Σ) :=
{
P ∈ P(Rd) : EP (X) = θ, LawX∼P (v

⊤X) ∈ PLr(v⊤θ, v⊤Σv) ∀v ∈ Sd−1
}

and

Pd,ψr(θ,Σ) :=
{
P ∈ P(Rd) : EP (X) = θ, LawX∼P (v

⊤X) ∈ Pψr(v
⊤θ, v⊤Σv) ∀v ∈ Sd−1

}
.

Recall the definition of the realisable classes R∅,[d](P, ϵ, π) from (21).

Theorem 12. Let θ0 ∈ Rd, Σ ∈ Sd×d++ , ϵ ∈ [0, 1), δ ∈ (0, 1], π ∈ P({∅, [d]}) and q := π([d]).

(a) Let r ≥ 2, let P ∈ Pd,Lr(θ0,Σ) and let Z1, . . . , Zn
iid∼ R ∈ R∅,[d](P, ϵ, q). Further,

let D := {i ∈ [n] : Zi ∈ Rd} and let θ̂n := Robust Descent
(
(Zi)i∈D; 0, δ

)
from

Algorithm 5. There exists a universal constant C ≥ 8 such that if nq(1− ϵ) ≥ r(Σ)/C
and δ ≥ 2 exp

(
−nq(1− ϵ)/C

)
, then with probability at least 1− δ,

∥θ̂n − θ0∥22 ≲
tr(Σ) + ∥Σ∥op log(2/δ)

nq(1− ϵ) + ∥Σ∥op
{(

ϵ

q(1− ϵ)

)2

∧
(

ϵ

q(1− ϵ)

)2/r}
.

(b) Let r ≥ 1, P ∈ Pd,ψr(θ0,Σ), R ∈ R∅,[d](P, ϵ, q) and Z1, . . . , Zn
iid∼ R. Assume further

that nq(1 − ϵ) ≥ r(Σ) and that δ ≥ 8 exp
(
−nq(1 − ϵ)/8

)
. Let D := {i ∈ [n] : Zi ̸= ⋆}

and θ̂n := |D|−1
∑

i∈D Zi. Then, with probability at least 1− δ,

∥θ̂n − θ0∥22 ≲
tr(Σ) + ∥Σ∥op log(2/δ)

nq(1− ϵ) + ∥Σ∥op
{(

ϵ

q(1− ϵ)

)2

∧ log2/r
(
2 +

2ϵ

q(1− ϵ)

)}
.

Thus, even in the multivariate setting considered in Theorem 12, the realisable classes
permit the same improvements in performance over fully-observed arbitrary contamination
models as we saw in the univariate case in Theorem 10. Moreover, the second (contamina-
tion) terms retain this improvement in a dimension-free manner. By a small modification
of the two-point construction of the proof of Theorem 11 so that the difference in means is
in the direction of the leading eigenvector of Σ, together with Ma, Verchand and Samworth
(2024, Proposition 10) or Depersin and Lecué (2022a, Theorem 4), we see that both bounds
in Theorem 12 are minimax rate-optimal.

A difference between Theorem 12 and Theorem 10 is that in the Pd,Lr(θ0,Σ) model,
we employ the Robust Descent method of Algorithm 5 instead of the (coordinate-wise)
Median of Means algorithm. This is to ensure that the first (MCAR) term attains the
optimal rate in the multivariate setting. Nevertheless both algorithms in Theorem 12 remain
adaptive to the unknown effective contamination level κ.
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5 Extension: Linear regression with realisable missing

response

The ideas of mean estimation with realisable missing observations developed in Section 4
extend to linear regression with a realisable missing response, as we now demonstrate. Given
θ0 ∈ Rd and σ > 0, consider a random design normal linear model

Yi = X⊤
i θ0 + ζi,

where (X1, ζ1), . . . , (Xn, ζn) are independent with ζ1, . . . , ζn
iid∼ N(0, σ2). In this section,

we suppose that, instead of the desired responses Y1, . . . , Yn, we are only able to observe
corrupted versions that are subject to realisable missingness. Thus, more precisely, we

observe Zi := (1 − Bi) · Yi ⃝⋆ Ω
(1)
i + Bi · Yi ⃝⋆ Ω

(2)
i for i ∈ [n], where B1, . . . , Bn

iid∼ Ber(ϵ) are

independent of the independent quadruples (Xi, ζi,Ω
(1)
i ,Ω

(2)
i )i∈[n], where Ω

(1)
i |{Xi = x} ∼

Ber(qx) with infx∈Rd qx ≥ q > 0 and where Ω
(1)
i ⊥⊥ ζi|Xi. We impose no restriction on the

dependence between Ω
(2)
i and (Xi, ζi). Thus, when ϵ = 0, the pairs (X1, Z1), . . . , (Xn, Zn)

are missing at random (MAR). We summarise the conditional distribution of the observed
responses by writing Z1|{X1 = x} ∼ Rx ∈ RRes

(
N(x⊤θ0, σ

2), ϵ, q
)
.

Our main result in this section relies on what we will call a (β, γ)-regular design assump-
tion, for β ∈ (0, 1/2], γ > 0.

Assumption 1 ((β, γ)-regular design). For all v ∈ Rd, there exists a set T ⊆ [n] such that
|T | ≥ 2βn and |X⊤

i v| > γ∥v∥2 for all i ∈ T .

It is convenient to let C(β,γ) denote the set of (x1, . . . , xn) ∈ (Rd)n for which the design
is (β, γ)-regular. The following lemma shows that a random design where the distribution
is not concentrated on a hyperplane is (β, γ)-regular for some β ∈ (0, 1/2] and γ > 0, with
high probability when the sample size is sufficiently large.

Lemma 13. Let δ ∈ (0, 1], γ > 0 and X1, . . . , Xn
iid∼ P ∈ P(Rd). Further define β :=

1
3
infv∈Sd−1 P

(
|X⊤

1 v| > γ
)
.

(a) The infimum in the definition of β is attained, and if P (H) < 1 for every hyperplane
H ⊆ Rd, then β > 0 for sufficiently small γ > 0.

(b) There exists a universal constant c > 0 such that if d+log(1/δ)
n

≤ cβ2, then, with probability
at least 1− δ, the n× d matrix with ith row X⊤

i is a (β, γ)-regular design.

To illustrate Lemma 13(b) with a specific example, suppose that X1, . . . , Xn
iid∼ Nd(0,Σ)

for some Σ ∈ Sd×d++ , and let λmin(Σ) > 0 denote the minimum eigenvalue of Σ. Then by

Lemma 13(b), there exists a universal constant c1 > 0 such that if d+log(1/δ)
n

≤ c1, then with

probability at least 1−δ, the n×d matrix with ith row X⊤
i is a

(
2Φ(−1)/3, λ1/2min(Σ)

)
-regular

design.
Given R1, R2 ∈ P(R⋆), we define their symmetrised Kolmogorov distance by

dsymK (R1, R2) := sup
A∈Asym

|R1(A)−R2(A)|,
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where Asym :=
{
(−∞, t] : t ∈ R

}
∪
{
[t,∞) : t ∈ R

}
. This may be larger than dK(R1, R2)

when R1({⋆}) ̸= R2({⋆}). Now, for θ ∈ Rd, we define the empirical distribution R̂n,θ by

R̂n,θ(B) := n−1
∑n

i=1 1{Zi−X⊤
i θ∈B} for B ∈ B(R⋆). We let

RLin
0 := R

(
N(0, σ2), 1− q(1− ϵ), 1

)
,

and define the Kolmogorov distance estimator as

θ̂Kn := argmin
θ∈Rd

dsymK

(
R̂n,θ,RLin

0

)
. (26)

The realisable set RLin
0 ensures that the selection probability hx := P(Z1 ̸= ⋆ | X1 = x)

satisfies the sandwich relation q(1 − ϵ) ≤ qx(1 − ϵ) ≤ hx ≤ 1 for all x ∈ Rd. Writing

R̃i,θ := Law(Zi − x⊤i θ) for i ∈ [n] and θ ∈ Rd, as well as Rn,θ :=
1
n

∑n
i=1 R̃i,θ, it then follows

from Proposition 2 that Rn,θ0 ∈ RLin
0 .

Theorem 14. Let n, d ∈ N, ϵ ∈ [0, 1), q ∈ (0, 1], δ ∈ (0, 1] and θ0 ∈ Rd. Let (x1, . . . , xn) ∈
C(β,γ) for some β ∈ (0, 1/2] and γ > 0, and let Z1, . . . , Zn be independent with Zi|{Xi =
xi} ∼ Rxi ∈ RRes

(
N(x⊤i θ0, σ

2), ϵ, q
)
. Then there exists a universal constant C1 > 0 such that

if

n31/36

log n
≥ C1

{
d+ log(1/δ)

}
and log

(
1 +

4(1− βq(1− ϵ))
βq(1− ϵ)

)
≤ log n

18
, (27)

then with probability at least 1− δ, conditional on X1 = x1, . . . , Xn = xn,

∥∥θ̂Kn − θ0∥∥2

2
≲ σ2 ·

log2
(
1 + 4(1−βq(1−ϵ))

βq(1−ϵ)

)
γ2 log

(
nq(1− ϵ)

) .

One of the main consequences of Theorem 14 is that if we consider β, γ, q, ϵ and δ as
constants, but allow d to grow subject to the first part of (27) holding, then under the

assumptions of Theorem 14, we have that θ̂Kn is a consistent estimator of θ0 in squared
Euclidean norm as n→∞. In fact, similar to Section 4.1, this conclusion continues to hold
even if we allow ϵ to converge slowly to 1 and q to converge slowly to zero. This lies in stark
contrast to the complete-case arbitrary contamination setting in which for any constant ϵ,
consistent estimation is impossible (see, e.g., the discussion following Gao, 2020, Theorem
3.2). Moreover, when the parameters β, γ, q, ϵ and δ are positive constants, the optimality
of the rate 1/ log n follows from our mean estimation lower bound (Theorem 6).
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A Notation used in proofs

For a measurable space (Z, C) and probability measures P,Q ∈ P(Z), we write P ⊥ Q if P
and Q are singular. The Lebesgue decomposition theorem yields the unique decomposition
P = Pac +Psing where Pac ≪ Q and where Psing ⊥ Q. For a convex function f : (0,∞)→ R,
we let Mf := limx→∞ f(x)/x ∈ (−∞,∞] denote its maximal slope. We then define the
f -divergence between P and Q to be

Divf (P,Q) :=

∫
Z
f

(
dPac

dQ

)
dQ+Mf · Psing(Z). (28)

As important examples, if f(x) = |x − 1|/2, then we obtain the total variation distance
TV(P,Q) := supA∈C|P (A) − Q(A)|, while if f(x) = x log x, then the resulting f -divergence
is the Kullback–Leibler divergence

KL(P,Q) :=

{∫
Z log

(
dP
dQ

)
dQ if P ≪ Q

∞ otherwise.

Finally, if f(x) = (x− 1)2, then we obtain the χ2-divergence

χ2(P,Q) :=

{∫
Z

(
dP
dQ
− 1

)2
dQ if P ≪ Q

∞ otherwise.

Recalling the spaces X1, . . . ,Xd from Section 2.1, for a set S ∈ 2[d] \ {∅}, let XS :=
∏

j∈S Xj,
and also define X∅ := {⋆} and X :=

∏d
j=1Xj. Given x = (x1, . . . , xd) ∈ X and S ∈ 2[d] \ {∅},

we define xS := (xj)j∈S, with x∅ := ⋆. For S ⊆ [d], we define X (S)
j := Xj if j ∈ S and

X (S)
j := {⋆} if j /∈ S, and also set X (S) :=

∏d
j=1X

(S)
j . Next, we let

B(S)(X⋆) :=
{
A ∈ B(X⋆) : ∀z = (z1, . . . , zd) ∈ A, zj ̸= ⋆, ∀j ∈ S and zk = ⋆, ∀k /∈ S

}
.
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Given S ⊆ [d], we write GS for the set of real-valued functions on XS, and also write G⋆
for the set of real-valued functions on X⋆. A function f ∈ G⋆ may be identified with the
sequence of functions (fS : S ⊆ [d]), where fS ∈ GS for each S. Formally, this identification
is via the bijection ψ :

∏
S⊆[d] GS → G⋆ given by ψ

(
(fS′ : S ′ ⊆ [d])

)
(z) := fS(zS) for z ∈ X (S)

and S ⊆ [d]. In other words, we evaluate f ∈ G⋆ at z ∈ X⋆ by setting S to be the coordinates
in z that are not equal to ⋆, and then computing fS(zS).

B Proofs from Section 2

B.1 Proof of Theorem 1

We begin with a sketch of the proof in the setting where X is finite, both to explain the
relevance of (a generalisation of) Farkas’s lemma in this context, and to provide intuition for
the more technical arguments that follow. Let X ∼ P ∈ P(X ) and let Q := Law(X ⃝⋆ Ω) for
some random vector Ω taking values in {0, 1}d. We write M = (MS,x)S⊆[d],x∈X :=

(
P(Ω =

1S |X = x)
)
S⊆[d],x∈X ∈ [0, 1]2

[d]×X to summarise the missingness mechanism. Now write

A ∈ [0, 1]X⋆×(2[d]×X ) for the matrix with

Az,(S,x) := P ({x})1{zS=xS}
∏
j∈Sc

1{zj=⋆},

so that each column of A has at most one non-zero entry. Then

(AM)z =
∑
S⊆[d]

∑
x∈X

P ({x})MS,x1{zS=xS}
∏
j∈Sc

1{zj=⋆} = Q({z}).

Now, for x ∈ X , write σx ∈ {0, 1}2[d]×X for the vector with (σx)(S,x′) := 1{x=x′}, so that

σ⊤
xM =

∑
S∈2[d] MS,x, and form the matrix B := (σ⊤

x )x∈X ∈ {0, 1}X×(2[d]×X ). We can then

define J := {M ∈ [0, 1]2
[d]×X : BM = 1X} to denote the set of valid mechanisms. We

deduce that Q ∈ MNARP if and only if there exists M ∈ J such that AM = Q. By
Farkas’s lemma, this latter condition is equivalent to the statement that there does not exist
(y, w) =

(
(yz)z∈X⋆ , (wx)x∈X

)
∈ RX⋆ × RX such that

∑
z∈X⋆

Q({z})yz +
∑

x∈X wx < 0 and
0 ≤ (A⊤y + B⊤w)(S,x) = P ({x})yx⃝⋆1S

+wx for each S ⊆ [d] and x ∈ X . The search for such
a pair (y, w) amounts to a constrained optimisation problem, whose solution for each fixed y
is to take wx = −P ({x})minS⊆[d] yx⃝⋆1S

for x ∈ X . Then∑
z∈X⋆

Q({z})yz +
∑
x∈X

wx =
∑
z∈X⋆

Q({z})yz −
∑
x∈X

P ({x}) min
S⊆[d]

yx⃝⋆1S
,

so the condition that there does not exist (y, w) for which this quantity is negative corre-
sponds to (10) after identifying y with −f .

Moving now to the proof of the full theorem, we require several preliminary topological
results that are stated and proved in Section F. We will also use the generalisation of Farkas’s
lemma below. Recall that if X is a real vector space, then the algebraic dual of X, denoted
X∗, is the vector space of linear functions f : X → R. Whenever X ′ is a subspace of this
algebraic dual, we say X ′ separates points if for every x1, x2 ∈ X with x1 ̸= x2, there exists
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f ∈ X ′ with f(x1) ̸= f(x2). The weak topology on X generated by X ′ is the coarsest topology
such that f−1(U) is open in X for every f ∈ X ′ and open set U ⊆ R. Now let Y be another
real vector space and let Y ′ be a subspace of its algebraic dual. A linear map T : X → Y
is (X ′, Y ′)-weakly continuous if it is continuous when X and Y are equipped with the weak
topologies generated by X ′ and Y ′ respectively. Where X ′ and Y ′ are clear from context,
we will abbreviate this terminology by simply referring to T as weakly continuous.

Theorem 15 (Craven and Koliha, 1977, Theorem 2). Let X and Y be real vector spaces,
and let X ′ and Y ′ be subspaces of the algebraic duals of X and Y , respectively, that separate
points. Given y ∈ Y , a weakly continuous linear map T : X → Y , and a convex cone K ⊆ X
such that T (K) is weakly closed in Y , the following are equivalent:

(a) Tx = y has a solution x ∈ K;

(b) If g ∈ Y ′ satisfies g(Tx) ≥ 0 for all x ∈ K, then g(y) ≥ 0.

For any topological space Z, we write Cb(Z) for the space of bounded continuous real-
valued functions on Z. Let M(Z) denote the space of finite, signed Borel measures on
Z and let M+(Z) be the subspace of (non-negative) finite Borel measures. We call Z a
Hausdorff space if, given any distinct z1, z2 ∈ Z, we can find disjoint open subsets V1, V2
such that z1 ∈ V1, z2 ∈ V2. The space Z is locally compact if every point in Z has a compact
neighbourhood, i.e. if for every z ∈ Z, we can find an open set U ⊆ Z and a compact set
K ⊆ Z such that z ∈ U ⊆ K.

The main content of the proof of Theorem 1 is Proposition 16 below. Observe that the
restriction of the bijection ψ in Section A to the set {(fS : S ⊆ [d]) : fS ∈ Cb(XS) ∀S ⊆ [d]}
has image Cb(X⋆). This identifies Cb(X⋆) with

(
Cb(XS) : S ∈ 2[d]

)
, but henceforth we will

not be explicit about this identification, and will simply write f = (fS : S ∈ 2[d]) ∈ Cb(X⋆).
Given such an f = (fS : S ∈ 2[d]) ∈ Cb(X⋆), we can express the function fmax from Section 2.3
as fmax(x) := maxS∈2[d] fS(xS) for x ∈ X .

Proposition 16. Let X1, . . . ,Xd be locally compact Hausdorff spaces, and let X :=
∏d

j=1Xj.
Assume that every open set in X is σ-compact. If P ∈ P(X ) and Q ∈ P(X⋆), then Q ∈
MNARP if and only if

P (fmax) ≥ Q(f)

for all f ∈ Cb(X⋆).
Proof. Recall the definition of ϕZ : Cb(Z) → M(Z)∗ before Lemma 31. We endowM(Z)
with the weak topology generated by ϕZ

(
Cb(Z)

)
, for Z ∈ {X ,X⋆,X × 2[d]}. This ensures

that ϕZ(g) is weakly continuous for every g ∈ Cb(Z).
Let h : X × 2[d] → X⋆ be the continuous function defined by h(x, S) := x ⃝⋆ 1S. Then

h induces a linear map h∗ : M(X × 2[d]) → M(X⋆) given by h∗(µ)(B) := µ
(
h−1(B)

)
(see

Figure 5 below). Similarly, let j : X×2[d] → X be the projection map j(x, S) := x, and define
its induced map j∗ :M(X ×2[d])→M(X ). We have {g◦h : g ∈ Cb(X⋆)} ⊆ Cb(X ×2[d]) and
similarly {g ◦ j : g ∈ Cb(X )} ⊆ Cb(X × 2[d]), we have by Schaefer (1971, Theorem IV.2.1)
that both h∗ and j∗ are weakly continuous. By Lemma 33, the linear map T = (h∗, j∗) :
M(X × 2[d]) → M(X⋆) ×M(X ) is continuous when we endow the image space with the
product topology, which by Lemma 32 is the same as the weak topology onM(X⋆)×M(X )
generated by ϕX⋆

(
Cb(X⋆)

)
× ϕX

(
Cb(X )

)
.
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X × 2[d] X⋆

R

h

g◦h∈Cb(X×2[d])
g∈Cb(X⋆)

M(X × 2[d]) M(X⋆)

R

h∗

ϕX×2[d]
(g◦h)∈M(X×2[d])∗

ϕX⋆ (g)∈M(X⋆)∗

Figure 5: Schematic diagrams of various maps defined in the proof. The fact that the maps in the
right panel commute follows from the fact that h∗(µ)(g) = µ(g ◦ h) for all g ∈ Cb(X⋆).

DefineK to be the convex coneM+(X×2[d]). We claim that h∗(K) =M+(X⋆). It is clear
that h∗(K) ⊆M+(X⋆) since for any µ ∈ K and any g ∈ Cb(X⋆) such that g ≥ 0, we have by
Folland (1999, Proposition 10.1) that h∗(µ)(g) = µ(g ◦ h) ≥ 0. For the surjectivity, define
i : X⋆ → X × 2[d] by i(z) := (z ⊙ 1{j:zj ̸=⋆}, {j : zj ̸= ⋆}) and let i∗ :M(X⋆) →M(X × 2[d])
be its induced linear map. By the same argument as above, we have i∗(M+(X⋆)) ⊆ K. For
ν on M+(X⋆), we have ν = h∗

(
i∗(ν)

)
, and the surjectivity is established since i∗(ν) ∈ K.

Consequently,

h∗(K) =M+(X⋆) =
⋂

g∈Cb(X⋆):g≥0

{ν ∈M(X⋆) : ν(g) ≥ 0} =
⋂

g∈Cb(X⋆):g≥0

(
ϕX⋆(g)

)−1(
[0,∞)

)
is a weakly closed set. A similar argument shows that j∗(K) =M+(X ) is a weakly closed
set. Thus, T (K) is weakly closed set inM(X⋆)×M(X ), by Lemma 32.

By definition, Q ∈ MNARP if and only if there exists µ0 ∈ K such that T (µ0) = (Q,P ).
Therefore, by Lemma 31, we can apply the generalised Farkas’ lemma (Lemma 15) to obtain
that

Q ∈ MNARP ⇐⇒
⋂
µ∈K

{
(f, g) ∈ Cb(X⋆)× Cb(X ) : h∗(µ)(f) + j∗(µ)(g) ≥ 0

}
⊆

{
(f, g) ∈ Cb(X⋆)× Cb(X ) : Q(f) + P (g) ≥ 0

}
.

Now, for any (f, g) ∈ Cb(X⋆)× Cb(X ) and µ ∈ K, we have

h∗(µ)(f) + j∗(µ)(g) =
∑
S∈2[d]

∫
X
{(f ◦ h)(x, S) + g(x)} dµ(x, S).

Hence, (f, g) satisfies h∗(µ)(f)+j∗(µ)(g) ≥ 0 for all µ ∈ K if and only if (f ◦h)(x, S)+g(x) ≥
0 for all x ∈ X and S ∈ 2[d]. Since P (g) is increasing in g, it therefore suffices to check that
for each f ∈ Cb(X⋆) the function gf ∈ Cb(X ) given by gf (x) := −minS∈2[d](f ◦ h)(x, S) =
−minS∈2[d] fS(xS) satisfies Q(f) + P (gf ) ≥ 0. Substituting f ′ := −f , we have

Q ∈ MNARP ⇐⇒ Q(f) + P (gf ) ≥ 0 for all f ∈ Cb(X⋆)
⇐⇒ Q(f ′) ≤ P (f ′

max) for all f
′ ∈ Cb(X⋆)

as desired.

The proof of Theorem 1 now follows in a straightforward fashion.

Proof of Theorem 1. From the definition, R ∈ R(P, ϵ, π) if and only ifQ ∈ MNARP , which by
Proposition 16 occurs if and only if Q ∈ P(X⋆) and P (fmax) ≥ Q(f) for all f ∈ Cb(X⋆).
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B.2 Proof of Proposition 2

Proof of Proposition 2. Suppose that R ∈ R(P, ϵ, q) and let A ∈ B(R⋆) be such that µ⋆(A) =
0. Recall that if X ∼ P , B ∼ Bern(ϵ), Ω(1) ∼ Bern(q) and Ω(2) ∼ Bern(q2) for some
q2 ∈ [0, 1] with B ⊥⊥ (X,Ω(1),Ω(2)) and Ω(1) ⊥⊥ X, then we can generate Z ∼ R via
Z := (1−B) · (X ⃝⋆ Ω(1))+B · (X ⃝⋆ Ω(2)). Then by definition of µ⋆, we must have A ∈ B(R)
and µ(A) = 0. Since P ≪ µ, it follows that

0 = P (A) = P(X ∈ A) ≥ P(Z ∈ A) = R(A).

This proves that R≪ µ⋆. Now define m : R→ [0, 1] by m(x) := P(Ω(2) = 1 |X = x). Then
for any A ∈ B(R),

P(Z ∈ A) = (1− ϵ) · P(X ∈ A, Ω(1) = 1) + ϵ · P(X ∈ A, Ω(2) = 1)

= q(1− ϵ) ·
∫
A

p(x) dµ(x) + ϵ ·
∫
A

m(x)p(x) dµ(x).

Hence, dR
dµ⋆

(x) = q(1 − ϵ) · p(x) + ϵ · m(x)p(x) for x ∈ R, and dR
dµ⋆

(⋆) = P(Z = ⋆) =

1− q(1− ϵ)− ϵ
∫
Rm(x)p(x) dµ(x).

Conversely, suppose that R ∈ P(R⋆) satisfies R≪ µ⋆, and there exists a Borel measurable
function m : R → [0, 1] such that dR/dµ⋆ satisfies (11). Given X ∼ P , define a random
variable Ω(2) taking values in {0, 1} such that P(Ω(2) = 1 |X = x) = m(x) for x ∈ R. Let
B ∼ Bern(ϵ) and Ω(1) ∼ Bern(q) be such that B ⊥⊥ (X,Ω(1),Ω(2)) and Ω(1) ⊥⊥ X. Then
Z := (1−B) · (X ⃝⋆ Ω(1)) +B · (X ⃝⋆ Ω(2)) ∼ R and hence by construction R ∈ R(P, ϵ, q).

This completes the proof, but we also provide an alternative proof of the converse
statement using Theorem 1. Again suppose that R ∈ P(R⋆) satisfies R ≪ µ⋆, and that
dR/dµ⋆ satisfies (11). Define Q := ϵ−1{R − (1 − ϵ)MCAR(π,P )} ∈ M(R⋆) as in Theo-
rem 1, and let f = (f{1}, f∅) ∈ Cb(R⋆). Note that by definition, f∅ ∈ R is a constant and
fmax(x) = f{1}(x)∨f∅ for all x ∈ R. Moreover, since MCAR(π,P ) ∈ R(P, 0, π), we have by the

argument in the direct part of the proof that MCAR(π,P ) ≪ µ⋆ with
dMCAR(π,P )

dµ⋆
(x) = q · p(x)

for x ∈ R and
dMCAR(π,P )

dµ⋆
(⋆) = 1− q, so

dQ

dµ⋆
(z) =

{
m(z)p(z) if z ∈ R
1−

∫
Rm(x)p(x) dµ(x) if z = ⋆.

Hence Q ∈ P(R⋆), and

P (fmax) =

∫
R

(
f{1}(x) ∨ f∅

)
p(x) dµ(x)

≥
∫
R

{
m(x)f{1}(x) +

(
1−m(x)

)
f∅
}
p(x) dµ(x) = Q(f),

where the inequality follows from the fact that max(a, b) is at least as large as any convex
combination of a and b, for a, b ∈ R. We conclude that R ∈ R(P, ϵ, q), by Theorem 1.
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C Proofs from Section 3

C.1 Proof of Theorem 3

We begin with some lemmas. Recalling the way that we can generate Z1, . . . , Zn
iid∼ P ∈

Parb
(
θ0,Σ, ϵ, π

)
from Section 2.2.2, we let In ⊆ [n] denote the ‘inliers’, or the indices of the

uncontaminated observations. Likewise, we denote by On ⊆ [n] the ‘outliers’, or the indices
of the contaminated observations so that In ∪ On = [n].

Lemma 17. Let n,M ∈ N be such that n/M ≥ 4. Let Z1, . . . , Zn
iid∼ P ∈ Parb

(
θ0,Σ, ϵ, π

)
,

with corresponding observation patterns Ω1, . . . ,Ωn ∈ {0, 1}d. Randomly select M disjoint
sets (Bm)m∈[M ] ⊆ [n] such that |Bm| = ⌊n/M⌋, and for θ = (θ1, . . . , θd)

⊤ ∈ Rd, m ∈ [M ] and
j ∈ [d], define

Ωmj := 1{
∑

i∈Bm
Ωij>0} and Zmj :=

∑
i∈Bm

ΩijZij∑
i∈Bm

Ωij

· Ωmj + θj · (1− Ωmj). (29)

Then, writing Zm := (Zm1, . . . , Zmd)
⊤, for all m ∈ [M ] such that Bm ⊆ In, we have

tr
(
E
{
(Zm − θ0)(Zm − θ0)⊤

})
≤ 2

|Bm|
· tr

(
ΣIPW

)
+
∥θ − θ0∥22
e|Bm|qmin

(30a)

and ∥∥E[(Zm − θ0)(Zm − θ0)⊤]∥∥op
≤ 6

|Bm|
·
∥∥ΣIPW

∥∥
op

+
∥θ − θ0∥22
e|Bm|qmin

. (30b)

Proof. We compute the entries of the matrix (Zm − θ0)(Zm − θ0)⊤, beginning with those on
the diagonal. For j ∈ [d], let

Ajj := E
( |Bm|qj∑

i∈Bm
Ωij

· 1{
∑

i∈Bm
Ωij>0}

)
≤ 2, (31)

where the inequality follows by the first part of Lemma 19. Further, let Ejj := (1− qj)|Bm|.
For i ∈ In, we can write Zi = Xi ⃝⋆ Ωi, where E(Xi) = θ0, Cov(Xi) = Σ and Xi ⊥⊥ Ωi.
Hence, for any m ∈ [M ] such that Bm ⊆ In and any j ∈ [d],

E
{
(Zmj−θ0,j)2

}
= E

[{
Ωmj(Zmj − θ0,j) + (1− Ωmj)(θj − θ0,j)

}2]
= E

{(
Ωmj(Zmj − θ0,j)

)2}
+ E

{
(1− Ωmj)

2(θj − θ0,j)2
}

= E
{(∑

i∈Bm
Ωij(Xij−θ0,j)∑
i∈Bm

Ωij

· 1{
∑

i∈Bm
Ωij>0}

)2}
+ P(Ωmj = 0)(θj − θ0,j)2

= E
(

Σjj∑
i∈Bm

Ωij

· 1{
∑

i∈Bm
Ωij>0}

)
+ (1− qj)|Bm|(θj − θ0,j)2

= Ajj ·
ΣIPW
jj

|Bm|
+ Ejj · (θj − θ0,j)2. (32)
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Turning to the off-diagonal entries, for any m ∈ [M ] such that Bm ⊆ In and any distinct
j, k ∈ [d],

E
{
(Zmj − θ0,j)(Zmk − θ0,k)

}
= E

[{
Ωmj(Zmj − θ0,j) + (1− Ωmj)(θj − θ0,j)

}{
Ωmk(Zmk − θ0,k) + (1− Ωmk)(θk − θ0,k)

}]
= E

{(
Ωmj(Zmj − θ0,j)

)(
Ωmk(Zmk − θ0,k)

)}
+ E

{
(1− Ωmj)(1− Ωmk)(θj − θ0,j)(θk − θ0,k)

}
,

where in the final step, the cross-terms vanish as E(Xi) = θ0. Without loss of generality, we
assume that 1 ∈ Bm. For the first term, we first define

Ajk := E

{
(|Bm|qj)(|Bm|qk)(

1 +
∑

i∈Bm\{1}Ωij

)
·
(
1 +

∑
i∈Bm\{1}Ωik

)}

≤ E

{
(|Bm|qj)2(

1 +
∑

i∈Bm\{1}Ωij

)2
}1/2

E

{
(|Bm|qk)2(

1 +
∑

i∈Bm\{1}Ωik

)2
}1/2

≤ 2|Bm|2
(|Bm| − 1)2

≤ 4, (33)

where the first inequality follows from Cauchy–Schwarz and the second inequality follows
from the second part of Lemma 19, and the final inequality uses the fact that |Bm| ≥ 4. We
then have

E
{
Ωmj(Zmj − θ0,j) · Ωmk(Zmk − θ0,k)

}
= Σjk · E

{ (∑
i∈Bm

ΩijΩik

)
ΩmjΩmk(∑

i∈Bm
Ωij

)
·
(∑

i∈Bm
Ωik

)}

= Σjk · |Bm| · E
{

Ω1jΩ1k(∑
i∈Bm

Ωij

)
·
(∑

i∈Bm
Ωik

)}

= Σjk · |Bm| · P(Ω1j = Ω1k = 1) · E
{

1(
1 +

∑
i∈Bm\{1}Ωij

)
·
(
1 +

∑
i∈Bm\{1}Ωik

)}
= Ajk ·

Σjkqjk
|Bm|qjqk

,

where the first equality follows from substituting the definition of Zmj on the event {Ωmj = 1}
(and similarly for k) and the second equality follows by symmetry. For the second term, we
have

E
{
(1− Ωmj)(1− Ωmk)(θj − θ0,j)(θk − θ0,k)

}
= P(Ωmj = Ωmk = 0) · (θj − θ0,j)(θk − θ0,k)
= (1− qj − qk + qjk)

|Bm| · (θj − θ0,j)(θk − θ0,k)
=: Ejk · (θj − θ0,j)(θk − θ0,k).

Combining these two equalities then yields

E
[
(Zmj − θ0,j)(Zmk − θ0,k)

]
= Ajk ·

1

|Bm|
· ΣIPW

jk + Ejk · (θj − θ0,j)(θk − θ0,k). (34)

Therefore, by (32) and (34),

E
{
(Zm − θ0)(Zm − θ0)⊤

}
=

1

|Bm|
· A⊙ ΣIPW + E ⊙

{
(θ − θ0)(θ − θ0)⊤

}
,
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where A := (Ajk)j,k∈[d] and E := (Ejk)j,k∈[d]. The desired inequality (30a) then follows as

tr
(
E
{
(Zm − θ0)(Zm − θ0)⊤

})
=

1

|Bm|
·

d∑
j=1

AjjΣ
IPW
jj +

d∑
j=1

Ejj(θj − θ0,j)2

≤ 2

|Bm|
· tr(ΣIPW) +

∥θ − θ0∥22
e|Bm|qmin

,

where the inequality follows by (31) and Lemma 20.
For inequality (30b), we define a matrix A′ = (A′

jk) ∈ Rd×d by A′
jk := Ajk for j ̸= k and

A′
jj := E

{
(|Bm|qj)2(

1 +
∑

i∈Bm\{1}Ωij

)2
}
≤ 2, (35)

where the inequality follows from the second part of Lemma 19 and the assumption that
|Bm| ≥ 4. Note that A′ is a positive semi-definite matrix, as it is the expectation of a positive
semi-definite matrix. Now∥∥E{(Zm − θ0)(Zm − θ0)⊤}∥∥op

=

∥∥∥∥ 1

|Bm|
· A⊙ ΣIPW + E ⊙

{
(θ − θ0)(θ − θ0)⊤

}∥∥∥∥
op

≤ 1

|Bm|
·
∥∥A′ ⊙ ΣIPW

∥∥
op

+
1

|Bm|
·
∥∥(A− A′)⊙ ΣIPW

∥∥
op

+
∥∥E ⊙ {

(θ − θ0)(θ − θ0)⊤
}∥∥

op

(i)

≤ 1

|Bm|
· ∥A′∥∥

∞∥Σ
IPW

∥∥
op

+
1

|Bm|
·
∥∥A− A′∥∥

∞

∥∥ΣIPW
∥∥
op

+
∥∥E ⊙ {

(θ − θ0)(θ − θ0)⊤
}∥∥

op

(ii)

≤ 6

|Bm|
∥∥ΣIPW

∥∥
op

+
∥θ − θ0∥22
e|Bm|qmin

,

where the first term in step (i) follows from Lemma 18 since A′ is positive semidefinite,
the second term in step (i) follows since A − A′ is diagonal, and step (ii) follows from the
inequalities (31), (33) and (35), as well as Lemma 20.

The following lemma can be deduced from Horn (1990, 3.1(e), p. 95), but for the conve-
nience of the reader, we provide a short proof here.

Lemma 18. Let A,B ∈ Sd×d and further suppose that A is positive semi-definite. Then
∥A⊙B∥op ≤ ∥A∥∞∥B∥op.

Proof. The proof largely follows that of Horn (1990). Since(
A A
A A

)
∈ S2d×2d and

(
∥B∥opId B

B ∥B∥opId

)
∈ S2d×2d

are both positive semi-definite, by the Schur product theorem (Horn and Johnson, 2012,
Theorem 7.5.3(a)), their Hadamard product(

∥B∥op(Id ⊙ A) A⊙B
A⊙B ∥B∥op(Id ⊙ A)

)
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is also positive semi-definite. Hence, for any v ∈ Rd, we have

0 ≤
(
v⊤ −v⊤

)(∥B∥op(Id ⊙ A) A⊙B
A⊙B ∥B∥op(Id ⊙ A)

)(
v
−v

)
= 2∥B∥opv⊤(I ⊙ A)v − 2v⊤(A⊙B)v,

so ∥A⊙B∥op ≤ ∥B∥op∥I ⊙ A∥op ≤ ∥A∥∞∥B∥op.

Lemma 19. Let Y ∼ Bin(n, q) for some n ∈ N and q ∈ (0, 1]. Then

E
(
Y −1 · 1{Y >0}

)
≤ 2

nq
and E

{
(Y + 1)−2

}
≤ 2

n2q2
.

Proof. We have

E
{
(Y + 1)−1

}
=

n∑
y=0

(y + 1)−1

(
n

y

)
qy(1− q)n−y

=
n∑
y=0

1

q(n+ 1)

(
n+ 1

y + 1

)
qy+1(1− q)n−y

=
1

q(n+ 1)

n+1∑
y=1

(
n+ 1

y

)
qy(1− q)n+1−y ≤ 1

nq
.

The first inequality in the statement then follows as y−1 ≤ 2(y+1)−1 for all y ≥ 1. Similarly,
we have

E
{
(Y + 1)−1(Y + 2)−1

}
=

n∑
y=0

(y + 1)−1(y + 2)−1

(
n

y

)
qy(1− q)n−y

=
n∑
y=0

1

q2(n+ 1)(n+ 2)

(
n+ 2

y + 2

)
qy+2(1− q)n−y ≤ 1

n2q2
.

The second inequality in the statement then follows since (y + 1)−2 ≤ 2(y + 1)−1(y + 2)−1

for all y ≥ 0.

Lemma 20. Under the set up in the proof of Lemma 17, we have

∥E∥∞ ≤
1

e|Bm|qmin

and ∥E ⊙
{
(θ − θ0)(θ − θ0)⊤

}
∥op ≤

∥θ − θ0∥22
e|Bm|qmin

.

Proof. We will make use of the following inequality

(1− x)k ≤ 1

ekx
for all x ∈ (0, 1] and k ∈ N. (36)

To see this, note that k log(1− x) ≤ −kx ≤ − log(kx)− 1. Hence, for each j ∈ [d],

Ejj = (1− qj)|Bm| ≤ 1

e|Bm|qmin

,
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and for each j, k ∈ [d],

Ejk = (1− qj − qk + qjk)
|Bm| ≤ 1

e|Bm|(qj + qk − qjk)
≤ 1

e|Bm|qmin

,

where the final inequality follows since qjk ≤ qk, so that qj + qk − qjk ≥ qj ≥ qmin. This
establishes the first inequality.

For the second bound, we have∣∣[E ⊙ {
(θ − θ0)(θ − θ0)⊤

}]
jk

∣∣ ≤ 1

e|Bm|qmin

· |θj − θ0,j| · |θk − θ0,k|.

Hence ∥∥E ⊙ {
(θ − θ0)(θ − θ0)⊤

}∥∥
op
≤ 1

e|Bm|qmin

∥∥|θ − θ0| · |θ − θ0|⊤∥∥op
=
∥θ − θ0∥22
e|Bm|qmin

,

where |θ − θ0| denotes the entrywise absolute value, and the inequality follows from the
fact6 that if A = (Ajk), B = (Bjk) ∈ Sd×d are such that |Ajk| ≤ Bjk for all j, k ∈ [d], then
∥A∥op ≤ ∥B∥op.

We require the following lemma, which is an analogue of Depersin and Lecué (2022b,
Lemma 1). We state and prove it here as we require slight changes in several parts of the
proof.

Lemma 21. Let Z1, . . . , Zn
iid∼ P ∈ Parb

(
θ0,Σ, ϵ, π

)
. Let n ≥ 5, δ ∈ [2e−(n−4)/720,000, 1) and

ϵ ∈ [0, 1/3000]. Take M ∈ N such that

n

4
≥M ≥ 300

(
2ϵn+ log(2/δ)

)
∨ 180,000 log(2/δ),

and for each m ∈ [M ], let Zm be as in (29), for some θ ∈ Rd. Then, with probability at least
1− δ, for all v ∈ Sd−1, there are at least 99M/100 blocks m such that

|v⊤(Zm − θ0)| ≤ 4000

√
tr(ΣIPW)

n
+ 100

√
M∥ΣIPW∥op

n
+ 30∥θ − θ0∥2

√
M

nqmin

=: rIPW.

Proof. By Lemma 38, we find that E1 := {|On| ≤ 2ϵn + log(2/δ)} occurs with probability
at least 1 − δ/2. Henceforth we will work on this event. By definition of M , there are at
mostM/300 blocks that are contaminated. Let (Y m)m∈[M ] denote the uncontaminated block
means so that (Y m)m∈[M ] are independent and identically distributed, and at most M/300
of the vectors (Y m)m∈[M ] and (Zm)m∈[M ] are not equal. Let

Γ := |Bm| · E
{
(Y m − θ0)(Y m − θ0)⊤

}
and r′ := 2800

√
tr(Γ)

n
+

√
1200∥Γ∥op
|Bm|

.

6To see this, observe that v⊤Av ≤ |v|⊤|A||v| ≤ |v|⊤B|v| for all v ∈ Rd, where |A| denotes the entrywise
absolute value of A.
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We begin by establishing that the claim of the lemma holds with rIPW replaced by r′. To
this end, it suffices to show that

sup
v∈Sd−1

M∑
m=1

1{|v⊤(Ym−θ0)|>r′} ≤
M

150
.

Define ψ : R→ [0, 1] by

ψ(t) :=


0 if t < 1/2

2(t− 1/2) if 1/2 ≤ t < 1

1 if t ≥ 1,

so that ψ is 2-Lipschitz and 1{t>1} ≤ ψ(t) ≤ 1{t>1/2}. Then

sup
v∈Sd−1

M∑
m=1

1{|v⊤(Ym−θ0)|>r′} = sup
v∈Sd−1

M∑
m=1

{
1{|v⊤(Ym−θ0)|>r′} − P

(
|v⊤(Y m − θ0)| > r′/2

)
+ P

(
|v⊤(Y m − θ0)| > r′/2

)}
≤ sup

v∈Sd−1

M∑
m=1

{
ψ

( |v⊤(Y m − θ0)|
r′

)
− Eψ

( |v⊤(Y m − θ0)|
r′

)}

+ sup
v∈Sd−1

M∑
m=1

P
(
|v⊤(Y m − θ0)| > r′/2

)
=: A+B.

Towards bounding B, we apply Markov’s inequality to obtain that for every v ∈ Sd−1,

P
(
|v⊤(Y m − θ0)| > r′/2

)
≤ E

{
v⊤(Y m − θ0)(Y m − θ0)⊤v

}
(r′/2)2

≤ ∥Γ∥op
|Bm|(r′/2)2

≤ 1

300
,

where the final inequality follows from the definition of r′. Therefore, B ≤ M/300. For the
first term, we have A = (A− EA) + EA. By the bounded differences inequality (Vershynin,
2018, Theorem 2.9.1) and our choice of M , we have with probability at least 1− δ/2 that

A− EA ≤
√
M log(2/δ)

2
≤ M

600
.

Now let ε1, . . . , εM be independent Rademacher random variables. Then

EA = E sup
v∈Sd−1

M∑
m=1

{
ψ

( |v⊤(Y m − θ0)|
r′

)
− Eψ

( |v⊤(Y m − θ0)|
r′

)}
(i)

≤ 2E sup
v∈Sd−1

M∑
m=1

εmψ

( |v⊤(Y m − θ0)|
r′

)
(ii)

≤ 4E sup
v∈Sd−1

M∑
m=1

εm ·
v⊤(Y m − θ0)

r′
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=
4

r′
E
{∥∥∥∥ M∑

m=1

εm(Y m − θ0)
∥∥∥∥
2

}
≤ 4

r′
E
{∥∥∥∥ M∑

m=1

εm(Y m − θ0)
∥∥∥∥2

2

}1/2

=
4

r′

√
tr(Γ)M

|Bm|
≤ M

600
,

where step (i) follows from (one-sided) symmetrisation (see, e.g., Boucheron, Lugosi and
Massart, 2013, Lemma 11.4), step (ii) follows from Talagrand’s contraction inequality (e.g.,
Vershynin, 2018, Exercise 6.7.7) since ψ(| · |) is 2-Lipschitz, and the final inequality follows
from the definition of r′. The claim, with rIPW replaced by r′, follows by a union bound.
The final result then follows from applying Lemma 17 to bound both tr(Γ) and ∥Γ∥op,
using the facts that |Bm| ≥ 3n/(4M) and M ≥ 180,000 log 2, together with the inequality√
x+ y ≤ √x+√y for x, y ≥ 0.

The following corollary is a variant of Depersin and Lecué (2022b, Theorem 2.1).

Corollary 22. In the setting of Lemma 21, and with Z1, . . . , ZM defined as in Lemma 17
for some θ ∈ Rd, take

θ̃n := Robust Block Descent(Z1, . . . , ZM)

from Algorithm 4. Then with probability at least 1− δ,

∥∥θ̃n − θ0∥∥2
≤ 4 · 106

√
tr(ΣIPW)

n
+ 9 · 104

√
M∥ΣIPW∥op

n
+ 3 · 104∥θ − θ0∥2

√
M

nqmin

.

Proof. Let E denote the event on which for all A ∈ Sd×d+ with tr(A) = 1, there are at least
9M/10 blocks for which ∥A1/2(Zm − θ0)∥2 ≤ 8rIPW. We claim that P(E) ≥ 1− e−M/180,000.

The proof of the claim follows that of Depersin and Lecué (2022b, Proposition 1), replac-
ing their Lemma 1 with our Lemma 21 and their r with our rIPW. Moreover, the remainder of
the proof of Depersin and Lecué (2022b, Theorem 2.1) then carries over on our event E .

Equipped with these preliminary lemmas, we turn to the proof of Theorem 3.

Proof of Theorem 3. Let S(1), . . . , S(T ) be as in Algorithm 1. For t ∈ [T ], let ϵ(t) denote
the proportion of outliers, or contaminated observations, in the set S(t). Then, combining
Lemma 38 and a union bound, we deduce that with probability at least 1− δ/3,

max
t∈[T ]

ϵ(t) ≤ 2ϵ+
log(3T/δ)

⌊n/T ⌋ ≤ 2ϵ+
2T log(3T/δ)

n
=: ϵ′.

Henceforth we work on the event E1 :=
{
maxt∈[T ] ϵ

(t) ≤ ϵ′
}
.

Let M be as in Algorithm 1. Then, if we take A2 = 1200 and A3 = 180, 000 in Algo-
rithm 1, it follows that for any t ∈ [T ],

n

4T
≥M ≥ 300

(
2ϵ(t)n

T
+ log(6T/δ)

)
∨ 180, 000 log(6T/δ).
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Moreover, we have both δ/(3T ) ≥ 2e−n/(720,000T ) and maxt∈[T ] ϵ
(t) ≤ 1/3000. We therefore

apply Corollary 22 by first conditioning on θ̂(t), with θ and n in that statement taken to
be θ̂(t) and ⌊n/T ⌋ respectively, and then taking a further expectation, to find that for each

t ∈ [T − 1], there is an event E (t)2 with P
(
(E (t)2 )c

)
≤ δ/(3T ) such that on E (t)2 , we have

∥θ̂(t+1) − θ0∥2 ≤ 5 · 106
(√

T tr(ΣIPW)

n
+

√
TM∥ΣIPW∥op

n

)
+ 4 · 104∥θ̂(t) − θ0∥2

√
TM

nqmin

=: a+ b · ∥θ̂(t) − θ0∥2.

By the assumed lower bound on qmin, we have b ≤ 1/2. Moreover, since Algorithm 1 is
initialised with the coordinate-wise trimmed mean and by assumption qmin ≥ 8 log(6d/δ)/n,
we combine Lugosi and Mendelson (2021, Theorem 1) with Lemma 38(b) and a union bound
to obtain that there is an event E3 with P(Ec3) ≤ δ/3 such that on E3, we have

∥θ̂(1) − θ0∥22 ≤
14000T tr(ΣIPW) log(24d/δ)

n
+ 9216 tr(ΣIPW) · ϵ′.

Thus, taking A1 = 10−9, we find that 2−(T−1)∥θ̂(1) − θ0∥2 ≤ a. Therefore,

∥θ̂(T ) − θ0∥2 ≤
T−2∑
ℓ=0

abℓ + bT−1 · ∥θ̂(1) − θ0∥2 ≤ 2a+ 2−(T−1) · ∥θ̂(1) − θ0∥2 ≤ 3a.

Hence, P
(
E1 ∩

⋂T−1
t=1 E

(t)
2 ∩ E3

)
≥ 1− δ and on E1 ∩

⋂T−1
t=1 E

(t)
2 ∩ E3, we have that

∥θ̂n − θ0∥2 ≤ 3a = 1.5 · 107 ·
(√

T tr(ΣIPW)

n
+

√
TM∥ΣIPW∥op

n

)
,

with probability at least 1−δ. The final bound then follows upon substituting the definition
of M into the display above.

C.2 Proof of Theorem 4

Proof of Theorem 4. First, note that when ϵ = 0, by Proposition 47, we have

M
(
δ,PΘ, ∥ · ∥22

)
≳

tr(ΣIPW)

n
+
∥ΣIPW∥op log(1/δ)

n
. (37)

Now we consider the case ϵ ∈
(
0, qmin

1+qmin

)
. Without loss of generality, assume that ΣIPW

11 =

maxj∈[d] Σ
IPW
jj , and let a := (α+α2)/2 and b := (3α+α2)/2 for some α ∈ (0, 1/3] to be chosen

later. Define random vectorsX(1) = (X
(1)
1 , . . . , X

(1)
d )⊤ ∼ P (1) andX(2) = (X

(2)
1 , . . . , X

(2)
d )⊤ ∼

P (2) with independent components satisfying

X
(1)
1 :=


−
√

Σ11

2α
with probability α

0 with probability 1− 2α,√
Σ11

2α
with probability α

X
(2)
1 :=


−
√

Σ11

2α
with probability a

0 with probability 1− a− b√
Σ11

2α
with probability b,
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and X
(1)
j

d
= X

(2)
j ∼ N(0,Σjj) for j ∈ {2, . . . , d}. Then

Var(X
(2)
1 ) =

(a+ b+ 2ab− a2 − b2)Σ11

2α
= Σ11.

Thus Cov(X(1)) = Cov(X(2)) = Σ, so P (ℓ) ∈ P
(
E(X(ℓ)),Σ

)
for ℓ ∈ {1, 2}, and

∥∥E(X(1))− E(X(2))
∥∥2

2
=
αΣ11

2
.

Moreover, by Lemma 45, we have

TV
(
MCAR(π,P (1)),MCAR(π,P (2))

)
= ATV(P (1), P (2), π) =

∑
S:1∈S

π(S) · TV
(
P

(1)
S , P

(2)
S

)
= q1 · TV

(
P

(1)
1 , P

(2)
1

)
=
q1
2

(
α− α2

2
+ α2 +

α + α2

2

)
≤ q1α.

We then pick α = ϵ/(3q1) < 1/3 since ϵ < qmin so that

TV
(
MCAR(π,P (1)),MCAR(π,P (2))

)
≤ ϵ ≤ ϵ

1− ϵ, and
∥∥E(X(1))− E(X(2))

∥∥2

2
=
ϵΣIPW

11

6
.

Consequently, by Ma, Verchand and Samworth (2024, Theorem 4 and Lemma 25), we have

M
(
δ,PΘ, ∥ · ∥22

)
≥

∥∥E(X(1))− E(X(2))
∥∥2

2

4
=
ϵΣIPW

11

24
. (38)

Combining (37) and (38) yields the desired result.
Next, we consider the case where ϵ ≥ qmin

1+qmin
. Without loss of generality, assume that

q1 = qmin. Let θ(1) := (2t1/2, 0, . . . , 0)⊤ ∈ Rd for some t > 0 and let θ(2) := 0 ∈ Rd. Writing
P (1) := N(θ(1),Σ) and P (2) := N(θ(2),Σ), we have by Lemma 45 that

TV
(
MCAR(π,P (1)),MCAR(π,P (2))

)
= ATV(P (1), P (2); π) =

∑
S:1∈S

π(S) · TV(P (1)
S , P

(2)
S )

= q1TV
(
P

(1)
{1}, P

(2)
{1}

)
≤ q1 ≤

ϵ

1− ϵ.

Hence, by Ma, Verchand and Samworth (2024, Theorem 4 and Lemma 25), we see that
M

(
δ,PΘ, ∥ · ∥22

)
≥ t. Since t > 0 was arbitrary, the result follows.

C.3 Univariate arbitrary contamination lower bounds

The lower bounds in Proposition 23 are presented primarily to ensure the completeness
of Table 1. Corresponding upper bounds are attained by the median in the Gaussian case
(Chen, Gao and Ren, 2018, Theorem 2.1), and a trimmed mean (Lugosi and Mendelson, 2021,
Theorem 1 and the subsequent remark) in the sub-Gaussian case, in both cases applied to
the observed data.

Proposition 23. Let ϵ ∈ [0, 1), q ∈ (0, 1], σ > 0, δ ∈ (0, 1/4] and κ := ϵ
q(1−ϵ) .
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(a) Let Θ := R and let Pθ :=
{
P⊗n
0 : P0 ∈ Parb

(
N(θ, σ2), ϵ, q

)}
for θ ∈ Θ. Then

M(δ,PΘ, | · |2)

≳
σ2 log(1/δ)

nq(1− ϵ) + σ2κ2 if ϵ < q
1+q

=∞ if ϵ ≥ q
1+q

.

(b) Let Θ := R and let Pθ :=
{
P⊗n
0 : P0 ∈ Parb(P, ϵ, q), P ∈ Pψ2(θ, σ

2)
}
for θ ∈ Θ. Then

M(δ,PΘ, | · |2)

≳
σ2 log(1/δ)

nq(1− ϵ) + σ2κ2 log(1/κ) if ϵ < q
1+q

=∞ if ϵ ≥ q
1+q

.

Proof. (a) First consider the case where ϵ < q
1+q

. Let X1 ∼ N(0, σ2) =: P1 and X2 ∼
N(2σκ, σ2) =: P2. By Pinsker’s inequality, TV(P1, P2) ≤

√
1
2
KL(P1, P2) = κ, so that by

Lemma 45,

TV
(
MCAR(q,P1),MCAR(q,P2)

)
= q · TV(P1, P2) ≤

ϵ

1− ϵ.

Hence, by Ma, Verchand and Samworth (2024, Lemma 25), we have

M(δ,PΘ, | · |2) ≥
(EX1 − EX2)

2

4
= σ2κ2. (39)

Further, by choosing the contamination distribution Q ∈ P(R⋆) such that Q
(
{⋆}

)
= 1 and

applying Proposition 46(a), we deduce that

M(δ,PΘ, | · |2) ≳
σ2 log(1/δ)

nq(1− ϵ) . (40)

Combining (39) and (40) yields the lower bound for ϵ < q
1+q

.

Next consider the case where ϵ ≥ q
1+q

. Let a > 0, X1 ∼ P1 := N(0, σ2) and X2 ∼ P2 :=

N(aσ, σ2). By Lemma 45,

TV
(
MCAR(q,P1),MCAR(q,P2)

)
= q · TV(P1, P2) ≤ q ≤ ϵ

1− ϵ.

Hence, by Ma, Verchand and Samworth (2024, Lemma 25), we have

M(δ,PΘ, | · |2) ≥
(EX1 − EX2)

2

4
=
σ2a2

4
.

Since this holds for all a > 0, we deduce thatM(δ,PΘ, | · |2) =∞ in this case.

(b) Let c1 > 0 be a universal constant that will be specified later. Define P1 ∈ P(R) by
P1

(
(t,∞)

)
:= e−t

2/(c1σ)2 for t ≥ 0. Define P2 ∈ P(R) by

P2({0}) := κ, P2

(
(t,∞)

)
:=

{
e−t

2/(c1σ)2 if 0 ≤ t ≤ c1σ
√

log(1/κ)

0 if t > c1σ
√

log(1/κ).
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Let X1 ∼ P1 and X2 ∼ P2. Since P(|Xℓ| ≥ t) ≤ e−t
2/(c1σ)2 for t ≥ 0 and ℓ ∈ {1, 2}, we have

by Vershynin (2018, Proposition 2.5.2) that ∥Xℓ∥ψ2 ≤ c1C2σ for ℓ ∈ {1, 2}, where C2 > 0
is a universal constant. Thus by Vershynin (2018, Lemma 2.6.8), there exists a universal
constant C3 > 0 such that ∥Xℓ − EXℓ∥ψ2 ≤ c1C2C3σ. Hence, taking c1 := (C2C3)

−1, we
have Pℓ ∈ Pψ2

(
E(Xℓ), σ

2
)
for ℓ ∈ {1, 2}. Moreover, TV(P1, P2) = P2({0}) = κ, so that by

Lemma 45,

TV
(
MCAR(q,P1),MCAR(q,P2)

)
= q · TV(P1, P2) =

ϵ

1− ϵ.

Now, integrating by parts yields

EX1 − EX2 =

∫ ∞

c1σ
√

log(1/κ)

x · 2x

(c1σ)2
e−x

2/(c1σ)2 dx

= κ · c1σ
√

log(1/κ) +

∫ ∞

c1σ
√

log(1/κ)

e−x
2/(c1σ)2 dx ≳ σκ

√
log(1/κ).

Hence, by Ma, Verchand and Samworth (2024, Lemma 25),

M(δ,PΘ, | · |2) ≥
(EX1 − EX2)

2

4
≳ σ2κ2 log(1/κ). (41)

By (41) and applying Proposition 46(a) with contamination distribution Q ∈ P(R⋆) satisfy-
ing Q({⋆}) = 1 as in (a), we obtain the desired lower bound for ϵ < q

1+q
. Finally, the lower

bound for ϵ ≥ q
1+q

follows from part (a).

D Proofs from Section 4

D.1 Proofs from Section 4.1

D.1.1 Proof of Theorem 5

Proof of Theorem 5. Given R ∈ R(θ0), there exists a random vector (X0,Ω
(1)
0 ,Ω

(2)
0 ,W0)

taking values in R×{0, 1}3 such that W0 ⊥⊥ (X0,Ω
(1)
0 ,Ω

(2)
0 ), W0 ∼ Ber(ϵ), Ω

(1)
0 ⊥⊥ (X0,Ω

(2)
0 ),

Ω
(1)
0 ∼ Ber(q), X0 ∼ N(θ0, σ

2) and

R = Law
(
(1−W0) ·X0 ⃝⋆ Ω

(1)
0 +W0 ·X0 ⃝⋆ Ω

(2)
0

)
.

Note that if Z0 := (1−W0) ·X0⃝⋆ Ω
(1)
0 +W0 ·X0⃝⋆ Ω

(2)
0 , then Z0 | {W0 = 0} ∼ MCAR(N(θ0,σ2),q).

We then generate (Xi,Ω
(1)
i ,Ω

(2)
i ,Wi)

n
i=1

iid∼ Law(X0,Ω
(1)
0 ,Ω

(2)
0 ,W0), and set Zi := (1 −Wi) ·

Xi ⃝⋆ Ω
(1)
i +Wi ·Xi ⃝⋆ Ω

(2)
i for i ∈ [n], so that Z1, . . . , Zn

iid∼ R.
Now define the inliers as I := {i ∈ [n] : Wi = 0}, the outliers as O := {i ∈ [n] : Wi = 1},

and the observed indices as D := {i ∈ [n] : Zi ̸= ⋆}. Equipped with this notation, we note
the following pair of structural properties

max
i∈I∩D

Xi ≤ max
i∈D

Zi ≤ max
i∈(I∩D)∪O

Xi and min
i∈(I∩D)∪O

Xi ≤ min
i∈D

Zi ≤ min
i∈I∩D

Xi.
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We deduce the sandwich relation
1

2
·
(
max
i∈I∩D

Xi + min
i∈(I∩D)∪O

Xi

)
≤ θ̂AE ≤ 1

2
·
(

max
i∈(I∩D)∪O

Xi + min
i∈I∩D

Xi

)
. (42)

NowX1, . . . , Xn and I∩D are independent, and similarlyX1, . . . , Xn andO are independent,

so (Xi)i∈I∩D|(I ∩ D) iid∼ N(θ0, σ
2) and (Xi)i∈(I∩D)∪O|

(
(I ∩ D) ∪ O

) iid∼ N(θ0, σ
2). We let

N1 := |I ∩ D| and N2 := |(I ∩ D) ∪ O|, and define

Bℓ := σ
√

2 logNℓ +
σ

2
· log logNℓ + log(4π)√

2 logNℓ

,

for ℓ ∈ {1, 2}. Let E1 := {N1 ≥ nq(1 − ϵ)/2} and E2 := {|O| ≤ 3nϵ}. By Tanguy (2015,
Theorem 3), there exists a universal constant C ′

1 > 0 such that for ℓ ∈ {1, 2} and δ > 0,

P
({∣∣∣max

i∈[Nℓ]
Xi − θ −Bℓ

∣∣∣ ≥ C ′
1σ log(8/δ)

log1/2Nℓ

}⋂
E1

∣∣∣∣ Nℓ

)
≤ δ

4

and

P
({∣∣∣min

i∈[Nℓ]
Xi − θ +Bℓ

∣∣∣ ≥ C ′
1σ log(8/δ)

log1/2Nℓ

}⋂
E1

∣∣∣∣ Nℓ

)
≤ δ

4
.

Combining these inequalities with the sandwich relation (42) yields

P
({∣∣θ̂AE

n − θ0
∣∣ ≥ B2 −B1 +

2C ′
1σ log(8/δ)

log1/2N1

}⋂
E1

∣∣∣∣ N1, N2

)
≤ 2δ

3
. (43)

Using the inequality
√
a−
√
b ≤ (a−b)/

√
b for 0 < b < a and the fact that x 7→ log log x+log(4π)

log1/2 x

is decreasing for x ≥ exp
(
e2

4π

)
, we deduce that on E1 ∩ E2,

B2 −B1 ≤
2σ log(N2/N1)

log1/2N1

≤ 2σ log
(
1 + 3nϵ/N1

)
log1/2N1

≤
2σ log

(
1 + 6ϵ

q(1−ϵ)

)
log1/2

(
nq(1− ϵ)/2

) ≤ 3σ log
(
1 + 6ϵ

q(1−ϵ)

)
log1/2

(
nq(1− ϵ)

) . (44)

Now, we first assume that ϵ ≥ n−1 log(4/δ). By Lemma 38, we have P(E1 ∩ E2) ≥ 1 − δ/2,
since by assumption, nq(1 − ϵ) ≥ 8 log(4/δ). Moreover, combining the inequalities (43)
and (44) yields that on E1 ∩ E2,∣∣θ̂AE

n − θ0
∣∣ ≤ 3σ log

(
1 + 6ϵ

q(1−ϵ)

)
log1/2

(
nq(1− ϵ)

) +
2C ′

1σ log(8/δ)

log1/2N1

≤ C1σ ·
log

(
1 + 6ϵ

q(1−ϵ)

)
+ log(8/δ)

log1/2
(
nq(1− ϵ)

) , (45)

where C1 := 3(1+C ′
1). Hence, (45) holds with probability at least 1−δ when ϵ ≥ n−1 log(4/δ).

Finally, consider the case in which ϵ < n−1 log(4/δ). Then, since R
(
N(θ0, σ

2), ϵ, q
)
⊆

R
(
N(θ0, σ

2), n−1 log(4/δ), q
)
, we have by (45) that

∣∣θ̂AE
n − θ0

∣∣ ≤ C1σ ·
log

(
1 + 6 log(4/δ)

nq(1−ϵ)

)
+ log(8/δ)

log1/2
(
nq(1− ϵ)

) ≤ C1σ ·
6 log(4/δ)
nq(1−ϵ) + log(8/δ)

log1/2
(
nq(1− ϵ)

)
≤ C1σ ·

2 log(8/δ)

log1/2
(
nq(1− ϵ)

) ≤ 2C1σ ·
log

(
1 + 6ϵ

q(1−ϵ)

)
+ log(8/δ)

log1/2
(
nq(1− ϵ)

) ,

with probability at least 1− δ.
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D.1.2 Proof of Theorem 6

(a) The two black curves are {q(1− ϵ) + ϵ}ϕ(−a,σ) and {q(1− ϵ) + ϵ}ϕ(a,σ) respectively, as labelled
in the figure. The blue curve is q(1− ϵ)ϕ(−a,σ), and the orange curve is q(1− ϵ)ϕ(a,σ).

(b) The curve above the blue region illustrates the func-
tion f1 in (47).

(c) The curve above the orange region illustrates the
function f2 in (48).

Figure 6: Construction of the lower bound in Theorem 6.

Proof of Theorem 6. Consider the construction illustrated in Figure 6. For a > 0 to be
specified later, let

τ :=
σ2

2a
· log

(
1 +

ϵ

q(1− ϵ)

)
(46)

denote the unique point in R where {q(1− ϵ) + ϵ}ϕ(−a,σ)(τ) = q(1− ϵ)ϕ(a,σ)(τ). Next, define
the function f1 : R→ R as

f1(x) :=


q(1− ϵ)ϕ(−a,σ)(x) if x ≤ 0

q(1− ϵ)ϕ(a,σ)(x) if 0 < x ≤ τ{
q(1− ϵ) + ϵ

}
· ϕ(−a,σ)(x) if x > τ.

(47)

Similarly, we note that −τ is the unique point satisfying {q(1 − ϵ) + ϵ}ϕ(a,σ)(−τ) = q(1 −
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ϵ)ϕ(−a,σ)(−τ) and define the function f2 : R→ R as

f2(x) :=


{
q(1− ϵ) + ϵ

}
· ϕ(a,σ)(x) if x ≤ −τ

q(1− ϵ)ϕ(−a,σ)(x) if − τ < x ≤ 0

q(1− ϵ)ϕ(a,σ)(x) if x > 0.

(48)

Note that
∫
R fℓ(x) dx ≤ q(1− ϵ) + ϵ ≤ 1 for ℓ ∈ {1, 2}, so we may construct P1, P2 ∈ P(R⋆)

with Radon–Nikodym derivatives

dPℓ
dλ⋆

(z) := fℓ(z)1{z∈R} +

(
1−

∫
R
fℓ(x) dx

)
1{z=⋆} for ℓ ∈ {1, 2},

where λ⋆ denotes the extension of the Lebesgue measure to R⋆ as defined in Section 1.2.
Then, by Proposition 2, P1 ∈ R

(
N(−a, σ2), ϵ, q

)
and P2 ∈ R

(
N(a, σ2), ϵ, q

)
. Since P1({⋆}) =

P2({⋆}) and f1(x) = f2(x) for x ∈ [−τ, τ ], we compute

KL(P1, P2) =

∫ −τ

−∞
q(1− ϵ)ϕ(−a,σ)(x) log

(
q(1− ϵ)ϕ(−a,σ)(x){
q(1− ϵ) + ϵ

}
ϕ(a,σ)(x)

)
dx

+

∫ ∞

τ

{
q(1− ϵ) + ϵ

}
ϕ(−a,σ)(x) log

({
q(1− ϵ) + ϵ

}
ϕ(−a,σ)(x)

q(1− ϵ)ϕ(a,σ)(x)

)
dx

= q(1− ϵ)
{
2a2

σ2
− log

(
1 +

ϵ

q(1− ϵ)

)}{
1− Φ(0,σ)(τ − a)

}
+
{
q(1− ϵ) + ϵ

}{2a2

σ2
+ log

(
1 +

ϵ

q(1− ϵ)

)}{
1− Φ(0,σ)(τ + a)

}
+ 2a

[
q(1− ϵ)ϕ(0,σ)(τ − a)−

{
q(1− ϵ) + ϵ

}
ϕ(0,σ)(τ + a)

]
=

2aq(1− ϵ)
σ2

(a− τ)
{
1− Φ(0,σ)(τ − a)

}
+

2a{q(1− ϵ) + ϵ}
σ2

(a+ τ)
{
1− Φ(0,σ)(τ + a)

}
+ 2a

[
q(1− ϵ)ϕ(0,σ)(τ − a)−

{
q(1− ϵ) + ϵ

}
ϕ(0,σ)(τ + a)

]
.

Next, set

a :=
σ

4
· log

(
1 +

ϵ

q(1− ϵ)

)
· log−1/2

(
nq(1− ϵ)

)
> 0,

so that by substituting this definition into (46), we obtain

τ = 2σ log1/2
(
nq(1− ϵ)

)
and a ≤ τ

8
,

where the inequality follows from our assumption (17). Hence, by the Mills ratio bound
1− Φ(0,σ)(x) ≤ σ2ϕ(0,σ)(x)/x for x > 0, we have

KL(P1, P2) ≤ 2a{q(1− ϵ) + ϵ}ϕ(0,σ)(τ + a)

+ 2a
[
q(1− ϵ)ϕ(0,σ)(τ − a)−

{
q(1− ϵ) + ϵ

}
ϕ(0,σ)(τ + a)

]
= 2aq(1− ϵ)ϕ(0,σ)(τ − a)

=
σ

2
· log

(
1 +

ϵ

q(1− ϵ)

)
· log−1/2

(
nq(1− ϵ)

)
· q(1− ϵ) · ϕ(0,σ)(τ − a)
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≤ σ

2
· log1/2

(
nq(1− ϵ)

)
· q(1− ϵ) · ϕ(0,σ)(7τ/8)

=
q(1− ϵ)
2
√
2π
· log1/2

(
nq(1− ϵ)

)
· exp

{
−1

2
·
(7
8

)2

· 4 log
(
nq(1− ϵ)

)}
≤ q(1− ϵ)

2
√
2π
· log1/2

(
nq(1− ϵ)

)
·
{
nq(1− ϵ)

}−3/2 ≤ 1

5n
.

Thus, KL(P⊗n
1 , P⊗n

2 ) ≤ 1/5 < log
(

1
4δ(1−δ)

)
for δ ∈ (0, 1/4], so by Ma, Verchand and Sam-

worth (2024, Theorem 4 and Corollary 6), we deduce that for δ ∈ (0, 1/4],

M
(
δ,PΘ, | · |2

)
≥ a2 =

σ2 log2
(
1 + ϵ

q(1−ϵ)

)
16 log

(
nq(1− ϵ)

) . (49)

Finally, note that MCAR(q(1−ϵ),N(θ,σ2)) ∈ R(N(θ, σ2), ϵ, q) for all θ ∈ R, since we can choose
the contamination distribution Q such that Q({⋆}) = 1. Therefore, by Proposition 46(a),
we have that for δ ∈ (0, 1/4],

M
(
δ,PΘ, | · |2

)
≥ σ2 log(1/δ)

20nq(1− ϵ) if δ ≥ {1− q(1− ϵ)}
n

2

=∞ if δ <
{1− q(1− ϵ)}n

2
.

(50)

Combining (49) and (50) yields the desired result.

D.1.3 Proof of Theorem 7

In order to prove Theorem 7, we require a preliminary lemma.

Lemma 24. Let θ1, θ2 ∈ R be distinct, and set a := |θ1− θ2|/2. Then, writing b := 1
2
log

(
1+

4ϵ
q(1−ϵ)

)
, there exists a continuous and strictly increasing function fK,b : (0,∞) → (0, 1] such

that

dK
(
R(θ1),R(θ2)

)
≥ fK,b(a).

Moreover,

fK,b(a) ≥ q(1− ϵ) · a
σ
· ϕ

(
a

σ
+
σb

a

)
when b ≤ 1/2,

and

fK,b(a) ≥ q(1− ϵ) · Φ
(
a

σ
− 2σb

a

)
− {q(1− ϵ) + ϵ} · Φ

(
−a
σ
− 2σb

a

)
when b > 1/2.

Proof. Since dK is translation invariant, we may assume without loss of generality that θ1 =
−a and θ2 = a. By Proposition 2, if Rℓ ∈ R(θℓ) for ℓ ∈ {1, 2}, then each admits a density
hℓ : R⋆ → R with respect to the extended Lebesgue measure λ⋆ such that hℓ(x)/ϕ(θℓ,σ)(x) ∈
[q(1 − ϵ), q(1 − ϵ) + ϵ] for all x ∈ R. Let τ := σ2

2a
· log

(
1 + ϵ

q(1−ϵ)

)
≤ σ2b

a
, so that q(1 −

ϵ)ϕ(−a,σ)(−τ) = {q(1− ϵ) + ϵ}ϕ(a,σ)(−τ), see Figure 6.
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When b ≤ 1/2,

dK
(
R(θ1),R(θ2)

)
= inf

R1∈R(θ1), R2∈R(θ2)
sup
A∈A
|R1(A)−R2(A)|

≥ inf
R1∈R(θ1), R2∈R(θ2)

{
R1

(
(−∞,−σ2b/a]

)
−R2

(
(−∞,−σ2b/a]

)}
≥ q(1− ϵ) · Φ(θ1,σ)(−σ2b/a)− {q(1− ϵ) + ϵ} · Φ(θ2,σ)(−σ2b/a)

= q(1− ϵ) · Φ
(
a

σ
− σb

a

)
− {q(1− ϵ) + ϵ} · Φ

(
−a
σ
− σb

a

)
=: fK,b(a).

Now fK,b is continuously differentiable, with

f ′
K,b(a) = q(1− ϵ) ·

(
1

σ
+
σb

a2

)
ϕ

(
a

σ
− σb

a

)
−
{
q(1− ϵ) + ϵ

}
·
(
− 1

σ
+
σb

a2

)
ϕ

(
−a
σ
− σb

a

)
>

(
1

σ
+
σb

a2

)
· σ

{
q(1− ϵ) · ϕ(−a,σ)

(
−σ

2b

a

)
−

{
q(1− ϵ) + ϵ

}
· ϕ(a,σ)

(
−σ

2b

a

)}
≥

(
1

σ
+
σb

a2

)
· σ

(
q(1− ϵ) · ϕ(−a,σ)(−τ)−

{
q(1− ϵ) + ϵ

}
· ϕ(a,σ)(−τ)

)
= 0,

so that fK,b is strictly increasing as well. Moreover,

fK,b(a) = q(1− ϵ) ·
{
Φ

(
a

σ
− σb

a

)
− Φ

(
−a
σ
− σb

a

)}
− ϵ · Φ

(
−a
σ
− σb

a

)
≥ q(1− ϵ) · 2a

σ
· ϕ

(
a

σ
+
σb

a

)
− ϵ · Φ

(
−a
σ
− σb

a

)
, (51)

where the final inequality follows from the mean value theorem Φ
(
a
σ
− σb

a

)
− Φ

(
− a
σ
− σb

a

)
=

2a
σ
· ϕ(x′) ≥ 2a

σ
· ϕ

(
a
σ
+ σb

a

)
, where x′ ∈

[
− a
σ
− σb

a
, a
σ
− σb

a

]
. Next notice that

ϵ · Φ
(
−a
σ
− σb

a

)
≤ ϵ

a/σ + σb/a
· ϕ

(
a

σ
+
σb

a

)
≤ ϵa

σb
· ϕ

(
a

σ
+
σb

a

)
≤ q(1− ϵ) · a

σ
· ϕ

(
a

σ
+
σb

a

)
, (52)

where the first inequality follows from the Mills ratio bound Φ(−x) ≤ ϕ(x)/x for x > 0,
and the final inequality follows from the fact that log(1 + x) ≥ x/2 for x ∈ [0, 2], so that
b = 1

2
log

(
1 + 4ϵ

q(1−ϵ)

)
≥ ϵ

q(1−ϵ) . Therefore, by (51) and (52) we deduce that

fK,b(a) ≥ q(1− ϵ) · a
σ
· ϕ

(
a

σ
+
σb

a

)
,

when b ≤ 1/2.
On the other hand, when b > 1/2,

dK
(
R(θ1),R(θ2)

)
≥ inf

R1∈R(θ1), R2∈R(θ2)

{
R1

(
(−∞,−2σ2b/a]

)
−R2

(
(−∞,−2σ2b/a]

)}
≥ q(1− ϵ) · Φ(θ1,σ)(−2σ2b/a)− {q(1− ϵ) + ϵ} · Φ(θ2,σ)(−2σ2b/a)

= q(1− ϵ) · Φ
(
a

σ
− 2σb

a

)
− {q(1− ϵ) + ϵ} · Φ

(
−a
σ
− 2σb

a

)
=: fK,b(a).

Similarly to the previous case, fK,b is continuously differentiable and strictly increasing.
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Proof of Theorem 7. We first derive an upper bound on dK
(
R̂n,R(θ0)

)
. Let D := {i ∈ [n] :

Zi ̸= ⋆} and q := P(Z1 ̸= ⋆), so that with the convention that 0/0 := 0,

sup
A∈A
|R̂n(A)−R(A)| = sup

A∈A

∣∣∣∣ |D|n · 1

|D|
∑
i∈D

1{Zi∈A} − q · P(Z1 ∈ A|Z1 ̸= ⋆)

∣∣∣∣
≤ |D|

n
· sup
A∈A

∣∣∣∣ 1

|D|
∑
i∈D

1{Zi∈A} − P(Z1 ∈ A|Z1 ̸= ⋆)

∣∣∣∣+ ∣∣∣∣ |D|n − q
∣∣∣∣. (53)

Now, since q ≥ q(1− ϵ), we have by our lower bound on δ that

log
(4
δ

)
≤

{
nq(1− ϵ)

}31/36

6400 log
(
nq(1− ϵ)

) ≤ nq(1− ϵ)
6400

≤ nq

6400
.

Hence, by Bernstein’s inequality (Vershynin, 2018, Theorem 2.8.4), with probability at least
1− δ/2, ∣∣∣∣ |D|n − q

∣∣∣∣ ≤
√

4q log(4/δ)

n
< q. (54)

Furthermore, by the Dvoretzky–Kiefer–Wolfowitz–Massart inequality (Massart, 1990; Reeve,
2024),

sup
A∈A

∣∣∣∣ 1

|D|
∑
i∈D

1{Zi∈A} − P(Z1 ∈ A |Z1 ̸= ⋆)

∣∣∣∣ ≤
√

log(4/δ)

2|D| , (55)

with probability at least 1 − δ/2. Combining (53), (54) and (55) we deduce that, with
probability at least 1− δ,

dK
(
R̂n,R(θ0)

)
≤ sup

A∈A
|R̂n(A)−R(A)| ≤

√
|D|
n
·
√

log(4/δ)

2n
+

√
4q log(4/δ)

n

≤
√
q log(4/δ)

n
+

√
4q log(4/δ)

n

≤ 3

√
{q(1− ϵ) + ϵ} log(4/δ)

n
=: rn. (56)

We now work on the event E :=
{
dK

(
R̂n,R(θ0)

)
≤ rn

}
, which occurs with probability at

least 1− δ by (56). If θ ∈ R satisfies dK
(
R(θ),R(θ0)

)
> 2rn, then on the event E ,

dK
(
R̂n,R(θ)

)
≥ dK

(
R(θ),R(θ0)

)
− dK

(
R̂n,R(θ0)

)
> rn ≥ dK

(
R̂n,R(θ0)

)
,

so θ̂Kn ̸= θ. Therefore, with fK,b as defined in Lemma 24 and b := 1
2
log

(
1+ 4ϵ

q(1−ϵ)

)
, we deduce

that on E ,

|θ̂Kn − θ0| ≤ sup
{
|θ − θ0| : θ ∈ R, dK

(
R(θ),R(θ0)

)
≤ 2rn

}
≤ 2 sup

{
a ≥ 0 : fK,b(a) ≤ 2rn

}
= 2 inf

{
a ≥ 0 : fK,b(a) ≥ 2rn

}
, (57)
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where the second inequality follows since by Lemma 24, dK
(
R(θ),R(θ0)

)
≥ fK,b

( |θ−θ0|
2

)
, and

the final equality follows since fK,b is a strictly increasing and continuous function.
When b ≤ 1/2, we have by (57) and Lemma 24 that on E ,

|θ̂Kn − θ0| ≤ 2 inf
{
a ≥ 0 : fK,b(a) ≥ 2rn

}
≤ 2 inf

{
a ≥ 0 : q(1− ϵ) · a

σ
· ϕ

(
a

σ
+
σb

a

)
≥ 6

√
{q(1− ϵ) + ϵ} log(4/δ)

n

}
= 2σ inf

{
a ≥ 0 : a · ϕ

(
a+

b

a

)
≥

√(
1 +

ϵ

q(1− ϵ)

)
· 36 log(4/δ)
nq(1− ϵ)

}
. (58)

Now suppose further that b ≤
√

log(4/δ)
nq(1−ϵ) . The assumption on δ means that b ≤

√
log(4/δ)
nq(1−ϵ) ≤

1/80 and thus 1+ 4ϵ
q(1−ϵ) < 5/4. Let a := 20

√
log(4/δ)
nq(1−ϵ) , so that a ≤ 1/4. Moreover, b/a ≤ 1/20,

so a+ b/a ≤ 3/10. Therefore,

a · ϕ(a+ b/a) ≥ 20

√
log(4/δ)

nq(1− ϵ) · ϕ(3/10) ≥
√

5

4
· 36 log(4/δ)
nq(1− ϵ)

≥
√(

1 +
ϵ

q(1− ϵ)

)
· 36 log(4/δ)
nq(1− ϵ) .

Hence, by (58), we have on E that |θ̂Kn − θ0| ≤ 40σ
√

log(4/δ)
nq(1−ϵ) when b ≤

√
log(4/δ)
nq(1−ϵ) .

Next, we consider the case
√

log(4/δ)
nq(1−ϵ) < b ≤ 2

√
log(nq(1−ϵ)) log(4/δ)

(nq(1−ϵ))31/36 . Then b ≤ 1/40 and we

again have 1 + 4ϵ
q(1−ϵ) < 5/4. Let a := 20b, so that a ≤ 1/2. Then

a · ϕ(a+ b/a) > 20

√
log(4/δ)

nq(1− ϵ) · ϕ
(
1

2
+

1

20

)
≥

√
5

4
· 36 log(4/δ)
nq(1− ϵ)

≥
√(

1 +
ϵ

q(1− ϵ)

)
· 36 log(4/δ)
nq(1− ϵ) .

Hence, by (58), we have on E that |θ̂Kn −θ0| ≤ 40σb when
√

log(4/δ)
nq(1−ϵ) < b ≤ 2

√
log(nq(1−ϵ)) log(4/δ)

(nq(1−ϵ))31/36 .

As our third case, suppose that 2
√

log(nq(1−ϵ)) log(4/δ)
{nq(1−ϵ)}31/36 < b ≤ 1/2. Let a := 9b√

5
36

log(nq(1−ϵ))
,

so that a ≥ 18
√

log(4/δ)
5
36

(nq(1−ϵ))31/36 . By the assumption (19), we have b ≤ 5 log(nq(1−ϵ))
432

, so a ≤ 7b/a.

Therefore,

a · ϕ(a+ b/a) ≥ 18

√
log(4/δ)

5
36

{
nq(1− ϵ)

}31/36
· ϕ(8b/a)

= 18

√
log(4/δ)

5
36

{
nq(1− ϵ)

}31/36
· 1√

2π
· exp

{
−40 log

(
nq(1− ϵ)

)
729

}
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=

√
5832 log(4/δ)

5π
{
nq(1− ϵ)

}2831/2916
≥

√(
1 +

ϵ

q(1− ϵ)

)
· 36 log(4/δ)
nq(1− ϵ) ,

where the final inequality holds since b ≤ 5 log(nq(1−ϵ))
432

. Hence, by (58), we have on E that

|θ̂Kn − θ0| ≤ 108σb√
5 log(nq(1−ϵ))

when 2
√

log(nq(1−ϵ)) log(4/δ)
(nq(1−ϵ))31/36 < b ≤ 1/2.

Finally, consider the case where 1/2 < b ≤ 5 log(nq(1−ϵ))
432

(when this interval is not vacuous).
Then by (57) and Lemma 24 we have that on E ,

|θ̂Kn − θ0| ≤ 2 inf
{
a ≥ 0 : fK,b(a) ≥ 2rn

}
≤ 2 inf

{
a ≥ 0 : q(1− ϵ) · Φ

(
a

σ
− 2σb

a

)
− {q(1− ϵ) + ϵ} · Φ

(
−a
σ
− 2σb

a

)
≥

√
36{q(1− ϵ) + ϵ} log(4/δ)

n

}
. (59)

Letting a := 6σb√
log(nq(1−ϵ))

, we have

q(1− ϵ) · Φ
(
a

σ
− 2σb

a

)
− {q(1− ϵ) + ϵ} · Φ

(
−a
σ
− 2σb

a

)
(i)

≥ q(1− ϵ)(
− a
σ
+ 2σb

a

)
+
(
− a
σ
+ 2σb

a

)−1 · ϕ
(
−a
σ
+

2σb

a

)
− q(1− ϵ) + ϵ

a
σ
+ 2σb

a

· ϕ
(
a

σ
+

2σb

a

)
(ii)

≥
(
a

σ
+

2σb

a

)−1
1√
2π
·
{
q(1− ϵ) exp

(
− a2

2σ2
− 2σ2b2

a2
+ 2b

)
−
{
q(1− ϵ) + ϵ

}
exp

(
− a2

2σ2
− 2σ2b2

a2
− 2b

)}
(iii)

≥
(
a

σ
+

2σb

a

)−1
4ϵ√
2π
· exp

(
− a2

2σ2
− 2σ2b2

a2

)
(iv)

≥ 2√
log

(
nq(1− ϵ)

) · 4ϵ√
2π
·
(
nq(1− ϵ)

)−5/72

(v)

≥
√

36{q(1− ϵ) + ϵ} log(4/δ)
n

= 2rn.

Here, (i) follows from the Mills ratio bound ϕ(x)/(x + x−1) ≤ Φ(−x) ≤ ϕ(x)/x for x > 0;

(ii) follows since 1/2 < b ≤ log(nq(1−ϵ))
36

implies
(
− a
σ
+ 2σb

a

)
+

(
− a
σ
+ 2σb

a

)−1 ≤ a
σ
+ 2σb

a
; (iii)

follows by substituting the definition of b; (iv) follows since, by assumption b ≤ 5 log(nq(1−ϵ))
432

,

so a
σ
≤
√

log(nq(1−ϵ))
6

; and (v) follows from the assumptions that b > 1/2, so q(1 − ϵ) <

3ϵ, and moreover δ ≥ 4 exp
(
− {nq(1−ϵ)}31/36

6400 log(nq(1−ϵ))

)
. Hence, by (59), we have on E that |θ̂Kn −

θ0| ≤ 12σb√
log(nq(1−ϵ))

when 1/2 < b ≤ 5 log(nq(1−ϵ))
432

. Combining all four cases yields the desired

result.
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D.1.4 Proof of Theorem 8

Lemma 25. Let ϵ ∈ [0, 1), π ∈ P
(
{∅, [d]}

)
, P ∈ P(Rd), R ∈ R∅,[d](P, ϵ, π) and v ∈ Rd.

Suppose that X ∼ P , Z ∼ R and define Z(v) := v⊤Z ·1{Z∈Rd}+⋆ ·1{Z /∈Rd} for v ∈ Rd. Then,

writing P (v) := Law(v⊤X) and R(v) := Law(Z(v)), we have R(v) ∈ R
(
P (v), ϵ, π([d])

)
.

Proof. Let q := π([d]). We have Law(Z) = (1 − ϵ)Law(X ⃝⋆ Ω(1)) + ϵLaw(X ⃝⋆ Ω(2)) where
Ω(1) ⊥⊥ X and P(Ω(1) = 1[d]) = q = 1 − P(Ω(1) = 0) and where Ω(2) takes values in
{0,1[d]}. By properties of disintegrations (see Section G), we may define m(v) : R → [0, 1]
by m(v)(y) := P(Ω(2) = 1[d] | v⊤X = y). We also let µ(v) be a σ-finite measure on R such that
P (v) ≪ µ(v) and let p(v) := dP (v)/dµ(v). Finally, define g : R⋆ → [0,∞) by

g(z) :=

{
q(1− ϵ)p(v)(z) + ϵm(v)(z)p(v)(z) if z ∈ R
1− q(1− ϵ)− ϵ

∫
Rm

(v)(y)p(v)(y) dµ(v)(y) if z = ⋆.

Then, for A ∈ B(R), we have∫
A

g(z) dµ(v)
⋆ (z) = q(1− ϵ)P(v⊤X ∈ A) + ϵP

(
{Ω(2) = 1[d]} ∩ {v⊤X ∈ A}

)
= (1− ϵ)P

(
v⊤(X ⃝⋆ Ω(1)) ∈ A

)
+ ϵP

(
v⊤(X ⃝⋆ Ω(2)) ∈ A

)
= P(Z(v) ∈ A) = R(v)(A).

It follows that R(v) ≪ µ
(v)
⋆ , with Radon–Nikodym derivative g. Hence, by Proposition 2, we

have R(v) ∈ R(P (v), ϵ, q).

Proof of Theorem 8. We have Law(Z1) = (1 − ϵ)Law(X1 ⃝⋆ Ω
(1)
1 ) + ϵLaw(X1 ⃝⋆ Ω

(2)
1 ) where

X1 ∼ Nd(θ0,Σ), Ω
(1)
1 ⊥⊥ X1 and P(Ω(1)

1 = 1[d]) = q. Define m : R → [0, 1] by m(y) :=

P(Ω(2)
1 = 1[d] | v⊤X1 = y). We claim that the distribution R(v) of Z

(v)
1 is absolutely continuous

with respect to λ⋆, with Radon–Nikodym derivative

dR(v)

dλ⋆
(z) =

{
q(1− ϵ)ϕ(v⊤θ0,v⊤Σv)(z) + ϵm(z)ϕ(v⊤θ0,v⊤Σv)(z) if z ∈ R
1− q(1− ϵ)− ϵ

∫
Rm(y)ϕ(v⊤θ0,v⊤Σv)(y) dλ(y) if z = ⋆.

To see this, it suffices to observe that for A ∈ B(R), we have∫
A

dR(v)

dλ⋆
(z) dλ⋆(z) = q(1− ϵ)P(v⊤X1 ∈ A)+ ϵP

(
{Ω(2)

1 = 1[d]}∩{v⊤X1 ∈ A}
)
= P(Z(v)

1 ∈ A).

The claim therefore follows, so by Proposition 2 we have R(v) ∈ R
(
N(v⊤θ0, v

⊤Σv), ϵ, q
)
. We

deduce from Theorem 7 and a union bound that

max
v∈N

(
θ̂Kn (v)− v⊤θ0

)2
≲ Cn,q,ϵ,δ/(4·9d)

{∥Σ∥op(d+ log(4/δ)
)

nq(1− ϵ) +
∥Σ∥op log2

(
1 + 4ϵ

q(1−ϵ)

)
log

(
nq(1− ϵ)

) }
, (60)

with probability at least 1− δ. Next, since any v ∈ Sd−1 can be written as v = v1+v2, where
v1 ∈ N and ∥v2∥2 ≤ 1/4, we have

∥θ̂MK
n − θ0∥2 = sup

v∈Sd−1

|v⊤θ̂MK
n − v⊤θ0| ≤ max

v∈N
|v⊤θ̂MK

n − v⊤θ0|+
1

4
· ∥θ̂MK

n − θ0∥2,
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so

∥θ̂MK
n − θ0∥2 ≤

4

3
·max
v∈N
|v⊤θ̂MK

n − v⊤θ0|.

Hence,

∥θ̂MK
n − θ0∥22 ≤ 2max

v∈N

(
v⊤θ̂MK

n − θ̂Kn (v) + θ̂Kn (v)− v⊤θ0
)2

≤ 4max
v∈N

(
v⊤θ̂MK

n − θ̂Kn (v)
)2

+ 4max
v∈N

(
v⊤θ0 − θ̂Kn (v)

)2
≤ 8max

v∈N

(
v⊤θ0 − θ̂Kn (v)

)2
≲ Cn,q,ϵ,δ/(4·9d)

{∥Σ∥op(d+ log(4/δ)
)

nq(1− ϵ) +
∥Σ∥op log2

(
1 + 4ϵ

q(1−ϵ)

)
log

(
nq(1− ϵ)

) }
,

with probability at least 1− δ, where the third inequality follows from the definition of θ̂MK
n ,

and the last inequality follows from (60).

D.1.5 Proof of Lemma 9

Proof of Lemma 9. We first show that, for any R ∈ R(P, ϵ, q), we have

dK(R̂n, R) = max
i∈{0}∪[m]

{∣∣∣ i
n
−R

(
(−∞, Z(i))

)∣∣∣ ∨ ∣∣∣ i
n
−R

(
(−∞, Z(i+1))

)∣∣∣}.
To this end, fix i ∈ {0} ∪ [m]. Then, since R̂n

(
(−∞, t)

)
= i/n for t ∈ [Z(i), Z(i+1)) ∩ R,

t 7→ R
(
(−∞, t]

)
is increasing on this interval and since R≪ λ⋆ by Proposition 2, we have

sup
t∈[Z(i),Z(i+1))∩R

∣∣R̂n

(
(−∞, t]

)
−R

(
(−∞, t]

)∣∣ = ∣∣∣ i
n
−R

(
(−∞, Z(i))

)∣∣∣ ∨ lim
t↗Z(i+1)

∣∣∣ i
n
−R

(
(−∞, t)

)∣∣∣
=

∣∣∣ i
n
−R

(
(−∞, Z(i))

)∣∣∣ ∨ ∣∣∣ i
n
−R

(
(−∞, Z(i+1))

)∣∣∣.
Hence

sup
t∈R

∣∣R̂n

(
(−∞, t]

)
−R

(
(−∞, t]

)∣∣ = max
i∈{0}∪[m]

{∣∣∣ i
n
−R

(
(−∞, Z(i))

)∣∣∣∨ ∣∣∣ i
n
−R

(
(−∞, Z(i+1))

)∣∣∣}.
Now, by Proposition 2, for 0 ≤ V1 ≤ . . . ≤ Vm+1 ≤ 1, there exists R ∈ R(P, ϵ, q) such that
Vi = R

(
(−∞, Z(i)]

)
for i ∈ [m] and Vm+1 = R

(
(−∞,∞)

)
if and only if (V1, . . . , Vm+1)

⊤ ∈ V .
The claim then follows.

D.2 Proofs from Section 4.2

D.2.1 Proof of Theorem 10

The proof of Theorem 10 relies on the following preliminary result, which controls the bias.

Proposition 26. Let θ0 ∈ R, ϵ ∈ [0, 1), q ∈ (0, 1] and σ > 0.
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(a) Let r ≥ 2, P ∈ PLr(θ0, σ
2) and Z ∼ R ∈ R(P, ϵ, q). Then

{
E(Z |Z ̸= ⋆)− θ0

}2 ≤ σ2 ·
{(

ϵ

q(1− ϵ)

)2

∧
(

ϵ

q(1− ϵ)

)2/r}
.

(b) Let r ≥ 1, P ∈ Pψr(θ0, σ
2) and Z ∼ R ∈ R(P, ϵ, q). Then

{
E(Z |Z ̸= ⋆)− θ0

}2 ≤ σ2 ·
{
4

(
ϵ

q(1− ϵ)

)2

∧ log2/r
(
2 +

2ϵ

q(1− ϵ)

)}
.

Proof. Let κ := ϵ
q(1−ϵ) . By translation invariance, we may assume without loss of generality

that θ0 = 0 throughout the proof.
(a) Let µ be a measure on R such that P ≪ µ and let p := dP

dµ
, then by Proposition 2,

we have

dR

dµ⋆
(z) =

{
q(1− ϵ) · p(z) + ϵ ·m(z)p(z) if z ∈ R
1− q(1− ϵ)− ϵ

∫
Rm(x)p(x) dµ(x) if z = ⋆,

(61)

for some Borel measurable function m : R→ [0, 1]. Therefore,

∣∣E(Z |Z ̸= ⋆)
∣∣ = ∣∣q(1− ϵ) · ∫R xp(x) dµ(x) + ϵ ·

∫
R xm(x)p(x) dµ(x)

∣∣
q(1− ϵ) + ϵ

∫
Rm(x)p(x) dµ(x)

=
ϵ ·

∣∣EP{Xm(X)}
∣∣

q(1− ϵ) + ϵ · EP{m(X)} ≤
ϵ · σ ·

{
EP

(
mr/(r−1)(X)

)}1−1/r

q(1− ϵ) + ϵ · EP{m(X)} ,

where the second equality follows from the assumption that θ0 = 0, and where the inequality
follows from Hölder’s inequality and the fact that EP (|X|r)1/r ≤ σ. On the one hand, since{
EP

(
mr/(r−1)(X)

)}1−1/r ≤ 1 and EP{m(X)} ≥ 0, we have

ϵ ·
{
EP

(
mr/(r−1)(X)

)}1−1/r

q(1− ϵ) + ϵ · EP{m(X)} ≤ κ. (62)

On the other hand, since m(x) ∈ [0, 1], we have mr/(r−1)(x) ≤ m(x) for all x ∈ R and thus{
EP

(
mr/(r−1)(X)

)}1−1/r ≤
{
EP

(
m(X)

)}1−1/r
=: t. Therefore,

ϵ ·
{
EP

(
mr/(r−1)(X)

)}1−1/r

q(1− ϵ) + ϵ · EP{m(X)} ≤
ϵt

q(1− ϵ) + ϵtr/(r−1)

≤ sup
t′≥0

ϵt′

q(1− ϵ) + ϵ(t′)r/(r−1)

(i)
=
ϵ · {(r − 1)q(1− ϵ)/ϵ}1−1/r

q(1− ϵ) + (r − 1)q(1− ϵ)
≤ (r − 1)−1/rκ1/r ≤ κ1/r, (63)

where (i) follows from the fact that the function t′ 7→ ϵt′

q(1−ϵ)+ϵ(t′)r/(r−1) is maximised when

t′ = {(r − 1)q(1− ϵ)/ϵ}1−1/r. Combining (62) and (63), we deduce that

∣∣E(Z |Z ̸= ⋆)
∣∣ ≤ ϵ · σ ·

{
EP

(
mr/(r−1)(X)

)}1−1/r

q(1− ϵ) + ϵ · EP{m(X)} ≤ σ(κ ∧ κ1/r),
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as desired.
(b) Let Q ∈ P(R) such that Q ≪ P . By the variational characterisation of Kullback–

Leibler divergence (e.g. Boucheron, Lugosi and Massart, 2013, Corollary 4.15),

EX∼Q
(
g(X)

)
≤ KL(Q,P ) + logEX∼P

(
eg(X)

)
, (64)

for all Borel measurable functions g : R → [0,∞). Now take Q to be the conditional
distribution of Z given {Z ̸= ⋆}. Let µ and p be as in the proof of (a), so that (61) holds
for some Borel measurable function m : R→ [0, 1]. Therefore, for all x ∈ R,

dQ

dµ
(x) =

q(1− ϵ) · p(x) + ϵ ·m(x)p(x)

q(1− ϵ) + ϵ ·
∫
Rm(y)p(y) dµ(y)

.

Hence Q≪ P and

dQ

dP
(x) ∈

[
1− ϵ

q(1− ϵ) + ϵ
, 1 +

ϵ

q(1− ϵ)

]
, (65)

for all x ∈ R, from which we deduce that

KL(Q,P ) =

∫
R
log

(
dQ

dP

)
dQ ≤ log(1 + κ). (66)

Taking g(·) = | · |r/σr and combining (64) and (66) yields

E
(
|Z|r/σr

∣∣Z ̸= ⋆
)
≤ log(1 + κ) + logEX∼P

{
exp

(
|X|r/σr

)}
≤ log(1 + κ) + log 2 = log(2 + 2κ), (67)

where the second inequality follows since P ∈ Pψr(θ0, σ
2) and since θ0 = 0 by assumption.

Thus, ∣∣E(Z |Z ̸= ⋆)
∣∣ ≤ E

(
|Z|

∣∣Z ̸= ⋆
)
≤ E

(
|Z|r

∣∣Z ̸= ⋆
)1/r ≤ σ log1/r(2 + 2κ), (68)

where the second inequality follows from the conditional version of Jensen’s inequality and
the third inequality follows from (67). Moreover, by Götze, Sambale and Sinulis (2021,

Lemma A.2), we have VarX∼P (X)1/2 ≤ 2
(

2
re

)1/r
σ ≤ 2σ for r ≥ 1. Hence P ∈ PL2(0, 4σ2), so

we can apply part (a) of the theorem to obtain∣∣E(Z ∣∣Z ̸= ⋆
)∣∣ ≤ 2σκ. (69)

Combining (68) and (69) proves part (b).

Proof of Theorem 10. Let κ := ϵ
q(1−ϵ) .

(a) Let µ and p be as in the proof of Proposition 26(a), so that (61) holds for some Borel
measurable function m : R→ [0, 1]. On the one hand, since m(X) ∈ [0, 1], we have

Var(Z1 |Z1 ̸= ⋆) = Var(Z1 − θ0 |Z1 ̸= ⋆) ≤ E
{
(Z1 − θ0)2 |Z1 ̸= ⋆

}
=

∫
R(x− θ0)2{q(1− ϵ)p(x) + ϵm(x)p(x)} dµ(x)

q(1− ϵ) + ϵ
∫
Rm(x)p(x) dµ(x)
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≤ σ2 +
ϵ · EP{(X − θ0)2m(X)}
q(1− ϵ) + ϵ · EP{m(X)} ≤ (1 + κ)σ2. (70)

On the other hand, for r > 2, we have by Hölder’s inequality that

Var(Z1 |Z1 ̸= ⋆) ≤ σ2 +
ϵ · EP{(X − θ0)2m(X)}
q(1− ϵ) + ϵ · EP{m(X)} ≤

[
1 +

ϵ ·
{
EP

(
mr/(r−2)(X)

)}1−2/r

q(1− ϵ) + ϵ · EP{m(X)}

]
σ2

≤
[
1 +

ϵ ·
{
EP

(
m(X)

)}1−2/r

q(1− ϵ) + ϵ · EP{m(X)}

]
σ2 ≤ sup

t′≥0

(
1 +

ϵt′

q(1− ϵ) + ϵ(t′)r/(r−2)

)
σ2

=

{
1 +

2

r

(
r − 2

2

)1−2/r

· κ2/r
}
σ2 ≤

{
1 +

(
2

r

)2/r

κ2/r
}
σ2 ≤ (1 + κ2/r)σ2,

(71)

where the equality follows since the supremum is attained when t′ =
(
(r−2)q(1−ϵ)

2ϵ

)1−2/r
. Com-

bining (70) and (71) yields that for r ≥ 2,

Var(Z1 |Z1 ̸= ⋆) ≤ (1 + κ2/r)σ2. (72)

By Lemma 38(b), the event E0 := {|D| ≥ nq(1 − ϵ)/2} has P(E0) ≥ 1 − δ/2, since
nq(1− ϵ) ≥ 8 log(2/δ). Moreover, writing

E1 :=
{(
θ̂n − E(Z1|Z1 ̸= ⋆)

)2 ≤ 48e(1 + κ2/r)
σ2 log(2e/δ)

nq(1− ϵ)

}
,

we have by Lemma 48 and (72) that P
(
E1

∣∣ |D| = s
)
≥ 1− δ/2 for s ≥ nq(1− ϵ)/2, so

P(E0 ∩ E1) = E
{
P
(
E0 ∩ E1

∣∣ |D|)} =
n∑

s=⌈nq(1−ϵ)/2⌉

P
(
E1

∣∣ |D| = s
)
P(|D| = s)

≥
(
1− δ

2

) n∑
s=⌈nq(1−ϵ)/2⌉

P(|D| = s) =
(
1− δ

2

)
P(E0) ≥

(
1− δ

2

)2

≥ 1− δ. (73)

On the event E0 ∩ E1, we have by Proposition 26(a) that(
θ̂n − θ0

)2 ≤ 2
{
θ̂n − E(Z1 |Z1 ̸= ⋆)

}2
+ 2

{
E(Z1 |Z1 ̸= ⋆)− θ0

}2

≤ 96e · σ
2 log(2e/δ)

nq(1− ϵ) + 96eκ2/r · σ
2 log(2e/δ)

nq(1− ϵ) + 2σ2(κ2 ∧ κ2/r)

≤ 192e · σ
2 log(2e/δ)

nq(1− ϵ) + (12e+ 2)σ2(κ2 ∧ κ2/r),

where the final inequality follows by considering separately the cases κ ≤ 1 and κ > 1, and
in the second case noting that log(2e/δ)

nq(1−ϵ) ≤ 1/8 by assumption. Combining this with (73)
establishes the result.

(b) Let µ and p be as in the proof of Proposition 26(a), so that (61) holds for some Borel
measurable function m : R→ [0, 1]. Then, for integers ℓ ≥ 2, we have

{
E
(
|Z1 − θ0|ℓ |Z1 ̸= ⋆

)}1/ℓ
=

(∫
R |x− θ0|ℓ{q(1− ϵ)p(x) + ϵm(x)p(x)} dµ(x)

q(1− ϵ) + ϵ
∫
Rm(x)p(x) dµ(x)

)1/ℓ
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≤
({q(1− ϵ) + ϵ}EX∼P (|X − θ0|ℓ)

q(1− ϵ)

)1/ℓ (i)

≲
√
1 + κ · σℓ,

where (i) is true since X ∼ P ∈ Pψr(θ0, σ
2) ⊆ Pψ1(θ0, σ

2) by Lemma 39, so
(
EX∼P |X −

θ0|ℓ
)1/ℓ

≲ σℓ by Vershynin (2018, Proposition 2.7.1). Moreover, by the Cauchy–Schwarz

inequality and (70), E
(
|Z1 − θ0| |Z1 ̸= ⋆

)
≤

{
E
(
|Z1 − θ0|2 |Z1 ̸= ⋆

)}1/2
≲ σ
√
1 + κ. Hence,

by Vershynin (2018, Proposition 2.7.1) again, conditional on {Z1 ̸= ⋆}, we have ∥Z1−θ0∥ψ1 ≲
σ
√
1 + κ. Then, by Vershynin (2018, Lemma 2.7.10), we have, conditional on {Z1 ̸= ⋆}, that∥∥Z1 − E(Z1 |Z1 ̸= ⋆)

∥∥
ψ1

≲ σ
√
1 + κ. (74)

Recall the definition of the event E0 from the proof of (a), and observe that P(E0) ≥ 1 −
δ/4 by Lemma 38(b). Now, similarly to (73), by Bernstein’s inequality (Vershynin, 2018,

Corollary 2.8.3) and since log(8/δ)
nq(1−ϵ) ≤ 1/8, there exists a universal constant C2 > 0 such that

the event

E2 :=
{(∑

i∈D{Zi − E(Z1 |Z1 ̸= ⋆)}
|D|

)2

≤ C2(1 + κ)
σ2 log(8/δ)

nq(1− ϵ)

}
satisfies P(E0 ∩ E2) ≥ 1− δ/2. Moreover, on E0 ∩ E2, by Proposition 26(b),

(
θ̂n − θ0

)2
≲

(∑
i∈D{Zi − E(Z1 |Z1 ̸= ⋆)}

|D|

)2

+
{
E(Z1 |Z1 ̸= ⋆)− θ0

}2

≲ (1 + κ) · σ
2 log(8/δ)

nq(1− ϵ) + σ2κ2 ≲
σ2 log(8/δ)

nq(1− ϵ) + σ2

(
log(8/δ)

nq(1− ϵ)

)2

+ σ2κ2

≲
σ2 log(8/δ)

nq(1− ϵ) + σ2κ2, (75)

where the penultimate inequality follows from the inequality ab ≤ a2+b2

2
for a, b ∈ R, and the

final inequality follows from the assumption log(8/δ)
nq(1−ϵ) ≤ 1/8.

Next, let Q ∈ P(R) be such that Q ≪ P . Then the variational characterisation of
χ2-divergence (e.g., Polyanskiy and Wu, 2024, Example 7.4) yields that

2EX∼Q{g(X)} ≤ 1 + χ2(Q,P ) + EX∼P{g2(X)}, (76)

for all Borel measurable g : R→ [0,∞). We first consider the case r > 1. Now take Q to be
the conditional distribution of Z1 given {Z1 ̸= ⋆}, so that, by the representation in (65), we
have

χ2(Q,P ) =

∫
R

(
dQ

dP
− 1

)2

dP ≤ κ2.

Thus, taking g : x 7→ exp
{
λ(x− θ0)

}
in (76) and applying Lemma 40 yields that

2E
[
exp

{
λ(Z1 − θ0)

} ∣∣ Z1 ̸= ⋆
]
≤ 1 + κ2 + 2 exp

{
(2σλ)r/(r−1)

}
,

for all λ > 0. Hence, for s ∈ [n],

logE
{
exp

(
λ

|D|
∑
i∈D

(Zi − θ0)
) ∣∣∣∣ |D| = s

}
≤ s log

{
1

2

[
1 + κ2 + 2 exp

{(
2σλ

s

)r/(r−1)}]}
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≤ s

{
log(1 + κ2) + log 2 +

(
2σλ

s

)r/(r−1)}
, (77)

where the final inequality follows from the fact that log
(
a+b
2

)
≤ log a+ log b for all a, b ≥ 1.

Then, applying a Chernoff bound gives that for every t ≥ 0 and s ∈ [n],

P
(
θ̂n − θ0 ≥ t

∣∣ |D| = s
)
= P

(
1

|D|
∑
i∈D

(Zi − θ0) ≥ t

∣∣∣∣ |D| = s

)
≤ exp

(
−ψ∗(t)

)
,

where

ψ∗(t) := sup
λ>0

{
λt− s log(1 + κ2)− s log 2− (2σλ)r/(r−1)

s1/(r−1)

}
=

str

(2σ)r
·
(
r − 1

r

)r−1

· 1
r
− s log(2 + 2κ2) ≥ str

(2σ)r
· 1
er
− s log(2 + 2κ2),

since the supremum over λ ∈ (0,∞) is attained at λ∗ :=
(
r−1
r
· ts1/(r−1)

(2σ)r/(r−1)

)r−1
. By replacing

Zi − θ0 with −(Zi − θ0) for i ∈ [n], we deduce that for every t ≥ 0,

P
(
|θ̂n − θ0| ≥ t

∣∣ |D| = s
)
≤ 2 exp

{
− str

(2σ)r
· 1
er

+ s log(2 + 2κ2)

}
.

Hence, defining the event

E3 :=
{
(θ̂n − θ0)2 ≤

(
(2σ)rer log(8/δ)

nq(1− ϵ)/2 + (2σ)rer log(2 + 2κ2)

)2/r}
,

and proceeding in a similar fashion to (73), we deduce that P(E0 ∩ E3) ≥ 1− δ/2. Moreover,
on E0 ∩ E3, we have

(θ̂n − θ0)2 ≤
{
(2σ)rer log(8/δ)

nq(1− ϵ)/2 + (2σ)rer log(2 + 2κ2)

}2/r

≤
{
(2σ)rer

4
+ (2σ)rer log(2 + 2κ2)

}2/r

≤
{
3

2
· (2σ)rer log(2 + 2κ2)

}2/r

≤
{
3 · (2σ)rer log(2 + 2κ)

}2/r ≤ (9eσ)2 log2/r(2 + 2κ). (78)

Thus, on E0 ∩ E2 ∩ E3, which satisfies P(E0 ∩ E2 ∩ E3) ≥ 1 − δ, we combine (75) and (78) to
obtain the desired result for r > 1.

Finally, we consider the case where r = 1. By Zhivotovskiy (2024, Lemma 2.5), (76)
yields, with the same choice of Q and g, that

2E
[
exp

{
λ(Z1 − θ0)

} ∣∣ Z1 ̸= ⋆
]
≤ 1 + κ2 + exp

{
(2σλ)2

}
,

for all |λ| ≤ 1
2σ
. Hence, by a similar argument to the r > 1 case,

logE
{
exp

(
λ

|D|
∑
i∈D

(Zi − θ0)
) ∣∣∣∣ |D| = s

}
≤ s

{
log(1 + κ2) +

(
2σλ

s

)2}
, (79)
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for s ∈ [n] and |λ| ≤ s
2σ
. Then, applying a Chernoff bound yields

P
(
|θ̂n − θ0| ≥ t

∣∣ |D| = s
)
= P

(∣∣∣ 1

|D|
∑
i∈D

(Zi − θ0)
∣∣∣ ≥ t

∣∣∣∣ |D| = s

)
≤ 2 exp

(
−ψ∗(t)

)
,

where

ψ∗(t) := sup
0<λ≤ s

2σ

{
λt− s log(1 + κ2)− (2σλ)2

s

}
.

Taking t := 8σ log(2 + 2κ2) and λ = s/(2σ) yields, for s ≥ nq(1− ϵ)/2, that

P
(
|θ̂n − θ0| ≥ t

∣∣ |D| = s
)
≤ 2 exp

{
−3s log(2 + 2κ2) + s

}
≤ 2 exp(−s) ≤ δ

4
,

where the final inequality follows from the assumption nq(1 − ϵ) ≥ 8 log(8/δ). Therefore,

letting E4 :=
{
|θ̂n − θ0| < 8σ log(2 + 2κ2)

}
, we have P(E0 ∩ E4) ≥ 1 − δ/2. Moreover, on

E0 ∩ E4,

(θ̂n − θ0)2 < 64σ2 log2(2 + 2κ2) ≤ 256σ2 log2(2 + 2κ). (80)

Thus, on E0 ∩ E2 ∩ E4, which satisfies P(E0 ∩ E2 ∩ E4) ≥ 1 − δ, we combine (75) and (80) to
obtain the desired result for r = 1.

D.2.2 Proof of Theorem 11

For θ ∈ R and K > 0, define

Pb(θ,K) :=
{
P ∈ P(R) : EP (X) = θ, P is supported on an interval of length at most K

}
.

(81)

Proof of Theorem 11. (a) Define a := q(1−ϵ)
q(1−ϵ)+ϵ ∈ (0, 1] and b := σ

2
· a−1/r > 0. Let X1 ∼ P1

and X2 ∼ P2 be random variables satisfying

X1 =

{
−b with probability 1

a+1

b with probability a
a+1

and X2 =

{
−b with probability a

a+1

b with probability 1
a+1

.

Then θ1 := E(X1) = − (1−a)b
a+1

and θ2 := E(X2) =
(1−a)b
a+1

. Moreover,

E
(
|X1 − θ1|r

)
=

(2ab)r + a(2b)r

(a+ 1)r+1
≤ a · (2b)r = σr,

where we have used the fact that ar+a ≤ a(a+1) ≤ a(a+1)r+1; by symmetry, E
(
|X2−θ2|r

)
≤

σr. Consequently, P1 ∈ PLr(θ1, σ
2) and P2 ∈ PLr(θ2, σ

2). Now define R0 ∈ P(R⋆) by

R0({−b}) :=
q(1− ϵ)
a+ 1

=: R0({b}) and R0({⋆}) := 1−R0({−b})−R0({b}) ∈ [0, 1).
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By Proposition 2, R0 ∈ R(P1, ϵ, q)∩R(P2, ϵ, q). Therefore, by Ma, Verchand and Samworth
(2024, Theorem 4 and Lemma 5),

M(δ,PΘ, | · |2) ≥
(θ2 − θ1)2

4
=

{
(1− a)b
a+ 1

}2

=
σ2

4
·
(

ϵ

2q(1− ϵ) + ϵ

)2(
q(1− ϵ) + ϵ

q(1− ϵ)

)2/r

≥ σ2

36
·
{(

ϵ

q(1− ϵ)

)2

∧
(

ϵ

q(1− ϵ)

)2/r}
,

where the final bound is obtained by considering separately the cases ϵ ≤ q(1 − ϵ) and
ϵ > q(1− ϵ). This proves the second term in the lower bound.

For the first term in the lower bound, we observe that Pb(θ, σ) ⊆ PLr(θ, σ2) for all
r ≥ 2. We therefore obtain the desired conclusion by choosing the contamination distribution
Q ∈ P(R⋆) such that Q

(
{⋆}

)
= 1 and applying Proposition 46(b).

(b) Define P1, P2 ∈ P(R) with Lebesgue densities p1, p2 respectively as in Lemma 27, so
that P1 ∈ Pψr

(
EP1(X1), σ

2
)
and P2 ∈ Pψr

(
EP2(X2), σ

2
)
. Further, with b > 0 defined as in

Lemma 27, define R1 ∈ P(R⋆) through its Radon–Nikodym derivative

dR1

dλ⋆
(z) :=


q(1− ϵ) · p1(z) if z ∈ (−∞, b){
q(1− ϵ) + ϵ

}
· p1(z) if z ∈ [b,∞)

1− q(1− ϵ) ·
∫ b
−∞ p1(x) dx−

{
q(1− ϵ) + ϵ

}
·
∫∞
b
p1(x) dx if z = ⋆,

so that, by Proposition 2, R1 ∈ R(P1, ϵ, q) ∩ R(P2, ϵ, q). Therefore, by Ma, Verchand and
Samworth (2024, Theorem 4 and Lemma 5),

M(δ,PΘ, | · |2) ≥
{
EP2(X2)− EP1(X1)

}2

4
. (82)

Now, writing σ0 := σ/C0,

EP2(X2)− EP1(X1) =
ϵ

q(1− ϵ)

∫ ∞

b

xp1(x) dx−
ϵ

q(1− ϵ) + ϵ

∫ b

0

xp1(x) dx

(i)
=

ϵ

q(1− ϵ)

{
be−(b/σ0)r +

∫ ∞

b

e−(x/σ0)r dx

}
− ϵ

q(1− ϵ) + ϵ

{
−be−(b/σ0)r +

∫ b

0

e−(x/σ0)r dx

}
(ii)
=

(
ϵ

q(1− ϵ) +
ϵ

q(1− ϵ) + ϵ

)
· q(1− ϵ)
2q(1− ϵ) + ϵ

· σ0 log1/r
(
2 +

ϵ

q(1− ϵ)

)
+

ϵ

q(1− ϵ)

∫ ∞

b

e−(x/σ0)r dx− ϵ

q(1− ϵ) + ϵ

∫ b

0

e−(x/σ0)r dx, (83)

where (i) follows from integration by parts, (ii) follows by substituting the definition of b.
Now let h(t) := 1

t

∫ t
0
e−(x/σ0)r dx. Then

h′(t) =
te−(t/σ0)r −

∫ t
0
e−(x/σ0)r dx

t2
≤ 0,
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so h is a decreasing function.
First consider the case where ϵ

q(1−ϵ) ≥ e2
r − 2 or equivalently ϵ ≥ {exp(2r)−2}q

1+{exp(2r)−2}q , so that

log1/r
(
2 + ϵ

q(1−ϵ)

)
≥ 2 and

h(b) ≤ h(2σ0) =

∫ 2

0
e−x

r
dx

2
=

∫ 1

0
e−x

r
dx+

∫ 2

1
e−x

r
dx

2
≤ 1 + e−1

2
.

Hence, by (83),

EP2(X2)− EP1(X1) ≥
(

ϵ

q(1− ϵ) +
ϵ

q(1− ϵ) + ϵ

)
· q(1− ϵ)
2q(1− ϵ) + ϵ

· σ0 log1/r
(
2 +

ϵ

q(1− ϵ)

)
− ϵ

q(1− ϵ) + ϵ
· 1 + e−1

2
· σ0 log1/r

(
2 +

ϵ

q(1− ϵ)

)
=

1− e−1

2
· ϵ

q(1− ϵ) + ϵ
· σ0 log1/r

(
2 +

ϵ

q(1− ϵ)

)
≥ 1− e−1

8
· σ
C0

· log1/r
(
2 +

2ϵ

q(1− ϵ)

)
.

Therefore, by (82), when ϵ ≥ {exp(2r)−2}q
1+{exp(2r)−2}q ,

M(δ,PΘ, | · |2) ≳ σ2 log2/r
(
2 +

2ϵ

q(1− ϵ)

)
. (84)

Next consider the case where ϵ
q(1−ϵ) ≤ 1, or equivalently ϵ ≤ q/(1+ q). Define P3, P4 ∈ P(R)

by

P3

({
−σ
4

})
:=

q(1− ϵ)
2q(1− ϵ) + ϵ

=: P4

({
σ

4

})
, P3

({
σ

4

})
:=

q(1− ϵ) + ϵ

2q(1− ϵ) + ϵ
=: P4

({
−σ
4

})
.

Thus P3 ∈ Pψr

(
EP3(X3), σ

2
)
and P4 ∈ Pψr

(
EP4(X4), σ

2
)
. Further define R2 ∈ P(R⋆) by

R2

({
−σ
4

})
:=

q(1− ϵ){q(1− ϵ) + ϵ}
2q(1− ϵ) + ϵ

=: R2

({
σ

4

})
,

R2({⋆}) := 1− 2q(1− ϵ){q(1− ϵ) + ϵ}
2q(1− ϵ) + ϵ

.

By Proposition 2, R2 ∈ R(P3, ϵ, q)∩R(P4, ϵ, q). Therefore, by Ma, Verchand and Samworth
(2024, Theorem 4 and Lemma 5), when ϵ ≤ q

1+q
,

M(δ,PΘ, | · |2) ≥
{
EP3(X3)− EP4(X4)

}2

4
≥ σ2

16

(
ϵ

2q(1− ϵ) + ϵ

)2

≥ σ2

144

(
ϵ

q(1− ϵ)

)2

. (85)

Combining (84) and (85) yields that when ϵ ≤ q
1+q

or ϵ ≥ {exp(2r)−2}q
1+{exp(2r)−2}q ,

M(δ,PΘ, | · |2) ≳ σ2 ·
{(

ϵ

q(1− ϵ)

)2

∧ log2/r
(
2 +

2ϵ

q(1− ϵ)

)}
. (86)
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Further observe thatR(P, q
1+q

, q) ⊆ R(P, ϵ, q) for all P ∈ P(R) when ϵ > q
1+q

. Thus, by (86),

we deduce that when q
1+q

< ϵ < {exp(2r)−2}q
1+{exp(2r)−2}q ,

M(δ,PΘ, | · |2) ≳ σ2 ·
{( q

1+q

q(1− q
1+q

)

)2

∧ log2/r
(
2 +

2q
1+q

q(1− q
1+q

)

)}
= σ2 ≳ σ2 ·

{(
ϵ

q(1− ϵ)

)2

∧ log2/r
(
2 +

2ϵ

q(1− ϵ)

)}
, (87)

where the last inequality follows from the fact that when ϵ < {exp(2r)−2}q
1+{exp(2r)−2}q ,

log2/r
(
2 +

2ϵ

q(1− ϵ)

)
< log2/r

(
2 + 2(e2

r − 2)
)
≤ log2/r

(
e2

r+log 2
)
≤ (2 · 2r)2/r = 22/r · 2 ≤ 8.

Combining (86) and (87) yields the second term in the lower bound.
For the first term in the lower bound, we observe that Pb(θ, σ/2) ⊆ Pψr(θ, σ

2) for all
r ≥ 1. We therefore obtain the desired conclusion by choosing the contamination distribution
Q ∈ P(R⋆) such that Q

(
{⋆}

)
= 1 and applying Proposition 46(b).

Lemma 27. Let ϵ ∈ [0, 1), q ∈ (0, 1], σ > 0 and r ≥ 1. There exists a universal constant
C0 > 0 such that if X1 ∼ P1 ∈ P(R) and X2 ∼ P2 ∈ P(R) have Lebesgue densities p1 and p2
respectively, where p1(x) :=

rxr−1

(σ/C0)r
e−(C0x/σ)r1{x≥0} and

p2(x) :=

{
q(1−ϵ)
q(1−ϵ)+ϵ · p1(x) if x < b
q(1−ϵ)+ϵ
q(1−ϵ) · p1(x) if x ≥ b

with b :=
σ

C0

log1/r
(
2 +

ϵ

q(1− ϵ)

)
,

then ∥X1 − EX1∥ψr ∨ ∥X2 − EX2∥ψr ≤ σ.

Proof. Since P(|X1| ≥ x) = e−(C0x/σ)r for all x ≥ 0, we have by Vershynin (2018, Propo-
sition 2.7.1) that ∥Xr

1∥ψ1 ≤ C1(σ/C0)
r for some universal constant C1 > 0, so ∥X1∥ψr ≤

C
1/r
1 σ/C0 ≤ (C1 ∨ 1)σ/C0. Then, by Götze, Sambale and Sinulis (2021, Lemma A.3), we

have

∥X1 − EX1∥ψr ≤
{
1 +

(
2

(re)1/r log 2

)1/r}
(C1 ∨ 1)

σ

C0

≤ 4(C1 ∨ 1)
σ

C0

.

Turning to X2, first observe that p2 is a Lebesgue density, since∫
R
p2(x) dx =

q(1− ϵ)
q(1− ϵ) + ϵ

{1− e−(C0b/σ)r}+ q(1− ϵ) + ϵ

q(1− ϵ) e−(C0b/σ)r = 1.

Now, for x ≥ 0, we have

P(X2 − b ≥ x) =
q(1− ϵ) + ϵ

q(1− ϵ) · P(X1 ≥ b+ x) ≤ q(1− ϵ) + ϵ

q(1− ϵ) · e−(C0b/σ)r−(C0x/σ)r

=
q(1− ϵ) + ϵ

2q(1− ϵ) + ϵ
· e−(C0x/σ)r ≤ e−(C0x/σ)r .
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Define a := q(1−ϵ)
q(1−ϵ)+ϵ ∈ (0, 1], so that b = (σ/C0) log

1/r
(
1+a
a

)
. For x ∈ [0, b], we have

P(X2 − b ≤ −x) = a · P(X1 ≤ b− x) ≤ a ≤ 2a

1 + a
= 2e−(C0b/σ)r ≤ 2e−(C0x/σ)r .

For x > b, we have P(X2−b ≤ −x) = 0. Combining these inequalities, we obtain P(|X2−b| ≥
x) ≤ 3e−(C0x/σ)r for all x ≥ 0. Therefore, by Vershynin (2018, Proposition 2.7.1), we deduce7

that ∥(X2 − b)r∥ψ1 ≤ C2(σ/C0)
r for some universal constant C2 > 0, so

∥X2 − b∥ψr ≤ C
1/r
2

σ

C0

≤ (C2 ∨ 1)
σ

C0

.

By Götze, Sambale and Sinulis (2021, Lemma A.3) again, ∥X2 − EX2∥ψr ≤ 4(C2 ∨ 1)σ/C0.
Finally, taking C0 := 4C1 ∨ 4C2 ∨ 4 completes the proof.

D.2.3 Proof of Theorem 12

The following proposition, which is analogous to Proposition 26 in the univariate case, will
be used in the proof of Theorem 12.

Proposition 28. Let θ0 ∈ Rd, Σ ∈ Sd×d++ , ϵ ∈ [0, 1), δ ∈ (0, 1], π ∈ P
(
{∅, [d]}

)
and

q := π([d]).

(a) Let r ≥ 2, P ∈ Pd,Lr(θ0,Σ) and Z ∼ R ∈ R∅,[d](P, ϵ, π). Then∥∥E(Z |Z ∈ Rd)− θ0
∥∥2

2
≤ ∥Σ∥op

{(
ϵ

q(1− ϵ)

)2

∧
(

ϵ

q(1− ϵ)

)2/r}
.

(b) Let r ≥ 1, P ∈ Pd,ψr(θ0,Σ), and Z ∼ R ∈ R∅,[d](P, ϵ, π). Then∥∥E(Z |Z ∈ Rd)− θ0
∥∥2

2
≤ ∥Σ∥op

{
4

(
ϵ

q(1− ϵ)

)2

∧ log2/r
(
2 +

2ϵ

q(1− ϵ)

)}
.

Proof. Let κ := ϵ
q(1−ϵ) , X ∼ P , v ∈ Sd−1, Z(v) := v⊤Z ·1{Z∈Rd}+⋆ ·1{Z /∈Rd}, R

(v) := Law(Z(v))

and P (v) := Law(v⊤X). By Lemma 25, we have R(v) ∈ R(P (v), ϵ, q).
(a) Since P (v) ∈ PLr(v⊤θ0, v

⊤Σv) we have by Proposition 26(a) that∥∥E(Z |Z ∈ Rd)− θ0
∥∥2

2
= sup

v∈Sd−1

{
v⊤E(Z|Z ∈ Rd)− v⊤θ0

}2

= sup
v∈Sd−1

{
E(Z(v)|Z(v) ̸= ⋆)− v⊤θ0

}2

≤ sup
v∈Sd−1

v⊤Σv · (κ2 ∧ κ2/r)

= ∥Σ∥op(κ2 ∧ κ2/r),
as required.

(b) We now have P (v) ∈ Pψr(v
⊤θ0, v

⊤Σv), so the proof is the same as part (a), except
that we use Proposition 26(b) instead.

7Note that in Vershynin (2018, Proposition 2.7.1(a)), the condition is that P(|X| ≥ t) ≤ 2 exp(−t/K1)
for all t ≥ 0. However, the result is still true if we replace the factor 2 by 3. See for example, Vershynin
(2018, Proposition 2.5.2) for the proof strategy.
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Proof of Theorem 12. Let κ := ϵ
q(1−ϵ) .

(a) For v ∈ Sd−1, we have by the same argument as the proof of (72) that

Var(v⊤Z1 |Z1 ∈ Rd) ≤ (1 + κ2/r)v⊤Σv.

Therefore, writing Γ := Cov(Z1 |Z1 ∈ Rd) ∈ Sd×d+ , we have

∥Γ∥op ≤ (1 + κ2/r)∥Σ∥op and tr(Γ) ≤ (1 + κ2/r) tr(Σ). (88)

By Lemma 38(b), the event E0 := {|D| ≥ nq(1− ϵ)/2} has P(E0) ≥ 1− δ/2, since nq(1− ϵ) ≥
8 log(2/δ). Moreover, writing

E1 :=
{∥∥θ̂n − E(Z1 |Z1 ∈ Rd)

∥∥2

2
≤ C1 ·

tr(Γ) + ∥Γ∥op log(2/δ)
nq(1− ϵ)

}
,

we have by Depersin and Lecué (2022b, Theorem 2.1) that when C1 > 0 is a sufficiently large
universal constant, we have P

(
E1

∣∣ |D| = s
)
≥ 1−δ/2 for s ≥ nq(1−ϵ)/2, so P(E0∩E1) ≥ 1−δ.

On the event E0 ∩ E1, we have by (88) and Proposition 28(a) that

∥θ̂n − θ0∥22 ≤ 2
∥∥θ̂n − E(Z1 |Z1 ∈ Rd)

∥∥2

2
+ 2

∥∥E(Z1 |Z1 ∈ Rd)− θ0
∥∥2

2

≲
tr(Σ) + ∥Σ∥op log(2/δ)

nq(1− ϵ) +
r(Σ) + log(2/δ)

nq(1− ϵ) · ∥Σ∥opκ2/r + ∥Σ∥op(κ2 ∧ κ2/r)

≲
tr(Σ) + ∥Σ∥op log(2/δ)

nq(1− ϵ) + ∥Σ∥op(κ2 ∧ κ2/r),

where the final inequality follows by considering separately the cases κ ≤ 1 and κ > 1, and
in the second case noting that r(Σ) ≤ Cnq(1− ϵ) and log(2/δ) ≤ nq(1− ϵ)/C.

(b) For v ∈ Sd−1, we have by the same argument as in the proof of (74) that conditional
on {Z1 ∈ Rd}, ∥∥v⊤Z1 − E(v⊤Z1 |Z1 ∈ Rd)

∥∥
ψ1
≤

√
(1 + κ)v⊤Σv,

so that Z1 | {Z1 ∈ Rd} ∈ Pd,ψ1

(
E(v⊤Z1 |Z1 ∈ Rd), (1 + κ)Σ

)
. By Lemma 38(b), the event

E0 := {|D| ≥ nq(1− ϵ)/2} satisfies P(E0) ≥ 1− δ/4 since nq(1− ϵ) ≥ 8 log(8/δ). Moreover,
writing

E2 :=
{∥∥θ̂n − E(Z1 |Z1 ∈ Rd)

∥∥2

2
≤ 48(1 + κ) · tr(Σ) + ∥Σ∥op log(8/δ)

nq(1− ϵ)

}
,

we have by Lemma 42 (a consequence of the PAC–Bayes lemma) that P
(
E2

∣∣ |D| = s
)
≥

1−δ/4 for s ≥ nq(1−ϵ)/2, so P(E0∩E2) ≥ 1−δ/2. On E0∩E2, we have by Proposition 28(b)
that

∥θ̂n − θ0∥22 ≤ 2
∥∥θ̂n − E(Z1 |Z1 ∈ Rd)

∥∥2

2
+ 2

∥∥E(Z1 |Z1 ∈ Rd)− θ0
∥∥2

2

≲
tr(Σ) + ∥Σ∥op log(8/δ)

nq(1− ϵ) + ∥Σ∥opκ ·
r(Σ) + log(8/δ)

nq(1− ϵ) + ∥Σ∥opκ2

≲
tr(Σ) + ∥Σ∥op log(8/δ)

nq(1− ϵ) + ∥Σ∥opκ2, (89)
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where the final inequality follows by considering separately the cases κ ≤ 1 and κ > 1, and
in the second case noting that r(Σ) ≤ nq(1− ϵ) and log(8/δ) ≤ nq(1− ϵ)/8.

For the last term in the upper bound, we first consider the case where r > 1. For w ∈ Rd,
we have by the same argument as in the proof of (77) that

logE
{
exp

(
λw⊤(Z1 − θ0)

) ∣∣ Z1 ∈ Rd
}
≤ log(1 + κ2) + log 2 +

(
2λ
√
w⊤Σw

)r/(r−1)
, (90)

for all λ > 0. Let β := r(Σ), let µ denote the distribution of Nd(0, β
−1Σ) and for u ∈

Σ1/2Sd−1, let ρu denote the conditional distribution of Y given
{
∥Y −u∥2 ≤ 2∥Σ∥1/2op

}
, where

Y ∼ Nd(u, β
−1Σ). By Chebychev’s inequality,

P
(
∥Y − u∥2 ≥ 2∥Σ∥1/2op

)
≤ tr(Σ)

4β∥Σ∥op
=

1

4
.

Hence, by the third displayed equation of Zhivotovskiy (2024, p. 11), we have

KL(ρu, µ) = log

(
1

P
(
∥Y − u∥2 ≤ 2∥Σ∥1/2op

))+
β

2
≤ 2 log 2 +

r(Σ)

2
.

Fix u ∈ Σ1/2Sd−1, let v ∈ Rd be such that ∥v − u∥2 ≤ 2∥Σ∥1/2op , and for λ > 0, define

fλ : Rd × Rd → R by fλ(x, y) := λy⊤Σ−1/2(x − θ0). Then, since ∥v∥2 ≤ 3∥Σ∥1/2op , we have
by (90) that

logEZ∼R
(
efλ(Z,v)

∣∣ Z ∈ Rd
)
≤ log(2 + 2κ2) +

(
6λ∥Σ∥1/2op

)r/(r−1)
,

so Eξu∼ρu
{
logEZ∼R

(
efλ(Z,ξu)

∣∣ Z ∈ Rd
)}
≤ log(2 + 2κ2) +

(
6λ∥Σ∥1/2op

)r/(r−1)
. Therefore, for

s ≥ nq(1 − ϵ)/2, by the PAC–Bayes lemma (Lemma 41), conditional on |D| = s, we have
with probability at least 1− δ/4 that∥∥∥∥ 1

|D|
∑
i∈D

Zi − θ0
∥∥∥∥
2

= sup
u∈Σ1/2Sd−1

1

λ|D|
∑
i∈D

Eξu∼ρufλ(Zi, ξu)

≤ inf
λ>0

{
log(2 + 2κ2)

λ
+
(
6∥Σ∥1/2op

)r/(r−1)
λ1/(r−1) +

r(Σ)/2 + 2 log(4/δ)

sλ

}
(i)

≤ 12∥Σ∥1/2op

{
log(2 + 2κ2) +

r(Σ)/2 + 2 log(4/δ)

s

}1/r

(ii)

≤ 12∥Σ∥1/2op

{
log(2 + 2κ2) + 2

}1/r
≲ ∥Σ∥1/2op log1/r(2 + 2κ),

where (i) follows by choosing λ = 1

6∥Σ∥1/2op

{
log(2+2κ2)+ r(Σ)/2+2 log(4/δ)

s

}(r−1)/r
and (ii) follows

from the assumptions that nq(1 − ϵ) ≥ r(Σ) and δ ≥ 8 exp
(
−nq(1 − ϵ)/8

)
. Hence, there

exists a universal constant C1 > 0 such that the event

E3 :=
{∥∥∥∥ 1

|D|
∑
i∈D

Zi − θ0
∥∥∥∥2

2

≤ C1∥Σ∥op log2/r(2 + 2κ)

}
, (91)
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satisfies P(E0 ∩E3) ≥ 1− δ/2. Thus, on the event E0 ∩E2 ∩E3, which has probability at least
1− δ, we combine (89) and (91) to obtain the desired result for r > 1.

Finally, we consider the case where r = 1. For w ∈ Rd, we have by the same argument
as the proof of (79) that

logE
{
exp

(
λw⊤(Z1 − θ0)

) ∣∣Z1 ∈ Rd
}
≤ log(1 + κ2) + log 2 +

(
2λ
√
w⊤Σw

)2
,

for |λ| ≤ 1
2
∥Σ∥−1/2

op ≤ 1

2
√
w⊤Σw

. Hence, for s ≥ nq(1 − ϵ)/2, by following the same proof as

the r > 1 case above, we deduce that, conditional on |D| = s, we have with probability at
least 1− δ/4 that∥∥∥∥ 1

|D|
∑
i∈D

Zi − θ0
∥∥∥∥
2

≤ inf
λ∈(0, 1

2
∥Σ∥−1/2

op ]

{
log(2 + 2κ2)

λ
+
(
6∥Σ∥1/2op

)2
λ+

r(Σ)/2 + 2 log(4/δ)

sλ

}
(i)

≤ 2∥Σ∥1/2op

{
log(2 + 2κ2) + 9 +

r(Σ)/2 + 2 log(4/δ)

s

}
(ii)

≤ 2∥Σ∥1/2op

{
log(2 + 2κ2) + 11

}
≲ ∥Σ∥1/2op log(2 + 2κ),

where (i) follows by choosing λ = 1
2
∥Σ∥−1/2

op , and (ii) follows from the assumptions that
nq(1 − ϵ) ≥ r(Σ) and δ ≥ 8 exp

(
−nq(1 − ϵ)/8

)
. Hence, there exists a universal constant

C2 > 0 such that the event

E4 :=
{∥∥∥∥ 1

|D|
∑
i∈D

Zi − θ0
∥∥∥∥2

2

≤ C2∥Σ∥op log2(2 + 2κ)

}
, (92)

satisfies P(E0 ∩E4) ≥ 1− δ/2. Thus, on the event E0 ∩E2 ∩E4, which has probability at least
1− δ, we combine (89) and (92) to obtain the desired result for r = 1.

E Proofs from Section 5

E.1 Proof of Lemma 13

Proof of Lemma 13. (a) Let (vm) be a sequence in Sd−1 with

P
(
|X⊤

1 vm| > γ
)
↘ inf

v∈Sd−1
P
(
|X⊤

1 v| > γ
)

as m → ∞. Then by compactness of Sd−1, there exists a subsequence (vmk
), as well as

v∗ ∈ Sd−1, for which vmk
→ v∗ as k → ∞. But then |X⊤

1 vmk
| d→ |X⊤

1 v∗| as k → ∞, so by,
e.g., van der Vaart (1998, Lemma 2.2),

P
(
|X⊤

1 v∗| > γ
)
≤ lim inf

k→∞
P
(
|X⊤

1 vmk
| > γ

)
= inf

v∈Sd−1
P
(
|X⊤

1 v| > γ
)
.

It follows that the infimum in the definition of β is attained.
If β = 0 for all γ > 0, then for every γ > 0 we can find v∗(γ) ∈ Sd−1 with P

(
|X⊤

1 v∗(γ)| >
γ
)
= 0. Writing vm := v∗(1/m), there exist integers 1 ≤ m1 < m2 < . . . and v∗∗ ∈ Sd−1 with
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vmk
→ v∗∗ as k → ∞. Since |X⊤

1 vmk
| − 1/mk

d→ |X⊤
1 v∗∗| as k → ∞ we have by van der

Vaart (1998, Lemma 2.2) again that

P
(
|X⊤

1 v∗∗| > 0
)
≤ lim inf

k→∞
P
(
|X⊤

1 vmk
| > 1

mk

)
= 0.

But then, defining the hyperplane H := {x ∈ Rd : x⊤v∗∗ = 0}, we have P (H) = 1.

(b) The claim is equivalent to showing that there exists a universal constant c > 0 such

that if d+log(1/δ)
n

≤ cβ2, then, with probability at least 1− δ,

sup
v∈Sd−1

− 1

n

n∑
i=1

1{|X⊤
i v|>γ} ≤ −2β.

To establish this, let H := {x 7→ −1{|x⊤v|>γ} : v ∈ Sd−1}. Then

sup
v∈Sd−1

− 1

n

n∑
i=1

1{|X⊤
i v|>γ} + 3β ≤ sup

v∈Sd−1

1

n

n∑
i=1

{
−1{|X⊤

i v|>γ} + P(|X⊤
i v| > γ)

}
= sup

h∈H

1

n

n∑
i=1

{
h(Xi)− Eh(Xi)

}
=: V, (93)

where the first inequality follows since P(|X⊤
i v| > γ) ≥ 3β for all v ∈ Sd−1. By the bounded

differences inequality (e.g., Boucheron, Lugosi and Massart, 2013, Theorem 6.2), with prob-
ability at least 1− δ,

V ≤ E(V ) +

√
log(1/δ)

2n
. (94)

For a collectionH1 of binary-valued functions, we write VC(H1) for its Vapnik–Chervonenkis
dimension. For v ∈ Rd and b ∈ R, define gv,b : Rd → R by gv,b(x) := x⊤v + b, and define the
vector space G := {gv,b : v ∈ Rd, b ∈ R}. Now let H′ := {x 7→ −1{g(x)>0} : g ∈ G}, which by
Wainwright (2019, Proposition 4.20) satisfies VC(H′) ≤ dim(G) = d+ 1. Then

H =
{
x 7→ −1{gv,−γ(x)>0}∪{g−v,−γ(x)>0} : v ∈ Sd−1

}
⊆

{
x 7→ −1{g1(x)>0}∪{g2(x)>0} : g1, g2 ∈ G

}
.

Hence, by Blumer et al. (1989, Lemma 3.2.3), we have VC(H) ≤ 4 log2(6)VC(H′) ≤ 11d+11.
We deduce by Vershynin (2018, Theorem 8.3.23) that there exists a universal constant C1 > 0

such that E(V ) ≤ C1

√
d+1
n
. Thus, by (93) and (94) we conclude that there exists a universal

constant C2 > 0 such that with probability at least 1− δ,

sup
v∈Sd−1

− 1

n

n∑
i=1

1{|X⊤
i v|>γ} + 3β ≤ E(V ) +

√
log(1/δ)

2n
≤ C2

√
d+ log(1/δ)

n
≤ β,

where the final inequality follows by choosing c := 1/C2
2 and using the assumption that

d+log(1/δ)
n

≤ cβ2. This proves the claim.
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E.2 Proof of Theorem 14

We begin with some preliminary lemmas.

Lemma 29. Consider the setting of Theorem 14. There exists a universal constant C >
0 such that for δ ∈ (0, 1], we have with probability at least 1 − δ conditional on X1 =
x1, . . . , Xn = xn that

sup
θ∈Rd

dsymK (R̂n,θ, Rn,θ) ≤ C

√
d+ log(1/δ)

n
.

Proof. First define

V := sup
θ∈Rd

dsymK (R̂n,θ, Rn,θ) = sup
θ∈Rd

sup
A∈Asym

∣∣∣∣ 1n
n∑
i=1

1{Zi−x⊤i θ∈A} −
1

n

n∑
i=1

R̃i,θ(A)

∣∣∣∣.
Then, by the bounded differences inequality (e.g., Boucheron, Lugosi and Massart, 2013,
Theorem 6.2), with probability at least 1− δ,

V ≤ E(V ) +

√
log(1/δ)

2n
. (95)

Now define

G :=
{
g : Rd × R⋆ → R s.t. g(x, z) = (z−x⊤θ−t)1{z ̸=⋆} + 1{z=⋆} for some θ ∈ Rd, t ∈ R

}
,

and define H+ :=
{
(x, z) 7→ 1{g(x,z)≤0} : g ∈ G

}
and H− :=

{
(x, z) 7→ 1{g(x,z)≤0} : g ∈ −G

}
.

Then

V = sup
h∈H+∪H−

∣∣∣∣ 1n
n∑
i=1

{
h(xi, Zi)− Eh(xi, Zi)

}∣∣∣∣.
Since G is a vector space of functions with dim(G) = d + 1, by Mohri, Rostamizadeh and
Talwalkar (2018, Exercise 3.24(b)) and Wainwright (2019, Proposition 4.20), we deduce that
VC(H+ ∪H−) ≤ VC(H+) +VC(H−) + 1 ≤ 2 dim(G) + 1 ≤ 2d+3. Therefore, applying Ver-

shynin (2018, Theorem 8.3.23) yields that E(V ) ≤ C ′
√

2d+3
n

for some universal constant

C ′ > 0. Combining this with (95) proves the desired result.

Lemma 30. Consider the setting of Theorem 14, and assume that θ ̸= θ0. Then, writing
a := 1

2
∥θ0 − θ∥2 > 0 and b := 1

2
log

(
1 + 4(1−βq(1−ϵ))

βq(1−ϵ)

)
, we have

dsymK

(
Rn,θ,RLin

0

)
≥ βq(1− ϵ)Φ

(
aγ

σ
− 2σb

aγ

)
− Φ

(
−aγ
σ
− 2σb

aγ

)
=: fK,b(a),

where fK,b : (0,∞)→ (0,∞) is strictly increasing and continuous.
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Proof. By Assumption 1, we may assume without loss of generality that there exists T+ ⊆ [n]
such that |T+| ≥ βn and −x⊤i (θ0 − θ) ≥ 2aγ. By Proposition 2, for i ∈ T+ and t ∈ R, we
have

R̃i,θ

(
(−∞, t]

)
≥ q(1− ϵ)Φ(0,σ)

(
t− x⊤i (θ0 − θ)

)
≥ q(1− ϵ)Φ(0,σ)(t+ 2aγ)

= q(1− ϵ)Φ(−2aγ,σ)(t).

Moreover, by Proposition 2 again for R0 ∈ RLin
0 and t ∈ R, we have R0

(
(−∞, t]

)
≤ Φ(0,σ)(t).

Therefore,

dsymK

(
Rn,θ,RLin

0

)
≥ inf

R0∈RLin
0

sup
t∈R

{
1

n

n∑
i=1

R̃i,θ

(
(−∞, t]

)
−R0

(
(−∞, t]

)}
≥ inf

R0∈RLin
0

sup
t∈R

{
1

n

∑
i∈T+

R̃i,θ

(
(−∞, t]

)
−R0

(
(−∞, t]

)}
≥ sup

t∈R

{
βq(1− ϵ)Φ(−2aγ,σ)(t)− Φ(0,σ)(t)

}
≥ βq(1− ϵ)Φ

(
aγ

σ
− 2σb

aγ

)
− Φ

(
−aγ
σ
− 2σb

aγ

)
= fK,b(a),

where the final inequality follows by choosing t = −2σ2b
aγ
−aγ. The function fK,b is continuous

as a composition of continuous functions, and the fact that it is strictly increasing follows
as in the proof of Lemma 24, setting (ϵ, q) therein as (ϵ, q), with ϵ := 1 − βq(1 − ϵ) and
q := 1.

Proof of Theorem 14. Let δ ∈ (0, 1] and for the universal constant C > 0 from Lemma 29,
define the event

E :=

{
sup
θ∈Rd

dsymK (R̂n,θ, Rn,θ) ≤ C

√
d+ log(1/δ)

n

}
.

By Lemma 29, satisfies P(E |X1 = x1, . . . , Xn = xn) ≥ 1− δ, and from now on, we will work
on the event E . Recalling that Rn,θ0 ∈ RLin

0 , we have

dsymK (R̂n,θ0 ,RLin
0 ) ≤ dsymK (R̂n,θ0 , Rn,θ0) ≤ C

√
d+ log(1/δ)

n
.

Moreover, if θ ∈ Rd satisfies dsymK (Rn,θ,RLin
0 ) > 2C

√
d+log(1/δ)

n
, then

dsymK (R̂n,θ,RLin
0 ) ≥ dsymK (Rn,θ,RLin

0 )− dsymK (R̂n,θ, Rn,θ)

> C

√
d+ log(1/δ)

n
≥ dsymK (R̂n,θ0 ,RLin

0 ),

so θ̂Kn ̸= θ. Therefore, with b and fK,b as defined in Lemma 30, we deduce that

∥θ̂Kn − θ0∥2 ≤ sup

{
∥θ − θ0∥2 : θ ∈ Rd, dsymK (Rn,θ,RLin

0 ) ≤ 2C

√
d+ log(1/δ)

n

}

71



≤ 2 inf

{
a > 0 : βq(1− ϵ)Φ

(
aγ

σ
− 2σb

aγ

)
− Φ

(
−aγ
σ
− 2σb

aγ

)
≥ 2C

√
d+ log(1/δ)

n

}
, (96)

where the second inequality follows since by Lemma 30, dsymK (Rn,θ,RLin
0 ) ≥ fK,b

(∥θ−θ0∥2
2

)
and

fK,b is a strictly increasing and continuous function. Letting a = 6σb
γ
√
logn

, we have by our

assumption on b that 2σb/(aγ)− aγ/σ =
√
log n/3− 6b/

√
log n > 0, so

βq(1− ϵ)Φ
(
aγ

σ
− 2σb

aγ

)
− Φ

(
−aγ
σ
− 2σb

aγ

)
(i)

≥ βq(1− ϵ)(
−aγ

σ
+ 2σb

aγ

)
+
(
−aγ

σ
+ 2σb

aγ

)−1 · ϕ
(
−aγ
σ

+
2σb

aγ

)
− 1

aγ
σ
+ 2σb

aγ

· ϕ
(
aγ

σ
+

2σb

aγ

)
(ii)

≥
(
aγ

σ
+

2σb

aγ

)−1
1√
2π

{
βq(1− ϵ) exp

(
−a

2γ2

2σ2
− 2σ2b2

a2γ2
+ 2b

)
− exp

(
−a

2γ2

2σ2
− 2σ2b2

a2γ2
− 2b

)}
(iii)

≥
(
aγ

σ
+

2σb

aγ

)−1
3

2
√
2π
· exp

(
−a

2γ2

2σ2
− 2σ2b2

a2γ2

)
(iv)

≥ 1√
log n

· n−5/72
(v)

≥ 2C

√
d+ log(1/δ)

n

where (i) follows from the Mills ratio bound ϕ(x)/(x + x−1) ≤ Φ(−x) ≤ ϕ(x)/x for x > 0;

(ii) follows since 1
2
≤ b ≤ logn

36
implies

(
−aγ

σ
+ 2σb

aγ

)
+
(
−aγ

σ
+ 2σb

aγ

)−1 ≤ aγ
σ
+ 2σb

aγ
; (iii) follows

by substituting the definition of b and using the fact that βq(1− ϵ) ≤ 1/2; (iv) follows since

b ≤ logn
36

implies aγ
σ
≤ σb

aγ
; and (v) follows from the assumption that n31/36

logn
≥ C1

{
d+log(1/δ)

}
and taking C1 := 4C2. Therefore, with probability at least 1− δ, we have

∥θ̂Kn − θ0∥22 ≤
144σ2b2

γ2 log n
≤

36σ2 log2
(
1 + 4(1−βq(1−ϵ))

βq(1−ϵ)

)
γ2 log

(
nq(1− ϵ)

) ,

as required.

F Auxiliary lemmas

If Z is a topological space, then we define the embedding ϕZ : Cb(Z) → M(Z)∗ by
ϕZ(f)(µ) := µ(f). If Z is a locally compact Hausdorff space, then a Borel measure µ on Z is
regular if µ(E) = inf{µ(U) : U ⊇ E,U open} and µ(E) = sup{µ(K) : K ⊆ E,K compact}
for every Borel subset E of Z.

Lemma 31. Let Z be a locally compact Hausdorff space in which every open set is σ-compact.
Then ϕZ embeds Cb(Z) into a subspace ofM(Z)∗ that separates points.
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Proof. If f, g ∈ Cb(Z) and λ1, λ2 ∈ R, then ϕZ(λ1f + λ2g) = λ1ϕZ(f) + λ2ϕZ(g), so ϕZ
embeds Cb(Z) into a subspace ofM(Z)∗.

Let µ and µ′ be two distinct measures inM(Z) and define ν := µ− µ′ ∈M(Z). By the
the Jordan decomposition theorem (Folland, 1999, Theorem 3.3), we can write ν = ν+ − ν−
where ν+, ν− ∈ M+(Z) are supported on disjoint measurable sets P,N ⊆ Z respectively.
Since ν ̸= 0, there exists a Borel set B ⊆ Z and ϵ > 0 such that either ν+(B ∩ P ) ≥ ϵ
or ν−(B ∩ N) ≥ ϵ. Without loss of generality, we assume the former. By Folland (1999,
Theorem 7.8), ν+ and ν− are regular measures, so there exists a compact set K ⊆ Z and
an open set U ⊆ Z such that K ⊆ B ∩ P ⊆ U and ν+(U \ K) + ν−(U \ K) ≤ ϵ/2. By
Urysohn’s lemma for locally compact Hausdorff spaces (Folland, 1999, Lemma 4.32), there
exists a continuous function f : Z → [0, 1] such that f(K) = {1}, f(U c) = {0}. Observe
that

ν(f) ≥ ν+(K)− ν−(U \ P ) ≥ ν+(B ∩ P )−
(
ν+(U \K) + ν−(U \K)

)
≥ ϵ/2.

Consequently, f ∈ Cb(Z) separates µ and µ′ as desired.

If (X, τ) and (Y, σ) are topological spaces, we write τ ⊗ σ for the product topology on
the Cartesian product X × Y , i.e. τ ⊗ σ is the coarsest topology for which the projections
(x, y) 7→ x and (x, y) 7→ y are continuous.

Lemma 32. If X and Y are real vector spaces and X ′ and Y ′ are subspaces of X∗ and Y ∗,
then the map ι : X ′×Y ′ → (X ×Y )∗ given by ι(f, g)(x, y) := f(x)+ g(y) embeds X ′×Y ′ as
a subspace of (X×Y )∗. Furthermore, if τ(X;X ′), τ(Y ;Y ′) and τ

(
X×Y ; ι(X ′×Y ′)

)
denote

the weak topologies generated by X ′, Y ′ and ι(X ′ × Y ′) on X, Y and X × Y respectively,
then τ(X;X ′)⊗ τ(Y ;Y ′) = τ

(
X × Y ; ι(X ′ × Y ′)

)
.

Proof. To check that ι embeds X ′ × Y ′ as a subspace of (X × Y )∗, we only need to verify
the bilinearity of the map ((x, y), (f, g)) 7→ f(x) + g(y) on (X × Y ) × (X ′ × Y ′), which is
true since X, Y,X ′, Y ′ are vector spaces and (X,X ′), (Y, Y ′) are dual pairs.

For the second claim, let πX : X × Y → X and πY : X × Y → Y be projection maps
defined by πX(x, y) := x and πY (x, y) := y. By the definition of the product topology,
τ(X;X ′) ⊗ τ(Y ;Y ′) is the coarsest topology on X × Y under which both πX and πY are
continuous. Also, τ

(
X × Y ; ι(X ′ × Y ′)

)
is the coarsest topology on X × Y under which

ι(f, g) is continuous for all f ∈ X ′ and g ∈ Y ′. Hence the desired result is equivalent to the
statement that for any topology T on X×Y , the functions πX : (X×Y, T )→ (X, τ(X;X ′))
and πY : (X × Y, T ) → (Y, τ(Y ;Y ′)) are continuous if and only if ι(f, g) : (X × Y, T ) → R
is continuous for all (f, g) ∈ X ′ × Y ′.

The ‘only if’ direction is true since for any (f, g) ∈ X ′×Y ′, ι(f, g) = f ◦πX+g ◦πY is the
sum of compositions of continuous functions, and hence continuous. For the ‘if’ direction, we
assume that ι(f, g) is continuous for all (f, g) ∈ X ′×Y ′; by symmetry we only need to check
that πX is continuous. Taking g to be the zero map, we have ι(f, 0)(x, y) = f(πX(x, y)), so
f ◦ πX is continuous for every f . Open sets in (X, τ(X;X ′)) are unions of sets in {f−1(U) :
f ∈ X ′, U open in R}. Since f ◦ πX is continuous, we have

π−1
X

(
f−1(U)

)
= (f ◦ πX)−1(U)

is open for every f ∈ X ′ and U open in R. Therefore, πX is continuous as desired, and this
establishes the lemma.
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Lemma 33. Let X, Y, Z be topological spaces and equip Y × Z with the product topology.
Then f : X → Y and g : X → Z are continuous if and only if h : x 7→

(
f(x), g(x)

)
is a

continuous function from X to Y × Z.

Proof. By definition of the product topology, the projection maps πY : Y × Z → Y and
πZ : Y × Z → Z defined by πY (y, z) := y and πZ(y, z) := z are continuous. This proves
the ‘if’ direction since f = πY ◦ h and g = πZ ◦ h. For the ‘only if’ direction, we observe
that open sets in Y × Z are unions of sets of the form U × V for U open in Y and V open
in Z. Since f and g are continuous, h−1(U × V ) = f−1(U) ∩ g−1(V ) is open in X, so h is
continuous as desired.

Recall that if A1 and A2 are sets, then the disjoint union of A1 and A2 is defined by
A1 ⊔ A2 := {(a, 1) : a ∈ A1} ∪ {(a, 2) : a ∈ A2}. Moreover, if (A1, τ1) and (A2, τ2) are
topological spaces, then A1 ⊔ A2 can be endowed with the disjoint union topology, given by{
(U1×{1})∪(U2×{2}) : U1 ∈ τ1, U2 ∈ τ2

}
. In the special case where A1 and A2 are disjoint

subsets of a topological space (X , τ), the second argument of elements in A1 ⊔ A2 becomes
redundant, so we can identify A1 ⊔ A2 with A1 ∪ A2, and we may write the disjoint union
topology simply as {U1 ∪ U2 : U1 ∈ A1 ∩ τ, U2 ∈ A2 ∩ τ}.

Lemma 34. Let Z1, . . . ,Zd be topological spaces, and let Z :=
∏d

j=1Zj be the product space
equipped with the product topology. Let S ⊆ [d] be non-empty and let ZS :=

∏
j∈S Zj be the

product space equipped with the product topology.

(a) If U ⊆ Z is open, then the set US := {xS : x ∈ U} is open in ZS.

(b) If K ⊆ Z is compact, then the set KS := {xS : x ∈ K} is compact in ZS.

Proof. (a) We can write U =
⋃
i∈I U

(i) for some index set I, where U (i) =
∏d

j=1 U
(i)
j and U

(i)
j

is open in Zj for all i ∈ I, j ∈ [d]. Hence US =
⋃
i∈I U

(i)
S where U

(i)
S =

∏
j∈S U

(i)
j , so US is

open in ZS.

(b) For any open cover {U (i)
S }i∈I of KS, define U

(i) := {x ∈ Z : xS ∈ U (i)
S } for i ∈ I. Note

that U (i) is open in Z for i ∈ I, as it is the pre-image of an open set under a projection
map (which is continuous, by definition of the product topology). Thus, {U (i)}i∈I is an open

cover of K, which has a finite subcover I0 ⊆ I since K is compact. Therefore, {U (i)
S }i∈I0 is

also a finite subcover of KS, so KS is compact in ZS.

Lemma 35. Let X1 and X2 be topological spaces.

(a) If X1 and X2 are Hausdorff, then X1×X2 is Hausdorff in the product topology and X1⊔X2

is Hausdorff in the disjoint union topology.

(b) If X1 and X2 are locally compact, then X ×X2 is locally compact in the product topology
and X1 ⊔ X2 is locally compact in the disjoint union topology.

Proof. (a) The first statement follows from Munkres (2014, Theorem 19.4). For the second
statement, let (x1, j1), (x2, j2) ∈ X1 ⊔X2 be distinct, where j1, j2 ∈ {1, 2}, and for ℓ ∈ {1, 2},
we have xℓ ∈ Xℓ. If j1 = j2, then the result follows from the fact that X and X2 are Hausdorff.
Otherwise, we can separate the two points using the open sets X1 × {1} and X2 × {2}.
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(b) For the first statement, if x1 ∈ X1 and x2 ∈ X2, then we can find compact neighbourhoods
Kj ⊆ Xj of xj for j ∈ {1, 2}. Then by Tychonov’s theorem (Munkres, 2014, Theorem 37.3),
K1×K2 is a compact neighbourhood of (x1, x2). For the second statement, if (x, j) ∈ X1⊔X2,
then we can find a compact subset K ⊆ Xj containing x. Then K ×{j} is a compact subset
of X1 ⊔ X2 containing (x, j).

Lemma 36. Let X1, . . . ,Xd be locally compact Hausdorff spaces, and let X :=
∏d

j=1Xj.
Then X , X⋆ and X × 2[d] are locally compact Hausdorff spaces. Moreover, if every open set
in X is σ-compact, then X⋆ and X × 2[d] also have this property.

Proof. The fact that X is a locally compact Hausdorff space follows from Lemma 35. More-
over, the singleton space {⋆} as well as the space 2[d] endowed with the discrete topology are
both locally compact Hausdorff spaces. We observe that X , X⋆ and X ×2[d] can be generated
from X1, . . . ,Xd, {⋆}, 2[d] via a combination of product space and disjoint union operations.
Hence the first result follows from Lemma 35.

To check that every open set in X⋆ =
⊔
S∈2[d] X (S) is σ-compact, observe that for any

open set U ⊆ X⋆, we can write U =
⋃
S⊆[d] U

(S) where U (S) := U ∩X (S). Therefore, it suffices

to show that for every S ⊆ [d], any open set U ⊆ X (S) is σ-compact. Let US := {aS : a ∈ U}
and let V := {x ∈ X : xS ∈ US}. Then V is open in X since it is the pre-image of a
projection of an open set, so we can write V =

⋃∞
i=1K(i), where K(i) is compact in X for

each i. Moreover, US =
⋃∞
i=1K(i)S, and K(i)S is compact in XS by Lemma 34(b). We

claim that K(i)(S) := {z ∈ X⋆ : zS ∈ K(i)S, zj = ⋆ ∀j /∈ S} is compact. To see this,
consider any open cover {U(j)}j∈J of K(i)(S), where, without loss of generality, we assume
that U(j) ⊆ X (S) for all j ∈ J . Writing U(j)S := {aS : a ∈ U(j)} for j ∈ J , we have by
Lemma 34(a) that {U(j)S}j∈J forms an open cover of K(i)S. We can therefore find a finite
subcover {U(j)S}j∈J0 of K(i)S, so that {U(j)}j∈J0 forms a finite subcover of K(i)(S). We
deduce that U =

⋃∞
i=1K(i)(S) is a countable union of compact sets.

To show that every open set in X × 2[d] is σ-compact, observe that since 2[d] is finite,
any open set in X × 2[d] is of the form

⋃
S⊆[d]

{
U(S)× S

}
, where U(S) is open in X . Since

each U(S) is σ-compact and S is finite (hence compact), it follows that each set U(S) × S
is σ-compact, and hence

⋃
S⊆[d]

{
U(S)× S

}
is σ-compact.

Lemma 37. If (X1, τ1), . . . , (Xd, τd) are Polish spaces, then the Cartesian product space
X⋆ :=

∏d
j=1Xj,⋆ equipped with the product topology is also a Polish space.

Proof. A finite (or even countable) Cartesian product of Polish spaces is Polish (Kechris,
2012, Proposition 3.3), so it suffices to show that (Xj,⋆, τj,⋆) is Polish for each j ∈ [d], where
τj,⋆ := τj ∪ {A ∪ {⋆} : A ∈ τj}. Now fix j ∈ [d], and find a countable dense subset {xn}∞n=1

of Xj. Then {⋆} ∪ {xn}∞n=1 is a countable dense subset of Xj,⋆, so Xj,⋆ is separable. Now
find a metric d on Xj such that d generates the topology τj and (Xj, d) is complete. Define
the standard bounded metric d by d(x, y) := d(x, y) ∧ 1 for x, y ∈ Xj. Then, by Munkres
(2014, Theorem 20.1), d also generates the topology τj. Define a metric d′ on Xj,⋆ by
d′(x, y) := d(x, y) for x, y ∈ Xj, d′(x, ⋆) := 2 for x ∈ Xj, and d′(⋆, ⋆) := 0. Letting τ ′j,⋆ denote
the topology on Xj,⋆ generated by d′, we first show that τ ′j,⋆ = τj,⋆. On the one hand, since
{⋆} ∈ τ ′j,⋆ and τj ⊆ τ ′j,⋆, we have τj,⋆ ⊆ τ ′j,⋆. On the other hand, if x0 ∈ Xj,⋆, r ≥ 0 and
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A := {x ∈ Xj,⋆ : d′(x, x0) < r} denotes an open ball in τ ′j,⋆, then

A =


Xj,⋆ if r > 2
{x ∈ Xj : d(x, x0) < r} if r ≤ 2 and x0 ∈ Xj
{⋆} if r ≤ 2 and x0 = ⋆.

We deduce that A ∈ τj,⋆, so since such open balls generate τ ′j,⋆, we have τ ′j,⋆ ⊆ τj,⋆. Hence,
d′ generates the topology τj,⋆. Next, we show that (Xj,⋆, d′) is complete. Let (zn)

∞
n=1 be a

Cauchy sequence in Xj,⋆, so there exists N ∈ N such that d′(zn1 , zn2) ≤ 1/2 for all n1, n2 ≥ N .
Therefore, either zn = ⋆ for all n ≥ N or zn ∈ Xj for all n ≥ N . In the former case, zn → ⋆
as n → ∞. In the latter case, (zn)

∞
n=N is also a Cauchy sequence in (Xj, d) and hence by

completeness of (Xj, d), it has a limit in Xj. This shows that (Xj,⋆, d′) is complete and d′

generates the topology τj,⋆, so (Xj,⋆, τj,⋆) is completely metrisable. Therefore, (Xj,⋆, τj,⋆) is a
Polish space, as required.

Lemma 38. Suppose that (Bi)i∈[n]
iid∼ Ber(q).

(a) With probability at least 1− δ,

1

n

n∑
i=1

Bi ≤ 2q +
log(1/δ)

n
.

(b) If q ≥ 8 log(1/δ)
n

, then with probability at least 1− δ,

1

n

n∑
i=1

Bi ≥
q

2
.

Proof. (a) By Bernstein’s inequality (Boucheron, Lugosi and Massart, 2013, Theorem 2.10),
we have with probability at least 1− δ that

1

n

n∑
i=1

Bi ≤ q +

√
2q(1− q)

n
log1/2(1/δ) +

1

3n
log(1/δ)

≤
(
q1/2 +

1√
2n

log1/2(1/δ)

)2

≤ 2q +
1

n
log(1/δ).

(b) By the multiplicative Chernoff bound (McDiarmid, 1998, Theorem 2.3(c)) for the
sum of independent Bernoulli random variables, we have

P
(
1

n

n∑
i=1

Bi ≤
q

2

)
≤ exp(−nq/8) ≤ δ,

where the final inequality follows from the assumption that q ≥ 8 log(1/δ)
n

.

Lemma 39. Let 0 < r1 ≤ r2. Then Pψr2
(θ0, σ

2) ⊆ Pψr1
(θ0, σ

2).
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Proof. Let X ∼ P ∈ Pψr2
(θ0, σ

2). Then

2 ≥ E
{
exp

( |X − θ0|r2
σr2

)}
≥

[
E
{
exp

( |X − θ0|r1
σr1

)}]r2/r1
,

by Jensen’s inequality. Thus E exp
(
|X − θ0|r1/σr1

)
≤ 2, so P ∈ Pψr1

(θ0, σ
2).

Lemma 40. Let r > 1, σ > 0 and X ∼ P ∈ Pψr(0, σ
2). Then

E exp(λX) ≤ 2 exp
{
(σλ)r/(r−1)

}
,

for all λ > 0.

Proof. Young’s inequality states that whenever p, q > 1 are such that 1/p+1/q = 1, we have
ab ≤ ap/p+ bq/q for all a, b ≥ 0. Hence

λX ≤ λ|X| ≤ |X|
r

rσr
+

(σλ)r/(r−1)

r/(r − 1)
≤ |X|

r

σr
+ (σλ)r/(r−1).

Therefore,

E exp(λX) ≤ E
{
exp(|X|r/σr)

}
· exp

{
(σλ)r/(r−1)

}
≤ 2 exp

{
(σλ)r/(r−1)

}
,

as required.

Lemma 41 (PAC–Bayes lemma). Let X be a measurable space and let X1, . . . , Xn
iid∼ P ∈

P(X ). Let Ξ ⊆ Rd and µ ∈ P(Ξ). Further let f : X×Ξ→ R be such that EX∼P (e
f(X,ξ)) <∞

for µ-almost all ξ ∈ Ξ. Then, for every δ ∈ (0, 1], we have with probability at least 1− δ that

sup
ρ∈P(Ξ):ρ≪µ

{
1

n

n∑
i=1

Eξ∼ρf(Xi, ξ)− Eξ∼ρ log
{
EX∼P (e

f(X,ξ))
}
− KL(ρ, µ) + log(1/δ)

n

}
≤ 0,

where, for instance, Eξ∼ρf(Xi, ξ) :=
∫
Ξ
f(Xi, v) dρ(v).

Proof. See, for example, Zhivotovskiy (2024, Lemma 2.1).

The following lemma provides a concentration result for the sample mean of independent
and identically distributed sub-exponential random vectors. The proof strategy follows that
of Zhivotovskiy (2024, Proposition 3.1), who considered the case n = 1.

Lemma 42. Let θ0 ∈ Rd, Σ ∈ Sd×d++ , δ ∈ (0, 1] and X1, . . . , Xn
iid∼ P ∈ Pd,ψ1(θ0,Σ). Assume

further that δ ≥ 2e−n/3. Then with probability at least 1− δ,∥∥∥∥ 1n
n∑
i=1

Xi − θ0
∥∥∥∥2

2

≤ 24 · tr(Σ) + ∥Σ∥op log(2/δ)
n

.
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Proof. Let β := 2 log(2/δ), let µ denote the distribution of Nd(0, β
−1Σ) and for u ∈ Σ1/2Sd−1,

let ρu denote the conditional distribution of Y given
{
∥Y − u∥2 ≤

√
2β−1 tr(Σ)

}
, where

Y ∼ Nd(u, β
−1Σ). By the computation of Zhivotovskiy (2024, p. 11), we have

KL(ρu, µ) ≤
β

2
+ log 2 ≤ 2 log

(2
δ

)
.

Now, let v ∈ Rd be such that ∥v−u∥2 ≤
√
2β−1 tr(Σ), and for λ ∈ R, define fλ : Rd×Rd → R

by fλ(x, y) := λy⊤Σ−1/2(x− θ0). Then, for X ∼ P and λ ∈ R, we have∥∥v⊤Σ−1/2(X − θ0)
∥∥
ψ1
≤ ∥v∥2 ≤ ∥Σ∥1/2op +

√
2β−1 tr(Σ) =: R.

It follows by Zhivotovskiy (2024, Lemma 2.5) that

logEX∼P (e
fλ(X,v)) = logEX∼P (e

λ·v⊤Σ−1/2(X−θ0)) ≤ 4λ2R2,

for all |λ| ≤ 1
2R
, so Eξu∼ρu

{
logEX∼P (e

fλ(X,ξu))
}
≤ 4λ2R2 for all |λ| ≤ 1

2R
. The PAC–Bayes

lemma (Lemma 41) then yields that with probability at least 1− δ,

sup
u∈Σ1/2Sd−1

{
1

n

n∑
i=1

Eξu∼ρufλ(Xi, ξu)−Eξu∼ρu
{
logEX∼P (e

fλ(X,ξu))
}
−KL(ρu, µ)+log(1/δ)

n

}
≤ 0.

Therefore, we deduce that with probability at least 1− δ,∥∥∥∥ 1n
n∑
i=1

Xi − θ0
∥∥∥∥
2

= sup
u∈Σ1/2Sd−1

1

n

n∑
i=1

u⊤Σ−1/2(Xi − θ0)

= sup
u∈Σ1/2Sd−1

1

nλ

n∑
i=1

Eξu∼ρufλ(Xi, ξu)

≤ inf
λ∈[0, 1

2R
]

{
4λR2 +

3 log(2/δ)

nλ

}
(i)
= 2R

√
3 log(2/δ)

n
= 2

√
3

n
·
{√

tr(Σ) +
√
∥Σ∥op log(2/δ)

}
.

where (i) follows by choosing λ = 1
2R

√
3 log(2/δ)

n
, which is at most 1

2R
since 3 log(2/δ)

n
≤ 1 by

assumption. The final conclusion follows by squaring both sides of the inequality above and
using the inequality (a+ b)2 ≤ 2a2 + 2b2 for a, b ∈ R.

G Background on disintegrations

Our definition of MAR relies on the decomposition of a probability measure on a product
space into the marginal distribution on one coordinate and a family of conditional distri-
butions on the other. This can be achieved via the notion of disintegration. Let (X ,A)
and (Y ,B) be measurable spaces, and let P be a probability measure on the product space
(X × Y ,A ⊗ B). Further, let µ denote the marginal distribution of P on (X ,A). We say
that (Px)x∈X is a disintegration of P into conditional distributions on Y if
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(a) Px is a probability measure on (Y ,B), for each x ∈ X ;

(b) x 7→ Px(B) is an A-measurable function, for every B ∈ B;

(c) P (A×B) =
∫
A
Px(B) dµ(x) for all A ∈ A and B ∈ B.

In our setting, P denotes the joint distribution of a random pair (X, Y ), taking values in X
and Y respectively. We interpret Px as the conditional distribution of Y given X = x, even
though it may be the case that the conditioning event has probability zero. Going further,
we also interpret PX as the conditional distribution of Y given X. Indeed, we then have for
all A ∈ A and B ∈ B that

E
(
PX(B)1A(X)

)
=

∫
A

Px(B) dµ(x) = P (A×B) = P(X ∈ A, Y ∈ B)

= E
(
1A(X)1B(Y )

)
,

so P(Y ∈ B |X) = E
(
1B(Y ) |X) = PX(B) almost surely. The following result, which

follows from Dudley (2018, Theorems 10.2.1 and 10.2.2), provides a sufficient condition for
the existence of a disintegration and may be regarded as a generalisation of Fubini’s theorem
for probability measures on the product of Polish spaces.

Theorem 43. Suppose that (X ,A) and (Y ,B) are Polish spaces with their corresponding
Borel σ-algebras. Let P be a probability distribution on (X ×Y ,A⊗B), with µ denoting the
marginal distribution of P on (X ,A). Then there exists a disintegration (Px)x∈X of P into
conditional distributions on Y with the property that∫

X×Y
g(x, y) dP (x, y) =

∫
X

(∫
Y
g(x, y) dPx(y)

)
dµ(x),

for every P -integrable function g : X ×Y → R. Moreover, the disintegration (Px)x∈X of P is

unique in the sense that if there exists another disintegration (P̃x)x∈X of P into conditional

distributions on Y, then P̃x = Px for µ-almost every x ∈ X .

In order to apply this result in our missing data context, recall the random pair (X,Ω′)
taking values in X × {0, 1}d from (2). For each ω ∈ {0, 1}d, we assume the existence of
disintegrations (Px⃝⋆ω)x∈X of the joint distribution of (X⃝⋆ ω,Ω′) into conditional distributions
on {0, 1}d as well as (Px)x∈X of the joint distribution of (X,Ω′) into conditional distributions
on {0, 1}d. The existence of these disintegrations is guaranteed by Theorem 43 when Xj is
a Polish space for each j ∈ [d], because it then follows from Lemma 37 and its proof that
X :=

∏d
j=1Xj and X⋆ :=

∏d
j=1Xj,⋆ are Polish. Formally then, the condition P(Ω′ = ω |X =

x) = P(Ω′ = ω |X ⃝⋆ ω = x⃝⋆ ω) in (2) means that Px(ω) = Px⃝⋆ω(ω). In fact, since the MAR
definition refers to a family of distributions of X⃝⋆ Ω′, we need these disintegrations for each
possible joint distribution of (X,Ω′) with X ∼ P and P(Ω′ = 1S) = π(S) for all S ⊆ [d]
(such disintegrations are again guaranteed to exist by Theorem 43 when Xj is a Polish space
for each j ∈ [d]).
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H MCAR lower bounds for mean estimation

Recall the definition of an f -divergence Divf (·, ·) from (28). Lemma 45 below relates the
f -divergence of two MCAR distributions on X⋆ to a notion of average f -divergence given in
Definition 44 below. For probability measures P,Q ∈ P(X ), we let, for S ⊆ [d], PS and QS

denote their respective marginal distributions on XS.
Definition 44. Let P,Q ∈ P(X ), let π ∈ P(2[d]) and let f : (0,∞)→ R be a convex function
with f(1) = 0. We define the average f -divergence between P and Q with respect to π to be

ADivf (P,Q; π) :=
∑
S⊆[d]

π(S) ·Divf
(
PS, QS

)
,

where we adopt the convention that Divf (PS, QS) := 0 if S = ∅.
We will write ATV(·, ·; π) and AKL(·, ·; π) respectively for the average total variation

distance and average Kullback–Leibler divergence with respect to π. It is worth noting that
the average total variation distance is a pseudo-metric but not necessarily a metric on P(X );
indeed, we have ATV(P,Q; π) = 0 whenever P and Q have the same marginal distributions
on the support of π.

The following lemma shows how an f -divergence between two MCAR distributions on
P(X⋆) can be computed as an average f -divergence on P(X ) in the sense of Definition 44.

Lemma 45. Let P,Q ∈ P(X ) and let π ∈ P(2[d]). Then
Divf

(
MCAR(π,P ),MCAR(π,Q)

)
= ADivf (P,Q; π).

Proof of Lemma 45. Recall the definition of X (S) and XS from Section A. For A ∈ B(X⋆),
note that A ∩ X (S) ∈ B(X (S)) and define (A ∩ X (S))S :=

{
xS : x ∈ A ∩ X (S)

}
∈ B(XS).

Let P (S) ∈ P(X⋆) be defined as P (S)(A) := PS
(
(A ∩ X (S))S

)
for A ∈ B(X⋆), so that P (S) is

supported on X (S). For each S ⊆ [d], we can apply the Lebesgue decomposition theorem to

obtain the decomposition P (S) = P
(S)
ac + P

(S)
sing (with respect to Q(S)). Then, with respect to

MCAR(π,Q), (
MCAR(π,P )

)
ac
=

(∑
S⊆[d]

π(S) · P (S)

)
ac

=
∑
S⊆[d]

π(S) · P (S)
ac

and (
MCAR(π,P )

)
sing

=

(∑
S⊆[d]

π(S) · P (S)

)
sing

=
∑
S⊆[d]

π(S) · P (S)
sing.

Hence, since X⋆ = ⊔S⊆[d]X (S),

Divf
(
MCAR(π,P ),MCAR(π,Q)

)
=

∫
X⋆

f

(
d
∑

S⊆[d] π(S)P
(S)
ac

d
∑

S⊆[d] π(S)Q
(S)

) ∑
S⊆[d]

π(S) dQ(S) +Mf ·
∑
S⊆[d]

π(S)P
(S)
sing(X⋆)

=
∑
S⊆[d]

π(S)

∫
X (S)

f

(
dP

(S)
ac

dQ(S)

)
dQ(S) +Mf ·

∑
S⊆[d]

π(S)P
(S)
sing(X (S)) = ADivf (P,Q; π),

as desired.
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Very often, it is convenient to apply Pinsker’s inequality to total variation distances, in
order to control them via (more tractable) Kullback–Leibler divergences. We remark that
in doing so directly to the left-hand side of Lemma 45, we obtain

TV
(
MCAR(π,P ),MCAR(π,Q)

)
≤ 1

21/2
·KL1/2

(
MCAR(π,P ),MCAR(π,Q)

)
=

1

21/2
AKL1/2(P,Q; π) =

1

21/2

{∑
S⊆[d]

π(S) ·KL
(
PS, QS

)}1/2

.

On the other hand, applying Pinsker’s inequality to the right-hand side of Lemma 45 yields
the bound

ATV(P,Q; π) =
∑
S⊆[d]

π(S) · TV
(
PS, QS

)
≤ 1

21/2

∑
S⊆[d]

π(S) ·KL1/2
(
PS, QS

)
,

which is an improvement, by Jensen’s inequality.
We now state two lower bounds in the MCAR setting, beginning with the univariate

setting.

Proposition 46. Let n ∈ N, q ∈ (0, 1] and Θ := R.

(a) Let σ > 0 and δ ∈ (0, 1/4]. Then, writing Pθ :=
{
MCAR⊗n

(q,N(θ,σ2))

}
, we have

M
(
δ,PΘ, | · |2

)
≥ σ2 log(1/δ)

20nq
if δ ≥ (1− q)n

2

=∞ if δ <
(1− q)n

2
.

(b) Let K > 0 and δ ∈ (0, 1/4]. Then, with Pb(θ,K) as in (81) and writing Pθ :={
MCAR⊗n

(q,P ) : P ∈ Pb(θ,K)
}
, we have

M
(
δ,PΘ, | · |2

)
≥ K2 log(1/δ)

80nq
if δ ≥ exp(−nq/2)

=∞ if δ <
(1− q)n

2
.

Proof. (a) Let θ1 := 0 and θ2 := σ
√

1
nq

log
(

1
4δ(1−δ)

)
. By Lemma 45, we have

KL
(
MCAR⊗n

(π,N(θ1,σ2)),MCAR⊗n
(π,N(θ2,σ2))

)
= nq ·KL

(
N(θ1, σ

2),N(θ2, σ
2)
)

=
1

2
log

(
1

4δ(1− δ)

)
< log

(
1

4δ(1− δ)

)
.

Therefore, by Ma, Verchand and Samworth (2024, Corollary 6 and Theorem 4), we deduce
that for δ ∈ (0, 1/4],

M
(
δ,PΘ, | · |2

)
≥

(
θ1 − θ2

2

)2

=
σ2 log

(
1

4δ(1−δ)

)
4nq

≥ σ2 log(1/δ)

20nq
.
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Moreover, for any θ1, θ2 ∈ R, we have

TV
(
MCAR⊗n

(q,N(θ1,σ2)),MCAR⊗n
(q,N(θ2,σ2))

)
= sup

A∈B(Rn
⋆ )\{⋆}n

{
MCAR⊗n

(q,N(θ1,σ2))(A)−MCAR⊗n
(q,N(θ2,σ2))(A)

}
≤ 1− (1− q)n,

where both steps follow since MCAR⊗n
(q,N(θ1,σ2))({⋆}n) = MCAR⊗n

(q,N(θ2,σ2))({⋆}n) = (1 − q)n.

Therefore, by Ma, Verchand and Samworth (2024, Lemma 5), we have thatM(δ,PΘ, | · |2) ≥
(θ1 − θ2)2/4 for δ < (1−q)n

2
. The claim follows since θ1, θ2 were arbitrary.

(b) Define P1, P2 ∈ P(R) by

P1({x}) :=
{

1
2

if x = 0
1
2

if x = K
and P2({x}) :=

{
1−a
2

if x = 0
1+a
2

if x = K,

where a :=
√

1
nq

log
(

1
4δ(1−δ)

)
≤

√
log(1/δ)
nq

≤ 1/
√
2 for δ ∈ [e−nq/2, 1/4]. Let θ1 := EP1(X) =

K/2 and θ2 := EP2(X) = (1 + a)K/2, so that Pℓ ∈ Pb(θℓ, K) for ℓ ∈ {1, 2}. Moreover, by
Lemma 45,

KL
(
MCAR⊗n

(q,P1)
,MCAR⊗n

(q,P2)

)
= nqKL(P1, P2) =

nq

2
log

(
1

1− a2
)
< nqa2 = log

(
1

4δ(1− δ)

)
,

where the inequality follows because log
(

1
1−x2

)
< 2x2 for x ∈ (0, 1/

√
2]. Hence, by Ma, Verc-

hand and Samworth (2024, Corollary 6 and Theorem 4), we deduce that for δ ∈ [e−nq/2, 1/4],

M
(
δ,PΘ, | · |2

)
≥

(
θ1 − θ2

2

)2

≥ K2 log(1/δ)

80nq
.

Now let θ ∈ R, P ′
1 := Unif[0, K] and P ′

2 := Unif[θ, θ +K]. Then by the same argument as in
part (a), we have

TV
(
MCAR⊗n

(q,P ′
1)
,MCAR⊗n

(q,P ′
2)

)
≤ 1− (1− q)n.

Therefore, by Ma, Verchand and Samworth (2024, Lemma 5), we have thatM(δ,PΘ, | · |2) ≥
θ2/4 for δ < (1−q)n

2
. The claim follows since θ1, θ2 were arbitrary.

Our next proposition lower bounds the minimax quantile for mean estimation in the
multivariate Gaussian setting when the covariance matrix is diagonal.

Proposition 47. Let δ ∈ (0, 1/4], Σ = (Σjk)j,k∈[d] ∈ Sd×d++ be diagonal, π ∈ P(2[d]), and let
Pθ := N(θ,Σ) for θ ∈ Rd. Then, writing Pθ :=

{
MCAR⊗n

(π,Pθ)

}
, we have

M
(
δ,PΘ, ∥ · ∥22

)
≳

tr
(
ΣIPW

)
n

+
∥ΣIPW∥op log(1/δ)

n
.

Proof. We consider two separate constructions to capture each of the terms in the lower
bound. For the first, let V := {0, 1}d and for each v = (v1, . . . , vd)

⊤ ∈ V , set θv =
(θv,1, . . . , θv,d)

⊤ := a ⊙ v, where a = (a1, . . . , ad)
⊤ ∈ Rd is given by aj := 4

3

√
Σjj/(nqj)
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for j ∈ [d]. Define Θ0 := {θv : v ∈ V}, which has diameter D := 4
3

√
tr(ΣIPW)/n. For

any v, v′ ∈ V that differ only in their jth coordinates, we have by Pinsker’s inequality and
Lemma 45 that

TV
(
MCAR⊗n

(π,Pθv )
,MCAR⊗n

(π,Pθv′
)

)
≤

{
n

2
·KL

(
MCAR(π,Pθv )

,MCAR(π,Pθv′
)

)}1/2

=

{
n

2

∑
S⊆[d]

π(S) ·KL
(
(Pθv)S, (Pθv′ )S

)}1/2

=

{
n

2

∑
S⊆[d]

π(S) ·
∑
k∈S

(θv,k − θv′,k)2
2Σkk

}1/2

=

{
n

4

∑
S⊆[d]:j∈S

π(S) · a
2
j

Σjj

}1/2

=
2

3
.

Therefore, by Assouad’s Lemma (e.g., Ma, Verchand and Samworth, 2024, Lemma 23),

inf
θ̂n∈Θ̂n

sup
θ0∈Θ0

EMCAR⊗n
(π,Pθ0

)

(
∥θ̂n − θ∥22

)
≥ 4 tr(ΣIPW)

27n
.

Applying Ma, Verchand and Samworth (2024, Theorem 8), with ϵ = 3/40 therein, we deduce
that for δ ∈ (0, 1/15],

M−
(
δ,PΘ, ∥ · ∥22

)
≥ tr(ΣIPW)

100n
.

We then apply Ma, Verchand and Samworth (2024, Theorem 4 and Proposition 9), with
A = k = 2 therein, to deduce that for δ ∈ (0, 1/4],

M
(
δ,PΘ, ∥ · ∥22

)
≥ tr(ΣIPW)

26 · 32 · 52 · n. (97)

Our second construction involves just two distributions. Let j0 := sargmaxj∈[d] Σjj/qj and

set θ1 := 0, θ2 :=
√

Σj0j0

nqj0
log

(
1

4δ(1−δ)

)
ej0 . Then by Lemma 45,

KL
(
MCAR⊗n

(π,Pθ1
),MCAR⊗n

(π,Pθ2
)

)
= n · AKL

(
Pθ1 , Pθ2 ; π

)
=

1

2
log

(
1

4δ(1− δ)

)
.

By Ma, Verchand and Samworth (2024, Theorem 4 and Corollary 6), we have for δ ∈ (0, 1/4]
that

M
(
δ,PΘ, ∥ · ∥22

)
≥ ∥Σ

IPW∥op log(1/δ)
20n

. (98)

Finally, combining (97) and (98) yields the desired result.

I Robust mean estimation algorithms for completely

observed data

In this section, we briefly review some of the robust mean estimators.
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I.1 Median of means

Given a sequence of real numbers (ai)
n
i=1, let a(1) ≤ a(2) ≤ · · · ≤ a(n) be the sorted version of

(ai)
n
i=1. Then the median of (ai)

n
i=1 is defined as Median(a1, . . . , an) := a(⌊n/2⌋+1).

Algorithm 2 Median of means

Input: Data (xi)i∈[n] ∈ R and the number of blocks M ∈ N
Output: θ̂n ∈ R
1: function Median of Means(x1, . . . , xn;M)
2: Randomly partition [n] into M disjoint subsets (Bm)

M
m=1 such that

⌊n/M⌋ ≤ |Bm| ≤ ⌈n/M⌉ for all m ∈ [M ]
3: for m ∈ [M ] do
4: xm ← 1

|Bm|
∑

i∈Bm
xi

5: end for
6: θ̂n ← Median(x1, . . . , xM)

7: return θ̂n
8: end function

Lemma 48 (Lerasle and Oliveira, 2011, Proposition 1). Let X1, . . . , Xn
iid∼ P ∈ PL2(θ0, σ

2),

δ ∈
[
exp(1 − n/2), 1

]
, M := ⌈log(1/δ)⌉ and θ̂n := Median of Means(X1, . . . , Xn;M).

Then with probability at least 1− δ,
(
θ̂n − θ0

)2 ≤ 24eσ2 log(e/δ)

n
.

I.2 Univariate trimmed mean

For α ≤ β ∈ R, we define Tα,β : R→ [α, β] by

Tα,β(x) :=


β if x ≥ β

x if α < x < β

α if x ≤ α.

The univariate trimmed mean estimator is defined in Algorithm 3.

I.3 Robust Descent

Algorithms 4 and 5 below provide pseudo-code for the robust (block) descent algorithm of
Depersin and Lecué (2022b, Algorithm 1). To describe the Solve SDP function in line 7
of Algorithm 4, define

∆M :=

{
(wm)

M
m=1 : 0 ≤ wm ≤

10

9M
,

M∑
m=1

wm = 1

}
,
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Algorithm 3 Univariate trimmed mean

Input: Data (xi)i∈[n] ∈ R, contamination parameter ϵ ∈ [0, 1), and tolerance parameter
δ ∈ (0, 1]

Output: θ̂n ∈ R
1: function Univariate Trimmed Mean(x1, . . . , xn; ϵ, δ)
2: Randomly partition {x1, . . . , xn} into two disjoint sets {y1, . . . , yn/2} and

{z1, . . . , zn/2}
3: Arrange {z1, . . . , zn/2} in increasing order z̃1 ≤ · · · ≤ z̃n/2
4: η ← 8ϵ+ 24 log(4/δ)/n
5: α← z̃nη/2, β ← z̃n(1−η)/2
6: θ̂n ← 2

n

∑n/2
i=1 Tα,β(yi)

7: return θ̂n
8: end function

and let V := {V ∈ Sd×d+ : tr(V ) = 1}. The Solve SDP(x1, . . . , xM ; θ) function in line 7 of

Algorithm 4 provides an approximate maximiser V̂ ∈ V of the function hθ : V → R given by

hθ(V ) := min
(w1,...,wm)∈∆M

tr

{
V ⊤

M∑
m=1

wm
(
xm − θ

)(
xm − θ

)⊤}
. (99)

A full description of Solve SDP can be found in Depersin and Lecué (2022b, Section 4);
see in particular their Algorithms 2 and 3.

In Algorithm 4 below, we invoke the notation that if S ⊆ Rd is compact and f : S → R
is continuous, then sargmaxx∈S f(x) denotes the smallest element of the argmax set in the
lexicographic ordering.

Algorithm 4 Robust Block Descent

Input: x1, . . . , xM ∈ Rd

Output: θ̂n ∈ Rd

1: function Robust Block Descent(x1, . . . , xM)
2: T ← ⌈log(8

√
d)/ log(10/9)⌉

3: for j ∈ [d] do

4: θ̂
(0)
j ← Median(x1j, . . . , xMj)

5: end for
6: for t ∈ [T ] do

7: V̂ (t) ← Solve SDP(x1, . . . , xM ; θ̂(t−1)); see (99)

8: v̂(t) ← sargmaxu∈Sd−1 u⊤V̂ (t)u

9: s(t) ← −Median
(
(xm − θ̂(t−1))⊤v̂(t) : m ∈ [M ]

)
10: θ̂(t) ← θ̂(t−1) − s(t)v̂(t)
11: end for
12: θ̂n ← θ̂(T )

13: return θ̂n
14: end function
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Algorithm 5 Robust Descent

Input: Data (xi)i∈[n] ∈ Rd, contamination parameter ϵ ∈ [0, 1), and tolerance parameter
δ ∈ (0, 1]

Output: θ̂n ∈ Rd

1: function Robust Descent(x1, . . . , xn; ϵ, δ)
2: M ← ⌈300

(
2ϵn+ log(2/δ)

)
∨ 180,000 log(2/δ)⌉ ∧ n

3: Randomly draw M disjoint subsets (Bm)
M
m=1 from [n], each with size ⌊n/M⌋

4: for m ∈ [M ] do
5: xm ← |Bm|−1

∑
i∈Bm

xi
6: end for
7: θ̂n ← Robust Block Descent(x1, . . . , xM)

8: return θ̂n
9: end function
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