
Monitoring network changes in social media

Cathy Yi-Hsuan Chen ∗ Yarema Okhrin † Tengyao Wang ‡

December 7, 2020

Abstract

Econometricians are increasingly working with high-dimensional networks and their
dynamics. Econometricians, however, are often confronted with unforeseen changes
of network dynamics. In this paper, we develop a method and the corresponding
algorithm for monitoring changes in dynamic networks. We characterize two types of
changes, edge-initiated and degree-initiated, to feature the complexity of networks.
The proposed approach accounts for three potential challenges in the analysis of net-
works. First, networks are high-dimensional objects causing the standard statistical
tools to suffer from the curse of dimensionality. Second, any potential changes in
social networks are likely driven by a few nodes or edges in the network. Third, in
many dynamic network applications such as monitoring network connectedness or its
centrality, it will be more practically applicable to detect the change in an online
fashion than the offline version. The proposed detection method at each time point
projects the entire network onto a low-dimensional vector by taking the sparsity into
account, then sequentially detects the change by comparing consecutive estimates of
the optimal projection direction. As long as the change is sizeable and persistent,
the projected vectors will converge to the optimal one, leading to a plunge in sine
angle distance between them. A change is therefore declared. We evaluate the per-
formance of our method in terms of the length of the delay and the false alarm rate
under various sparsity and signal-to-noise ratios. The application to the social media
messages network supports the usefulness of the algorithm for real data.

Keywords: Change point, network, CUSUM, sparsity, social media

∗Adam Smith Business School, University of Glasgow, UK; IRTG 1792 High Dimensional Non Stationary
Time Series, Humboldt-Universität zu Berlin (e-mail: CathyYi-Hsuan.Chen@glasgow.ac.uk)

†Department of Statistics, University of Augsburg, Germany (e-mail: yarema.okhrin@wiwi.uni-
augsburg.de)

‡Department of Statistical Science, University College London, UK (e-mail: tengyao.wang@ucl.ac.uk)

1

mailto:CathyYi-Hsuan.Chen@glasgow.ac.uk
mailto:yarema.okhrin@wiwi.uni-augsburg.de
mailto:yarema.okhrin@wiwi.uni-augsburg.de
mailto:tengyao.wang@ucl.ac.uk

1 Introduction

Modeling network and its dynamics has been an active area of modern statistics and

econometrics research, partly due to the increasing popularity of network data generated

e.g. from social media and communication networks. Literature in this area is abundant

(Jochmans, 2018; Zhu et al., 2017; Han et al., 2019), with some involving the modelling and

analysis of very large-scale networks (Chen et al., 2019). However, so far, relatively little

emphasis has been placed on detecting changes in dynamic networks. An overlook of a

potential change of networks may come at risk; the network has different structures if there

is a change and the models based on pre-change network data are no longer applicable in

prediction or risk management tasks. More importantly, any change of the network struc-

ture may signify a change of connectivity between nodes or a replacement of key players,

also known as central nodes, within the network.

The problem of detecting changes in a dynamic network falls into a broad area of change

point analysis, where the goal is to identify a change in the data generating mechanism in

a data stream. Monitoring a univariate time series has been well studied under the banner

of statistical process control (e.g. Duncan, 1952; Page, 1954; Barnard, 1959). Motivated

by applications, there has been an increased interest in developing change point detection

and estimation procedures in multivariate or even high-dimensional data sets. Examples

include detection methods for changes in the mean structure (Zhang et al., 2010; Horváth

and Hušková, 2012; Enikeeva and Harchaoui, 2019; Cho and Fryzlewicz, 2015; Jirak, 2015;

Zou et al., 2015; Cho, 2016; Wang and Samworth, 2018; Chen et al., 2020) and for changes

in the covariance structure Lavielle and Teyssiere (2006); Aue et al. (2009); Bücher et al.

(2014); Preußet al. (2015); Wang et al. (2019); Dette et al. (2020) of the data. Detecting

or monitoring a change in the network is even more methodologically challenging than

the conventional detecting practice applied to the univariate or multivariate process. The

connectivity structure of the network exhibits a time-varying feature. Network modeling

strives to characterize the interactions within the network and their dynamics. The curse of

dimensionality, which also happens to general change points detection tasks, exacerbates

in a network given network’s complexity and the featured interactions between nodes.

Recently, Wang et al. (2020) studied the problem of change point detection in a dynamic

2

network with binary edge weights. Their method and analysis have focused on the so-called

offline problem, requiring full knowledge of the entire history of the network dynamics

before retrospectively identifying the change point locations. However, in many dynamic

network applications such as monitoring network connectedness or its centrality, it will be

more practically relevant to detect a change in an online fashion than the offline version

as data are sequentially observed and most importantly, any change upon the new arrival

observation needs to be scrutinized.

This paper presents a novel method for detecting changes in a dynamic network sequen-

tially over time. The proposed method does not rely on direct estimation of the network

at each time point but rather tracks the evolvement of networks over time. In other words,

regardless of the complexity of the original network, the procedure works as long as the

change is sufficiently structured. Depending on the nature of the network (e.g. directed or

undirected) and the nature of the change (e.g. whether all edges incident on the same node

change together), we propose a degree-based and also an edge-based scheme to tackle the

variety of changes. Motivated by Wang and Samworth (2018), our key idea is to represent

the dynamic network as a high-dimensional time series and estimate the optimal projection

directions that can best aggregate the data into a one-dimensional series with the largest

signal-to-noise ratio when a change has occurred. Given the sequential arrival of observa-

tion, we construct a sequence of the estimators of the projection directions. We declare a

change when a sufficiently large number of consecutive projection direction estimators are

well-aligned with each other.

More specifically, in line with Wang et al. (2020), a sparsity assumption is the underpin-

ning of the framework, in the sense that the changes are driven by a small subset of nodes

or edges, which translates to a sparse change in the data vectors. The imposed sparsity

allows us to consistently estimate an optimal projection direction from a high-dimensional

network vector space. This machinery is iterated for every new arrival observation at t

and delivers a sequence of projection vectors. The sine angle distance is used to measure

the alignment between consecutive estimates and a change is declared when a sufficient

number of such sine angle distances all fall below the specified threshold. The proposed

algorithm NSM (Network Sequential Monitoring) delineates this procedure for a detection

3

convenience. The theoretical justification and support for the invented method and algo-

rithm are provided, including the choice of threshold and tail sequence in a consideration

of false alarm rate.

In the simulation section, we extensively simulate the network dynamics under different

natures of changes and network structures. We evaluate the performance of the proposed

methods and confirm its effectiveness in terms of false alarm rate and the length of the

delay. We end up with the following tactical guidance for detection strategies. As long

as the magnitude of the change is sizable, both degree-based and edge-based methods are

comparable in terms of the average detection delay. On the other hand, for the changes that

are edge-sparse (i.e. only a small number of edges change) or heterogeneous (i.e. changes in

different edges can have different signs), a degree-based detection scheme suffers a longer

detection delay, which is potentially caused by an offsetting effect between positive and

negative shifts. In such a scenario, the edge-based detection method is recommended.

To further illustrate the utility of our procedure, we apply the proposed method and

monitoring algorithm to the social media networks. The social media networks can be very

dynamic and sparse, reflecting a changing interaction and few opinion leaders in a social

network. The rise of social media platforms is in favour of exploitation towards social

network data. With the ubiquitous use of social media in modern society, an unprecedented

amount of data become available and of interest to many fields of study. Applying the state-

of-art methods to social media data benefits a good understanding of social behaviour and

human interaction, and the dynamics of interaction. The social media data are featured

with three characteristics that impose challenges to econometricians: the data are immense,

noisy, and dynamic. We can translate these challenges into the statistical context- the curse

of dimensionality, dynamic networks and sparsity.

Concerning an intriguing ‘cryptocurrency bubble’ during the end of 2017 and the be-

ginning of 2018 (Hafner, 2020; Cavaliere et al., 2020; Chen and Hafner, 2019), we limit our

attention to the network comprising of cryptocurrency-specific messages. The mainstream

topics related to such bubble are framing a bubble test and exploiting the proposed test

on this unregulated market. We take a different stance from the previous studies as we are

interested in a change of network dynamics during the lifetime of the bubble. We, therefore,

4

contribute to a bubble examination through the lens of a change in the network dynamics.

Lux (1995) studies herd behaviour among speculative traders, bubbles and crashes, and

indicates a vital driving force of bubble stemmed from speculators’ herd behaviour. In

terms of the causes of a bubble, social media data is vital because the expressed opinions

shared among users, measured by their contents’ similarity, is one of the indications of

herd behaviour. One, therefore, can measure messages’ similarity at each time point and

monitor the change of similarity in order to elicit the lifetime of a bubble, from its growth

or its collapse.

The paper is organized as follows. Section 2 describes a network, an algorithm for

change detection, applies the algorithm to the models and discusses the theoretical proper-

ties. Section 3 conducts simulation exercises for node-initiated and edge-initiated change,

respectively, and robustly checks when the temporal and spatial dependence is present. We

present and discuss the application of our model to the social media network in Section 4.

Section 5 concludes. We dedicate Section 6 to the proofs. The developed codes for this

study can be found at github.com/wangtengyao/NSM.

2 Online change detection via sequential estimation

2.1 Description of a network

Data on networks becomes increasingly popular in modern statistical applications. A con-

venient way to a formal definition and visualization of networks offers the graph theory.

A graph G is defined to be a pair (V,E), where V = (ν1, · · · , νp) is a finite set of vertices

or nodes, and E = (eij)i,j∈{1,...,p} is a p × p matrix of edge weights. Within the context of

networks the matrix E is frequently referred to as adjacency matrix. In this paper we deal

with time-varying networks characterized by edge-dynamic graphs, i.e. the graph has a

fixed vertex set and its adjacency matrix Et varies with time t ∈ N. We write Gt = (V,Et)

with Et = (eij,t) for i, j ∈ {1, . . . , p} and t ∈ N. If the adjacency matrix is symmetric,

i.e. eij,t = eji,t for all i, j, we refer to the underlying network as a undirected network.

Alternatively it is featured as a directed one. Moreover, let eii,t = 0 for all i implying no

loops on the vertices.

5

github.com/wangtengyao/NSM

The network edges are assumed to be random variables reflecting the stochastic nature

of real world networks. Let eij,t ∼ F and E(eij,t) = µij,t implying a potentially non-

constant expected edge weights. We postulate temporal and cross-sectional independence

of the weights. Although these assumptions might be violated for real data, we show below

that the consequences for online change point detection are negligible. The dynamics of the

model is assumed to be affected by a location shift at time point τ , leading to a change-point

model fromalized as

µij,t =

µ
(0)
ij for t ≤ τ

µ
(1)
ij for t ≥ τ + 1

.

The objective is to detect this shift in the network as soon as possible after its occurrence.

For monitoring purposes, we vectorise the adjacency matrices and consider the edge-based

monitoring with

Xt =

vech(Et) for undirected networks

(vech(Et), vech(E′t)) for directed networks
,

where vech(·) denotes the half-vectorization operator for the lower triangular part of a

matrix excluding the main diagonal.

Note that monitoring large networks will suffer from the curse of dimensionality and

make most algorithms computationally infeasible. In the economic context, the researchers

are inclined to draw a conclusion to the extent which nodes are responsible for the change.

The supervisory authorities may particularly keep eyeballing on these detected responsible

nodes for a supervisory convenience and effectiveness. To overcome computational problem

and benefit the supervisory practice, we consider in the case of undirected graphs the degree

of the ith vertex of a graph at t defined as deg(νi,t) =
∑p

j=1 eij,t, i.e. the average of edge

weights, eij,t ∈ R, that are incident to that vertex i. In the case of directed graphs we

distinguish between ingoing and outgoing degrees and define deg(in)(νi,t) =
∑

j 6=i eji,t and

deg(out)(νi,t) =
∑

j 6=i eij,t respectively. Thus, the ingoing degree is computed as the average

of incoming connections, whereas the outgoing degree is the average of connections starting

at the vertex i. The use of degrees instead of the edges can be seen as a dimension reduction

technique signifying the connectedness of nodes in the network. The node-based monitoring

6

controls the vector of degrees with

Xt =

(deg(ν1,t), . . . , deg(νp,t))
′ for undirected networks

(deg(in)(ν1,t), . . . , deg
(out)(νp,t))

′ for directed networks
.

that quantifies the connectedness of nodes in Gt. We note that if edge weights are inde-

pendently generated with a light-tail distribution, the vector of degrees only has a weak

correlation across coordinates.

2.2 Algorithm for change detection

Using either the edge-based or the degree-based monitoring as described in the previous

subsection, we have summarised the dynamic network at each time point as a data vector.

This leads us to consider the following simplified mathematical model for change detection,

which motivates our Algorithm 1. Let X1, X2, · · · be independent and sequentially observed

with Xt ∼ Np(µt, Ip), where µt = µ(1) for t ≤ τ and µt = µ(2) for t ≥ τ + 1. For sparse

changes where ‖µ(1)−µ(2)‖0 � p (we write ‖x‖0 :=
∑

i 1(xi 6= 0) for the number of nonzero

entries in a vector x), Wang and Samworth (2018) proposed a projection-based approach to

retrospectively identify the location of the change point after observing the entire history

of data series. A key component of their approach is to estimate the optimal direction

of projection, which is parallel to the sparse vector of change. Building upon this idea,

we propose in Algorithm 1 to sequentially detect the change by comparing consecutive

estimates of the optimal projection direction. Heuristically, after a sufficient number of

post-change data points are observed, the estimated projection directions denoted as v̂(t)

at different time point t will all be close to the optimal one, and hence are close to each

other. On the other hand, prior to the change, there is no signal in the data to favour any

particular direction, and thus consecutive estimates are unlikely to align with each other.

In Step 5 of Algorithm 1, the soft-thresholding operator is defined as soft(T
(n)
j,t , λn) :=

sgn(T
(n)
j,t) max{|T (n)

j,t |−λn, 0}. This step constructs a projection direction estimator equiva-

lent to the result of the sparse.svd function in the inspect package (Wang and Samworth,

2016) using argument schatten=2. This choice simplifies both the presentation and im-

plementation of the algorithm since the estimator has a close form solution, and in our

7

experience, it does not significantly impact the empirical performance of the procedure.

However, if desired, Step 5 of Algorithm 1 can be replaced with calling sparse.svd us-

ing argument schatten=1. The latter corresponds to a slightly more accurate projection

direction estimator based on a nuclear-norm-based (instead of Frobenius norm) convex

relaxation, which comes at the expense of a much higher computational cost. We also

remark that if ‖T (t)‖∞ := maxj∈[p],s∈[t−1] |T (t)
j,s | falls below the soft-threshold level λt, Step 7

of Algorithm 1 will generate a projection direction estimator v̂(t) uniformly at random on

the unit sphere to reflect our lack of knowledge of the change direction when all CUSUM

statistics are too small in absolute values.

After obtaining projection direction estimators at different time points, Algorithm 1 will

compute the sine angle distance between successive estimates v̂(t) and declare a change when

a sufficient number (provided by the input sequence (bt)t∈N) of such sine angle distances

all fall below the threshold 1/2. Here, the exact choice of 1/2 is not an issue. In fact, any

number in (0, 1) will have the same effect theoretically. We have chosen the threshold at

1/2 for convenience and since it performs well in finite sample numerical experiments.

2.3 Theoretical guarantee

We now give theoretical justification of Algorithm 1. We assume in our theoretical analysis

that X1, X2, . . . are mutually independent

Xt ∼

Np(µ
(1), Ip), if t ≤ τ ,

Np(µ
(2), Ip), if t ≥ τ + 1.

Moreover, we write s := ‖µ(1)−µ(2)‖0 for the sparsity of the change and ρ := ‖µ(1)−µ(2)‖2
for the Euclidean norm of change.

Our first result below shows that with a suitable sequence of soft-thresholding param-

eters (λt)t∈N, Algorithm 1 can achieve theoretical control of false alarm rate.

Theorem 1. Fix some α ∈ (0, 1/2]. Let N be the output of Algorithm 1 with input

X1, X2, . . .
iid∼ N(µ, Ip), λt := 2

√
log(t2p/α) and tail sequence bt := d2 log t+log(2/α)

p/8
e. We

have

P(N <∞) ≤ α.

8

Algorithm 1: Network Sequential Monitoring (NSM) sparse mean change

Input: X1, X2, . . . ∈ Rp observed sequentially, threshold sequence (λt)t, tail length

sequence (bt)t∈N.

1 Set t← 0 and draw v̂(0) uniformly from the unit sphere Sp−1 (w.r.t. the Haar

measure).

2 repeat

3 t← t+ 1

4 Compute the CUSUM matrix T (t) = (T
(t)
j,s)j∈[p],s∈[t−1] as

T
(t)
j,s ←

√
s(t− s)

t

(
1

s

s∑
r=1

Xr,j −
1

t− s

t∑
r=s+1

Xr,j

)
.

if t ≥ 2 and ‖T (t)‖∞ > λn then

5 Define v̂(t) to be the leading left singular vector of soft(T (n), λn), where soft

is the entrywise soft-thresholding operator.

6 else

7 Sample v̂(t) uniformly on the unit sphere Sp−1.

8 Compute A(t) ← sin∠(v̂(t), v̂(t−1)).

9 until t ≥ bt and maxt−bt+1≤i≤tA
(i) < 1/2;

Output: N = t

9

Here, the choice of the specific form of bt, which increases logarithmically with respect

to t, is to ensure that when no change point is present, the procedure will not produce a

false alarm, even for an arbitrarily long sequence of observations. We remark that for most

practical applications of moderately large dimension and not too long a monitoring time

span, the tail sequence bt defined in Theorem 1 is often very small. For example, for p ≥ 80

and α ≥ 0.01, we have bt ≤ 2 for all t ≤ 1500 and bt ≤ 3 for all t ≤ 200, 000, which means

that it suffices compare the most recent three or four estimates of projection direction v̂(t)

to detect a change. However, practitioners may opt to use a slightly larger value of bt to

be sure that changes have indeed occurred. Of course, this comes at the price of a slightly

longer detection delay.

Theorem 1 guarantees that regardless of the location of change, the procedure in Al-

gorithm 1 is unlikely to declare a change before it happens. The following theorem com-

plements it by showing that our procedure will declare a change not long after the actual

change point.

Theorem 2. Fix α ∈ (0, 1/2]. Let z ∈ N ∪ {∞} and let N be the output of Algorithm 1

with input X1, X2, . . . Xτ
iid∼ N(µ(1), Ip), Xτ+1, Xτ+2, . . .

iid∼ N(µ(2), Ip), λt := 2
√

log(t2p/α)

and tail sequence bt := d2 log t+log(2/α)
p/8

e. Assume condition 1

τ ≥ 215/2λ2τ
√
sτ

ρ
+ b2τ , (1)

then we have

P
(
N − τ ≤ 215/2λ2τ

√
sτ

ρ
+ b2τ

)
≥ 1− α.

From the discussion after Theorem 1, we see that we may regard b2τ essentially as a

constant. Hence, condition 1 amounts to τ & sρ−2 log(τ 2ρ/α). On the other hand, the

response delay is shown to be inversely proportional to the signal strength ρ. We justify

the theoretical choice of threshold in the simulation section.

3 Simulation exercise

In this section, we study the numerical performance of our proposed procedure in simulated

settings. In all our numerical examples below, we work with the following data generating

10

mechanism. Let Gt = (V,Et) be an edge-dynamic graph with a deterministic vertex set

V = {1, . . . , p} and independent edge weight matrices Et over time t. For simplicity, we

assume all diagonal entries of Et are equal to 0. We consider both directed and undirected

networks. In the former case, Et = (eij,t)i,j∈{1,...,p} has independent entries and in the latter

case, Et has independent upper-triangular entries. Let µt = (µij,t) ∈ [0, 1]p×p be some

deterministic matrix, we assume that entries of Et are marginally distributed as

eij,t ∼ Beta
(
10µij,t, 10(1− µij,t)

)
.

Specifically, we have E(Et) = µt. In our change point setting, we assume µt = µ(0) for all

t < τ and µt = µ(1) for all t ≥ τ , where τ ∈ N is the change point of interest.

We will mainly focus on vertex-initiated changes in our simulations. Specifically, let

V0 ⊆ V be a subset of vertices of cardinality k, we assume that

µ
(1)
ij − µ

(0)
ij = 0 ∀i /∈ V0, j /∈ V0.

In other words, changes only occur in the edges incident on a vertex belonging to the set

V0.

We consider the following three different scenarios of how changes are developed.

(S1) Undirected graph with aligned changes: µ
(1)
ij − µ

(0)
ij = c for all i, j ∈ V0 and i 6= j.

(S2) Undirected graph with random-signed changes: µ
(1)
ij −µ

(0)
ij = µ

(1)
ji −µ

(0)
ji ∼ Unif{c,−c}

with equal probability independently for all i, j ∈ V0 and i < j.

(S3) Directed graph with random-signed changes: µ
(1)
ij − µ

(0)
ij ∼ Unif{c,−c} with equal

probability independently for all i, j ∈ V0 and i 6= j.

As described in Section 2.1, we will apply the NSM Algorithm to the simulated datasets

generated from three different scenarios (S1), (S2) and (S3) via either an edge-based mon-

itoring scheme (where the data vectors Xt are constructed by vectorising the edge matrix

Et) or a degree-based monitoring scheme (where the data vectors Xt are constructed as

the vector of degrees). Before discussing our simulation results in detail, we first describe

here our tuning parameter choices. Algorithm 1 depends on two sets of tuning parameters

(λt)t∈N and (bt)t∈N. As mentioned after Theorem 1, it is typically sufficient in practice

11

Figure 1: Dependence of false alarm rate and response delay on tuning parameter sequence

(λt)t∈M. Horizontal axis show the scale r for the tuning parameter λt = r
√

log(t2p/α)

and bt = 2. In the left panel, data are generated in scenario (S1) with N = 30, τ = 200,

k = 3, c = 0.05 and α = 0.01. In the right panel, data are generated by model (S3) with

N = 30, τ = 200, k = 30, c = 0.25 and α = 0.01. Both false alarm and response delays are

averaged over 100 Monte Carlo simulations. The theoretical and empirical suggestions for

the tuning parameter λ are indicated with red (r = 2) and green (r =
√

2) vertical dashed

lines respectively.

to choose the tail length parameter bt to be a small constant. For simplicity, we will set

bt = 2 for all t throughout this section. The choice of the soft-thresholding parameter λt

is rather subtle. To study the dependence of the algorithmic performance on λt, we com-

pared the false alarm rate and average response delays of the procedure over a wide range

of settings. Figure 1 shows the simulation results with respect to two performance indica-

tors; results in other models are qualitatively similar. We see that the theoretical choice

of λt = 2
√

log(t2p/α) (corresponding to r = 2 in the plot) is rather conservative in terms

of the average response delays. Even with a choice of λt =
√

2 log(t2p/α) (corresponding

to r =
√

2 in the plot) the false alarm rate is well under control and small response delays

can be achieved. Hence, we suggest using λt =
√

2 log(t2p/α) in practice and stick to this

choice throughout our simulations.

12

FA rate c = 0.05 c = 0.1 c = 0.15 c = 0.2 c = 0.25

S1

k = 3 0 10.4 4.84 3.81 3.17 3.02

k = 10 0 9.37 4.98 3.91 3.13 3.00

k = 30 0 8.70 5.13 3.98 3.13 3.00

k = 3 0 189 34.4 17.1 12.5 9.68

k = 10 0 162 28.2 15.6 11.3 10.0

k = 30 0 151 26.6 14.4 11.4 10.2

S2

k = 3 0 11.3 5.17 3.81 3.27 3.03

k = 10 0 11.2 5.46 4.05 3.65 3.02

k = 30 0 9.86 5.53 4.12 3.75 3.00

k = 3 0 187 36.7 17.2 12.2 10.1

k = 10 0 179 31.1 15.8 11.4 10.5

k = 30 0 154 26.6 14.6 11.8 9.7

S3

k = 3 0 238 150 35.2 18.5 12.6

k = 10 0 191 29.3 13.6 8.86 6.83

k = 30 0 99.1 19.3 10.2 7.17 5.56

k = 3 0 204 41.2 19.9 12.8 10.3

k = 10 0 173 32.3 16.9 12.2 10.1

k = 30 0 174 28.3 15.6 12.0 10.1

Table 1: Performance of NSM algorithm under sparsity and signal-to-noise ratio

S1: fixed-sign change in an undirected graph; S2: fixed-sign change in a directed graph; S3: random-sign

change in a directed graph. In each model, the upper part is the results of degree-based detection and the

lower part is those from edge-based detection. The first column shows the false alarm (FA) rate, followed

by the results of detection delay.

13

3.1 Node-initiated changes

The performance of the proposed network sequential detection method hinges on the size

of the signal as well as the sparsity of the network. Theorem 1 and 2 characterise how

signal strength and soft-thresholding jointly determine the average response delay and the

false alarm rate. To gain better insights, we vary both sparsity and signal strength over a

grid of possible values. Specifically, we apply NSM algorithm with a degree-based detection

scheme to each of the three scenarios (S1), (S2) and (S3) under p = 30, τ = 200, α = 0.01,

k ∈ {3, 10, 30} and c ∈ {0.05, 0.1, 0.15, 0.2, 0.25}. k controls for the sparsity of the network.

The parameter c captures the magnitude of the signal and is chosen to range from where

the change is just detectable to where the change can be declared almost immediately

after it occurs if signals are considerably large. For each setting, we perform 100 Monte

Carlo repetitions and estimate the false alarm rate P(N ≤ τ) via the empirical proportion

of declared change points that is smaller than or equal to τ . Similarly, we estimate the

response delay E(N − τ | N > τ) by the empirical average of N − τ over all repetitions

where no false alarm occurs.

In Table 1, we summarise the false alarm rate and response delay under various sparsity

and signal-size settings. The three panels correspond to the three scenarios (S1), (S2) and

(S3). For each scenario, in addition to the degree-based detection scheme, we also deploy

an edge-based detection scheme as described in Section 2.1 for a comparison purpose. We

see that in all simulation settings, no false alarms were observed. In other words, the false

alarm rate is well-controlled at the nominal level of α = 0.01. The response delay shrinks

as either the signal strength c or the sparsity k increases. Note that when we set bt = 2,

even if every v̂(t) is estimated to the oracle projection direction, it takes at least three

observations after the change point to activate a declaration of a change. Hence, we see

that in the setting with the strongest signals, the response delay levels cut off at three. We

notice also that the signal size c significantly impacts on the response delay, whereas the

sparsity level k is less critical.

There exists a striking difference between the degree-based and edge-based detection

scheme in terms of performance. By comparison, the degree-based method performs much

better in S1 and S2, which corresponds to the scenarios where all edges weights change

14

in the same direction in mean. The observed superiority of the degree-based scheme is

attributed to the fact that degree-based aggregation exploits the ‘grouping structure’ of

µ(1) − µ(0) in a vertex-initiated change model, in the sense that the edges incident on the

same vertex are likely to change coincidentally in the same direction. On the other hand,

the comparison between vertex-based and edge-based detection schemes yields a mixed

result in S3 of Table 1. Since the change is featured with random signs, degree aggregation

may stumble caused by an offset effect. While aggregating signs, the positive sign cancels

out the negative one, and vice versa. This offset effect exacerbates in the sparse change

case when k = 3. For denser changes (k = 10 or k = 30), however, the advantage, e.g. the

hidden grouping structure, adhered to the degree-based scheme outweighs the cost imposed

by an offset effect, and the degree-based method becomes superior again.

Figure 2 illustrates how NSM Algorithm works in our simulated data. It depicts the

evolution over time of the sine angle between two consecutive non-zero projection vectors

v̂(t), v̂(t−1) ∈ Rp, and sin∠(v̂(t), v̂(t−1)). In panels (c) and (d), where shift is sizable (c = 0.2),

the detection works well in the sense that the value of sin∠(v̂(t), v̂(t−1)) drops immediately

and sharply at the predetermined change point τ = 200 (green line). In the case of (a),

the response delay is visible. We conclude that applying the proposed method is sensible

as long as signal is considerably substantial.

Figure 3 conveys the similar messages as Figure 2, except for (a). Consistent with S3

in Table 1, in the case, the network is featured with direction and random-sign, under a

weak signal and a sparsity the detection blows up as shown in (a).

3.2 Edge-initiated changes

The sparsity considered above is restricted to shifts in all edges incident on a subset of

vertices of cardinality k. Such shifts induce a well detectable changes in the degrees due to

aggregation and lead to a superior performance of the degree-based detection method. This

is particularly evident in the case of fixed-sign changes (see Panels S1 and S2 of Table 1).

Here we relax the above restriction and allow only a few edges of each vertex to shift. Let

Ω0 be the set of indices j ∈ {1, ..., p}, such that there is a shift in E(eij,t) for i ∈ V0 and

15

(a) sparse and small change (b) dense but small change

(c) sparse and remarkable change (d) dense and remarkable change

Figure 2: Simulate under scenario (S1) with different sparsity levels and magnitudes of

change. Parameter values: (a) k = 3, c = 0.05; (b) k = 30, c = 0.05; (c) k = 3, c = 0.25;

(d) k = 30, c = 0.25.

16

(a) sparse and small change (b) dense but small change

(c) sparse and remarkable change (d) dense and remarkable change

Figure 3: Simulate under scenario (S3) with different sparsity levels and magnitudes of

change. Parameter values: (a) k = 3, c = 0.05; (b) k = 30, c = 0.05; (c) k = 3, c = 0.25;

(d) k = 30, c = 0.25.

17

j ∈ Ω0 at time τ . To formalize this we specify

µ
(1)
ij − µ

(0)
ij = 0 (∀i 6∈ V0, ∀j 6∈ V0) ∨ (∀i ∈ V0, ∀j 6∈ Ω0).

We consider here only undirected graphs with random-signed changes. This implies that

the shifts are highly sparse and heterogeneous. The node degrees are expected to react

more reluctantly to this type of changes due to offsetting of positive and negative shifts

and due to a minor impact of only a few edges on the node degree. The resulting model

that modifies S2 is summarized as follows:

(S4) Undirected graph with random-signed changes and shifts in the first ke edges: µ
(1)
ij −

µ
(0)
ij = µ

(1)
ji − µ

(0)
ji ∼ Unif{c,−c} with equal probability independently for all i ∈ V0,

j ∈ Ω0.

Specifically, we assume that for every vertex in V0 only the first ke edges shift, i.e.

Ω0 = {1, ..., ke} and apply NSM Algorithm with k ∈ {2, 3, 5} and ke ∈ {10, 15, 20, 25}. The

remaining parameters are set as in the case of node-initiated changes.

The results of a simulation study that are summarized in Figure 4 confirm our expec-

tations. If the shift is small, then the node-detection leads to marginally shorter delays.

Larger sizes of the shift reveal the superiority of the edge-detection technique. This be-

comes particularly evident if the number of affected nodes is small and the aggregated shift

in the node degree is difficult to identify. Moreover, the node detection is extremely robust

to the variation in the number of affected edges ke. On the contrary, the variation in the

delays for degree detection as a function of ke is very substantial, mirroring the aggregation

effect in the degrees. The dominance of edge detection diminishes, however, if we weaken

the sparsity of the changes by increasing the number of vertices with shifts. For example,

if most of the edges of the five nodes are subject to a change, then both approaches show

almost equivalent performance.

3.3 Robustness analysis

The theoretical justifications for the suggested monitoring technique and the above simu-

lation study assume independent edges and degrees both in time and in cross-section. This

assumption can be obviously violated for real data. The aim of this section is to assess the

18

Figure 4: Detection delay initiated by random direction shifts of size c in 10, 15, 20, 25,

and 29 (out of 29) edges of the first 2, 3 or 5 nodes (left to right) with node and edge

monitoring.

robustness of NSM Algorithm to time-dependent and cross-correlated data. We restrict

the discussion to node-initiated shifts and node-detection for undirected networks only. As

above we monitor the vector of degrees

Xt = (deg(ν1,t), . . . , deg(νp,t))
′.

For a cross-sectional dependence we impose a spatial correlation structure via

Xt ∼ N(µt,Σ),

where Σ = (σijaa)i,j=1,...,p with σij = ρ|i−j| and σii = 1 for all i. Since the node degrees are

sums of the incident edge weights, we justify the use of normal approximation by the CLT.

For consistency with the above results we assume that only three vertices are affected by

shifts, i.e. k = 3. The results of the simulation study are visualized in the left panel Figure

5. Since the spatial correlation is typically characterized by positive dependence, we restict

ρ to the unit interval. The figure reveals that the delay only slowly increases as a function

of ρ, whereas this increase becomes more evident in absolute terms for small shift sizes and

extreme correlations.

To render temporal dependence in the node degrees we impose an autoregressive dy-

namics on Xt in the from

Xt = µt + εt

19

with εt = (ε1t, ..., εpt)
′ such that

εit = αεi,t−1 +
√

1− α2uit, and uit ∼ N(0, 1).

Scaling the residual uit guarantees constant variance of the node degrees and comparability

of the results. The right panel of Figure 5 shows a relatively strong variation in the delays

if the autoregressive parameter α increases from -0.3 to 0.3. Although, a decrease in

the delay appears to be advantageous, this trend simultaneously increases the false alarm

rate. To lessen the impact of temporal dependence we can correct the time series of node

degrees by fitting an appropriate time series model to pre-change data and monitoring the

filtered residuals. Alternatively, a self-normalized version of the CUSUM transformation

as suggested in Shao and Zhang (2010); Wang and Shao (2020) is capable of handling

time-dependent data and can be directly applied in the considered setting too.

Figure 5: Detection delay of shifts in the first three nodes assuming spatial (left) and

temporal (right) dependence of the node degrees.

4 An application to social media networks

4.1 Social media data

Among social media platforms, we are particularly interested in StockTwits for a number of

reasons. Firstly, by the construction and design in this microblogging, researchers can easily

spot the targeted symbols. The messages are organized around ‘cashtags’ (e.g., ‘$AAPL’

20

for APPLE; ‘$BTC.X’ for BITCOIN) that allow investigators to narrow down streams on

specific assets. The required cashtages constitute an effective reference between the message

content and the referring stock symbols, as a way of indexing people’s thoughts and ideas

about a company and stock. Stocktwits users can express their sentiment/opinions by

labelling their messages as ‘Bearish’ (negative) or ‘Bullish’ (positive) via a toggle button.

These are so-called self-report sentiments which makes their messages semantically explicit.

It’s is similar to Twitter but dedicates to the financial discussion. Individuals, investors,

market professionals can publish 140-character messages to ‘Tap into the Pulse of the

Market and financial assets’. With an emphasis on financial discussions, it gains popularity

from investors and traders. We limit our attention to cryptocurrency for the presence of

‘bubble’ during the end of 2017 and the beginning of 2018, known as a speculative bubble.

The formation and burst of a bubble have been studied in Hafner (2020); Cavaliere et al.

(2020); Chen and Hafner (2019), and more are in production.

Since 2014 StockTwits adds streams and symbology for cryptocurrencies and tokens,

expanding from 100 cryptos to more than 400 cryptos recently. New cryptocurrencies are

regularly added to the list of cashtags supported by StockTwits.1 A cashtag refers to a

cryptocurrency if and only if it ends with ”.X” (e.g. $BTC.X for Bitcoin, $LTC.X for Lite-

coin). We use this convention and StockTwits Application Programming Interface (API)

to download all messages containing a cashtag referring to a cryptocurrency. StockTwits

API also provides for each message its user’s unique identifier, the time it was posted at

with a one-second precision, and the sentiment associated by the user (”Bullish”, ”Bearish”

or unclassified).

Investors’ interest in cryptos, revealed by message volumes, is clearly skewed toward

to top 30 cryptos as shown in Table 2. These 30 leading cryptos have attracted 1,575,205

messages, amount to 48% of total retrieved messages across 425 cryptos in a time span

23.07.2017 —31.12.2018. Among these 30 coins, Bitcoin stands out the most popular coin

from other alternative coins and has attracted around 1,141 messages per day. Roughly

speaking, the messages relating to the top 6 cryptos predominate the opinions in the crypto

community. We then decide to emphasize on these 30 coins in a consideration of message

1This list can be found at https://api.stocktwits.com/symbol-sync/symbols.csv

21

https://api.stocktwits.com/symbol-sync/symbols.csv

Figure 6: Wordcloud of messages

volumes.

The retrieved messages are unstructured and need to be pre-processed by using the

Python NLTK toolkit. The text normalization begins with the segmentation of words,

that can be executed by word-level tokenization. Word tokenization is the process of

breaking the text down into its word-based unit, and this can be done easily by NLTK

tokenize package.

Furthermore, each message is converted to lower case, non-alphabetic characters are

removed and each word is lemmatized. Lemmatization takes the word’s part of speech

into account while converting the inflected word into its root. In addition to building the

vocabulary from single tokens, also known as 1-grams, we consider the option of taking

2-grams into account. Figure 6 presents the wordcloud visualization for the lemmatized

tokens up to 2-grams. The size of token depends on its occurrence in the corpus.2

4.2 Messages’ similarity matrix as network

Social media is an ideal venue to build up social networks comprising of users or symbols

as nodes. Once the vertex is chosen by the research of interest as ”symbol” rather than

2Faws news is specialized for crypto news.

22

Crypto message volume percentile volume per day

BTC.X 597045.0 0.184 1141.58

LTC.X 201884.0 0.062 386.01

TRX.X 172673.0 0.053 330.16

XRP.X 148531.0 0.046 284.00

ETH.X 136695.0 0.042 261.37

XVG.X 72552.0 0.022 138.72

BCH.X 36400.0 0.011 69.60

XLM.X 21791.0 0.007 41.67

NEO.X 20845.0 0.006 39.86

ADA.X 19889.0 0.006 38.03

IOT.X 16247.0 0.005 31.07

NYC.X 13645.0 0.004 26.09

DOGE.X 13608.0 0.004 26.02

ETC.X 10422.0 0.003 19.93

POE.X 9829.0 0.003 18.79

EOS.X 9712.0 0.003 18.57

RDD.X 9630.0 0.003 18.41

BNB.X 7072.0 0.002 13.52

PAC.X 6259.0 0.002 11.97

VET.X 6058.0 0.002 11.58

XMR.X 6017.0 0.002 11.50

DASH.X 4689.0 0.001 8.97

LEND.X 4636.0 0.001 8.86

ICX.X 4557.0 0.001 8.71

OST.X 4489.0 0.001 8.58

ZRX.X 4159.0 0.001 7.95

SC.X 4090.0 0.001 7.82

IOST.X 3959.0 0.001 7.57

BCN.X 3938.0 0.001 7.53

FUN.X 3884.0 0.001 7.43

Total 1,575,205 0.481

Table 2: Cryptocurrencies are ranked by its message volumes in StockTwits
23

”user”, a direct network is no longer observable. To cope with it, one may try to infer the

hidden edges in the network by measuring the similarity between two symbols, in terms

of user characteristics and their mentioning information regarding two symbols. In other

words, the network to be formed makes use of social media message information as to the

extent to which the expressed message tone/sentiment of symbol i resembles that of symbol

j. We then infer nodes i, j are connected in terms of a shared opinion between them.

To represent a text document, one of heuristics is to convert the text into a bag of word

representation in the form of word count vector. Statistically speaking, a document xi =

(xi,1, · · · , xw,1, · · ·xi,V) is a vector of word counts where xi,w is the number of appearance

of word w in document i, and V is the vocabulary size in the corpus. To ensure that the

inclusive words are discriminative, we remove stopwords known as a set of commonly used

words.

However, such simple way may come with the cost such as an artificial similarity caused

by word frequency. The TF-IDF (Term Frequency – Inverse Document Frequency) function

is a toolkit for improving word count representation. The term frequency is defined as a

log-transform of the word count:

tf(xi,w) ≡ log(1 + xi,w) (2)

This mitigates the impact of words that occur many times within one document. The

inverse document frequency (IDF) is then defined as:

idf(w) ≡ log
N

1 +
∑N

i=1 1(xi,w > 0)
(3)

where N is the total number of documents. The IDF is based on counting the number

of documents in the collection being searched which contain the term in question. The

intuition was that a query term which occurs in many documents is not a good discriminator

and should be given less weight than one which occurs in few documents, and the measure

was a heuristic implementation of this intuition. A consolidated term weighting scheme is

the product of term frequency and inverse document frequency.

tf-idf(xi) ≡
[
tf(xi,w)× idf(w)

]V
w=1

(4)

Thereby, the raw space vector xi is transferred to another feature space vector tf-idf(xi),

provided by the feature function φ(x) = tf-idf(x).

24

Having the represented feature vectors, one can undertake a computation for to what

the extent two documents are similar in terms of the use of vocabulary and their occurrence.

Thanks to the kernel method that operates the objects of interest (text, a bag of words)

in a high dimensional feature space, we can perform an inner product of pairwise feature

vectors without ever computing the coordinates of the raw data in that space for a sake

of computational efficiency, known as ”kernel trick”. That is the reason for how it gains

popularity.

One of well-known kernel function for document classifications is the cosine similarity

which is defined by

κ(xi,xj) =
φ(xi)

′φ(xj)

‖φ(xi)‖2‖φ(xj)‖2
(5)

where φ(x) = tf-idf(x). The quantity in (5) measures the cosine of the angle between two

documents, each of which is represented by a feature vector. Since xi or even φ(xi) is

non-negative, the corresponding cosine similarity is in the range between zero (documents

are orthogonal) and one (overwhelmingly similar).

4.3 Monitoring changes in cryptocurrency network dynamics

We apply the sequential network change detection method along with NSM algorithm to

the prescribed social media network that evolves over time. The undirected and weighted

network comprises of the fixed number of nodes in Table 2 and the edge between a pair of

nodes is their messages’ similarity. Messages arrive sequentially and text of messages vary

across cryptocurrencies and time, constituting time-varying weighted edges and eventually a

dynamic network. Starting from 23.07.2017, we sequentially, upon newly arrived messages,

monitor a change of network dynamics until 31.12.2018. As such, given a weekly frequency,

observation, n, can grow up to 78 during an investigation period. Figure 7 displays the

selected snapshots of the network at the particular calendar day and confirms the dynamics

of the network.

The detected network change point is at the 28-th observation, 2018-01-14, supported

by Figure 9 where one observes the evolvement and growth rate of ‖T (t)‖∞, the maximum

absolute-valued entry in T (t) that is a CUSUM transformation of Xt. The maximum

CUSUM-transformed degrees in Panel (a) exhibits a location shift at the end of 2017. In

25

Panel (b) using the CUSUM-transformed edges, one also observes a persistent growth rate

from the end of 2017 until June 2018. The corresponding computed sine angle between two

non-zero projection vectors are displayed for detecting the change points. The green line

indicates the estimated change-point location, 2018-01-14, corresponding to the threshold

max1≤i≤bt A
(t−i+1) < 1/2 where A(t) := sin∠(v̂(t), v̂(t−1i)). Interestingly, both degree- and

edge-based detection manifest a similar evolvement of A(t), with a sharp drop straight to

almost zero at the change-point location, and there is no further fluctuation after that

point.

A consistent result between the degree- and edge-based detection method implies the

underlying structure of change. The implied signal level is supposed to be substantial,

which is analogous to the simulation in S1 and S2 of Table 1. The detection can be

validated by an offline fashion. In line with Figure 7, the structures of the networks before

2018-01-14 are dissimilar to those afterwards. Prior to the change point, the networks are

centred by a set of nodes and others are rather disconnected, whereas after the change point

the networks appear to be fully connected. From a posteriori perspective, to quantify the

signals over time one can deploy a binary segmentation over an entire period, known as

a global investigation, and calculate the µ
(1)
t and µ

(2)
t and the corresponding signal, the

Euclidean norm between µ
(1)
t and µ

(2)
t . Figure 8 shows a rising signal until February 2018

and it declines afterwards.

An inspection of the leading left singular vectors via Figure 10a brings additional in-

sights as to the extent which nodes are responsible for a change. Before the change being

declared, the coordinates(nodes) evenly appear in the projection vectors, implying their ho-

mogeneous representability. Whenever there is a change, the projection vectors are led by a

few nodes and this projection constellation lasts during the post-change period. We observe

that some nodes remain its dominance over other nodes. For instance, BTC.X(Bitocin, the

most bottom one) persistently acts as one of the supports. Other nodes that appear with

persistence include ICON.X(ICON), ETH.X(Ethereum) and POE.X(Po.et). The charac-

teristics of these cryptos persistently driving the projection can be studied in the future

study. By comparison, the constellation of projection vectors in the case of an edge-initiated

change in Figure 10b looks similar. In terms of sparsity, only 14% of edges drive the change,

26

which seems quantitatively comparable to the node-initiated one, that is, 16% nodes are in

charge of the change. It is worth noting in the edge-initiated change that the responsible

edges can be further clustered to stratify the responsible nodes for a monitoring convenience

in practice. We decide to leave it to future research.

5 Conclusion

In this paper, we consider the problem of surveillance and detection of structural breaks

in dynamic networks. In contrary to the modelling-related issues and ex-post change-point

tests, which are widely discussed in the literature, we focus on sequential monitoring and

aim to detect the change as soon as possible after its occurrence. Due to a specific structure

of a network, we cannot apply the techniques commonly used for monitoring multivariate

data. To overcome this problem we deploy the idea of optimal projection direction, that

assumes a sparse change in a small subset of nodes or edges which is consistent with the

empirical evidence from economic and financial networks. In practice, we can frequently

hypothesise that a change is driven either by a few nodes of the network or by specific edges

leading to a node- or edge-initiated shifts. To reflect this insight we suggest node- and edge-

based monitoring schemes, where the objects of interest are the vectorised adjacency matrix

or the vector of node degrees respectively. We recommend using the node-detection if we

believe that all edges incident to a few nodes are affected by a shift or if the direction

of the shift is not random, implying links getting either only weaker or only stronger. It

is important to stress, that the NSM algorithm is capable of detecting both abrupt and

smooth shifts in the network characteristics and thus can be used under very heterogeneous

economic conditions. Additionally to the practical relevance of the problem, the suggested

approach relies on a solid theoretical background. We show that with a suitable choice

of parameters we attain the prespecified false alarm rate and declare a signal with high

probability within a short time after an actual shift.

In an extensive simulation study, we confirm several important features of the algorithm.

First, the detection delays are particularly short for fixed-sign changes and even for small

sizes of the shifts. Second, the algorithm is computationally efficient and requires a few

minutes even in the case of edge-based detection for networks of moderate size. Third, the

27

potential spatial dependence between the nodes and/or edges has only a very minor impact

on the detection delay and can be mostly neglected in applications. The impact of time-

dependent network characteristics is slightly stronger and might lead to more frequent false

alarms. Monitoring the social media data in the empirical illustration reveals the relevance

of the developed methodology for practical applications. Particularly, the core idea of

optimal projection direction allows for deep insights into the structure of shifts and for a

more precise economic interpretation of the results.

Figure 7: Snapshots of network dynamics

2018-01-14 is the detected change point by the sequential network change test.

28

Figure 8: Signals in nodes’ degree

The signal, ρt := ‖µ(1)
t − µ

(2)
t ‖2, is quantified by a binary segmentation between (1, t) and (t+ 1, n).

6 Proof of theoretical results

Proof of Theorem 1. We consider the following event

Ω1 :=
∞⋂
t=2

{‖T (t)‖∞ ≤ λn}. (6)

By Lemma 4 of Wang and Samworth (2018), we have for each t ≥ 2 and λ > 0 that

P(‖T (t)‖∞ > λ) ≤
√

2

π
pdlog te(λ+ 2/λ)e−λ

2/2.

Since λ 7→ (λ + 2/λ)e−λ
2/4 is decreasing for λ ∈ (0,∞) and λt = 2

√
log(t2p/α) ≥ 2

√
log 8

for t ≥ 2 and α ≤ 1/2, we have (λt + 2/λt)e
−λ2t /4 ≤ 0.45. Therefore,

P(‖T (t)‖∞ > λt) ≤
√

2

π
pdlog te0.45e−λ

2
t /4 ≤ 0.36αdlog te

t2
.

Taking a union bound of the above inequality for all t ≥ 2, we obtain that

P(Ωc
1) ≤

∞∑
t=2

0.36αdlog te
t2

≤ 0.451α.

Working on the event Ω1, we have v̂(t)
iid∼ Unif(Sp−1) for all 1 ≤ t ≤ τ . By rotational

symmetry, we have A(t) d
= sin∠(v̂(t), e1) for 1 ≤ t ≤ τ where e1 is the first standard basis

29

(a) Degree-based detection

(b) Edge-based detection

Figure 9: Monitoring changes in dynamics of cryptocurrency networks

The green line indicates the location of change.

30

(a) Degree-based detection

(b) Edge-based detection

Figure 10: Dynamics of projection vectors

The bars represent the coordinates which are non-zero valued in the projection vectors. The emergence of

coordinates change over time. The green line indicates the location of change.
31

vector in Rp. In particular, A(t) is independent of v(t−1) and consequently A(1), . . . , A(τ) are

independent and identically distributed. Let Z ∼ Np(0, Ip). We see that

〈v(t), e1〉2
d
=

Z2
1

Z2
1 + · · ·+ Z2

p

∼ Beta

(
1

2
,
p− 1

2

)
.

Using a Beta distribution tail bound (see, e.g. Marchal et al., 2017, Theorem 2.1), we have

P(A(t) < 1/2 | Ω1) ≤ P
{

Beta

(
1

2
,
p− 1

2

)
≥ 3

4

}
≤ e−2(p/2+1)(3/4−1/p)2 ≤ e−p/8.

Consequently, we have

P(N ≤ τ) ≤ P(Ωc
1) +

∑
t≥1:t≥bt

∏
t−bt+1≤i≤t

P(A(i) < 1/2 | Ω1)

≤ 0.451α +
∞∑
t=1

e−pbt/8 ≤ 0.451α +
∞∑
t=1

α

3t2
≤ α,

as desired.

Proof of Theorem 2. We work on the event Ω1 defined in (6), which satisfies P(Ωc
1) ≤ α

as shown in the proof of Theorem 1. We will show that the desired response delay bound

holds on the event Ω1.

Writing v := θ/‖θ‖2, by the proof of Proposition 1 of Wang and Samworth (2018), we

have on Ω1 and for all t > τ that

sin∠(v̂(t), v) ≤ 32λt
√
st

min{τ, t− τ}ρ
.

In particular, for all t satisfying

τ +
215/2λt

√
sτ

ρ
≤ t ≤ 2τ, (7)

we have

sin∠(v̂(t), v) ≤ 32λt
√

2sτ

(t− τ)ρ
≤ 1

4
.

By triangle inequality, we then have

A(t) = sin∠(v̂(t), v̂(t−1)) ≤ sin∠(v̂(t), v) + sin∠(v, v̂(t−1)) ≤ 1/2,

for all but the first t satisfying (7). Condition (1) ensures that the set of t satisfying (7)

has cardinality at least b2τ + 1. Consequently, we have on event Ω1 that

N ≤ τ + 215/2λ2τ
√
sτρ+ b2τ ,

as desired.

32

References

Aue, A., S. Hörmann, L. Horváth, and M. Reimherr (2009). Break detection in the covariance structure

of multivariate time series models. Ann. Statist., 4046–4087.

Barnard, G. A. (1959). Control charts and stochastic processes. J. Roy. Statist. Soc., Ser. B 21, 239–271.

Bücher, A., I. Kojadinovic, T. Rohmer, and J. Seger (2014). Detecting changes in cross-sectional depen-

dence in multivariate time series. J. Mult. Anal. 132, 111–128.

Cavaliere, G., H. B. Nielsen, and A. Rahbek (2020). Bootstrapping noncausal autoregressions: with

applications to explosive bubble modeling. J. Bus. Econom. Statist. 38 (1), 55–67.

Chen, C. Y.-H. and C. M. Hafner (2019). Sentiment-induced bubbles in the cryptocurrency market. J.

Risk Financ. Manag. 12 (2), 53.

Chen, C. Y.-H., W. K. Härdle, and Y. Klochkov (2019). Sonic: Social network with influencers and

communities. Available at SSRN 3657360 .

Chen, Y., T. Wang, and R. J. Samworth (2020). High-dimensional, multiscale online changepoint detection.

arXiv preprint , arxiv:2003.03668.

Cho, H. (2016). Change-point detection in panel data via double cusum statistic. Electron. J. Statist. 10,

2000–2038.

Cho, H. and P. Fryzlewicz (2015). Multiple-change-point detection for high dimensional time series via

sparsified binary segmentation. J. Roy. Statist. Soc., Ser. B 77, 475–507.

Dette, H., G. Pan, and Q. Yang (2020). Estimating a change point in a sequence of very high-dimensional

covariance matrices. J. Amer. Statist. Assoc., to appear.

Duncan, A. J. (1952). Quality Control and Industrial Statistics. Chicago: Richard D. Irwin Inc.

Enikeeva, F. and Z. Harchaoui (2019). High-dimensional change-point detection under sparse alternatives.

Ann. Statist. 47 (4), 2051–2079.

Hafner, C. M. (2020). Testing for bubbles in cryptocurrencies with time-varying volatility. J. Financ.

Econom. 18 (2), 233–249.

Han, X., C.-S. Hsieh, and S. I. Ko (2019). Spatial modeling approach for dynamic network formation and

interactions. J. Bus. Econom. Statist., to appear.

Horváth, L. and M. Hušková (2012). Change-point detection in panel data. J. Time Series Anal. 33,

631–648.

33

Jirak, M. (2015). Uniform change point tests in high dimension. Ann. Statist. 43, 2451–2483.

Jochmans, K. (2018). Semiparametric analysis of network formation. J. Bus. Econom. Statist. 36 (4),

705–713.

Lavielle, M. and G. Teyssiere (2006). Detection of multiple change-points in multivariate time series. Lith.

Math. J. 46, 287–306.

Lux, T. (1995). Herd behaviour, bubbles and crashes. The Economic Journal 105 (431), 881–896.

Marchal, O., J. Arbel, et al. (2017). On the sub-gaussianity of the beta and dirichlet distributions. Electron.

Commun. Probab. 22.

Page, E. S. (1954). Continuous inspection schemes. Biometrika 41, 100–115.

Preuß, P., R. Puchstein, and H. Dette (2015). Detection of multiple structural breaks in multivariate time

series. J. Amer. Statist. Assoc. 110, 654–668.

Shao, X. and X. Zhang (2010). Testing for change points in time series. J. Amer. Statist. Assoc. 105 (491),

1228–1240.

Wang, D., Y. Yu, and A. Rinaldo (2020). Optimal change point detection and localization in sparse

dynamic networks. Ann. Statist., to appear.

Wang, D., Y. Yu, A. Rinaldo, and R. Willett (2019). Localizing changes in high-dimensional vector

autoregressive processes. arXiv preprint , arxiv:1909.06359.

Wang, R. and X. Shao (2020). Dating the break in high-dimensional data. arXiv preprint , arxiv:2002.04115.

Wang, T. and R. Samworth (2016). InspectChangepoint: high-dimensional changepoint estimation via

sparse projection. R package version 1.1.

Wang, T. and R. J. Samworth (2018). High dimensional change point estimation via sparse projection. J.

Roy. Statist. Soc., Ser. B 80 (1), 57–83.

Zhang, N. R., D. O. Siegmund, H. Ji, and J. Z. Li (2010). Detecting simultaneous changepoints in multiple

sequences. Biometrika 97, 631–645.

Zhu, X., R. Pan, G. Li, Y. Liu, H. Wang, et al. (2017). Network vector autoregression. Ann. Statist. 45 (3),

1096–1123.

Zou, C., Z. Wang, X. Zi, and W. Jiang (2015). An efficient online monitoring method for high-dimensional

data streams. Technometrics 57, 374–387.

34

	Introduction
	Online change detection via sequential estimation
	Description of a network
	Algorithm for change detection
	Theoretical guarantee

	Simulation exercise
	Node-initiated changes
	Edge-initiated changes
	Robustness analysis

	An application to social media networks
	Social media data
	Messages' similarity matrix as network
	Monitoring changes in cryptocurrency network dynamics

	Conclusion
	Proof of theoretical results

