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Abstract

We introduce and study two new inferential challenges associated with the sequential
detection of change in a high-dimensional mean vector. First, we seek a confidence
interval for the changepoint, and second, we estimate the set of indices of coordinates
in which the mean changes. We propose an online algorithm that produces an interval
with guaranteed nominal coverage, and whose length is, with high probability, of the
same order as the average detection delay, up to a logarithmic factor. The corresponding
support estimate enjoys control of both false negatives and false positives. Simulations
confirm the effectiveness of our methodology, and we also illustrate its applicability on
both US excess deaths data from 2017–2020 and S&P 500 data from the 2007–2008
financial crisis.

1 Introduction

The real-time monitoring of evolving processes has become a characteristic feature of 21st
century life. Watches and defibrillators track health data, Covid-19 case numbers are reported
on a daily basis and financial decisions are made continuously based on the latest market
movements. Given that changes in the dynamics of such processes are frequently of great
interest, it is unsurprising that the area of changepoint detection has undergone a renaissance
over the last 5–10 years.

One of the features of modern datasets that has driven much of the recent research in
changepoint analysis is high dimensionality, where we monitor many processes simultane-
ously, and seek to borrow strength across the different series to identify changepoints. The
nature of series that are tracked in applications, as well as the desire to evade to the greatest
extent possible the curse of dimensionality, means that it is commonly assumed that the signal
of interest is relatively sparse, in the sense that only a small proportion of the constituent
series undergo a change. Furthermore, the large majority of these works have focused on the
retrospective (or offline) challenges of detecting and estimating changes after seeing all of the
available data (e.g. Chan and Walther, 2015; Cho and Fryzlewicz, 2015; Jirak, 2015; Cho,
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2016; Soh and Chandrasekaran, 2017; Wang and Samworth, 2018; Enikeeva and Harchaoui,
2019; Padilla et al., 2019; Kaul et al., 2021; Follain et al., 2021; Liu et al., 2021; Londschien
et al., 2021; Rinaldo et al., 2021). Nevertheless, the related problem where one observes data
sequentially and seeks to declare changes as soon as possible after they have occurred, is
nowadays receiving increasing attention (e.g. Kirch and Stoehr, 2019; Dette and Gösmann,
2020; Gösmann et al., 2020; Chen et al., 2021; Yu et al., 2021b). Although the focus of our
review here has been on recent developments, including finite-sample results in multivariate
and high-dimensional settings, we also mention that changepoint analysis has a long history
(e.g. Page, 1954). Entry points to this classical literature include Csörgő and Horváth (1997)
and Horváth and Rice (2014). For univariate data, sequential changepoint detection is also
studied under the banner of statistical process control (Duncan, 1952; Tartakovsky et al.,
2014). In the field of high-dimensional statistical inference more generally, uncertainty quan-
tification has become a major theme over the last decade, originating with influential work on
the debiased Lasso in (generalised) linear models (Javanmard and Montanari, 2014; van de
Geer et al., 2014; Zhang and Zhang, 2014), and subsequently developed in other settings (e.g.
Janková and van de Geer, 2015; Yu et al., 2021a).

The aim of this paper is to propose methods to address two new inferential challenges
associated with the high-dimensional, sequential detection of a sparse change in mean. The
first is to provide a confidence interval for the location of the changepoint, while the second
is to estimate the signal set of indices of coordinates that undergo the change. Despite the
importance of uncertainty quantification and signal support recovery in changepoint appli-
cations, neither of these problems has previously been studied in the multivariate sequential
changepoint detection literature, to the best of our knowledge. Of course, one option here
would be to apply an offline confidence interval construction after a sequential procedure has
declared a change. However, this would be to ignore the essential challenge of the sequen-
tial nature of the problem, whereby one wishes to avoid storing all historical data, to enable
inference to be carried out in an online manner. By this we mean that the computational
complexity for processing each new observation, as well as the storage requirements, should
depend only on the number of bits needed to represent the new data point observed1. The
online requirement turns out to impose severe restrictions on the class of algorithms available
to the practitioner, and lies at the heart of the difficulty of the problem.

To give a brief outline of our construction of a confidence interval with guaranteed (1−α)-
level coverage, consider for simplicity the univariate setting, where (Xn)n∈N form a sequence

of independent random variables with X1, . . . , Xz
iid∼ N (0, 1) and Xz+1, Xz+2, . . .

iid∼ N (θ, 1).
Without loss of generality, we assume that θ > 0. Suppose that θ is known to be at least
b > 0 and, for n ∈ N, let2

tn,b := argmax
0≤h≤n

n∑
i=n−h+1

(Xi − b/2). (1)

Since
∑n

i=n−h+1(Xi − b/2) can be viewed as the likelihood ratio statistic for testing the null

1Here, we ignore the errors in rounding real numbers to machine precision; thus, we do not distinguish
between continuous random variables and quantised versions where the data have been rounded to machine
precision.

2In the case of a tie, we choose the smallest h achieving the minimum.
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of N (0, 1) against the alternative of N (b, 1) using Xn−h+1, . . . , Xn, the quantity tn,b is the tail
length for which the likelihood ratio statistic is maximised. If N is the stopping time defining
a good sequential changepoint detection procedure, then, intuitively, N − tN,b should be close
to the true changepoint location z, and almost pivotal. This motivates the construction of
a confidence interval of the form

[
max

{
N − tN,b − g(α, b), 0

}
, N
]
, where we control the tail

probability of the distribution of N−tN,b to choose g(α, b) so as to ensure the desired coverage.
In the multivariate case, considerable care is required to handle the post-selection nature of
the inferential problem, as well as to determine an appropriate left endpoint for the confidence
interval. For this latter purpose, we only assume a lower bound on the Euclidean norm of
the vector of mean change, and employ a delicate multivariate and multiscale aggregation
scheme; see Section 2 for details.

In terms of the base sequential changepoint detection procedures, we focus on the ocd

algorithm (short for online changepoint detection) introduced by Chen et al. (2021), as well
as its variant ocd′, which provides guarantees on both the average and worst-case detection
delays, subject to a guarantee on the patience, or average false alarm rate under the null
hypothesis of no change. Crucially, these are both online algorithms. Our confidence inter-
vals, which we correspondingly denote ocd CI and ocd CI′, inherit this same online property,
thereby making them applicable even in very high-dimensional settings and where changes
may be rare, so that we may need to see many new data points before declaring a change.

In Section 3 we study the theoretical performance of the ocd CI′ procedure. In particular,
we prove in Theorem 1 that, for a suitable choice of input parameters, the confidence interval
has at least nominal coverage. Moreover, Theorem 2 ensures that, with high probability, its
length is of the same order as the average detection delay for the base ocd′ procedure, up to a
logarithmic factor. This is remarkable in view of the intrinsic challenge that the better such
a changepoint detection procedure performs, the fewer post-change observations are available
for inferential tasks.

A very useful byproduct of our ocd CI methodology is that we obtain a natural estimate
of the set of signal coordinates (i.e. those that undergo change). In Theorem 3, we prove
that, with high probability, it is able both to recover the effective support of the signal (see
Section 3.1 for a formal definition), and avoids noise coordinates.

Section 4 is devoted to a study of the numerical performance of our methodological propos-
als. Our simulations confirm that the ocd CI methodology attains the desired coverage level
across a wide range of parameter settings, that the average confidence interval length is of
comparable order to the average detection delay and that our support recovery guarantees are
validated empirically. Moreover, in Sections 4.4.1 and 4.4.2, we illustrate the practical utility
of our methods by applying them to both excess death data during the Covid-19 pandemic
in the US and S&P 500 data during the 2007–2008 financial crisis.

Proofs are given in Section 5, with auxiliary results deferred to Section 6. An R imple-
mentation of our methodology is available at github.com/yudongchen88/ocd_CI.

We conclude this introduction with some notation used throughout the paper. We write
N0 for the set of all non-negative integers. For d ∈ N, we write [d] := {1, . . . , d}. Given
a, b ∈ R, we denote a ∨ b := max(a, b) and a ∧ b := min(a, b). For a set S, we use
1S and |S| to denote its indicator function and cardinality respectively. For a real-valued
function f on a totally ordered set S, we write sargmaxx∈S f(x) := min argmaxx∈S f(x)
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and largmaxx∈S f(x) := max argmaxx∈S f(x) for the smallest and largest maximisers of
f in S, and define sargminx∈S f(x) and largminx∈S f(x) analogously. For a vector v =(
v1, . . . , vM

)> ∈ RM , we define ‖v‖0 :=
∑M

i=1 1{vi 6=0}, ‖v‖2 :=
{∑M

i=1(vi)2
}1/2

and ‖v‖∞ :=

maxi∈[M ] |vi|. In addition, for j ∈ [M ], we define ‖v−j‖2 :=
{∑

i:i 6=j(v
i)2
}1/2

. For a ma-

trix A = (Ai,j) ∈ Rd1×d2 and j ∈ [d2], we write A·,j :=
(
A1,j, . . . , Ad1,j

)> ∈ Rd1 and

A−j,j :=
(
A1,j, . . . , Aj−1,j, Aj+1,j . . . , Ad1,j

)> ∈ Rd1−1. We use Φ(·), Φ̄(·) and φ(·) to de-
note the distribution function, survivor function and density function of the standard normal
distribution respectively. For two real-valued random variables U and V , we write U ≥st V
or V ≤st U if P(U ≤ x) ≤ P(V ≤ x) for all x ∈ R. We adopt conventions that an empty sum
is 0 and that min ∅ :=∞, max ∅ := −∞.

2 Confidence interval construction and support estima-

tion methodology

In the multivariate sequential changepoint detection problem, we observe p-variate observa-
tions X1, X2, . . . in turn, and seek to report a stopping time3 N by which we believe a change
has occurred. The focus of this work is on changes in the mean of the underlying process, and
we denote the time of the changepoint by z. Moreover, since our primary interest is in high-
dimensional settings, we will also seek to exploit sparsity in the vector of mean change. Given
α ∈ (0, 1), then, our primary goal is to construct a confidence interval C ≡ C(X1, . . . , XN , α)
with the property that z ∈ C with probability at least 1− α.

For i ∈ N and j ∈ [p], let Xj
i denote the jth coordinate of Xi. The ocd algorithm of Chen

et al. (2021), which forms part of Algorithm 1, relies on a lower bound β > 0 for the `2-norm
of the vector of mean change and sets of signed scales B and B0 defined in terms of β. From
our perspective, the key aspects of this multiscale algorithm are that, in addition to returning
a stopping time N as output, it produces a matrix of residual tail lengths (tjN,b)j∈[p],b∈B∪B0 with

tjN,b := sargmax0≤h≤N
∑N

i=N−h+1(Xj
i − b/2) (similarly to (1)), an ‘anchor’ coordinate ĵ ∈ [p],

a signed anchor scale b̂ ∈ B and a tail partial sum vector A·,ĵ
N,b̂
∈ Rp with jth component

Aj,ĵ
N,b̂

:=
∑N

i=N−tĵ
N,b̂

+1
Xj
i . The intuition is that the anchor coordinate and signed scale are

chosen so that the final tĵ
N,b̂

observations provide the best evidence among all of the residual

tail lengths against the null hypothesis of no change. Meanwhile, A·,ĵ
N,b̂

aggregates the last tĵ
N,b̂

observations in each coordinate, thereby providing a measure of the strength of this evidence
against the null.

The main idea of our confidence interval construction is to seek to identify coordinates with

large post-change signal. To this end, observe when tĵ
N,b̂

is not too much larger than N − z,

the quantity Ej,ĵ

N,b̂
:= Aj,ĵ

N,b̂
/(tĵ

N,b̂
∨ 1)1/2 should be centred close to θj(tĵ

N,b̂
)1/2 for j ∈ [p] \ {ĵ},

3Here and throughout, a stopping time is understood to be with respect to the natural filtration, so that
the event {N = n} belongs to the σ-algebra generated by X1, . . . , Xn.
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with variance close to 1. Indeed, if ĵ, b̂, N and tĵ
N,b̂

were fixed, and if 0 < tĵ
N,b̂
≤ N − z,

then the former quantity would be normally distributed around this centering value, with
unit variance. The random nature of these quantities, however, introduces a post-selection
inference aspect to the problem. Nevertheless, by choosing an appropriate threshold value
d1 > 0, we can ensure that with high probability, when j 6= ĵ is a noise coordinate, we have

|Ej,ĵ

N,b̂
| < d1, and when j 6= ĵ is a coordinate with sufficiently large signal, there exists a signed

scale b ∈ (B∪B0)∩ [−|θj|, |θj|], having the same sign as θj, for which
∣∣Ej,ĵ

N,b̂

∣∣−|b|(tĵ
N,b̂

)1/2 ≥ d1.

In fact, such a signed scale, if it exists, can always be chosen to be from B0. As a convenient
byproduct, the set of indices j for which the latter inequality holds, which we denote as Ŝ,
forms a natural estimate of the set of coordinates in which the mean change is large.

For each j ∈ Ŝ, there exists a largest scale b ∈ (B ∪ B0) ∩ (0,∞) for which
∣∣Ej,ĵ

N,b̂

∣∣ −
b(tĵ

N,b̂
)1/2 ≥ d1. We denote the signed version of this quantity, where the sign is chosen to

agree with that of Ej,ĵ

N,b̂
, by b̃j; this can be regarded as a shrunken estimate of θj, and therefore

plays the role of the lower bound b from the univariate problem discussed in the introduction.
Finally, then, our confidence interval can be constructed as the intersection over indices j ∈ Ŝ
of the confidence interval from the univariate problem in coordinate j, with signed scale b̃j.

Pseudo-code for this ocd CI confidence interval construction is given in Algorithm 1,
where we suppress the n dependence on quantities that are updated at each time step. The
computational complexity per new observation, as well as the storage requirements, of this
algorithm are O

(
p2 log(ep)

)
regardless of the observation history, so it satisfies the condition

to be an online algorithm, as discussed in the introduction.

2.1 A slight variant of the ocd CI algorithm

While our experience is that ocd CI performs very well empirically, in our theoretical analysis
it turns out to be easier to study a slight variant of this algorithm, denoted ocd CI′. There
are two main differences between the algorithms. First, in ocd CI, the base changepoint
detection procedure is ocd, while in ocd CI′, we use the ocd′ procedure of Chen et al. (2021)
instead. This latter algorithm is designed to avoid difficulties caused by adversarial pre-change
observations that may lead to lengthy response delays for the ocd procedure. In particular,
for each j ∈ [p] and b ∈ B, instead of using the final tjn,b observations at time n to construct

test statistics based on A·,j
n,b, the ocd′ procedure aggregates over a reduced number τ jn,b of

observations to obtain test statistics based on Λ·,j
n,b, where τ jn,b is constructed in an online

manner to lie in the interval [tjn,b/2, 3t
j
n,b/4] for tjn,b ≥ 2. Even though the reduced tail lengths

may lead to a slight deterioration in empirical performance, provided no change has been
declared by time z, they guarantee that from a later time of the form z+O(b−2), the last τ jn,b
observations consist entirely of post-change data.

Second, in ocd CI′, we allow the practitioner to observe a further ` observations after the
time of changepoint declaration, before constructing the confidence interval. The additional
observations are used to determine the anchor coordinate ĵ and scale b̂, as well as the esti-
mated support Ŝ and the estimated scale b̃j for each j ∈ Ŝ. Thus, the extra sampling is used
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Algorithm 1: Pseudo-code for the confidence interval construction algorithm ocd CI

Input: X1, X2, . . . ∈ Rp observed sequentially, β > 0, a ≥ 0, T diag, T off > 0, d1, d2 > 0
Set: bmin = β√

2blog2(2p)c log2(2p)
, B0 = {±bmin}, B =

{
±2`/2bmin : ` = 1, . . . , blog2(2p)c

}
,

n = 0, Ab = 0 ∈ Rp×p and tb = 0 ∈ Rp for all b ∈ B ∪ B0

repeat
n← n+ 1
observe new data vector Xn

for (j, b) ∈ [p]× (B ∪ B0) do

tjb ← tjb + 1
A·,j
b ← A·,j

b +Xn

if bAj,jb − b2tjb/2 ≤ 0 then

tjb ← 0 and A·,j
b ← 0

E·,j
b ← A·,j

b /
(
tjb ∨ 1

)1/2

Qj
b ←

∑
j′∈[p]\{j}(E

j′,j
b )2

1{|Ej
′,j
b |≥a}

Sdiag ← max(j,b)∈[p]×(B∪B0)

(
bAj,jb − b2tjb/2

)
Soff ← max(j,b)∈[p]×BQ

j
b

until Sdiag ≥ T diag or Soff ≥ T off ;

(ĵ, b̂)← argmax(j,b)∈[p]×BQ
j
b

Ŝ ←
{
j ∈ [p] \ {ĵ} :

∣∣Ej,ĵ

b̂

∣∣− bmin(tĵ
b̂
)1/2 ≥ d1

}
for j ∈ Ŝ do

b̃j ← sgn
(
Ej,ĵ

b̂

)
max

{
b ∈ (B ∪ B0) ∩ (0,∞) :

∣∣Ej,ĵ

b̂

∣∣− b(tĵ
b̂
)1/2 ≥ d1

}
Output: Confidence interval C =

[
max

{
n−minj∈Ŝ

{
tj
b̃j

+ d2

(b̃j)2

}
, 0
}
, n
]
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to guard against an unusually early changepoint declaration that leaves very few post-change
observations for inference. Nevertheless, we will see in Theorem 1 below that the ocd CI′

confidence interval has guaranteed nominal coverage even with ` = 0, so that additional ob-
servations are only used to control the length of the interval. In fact, even for this latter
aspect, the numerical evidence presented in Section 4 indicates that ` = 0 provides confidence
intervals of reasonable length in practice. Similarly, Theorem 3 ensures that with high prob-
ability, our support estimate Ŝ contains no noise coordinates (i.e. has false positive control)
even with ` = 0, so that the extra sampling is only used to provide false negative control.
Pseudo-code for the ocd CI′ algorithm is given in Algorithm 2; its computational complexity
per new observation, and storage requirements, remain O

(
p2 log(ep)

)
.

3 Theoretical analysis

Throughout this section, we will assume that the sequential observations X1, X2, . . . are in-
dependent, and that there exist z ∈ N0 and θ = (θ1, . . . , θp)> 6= 0 for which X1, . . . , Xz ∼
Np(0, Ip) and Xz+1, Xz+2, . . . ∼ Np(θ, Ip). We let ϑ := ‖θ‖2, and write Pz,θ for probabilities
computed under this model, though in places we omit the subscripts for brevity. Define the
effective sparsity of θ, denoted s(θ), to be the smallest s ∈

{
20, 21, . . . , 2blog2(p)c} such that the

corresponding effective support S(θ) :=
{
j ∈ [p] : |θj| ≥ ‖θ‖2/

√
s log2(2p)

}
has cardinality at

least s(θ). Thus, the sum of squares of coordinates in the effective support of θ has the same
order of magnitude as ‖θ‖2

2, up to logarithmic factors. Moreover, if at most s components
of θ are non-zero, then s(θ) ≤ s, and the equality is attained when, for example, all non-zero
coordinates have the same magnitude.

3.1 Coverage probability and length of the confidence interval

The following theorem shows that the confidence interval constructed in the ocd CI′ algorithm
has the desired coverage level.

Theorem 1. Let p ≥ 2. Fix α ∈ (0, 1) and γ ≥ 1 and assume that z ≤ 2αγ. Then
there exist universal constants C1, C2 > 0, such that with inputs (Xt)t∈N, 0 < β ≤ ϑ, a =
C1

√
log{pγ(β−2 ∨ 1)α−1}, T diag = log{16pγ log2(4p)}, T off = 8 log{16pγ log2(2p)}, ` ≥ 0,

d1 = C2a and d2 = 4d2
1 in Algorithm 2, the output confidence interval C satisfies

Pz,θ(z ∈ C) ≥ 1− α.

As mentioned in Section 2.1, our coverage guarantee in Theorem 1 holds even with ` = 0,
i.e. with no additional sampling. The condition z ≤ 2αγ ensures that the probability of a
false alarm is at most α/2, so that Pz,θ(N ≤ z) ≤ α/2.

We now provide a guarantee on the length of the ocd CI′ confidence interval.

Theorem 2. Assume that θ has an effective sparsity of s := s(θ) ≥ 2. Fix α ∈ (0, 1) and γ ≥
1, and assume that z ≤ 2αγ. Then there exist universal constants C1, C2, C3, C4 > 0 such that,
with inputs (Xt)t∈N, 0 < β ≤ ϑ, a = C1

√
log{pγ(β−2 ∨ 1)α−1}, T diag = log{16pγ log2(4p)},
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Algorithm 2: Pseudo-code for the ocd CI′ algorithm, a slight variant of ocd CI

Input: X1, X2 . . . ∈ Rp observed sequentially, β > 0, a ≥ 0, T diag, T off > 0, d1, d2 > 0
and ` ∈ N0

Set: bmin = β√
2blog2(2p)c log2(2p)

, B0 = {±bmin}, B =
{
±2`/2bmin : ` = 1, . . . , blog2(2p)c

}
,

n = 0, Ab = Λb = Λ̃b = 0 ∈ Rp×p and tb = τb = τ̃b = 0 ∈ Rp for all b ∈ B ∪ B0

repeat
n← n+ 1
observe new data vector Xn

for (j, b) ∈ [p]× (B ∪ B0) do

tjb ← tjb + 1 and A·,j
b ← A·,j

b +Xn

set δ = 0 if tjb is a power of 2 and δ = 1 otherwise.
τ jb ← τ jb δ + τ̃ jb (1− δ) + 1 and Λ·,j

b ← Λ·,j
b δ + Λ̃·,j

b (1− δ) +Xn

τ̃ jb ← (τ̃ jb + 1)δ and Λ̃·,j
b ← (Λ̃·,j

b +Xn)δ.

if bAj,jb − b2tjb/2 ≤ 0 then

tjb ← τ jb ← τ̃ jb ← 0
A·,j
b ← Λ·,j

b ← Λ̃·,j
b ← 0

E·,j
b ← Λ·,j

b /(τ
j
b ∨ 1)1/2

Qj
b ←

∑
j′∈[p]\{j}(E

j′,j
b )2

1{|Ej
′,j
b |≥a}

Sdiag ← max(j,b)∈[p]×(B∪B0)

(
bAj,jb − b2tjb/2

)
Soff ← max(j,b)∈[p]×BQ

j
b

until Sdiag ≥ T diag or Soff ≥ T off ;
Observe ` new data vectors Xn+1, . . . , Xn+`

Set Ξj′,j
b ← Λj

′,j
b +

∑n+`
i=n+1X

j′
i√

(τ jb+`)∨1
for j′, j ∈ [p], b ∈ B ∪ B0

Compute Q̃j
b ←

∑
j′∈[p]\{j}(Ξ

j′,j
b )2

1{|Ξj
′,j
b |≥a} for j ∈ [p], b ∈ B

(ĵ, b̂)← argmaxj∈[p],b∈B Q̃
j
b

Ŝ ←
{
j ∈ [p] \ {ĵ} : |Ξj,ĵ

b̂
| − bmin(τ ĵ

b̂
+ `)1/2 ≥ d1

}
for j ∈ Ŝ do

b̃j ← sgn(Ξj,ĵ

b̂
) max

{
b ∈ (B ∪ B0) ∩ (0,∞) : |Ξj,ĵ

b̂
| − b(τ ĵ

b̂
+ `)1/2 ≥ d1

}
Output: Confidence interval C =

[
max

{
n−minj∈Ŝ

{
tj
b̃j

+ d2

(b̃j)2

}
, 0
}
, n
]
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T off = 8 log{16pγ log2(2p)}, d1 = C2a, d2 = 4d2
1 and ` ≥ C3

(a2s log2(2p)
β2 + 1

)
in Algorithm 2,

the length L of the output confidence interval C satisfies

Pz,θ
{
L > C4

(
s log2(2p) log{pγ(β−2 ∨ 1)α−1}

β2
+ 1

)}
≤ α. (2)

The main conclusion of Theorem 2 is that, with high probability, the length of the confi-
dence interval is of the same order, up to a logarithmic factor, as the average detection delay
guarantee for the ocd′ procedure (Chen et al., 2020, Theorem 4). Note that the choices of
inputs in Theorem 2 are identical to those in Theorem 1, except that we now ask for some
additional observations after the changepoint declaration, the number of which is of the same
order of magnitude as the length of the interval.

3.2 Support recovery

Recall the definition of S(θ) from the beginning of this section, and denote Sβ(θ) :=
{
j ∈

[p] : |θj| ≥ bmin

}
, where bmin, defined in Algorithm 2, is the smallest positive scale in B ∪ B0,

We will suppress the dependence on θ of both these quantities in this subsection. Theorem 3
below provides a support recovery guarantee for Ŝ, defined in Algorithm 2. Since neither Ŝ
nor the anchor coordinate ĵ defined in the algorithm depend on d2, we omit its specification;
the choices of other tuning parameters mimic those in Theorems 1 and 2.

Theorem 3. Assume the conditions of Theorem 1.

(a) There exist universal constants C1, C2 > 0, such that with inputs (Xt)t∈N, 0 < β ≤ ϑ,
a = C1

√
log{pγ(β−2 ∨ 1)α−1}, T diag = log{16pγ log2(4p)}, T off = 8 log{16pγ log2(2p)}, ` ≥ 0

and d1 = C2a in Algorithm 2, we have

Pz,θ(Ŝ ⊆ Sβ) ≥ 1− α.

(b) Assume further that θ has effective sparsity s := s(θ) ≥ 2. There exist universal constants
C1, C2, C3 > 0 such that, with inputs (Xt)t∈N, 0 < β ≤ ϑ, a = C1

√
log{pγ(β−2 ∨ 1)α−1},

T diag = log{16pγ log2(4p)}, T off = 8 log{16pγ log2(2p)}, d1 = C2a and ` ≥ C3

(a2s log2(2p)
β2 + 1

)
in Algorithm 2, we have

Pz,θ(Ŝ ∪ {ĵ} ⊇ S) ≥ 1− α.

Note that S ⊆ Sβ ⊆ {j ∈ [p] : θj 6= 0}. Thus, part (a) of the theorem reveals that with

high probability, our support estimate Ŝ does not contain any noise coordinates. Part (b)
offers a complementary guarantee on the inclusion of all ‘big’ signal coordinates, provided we
augment our support estimate with the anchor coordinate ĵ.

4 Numerical studies

In this section, we study the empirical performance of the ocd CI algorithm. Recall that in
ocd CI, the off-diagonal statistics Qj

b are computed using tail partial sums of length tjb and
that we do not have any extra sampling beyond the time of declaration that a change has
occurred.

9



4.1 Tuning parameters

Chen et al. (2021) found that the theoretical choices of thresholds T diag and T off for the ocd

procedure were a little conservative, and therefore recommended determining these thresholds
via Monte Carlo simulation; we replicate the method for choosing these thresholds described
in their Section 4.1. Likewise, as in Chen et al. (2021), we take a =

√
2 log p in our simulations.

This leaves us with the choice of tuning parameters d1 and d2. As suggested by Theorems 1
and 2, we take d2 = 4d2

1. Finally, again as suggested by our theory, we take d1 to be of the form
d1 = c

√
log(p/α), and then tune the parameter c > 0 through Monte Carlo simulation, as

we now describe. We considered the parameter settings p ∈ {100, 500}, s ∈ {2, b√pc, p}, ϑ ∈
{2, 1, 1/2}, α = 0.05, β ∈ {2ϑ, ϑ, ϑ/2}, γ = 30000 and z = 500. Then, with θ generated as ϑU ,
where U is uniformly distributed on the union of all s-sparse unit spheres in Rp (independent
of our data), we studied the coverage probabilities, estimated over 2000 repetitions as c varies,
of the ocd CI confidence interval for data generated according to the Gaussian model defined
at the beginning of Section 3. Figure 1 displays a subset of the results (the omitted curves
were qualitatively similar). On this basis, we recommend c = 0.5 as a safe choice across a wide
range of data generating mechanisms, and we used this value of c throughout our confidence
interval simulations.
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Figure 1: Coverage probabilities of the ocd CI confidence interval as the parameter c, involved
in the choice of tuning parameter d1, varies.

4.2 Coverage probability and interval length

In Table 1, we present the detection delay of the ocd procedure, as well as the coverage
probabilities and average confidence interval lengths of the ocd CI procedure, all estimated
over 2000 repetitions, with the same set of parameter choices and data generating mechanism

10



as in Section 4.1. From this table, we see that the coverage probabilities are at least at the
nominal level (up to Monte Carlo error) across all settings considered. Underspecification
of β means that the grid of scales that can be chosen for indices in Ŝ is shifted downwards,
and therefore increases the probability that b̃j will significantly underestimate θj for j ∈ Ŝ.
In turn, this leads to a slight conservativeness for the coverage probability (and corresponding
increased average confidence interval length). On the other hand, overspecification of β yields
a shorter interval on average, though these were nevertheless able to retain the nominal
coverage in all cases considered.

Another interesting feature of Table 1 is to compare the average confidence interval lengths
with the corresponding average detection delays. Theorem 2, as well as Chen et al. (2021,
Theorem 4), indicate that both of these quantities are of order (s/β2)∨1, up to polylogarithmic
factors in p and γ, but of course whenever the confidence interval includes the changepoint,
its length must be at least as long as the detection delay. Nevertheless, in most settings, it is
only 2 to 3 times longer on average, and in all cases considered was less than 7 times longer
on average. Moreover, we can also observe that the confidence interval length increases with
s and decreases with β, as anticipated by our theory.

4.3 Support recovery

We now turn our attention to the empirical support recovery properties of the quantity Ŝ (in
combination with the anchor coordinate ĵ) computed in the ocd CI algorithm. In Table 2, we

present the probabilities, estimated over 500 repetitions, that Ŝ ⊆ Sβ and that Ŝ ∪ {ĵ} ⊇ S
for p = 100, s ∈ {5, 50}, ϑ ∈ {1, 2}, and for three different signal shapes: in the uniform,
inverse square root and harmonic cases, we took θ ∝ (1{j∈[s]})j∈[p], θ ∝ (j−1/2

1{j∈[s]})j∈[p]

and θ ∝ (j−1
1{j∈[s]})j∈[p] respectively. As inputs to the algorithm, we set a =

√
2 log p,

α = 0.05, d1 =
√

2 log(p/α), β = ϑ, and, motivated by Theorem 3, took an additional ` =
da2sβ−2 log2(2p)e post-declaration observations in constructing the support estimates. The
results reported in Table 2 provide empirical confirmation of the support recovery properties
claimed in Theorem 3.

Finally in this section, we consider the extent to which the additional observations are
necessary in practice to provide satisfactory support recovery. In the left panel of Figure 2, we
plot Receiver Operating Characteristic (ROC) curves to study the estimated support recovery
probabilities with ` = 0 (i.e., no additional sampling) as a function of the input parameter d1,
which can be thought of as controlling the trade-off between P(Ŝ ∪ {ĵ} ⊇ S) and P(Ŝ ⊆ Sβ).
The fact that the triangles in this plot are all to the left of the dotted vertical line confirms
the theoretical guarantee provided in Theorem 3(a), which holds with d1 =

√
2 log(p/α), and

even with ` = 0); the less conservative choice d1 =
√

2 log p, which roughly corresponds to an
average of one noise coordinate included in Ŝ, allows us to capture a larger proportion of the
signal. From this panel, we also see that additional sampling is needed to ensure that, with
high probability, we recover all of the true signals. This is unsurprising: for instance, with a
uniform signal shape and s = 50, it is very unlikely that all 50 signal coordinates will have
accumulated such similar levels of evidence to appear in Ŝ ∪ {ĵ} by the time of declaration.
The right panel confirms that, with an inverse square root signal shape, the probability that
we capture each signal increases with the signal magnitude, and that even small signals tend
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p s ϑ β Detection Delay Coverage (%) CI Length
100 2 2 4 9.8(0.1) 96.2(0.4) 20.1(0.7)

100 2 2 2 12.6(0.1) 97.0(0.4) 33.7(0.7)

100 2 2 1 14.1(0.1) 97.9(0.3) 80.8(1.0)

100 2 1 2 34.2(0.3) 95.8(0.4) 66.1(1.0)

100 2 1 1 44.2(0.3) 97.5(0.4) 122.0(1.4)

100 2 1 0.5 52.0(0.4) 97.4(0.4) 309.1(2.0)

100 10 2 4 14.7(0.1) 96.0(0.4) 32.5(0.8)

100 10 2 2 15.7(0.1) 97.4(0.4) 38.4(0.8)

100 10 2 1 15.9(0.1) 97.0(0.4) 80.2(1.1)

100 10 1 2 52.6(0.5) 96.2(0.4) 114.0(1.5)

100 10 1 1 56.9(0.4) 97.1(0.4) 142.5(1.8)

100 10 1 0.5 60.2(0.4) 98.2(0.3) 301.1(1.6)

100 100 2 4 27.2(0.2) 96.1(0.4) 77.6(0.9)

100 100 2 2 27.7(0.2) 96.0(0.4) 81.8(1.0)

100 100 2 1 28.2(0.2) 97.5(0.3) 99.4(1.3)

100 100 1 2 100.7(0.8) 94.7(0.5) 292.8(3.5)

100 100 1 1 100.5(0.9) 96.3(0.4) 296.0(3.4)

100 100 1 0.5 103.2(0.8) 97.3(0.4) 365.9(2.8)

500 2 2 4 11.3(0.1) 97.2(0.4) 23.1(0.7)

500 2 2 2 15.8(0.1) 97.7(0.3) 45.2(0.9)

500 2 2 1 17.7(0.1) 97.5(0.4) 117.3(1.0)

500 2 1 2 41.5(0.3) 97.3(0.4) 81.8(1.2)

500 2 1 1 55.0(0.4) 96.8(0.4) 168.9(1.5)

500 2 1 0.5 64.6(0.5) 98.1(0.3) 445.0(1.7)

500 22 2 4 23.6(0.2) 96.3(0.4) 55.4(1.0)

500 22 2 2 25.0(0.2) 97.0(0.4) 60.3(0.8)

500 22 2 1 25.5(0.2) 98.1(0.3) 119.7(0.8)

500 22 1 2 88.1(0.7) 97.0(0.4) 203.5(2.1)

500 22 1 1 91.9(0.6) 97.8(0.3) 229.7(2.2)

500 22 1 0.5 94.9(0.6) 98.3(0.3) 462.8(1.4)

500 500 2 4 79.8(0.6) 95.0(0.5) 238.9(2.7)

500 500 2 2 80.3(0.6) 95.8(0.4) 245.7(2.6)

500 500 2 1 80.9(0.6) 97.5(0.4) 250.2(2.5)

500 500 1 2 290.5(2.3) 94.5(0.5) 819.7(7.9)

500 500 1 1 291.4(2.3) 95.2(0.5) 831.1(7.5)

500 500 1 0.5 297.3(2.3) 98.1(0.3) 875.0(6.7)

Table 1: Estimated coverage, average length of the ocd CI confidence interval and average
detection delay over 2000 repetitions, with standard errors in brackets. Other parameters:
γ = 30000, z = 1000, α = 0.05, a =

√
2 log p, c = 0.5, d1 = c

√
log(p/α), d2 = 4d2

1.
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s ϑ Signal Shape Ŝ ⊆ Sβ (%) Ŝ ∪ {ĵ} ⊇ S (%)
5 2 uniform 99.8(0.2) 97.6(0.7)

5 1 uniform 100.0(0.0) 97.6(0.7)

50 2 uniform 100.0(0.0) 95.6(0.9)

50 1 uniform 100.0(0.0) 97.8(0.7)

5 2 inv sqrt 99.6(0.3) 96.6(0.8)

5 1 inv sqrt 100.0(0.0) 98.8(0.5)

50 2 inv sqrt 100.0(0.0) 99.8(0.2)

50 1 inv sqrt 100.0(0.0) 100.0(0.0)

5 2 harmonic 100.0(0.0) 97.6(0.7)

5 1 harmonic 99.6(0.3) 97.8(0.7)

50 2 harmonic 100.0(0.0) 99.4(0.3)

50 1 harmonic 100.0(0.0) 100.0(0.0)

Table 2: Estimated support recovery probabilities (with standard errors in brackets). Other
settings: p = 100, a =

√
2 log p, α = 0.05, d1 =

√
2 log(p/α), β = ϑ, and with an additional

` = da2sβ−2 log2(2p)e post-declaration observations.

to be selected with higher probability than noise coordinates.

4.4 Real data examples

4.4.1 US Covid-19 data

In this section, we apply ocd CI to a dataset of weekly deaths in the United States between
January 2017 and June 20204. The data up to 29 June 2019 are treated as our training data.
For each of the 50 states, as well as Washington, D.C. (p = 51), we pre-process the data as
follows. To remove the seasonal effect, we first estimate the ‘seasonal death curve’, i.e. the
mean death numbers for each day of the year, for each state. The seasonal death curve is
estimated by first splitting the weekly death numbers evenly across the seven relevant days,
and then estimating the average number of deaths on each day of the year from these derived
daily death numbers using a Gaussian kernel with a bandwidth of 20 days. As the death
numbers follow an approximate Poisson distribution, we apply a square-root transformation
to stabilise the variance; more precisely, the transformed weekly excess deaths are computed
as the difference of the square roots of the weekly deaths and the predicted weekly deaths
from the seasonal death curve. Finally, we standardise the transformed weekly excess deaths
using the mean and standard deviation of the transformed data over the training period. The
standardised, transformed data are plotted in Figure 3 for 12 states. When applying ocd CI

to these data, we take a =
√

2 log p, T diag = log{16pγ log2(4p)}, T off = 8 log{16pγ log2(2p)},
d1 = 0.5

√
log(p/α) and d2 = 4d2

1, with α = 0.05, β = 50 and γ = 1000. On the monitoring
data (from 30 June 2019), the ocd CI algorithm declares a change on the week ending 28
March 2020, and provides a confidence interval from the week ending 21 March 2020 to the

4Available at: https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm.
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Figure 2: Support recovery properties of ocd CI. In the left panel, we plot ROC curves for
three different signal shapes and for sparsity levels s ∈ {5, 50}. The triangles and circles
correspond to points on the curves with d1 =

√
2 log(p/α) (with α = 0.05), and d1 =

√
2 log p

respectively. The dotted vertical line corresponds to P(Ŝ ⊆ Sβ) = 1− α. In the right panel,

we plot the proportion of 500 repetitions for which each coordinate belongs to Ŝ ∪ {ĵ} with
d1 =

√
2 log p; here, the s = 20 signals have an inverse square root shape, and are plotted

in red; noise coordinates are plotted in black. Other parameters for both panels: p = 100,
β = ϑ = 2, ` = 0, a =

√
2 log p.
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week ending 28 March 2020. This coincides with the beginning of the first wave of Covid-19
deaths in the United States. The algorithm also identifies New York, New Jersey, Connecticut,
Michigan and Louisiana as the estimated support of the change. Interestingly, if we run the
ocd CI procedure from the beginning of the training data period (while still standardising
as before, due to the lack of available data prior to 2017), it identifies a subtler change on
the week ending 6 January 2018, with a confidence interval of [17 December 2017, 6 January
2018]. This corresponds to a bad influenza season at the end of 20175.
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Figure 3: Standardised, transformed weekly excess death data from 12 states (including
Washington, D.C.). The monitoring period starts from 30 June 2019 (dashed line). The data
from the states in the support estimate are shown in red. The confidence interval [8 March
2020, 28 March 2020] is shown in the light blue shaded region.

4.4.2 S&P 500 data

We now use ocd CI to study market movements leading up to the financial crisis of 2007–
2008. We selected the p = 254 stocks that were both in the S&P 500 listing and were
traded throughout the period from 1 January 2006 to 31 December 2007. The historical price
data were downloaded from finance.yahoo.com using the quantmod R package (Ryan et al.,
2020); a similar dataset was studied by Cai and Wang (2021). For each stock, we compute
the daily logarithmic returns from the adjusted closing prices. We use the data from 2006 as
the training data and standardise the entire data according to the mean and variance over
the training period. Since these logarithmic returns have a heavy-tailed distribution, we clip
the standardised data at ±3.

When applying the ocd CI procedure to this dataset, we used the same input parameters
as in Section 4.4.1. So as to be able to use ocd CI repeatedly to identify multiple changes,
we also set a cool-down period of 10 trading days (i.e. the monitoring resets and restarts 10
trading days after a change is declared). This allows the market to recover from any loss (or
gain) from the previous change so that the same market movement is not identified as more

5See https://www.cdc.gov/flu/about/season/flu-season-2017-2018.htm
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than one changepoint. The first four changes were declared on 27 February 2007, 24 May 2007,
24 July 2007 and 8 August 2007, with corresponding confidence intervals shown in Figure 4.
This figure also depicts the relative sector impact of each change by showing the percentage
of stocks in each sector (according to the Global Industry Classification Standard6) that
belongs to the estimated support of a changepoint. In particular, the first and last identified
changepoints are primarily associated with changes in Real Estate stocks; these correspond
to an HSBC announcement indicating loan losses on subprime mortgages in February 2007,
and American Home Mortgage Investment Corporation filing for bankruptcy in August 2007
respectively (Hausman and Johnston, 2014).
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Figure 4: Heatmap of sector impact of the four changepoints in the S&P 500 data identified
by ocd CI, measured as a proportion of the stocks in a sector that appear in the support
estimate of the changepoint. The confidence intervals for each of the changepoints are given
on the left.

5 Proofs of main results

Proof of Theorem 1. Fix n > z, j ∈ [p], b ∈ B and j′ ∈ [p] \ {j}. We assume, without loss
of generality, that θj

′ ≥ 0. The case θj
′
< 0 can be analysed similarly. Recall that bmin,

defined in Algorithm 2, is the smallest positive scale in B ∪ B0, and write bj
′

aux := min
{
b ∈

(B ∪ B0) ∩ (0,∞) : b ≥ θj
′}

. Then we have Λj′,j
n,b +

∑n+`
i=n+1X

j′

i | τ
j
n,b ∼ N

(
θj
′
min{n + ` −

6See https://www.msci.com/our-solutions/indexes/gics
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z, τ jn,b + `}, τ jn,b + `
)
. Thus, recalling the definition of Ŝ and b̃j

′
from Algorithm 2, we have

P
(
{j′ ∈ Ŝ} ∩ {b̃j′ /∈ (0, θj

′
)} ∩ {N = n, ĵ = j, b̂ = b}

)
= E

{
P
(
{j′ ∈ Ŝ} ∩ {b̃j′ /∈ (−bmin, b

j′

aux)} ∩ {N = n, ĵ = j, b̂ = b}
∣∣∣ τ jn,b)}

≤ E
{
P
(

Λj′,j
n,b +

n+∑̀
i=n+1

Xj′

i ≥ bj
′

aux(τ jn,b + `) + d1

(
τ jn,b + `)1/2

∣∣∣∣ τ jn,b)}

+ E
{
P
(

Λj′,j
n,b +

n+∑̀
i=n+1

Xj′

i ≤ −bmin(τ jn,b + `)− d1

(
τ jn,b + `

)1/2

∣∣∣∣ τ jn,b)}
≤ E

{
Φ̄
(
(bj
′

aux − θj
′
)(τ jn,b + `)1/2 + d1

)}
+ E

{
Φ̄
(
(bmin + θj

′
)(τ jn,b + `)1/2 + d1

)}
≤ 2Φ̄(d1). (3)

Moreover, by a similar argument to (13) in the proof of Proposition 4, for b ∈ (0, θj
′
), we have

P
(
n− tj

′

n,b − d2/b
2 > z

)
≤ 2Φ̄

(√
d2

b
(θj
′ − b/2)

)
≤ 2Φ̄

(√
d2/2

)
. (4)

Combining (3) and (4), we have

P
(
{j′ ∈Ŝ} ∩ {n− tj

′

n,b̃j′
− d2/(b̃

j′)2 > z} ∩ {N = n, ĵ = j, b̂ = b}
)

≤ P
(
{j′ ∈ Ŝ} ∩ {b̃j′ /∈ (0, θj

′
)} ∩ {N = n, ĵ = j, b̂ = b}

)
+

∑
b∈(B∪B0)∩(0,θj)

2Φ̄
(√

d2/2
)

≤ 2Φ̄(d1) + 2 log2(4p)Φ̄
(√

d2/2
)
.

Now, write

r0 :=

(
24T off

ϑ2
∨ 12(a2 ∨ 8 log 2)s

ϑ2
∨ 128(T diag + log(8/α))s

β2

)
log2(2p) + 2. (5)

By a union bound and Proposition 6, we have

P
(
N −min

j∈Ŝ

{
tj
N,b̃j

+
d2

(b̃j)2

}
> z

)
≤ P(N > z + r0)

+

z+br0c∑
n=z+1

p∑
j=1

∑
b∈B

p∑
j′=1

P
(
{j′ ∈ Ŝ} ∩

{
n− tj

′

n,b̃j′
− d2

(b̃j′)2
> z
}
∩ {N = n, ĵ = j, b̂ = b}

)
≤ exp

{
− β

2(r0 − 1)

48 log2(2p)

}
+ p exp

{
− ϑ2(r0 − 1)

128 log2(2p)

}
+ 4p2 log2

2(4p)r0

{
Φ̄(d1) + Φ̄

(√
d2/2

)}
.

Therefore, for sufficiently large C1 > 0 and C2 > 0, the choice of d1 and d2 in the statement
of the theorem ensures that

P
(
N −min

j∈Ŝ

{
tj
N,b̃j

+
d2

(b̃j)2

}
> z

)
≤ α/2.
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Combining this with the fact that P(N ≤ z) ≤ z/(4γ) ≤ α/2, which follows from Lemma 7
when C1 ≥

√
8, we deduce the result.

Proof of Theorem 2. Denote `0 := C3

(a2s log2(2p)
β2 +1

)
. Since the output of Algorithm 2 remains

unchanged if we replace (Xj
t : t ∈ N) by (−Xj

t : t ∈ N) for any fixed j, we may assume without
loss of generality that θ1 ≥ θ2 ≥ ϑ/

√
s log2(2p). For j ∈ {1, 2}, we denote bj := max{b ∈

B ∪ B0 : b ≤ θj} . Since ϑ ≥ β and s ≤ 2blog2(p)c, we have b1 ≥ b2 ≥ β/
√
s log2(2p) ≥

√
2bmin.

For C5 > 0, let

r :=
C5a

2s log2(2p)

β2
+ 2, u :=

`0β
2

80s log2(2p)
and δ :=

a

2
√
r + `

.

Now define the following events:

Ω0 := {z < N ≤ z + r}
Ω1 :=

{
tjN,b ≤ N − z + ub−2 for all j ∈ [p] and b ∈ B ∪ B0

}
,

Ω2 :=

{∣∣∣∣Λj′,j
N,b +

N+∑̀
i=N+1

Xj′

i

∣∣∣∣ < a
√
τ jN,b + ` for all b ∈ B ∪ B0, j ∈ [p]

and all j′ ∈ [p] \ {j} with
∣∣θj′∣∣ ≤ δ

}
,

Ω3 :=
{
τ ĵ
N,b̂
≤ N − z + `/20

}
.

Finally, we denote event
Ω4 := Ω4,1 ∪ Ω4,2,

with

Ω4,1 :=
{
ĵ 6= 1, 1 ∈ Ŝ, b̃1 ≥ b1/

√
2
}

Ω4,2 :=
{
ĵ = 1, 2 ∈ Ŝ, b̃2 ≥ b2/

√
2
}
.

Henceforth, we will assume without loss of generality that C2 ≥ 1/2. Then, on the event⋂4
k=0 Ωk, we have

L = min
j∈Ŝ

{
tj
N,b̃j

+
d2

(b̃j)2

}
∧N ≤ N − z +

2(u+ d2)

(b2)2
≤ r +

`0

40
+

2sd2 log2(2p)

β2

≤ C2
1

(
C5 +

C3

40
+ 8C2

2

)(s log2(2p) log{pγ(β−2 ∨ 1)α−1}
β2

+ 1

)
.

Let C4 := C2
1(C5 + C3

40
+ 8C2

2). Then

P

(
L > C4

(
s log2(2p) log{pγ(β−2 ∨ 1)α−1}

β2
+ 1

))
≤ P

( 4⋃
k=0

Ωc
k

)
. (6)
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By choosing C1 ≥
√

8 and choosing C5 to be a sufficiently large universal constant, we have
r ≥

(
24T off

ϑ2 ∨ 12a2s
ϑ2 ∨ 24Tdiags

β2

)
log2(2p) + 2, so we may apply Proposition 6 and Lemma 7 to

deduce that

P(Ωc
0) = P(N > z + r) + P(N ≤ z) ≤ 2p exp

{
− β2(r − 1)

128 log2(2p)

}
+

z

4γ

≤ 2p exp

{
−C5C

2
1s log{pγ(β−2 ∨ 1)α−1}

128

}
+

z

4γ
. (7)

On Ω0, we have for any j ∈ [p] and b ∈ B ∪ B0 that

tjN,b = sargmax
0≤h≤N

N∑
i=N−h+1

b(Xj
i − b/2) ≤ sargmax

N−z≤h≤N

N∑
i=N−h+1

b(Xj
i − b/2)

= N − z + sargmax
0≤h≤z

z∑
i=z−h+1

b(Xj
i − b/2).

Thus, by Lemma 5 (taking µ = −b/2) and a union bound, we have

P(Ω0 ∩ Ωc
1) ≤ 2p log2(4p)e−u/8 = 2p log2(4p) exp

{
− `0β

2

640s log2(2p)

}
. (8)

Now observe that, for all z < n ≤ z + r, b ∈ B ∪ B0, j ∈ [p] and j′ ∈ [p] \ {j}, we have

Λj′,j
n,b +

n+∑̀
i=n+1

Xj′

i

∣∣∣∣ τ jn.b ∼ N(θj′{`+ min
(
τ jn,b, n− z

)}
, τ jn,b + `

)
.

Hence, when
∣∣θj′∣∣ ≤ δ, we have that

P
(∣∣∣∣Λj′,j

n,b +
n+∑̀
i=n+1

Xj′

i

∣∣∣∣ ≥ a
√
τ jn,b + `

∣∣∣∣ τ jn.b) ≤ P(|Y1| ≥ a) ≤ 2P(Y1 ≥ a) ≤ e−a
2/8,

where Y1 ∼ N (δ
√
n− z + `, 1), and where the last inequality follows from the relation a =

2δ
√
r + `. Thus, by a union bound, we have

P(Ω0 ∩ Ωc
2) ≤ 2rp2 log2(4p)e−a

2/8 ≤ 2rp2 log2(4p){pγ(β−2 ∨ 1)α−1}−C2
1/8. (9)

By Chen et al. (2021, Lemma 9 in the supplement), we have tjn,b/2 ≤ τ jn,b ≤ tjn,b for all
n ∈ N0, b ∈ B ∪ B0 and j ∈ [p]. Moreover, when C3 ≥ 80(C5 ∨ 2), we have `0 ≥ 80r. Define
b∗ := β/

√
s log2(2p) ∈ B, so that u = `0b

2
∗/80. We therefore have for any z < n ≤ z+r, j ∈ [p]
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and b ∈ B that

P
(
{N = n} ∩ Ω1 ∩ Ω2 ∩

{
Q̃j
n,b ≥ Q̃j

n,b∗

}
∩
{
τ jn,b > n− z + `/20

} ∣∣∣ Xj
1 , X

j
2 , . . .

)
≤ P

( ⋃
j′∈[p]\{j}:
|θj′ |>δ

{
|Ξj′,j

n,b | ≥ |Ξ
j′,j
n,b∗
|
}
∩ {N = n} ∩ Ω1 ∩ Ω2 ∩

{
τ jn,b > n− z + `/20

} ∣∣∣∣∣ Xj
1 , X

j
2 , . . .

)

≤
∑

j′∈[p]\{j}:
|θj′ |>δ

P
({
|Ξj′,j

n,b | ≥ |Ξ
j′,j
n,b∗
|
}
∩
{
n− z < τ jn,b∗ ≤ n− z + `/80

}
∩
{
τ jn,b > n− z + `/20

} ∣∣∣ Xj
1 , X

j
2 , . . .

)
+

∑
j′∈[p]\{j}:
|θj′ |>δ

P
({
|Ξj′,j

n,b | ≥ |Ξ
j′,j
n,b∗
|
}
∩
{
τ jn,b∗ ≤ n− z

}
∩
{
τ jn,b > n− z + `/20

} ∣∣∣ Xj
1 , X

j
2 , . . .

)

≤ p exp

(
− `δ

2

960

)
= p exp

(
− `a2

3840(r + `)

)
,

where the final inequality follows from Lemma 8(a), applied with U =
∑z

i=n−τ jn,b∗+1X
j′

i ,

V =
∑n−τ jn,b∗

i=n−τ jn,b+1
Xj′

i , Y =
∑n+`

i=z+1 X
j′

i , α = θj
′
, φ1 = z−n+τ jn,b∗ , φ2 = z−n+τ jn,b, φ3 = n−z+`

and κ = `/80, as well as Lemma 8(b), with U =
∑z

i=n−τ jn,b+1X
j′

i , Y =
∑n+`

i=n−τ jn,b∗+1
Xj′

i ,

Z =
∑n−τ jn,b∗

i=z+1 Xj′

i , α = θj
′
, φ1 = z − n+ τ jn,b, φ3 = `+ τ jn,b∗ , φ4 = n− z − τ jn,b∗ and κ = `/80.

Observe that Q̃ĵ

n,b̂
≥ Q̃ĵ

n,b∗
. Thus, by a union bound, we have

P(Ω0 ∩ Ω1 ∩ Ω2 ∩ Ωc
3)

≤
p∑
j=1

∑
b∈B

z+brc∑
n=z+1

P
(
{N = n} ∩ Ω1 ∩ Ω2 ∩

{
Q̃j
n,b ≥ Q̃j

n,b∗

}
∩
{
τ jn,b > n− z + `/20

})
≤ 2rp2 log2(2p) exp

(
− `a2

3840(r + `)

)
. (10)

When C3 ≥ 144C2
2 ∨ 80C5 ∨ 160, we have `0 ≥ 80r and d1 ≤

√
`0β

12
√
s log2(2p)

≤ b1
√
`/12. Thus,

on Ω0 ∩ Ω3, we have

τ ĵ
N,b̂
≤ N − z + `/20 ≤ r + `/20 ≤ `/16.

Hence, for any z < n ≤ z + r, j ∈ [p] \ {1} and b ∈ B, we have

P
(
Ω3 ∩ {N = n, ĵ = j, b̂ = b} ∩ Ωc

4,1

∣∣ Xj
1 , X

j
2 , . . .

)
≤ P

(
{τ jn,b ≤ `/16} ∩

{
Ξ1,j
n,b − b

1
√(

τ jn,b + `
)
/2 < d1

} ∣∣∣∣ Xj
1 , X

j
2 , . . .

)
≤ 1

2
e−d

2
1/2.

Here, in the final bound, we have used the facts that Ξ1,j
n,b | τ

j
n,b ∼ N

(
θ1 min{(n+ `− z)(τ jn,b +
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`)−1/2, (τ jn,b + `)1/2}, 1
)

and that

θ1 min
{

(n+ `− z)(τ jn,b + `)−1/2, (τ jn,b + `)1/2
}
− b1

√(
τ jn,b + `

)
/2

≥ 4θ1
√
`√

17
− b1
√

17`

4
√

2
≥ b1
√
`

6
≥ 2d1,

when τ jn,b ≤ `/16, as well as the standard Gaussian tail bound used at the end of the proof of
Lemma 5. By a similar argument, we also have for any z < n ≤ z + r and b ∈ B that

P
(
Ω3 ∩ {N = n, ĵ = 1, b̂ = b} ∩ Ωc

4,2

∣∣ X1
1 , X

1
2 , . . .

)
≤ P

(
{τ 1
n,b ≤ `/16} ∩

{
Ξ2,1
n,b − b

2
√(

τ 1
n,b + `

)
/2 < d1

} ∣∣∣ X1
1 , X

1
2 , . . .

)
≤ 1

2
e−d

2
1/2.

Thus, by a union bound, we have

P(Ω0 ∩ Ω3 ∩ Ωc
4) = P(Ω0 ∩ Ω3 ∩ Ωc

4,1 ∩ Ωc
4,2)

≤
p∑
j=2

∑
b∈B

z+brc∑
n=z+1

P
(
Ω3 ∩ {N = n, ĵ = j, b̂ = b} ∩ Ωc

4,1

)
+
∑
b∈B

z+brc∑
n=z+1

P
(
Ω3 ∩ {N = n, ĵ = 1, b̂ = b} ∩ Ωc

4,2

)
≤ rp log2(2p)e−d

2
1/2. (11)

Hence by substituting (7), (8), (9), (10) and (11) into (6), we conclude that, by increasing
the universal constant C1 > 0 if necessary,

P

(
L > C4

(
s log2(2p) log{pγ(β−2 ∨ 1)α−1}

β2
+ 1

))
≤ 2p{pγ(β−2 ∨ 1)α−1}−C2

1C5s/128 +
z

4γ
+ 2p log2(4p){pγ(β−2 ∨ 1)α−1}−C2

1C3/640

+ 2rp2 log2(4p){pγ(β−2 ∨ 1)α−1}−C2
1/8 + 2rp2 log2(2p){pγ(β−2 ∨ 1)α−1}−C2

1/3888

+ rp log2(2p){pγ(β−2 ∨ 1)α−1}−C2
1C

2
2/2

≤ α,

as required.

Proof of Theorem 3. (a) For j′ ∈ Scβ, we have |θj′| < bmin, so the event {|b̃j′ | ≤ |θj′ |} is empty.
Thus by (3), we have, for n > z, j ∈ [p], b ∈ B and j′ ∈ Sc

β, that

Pz,θ
(
{j′ ∈ Ŝ} ∩ {N = n, ĵ = j, b̂ = b}

)
≤ 2Φ̄(d1).

21



Hence, recalling the definition of r0 from (5), by Lemma 7 applied with C1 ≥
√

8, a union
bound and Proposition 6, we have

Pz,θ(Ŝ * Sβ) ≤ Pz,θ(N ≤ z) + Pz,θ(N > z + r0)

+

z+br0c∑
n=z+1

p∑
j=1

∑
b∈B

∑
j′∈Sc

β

Pz,θ
(
{j′ ∈ Ŝ} ∩ {N = n, ĵ = j, b̂ = b}

)
≤ α

2
+ exp

{
− β

2(r0 − 1)

48 log2(2p)

}
+ p exp

{
− ϑ2(r0 − 1)

128 log2(2p)

}
+4p2 log2(2p)r0Φ̄(d1) ≤ α,

where the final bound follows as in the proof of Theorem 1.

(b) We use the events Ω0,Ω1,Ω2,Ω3 defined in the proof of Theorem 2. Recall from the

argument immediately below (10) that when C3 ≥ 144C2
2 ∨ 80C5 ∨ 160, we have τ ĵ

N,b̂
≤ `/16

and d1 ≤ minj′∈S |θj
′ |
√
`/12 on Ω0 ∩ Ω3. Recall also the definition of Ξj′,j

n,b from Algorithm 2.
Then, for any z < n ≤ z + r, j ∈ [p], j′ ∈ S \ {j} and b ∈ B, we have

Pz,θ
(
Ω3 ∩ {N = n, ĵ = j, b̂ = b, j′ /∈ Ŝ}

∣∣ Xj
1 , X

j
2 , . . .

)
= Pz,θ

(
Ω3 ∩ {N = n, ĵ = j, b̂ = b} ∩

{
|Ξj′,j

n,b | < bmin

√
τ jn,b + `+ d1

}
| Xj

1 , X
j
2 , . . .

)
≤ Pz,θ

(
{τ jn,b ≤ `/16} ∩

{
|Ξj′,j

n,b | − bmin

√
τ jn,b + ` < d1

} ∣∣∣∣ Xj
1 , X

j
2 , . . .

)
≤ 1

2
e−d

2
1/2, (12)

where, in the final bound, we have used the facts that Ξj′,j
n,b | τ

j
n,b ∼ N

(
θj
′
min{(n+`−z)(τ jn,b+

`)−1/2, (τ jn,b + `)1/2}, 1
)

and that

|θj′ |min
{

(n+ `− z)(τ jn,b + `)−1/2, (τ jn,b + `)1/2
}
− bmin

√
τ jn,b + `

≥ 4|θj′|
√
`√

17
− bmin

√
17`

4
√

2
≥ |θ

j′ |
√
`

6
≥ 2d1,

when τ jn,b ≤ `/16. Hence

Pz,θ(Ŝ ∪ {ĵ} + S)

≤ Pz,θ(Ωc
0) + Pz,θ(Ω0 ∩ Ωc

1) + Pz,θ(Ω0 ∩ Ωc
2) + Pz,θ(Ω0 ∩ Ω1 ∩ Ω2 ∩ Ωc

3)

+

z+brc∑
n=z+1

p∑
j=1

∑
b∈B

∑
j′∈S\{j}

Pz,θ
(
Ω3 ∩ {N = n, ĵ = j, b̂ = b, j′ /∈ Ŝ}

)
≤ 2p{pγ(β−2 ∨ 1)α−1}−C2

1C5s/128 +
z

4γ
+ 2p log2(4p){pγ(β−2 ∨ 1)α−1}−C2

1C3/640

+ 2rp2 log2(4p){pγ(β−2 ∨ 1)α−1}−C2
1/8 + 2rp2 log2(2p){pγ(β−2 ∨ 1)α−1}−C2

1/3888

+ rp2 log2(2p){pγ(β−2 ∨ 1)α−1}−C2
1C

2
2/2 ≤ α,

where the penultimate inequality follows from (7), (8), (9), (10) and (12), and the last in-
equality follows by choosing the universal constant C1 > 0 to be sufficiently large.
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6 Auxiliary results

Proposition 4. Let X1, X2, . . . be independent random variables with X1, . . . , Xz
iid∼ N (0, 1)

and Xz+1, Xz+2, . . .
iid∼ N (θ, 1). Assume that 0 < b ≤ θ and let tn,b be defined as in (1) for

n ∈ N. Then for any α ∈ (0, 1), and any stopping time N satisfying P(N < z) ≤ α/2, we
have that the confidence interval

C0 :=

[
N − tN,b −

4{Φ−1(1− α/4)}2

b2
, N

]
satisfies P(z ∈ C0) ≥ 1− α.

Remark. We could also replace 4{Φ−1(1 − α/4)}2/b2 by 8 log(2/α)/b2 in the confidence in-
terval construction, if we apply the final bound from Lemma 5 in (13).

Proof. For n ∈ N, define Rn,b := max{Rn−1,b + b(Xn − b/2), 0}, with R0,b = 0. By Chen
et al. (2021, Lemma 2 in the supplement), we have tN,b = min{i : 0 ≤ i ≤ N,RN−i,b = 0} =

sargmax0≤h≤N
∑N

i=N−h+1 b(Xi− b/2). Let Un,b :=
∑z+n

i=z+1(Xi− b/2) for n ∈ N, with U0,b := 0.
Then Rn+z,b ≥ bUn,b for all n ∈ N. Hence, for y ∈ [0,∞), we have

P(N − tN,b − y ≥ z) ≤ P
(

inf
n∈N0:n≥z+y

Rn,b = 0

)
≤ P

(
inf

n∈N0:n≥y
Un,b ≤ 0

)
≤ 2Φ̄

(√
y(θ − b/2)

)
,

(13)
where the last inequality follows from Lemma 5. Thus, if we choose y = 4{Φ−1(1−α/4)}2/b2,
then we are guaranteed that P(N − tN,b−y > z) ≤ α/2. Combining this with the assumption
that P(N < z) ≤ α/2, the desired result follows.

Lemma 5. Let Y1, Y2, . . .
iid∼ N (µ, 1). Define Un :=

∑n
i=1 Yi for n ∈ N0, and let ξ :=

sargminn∈N0
µUn. Then, for y ∈ [0,∞), we have

P(ξ ≥ y) ≤ P
(

inf
n∈N0:n≥y

µUn ≤ 0
)
≤ 2Φ̄

(√
y|µ|

)
≤ e−yµ

2/2.

Proof. The first inequality holds since µUξ ≤ µU0 = 0. For the second and third inequalities,
we may assume without loss of generality that µ > 0, since the result is clear when µ = 0,
and if µ < 0 then the result will follow from the corresponding result with µ > 0 by setting
Y ′i := −Yi for i ∈ N. Note that (Un − nµ)n∈N0 is a standard Gaussian random walk starting
at 0. Let (Bt)t∈[0,∞) denote a standard Brownian motion starting at 0. Then, we have for any
y ∈ N0 and u > 0 that

P
(

inf
n∈N0:n≥y

Un ≤ 0

∣∣∣∣ Uy = u

)
≤ P

{
inf

t∈[y,∞)
(Bt + tµ) ≤ 0

∣∣∣∣ By = u

}
≤ e−2uµ, (14)

where the final inequality follows from Siegmund (1986, Proposition 2.4 and Equation (2.5)).
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Thus, for y ∈ [0,∞), we have

P
(

inf
n∈N0:n≥y

Un ≤ 0

)
= P

(
Udye ≤ 0

)
+ E

{
P
(

inf
n∈N0:n≥dye

Un ≤ 0

∣∣∣∣ Udye)1{Udye>0}

}
≤ Φ̄

(√
dyeµ

)
+

∫ ∞
0

1√
2πdye

e−
(u−dyeµ)2

2dye e−2uµ du

= 2Φ̄
(√
dyeµ

)
≤ 2Φ̄

(√
yµ
)
≤ e−yµ

2/2.

where the first inequality follows from (14) and the fact that Udye ∼ N (dyeµ, dye) and the

last inequality follows from the standard normal distribution tail bound Φ̄(x) ≤ e−x
2/2/2 for

x ≥ 0.

In Proposition 6 and Lemma 7 below, we assume the Gaussian data generating mechanism
given at the beginning of Section 3.

Proposition 6. Assume that θ has an effective sparsity of s := s(θ) ≥ 2. Then, the right
endpoint N of the interval output from the ocd CI′ algorithm, with inputs (Xt)t∈N, 0 < β ≤ ϑ,
a > 0, T diag = log{16pγ log2(4p)} and T off = 8 log{16pγ log2(2p)}, satisfies

Pz,θ
(
N > z + r

)
≤ exp

{
− β2(r − 1)

48 log2(2p)

}
+ p exp

{
− ϑ2(r − 1)

128 log2(2p)

}
,

for all r ≥
{

24T off log2(2p)
ϑ2 ∨ 12(a2∨8 log 2)s log2(2p)

ϑ2 ∨ 24Tdiags log2(2p)
β2

}
+ 2.

Proof. For θ ∈ Rp with effective sparsity s(θ), there is at most one coordinate in θ of mag-
nitude larger than ϑ/

√
2, so there exists b∗ ∈

{
β/
√
s(θ) log2(2p),−β/

√
s(θ) log2(2p)

}
⊆ B

such that
J :=

{
j ∈ [p] : θj/b∗ ≥ 1 and |θj| ≤ ϑ/

√
2
}

(15)

has cardinality at least s(θ)/2. Note that the condition θj/b∗ ≥ 1 above ensures that {θj :
j ∈ J } all have the same sign as b∗. By Chen et al. (2021, Proposition 8), we have on the
event {N > z} that

q(X1, . . . , Xz, θ) := max
{
tjz,b∗ : j ∈ J

}
≤ 8T diags log2(2p)

β2
. (16)

We now fix

r ≥
{

24T off log2(2p)

ϑ2
∨ 12(a2 ∨ 8 log 2)s log2(2p)

ϑ2
∨ 24T diags log2(2p)

β2

}
+ 2 =: r0. (17)

For j ∈ J , define the event
Ωj
r :=

{
tjz+brc,b∗ > 2brc/3

}
.
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By applying Chen et al. (2021, Lemma 2) to tjz+brc,b∗ , we have for j ∈ J that

tjz+brc,b∗ = sargmax
0≤h≤z+brc

z+brc∑
i=z+brc−h+1

b∗(X
j
i − b∗/2) ≥ sargmax

0≤h≤brc

z+brc∑
i=z+brc−h+1

b∗(X
j
i − b∗/2)

= sargmax
0≤h≤brc

z+brc−h∑
i=z+1

−b∗(Xj
i − b∗/2) = brc − largmax

0≤h≤brc

z+h∑
i=z+1

−b∗(Xj
i − b∗/2).

Recall that Xz+1, Xz+2, . . .
iid∼ Np(θ, Ip). Hence, by applying Chen et al. (2021, Lemma 6(b))

with a = 0, b = |b∗|/2 and c = brc/3, we have

Pz,θ
(⋂
j∈J

(Ωj
r)

c

)
=
∏
j∈J

Pz,θ
(
tjz+brc,b∗ ≤

2brc
3

)

≤
∏
j∈J

Pz,θ
(

largmax
0≤h≤brc

z+h∑
i=z+1

−b∗(Xj
i − b∗/2) ≥ brc

3

)

≤
∏
j∈J

Pz,θ
(

sup
h≥brc/3

z+h∑
i=z+1

−sgn(b∗)(X
j
i − b∗/2) ≥ 0

)
≤ exp

(
−|J |b2

∗brc/24
)
≤ exp

(
−sb2

∗brc/48
)
. (18)

We now work on the event Ωj
r, for some fixed j ∈ J . We note that (17) guarantees that

r ≥ 2, and thus tjz+brc,b∗ ≥
⌈
2brc/3

⌉
≥ 2. Then, by (16) and (17), we have r0 > 3tjz,b∗ , and

hence by Chen et al. (2021, Lemma 9),

brc
3

<
tjz+brc,b∗

2
≤ τ jz+brc,b∗ ≤

3tjz+brc,b∗
4

≤
3
(
tjz,b∗ + r

)
4

< r.

We conclude that
2/3 ≤ brc/3 < τ jz+brc,b∗ ≤ brc. (19)

Recall that Λ·,j
z+brc,b∗ ∈ Rp records the tail CUSUM statistics with tail length τ jz+brc,b∗ . We

observe by (19) that only post-change observations are included in Λ·,j
z+brc,b∗ . Hence we have

that
Λk,j
z+brc,b∗

∣∣ τ jz+brc,b∗ ind∼ N
(
θkτ jz+brc,b∗ , τ

j
z+brc,b∗

)
(20)

for k ∈ [p] \ {j}. By the definition of the effective sparsity of θ, the set

Lj :=

{
j′ ∈ [p] : |θj′| ≥ ϑ√

s log2(2p)
and j′ 6= j

}
has cardinality at least s− 1. Hence, by (19), for all k ∈ Lj,

|θk|
√
τ jz+brc,b∗ >

√
ϑ2brc

3s log2(2p)
=: ãr.
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We then observe, from (17), that

ãr > 2
(
a ∨

√
8 log 2

)
. (21)

Hence, from (20), we have for all k ∈ Lj that

Pz,θ
(

Ωj
r ∩
{
|Λk,j

z+brc,b∗| <
1

2
ãr

√
τ jz+brc,b∗

} ∣∣∣∣τ jz+brc,b∗) ≤ 1

2
e−ã

2
r/8 =: qr.

We denote

U j :=

∣∣∣∣{k ∈ Lj : |Λk,j
z+brc,b∗| <

1

2
ãr

√
τ jz+brc,b∗

}∣∣∣∣.
Then, by the Chernoff–Hoeffding binomial tail bound (Hoeffding, 1963, Equation (2.1)), we
have

Pz,θ
(

Ωj
r ∩
{
U j ≥ |Lj|/2

} ∣∣∣ τ jz+brc,b∗) ≤ exp

{
−|L

j|
2

log

(
1

4qr(1− qr)

)}
≤ exp

{
−|L

j|
2

(
ã2
r

8
− log 2

)}
≤ exp

(
−3|Lj|ã2

r

64

)
≤ exp

{
− ϑ2brc

128 log2(2p)

}
, (22)

where the penultimate inequality follows from (21). Now, on the event Ωj
r ∩
{
U j < |Lj|/2

}
,

we have∑
j′∈[p]:j′ 6=j

(
Λj′,j
z+brc,b∗

)2

τ jz+brc,b∗ ∨ 1
1{
|Λj
′,j
z+brc,b∗

|≥a
√
τ j
z+brc,b∗

} ≥ ∑
j′∈[p]:j′ 6=j

(
Λj′,j
z+brc,b∗

)2

τ jz+brc,b∗ ∨ 1
1{
|Λj
′,j
z+brc,b∗

|≥ 1
2
ãr

√
τ j
z+brc,b∗

}
≥ ã2

r

4

{
|Lj| −

(⌈ |Lj|
2

⌉
− 1
)}

=
ã2
r

4

⌈
|Lj|+ 1

2

⌉
≥ ϑ2brc

24 log2(2p)
≥ T off ,

(23)

where the penultimate inequality uses the fact that |Lj| ≥ s−1 and the last inequality follows
from (17). We now denote

Ẽj
r :=

{ ∑
j′∈[p]:j′ 6=j

(
Λj′,j
z+brc,b∗

)2

τ jz+brc,b∗ ∨ 1
1{
|Λj
′,j
z+brc,b∗

|≥a
√
τ j
z+brc,b∗

} < T off

}
.

Combining (18), (22) and (23), we deduce that

Pz,θ
(
N > z + r

)
≤ Pz,θ

(
N > z + brc

)
≤ Pz,θ

(⋂
j∈J

(Ωj
r)

c

)
+
∑
j∈J

Pz,θ
(
Ẽj
r ∩ Ωj

r

)
≤ Pz,θ

(⋂
j∈J

(Ωj
r)

c

)
+
∑
j∈J

Pz,θ
(
Ωj
r ∩
{
U j ≥ |Lj|/2

})
≤ exp

{
−sb

2
∗(r − 1)

48

}
+ p exp

{
− ϑ2(r − 1)

128 log2(2p)

}
,

as desired.

26



Lemma 7. Let p ≥ 2. Then the output N from ocd′, with inputs (Xt)t∈N, 0 < β ≤ ϑ,
a ≥

√
8 log(p− 1), T diag = log{16pγ log2(4p)} and T off = 8 log{16pγ log2(2p)}, satisfies

Pz,θ(N ≤ z) ≤ z

4γ
.

Proof. This follows from Chen et al. (2021, (16) in the proof of Theorem 1 and (31) in the
proof of Theorem 3).

Lemma 8. Let U ∼ N (0, φ1), V ∼ N (0, φ2 − φ1), Y ∼ N (αφ3, φ3) and Z ∼ N (αφ4, φ4) be
independent random variables.

(a) Assume that min{φ2, φ3}/4 ≥ κ ≥ φ1 ≥ 0 for some κ > 0. Then

P
(
|U + V + Y |√

φ2 + φ3

≥ |U + Y |√
φ1 + φ3

)
≤ exp

(
−κα

2

6

)
.

(b) Assume that min{φ1, φ3}/4 ≥ κ ≥ φ4 ≥ 0 for some κ > 0. Then

P
(
|U + Y + Z|√
φ1 + φ3 + φ4

≥ |Y |√
φ3

)
≤ exp

(
−κα

2

12

)
.

Proof. The case α = 0 is trivial in both cases, so without loss of generality, we may assume
α > 0 throughout the rest of the proof.
(a) Let

W1 :=
(√

φ2 + φ3 −
√
φ1 + φ3

)
(U + Y )−

√
φ1 + φ3 V,

so that

W1 ∼ N
(
αφ3

(√
φ2 + φ3 −

√
φ1 + φ3

)
,
{(√

φ2 + φ3 −
√
φ1 + φ3

)2
+ φ2 − φ1

}
(φ1 + φ3)

)
.

Hence, by the standard Gaussian tail bound used at the end of the proof of Lemma 5, we
have

P(W1 ≤ 0) ≤ 1

2
e−α

2/(2w1), (24)

where w1 := φ1+φ3

φ2
3

(
1 + φ2−φ1

(
√
φ2+φ3−

√
φ1+φ3)2

)
. Then

w1 =
φ1 + φ3

φ2
3

(
1 +

(√
φ2 + φ3 +

√
φ1 + φ3

)2

φ2 − φ1

)

≤ 5

16κ

(
1 +

(√
8κ+

√
5κ
)2

3κ

)
≤ 3

κ
, (25)

where the first inequality holds because w1 is increasing in φ1 and decreasing in both φ2 and
φ3. Hence, using the fact that −(U + V + Y ) ≤st U + V + Y , as well as (24) and (25), we
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have

P
(
|U + V + Y |√

φ2 + φ3

≥ |U + Y |√
φ1 + φ3

)
≤ P

({
U + Y√
φ1 + φ3

≤ U + V + Y√
φ2 + φ3

}
∩ {U + V + Y ≥ 0}

)
+ P

({
U + Y√
φ1 + φ3

≤ −U + V + Y√
φ2 + φ3

}
∩ {U + V + Y < 0}

)
≤ 2P

(
U + Y√
φ1 + φ3

≤ U + V + Y√
φ2 + φ3

)
= 2P(W1 ≤ 0) ≤ exp

(
−κα

2

6

)
,

as required.

(b) Let

W2 :=
(√

φ1 + φ3 + φ4 −
√
φ3

)
Y −

√
φ3(U + Z),

so that

W2 ∼ N
(
αφ3

√
φ1 + φ3 + φ4 − α(φ3 + φ4)

√
φ3,
{(√

φ1 + φ3 + φ4 −
√
φ3

)2
+ φ1 + φ4

}
φ3

)
.

Note that the assumption guarantees that E(W2) > 0. Hence, by the standard Gaussian tail
bound used at the end of the proof of Lemma 5, we have

P(W2 ≤ 0) ≤ 1

2
e−α

2/(2w2), (26)

where

w2 :=
(
√
φ1 + φ3 + φ4 −

√
φ3)2 + φ1 + φ4(√

φ3(φ1 + φ3 + φ4)− φ3 − φ4

)2 .

Calculating the partial derivatives of w2 with respect to φ1, φ3 and φ4 and simplifying the
expressions, we have

∂w2

∂φ1

=
(φ3 + φ4)

√
φ3 − (φ3 + 2φ4)

√
φ1 + φ3 + φ4√

φ1 + φ3 + φ4

(√
φ3(φ1 + φ3 + φ4)− φ3 − φ4

)3 ≤ 0,

∂w2

∂φ3

=
−
(√

φ1 + φ3 + φ4 −
√
φ3

)2[
3φ1 + φ4 +

(√
φ1 + φ3 + φ4 −

√
φ3

)2]
2
√
φ3(φ1 + φ3 + φ4)

(√
φ3(φ1 + φ3 + φ4)− φ3 − φ4

)3 ≤ 0,

∂w2

∂φ4

=
2φ1

(
2
√
φ1 + φ3 + φ4 −

√
φ3

)2
+ 3(φ3 + φ4)

(√
φ1 + φ3 + φ4 −

√
φ3

)2

2(φ1 + φ3 + φ4)
(√

φ3(φ1 + φ3 + φ4)− φ3 − φ4

)3

+
(φ1 + φ4)(φ3 + φ4)

2(φ1 + φ3 + φ4)
(√

φ3(φ1 + φ3 + φ4)− φ3 − φ4

)3 ≥ 0.

Thus w2 is increasing in φ4 and decreasing in both φ1 and φ3 and hence

w2 ≤
6

κ
. (27)
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Hence, using the fact that −(U + Y + Z) ≤st U + Y + Z, as well as (26) and (27), we have

P
(
|U + Y + Z|√
φ1 + φ3 + φ4

≥ |Y |√
φ3

)
≤ P

({
Y√
φ3

≤ U + Y + Z√
φ1 + φ3 + φ4

}
∩ {U + Y + Z ≥ 0}

)
+ P

({
Y√
φ3

≤ − U + Y + Z√
φ1 + φ3 + φ4

}
∩ {U + Y + Z < 0}

)
≤ 2P

(
Y√
φ3

≤ U + Y + Z√
φ1 + φ3 + φ4

)
= 2P(W2 ≤ 0) ≤ exp

(
−κα

2

12

)
,

as required.
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