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Chapter 1

Introduction

1.1 Historical Motivation

Historically, empirical process theory has one of its roots in the study of goodness of fit statistics.
The first goodness-of-fit statistic was Pearson’s chi-square statistic. Recall that for Pearson’s
goodness-of-fit test, to test whether independent and identically distributed (i.i.d.) real random
variables X1, . . . , Xn come from the distribution F , we partition the real line into intervals
(bins), indexed 1, . . . ,m, and compare Ei, the expected number of data points in the i-th
interval under the null distribution F , with Oi, the observed number. The null hypothesis
is rejected when the Pearson chi-square statistic

∑m
i=1(Oi − Ei)2/Ei is large compared with

a χ2
m−1 distribution. Pearson’s idea of binning discretises a continuous distribution into a

more tractable multinomial distribution, making the chi-square statistics easy to understand
and simple to implement. However, the downside of using bins is its arbitrariness and loss of
information during discretisation, leading to a loss in statistical power. To remedy this problem,
Kolmogorov [12] and Smirnov [15] introduced the statistics

Kn = sup
x∈R
|Fn(x)− F (x)|

to directly measure the maximum functional distance between the empirical distribution func-
tion Fn(x) =

∑n
i=1 1(Xi ≤ x) and the null distribution F . Cramér [3] and von Mises [14]

proposed

ωn =

∫
R

(Fn(x)− F (x))2ρ(x) dF (x)

to measured the weighted distance between the empirical distribution function and the null
distribution function. For example, when ρ(x) = 1, we get the Cramér–von Mises statistic and
when ρ(x) = 1

F (x)(1−F (x) , we get the Anderson–Darling statistic.
For applications, we need to know their distributions. Around the same time when these

goodness-of-fit statistics were proposed, Glivenko [11] and Cantelli [2] proved a result about
empirical distribution function that implies Kn

as→ 0.

Theorem 1.1 (Glivenko–Cantelli). If X1, X2, . . . are i.i.d. random variables with distribution
function F , then ‖Fn − F‖∞

as→ 0
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But we still need to know the rate of convergence to derive appropriate significance levels.
Kolmogorov [12] used a diffusion equation technique to give asymptotic distribution of

√
nKn,

whereas Smirnov [16] used a purely combinatorial argument to show the asymptotic distribu-
tion of Cramér–von Mises statistics. Feller [8] noted that Kolmogorov’s and Smirnov’s proofs
employed very intricate and completely different methods on problems with inherent similarity.
He argued for a unified approach to study all goodness-of-fit statistics that were based on em-
pirical distributions. Doob [5] went one step further and proposed to study empirical processes
on their own. He conjectured that the empirical distribution function of i.i.d. Unif[0,1] data
converges to the standard Brownian bridge G, which is defined as follows.

Definition 1.2. A standard Brownian bridge is a continuous stochastic process (G(t) : 0 ≤ t ≤
1) such that G(t) = B(t)− tB(1), where B is a standard Brownian motion.

The proof of this conjecture by Donsker [4] finally led to simpler and more natural proofs
of both Kolmogorov’s and Smirnov’s results, as we will see later in the application section of
this essay.

Theorem 1.3 (Donsker). If X1, X2, . . . are i.i.d. random variables with distribution function
F , then

√
n(Fn−F ) converges in distribution in the space of right-continuous functions on the

real line to GF := G ◦ F , where G is the standard Brownian bridge.

1.2 Basic Definitions

Empirical process theory developed as a vast generalisation of Theorems 1.1 and 1.3. We now
define the notions more carefully. Let X1, X2, . . . be i.i.d. random variables on a measurable
space X following an unknown distribution P . The empirical measure Pn is defined as the
discrete random measure on X given by the average of Dirac delta measures n−1

∑n
i=1 δXi ,

i.e. Pn(A) = n−1#{1 ≤ i ≤ n : Xi ∈ A} for measurable A ⊂ X . Suppose F is a collection
of measurable functions X → R, then the empirical measure induces a map F → R given
by f 7→ Pnf :=

∫
f dPn. This supplies an alternative interpretation on Pn: as a real-valued

stochastic process indexed by the set F . The central object of study in empirical process theory
is how Pn converges to the true distribution P .

Pointwise convergence of Pn to P is very well understood. For a fixed f , classical law
of large numbers and central limit theorem state that Pnf

as→ Pf and
√
n(Pnf − Pf)  

N(0, Pf2 − (Pf)2). We use the notation Zn  Z to denote convergence in distribution (when
Z is a general random element instead of a real-valued random variable, it is more customary
to refer to convergence in distribution as weak convergence). For many classes F , much more is
true than pointwise convergence. Empirical process theory investigates conditions under which
the law of large numbers and central limit theorem hold uniformly over F . It can be shown that
for classes F that are not too large in size, which we will make precise in subsequent chapters,
we have

‖Pn − P‖F := sup
f∈F
|Pnf − Pf |

as→ 0.

We use ‖ · ‖F to denote the the supremum of the expression over the set F . If the size of F
satisfies some additional conditions, we can further obtain rate of convergence of Pn−P . If we
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define Gn =
√
n(Pn − P ) to be the empirical process associated with the distribution P , then

Pn − P will converge to zero with a uniform rate of n−1/2 and the limiting distribution will be

Gn :=
√
n(Pn − P ) GP ,

where GP is called the Brownian bridge on F . That is, GP is a tight version of a zero-mean
Gaussian process on F with covariance function cov(Gf,Gg) = Pfg − PfPg. Recall that a
random element GP in the space `∞(F) is called tight if we can find increasing compact subsets
(Kn)n in `∞(F) such that P(GP ∈ Kn)→ 1.

Note that Theorems 1.1 and 1.3 are just special cases under the above framework, where
we take the class F to be {1(−∞,t] : t ∈ R}, the set of indicator functions of all left half lines.

1.3 Organisation of Chapters

Chapter 2 develops the necessary tools to understand and prove main results of empirical process
theory. The central statements of the empirical process theory are presented in Chapter 3.
These two chapters are mainly based on materials from van de Vaart and Wellner’s book “Weak
Convergence and Empirical Processes” [17] and van de Geer’s book “Applicaitons of Empirical
Process Theory” [10]. Presentation is reorganised so as to develop just enough theory to prepare
for the last chapter, and some of the measurability technicalities are glossed over since these
issues do not generally arise in statistical applications. Chapter 4 is the main focus of this
essay. We harness the power of the theory developed in previous chapters to derive asymptotic
properties of various statistical procedures in a unified approach.

1.4 Notations

Unless otherwise specified, we use C and K to denote positive constants throughout this essay.
Multiple occurrences in the same expression are understood to mean possibly different constants.
Also, as already mentioned, we denote supf∈F |T (f)| by ‖T‖F for conciseness.
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Chapter 2

Tools for Studying Empirical
Processes

In this chapter, we describe some of the central ideas and techniques used in the study of
empirical process theory.

2.1 Entropy

We first note that the uniform results ‖Pn − P‖F
as→ 0 and Gn  GP cannot be true for

every class of functions F . For instance, if P is absolutely continuous on X = Rd and we take
F = {1A : A ⊂ X measurable}, then ‖Pn − P‖F = 1 almost surely. This is because for every
configuration of X1, . . . , Xn, if one takes A = {X1, . . . , Xn}, then (Pn − P )1A = 1.

As can be seen from the previous example, a key condition for the uniform law of large
numbers and uniform central limit theorem to hold is that the size of the class F under inves-
tigation must not be too large. The notion of size is captured by the concept of ε-entropy, or
entropy for short.

Definition 2.1. Let (F , d) be a semimetric space. Then the ε-covering number N(ε,F , d) is
defined as the smallest number of balls of radius ε required to cover F . The ε-entropy number
is H(ε,F , d) = logN(ε,F , d).

In an information theoretic sense, the ε-entropy describes the amount of information needed
to specify a function in F up to an accuracy of ε measured in distance d. Note that a metric
space (F , d) is totally bounded if and only it has finite ε-entropy for every ε > 0.

A closely related concept is bracketing entropy. It requires further that the ε-approximation
of a function in F must be squeezed between a prescribed bracket.

Definition 2.2. Let (F , d) be a semimetric space. If l, u ∈ F , then the bracket [l, u] := {f ∈
F : l(x) ≤ f(x) ≤ u(x) ∀x} defines a subset of functions squeezed pointwise between l and u.
We call d(l, u) the size of the bracket. The ε-bracketing number NB(ε,F , d) is defined as the
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smallest number of brackets of size at most ε required to cover F . i.e.

NB(ε,F , d) = inf

{
n : ∃l1, u1, . . . , ln, un s.t.

n⋃
i=1

[li, ui] = F and d(ln, un) ≤ ε

}
.

The ε-bracketing entropy number is HB(ε,F , d) = logNB(ε,F , d).

We sometimes refer to the entropy of a set F as its covering entropy, so as to distinguish
it from the bracketing entropy. Some commonly used metrics d for the class of functions F
are Lp(Q)-norms for 1 ≤ p ≤ ∞, where Q a probability measure on X . By a slight abuse of
notation, we denote the ε-entropy and ε-bracketing entropy of Lp(Q)-norm by H(ε,F , Lp(Q))
and HB(ε,F , Lp(Q)) respectively.

2.2 Symmetrisation

We want to understand the behaviour of ‖Pn−P‖F . Instead of the original process (Pn−P )f =
n−1

∑n
i=1(f(Xi)− Pf) we consider the symmetrised process

f 7→ P◦nf :=
1

n

n∑
i=1

eif(Xi),

where e1, . . . , en are i.i.d. Rademacher variables (i.e. P(ei = 1) = P(ei = −1) = 1/2) indepen-
dent of Xi’s. The motivation is very much like randomisation in design of experiments: we first
introduce additional randomness into the system to ensure that conditional on observations, the
extra randomness smooth out extreme behaviours; then we use Fubini’s theorem to integrate
out the randomness.

Lemma 2.3 (Symmetrisation). E‖Pn − P‖F ≤ 2E‖P◦n‖F .

Proof. Let Y1, . . . , Yn be drawn independently from the same distribution P and let e1, . . . , en
be Rademacher variables independent of Xi’s and Yi’s. Then

E‖Pn − P‖F = EX sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

[f(Xi)− EY f(Yi)]

∣∣∣∣∣ ≤ EXEY sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

[f(Xi)− f(Yi)]

∣∣∣∣∣
= EeEX,Y sup

f∈F

∣∣∣∣∣ 1n
n∑
i=1

ei[f(Xi)− f(Yi)]

∣∣∣∣∣ ≤ 2EeEX sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

eif(Xi)

∣∣∣∣∣
= 2E‖P◦n‖F .

The first inequality is by Jensen’s inequality, second inequality is by triangle inequality. The
second equality is by symmetrisation and the last equality is by Fubini’s theorem.

There is a slight issue of measurability in the above proof when we take supremum and
introduce symmetrisation. To treat the measurability rigorously, we need to use outer measure
and outer expectation, which causes problem at the last step since Fubini’s theorem does not
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hold for iterated outer expectations. To address this issue, further measurability conditions
need to be enforced on the class F . We will not diverge in this direction here as in most
practical applications the measurability conditions on F are easily satisfied. For the purpose
of our essay, we will simply assume throughout that no measurability issue arises and continue
to use ordinary probability and expectation. We refer to van der Vaart and Wellner [17] for a
rigorous treatment of the measurability problem using outer expectation.

The previous lemma is a symmetrisation inequality on the first moment of the process
Pn − P . A similar symmetrisation result holds for the tail probability.

Lemma 2.4. Suppose P(|Pnf − Pf | > δ/2) ≤ 1/2 for all f ∈ F , then

P(‖Pn − P‖F > δ) ≤ 4P(‖P◦n‖F > δ/4).

The proof uses similar ideas to those in Lemma 2.3. For proof we refer to van de Vaart [17,
p. 112].

One advantage of studying symmetrised process instead of the original process is that con-
ditional on X1, . . . , Xn, the symmetrised process P◦n is what we call subgaussian, which means
the tail probability of increments has the at most the order of decay as a Gaussian process.
In other words, P(|P◦n(f) − P◦n(g)| > δ) ≤ Ce−Cδ

2/‖f−g‖L2(Pn) . This is a direct consequence of
Hoeffding’s inequality.

Lemma 2.5 (Hoeffding’s inequality). Suppose a1, . . . , an are constants and e1, . . . , en are in-
dependent Rademacher random variables, then

P
(∣∣∣∑ eiai

∣∣∣ > x
)
≤ 2e−

1
2
x2/‖a‖2 ,

where ‖a‖2 =
∑n

i=1 a
2
i .

Proof. The factor of 2 on the right hand side comes from the two symmetric tails. By Markov’s
inequality, for any real λ, we have

P

(
n∑
i=1

aiei > δ

)
≤ e−λδEeλ

∑n
i=1 aiei ≤ e(λ2/2)‖a‖2−λδ ≤ e−

1
2
δ2/‖a‖2 .

The second inequality uses independence of ei’s and Eeuei = (eu + e−u)/2 ≤ eu
2/2. Last

inequality is obtained by minimising over all real λ.

Corollary 2.6. The process
√
nP◦n is subgaussian with respect to the L2(Pn)-metric on F .

Proof. For f, g ∈ F , we have P◦nf −P◦ng = n−1
∑n

i=1 ei(f(Xi)− g(Xi)). Let ai = f(Xi)− g(Xi),
we have

P(
√
n|P◦nf − P◦ng| > δ) = P

(∣∣∣∑ eiai

∣∣∣ > √nδ) ≤ 2e−
1
2
nδ2/‖a‖2 = 2e

− 1
2
δ2/‖f‖2

L2(Pn) .

The subgaussian tail-bound will become useful when we apply maximal inequalities to em-
pirical processes in the next section.
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2.3 Maximal Inequalities

By symmetrisation and Hoeffding’s inequality, we have tail control of |P◦n(f)| for each individ-
ual f . Our goal is to translate this to tail control for supf∈F |P◦n(f)|. This is a problem of
maximal inequalities. Maximal inequalities play a central role in understanding uniform law
of large numbers and uniform central limit theorem in Chapter 3. For now, it is instructive to
temporarily leave the setting of empirical processes and study maximal inequalities in a slightly
more general setting.

Suppose {Xi : i ∈ I} is a collection of random variables which individually for each i
we have control of tail probability. Maximal inequalities aim to bound the tail probability of
X∗ = supi∈I Xi. We first consider the case where m = #I < ∞, i.e. X∗ is the maximum of
finitely many random variables.

It is often easier to work with moments of a random variable than tail probabilities per se.
For instance, a power law tail probability is equivalent to existence of corresponding Lp norm.
The norm that corresponds to an exponential tail turns out to be the Orlicz norm.

Definition 2.7. Let ψ be a convex increasing function with ψ(0) = 0. For a random variable
X, its Orlicz norm is defined as

‖X‖ψ = inf{K > 0 : Eψ(|X|/K) ≤ 1}.

When ψ(x) = xp, the Orlicz norm is precisely the Lp-norm. For us, Orlicz norms of the
most interest correspond to functions ψp(x) = ex

p − 1. We can check that ‖ · ‖ψ is indeed
a norm and different ψp-norms and Lp-norms are related by the following ordering (so they
induce increasingly stronger topologies):

‖X‖p . ‖X‖q . ‖X‖ψp . ‖X‖ψq , p < q. (2.1)

The relation between exponential tail probability and finite ψp-norm is summarised in the
following lemma.

Lemma 2.8. Let X be a random variable with ‖X‖ψp < ∞, then P(|X| > x) ≤ Ke−Cx
p
.

Conversely, if P (|X| > x) ≤ Ke−Cxp, then ‖X‖ψp ≤
(
1+K
C

)1/p
.

Proof. Assume X has finite ψp-norm. By Markov’s inequality,

P(|X| > x) ≤ P
(
ψp

(
|X|
‖X‖ψp

)
≥ ψp

(
x

‖X‖ψp

))
≤ 1

ψp(x/‖X‖ψp)
≤ Ke−Cxp .

Conversely, let D = C
1+K , then by Fubini’s theorem

Eψp(|X|/((1 +K)/C)1/p) = E(eD|X|
p − 1) = E

∫ |X|p
0

DeDt dt

=

∫ ∞
0

P(|X| > t1/p)DeDt dt ≤
∫ ∞
0

Ke−CsDeDs ds = KD/(C −D) = 1.
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By the above lemma, we can focus on the Orlicz norm of a maximum of finitely many
random variables. Using the fact that maxi |Xi|p ≤

∑
i |Xi|p, we can bound the Lp-norm of the

maximum by the maximum of the Lp-norms

‖ max
1≤i≤m

Xi‖p = (Emax
i
|Xi|p)1/p ≤

(∑
i

E|Xi|p
)1/p

≤ m1/p max
i
‖Xi‖p.

A similar inequality holds for general Orlicz norms. The factor m1/p will be replaced by ψ−1(m)
in the general setting. The following lemma shows this in the case ψ = ψp.

Lemma 2.9. Let X1, . . . , Xm be random variables, then∥∥∥ max
1≤i≤m

Xi

∥∥∥
ψp
≤ C log1/p(1 +m) max

1≤i≤m
‖Xi‖ψp .

Proof. Let ψ := ψp for simplicity. For x, y ≥ 1, we note that

ψ(x)ψ(y)/ψ(2xy) ≤ exp+yp/(e2xpyp − 1) ≤ Kexp+yp−2xpyp ≤ K,

where K = e2/(e2 − 1). Hence ψ(x/y) ≤ Kψ(2x)/ψ(y) for all x ≥ y ≥ 1. Define M =
maxi ‖Xi‖ψ.

max
1≤i≤m

ψ

(
|Xi|/2M

y

)
≤ max

i

[
Kψ(|Xi|/M)

ψ(y)
+ ψ

(
|Xi|
2My

)
1{
|Xi|
2My

<1
}]

≤
∑
i

Kψ(|Xi|/M)

ψ(y)
+ ψ(1).

Taking expectations on both sides, and choose y = ψ−1(2m), note that y ≥ 1:

Eψ
(

max |Xi|
2My

)
≤ Km

ψ(y)
+ ψ(1) ≤ K/2 + e− 1 ≤ 3.

Let φ = 1
3ψ, then ‖max |Xi|‖φ ≤ 2My = 2ψ−1(2m) max ‖Xi‖ψ. By convexity, we have ‖X‖ψ ≤

3‖X‖φ and ψ−1(2m) ≤ 2ψ−1(m). Hence the inequality in the lemma is true.

The previous lemma says that the Orlicz norm of maximum of a collection of m random
variables is at most a logm factor larger than the maximum of the Orlicz norms of these random
variables. However, this bound only works when m is finite. We now turn to the case when
the collection {Xt : t ∈ T} has infinite cardinality. Of course, the example that we have in
mind is {P◦n(f) : f ∈ F}. The maximal inequality in the infinite case is obtained via repeated
application of Lemma 2.9 through the use of a technique known as chaining. It turns out that
it is more useful to first consider maximal inequality of the increment of the process Xs −Xt

instead of that of the the process itself.

Theorem 2.10. Suppose {Xt : t ∈ T} is a separable process on T with increments ‖Xs−Xt‖ψ ≤
C d(s, t) for all s, t ∈ T , where d is a semimetric on T and C is a constant. Then∥∥∥ sup

d(s,t)≤δ
|Xs −Xt|

∥∥∥
ψp
≤ K

∫ δ

0
H1/p(ε, T, d) dε

for K depending on ψp and C only.
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Proof. It is convenient to work with packing numbers instead of covering numbers. The ε-
packing number D(ε, T, d) is defined as the maximum number of disjoint ε-radius balls that
can be packed (without overlapping) into T . It is easy to see that D(ε, T, d) ≤ N(ε, T, d), as
when we cover T , we need a separate ε-ball to cover each centre in a packing configuration.
Conversely, suppose we have a covering configuration, then using the same centres and halving
the radius will be a packing configuration, i.e. N(ε, T, d) ≤ D(ε/2, T, d).

Assume that ε-packing numbers are finite for all ε, otherwise the inequality in the theorem
is trivially true. Let T0 ⊂ T1 ⊂ · · · ⊂ T be chosen such that all pairs of points in Tj are
more than δ2−j apart in the metric and every point in T is within distance δ2−j to some point
in Tj . By definition of packing numbers, #Tj ≤ D(δ2−j , T, d). Define “points of level j” as
Sj = Tj r Tj−1 for j ≥ 1 and S0 = T0. For every sj+1 ∈ Sj+1, there is a unique sj ∈ Sj within
distance δ2−j to it; we say sj is the “parent” of sj+1 and write ↑s for the parent of s (for s ∈ Tj ,
j ≥ 1).

For any pair of points s, t ∈ Sk, by triangle inequality

|Xs −Xt| ≤ |Xs −X↑ks|+ |Xt −X↑kt|+ |X↑ks −X↑kt|

≤
k−1∑
i=0

|X↑is −X↑i+1s|+
k−1∑
i=0

|X↑it −X↑i+1t|+ |X↑ks −X↑kt|.

Take maximum over all s, t ∈ Sk satisfying d(s, t) ≤ δ and then take ψp-Orlicz norm of the
above inequality (to simplify notation, we will drop the subscript p in ψp below), we have∥∥∥ max

s,t∈Sk
d(s,t)≤δ

|Xs −Xt|
∥∥∥
ψ
≤ 2

k∑
i=1

∥∥∥max
s∈Si
|Xs −X↑s|

∥∥∥
ψ

+
∥∥∥ max
s,t∈Sk
d(s,t)≤δ

|X↑ks −X↑kt|
∥∥∥
ψ
. (2.2)

The first term on the right is bounded using Lemma 2.9

k∑
i=1

∥∥∥max
s∈Si
|Xs −X↑s|

∥∥∥
ψ
≤

k∑
i=1

log1/p(#Si) max
s∈Si
‖Xs −X↑s‖ψ ≤

k∑
i=1

log1/pD(δ2−j , T, d)Cδ2−i+1

≤ K
k∑
i=1

H1/p(δ2−j , T, d)δ2−j−1 ≤ K
∫ δ

0
H1/p(ε, T, d) dε.

Using a seemingly circular argument, we can bound the second term of (2.2) by the first term.
We note that

|X↑ks −X↑kt| ≤ |X↑ks −Xs|+ |X↑kt −Xt|+ |Xs −Xt|

Take maximum over all possible s0 =↑k s and t0 =↑k t ∈ S0, such that d(s, t) ≤ δ. Then take
the Orlicz norm.∥∥∥ max

s,t∈Sk
d(s,t)≤δ

|X↑ks −X↑kt|
∥∥∥
ψ
≤ 2

k∑
i=1

∥∥∥max
s∈Si
|Xs −X↑s|

∥∥∥
ψ

+
∥∥∥max |Xs −Xt|

∥∥∥
ψ
,

where the last maximum is taken over all pairs of representatives (s, t) ∈ Sk for (s0, t0) ∈ S0,
such that d(s, t) ≤ δ. Hence is the maximum over at most #S0 ×#S0 terms. The first term
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on the right hand side of the above inequality is bounded by the same entropy integral. The
second term is by Lemma 2.9 is bounded by Kδ log1/pD(δ, T, d), which can be absorbed into
the entropy integral by enlarging K. Thus,∥∥∥ sup

s,t∈Sk
d(s,t)≤δ

|Xs −Xt|
∥∥∥
ψp
≤ K

∫ δ

0
H1/p(ε, T, d) dε

But the right hand side does not depend on the level k. Hence the Orlicz norm of the supremum
over

⋃
i Ti =

⋃
i Si is also bounded by the entropy integral on the right hand side. Since the

process X is separable and
⋃
i Ti is dense by definition, the same bound holds when we take

supremum over all s, t ∈ T , d(s, t) ≤ δ.

The above theorem deals with maximal inequality of the increments of the process, which
can also be viewed as a statement of the continuity modulus of the process. It is one small step
away from the maximal inequality for the process itself.

Corollary 2.11. Under the same condition as in Theorem 2.10, for any t0 ∈ T ,∥∥∥ sup
t∈T
|Xt|

∥∥∥
ψp
≤ ‖Xt0‖ψp +K

∫ ∞
0

H1/p(ε, T, d) dε.

Proof. Take δ →∞ in Theorem 2.10 and use triangle inequality.

We remark here that although the above result is stated in terms of ψp-Orlicz norm, we can
translate it to Lp-norm immediately by invoking the relation (2.1).
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Chapter 3

Empirical Process Theory

With tools from Chapter 2 in hand, we are in a position to state and prove the main theorems
of empirical process theory.

3.1 Uniform Law of Large Numbers

Uniform law of large numbers are generalisations of Theorem 1.1. Recall that a class of mea-
surable functions F is called P -Glivenko–Cantelli, or simply Glivenko–Cantelli if

‖Pn − P‖F := sup
f∈F

∣∣∣n−1 n∑
i=1

f(Xi)− Pf
∣∣∣ as→ 0.

There are two types of conditions guaranteeing uniform convergence of the centred empirical
process to zero, given by bracketing entropy and (covering) entropy respectively. We start with
the more straightforward bracketing entropy version.

Theorem 3.1. Let F be a class of measurable functions such that the bracketing entropy
HB(ε,F , L1(P )) <∞ for every ε > 0. Then F is P -Glivenko–Cantelli.

Proof. Fix some ε > 0. By finiteness of bracketing entropy, there exists finitely many brackets
{[li, ui] : 1 ≤ i ≤ m} covering F . Then for every f ∈ [li, ui],

(Pn − P )f ≤ (Pn − P )ui + P (ui − f) ≤ max
1≤i≤m

(Pn − P )ui + ε.

(Pn − P )f ≥ (Pn − P )li + P (li − f) ≥ min
1≤i≤m

(Pn − P )li − ε.

The right hand sides are independent of f . As the maximum and minimum are both taken over
a finite set, classical strong law of large numbers shows lim sup ‖Pn − P‖F ≤ ε almost surely.
As ε is arbitrary, ‖Pn − P‖F

as→ 0.

The proof of the above theorem is essentially the same as that of the classical Glivenko–
Cantelli theorem, Theorem 1.1, where bracketing ensures that we can use approximation theory
to control the uniform convergence over F by approximating at finitely many marginals. The

13



next theorem uses covering entropy instead. As closeness in Lp(P )-norm provides no pointwise
guarantee, simple approximation theory is inapplicable. Instead, somewhat more complicated
condition involving entropy of a random norm is used. But as we will see later, this condition
can be easily verified for many classes of functions. A envelope condition on F is also needed.
By envelope of F we mean a function F : X → R+ such that |f | ≤ F pointwise for all f ∈ F .

Theorem 3.2. Let F be a class of measurable functions with an L1(P )-integrable envelope F .
Suppose for every ε,

H(ε,F , L1(Pn))

n

p→ 0,

then F is P -Glivenko–Cantelli.

Proof. Our strategy is to first show that E‖Pn − P‖F → 0, then use a reverse submartingale
argument to translate the convergence in mean to almost sure convergence.

Define FM = {f1{F≤M} : f ∈ F}. Then

E‖Pn − P‖F ≤ E‖Pn − P‖FM + 2PF1{F>M}.

The last term can be made arbitrarily small by choosing large M . So it suffices to show first
term on the right converges to zero in mean. Also as H(ε,FM , L1(Pn)) ≤ H(ε,F , L1(Pn)), we
may assume without loss of generality that F is bounded by M to start with.

By the symmetrisation lemma (Lemma 2.3) and Fubini’s theorem

E‖Pn − P‖F ≤ 2E‖P◦n‖F = 2EXEe‖P◦n‖F = 2EXEe
∥∥∥ 1

n

n∑
i=1

eif(Xi)
∥∥∥
F

We work with the inner e-expectation first. Conditional on X1, . . . , Xn, Pn is a fixed discrete
measure. Let G be an ε-net in F in L1(Pn)-metric, then #G = N(ε,F , L1(Pn)), and is finite
for large n. By triangle inequality,

Ee
∥∥∥ 1

n

n∑
i=1

eif(Xi)
∥∥∥
F
≤ Ee

∥∥∥ 1

n

n∑
i=1

eif(Xi)
∥∥∥
G

+ ε (3.1)

By Hoeffding’s inequality, for each f , 1
n

∑n
i=1 eif(Xi) has a subgaussian tail:

P

(∣∣∣∣∣ 1n
n∑
i=1

eif(Xi)

∣∣∣∣∣ > δ

)
≤ 2 exp

(
− nδ2

2‖f‖2L2(Pn)

)
,

so that by Lemma 2.8 its ψ2-Orlicz norm conditional on Xi’s (denote by ‖·‖ψ2|X) is bounded by√
6/n‖f‖L2(Pn), which is at most

√
6/nM . As L1-norm is bounded by a multiple of ψ2-norm,

we can apply Lemma 2.3 and bound first term on the right of (3.1) by

Ee
∥∥∥ 1

n

n∑
i=1

eif(Xi)
∥∥∥
G
≤ H1/2(ε,F , L1(Pn)) max

f∈G

∥∥∥ 1

n

n∑
i=1

eif(Xi)
∥∥∥
ψ2|X

≤M
√

6H(ε,F , L1(Pn))

n

p→ 0.
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Hence left hand side of (3.1) converges to zero in probability. Since we assume F is uniformly
bounded by M , using dominated convergence, we have EXEe‖P◦n‖F → 0.

Next we use a standard reverse submartingale trick to translate E‖Pn − P‖F → 0 to ‖Pn −
P‖F

as→ 0. Denote Σn the σ-field generated by all measurable functions of X1, X2, . . . that are
symmetric in X1, . . . , Xn. Define Pn,−i = n−1(δX1 + · · · + δXi−1 + δXi+1 + · · · + δXn+1). Then

Pn+1 − P = 1
n+1

∑n+1
i=1 (Pn,−i − P ). Taking supremum followed by conditional expectations we

get

‖Pn+1 − P‖F ≤
1

n+ 1

n+1∑
i=1

E
[
‖Pn,−i − P‖F

∣∣Σn+1

]
As Σn+1 is generated by permutation symmetric functions, all summands on the right hand
side are all equal. Thus,

‖Pn+1 − P‖F ≤ E
[
‖Pn − P‖F

∣∣Σn+1

]
,

i.e. ‖Pn − P‖F is a reverse submartingale in filtration (Σn). As reverse submartingale is
uniformly integrable, it converges in both L1 and almost surely to the same limit. Thus we
have ‖Pn − P‖

as→ 0.

We remark that condition of Theorem 3.1 implies the condition of Theorem 3.2. This is
because finiteness of brackets in L1(P )-norm implies integrability of the envelope function,
and the by law of large numbers, the finitely many ε-brackets can be covered by 2ε-radius
L1(Pn)-balls for all large n, i.e. H(2ε, F, L1(Pn)) = OP (1).

3.2 Uniform Central Limit Theorem

Uniform central limit theorems generalise Donsker’s theorem, Theorem 1.3. Recall that for
F a class of measurable functions, we define the empirical process as the centred and scaled
empirical measure Gn :=

√
n(Pn − P ). The class F is called P -Donsker, or simply Donsker, if

the empirical processes converge weakly to the Brownian bridge

Gn  GP in `∞(F).

By weak convergence we mean that for any bounded continuous function h : `∞(F) → R,
Eh(Gn) → Eh(GP ). Recall also that the Brownian bridge GP is defined as a tight zero-mean
Gaussian process with covariance functions

cov(GP f,GP g) = Pfg − PfPg.

By Kolmogorov’s extension theorem, zero-mean Gaussian process with prescribed covariance
always exists. The keyword in the above definition of a Brownian bridge is “tight”. It turns
out that tightness of the process is closely related to uniform continuity of its sample paths.
Intuitively, if the sample paths are uniformly continuous, then we may approximate the be-
haviour of the process at finitely many marginals. So we may construct a compact set in `∞(F)
using finitely many marginals to capture a large proportion of all sample paths. Suppose the
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Brownian bridge GP exists, then by classical multivariate central limit theorem, marginals of
Gn converges to that of GP weakly. It is a fact in weak convergence theory that weak conver-
gence of marginals (Gnf1, . . . ,Gnfk) (GP f1, . . . ,GP fk) imply weak convergence of processes
Gn  GP if and only if the processes Gn are asymptotically tight, which is further equivalent
to the condition that the space `∞(F) is totally bounded in the L2(P )-norm and processes Gn

are asymptotically L2(P )-equicontinuous. It will be too much digression to cover the technical
details in this essay. A detailed treatment of weak convergence theory can be found in the first
chapter of van der Vaart and Wellner [17]. The upshot of the above discussion is the following
characterisation of Donsker property.

Proposition 3.3. A class F is Donsker if and only if (a) it is totally bounded in the L2(P )-
norm and (b) Gn is asymptotically equicontinuous: for every ε > 0,

lim
δ↓0

lim sup
n→∞

P
(

sup
‖f−g‖L2(P )<δ

|Gn(f − g)| > ε
)

= 0.

Define Fδ := {f − g : f, g ∈ F , ‖f − g‖L2(P ) < δ}, then the asymptotic equicontinuity condition
is equivalent to the following statement: for every sequence δn ↓ 0

‖Gn‖Fδn
p→ 0. (3.2)

It is (3.2) that we will be checking. Note the similarity of (3.2) with uniform law of large
numbers. The same technology that we employed in Section 3.1 will be used to prove uniform
central limit theorems.

Similar to uniform law of large numbers, there are also two version of uniform central limit
theorems, using covering entropy and bracketing entropy respectively. However, unlike the two
theorems of the previous section, neither implies the other. We will start with the covering
entropy version. The integral entropy condition in the next theorem is referred to as the
uniform entropy condition, the uniformity is over the family MF of finite measures on X such
that

∫
F 2 dQ > 0 for the envelope function F . Note that the upper integration limit ∞ in the

condition below can be replaced by any positive number, since when ε > 1, F can be covered
by a single L2(Q)-ball of radius ‖F‖L2(Q) and so the integrand is zero. As such, the uniform
entropy condition can be understood as a statement about the rate of increase of entropy as
ε ↓ 0.

Theorem 3.4. Let F be a class of measurable functions. Suppose the envelope function F ∈
L2(P ) and ∫ ∞

0
sup

Q∈MF

H1/2(ε‖F‖L2(Q),F , L2(Q)) dε <∞,

then F is P -Donsker.

Proof. Fix a sequence δn ↓ 0. To show ‖Gn‖Fδn
p→ 0, it suffices by Markov’s inequality to show

E‖Gn‖Fδn → 0. By symmetrisation

E‖Gn‖Fδn ≤ 2E‖G◦n‖Fδn = 2EXEe
∥∥∥ 1√

n

n∑
i=1

eif(Xi)
∥∥∥
Fδn
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Conditional on X1, . . . , Xn, the inner e-expectation on the right hand side is bounded by∥∥∥ sup
f,g∈F

‖f−g‖L2(Pn)≤δn

1√
n

n∑
i=1

ei(f(Xi)− g(Xi))
∥∥∥
ψ2

.

By Corollary 2.6, for fixed f and g in F , we have ‖ 1n
∑n

i=1 ei(f(Xi) − g(Xi))‖ψ2 ≤
√

6‖f −
g‖L2(Pn). Hence we can apply Theorem 2.10

Ee
∥∥∥ 1√

n

n∑
i=1

eif(Xi)
∥∥∥
Fδn
.
∫ δn

0
H1/2(ε,Fδn , L2(Pn)) dε

. ‖F‖L2(Pn)

∫ δn/‖F‖L2(Pn)

0
H1/2(ε‖F‖L2(Pn),F , L2(Pn)) dε,

where the second inequality follows from the fact that H(ε,Fδn , L2(Pn)) ≤ H(ε,F∞, L2(Pn)) ≤
H(ε/2,F , L2(Pn)). Let An be the event {‖F‖L2(P ) ≤ 2‖F‖L2(Pn)}. On An, the last integral
above is bounded by ∫ 2δn/‖F‖L2(P )

0
sup

Q∈MF

H1/2(ε‖F‖L2(Q),F , L2(Q)) dε

which is independent of Xi’s and goes to zero as δn ↓ 0. The complement Acn has zero probability
asymptotically and on Acn the integral is bounded by the uniform entropy condition. Hence
taking expectation with respect to X1, . . . , Xn, we have E‖Gn‖Fδn → 0 as desired.

We remark that condition of Theorem 3.4 implies that of Theorem 3.1. To see this, notice
that the uniform entropy condition in Theorem 3.4 implies supnH(ε‖F‖L2(Pn),F , L2(Pn)) <∞.
By Cauchy–Schwarz inequality, L2-distance is larger than L1-distance, which means L2-entropy
is larger than L1-entropy. As ‖F‖L2(Pn) = OP (1), we get H(ε,F , L1(Pn)) = OP (1).

Theorem 3.5. Let F be a class of measurable functions with envelope F ∈ L2(P ) and∫ ∞
0

H
1/2
B (ε,F , L2(P )) dε <∞,

then F is P -Donsker.

The proof of Theorem 3.5 involves a chaining argument applied to unsymmetrised process
Gn, and uses Bernstein’s inequality in place of Hoeffding’s inequality. We omit the proof here.

3.3 Vapnik–Červonenkis Class

The versions of uniform law of large numbers and uniform central limit theorem using covering
entropy requires conditions that are not so straightforward to check in practice. Vapnik and
Červonenkis proposed a much easier to verify combinatorial condition on the class of functions F
that implies the uniform entropy condition in Theorem 3.4 (hence also condition in Theorem 3.1)
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but at the same time satisfied in a wide range of statistical applications. Classes of functions
F satisfying the Vapnik–Červonenkis condition will be called VC-classes. These are often the
most pleasant classes to work with in practice.

The uniform entropy condition states that the growth of L2(Q) entropy as ε ↓ 0 is not too
fast uniformly in Q ∈MF . More specifically, a uniform rate of

sup
Q∈MF

H(ε, ‖F‖L2(Q),F , L2(Q)) . (1/ε)2−δ ,

will guarantee convergence of the integral. As we will see, for VC-classes the rate of growth is
of order log(1/ε), much to spare from the polynomial growth described above.

Let C be a subset of X and {x1, . . . , xn} be n points in the same space. We say C ∈ C picks
out Y ⊆ {x1, . . . , xn} if C ∩ {x1, . . . , xn} = Y . We say that C shatters points {x1, . . . , xn} if
every subset of {x1, . . . , xn} is picked out by some set C ∈ C:

{{x1, . . . , xn} ∩ C : C ∈ C} = 2{x1,...,xn}.

If exists some finite n such that C shatters no set of size n, then we say C is a VC-class of sets.
The smallest such n is called the VC-index of C, denoted by V (C).

We illustrate with two examples. The collection of all left half lines, C = {(−∞, t] : t ∈ R},
shatters no two-point set in R, because the larger point can never be picked out alone. So C is
a VC-class of sets with V (C) = 2. The collection of all discs in R2 shatters no four-point set in
the plane. Because if the four points form a convex quadrilateral, then no disc can pick out two
non-adjacent vertices of the quadrilaterals alone; otherwise there is one point in the convex hull
of the other three, which means no disc can pick out the three outer points without including
the inner one. Hence the VC-index is 4.

Suppose C is a VC-class of VC-index k. Given {x1, . . . , xn} for n ≥ k, the fact that C does
not shatter the set means that C can pick out less than 2n subsets of it. In fact, the following
lemma shows that a much smaller proportion of the subsets can be picked out.

Lemma 3.6. Suppose C has VC-index k. Then for any n-point set {x1, . . . , xn} in the same
space, C can pick out at most

(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
k

)
subsets of the n-point set.

Proof. This well-known result in combinatorics has been proved independently by Vapnik,
Červonenkis, Sauer, Shelah and many others. We refer to an elegant algebraic combinatorial
argument proof given by Frankl and Pach [7].

The following probabilistic argument shows that for VC-classes of sets, the uniform entropy
condition is automatically satisfied.

Theorem 3.7. If C is a VC-class of sets, then for any δ > 0 and any probability measure Q,

N(ε, C, Lr(Q)) ≤ K
(

1

ε

)r(V (C)−1+δ)
,

for constant K depending on V (C) and δ only.
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Proof. It suffices to show the inequality for the packing number m = N(ε, C, Lr(Q)). By defi-
nition of the packing number, there exists C1, . . . , Cm ∈ C such that the symmetric differences
satisfies Q(Ci∆Cj) ≥ εr. Take X1, . . . , Xn i.i.d. sampled from Q. Let A be the evet that every
Ci picks out a different subset from {X1, . . . , Xn}. Then

P(Ac) = P(
⋃

1≤i<j≤m
{Ci and Cj pick out same subset}) = P(

⋃
1≤i<j≤m

n⋂
k=1

{Xk /∈ Ci∆Cj})

≤
∑

1≤i<j≤m
(1−Q(Ci∆Cj))

n ≤
(
m

2

)
(1− εr)n ≤

(
m

2

)
e−ε

rn

For n = 2 logm
εr (or the nearest integer to this, which does not affect the result), we have(

m
2

)
e−ε

rn < M2e−ε
rn = 1. Hence for such n, P(A) > 0. In other words, exists x1, . . . , xn ∈ X

such that C picks out at least m different subsets of {x1, . . . , xn}. So by Lemma 3.6,

m ≤
(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

V (C)− 1

)
≤ V (C)nV (C)−1 = V (C)

(
2 logm

εr

)V (C)−1
.

For any δ, logm ≤ Kmδ for constant K depending on δ, hence we obtain the required result.

Note that Theorem 3.7 says the covering number grows polynomially as ε → 0, uniformly
over all probability measure Q. This is a much stronger statement than needed by the uniform
entropy condition, which roughly requires the covering number to grow at most exponentially
with order like exp((1/ε)2−δ) as δ → 0, uniformly over all discrete probability measure.

We have so far restricted to classes of sets. Similar statements hold for classes of functions.
The subgraph of a function f : X → R is defined as sub(f) := {(x, t) ∈ X × R : t ≤ f(x)}.
We define a class of functions F to be a VC-subgraph-class, or simply VC-class, if the class of
subgraphs {sub(f) : f ∈ F} is a VC-class over the space X ×R. The VC-index V (F) is defined
as the VC-index of the class of subgraphs.

Theorem 3.8. If F is a VC-subgraph-class of functions with envelope F , then for any δ > 0,
any probability measure Q such that ‖F‖Lr(Q) > 0,

N(ε‖F‖Lr(Q),F , Lr(Q)) ≤ K
(

1

ε

)r(V (F)−1+δ)
,

for constant K depending on V (C) and δ only. Hence, VC-subgraph-classes are Glivenko–
Cantelli and Donsker classes.

Proof. Let C be the set of subgraphs of f ∈ F . By Fubini’s theorem, Q|f − g| = Q ×
λ(sub(f)∆sub(g)) where λ is the Lebesgue measure. Renormalise Q×λ to P = (Q×λ)/(2QF ),
which is a probability measure on {(x, t) : −F (x) ≤ t ≤ F (x)}. Apply Theorem 3.7 to C we get

N(ε‖F‖L1(Q),F , L1(Q)) = N(ε/2, C, L1(P )) ≤ K
(

1

ε

)V (F)−1+δ
.
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This is the desired result for r = 1. In general, for r ≥ 2, we define a new probability measure

R by dR = (2F )r−1

Q(2F )r−1dQ. Then

‖f − g‖rLr(Q) =

∫
|f − g|r dQ ≤

∫
|f − g|(2F )r−1 dQ = Q(2F )r−1

∫
|f − g| dR

= Q(2F )r−1‖f − g‖L1(R).

Hence ‖f − g‖L1(R) ≤ (ε/2)rR(2F ) implies ‖f − g‖Lr(Q) ≤
(
(ε/2)r

∫
(2F )r dQ

)1/r
= ε‖F‖Lr(Q).

In other words,

N(ε‖F‖Lr(Q),F , Lr(Q)) ≤ N((ε/2)r‖2F‖L1(R),F , L1(R)).

The right hand side has the desired bound after applying the L1 result above.

We define the symmetric convex hull of F , denoted sconF , to be all linear combinations∑m
i=1 aifi for fi ∈ F and

∑
|ai| ≤ 1. Suppose F is a VC-subgraph class. The closure of

symmetric convex hull sconF is a set much larger than F , which is unlikely to be a VC-subgraph
class. But its size is not too large in the sense that its entropy numbers are well-controlled.
We omit the proof of the following fact, which implies that the uniform entropy condition is
satisfied for closure of symmetric convex hull of VC-subgraph classes.

Theorem 3.9. Suppose F is a VC-subgraph-class of functions with envelope F . Then

sup
Q∈M

H(ε‖F‖L2(Q), sconvF , L2(Q)) ≤ K
(

1

ε

)2V (F)/(V (F)+2)

where M the set of all probability measures on X . In particular, sconvF is Donsker.
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Chapter 4

Statistical Applications

Historically, empirical process theory developed out of the need to address statistical conver-
gence problems in a rigorous and unified way. It has since developed into an indispensable
tool in modern statistical theory. In this Chapter, we give some examples where empirical
process theory is used in statistics. We divide the chapter into three sections. The first section
concerns with the statistics directly derived from empirical processes themselves. The second
section investigate statistical functionals of the underlying empirical processes. Last section
shows a more sophisticated application of the theory in nonparametric maximum likelihood
estimation.

4.1 Direct Applications

The original motivation and one of the first applications of empirical process theory is to under-
stand goodness-of-fit test statistics such as Kolmogorov–Smirnov statistic, Cramér–von Mises
statistic and Anderson–Darling statistic.

Example 1 (Kolmogorov–Smirnov statistic). Recall that the Kolmogorov–Smirnov statistic is
defined as the scaled uniform distance between the empirical distribution function Fn and the
null distribution function F :

Kn =
√
n sup
t∈R
|F (t)− Fn(t)|.

We know from Donsker theory that
√
n(F −Fn) GF , where GF = G ◦F for G the standard

Brownian bridge. Hence by continuous mapping theorem, we have

Kn  sup
t∈[0,1]

|G(t)|.

It therefore suffices to just study the standard Brownian bridge to obtain asymptotic confidence
intervals for the Kolmogorov–Smirnov statistics. Using reflection principle for Brownian motion,
we can show P(G(t) = x for some t ∈ [0, 1]) = e−2x

2
. Then a inclusion-exclusion argument

shows (see Dudley[6, p.461] for details)

P( sup
t∈[0,1]

|G(t)| ≤ x) = 1− 2
∞∑
k=1

(−1)k−12e−2k
2x2 .
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Cramér–von Mises statistic and Anderson–Darling statistic are both examples of quadratic
empirical distribution function statistics. They are of the form

ωn =

∫
R

(Fn(t)− F (t))2ρ(t) dF (t).

Cramér–von Mises statistic corresponds to ρ(t) = 1 and Anderson–Darling statistic corresponds
to ρ(t) = 1

F (t)(1−F (t)) . They can be studied as generalised Kolmogorov–Smirnov statistics of
the so-called elliptical classes. The elliptical classes are defined and shown to be Donsker in the
following lemma.

Lemma 4.1. Let {fi} be a sequence of measurable functions such that
∑∞

i=1 Pf
2
i < ∞ and

Pfifj = 0. Then

F =

{ ∞∑
i=1

cifi : series is convergent pointwise and
∞∑
i=1

c2i ≤ 1

}
is called an elliptical class. The class F is P -Donsker.

Proof. Since
∑
ci ≤ 1, the class F is bounded in L2. The partial sums

∑M
i=1 cifi approximates

F in L2. Hence, F is totally bounded. By Proposition 3.3, F is P -Donsker if we can show that
it is asymptotically L2(P )-equicontinuous. Write f =

∑
i cifi and g =

∑
i difi. By Cauchy–

Schwarz inequality, and the fact that EG2
n(f) ≤ Pf2,

E|Gn(f)−Gn(g)|2 = E|Gn(f)−Gn(g)|2 = E

∣∣∣∣∣
∞∑
i=1

(ci − di)Gn(fi)

∣∣∣∣∣
2

≤ 2E

∣∣∣∣∣
M∑
i=1

(ci − di)Gn(fi)

∣∣∣∣∣
2

+ 2E

∣∣∣∣∣
∞∑

i=M+1

(ci − di)Gn(fi)

∣∣∣∣∣
2

≤ 2E

(
M∑
i=1

(ci − di)2Pf2i
M∑
i=1

G2
n(fi)

Pf2i
+ 2E

∞∑
i=M+1

(ci − di)2
∞∑

i=M+1

G2
n(fi)

)

≤ 2M‖f − g‖2L2(P ) + 8
∞∑

i=M+1

Pf2i .

By first choosing M large then choose ‖f−g‖2L2(P ) small we can make right hand side arbitrarily
small. Thus by Markov’s inequality, we have

lim
δ↓0

lim sup
n→∞

P

(
sup

‖f−g‖L2(P )≤δ
|Gn(f − g)| > ε

)
= 0.

Thus, F is P -Donsker.

The Kolmogorov–Smirnov statistic indexed by an elliptical class F , ‖Gn‖F , has the following
nice series representation by Cauchy–Schwarz inequality,

‖Gn‖2F = sup
f

∣∣∣ ∞∑
i=1

ciGn(fi)
∣∣∣2 =

∑
i

G2
n(fi).
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Hence asymptotically ‖Gn‖2F  
∑

i ‖fi‖L2(P )Z
2
i , where Zi’s are i.i.d. standard normal random

variables.

Example 2 (Cramér–von Mises statistics). We first note that by a change of variable F (t) 7→ t,
the Cramér–von Mises statistic can be rewritten in the distribution-free form

n

∫ ∞
t=−∞

(F (t)− Fn(t)) dF (t) =

∫ 1

0
G2
n(t) dt.

Take {
√

2 sin(iπt) : i = 1, 2, . . .} as an orthogonal basis of L2[0, 1]. Then by Parseval’s identity
and integration by parts,∫ 1

0
G2
n(t) dt =

∑
i

(∫
[0,1]

Gn(t)
√

2 sin(iπt) dt

)2

=
∞∑
i=1

G2
n

(√
2

iπ
cos(iπt)

)
.

Thus, the Cramér–von Mises statistic can be represented as ‖Gn‖F for the elliptical class F
generated by {fi =

√
2
iπ cos(iπt) : i = 1, 2 . . .}. So asymptotically, Cramér–von Mises statistic has

distribution of
∑∞

i=1
Z2
i

i2π2 for i.i.d. standard normals. The following table shows the asymptotic
upper quantiles of the statistic computed through simulations.

quantile 90% 95% 99%
Cramér–von Mises statistic 0.347 0.461 0.743

Example 3 (Anderson–Darling statistic). The Anderson–Darling statistic can also be written
in a distribution-free way

n

∫
R

F (t)− Fn(t)

F (t)(1− F (t))
dF (t) =

∫ 1

0

G2
n(t)

t(1− t)
dt.

Let {pi : i = 1, 2, . . .} be orthonormal Legendre polynomials in L2([−1, 1]). Then {
√

2{pi(2t−
1) : i = 1, 2, . . .} form an orthonormal basis in L2([0, 1]). Legendre polynomials satisfy the
differential equation (1− u2)p′′i − 2up′i + j(j + 1)pj = 0. Hence by integration by parts,∫ 1

0
p′i(2t− 1)p′j(2t− 1)t(1− t) dt =

1

8

∫ 1

−1
p′i(u)p′j(u)(1− u2) du

= −1

8

∫ 1

−1
pi(u)(p′′j (u)(1− u2)− 2up′j(u)) du

=
1

8
j(j + 1)

∫ 1

−1
pi(u)pj(u) du =

j(j + 1)

8
δij .

Therefore, functions {2
√

2p′i(2t − 1)
√
t(1− t)/

√
i(i+ 1) : i = 1, 2, . . .} is also an orthonormal

basis of L2([0, 1]). Let fi(t) =
√

2
i(i+1)pi(2t − 1) and form the elliptical class F = {fi : i =

1, 2, . . .}. By Parseval’s identity and partial integration∫ 1

0

G2
n(t)

t(1− t)
dt =

∞∑
i=1

8

i(i+ 1)

(∫ 1

t=0
Gn(t)p′i(2t− 1) dt

)

=

∞∑
i=1

2

i(i+ 1)
(Gn(pi(2t− 1)))2 =

∞∑
i=1

G2
n(fi)
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Consequently, the Anderson–Darling statistic has an asymptotic distribution
∑∞

i=1
Z2
i

i(i+1) where
Zi’s are i.i.d. standard normals. The following table shows the asymptotic upper quantiles of
the Anderson–Darling statistic, estimated using simulation methods.

quantile 90% 95% 99%
Anderson–Darling statistic 1.93 2.49 3.86

4.2 Functional Delta Method

Recall that in ordinary delta method, if Xn ∈ Rd,
√
n(Xn − θ) Y for some fixed θ ∈ Rd and

φ : Rd → Rd is differentiable at θ, then by Slutsky’s theorem

√
n(φ(Xn)− φ(θ)) =

φ(Xn)− φ(θ)

Xn − θ
√
n(Xn − θ) φ′(θ)Y.

This section generalises this idea to a map φ : D → E between normed spaces D and E. The
example we have in mind is D = `∞(R), E = R and φ a statistical functional such as mean,
median, range, quantiles etc. We wish to show a similar result as in the classical case, i.e. when
rn(Xn−θ) Y , then rn(φ(Xn)−φ(θ)) φ′(θ)Y , for some suitable definition of φ′(θ) : D → E.
It turns out that the appropriate form of differentiability to consider in the normed space case
is Hadamard differentiability.

Definition 4.2. Let D ,E be normed spaces. A map φ : domφ ⊆ D → E is Hadamard
differentiable at φ ∈ D if there exists a continuous linear map φ′θ : D → E such that for all
tn ↓ 0, hn → h and θ + tnhn ∈ dom θ,

φ(θ + tnhn)− φ(θ)

tn
→ φ′θ(h) as n→∞.

Hadamard differentiability is a similar but stronger notion of directional differentiability.
The latter is defined by

φ(θ + tnh)− φ(θ)

tn
→ φ′θ(h) ∀tn ↓ 0.

Similar to directional differentiability (also called Gateaux differentiability), in Hadamard dif-
ferentiability we are only concerned with derivatives along each direction h, but we allow the
change tnhn to vary slightly near the direction of h, only requiring them to converge to the
h direction in the limit. In directional derivative, sometimes φ does not have derivatives in
all directions. Similarly, in Hadamard derivatives, φ′θ may only be defined for a subset of h’s,
say in D0 ⊆ D, among all directions. In this case, we say that φ is Hadamard differentiable
tangentially to D0.

As in ordinary differentiation, Hadamard differentiation satisfies the chain rule.

Lemma 4.3. If φ : domφ ⊆ D → E is Hadamard differentiable at θ ∈ D tangentially to
D0, ψ : domψ ⊆ E → F is Hadamard differentiable at φ(θ) tangentially to φ′θ(D0), then
ψ ◦ φ : D → F is Hadamard differentiable at θ tangentially to D0 with (ψ ◦ φ)′θ = ψ′φ(θ) ◦ φ

′
θ.
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Proof. Let hn → h and tn → 0. Let kn = φ(θ+tnhn)−φ(θ)
tn

, then kn → φ′θ(h) by Hadamard
differentiability of φ. Hence

(ψ ◦ φ)′θ(h) = lim
n

ψ ◦ φ(θ + tnhn)− ψ ◦ φ(θ)

tn
=
ψ(φ(θ) + tnkn)− ψ(φ(θ))

tn
= ψ′φ(θ)(limn

kn) = ψ′φ(θ)(φ
′
θ(h)).

The functional delta method can be formulated in terms of the Hadamard derivatives.

Theorem 4.4 (Functional Delta Method). Let D and E be normed spaces. Let φ : D → E
be Hadamard differentiable at a fixed element θ tangentially to D0. Let (Xn) be a sequence of
random elements in domφ such that rn(Xn − θ)  Y with rate constants rn → ∞ and Y a
separable random element in D0. Then

rn(φ(Xn)− φ(θ)) φ′θ(Y ).

Proof. Let gn(h) = rn(φ(θ+r−1n h)−φ(θ)). Since r−1n → 0, gn(hn)→ φ′θ(h) for all hn → h ∈ D0

by Hadamard differentiability. Then by continuous mapping theorem, gn(rn(Xn−θ)) φ′θ(Y ),
i.e. rn(φ(Xn)− φ(θ)) φ′θ(Y ).

Functional delta method allows us to translate rate of convergence of the empirical pro-
cesses to rate of convergence of functionals of empirical processes and provides an asymptotic
distribution as well.

Example 4 (Empirical Quantiles). Fix 0 < p < 1. Let F be a distribution function. The p-th
quantile of F is defined as

F−1(p) := inf{x : F (x) ≥ p}.

If we estimate F by the empirical distribution function Fn, then F−1n (p) is called the empirical
p-th quantile. The following lemma shows that under some not too stringent conditions, the
empirical quantiles converge to the true quantile with asymptotic normality.

Lemma 4.5. Fix 0 < p < 1. Let F be a distribution function such that is differentiable at
F−1(p) with positive derivative f(F−1(p)). Then

√
n(F−1n (p)− F−1(p)) − G(p)

f(F−1(p))
∼ N

(
0,

p(1− p)
f(F−1(p))2

)
,

where G is the standard Brownian bridge.

Proof. Define the functional φ : `∞(R)→ R by φ(F ) = inf{x : F (x) ≥ p}. Then φ(F ) = F−1(p)
and φ(Fn) = F−1n (p). Let ht → h in `∞(R) as t ↓ 0 and h is continuous at F−1(p).

We first claim that φ is Hadamard differentiable at F tangentially to h with

φ′F (h) = −h(φ(F ))

F ′φ(F )

= −h(F−1(p))

f(F−1(p))
.
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To simplify notation, we denote ξp = F−1(p) and ξpt = (F + tht)
−1(p). Note by definition of

the quantile,
(F + tht)(ξpt − εt) ≤ p ≤ (F + tht)(ξpt)

for any εt. Choose εt ↓ 0 as t ↓ 0. As hn is uniformly bounded, the leftmost side is F (ξpt −
εt) + O(t) and the rightmost side is F (ξpt) + O(t). By positivity of derivative of F at ξp, the
only way for p = F (ξp) to be squeezed between them is that ξpt → ξp. Using Taylor’s theorem,

(F + tht)(ξpt − εt) = F (ξp) + (ξpt − εt − ξp)F ′(ξp) + o(ξpt − εt − ξp) + tht(ξp) + o(t)

= p+ (ξpt − ξp)F ′(ξp) + o(ξpt − ξp) + th(ξp) + o(t)

And we get exactly the same asymptotic expression for (F + tht)(ξpt). Thus, ξpt − ξp =
O(th(ξp)) = O(t). Substitute it in, we get (ξpt − ξp)F

′(ξp) + th(ξp) = o(t). Divide by t
and take the limit, we get

φ′F (h) = lim
t↓0

ξpt − ξp
t

= −h(ξp)

f(ξp)

From this, we apply the functional delta method. Using the fact that
√
n(Fn−F ) = GF = G◦F ,

which is continuous at F−1(p), we get

√
n(F−1n (p)− F−1(p)) =

√
n(φ(Fn)− φ(F )) φ′F (GF ) = −GF (F−1(p))

f(F−1(p))
= − G(p)

f(F−1(p))
.

The last term is normally distributed with mean zero and variance p(1− p)/f2(F−1(p)).

Example 5 (Wilcoxon–Mann–Whitney statistic). Supposes X1, . . . , Xm are drawn from dis-
tribution F and Y1, . . . , Yn from G. The Wilcoxon–Mann–Whitney statistic is used to test
whether F and G are identical. It is defined as

Um,n =
1

n2

m∑
i=1

n∑
j=1

1{Xi≤Yj} =

∫
Fm dGn.

Let BV (R) be the vector space of functions with bounded variations, which is also the vector
space generated by all distribution functions. If we define φ : BV (R)×BV (R)→ R such that
φ(A,B) =

∫
AdB, then U = φ(Fm, Gn) is the empirical estimate of φ(F,G) =

∫
F dG = P(X ≤

Y ). We claim first that φ is Hadamard differentiable with

φ′A,B(a, b) =

∫
Adb+

∫
a dB.

Let at → a and bt → b. We need to check that

1

t

(∫
(A+ tat) d(B + tbt)−

∫
AdB

)
−
(∫

Adb+

∫
a dB

)
= o(1).

This can be easily verified upon expansion and noting that the expression for φ′A,B(a, b) given
above is continuous in a and b.
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Now, let m,n go to infinity such that m/(m+ n)→ λ. By Donsker’s theorem,√
mm/(m+ n)(Fm − F,Gn −G) (

√
1− λGF ,

√
λGG).

Using the Hadamard differentiability and functional delta method, we have√
mn

m+ n

(∫
Fm dGn −

∫
F dG

)
 φ′F,G(

√
1− λGF ,

√
λGG)

=
√
λ

∫
F dGG +

√
1− λ

∫
GF dG.

The stochastic integral
∫
F dGG is zero-mean gaussian since GG is gaussian. By Itō’s isometry,∫

F dGG has variance

E
[∫

F dGG

]2
= E

[∫
F 2 d[GG]

]
=

∫
F 2 dG = varF (Y ),

where [·] denotes quadratic variation. As
∫
GF dG = −

∫
GdGF , we similarly have

∫
GF dG

being zero mean normal random variable with variance varG(X). In conclusion, the Wilcoxon–
Mann–Whitney statistic is asymptotically normal with asymptotic distribution√

mn

m+ n
(Um,n − P(X ≤ Y )) N(0, λvarF (Y ) + (1− λ)varG(X)).

Under the null hypothesis, P(X ≤ Y ) = 1/2 and both F (Y ) and G(X) are uniform in [0, 1]. So
we have

√
mn/(m+ n)(Um,n − 1/2) N(0, 1/12).

4.3 Nonparametric Maximum Likelihood Estimators

Next we use empirical process theory to derive consistency and rate of convergence of certain
nonparametric maximum likelihood estimators. This section largely follows from the paper by
van de Geer [9]. Let F be a class of densities with respect to some dominant measure µ on the
measurable space X . Let P0 be the probability measure associated with the density f0 ∈ F
and let X1, . . . , Xn be i.i.d. random variables drawn from the distribution P0. The maximum
likelihood estimator f̂n of f0 is defined as a maximiser of the quantity

Pn log f =
1

n

n∑
i=1

log f(Xi).

We assume throughout that such a maximiser exists. To study the consistency and rate of
convergence of f̂n to f0, we need some metric on the set F . A convenient metric is the Hellinger
metric, defined by

h2(f1, f2) =
1

2
‖
√
f1 −

√
f2‖L2(µ) =

1

2

∫
(
√
f1 −

√
f2)

2 dµ.
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Note we can also rewrite h2(f1, f2) = 1 −
∫ √

f1f2 dµ, so Hellinger distance is a real number
between 0 and 1. Consistency and rate of convergence in the Hellinger metric often implies the
same in other metrics, as we will see later. The convenience of working in Hellinger metric is
primarily due to the following inequality, which bound the Hellinger distance between the MLE
and the true density by an empirical process.

Lemma 4.6. We have

h2(f̂n, f0) ≤ (Pn − P0)(

√
f̂n/f0 − 1)1f0>0.

Proof. From definition,

h2(f̂n, f0) = 1−
∫ √

f̂nf0 dµ =

∫
f0>0

1−
√
f̂n/f0 dP0.

and

0 ≤ 1

2

∫
f0>0

log(f̂n/f0) dPn ≤
∫
f0>0

(

√
f̂n/f0 − 1) dPn.

Adding the equation and the inequality above we get the desired result.

The significance of the above lemma is that it translates the problem about Hellinger con-
sistency to a problem of empirical proccess theory. Write g(f) = (

√
f/f0 − 1)1f0>0. Then it

suffices to show uniform law of large numbers for the class G = {g(f) : f ∈ F}.
Furthermore, the lemma is also instrumental in proving rates of convergence for MLEs.

The idea is as follows. We note that h2(f̂n, f0) =
∫
f0>0(

√
f̂n/f0 − 1)2 dP0 = P0g(f̂n)2. Thus,

if we define Tn to be the operator on G such that Tn(g) = (Pn−P0)g
P0g2

, then Lemma 4.6 says

Tn(g(f̂n)) ≥ 1. Let δn be a suitably chosen sequence. For each j ≥ 0, we define neighbourhoods
Gj,n = {g ∈ G : ‖g‖L2(P0) ≤ 2jδn} around g(f0) = 0. Then supg∈GrGJ,n Tng < 1 implies

g(f̂n) ∈ GJ,n, which is the same as h(f̂n, f0) ≤ 2Jδn. So a rate of convergence result would
follow from

lim
J→∞

lim sup
n→∞

P

(
sup

g∈GrGJ,n
Tn(g) ≥ 1

)
= 0.

The choice of the sequence δn depends on the rate at which supg(Pn − P0)(g) goes to zero as
n→∞. As we have seen in Chapter 3, this is controlled by entropy integrals through chaining.
The details of the rate of convergence computation is spelled out in the following technical
lemma.

Lemma 4.7. Let G and neighbourhoods Gj,n be defined as above. Suppose G is uniformly
bounded. Let {δn} be a sequence such that nδ2n ≥ 1 and

lim
j→∞

lim sup
n→∞

√
HB(δn,Gj,n, L2(P0))√

n2jδn
= 0 (4.1)

and

lim sup
n→∞

P

( ∞∑
i=1

√
H(2−iδn,Gj,n, L2(Pn))

2i
√
n2jδn

> βj for some j

)
= 0, (4.2)
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where βj → 0. Then h(f̂n, f0) = OP (δn).

Proof. Denote the radius of the neighbourhood Gj,n to be rj,n = 2jδn. And denote the two
entropy quantities in the lemma by

αj,n =

√
HB(δn,Gj,n, L2(P0))√

n2jδn
,

βj,n =
∞∑
i=1

√
H(2−iδn,Gj,n, L2(Pn))

2i
√
n2jδn

.

Our assumption 4.2 says that asymptotically as n → ∞, βj,n ≤ βj for all j almost surely. As
the statement we want to prove is probabilistic, we may discard an event with arbitrarily small
probability and assume βj,n ≤ βj for all large n.

We claim that for sufficiently large j,

P
(
‖P◦n‖Gj,n ≥ ar2j,n

)
≤ exp(−C22j). (4.3)

We first see how the lemma follows from the above claim. By Chebyshev’s inequality,

P(|Tng| ≥ a/2) ≤ 4

a2
Var

[
(Pn − P0)g

‖g‖2L2(P0)

]
≤ 4

na2‖g‖2L2(P0)

→ 0.

Hence for sufficiently large n, the probability version of the symmetrisation lemma, Lemma 2.4
applies and together with the above claim,

1

4
P(‖Tn‖GrGL,n ≥ a) ≤ P

(
sup

g∈GrGL,n

∣∣∣∣ P◦ng
‖g‖L2(P0)

∣∣∣∣ ≥ 1

4
a

)

≤
∞∑

j=L+1

P

(
sup

g∈Gj,nrGj−1,n

|P◦ng| ≥
1

4
ar2j−1,n

)

≤
∞∑

j=L+1

exp(−C22j) ≤ exp(−C22L).

Choose L such that the right hand side is below ε, then for any n large enough, with probability
at least 1− ε, g(f̂n) ∈ GL,n, i.e. h(f̂n, f0) ≤ 2Lδn, which precisely means h(f̂n, f0) = OP (δn).

Claim 4.3 is proved using a chaining argument. Let G(i) be a minimal 2−iδn-net in Gj,nwith
respect to the L2(Pn)-metric. So #G(i) = N(2−iδn,Gj,n, L2(Pn)). Chain every gi ∈ G(i) to some
nearest gi−1 ∈ G(i−1). Then for any g ∈ Gj,n, we have a decomposition

g = g(0) +

∞∑
i=1

(g(i) − g(i−1)),

where g(i) ∈ G(i). Note ‖g(i) − g(i−1)‖L2(Pn) ≤ 2−(i−1)δn. So

P(‖P◦n‖Gj,n ≥ ar2j,n) ≤ P(max |P◦ng(0)| ≥
1

2
ar2j,n) + P

(
sup
g∈Gj,n

∣∣∣∣∣
∞∑
i=1

P◦n(g(i) − g(i−1))

∣∣∣∣∣ ≥ 1

2
ar2j,n

)
=: P(A1) + P(A2).
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We treat the two terms separately. Let gB = max(|gL|, |gU |). As gL, gU ranges over a δn-
bracketing of Gj,n, we obtain a set GB with cardinality NB(δn,Gj,n, L2(P0)) such that each
g ∈ Gj,n has |g| ≤ gB for some gB ∈ GB. As Gj,n is bounded in L2(P0) by rj,n, GB is bounded
in L2(P0) by rj,n + δ ≤ 2rj,n. So we have that for sufficiently large j and n,

P( max
gB∈GB

‖gB‖L2(Pn) > 3rj,n) ≤ P( max
gB∈GB

(Pn − P0)(g
B)2 > 5r2j,n)

≤ exp(HB(δn,Gj,n, L2(P0))− Cnr2j,n)

≤ exp(nα2
j,nr

2
j,n − Cnr2j,n) ≤ exp(−C22j).

The second inequality is due to Hoeffding’s inequality and a union bound, last inequality uses the
fact that limj lim supn αj,n = 0 and nδ2n ≥ 1. Denote Ej,n = {maxgB∈GB ‖gB‖L2(Pn) ≤ 3rj,n},
so P(Ej,n) ≥ 1 − exp(−C22j) for large j and n. Under Ej,n, each gB ∈ GB is bounded in
L2(Pn)-norm by 3rn, and GB is derived from a δn-bracketing of Gj,n, hence we have that Gj,n
is bounded in L2(Pn)-norm by 4rn. An application of Hoeffding’s inequality conditional on
X1, . . . , Xn yields

P(A1|X1, . . . , Xn) ≤ exp
(
H(δn,Gj,n, L2(Pn))− Cnr2j,n

)
≤ exp(nr2j,nβ

2
j − Cnr2j,n) ≤ exp(−Cnr2j,n) ≤ exp(−C22j).

Thus P(A1) ≤ P(A1 ∩ Ej,n) + P(Ej,n) ≤ exp(−C22j).

To estimate P(A2), define

η
(i)
j,n =

1

2
max

{
1

βj

√
H(2−iδn,Gj,n, L2(P0))

2i
√
nrj,n

,
2−i
√
i∑∞

`=1 2−`
√
`

}
.

Then
∑∞

i=1 η
(i)
j,n ≤ 1 for n large enough such that βj,n ≤ βj . Note that ‖g(i) − g(i−1)‖L2(Pn) ≤

2−(i−1)δn, thus through another application of Hoeffding’s inequality with union bound, we
obtain

P(A2|X1, . . . , Xnn) ≤
∞∑
i=1

P
(

max
∣∣∣P◦n(g(i) − g(i−1))

∣∣∣ ≥ 1

2
η
(i)
j,nar

2
j,n|X1, . . . , Xn

)

≤
∞∑
i=1

exp
(
H(2−iδn,Gj,n, L2(Pn))− C(η

(i)
j,n)222i+2jnr2j,n

)
≤
∞∑
i=1

exp
(

(2−2j+2β2j − C)(η
(i)
j,n)222i+2jnr2j,n

)
≤
∞∑
i=1

exp
(
−Ci22jnr2j,n

)
≤ exp(C22j)

for sufficiently large j. The penultimate inequality uses the fact that η
(i)
j,n ≥ C2−i

√
i and βj → 0.

In summary, the claim 4.3 follows since P(A1) + P(A2) ≤ exp(−C22j).
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Remark 4.8. Even though (4.1) and (4.2) look technical, the conditions are not hard to
check in practice. Once we have chosen δn’s and have good bounds on the entropies, to
check conditions (4.1) and (4.2) is just a matter of computation. We use the rule of thumb
H(δn,Gj,n, L2(P0)) ≈ nδ2n to choose the sequence δn.

Example 6 (Smooth Density Estimation). Let X = [0, 1] ⊂ R, µ the Lebesgue measure and

F =

{
f : [0, 1]→ [0,∞),

∫
f dµ = 1,

∫
|f (m)|2 dµ ≤M

}
be densities with uniformly L2-bounded m-th derivative. Let X1, . . . , Xn be i.i.d. observations
from an unknown density f0 ∈ F . We assume that f0 is everywhere positive on [0, 1]. Let f̂n be
the maximum likelihood estimator of f0. By Sobolev embedding theorem, since F is uniformly
bounded in L1, it is also uniformly bounded in L∞, say by K. Let

G =
{(√

f/f0 − 1
)

1f0>0 : f ∈ F
}
.

Then G has envelope function
√
K/f0, which is in L1(P0) since∫

f0>0

√
K/f0 dP0 =

∫
[0,1]

√
Kf0 dµ ≤ K.

The entropy of G is related to the entropy of

F1/2 := {
√
f : f ∈ F}

via the following bounds:

H(δ,G, L1(Pn)) ≤ H(δ
(
Pnf

−1/2
0

)
,F1/2, L1(Q1)),

HB(δ,G, L2(P0)) ≤ HB(δ,F1/2, L2(µ)), (4.4)

H(δ,G, L2(Pn)) ≤ H(δ(Pnf−10 )1/2,F1/2, L2(Q2)),

where dQ1 = (
∫
f
−1/2
0 dPn)−1f

−1/2
0 dPn and where dQ2 = (

∫
f−10 dPn)−1f−10 dPn. The last two

lines of (4.4) follows from the change of measure∥∥∥√ f

f0
−

√
f ′

f0

∥∥∥2
L2(P )

=

∫
(
√
f −
√
f ′)2

f0
dP =

(∫
(
√
f −

√
f ′)2 dQ

)(∫
f−10 dP

)
,

where P is any probability measure and dQ = (f−10 dP )−1 f−10 dP . The first line in (4.4) can
be obtained using a similar argument.

The entropy of F is computed in Kolmogorov and Tikhomirov [13]:

H(δ,F , L∞(µ)) ≤ Cδ−1/m.

This entropy is stated in uniform metric, which implies bounds for entropies in other metrics.
Using the fact that |

√
f −
√
f ′| ≤

√
|f − f ′|, we have

H(δ,F1/2, L2(Pn)) ≤ H(δ1/2,F , L1(Pn)) ≤ H(δ,F , L∞(µ)) ≤ Cδ−
1

2m .
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So H(δ,F1/2, L1(Pn)) ≤ H(Cδ,F1/2, L2(Pn)) = oP (n), which establishes uniform law of large
numbers according to Theorem 3.2. Thus by Lemma 4.6, f̂n is a consistent estimator of f0 in
Hellinger metric. Convergence of f̂n to f0 in Hellinger metric is equivalent to convergence of

√
fn

to
√
f0 in L2(µ) metric, which by Sobolev embedding theorem implies ‖

√
f̂n−

√
f0‖L∞(µ)

p→ 0,

i.e. f̂n converges to f0 uniformly in probability.

Since f0 is positive on [0, 1], by continuity of f0, we can find some ε such that f0 > 2ε. As
f̂n is uniformly convergent to f0, for all large n’s, we have f̂n > ε. So we can restrict ourselves

to the classes Fε = {f ∈ F : f ≥ ε}, F1/2
ε = {

√
f : f ∈ Fε} and Gε = {g(f) : f ∈ Fε}. These

restricted classes have entropies of the same orders:

H(δ,Gε, L∞(µ)) ≤ H(ε−1δ,F1/2
ε , L∞(µ)) ≤ H(ε−3/2δ,Fε, L∞(µ)) ≤ Cδ−1/m.

Using the rule of thumb H(δn,Gε, L∞(µ)) ≈ nδ2n, we choose the sequence δn = n−m/(2m+1).
Substitute this into Lemma 4.7 and use H(δn,Gε, L∞(µ)) to bound both H(δn, (Gε)j,n, L2(Pn))
and HB(δn, (Gε)j,n, L2(P0)), we see that (4.1) and (4.2) are satisfied:

lim
j→∞

lim sup
n→∞

√
HB(δn,Gj,n, L2(P0))√

n2jδn
= lim

j
lim sup

n

n
1

4m+2

n
1
2 2jn−

m
2m+1

= lim
j

2−j = 0.

∞∑
i=1

√
H(2−iδn,Gj,n, L2(Pn))

2i
√
n2jδn

=
∑
i

n
1

4m+2

n
1
2 2i+jn−

m
2m+1

= 2−j =: βj .

Hence, h(f̂n, f0) = OP (n−m/(2m+1)).

Example 7 (Current Status Estimation). In a study we have n subjects, each can either be in
state 0 or state 1. Each subject i start in state 0 and an event happens at a random time Yi,
distributed independently on [0,∞) with cumulative distribution function θ0, that brings the
subject to state 1. Each subject i is observed once at time Ti and his or her state ∆i = 1Y≤T
is recorded. The goal is to estimate the distribution function F0.

We may assume that Ti are i.i.d. realisation from some unknown probability measure Q0

on [0,∞). Let µ = Q0 × ν where ν is the counting measure on {0, 1}. Then observations Xi =
(Ti,∆i), i = 1, . . . , n are i.i.d. realisations from the density f0(t, δ) := fθ0 := θ0(t)

δ(1−θ0(t))(1−δ)
with respect to µ. Denote P0 the probability measure associated with f0 and let

F = {fθ(x) = θ(t)δ(1− θ(t))(1−δ) : x = (t, δ), θ a distribution function on [0,∞)},

and
G =

{√
f/f0 − 1 : f ∈ F

}
.

Since F is uniformly bounded by 1, G has an L1(P0) envelope function
√

1
f0
− 1. We have

H(δ,G, L1(Pn)) ≤ H(δ,G, L2(Pn)) ≤ H(δ,F1/2, L2(µ))

Entropy of F1/2 is equal to a multiple of the entropy of Θ1/2 = {θ1/2 : θ a c.d.f. on [0,∞)},
which is a subset of the class I of increasing functions on [0,∞) uniformly bounded by 1.
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The class of increasing functions bounded by 1 is in the closure of convex hull of all indicator
functions of the form 1[t,∞). The set of such indicator functions is a VC-subgraph class of
VC-index 2. Hence

sup
Q
H(δ, I, L2(Q)) ≤ C (1/δ)2 (4.5)

by Theorem 4.5. Consequently, H(δ,G, L1(Pn)) = oP (n), and G is Glivenko–Cantelli. Therefore,

h(f̂n, f0)
p→ 0. Pointwise convergence of a monotone function to a continuous monotone function

is uniform (this follows essentially from the proof of the classical Glivenko–Cantelli theorem).
Thus θ̂n converges to θ0 uniformly.

We are unable to apply Lemma 4.7 directly to obtain a rate of convergence in Example 7.
The main obstacle is that the uniform boundedness condition in the lemma is not satisfied. One
way around the problem is to use the convexity of the class F . For the rest of this section, let
u ∈ (0, 1) be a fixed real number. Denote fu = uf + (1− u)f0 and gu(f) = (

√
f/fu − 1)1fu>0.

And we write f̂n,u = (f̂n)u = uf̂n + (1− u)f0. Consider the class

Gu = {gu(f) : f ∈ F}

instead of G. Clearly class Gu is uniformly bounded. The reason that we can use Gu as a
surrogate for G is due to the following simple inequality:

1

4(1− u)
(
√
f −

√
fu)2 ≤ (

√
f −

√
f0)

2 ≤ 4

(1− u)2
(
√
f −

√
fu)2, (4.6)

which implies that the Hellinger distances h(f, f0) and h(f, fu) are the same up to constant
factors. The inequality can be shown via direct expansion of the expressions.

We need to slightly modify Lemma 4.6 and Lemma 4.7 when we work with Gu instead of G.

Lemma 4.9. Suppose F is convex, then

(1− u)2

4
h2(f̂n, f0) ≤ (Pn − P0)gu(f̂n).

Proof. By convexity, f̂n,u ∈ F . Thus by definition of MLE,

0 ≤ 1

2

∫
f̂n,u>0

log(f̂n/f̂n,u) dPn ≤
∫
f̂n,u>0

(

√
f̂n/f̂n,u − 1) dPn = Pngu(f̂n).

From (4.6), (1−u)2
4 h2(f̂n, f0) ≤ h2(f̂n, f̂n,u). So it suffices to show h2(f, fu) ≤ −P0gu(f) for any

f . We compute

h2(f, fu) =

∫
(1−

√
f/fu)fu dµ = −P0gu(f̂n) +

∫
(1−

√
f/f0)(fu − f0) dµ.

The last term on the right hand side is nonpositive, so h2(f, fu) ≤ −P0gu(f) as desired.
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Just like Lemma 4.6, Lemma 4.9 tells us that Hellinger consistency follows from uniform
law of large numbers of Gu, which is easier to establish than that of G since we already have an
integrable envelope for Gu.

For a counterpart of Lemma 4.7, we introduce neighbourhoods

Gu,j,n = {gu(f) : h(f, f0) ≤ 2jδn}

around gu(f0) = 0. Let rj,n = 2jδn be the radii of these neighbourhoods.

Lemma 4.10. Suppose F is convex. Let {δn} be a sequence such that nδ2n ≥ 1 and

lim
j→∞

lim sup
n→∞

√
HB(δn,Gu,j,n, L2(P0))√

n2jδn
= 0 (4.7)

lim sup
n→∞

P

( ∞∑
i=1

√
H(2−iδn,Gu,j,n, L2(Pn))

2i
√
n2jδn

> βj for some j

)
= 0, (4.8)

where βj → 0. Then h(f̂n, f0) = OP (δn).

Proof. Note that

‖gu(f)‖2L2(P0)
=

∫
(
√
f−
√
fu)

f0
fu
dµ ≤ 1

1− u

∫
(
√
f−
√
f0)

2 dµ =
2

1− u
h2(f, fu) ≤ 2h2(f, f0).

From Lemma 4.9, we have
(Pn − P0)gu(f̂n)

‖gu(f̂n)‖2L2(P0)

≥ (1− u)2

8
. (4.9)

The Claim (4.3) has the following counterpart

P
(
‖P◦n‖Gu,j,n ≥ ar2j,n

)
≤ exp(−C22j),

which can be proved using exactly the same chaining arguments and maximal inequalities.
From here, using symmetrisation

1

4
P

(
sup

g∈GurGu,L,n

(Pn − P0)g

‖g‖2L2(P0)

≥ a

)
≤ P

(
sup

g∈GurGu,L,n

∣∣∣∣ P◦ng
‖g‖L2(P0)

∣∣∣∣ ≥ 1

4
a

)

≤
∞∑

j=L+1

P

(
sup

g∈Gu,j,nrGu,j−1,n

|P◦ng| ≥
1

4
ar2j−1,n

)

≤
∞∑

j=L+1

exp(−C22j) ≤ exp(−C22L).

Compare this with (4.9) we obtain h(f̂n, f0) = OP (δn).
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Example 8 (Current Status Estimation II). Let F as be in Example 7, and let

Gu = {(
√
f/fu − 1)1fu>0 : f ∈ F}.

In order to apply Lemma 4.10, we need to compute entropies of Gu. Using the fact that the
derivative of t 7→ t−1/2 is decreasing in absolute value, we compute

|gu(f)− gu(f ′)| =

∣∣∣∣∣
√

f

fu
−

√
f ′

f ′u

∣∣∣∣∣ ≤ 1√
(1− u)f0/f

− 1√
(1− u)f0/f ′

≤ |f
1/2 − (f ′)1/2|√

(1− u)f0
.

Therefore, we have control of entropies of Gu in terms of that of G:

H(δ,Gu, d) ≤ H(δ(1− u)−2,G, d)

for any metric d. Entropies of G can in turn be bounded by entropy of F1/2 via inequali-
ties (4.4). As such, both HB(δ,Gu, L2(P0)) and H(δ,Gu, L2(Pn)) are bounded by a multiple of
supQH(Cδ,F1/2, L2(Q)). To get the correct rate of convergence, we need a better bound on
the latter entropy than the crude one obtained via the VC-hull argument in (4.5). The following
result is from Birman and Solomjak [1].

Lemma 4.11. Let I be a class of increasing functions on R that are uniformly bounded. Then

sup
Q
HB(δ,G, L2(Q)) ≤ Cδ−1.

Hence the entropies are bounded by Cδ−1. Using the rule of thumb that H(δn,Gu, L2(P0)) ≈
nδ2n, we choose δn = n−1/3. Substitue the entropy bounds and value of δn into Lemma 4.10, we
find that conditions 4.7 and 4.8 are satisfied with βj = 2−j . Hence, h(f̂n, f0) = OP (δn), which

implies that
√
θ̂n converges to

√
θ0 in L2(µ)-norm with this rate.

The above examples demonstrated that the rate of convergence is essentially governed by the
(local) entropy of G or Gu near the origin. The n−1/3 rate often comes up when the underlying
function has some monotonic property. The following example shows that the same rate applies
even if we drop the uniform boundedness assumption for the class of increasing functions.

Example 9 (Increasing Densities). Let X = [0, 1] ⊂ R, µ the Lebesgue measure and

F =

{
f : [0, 1]→ [0,∞) :

∫
f dµ = 1, f is increasing

}
.

Suppose X1, . . . , Xn are i.i.d. observations drawn from density f0 ∈ F and f̂n is the maximum
likelihood estimator for f0 based on the observations. Our goal is to show consistency and rate
of convergence of f̂n to f0.

Define Gu = {(
√
f/fu − 1)1fu>0} as usual. The difficulty with this class lies in estimating

the entropy: F1/2 is no longer uniformly bounded, neither VC-hull argument nor Lemma 4.11
can be used directly to establish the consistency. We work around this problem by a truncation
method.
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Define AK = {x ∈ [0, 1] : 1/K ≤ f0(x) ≤ K}. For any δ, we can choose K sufficiently large
so that ∫

AcK

dP0 =

∫
AcK

f0 dµ ≤ δ
√
u,

which means for any g = gu(f) ∈ Gu,

‖g1AcK‖L1(Pn) =

∫
AcK

1√
u
dPn →

∫
AcK

1√
u
dP0 ≤ δ

almost surely as n → ∞. Since we are only concerned with probabilistic statement, we may
assume ‖g1AcK‖L1(Pn) ≤ δ for all g ∈ Gu. Then for g, g′ ∈ Gu,

‖g − g′‖L1(Pn) ≤ ‖g1AcK − g
′1AcK‖L1(Pn) + ‖g1AK − g

′1AK‖L1(Pn)

≤ 2δ +
√
K‖(g

√
f0 − g′

√
f0)1AK‖L1(Pn)

Therefore, we have the entropy relation

H(3δ,Gu, L1(Pn)) ≤ H(δ/
√
K,
√
f0Gu1AK , L1(Pn)),

where
√
f0Gu = {

√
f0g : g ∈ Gu}. Since

√
f0gu(f)1AK =

√
ff0

uf+(1−u)f0 1AK = ( uf0 + 1−u
f )−1/21AK ,

the class
√
f0Gu1AK is uniformly bounded by

√
K/u and monotone. Thus our previous results

on uniformly bounded monotone classes apply,

H(δ/
√
K,1AK

√
f0Gu, L1(Pn))

p→ 0, ∀δ.

Consequently, Gu is Glivenko–Cantelli and f̂n is Hellinger consistent for f0.

Assume further that f0 is continuous. As before, Hellinger consistency implies uniform
consistency under continuity and monotonicity. Continuous function f0 on compact set [0, 1]
must be bounded by K. So uniform consistency implies that for all sufficiently large n, f̂n is in
FK = F ∩{f ≤ K}. In this case, we do not need a convexity argument for rate of convergence.
We can invoke Lemma 4.7 on the restricted class FK and GK = {g(f) : f ∈ FK}. Entropy in

GK is bounded by entropy in F1/2
K = {f1/2 : f ∈ FK}, which has order δ−1n by Lemma 4.11.

Conditions 4.1 and 4.2 are satisfied for δn = n−1/3. Hence, f̂n converges uniformly to f0 with
rate OP (n−1/3).

36



Bibliography
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