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Summary. We study the problem of high-dimensional Principal Component Analysis (PCA) with miss-
ing observations. In a simple, homogeneous observation model, we show that an existing observed-
proportion weighted (OPW) estimator of the leading principal components can (nearly) attain the minimax
optimal rate of convergence, which exhibits an interesting phase transition. However, deeper investigation
reveals that, particularly in more realistic settings where the observation probabilities are heterogeneous,
the empirical performance of the OPW estimator can be unsatisfactory; moreover, in the noiseless case,
it fails to provide exact recovery of the principal components. Our main contribution, then, is to introduce
a new method, which we call primePCA, that is designed to cope with situations where observations may
be missing in a heterogeneous manner. Starting from the OPW estimator, primePCA iteratively projects
the observed entries of the data matrix onto the column space of our current estimate to impute the miss-
ing entries, and then updates our estimate by computing the leading right singular space of the imputed
data matrix. We prove that the error of primePCA converges to zero at a geometric rate in the noiseless
case, and when the signal strength is not too small. An important feature of our theoretical guarantees is
that they depend on average, as opposed to worst-case, properties of the missingness mechanism. Our
numerical studies on both simulated and real data reveal that primePCA exhibits very encouraging perfor-
mance across a wide range of scenarios, including settings where the data are not Missing Completely
At Random.

1. Introduction

One of the ironies of working with Big Data is that missing data play an ever more significant role, and
often present serious difficulties for analysis. For instance, a common approach to handling missing
data is to perform a so-called complete-case analysis (Little and Rubin, 2019), where we restrict
attention to individuals in our study with no missing attributes. When relatively few features are
recorded for each individual, one can frequently expect a sufficiently large proportion of complete
cases that, under an appropriate missing at random hypothesis, a complete-case analysis may result
in only a relatively small loss of efficiency. On the other hand, in high-dimensional regimes where
there are many features of interest, there is often such a small proportion of complete cases that this
approach becomes infeasible. As a very simple illustration of this phenomenon, imagine an n× d data
matrix in which each entry is missing independently with probability 0.01. When d = 5, a complete-
case analysis would result in around 95% of the individuals (rows) being retained, but even when we
reach d = 300, only around 5% of rows will have no missing entries.

The inadequacy of the complete-case approach in many applications has motivated numerous
methodological developments in the field of missing data over the past 60 years or so, including
imputation (Ford, 1983; Rubin, 2004), factored likelihood (Anderson, 1957) and maximum likelihood
approaches (Dempster, Laird and Rubin, 1977); see, e.g., Little and Rubin (2019) for an introduction
to the area. Recent years have also witnessed increasing emphasis on understanding the performance of
methods for dealing with missing data in a variety of high-dimensional problems, including sparse re-
gression (Loh and Wainwright, 2012; Belloni, Rosenbaum and Tsybakov, 2017), classification (Cai and
Zhang, 2018b), sparse principal component analysis (Elsener and van de Geer, 2018) and covariance
and precision matrix estimation (Lounici, 2014; Loh and Tan, 2018).

In this paper, we study the effects of missing data in one of the canonical problems of high-
dimensional data analysis, namely dimension reduction via Principal Component Analysis (PCA).
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This is closely related to the topic of matrix completion, which has received a great deal of attention
in the literature over the last decade or so (e.g. Candès and Recht, 2009; Candès and Plan, 2010;
Keshavan, Montanari and Oh, 2010; Mazumder, Hastie and Tibshirani, 2010; Koltchinskii, Lounici
and Tsybakov, 2011; Candès et al., 2011; Negahban and Wainwright, 2012). There, the focus is
typically on accurate recovery of the missing entries, subject to a low-rank assumption on the signal
matrix; by contrast, our focus is on estimation of the principal eigenspaces. Previously proposed
methods for low-dimensional PCA with missing data include non-linear iterative partial least squares
(Wold and Lyttkens, 1969), iterative PCA (Kiers, 1997; Josse and Husson, 2012) and its regularised
variant (Josse et al., 2009); see Dray and Josse (2015) for a nice survey and comparative study.
More broadly, the R-miss-tastic website https://rmisstastic.netlify.com/ provides a valuable
resource on methods for handling missing data.

The importance of the problem of high-dimensional PCA with missing data derives from its wide
variety of applications. For instance, in many commercial settings, one may have a matrix of customers
and products, with entries recording the number of purchases. Naturally, there will typically be a
high proportion of missing entries. Nevertheless, PCA can be used to identify items that distinguish
the preferences of customers particularly effectively, to make recommendations to users of products
they might like and to summarise efficiently customers’ preferences. Later, we will illustrate such an
application, on the Million Song Dataset, where we are able to identify particular songs that have
substantial discriminatory power for users’ preferences as well as other interesting characteristics of
the user database. Other potential application areas include health data, where one may seek features
that best capture the variation in a population, and where the corresponding principal component
scores may be used to cluster individuals into subgroups (that may, for instance, receive different
treatment regimens).

To formalise the problem we consider, suppose that the (partially observed) matrix n×d matrix Y
is of the form

Y = X+ Z, (1)

for independent random matrices X and Z, where X is a low-rank matrix and Z is a noise matrix
with independent and identically distributed entries having zero mean. The low-rank property of X
is encoded through the assumption that it is generated via

X = UV⊤
K , (2)

where VK ∈ Rd×K has orthonormal columns and U is a random n×K matrix (with n > K) having
independent and identically distributed rows with mean zero and covariance matrix Σu. Note that
when X and Z are independent, the covariance matrix of Y has a K-spiked structure; such covariance
models have been studied extensively in both theory and applications (Paul, 2007; Johnstone and Lu,
2009; Cai, Ma and Wu, 2013; Fan, Liao and Mincheva, 2013).

We are interested in estimating the column space of VK , denoted by Col(VK), which is also the
K-dimensional leading eigenspace of Σy := n−1E(Y⊤Y). Cho, Kim and Rohe (2017) considered a
different but related model where U in (2) is deterministic, and is not necessarily centred, so that
VK is the top K right singular space of E(Y). (By contrast, in our setting, E(Y) = 0, so the mean
structure is uninformative for recovering VK .) Their model can be viewed as being obtained from the
model (1) and (2) by conditioning on U. In the context of a p-homogeneous Missing Completely At
Random (MCAR) observation model, where each entry ofY is observed independently with probability
p ∈ (0, 1) (independently of Y), Cho, Kim and Rohe (2017) studied the estimation of Col(VK) by

Col(V̂K), where V̂K is a simple estimator formed as the top K eigenvectors of an observed-proportion
weighted (OPW) version of the sample covariance matrix (here, the weighting is designed to achieve
approximate unbiasedness). Our first contribution, in Section 2, is to provide a detailed, finite-sample
analysis of this estimator in the model given by (1) and (2) together with a p-homogeneous MCAR
missingness structure, with a noise level of constant order. The differences between the settings
necessitate completely different arguments, and reveal in particular a new phenomenon in the form
of a phase transition in the attainable risk bound for the sinΘ loss function, i.e. the Frobenius norm
of the diagonal matrix of the sines of the principal angles between V̂K and VK . Moreover, we also
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Fig. 1. An illustration of the two steps of a single iteration of the primePCA algorithm with d = 3 and K = 1.
Black dots represent fully observed data points, while vertical dotted lines that emanate from them give an
indication of their x3 coordinate values, as well as their projections onto the x1-x2 plane. The x1 coordinate of
the orange data point and the x2 coordinate of the blue data point are unobserved, so the true observations
lie on the respective solid lines through those points (which are parallel to the relevant axes). Starting from an
input estimate of VK (left), given by the black arrow, we impute the missing coordinates as the closest points
on the coloured lines to VK (middle), and then obtain an updated estimate of VK as the leading right singular
vector of the imputed data matrix (right, with the old estimate in grey).

provide a minimax lower bound in the case of estimating a single principal component, which reveals
that this estimator achieves the minimax optimal rate up to a poly-logarithmic factor.

While this appears to be a very encouraging story for the OPW estimator, it turns out that it
is really only the starting point for a more complete understanding of high-dimensional PCA with
missing data. For instance, in the noiseless case, the OPW estimator fails to provide exact recovery
of the principal components. Moreover, it is the norm rather than the exception in applications
that missingness is heterogeneous, in the sense that the probability of observing entries of Y varies
(often significantly) across columns. For instance, in recommendation systems, some products will
typically be more popular than others, and hence we observe more ratings in those columns. As
another example, in meta-analyses of data from several studies, it is frequently the case that some
covariates are common across all studies, while others appear only in a reduced proportion of them.
In Section 2.2, we present an example to show that, even with an MCAR structure, PCA algorithms
can break down entirely for such heterogeneous observation mechanisms when individual rows of VK

can have large Euclidean norm. Intuitively, if we do not observe the interaction between the jth and
kth columns of Y, then we cannot hope to estimate the jth or kth rows of VK , and this will cause
substantial error if these rows of VK contain significant signal. This example illustrates that it is only
possible to handle heterogeneous missingness in high-dimensional PCA with additional structure, and
indicates that it is natural to measure the difficulty of the problem in terms of the incoherence among
the entries of VK — i.e., the maximum Euclidean norm of the rows of VK .

Our main contribution, then, is to propose a new, iterative algorithm, called primePCA (short for
projected refinement for imputation of missing entries in Principal Component Analysis), in Section 3,
to estimate VK , even with heterogeneous missingness. The main initialiser that we study for this al-
gorithm is a modified version of the simple estimator discussed above, where the modification accounts
for potential heterogeneity. Each iteration of primePCA projects the observed entries of Y onto the
column space of the current estimate of VK to impute missing entries, and then updates our estimate
of VK by computing the leading right singular space of the imputed data matrix. An illustration of
the two steps of a single iteration of the primePCA algorithm in the case d = 3, K = 1 is given in
Figure 1.

Our theoretical results reveal that in the noiseless setting, i.e., Z = 0, primePCA achieves exact
recovery of the principal eigenspaces (with a geometric convergence rate) when the initial estimator
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is close to the truth and a sufficiently large proportion of the data are observed. Moreover, we also
provide a performance guarantee for the initial estimator, showing that under appropriate conditions
it satisfies the desired requirement with high probability, conditional on the observed missingness
pattern. Code for our algorithm is available in the R package primePCA (Zhu, Wang and Samworth,
2019).

To the best of our knowledge, primePCA is the first method for high-dimensional PCA that is
designed to cope with settings where missingness is heterogeneous. Indeed, the previously mentioned
works on high-dimensional PCA and other high-dimensional statistical problems with missing data
have either focused on a uniform missingness setting or have imposed a lower bound on entrywise
observation probabilities, which reduces to this uniform case. In particular, such results fail to distin-
guish in terms of the performance of their algorithms between a setting where one variable is observed
with a very low probability p and all other variables are fully observed, and a setting where all variables
are observed with probability p. A key contribution of our work is to account explicitly for the effect
of a heterogeneous missingness mechanism, where the estimation error depends on average entrywise
missingness rather than worst-case missingness; see the discussions after Theorem 4 and Proposi-
tion 2 below. In Section 4, the empirical performance of primePCA is compared with both that of the
initialiser, and a popular method for matrix completion called softImpute (Mazumder, Hastie and
Tibshirani, 2010; Hastie et al., 2015); we also discuss maximum likelihood approaches implemented
via the Expectation–Maximisation (EM) algorithm, which can be used when the dimension is not too
high. Our settings include a wide range of signal-to-noise ratios, as well as Missing Completely At
Random, Missing At Random and Missing Not At Random examples (Little and Rubin, 2019; Seaman
et al., 2013). These comparisons reveal that primePCA provides highly accurate and robust estimation
of principal components, for instance outperforming the softImpute algorithm, even when the latter
is allowed access to the oracle choice of regularisation parameter for each dataset. Our analysis of the
Million Song Dataset is given in Section 5. In Section 6, we illustrate how some of the ideas in this
work may be applied to other high-dimensional statistical problems involving missing data. Proofs of
our main results are deferred to Section A in the supplmentary material (Zhu, Wang and Samworth,
2021); auxiliary results and their proofs are given in Section B of the supplementary material.

1.1. Notation
For a positive integer T , we write [T ] := {1, . . . , T}. For v = (v1, . . . , vd)

⊤ ∈ Rd and p ∈ [1,∞), we

define ∥v∥p :=
(∑d

j=1 |vj |p
)1/p

and ∥v∥∞ := maxj∈[d] |vj |. We let Sd−1 := {u ∈ Rd : ∥u∥2 = 1} denote
the unit Euclidean sphere in Rd.

Given u = (u1, . . . , ud)
⊤ ∈ Rd, we write diag(u) ∈ Rd×d for the diagonal matrix whose jth diagonal

entry is uj . We let Od1×d2 denote the set of matrices in Rd1×d2 with orthonormal columns. For a

matrix A = (Aij) ∈ Rd1×d2 , and p, q ∈ [1,∞], we write ∥A∥p :=
(∑

i,j |Aij |p
)1/p

if 1 ≤ p < ∞ and

∥A∥∞ := maxi,j |Aij | for its entrywise ℓp norm, as well as ∥A∥p→q := sup∥v∥p=1 ∥Av∥q for its p-to-q
operator norm. We provide special notation for the (Euclidean) operator norm and the Frobenius norm
by writing ∥A∥op := ∥A∥2→2 and ∥A∥F := ∥A∥2 respectively. We also write σj(A) for the jth largest

singular value of A, and define its nuclear norm by ∥A∥∗ :=
∑min(d1,d2)

j=1 σj(A). If S ⊆ [n], we write

AS ∈ R|S|×d for the matrix obtained by extracting the rows of A that are in S. For A,B ∈ Rd1×d2 ,
the Hadamard product of A and B, denoted A ◦B, is defined such that (A ◦B)ij = AijBij for any
i ∈ [d1] and j ∈ [d2].

2. The observed-proportion weighted estimator

In this section, we study a simple observed-proportion weighted (OPW) estimator of the matrix of
principal components. To define the estimator, let Aij denote the event that the (i, j)th entry yij
of Y is observed. We define the revelation matrix Ω = (ωij) ∈ Rn×d by ωij := 1Aij

, and the partially
observed data matrix

YΩ := Y ◦Ω. (3)
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Our observed data are the pair (YΩ,Ω). Importantly, the fact that we observe Ω allows us to
distinguish between observed zeros and missing entries (even though these also appear as zeros in YΩ).
We first consider the simplest possible case, which we refer to as the p-homogeneous observation
model, where entries of the data matrix Y are observed independently and completely at random
(i.e., independent of (U,Z)), each with probability p. Thus, P(Aij) = p ∈ (0, 1) for all i ∈ [n], j ∈ [d],
and Aij and Ai′j′ are independent for (i, j) ̸= (i′, j′).

For i ∈ [n], let y⊤
i and ω⊤

i denote the ith rows of Y and Ω respectively, and define ỹi := yi ◦
ωi. Writing P := Eω1ω

⊤
1 and W for its entrywise inverse, we have that under the p-homogeneous

observation model, P = p2
{
1d1

⊤
d − (1− p−1)Id

}
and W = p−2

{
1d1

⊤
d − (1− p)Id

}
. Following Lounici

(2013, 2014) and Cho, Kim and Rohe (2017), we consider the following weighted sample covariance
matrix:

G :=

(
1

n
Y⊤

ΩYΩ

)
◦W =

(
1

n

n∑
i=1

ỹiỹ
⊤
i

)
◦W.

The reason for including the weight W is to ensure that E(G|Y) = n−1Y⊤Y, so that G is an unbiased
estimator of Σy. Related ideas appear in the work of Cai and Zhang (2016) on high-dimensional
covariance matrix estimation with missing data; see also Little and Rubin (2019, Section 3.4). In
practice, p is typically unknown and needs to be estimated. It is therefore natural to consider the
following plug-in estimator Ĝ:

Ĝ =

(
1

n
Y⊤

ΩYΩ

)
◦ Ŵ, (4)

where Ŵ = p̂−2
{
1d1

⊤
d − (1− p̂)Id

}
and p̂ := (nd)−1∥Ω∥1 denotes the proportion of observed entries in

Y. The observed-proportion weighted estimator of VK , denoted V̂OPW
K , is the d×K matrix formed

from the top K eigenvectors of Ĝ.

2.1. Theory for homogeneous missingness
We begin by studying the theoretical performance of V̂OPW

K in a simple model that will allow us
to reveal an interesting phase transition for the problem. For a random vector x taking values in
Rd and for r ≥ 1, we define its (Orlicz) ψr-norm and a version that is invariant to invertible affine
transformations by

∥x∥ψr
:= sup

u∈Sd−1

sup
q∈N

(
E|u⊤x|q

)1/q
q1/r

and ∥x∥ψ∗
r
:= sup

u∈Sd−1

∥u⊤(x− Ex)∥ψr

Var1/2(u⊤x)

respectively. Recall that we say x is sub-Gaussian if ∥x∥ψ∗
2
<∞.

In this preliminary section, we assume that (YΩ,Ω) is generated according to (1), (2) and (3),
where:

(A1) U, Z and Ω are independent;
(A2) U has independent and identically distributed rows (ui : i ∈ [n]) with Eu1 = 0 and ∥u1∥ψ∗

2
≤ τ ;

(A3) Z = (zij)i∈[n],j∈[d] has independent and identically distributed entries with Ez11 = 0, Var z11 = 1
and ∥z11∥ψ∗

2
≤ τ ;

(A4) ∥y21j∥ψ1
≤M for all j ∈ [d];

(A5) Ω has independent Bern(p) entries.

Thus, (A1) ensures that the complete data matrix Y and the revelation matrix Ω are independent; in
other words, for now we work in a Missing Completely At Random (MCAR) setting. In a homoscedas-
tic noise model, there is no loss of generality (by a scaling argument) in assuming that each entry of Z
has unit variance, as in (A3). In many places in this work, it will be convenient to think intuitively
of τ and M in (A2)–(A4) as constants. In particular, if U has multivariate normal rows and Z has
normal entries, then we can simply take τ = 1. For M , under the same normality assumptions, we
have ∥y21j∥ψ1

= Var(y1j), so this intuition amounts to thinking of the variance of each component of
our data as being of constant order.
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A natural measure of the performance of an estimator V̂K of VK is given by the Davis–Kahan
sinΘ loss

L(V̂K ,VK) :=
1√
2
∥V̂KV̂⊤

K −VKV⊤
K∥F

(Davis and Kahan, 1970)†. Our first theorem controls the risk of the OPW estimator; here and below,
we write λk for the kth largest eigenvalue of Σu.

Theorem 1. Assume (A1)–(A5) and that n, d ≥ 2, dp ≥ 1. Write R := λ1 + 1. Then there exists
a universal constant C > 0 such that

EL(V̂OPW
K ,VK) ≤ CK1/2

λKp

{(
Md(Rτ2p+M log d) log2 d

n

)1/2

+
Md log2 d log n

n

}
. (5)

In particular, if n ≥ d log2 d log2 n/(λ1p + log d), then there exists CM,τ > 0, depending only on M
and τ , such that

EL(V̂OPW
K ,VK) ≤

CM,τ

λKp

(
Kd(λ1p+ log d) log2 d

n

)1/2

. (6)

Theorem 1 reveals an interesting phase transition phenomenon. Specifically, if the signal strength
is large enough that λ1 ≥ p−1 log d, then we should regard np as the effective sample size, as might
intuitively be expected. On the other hand, if λ1 < p−1 log d, then the estimation problem is consid-
erably more difficult and the effective sample size is of order np2. In fact, by inspecting the proof of
Theorem 1, we see that in the high signal case, it is the difficulty of estimating the diagonal entries
of Σy that drives the rate, while when the signal strength is low, the bottleneck is the challenge of
estimating the off-diagonal entries. By comparing (6) with the minimax lower bound result in Theo-
rem 2 below, we see that this phase transition phenomenon is an inherent feature of this estimation
problem, rather than an artefact of the proof techniques we used to derived the upper bound.

The condition n ≥ d log2 d log2 n/(λ1p+log d) in Theorem 1 is reasonable given the scaling require-
ment for consistency of the empirical eigenvectors (Shen et al., 2016; Wang and Fan, 2017; Johnstone
and Lu, 2009). Indeed, Shen et al. (2016, Theorem 5.1) show that when λ1 ≫ 1, the top eigenvector
of the sample covariance matrix estimator is consistent if and only if d/(nλ1) → 0. If we regard np
as the effective sample size in our missing data PCA problem, then it is a sensible analogy to assume
that d/(npλ1) → 0 here, which implies that the condition n ≥ d log2 d log2 n/(λ1p + log d) holds for
large n, up to poly-logarithmic factors.

As mentioned in the introduction, Cho, Kim and Rohe (2017) considered the different but related
problem of singular space estimation in a model in which Y = Θ + Z, where Θ is a matrix of the
form UV⊤

K for a deterministic matrix U, whose rows are not necessarily centred. In this setting,

VK is the matrix of top K right singular vectors of Θ, and the same estimator V̂K can be applied.
An important distinction is that, when the rows of U are not centred and the entries of Θ are of
comparable magnitude, ∥Θ∥F is of order

√
nd, so when K is regarded as a constant, it is natural to

think of the singular values of Θ as also being of order
√
nd. Indeed, this is assumed in Cho, Kim

and Rohe (2017). On the other hand, in our model, where the rows of U have mean zero, assuming
that the eigenvalues are of order

√
nd would amount to an extremely strong requirement, essentially

restricting attention to very highly spiked covariance matrices. Removing this condition in Theorem 1
requires completely different arguments.

In order to state our minimax lower bound, we let Pn,d(λ1, p) denote the class of distributions of
pairs (YΩ,Ω) satisfying (A1), (A2), (A3) and (A5) with K = 1. Since we are now working with
vectors instead of matrices, we write v in place of V1.

Theorem 2. There exists a universal constant c > 0 such that

inf
v̂

sup
P∈Pn,d(λ1,p)

EPL(v̂,v) ≥ cmin

{
1

λ1p

(
d(λ1p+ 1)

n

)1/2

, 1

}
,

†When K = 1, we have that L(V̂1,V1) is the sine of the acute angle between V̂1 and V1. More generally,

L2(V̂K ,VK) is the sum of the squares of the sines of the principal angles between the subspaces spanned by V̂K

and VK .
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where the infimum is taken over all estimators v̂ = v̂(YΩ,Ω) of v.

Theorem 2 reveals that V̂OPW
1 in Theorem 1 achieves the minimax optimal rate of estimation up to

a poly-logarithmic factor when M and τ are regarded as constants.

2.2. Heterogeneous observation mechanism
A key assumption of the theory in Section 2.1, which allowed even a very simple estimator to perform
well, was that the missingness probability was homogeneous across the different entries of the matrix.
On the other hand, the aim of this subsection is to show that the situation changes dramatically once
the data can be missing heterogeneously.

To this end, consider the following example. Suppose that ω is equal to (1, 0, 1, . . . , 1)⊤ or
(0, 1, 1, . . . , 1)⊤ with equal probability, so that

P = Eωω⊤ =


1/2 0 1/2 . . . 1/2
0 1/2 1/2 . . . 1/2

1/2 1/2 1 . . . 1
...

...
...

. . .
...

1/2 1/2 1 . . . 1

 ∈ Rd×d.

In other words, for each i ∈ [n], we observe precisely one of the first two entries of yi, together with
all of the remaining (d− 2) entries. Let Σ = Id+αα⊤, where α = (2−1/2, 2−1/2, 0, . . . , 0)⊤ ∈ Rd, and
Σ′ = Id + α′(α′)⊤, where α′ = (2−1/2,−2−1/2, 0, . . . , 0)⊤ ∈ Rd. Suppose that y ∼ Nd(0,Σ) and let
ỹ := y ◦ ω, and similarly assume that y′ ∼ Nd(0,Σ

′) and set ỹ′ := y′ ◦ ω. Then (ỹ,ω) and (ỹ′,ω)
are identically distributed. However, the leading eigenvectors of Σ and Σ′ are respectively α and α′,
which are orthogonal!

Thus, it is impossible to simultaneously estimate consistently the leading eigenvector of both Σ and
Σ′ from our observations. We note that it is the disproportionate weight of the first two coordinates
in the leading eigenvector, combined with the failure to observe simultaneously the first two entries in
the data, that makes the estimation problem intractable in this example. The understanding derived
from this example motivates us to seek bounds on the error in high-dimensional PCA that depend
on an incoherence parameter µ := (d/K)1/2∥VK∥2→∞ ∈

[
1, (d/K)1/2

]
. The intuition here is that

the maximally incoherent case is where each column of VK is a unit vector proportional to a vector
whose entries are either 1 or −1, in which case ∥VK∥2→∞ = (K/d)1/2 and µ = 1. On the other hand,
in the worst case, when the columns of VK are the first K standard basis vectors in Rd, we have
µ = (d/K)1/2. Bounds involving incoherence have appeared previously in the literature on matrix
completion (e.g., Candès and Plan, 2010; Keshavan, Montanari and Oh, 2010), but for a different
reason. There, the purpose is to control the principal angles between the true right singular space and
the standard basis, which yields bounds on the number of observations required to infer the missing
entries of the matrix. In our case, the incoherence condition controls the extent to which the loadings
of the principal components of interest are concentrated in any single coordinate, and therefore the
extent to which significant estimation error in a few components of the leading eigenvectors can affect
the overall statistical performance. In the intractable example above, µ = (d/2)1/2, and with such a
large value of µ, heavy corruption from missingness in only a few entries spoils any chance of consistent
estimation.

3. Our new algorithm for PCA with missing entries

We are now in a position to introduce and analyse our iterative algorithm primePCA to estimate
Col(VK), the principal eigenspace of the covariance matrix Σy. The basic idea is to iterate between

imputing the missing entries of the data matrix YΩ using a current (input) iterate V̂
(in)
K , and then

applying a singular value decomposition (SVD) to the completed data matrix. More precisely, for
i ∈ [n], we let Ji denote the indices for which the corresponding entry of yi is observed, and regress

the observed data ỹi,Ji
= yi,Ji

on (V̂
(in)
K )Ji

to obtain an estimate ûi of the ith row ofU. This is natural
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in view of the data generating mechanism yi = VKui+zi. We then use ŷi,J c
i
:= (V̂

(in)
K )J c

i
ûi to impute

the missing values yi,J c
i
, retain the original observed entries as ŷi,Ji

:= ỹi,Ji
, and set our next (output)

iterate V̂
(out)
K to be the top K right singular vectors of the imputed matrix Ŷ := (ŷ1, . . . , ŷn)

⊤. To
motivate this final choice, observe that when Z = 0, we have rank(Y) = K; we therefore have the SVD
Y = LΓR⊤, where L ∈ On×K ,R ∈ Od×K and Γ ∈ RK×K is diagonal with positive diagonal entries.
This means that R = VKU⊤LΓ−1, so the column spaces of R and VK coincide. For convenience,
pseudocode of a single iteration of refinement in this algorithm is given in Algorithm 1.

Algorithm 1 refine(K, V̂
(in)
K ,Ω,YΩ), a single step of refinement of current iterate V̂

(in)
K

Input: K ∈ [d], V̂
(in)
K ∈ Od×K , Ω ∈ {0, 1}n×d with mini ∥ωi∥1 ≥ 1, YΩ ∈ Rn×d

Output: V̂
(out)
K ∈ Od×K

1: for i in [n] do
2: Ji ← {j ∈ [d] : ωij = 1}
3: ûi ← (V̂

(in)
K )†Ji

ỹi,Ji
, where (V̂

(in)
K )†Ji

denotes the Moore–Penrose pseudoinverse of (V̂
(in)
K )Ji

.

4: ŷi,J c
i
← (V̂

(in)
K )J c

i
ûi

5: ŷi,Ji
← ỹi,Ji

6: end for
7: Ŷ ← (ŷ1, . . . , ŷn)

⊤

8: V̂
(out)
K ← top K right singular vectors of Ŷ

We now seek to provide formal justification for Algorithm 1. The recursive nature of the primePCA
algorithm induces complex relationships between successive iterates, so to facilitate theoretical analy-
sis, we will impose some conditions on the underlying data generating mechanism that may not hold
in situations where we would like to apply to algorithm. Nevertheless, we believe that the analysis
provides considerable insight into the performance of the primePCA algorithm, and these are discussed
extensively below; moreover, our simulations in Section 4 consider settings both within and outside
the scope of our theory, and confirm its attractive and robust numerical performance.

In addition to the loss function L, it will be convenient to define a slightly different notion of
distance between subspaces. For any V, Ṽ ∈ Od×K , we let W1DW⊤

2 be an SVD of Ṽ⊤V. The

two-to-infinity distance between Ṽ and V is then defined to be

T (Ṽ,V) := ∥Ṽ −VW2W
⊤
1 ∥2→∞.

We remark that the definition of T (Ṽ,V) does not depend on our choice of SVD and that T (Ṽ,V) =

T (ṼO1,VO2) for any O1,O2 ∈ OK×K , so that T really represents a distance between the subspaces

spanned by Ṽ and V. In fact, there is a sense in which the change-of-basis matrix W2W
⊤
1 tries

to align the columns of V as closely as possible with those of Ṽ; more precisely, if we change the
norm from the two-to-infinity operator norm to the Frobenius norm, then W2W

⊤
1 uniquely solves the

so-called Procrustes problem (Schönemann, 1966):

W2W
⊤
1 = argmin

W∈OK×K

∥∥Ṽ −VW∥F. (7)

The following proposition considers the noiseless setting Z = 0, and shows that, for any estimator

V̂
(in)
K that is close to VK , a single iteration of refinement in Algorithm 1 contracts the two-to-infinity

distance between their column spaces, under appropriate conditions. We define Ωc := 1d1
⊤
d −Ω.

Proposition 1. Let V̂
(out)
K := refine

(
K, V̂

(in)
K ,Ω,YΩ

)
as in Algorithm 1 and further let ∆ :=

T (V̂(in)
K ,VK). We assume that mini∈[n] ∥ωi∥1 > K and that mini∈[n]

d1/2σK((V̂
(in)
K )Ji

)
|Ji|1/2 ≥ 1/σ∗ > 0.

Suppose that Z = 0 and that the SVD of Y is of the form LΓR⊤, where ∥L∥2→∞ ≤ µ(K/n)1/2 and
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∥R∥2→∞ ≤ µ(K/d)1/2 for some µ ≥ 1. Then there exist c1, C > 0, depending only on σ∗, such that
whenever

(i) ∆ ≤ c1σK(Γ)

K2µ4σ1(Γ)
√
d
,

(ii) ρ := CK2µ4σ1(Γ)∥Ωc∥1→1

σK(Γ)n < 1,

we have that

T (V̂(out)
K ,VK) ≤ ρ∆.

In order to understand the main conditions of Proposition 1, it is instructive to consider the case
K = 1, as was illustrated in Figure 1, and initially to think of µ as a constant. In that case,
condition (i) asks that the absolute value of every component of the difference between the vectors

V̂
(in)
1 and V1 is O(d−1/2); for intuition, if two vectors are uniformly distributed on Sd−1, then each

of their ℓ∞ norms is Op(d
−1/2 log1/2 d); in other words, we only ask that the initialiser is very slightly

better than a random guess. In Condition (ii), ρ being less than 1 is equivalent to the proportion of
missing data in each column being less than 1/(C ′µ4) (where C ′ again depends only on σ∗), and the
conclusion is that the refine step contracts the initial two-to-infinity distance from VK by at least
a factor of ρ. In the noiseless setting of Proposition 1, the matrix R of right singular vectors of Y
has the same column span (and hence the same two-to-infinity norm) as VK . We can therefore gain
some intuition about the scale of µ by considering the situation where VK is uniformly distributed on
Od×K , so in particular, the columns of VK are uniformly distributed on Sd−1. By Vershynin (2018,

Theorem 5.1.4), we deduce that ∥VK∥2→∞ = Op
(√K log d

d

)
. On the other hand, when the distribution

of U is invariant under left multiplication by an orthogonal matrix (e.g. if U has independent and
identically distributed Gaussian rows), then L is distributed uniformly on On×K . Arguing as above,
we see that, with high probability, we may take µ ≲ max

(√
log n,

√
log d

)
. This calculation suggests

that we do not lose too much by thinking of µ as a constant (or at most, growing very slowly with n
and d).

To apply Proposition 1, we also require conditions on mini∈[n] ∥ωi∥1 and σ∗. In practice, if either
of these conditions is not satisfied, we first perform a screening step that restricts attention to a set of
row indices for which the data contain sufficient information to estimate the K principal components.
This screening step is explicitly accounted for in Algorithm 2 below, as well as in the theory that
justifies it. An alternative would be to seek to weight rows according to their utility for principal
component estimation, but it seems difficult to implement this in a principled way that facilitates
formal justification.

Algorithm 2 primePCA, an iterative algorithm for estimating VK given initialiser V̂
(0)
K

Input: K ∈ [d], V̂
(0)
K ∈ Od×K ,Ω ∈ {0, 1}n×d,YΩ ∈ Rn×d, niter ∈ N, σ∗ ∈ (0,∞), κ∗ ∈ [0,∞)

Output: V̂K ∈ Rd×K

1: for i in [n] do
2: Ji ← {j ∈ [d] : ωij = 1}
3: end for
4: for t in [niter] do

5: I(t−1) ←
{
i : ∥ωi∥1 > K,σK

(
(V̂

(t−1)
K )Ji

)
≥ |Ji|1/2

d1/2σ∗

}
6: V̂

(t)
K ← refine(K, V̂

(t−1)
K ,ΩI(t−1) , (YΩ)I(t−1)), where refine is defined in Algorithm 1.

7: if L(V̂
(t)
K , V̂

(t−1)
K ) < κ∗ then break

8: end if
9: end for
10: return V̂K = V̂

(t)
K
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Algorithm 2 provides pseudocode for the iterative primePCA algorithm, given an initial estima-

tor V̂
(0)
K . The iterations continue until either we hit the convergence threshold κ∗ or the maximum

iteration number niter. Theorem 3 below guarantees that, in the noiseless setting of Proposition 1, the
primePCA estimator converges to VK at a geometric rate.

Theorem 3. For t ∈ [niter], let V̂
(t)
K be the tth iterate of Algorithm 2 with input K, V̂

(0)
K , Ω ∈

{0, 1}n×d, YΩ ∈ Rn×d, niter ∈ N, σ∗ ∈ (0,∞) and κ∗ = 0. Write ∆ := T (V̂(0)
K ,VK) and let

I :=

{
i : ∥ωi∥1 > K,σK

(
(VK)Ji

)
≥ |Ji|

1/2

d1/2σ∗

}
,

where Ji := {j : ωij = 1}. Suppose that Z = 0 and that the SVD of YI is of the form LΓR⊤, where

∥L∥2→∞ ≤ µ(K/n)1/2 and ∥R∥2→∞ ≤ µ(K/d)1/2 for some µ ≥ 1. Assume that

ϵ := min

{∣∣∣∣σK
(
(VK)Ji

)
d1/2

|Ji|1/2
− 1

σ∗

∣∣∣∣ : i ∈ [n], ∥ωi∥1 > K

}
> 0.

Then there exist c1, C > 0, depending only σ∗ and ϵ, such that whenever

(i) ∆ ≤ c1σK(Γ)

K2µ4σ1(Γ)
√
d
,

(ii) ρ := CK2µ4σ1(Γ)∥Ωc
I∥1→1

σK(Γ)|I| < 1,

we have that for every t ∈ [niter],

T (V̂(t)
K ,VK) ≤ ρt∆.

The condition that ϵ > 0 amounts to the very mild assumption that the algorithmic input σ∗ is not

exactly equal to any element of the set
{ |Ji|1/2
σK((VK)Ji

)d1/2 : i ∈ [n], ∥ωi∥1 > K
}
, though the conditions

on c1 and C become milder as ϵ increases.

3.1. Initialisation
Theorem 3 provides a general guarantee on the performance of primePCA, but relies on finding an

initial estimator V̂
(0)
K that is sufficiently close to the truth VK . The aim of this subsection, then,

is to propose a simple initialiser and show that it satisfies the requirement of Theorem 3 with high
probability, conditional on the missingness pattern.

Consider the following modified weighted sample covariance matrix

G̃ :=
1

n

n∑
i=1

ỹiỹ
⊤
i ◦ W̃, (8)

where for any j, k ∈ [d],

W̃jk :=

{
n∑n

i=1 ωijωik
if
∑n

i=1 ωijωik > 0,

0, otherwise.
(9)

Here, the matrix W̃ replaces Ŵ in (4) because, unlike in Section 2.1, we no longer wish to assume
homogeneous missingness. We take as our initial estimator of VK the matrix of top K eigenvectors
of G̃, denoted ṼK . Theorem 4 below studies the performance of this initialiser, in terms of its two-
to-infinity norm error, and provides sufficient conditions for us to be able to apply Theorem 3. In
particular, it ensures that the initialiser is reasonably well-aligned with the target VK . We write PΩ

and EΩ for probabilities and expectations conditional on Ω.

Theorem 4. Assume (A1)–(A4) and that n, d ≥ 2. Suppose further that ∥VK∥2→∞ ≤ µ(K/d)1/2,
that

∑n
i=1 ωijωik > 0 for all j, k and let R := λ1 + 1. Then there exist cM,τ , CM,τ > 0, depending only

on M and τ , such that for every ξ > 2, if

λK > cM,τ

{(
max

(
∥W̃∥1, R∥W̃∥1→1

)
ξ log d

n

)1/2

+
ξ∥W̃∥F log2 d

n

}
, (10)
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then

PΩ

{
T (ṼK ,VK)≥

CM,τKµ
2R1/2

λK

(
K

d1/2
+

1

λK

)(
ξ1/2∥W̃∥1/2∞→∞ log1/2d

n1/2
+
ξ∥W̃∥2→∞ log d

n

)}
≤ 2(eK log 5 +K + 4)d−(ξ−1) + 2d−(ξ−2).

As a consequence, writing

A :=

{
σK(YI)

σ1(YI)
>
CM,τK

3µ6R1/2

c1λK

(
1+

d1/2

KλK

)(
ξ1/2∥W̃∥1/2∞→∞ log1/2d

n1/2
+
ξ∥W̃∥2→∞ log d

n

)}
,

where I and c1 are as in Theorem 3, we have that

PΩ

(
T (ṼK ,VK) >

c1σK(YI)

K2σ1(YI)d1/2

)
≤ 2(eK log 5 +K + 4)d−(ξ−1) + 2d−(ξ−2) + PΩ(Ac).

The first part of Theorem 4 provides a general probabilistic upper bound for T (ṼK ,VK), after
conditioning on the missingness pattern. This allows us, in the second part, to provide a guarantee
on the probability with which ṼK is a good enough initialiser for Theorem 3 to apply. For intuition
regarding PΩ(Ac), consider the MCAR setting with pjk := E(ω1jω1k) for j, k ∈ [d]. In that case,

by Lemma 6, typical realisations of W̃ have ∥W̃∥∞→∞ ≤ 2maxj∈[d]
∑

k∈[d] p
−1
jk and ∥W̃∥2→∞ ≤

2maxj∈[d]
(∑

k∈[d] p
−2
jk

)1/2
when

∑
j,k∈[d] e

−npjk/8 is small. In particular, when nminj,k∈[d] pjk ≥ log d,

we expect PΩ(Ac) to be small when λ1 and λK are both of the same order, and grow faster than

max

{(
d log d

n
max
j∈[d]

d∑
k=1

1

pjk

)1/3

,
log d

n
max
j∈[d]

d∑
k=1

1

pjk

}
.

As a special case, in the p-homogeneous model where pjk = p21{j ̸=k} + p1{j=k} for j, k ∈ [d], the

requirement on λK above is that it should grow faster than max
{(d2 log d

np2 )1/3, d log dnp2

}
.

One of the attractions of our analysis is the fact that we are able to provide bounds that only de-
pend on entrywise missingness probabilities in an average sense, as opposed to worst-case missingness
probabilities. The refinements conferred by such bounds are particularly important when the missing-
ness mechanism is heterogeneous, as typically encountered in practice. The averaging of missingness

probabilities can be partially seen in Theorem 4, since ∥W̃∥∞→∞ and ∥W̃∥2→∞ depend only on the

ℓ1 and ℓ2 norms of each row of W̃, but is even more evident in the proposition below, which gives a
probabilistic bound on the original sinΘ distance between ṼK and VK .

Proposition 2. Assume the same conditions as in Theorem 4. Then there exists a universal
constant C > 0 such that for any ξ > 1, if

λK > C

{(
Mτ2R∥W̃∥1→1ξ log d

n

)1/2

+
M∥W̃∥opξ log2 d

n

}
, (11)

then

PΩ

{
L(ṼK ,VK) ≥ 29/2eKτµ

λK

(
MR

d

)1/2(ξ1/2∥W̃∥1/21 log1/2 d

n1/2
+
ξ∥W̃∥F log d

n

)}
≤ (2K + 4)d−(ξ−1).

In this bound, we see that L(ṼK ,VK) only depends on W̃ through the entrywise ℓ1 and ℓ2 norms of the
whole matrix. Lemma 6 again provides probabilistic control of these norms under the p-homogeneous
missingness mechanism. In general, if the rows of Ω are independent and identically distributed,

but different covariates are missing with different probabilities, then off-diagonal entries of W̃ will
concentrate around the reciprocals of the simultaneous observation probabilities of pairs of covariates.
As such, for a typical realisation of Ω, our bound in Proposition 2 depends only on the harmonic
averages of these simultaneous observation probabilities and their squares. Such an averaging effect
ensures that our method is effective in a much wider range of heterogeneous settings than previously
allowed in the literature.
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3.2. Weakening the missingness proposition condition for contraction
Theorem 3 provides a geometric contraction guarantee for the primePCA algorithm in the noiseless
case. The price we pay for this strong conclusion, however, is a strong condition on the proportion
of missingness that enters the contraction rate parameter ρ through ∥Ωc

I∥1→1; indeed in an asymp-
totic framework where the incoherence parameter µ grows with the sample size and/or dimension, the
proportion of missingness would need to vanish asymptotically. Therefore, to complement our earlier
theory, we present below Proposition 3 and Corollary 1. Proposition 3 is an analogue of the deter-
ministic Proposition 1 in that it demonstrates that a single iteration of the primePCA algorithm yields

a contraction provided that the input V̂
(in)
K is sufficiently close to VK . The two main differences are

first that the contraction is in terms of a Procrustes-type loss (see the discussion around (7)), which
turns out to be convenient for Corollary 1; and second, the bound depends only on the incoherence of
the matrix VK , and not on the corresponding quantity for U.

Proposition 3. Let V̂
(in)
K ∈ Od×K , let O := argminÕ∈OK×K ∥V̂(in)

K −VKÕ∥F and let Ξ := V̂
(in)
K −

VKO. Fix U ∈ Rn×K and VK ∈ Od×K with ∥VK∥2→∞ ≤ µ(K/d)1/2, and let Y := UV⊤
K , with

c := σK(Y)/∥Y∥F. Suppose that κ1, κ2, κ3 > 0 are such that for every i ∈ [n],

∥V⊤
Ji,K

ΞJi
∥op

|Ji|
≤
∥Ξ∥2op
d

+ κ1
µ∥Ξ∥op
d3/2

,
∥ΞJi

∥2op
|Ji|

≤ κ2
∥Ξ∥2op
d

, ∥ΞJ c
i
∥2op ≤ κ3∥Ξ∥2op. (12)

Assume further that

∥Ξ∥op ≤ min

{(
c

4σ2∗(κ1 + κ2)

)1/2

,
c

4µκ1σ2∗K

(
d

logK

)1/2}
. (13)

Then the output V̂
(out)
K := refine

(
K, V̂

(in)
K ,Ω,YΩ

)
of Algorithm 1 satisfies

∥V̂(out)
K −VKÔ∥op ≤

16∥Ξ∥op
c

{
σ2∗(κ1 + κ2)∥Ξ∥op + σ2∗κ1µK

(
logK

d

)1/2

+ κ
1/2
3

(
1 +

c

2

)}
,

where Ô := argminÕ∈OK×K ∥V̂(out)
K −VKÕ∥F ∈ OK×K .

Interestingly, the proof of Proposition 3 proceeds in a very different fashion from that of Proposition 1.
The key step is to bound the discrepancy between the principal components of the imputed data
matrix Ŷ in Algorithm 1 and VK using a modified version of Wedin’s theorem (Wang, 2016). To
achieve the desired contraction rate, instead of viewing the true data matrix Y as the reference matrix
when calculating the perturbation, we choose a different reference matrix Ỹ with the same top K right
singular space as Y but which is closer to Ŷ in terms of the Frobenius norm. Such a reference shift
sharpens the eigenspace perturbation bound.

The contraction rate in Proposition 3 is a sum of three terms, the first two of which are small
provided that ∥Ξ∥op is small and d is large respectively. On the other hand, the final term is small
provided that no small subset of the rows of Ξ contributes excessively to its operator norm. For
different missingness mechanisms, such a guarantee would need to be established probabilistically on
a case-by-case basis; in Corollary 1 we illustrate how this can be done to achieve a high probability
contraction in the simplest missingness model. Importantly, the proportion of missingness allowed,
and hence the contraction rate parameter, no longer depend on the incoherence of VK , and can be of
constant order.

Corollary 1. Consider the p-homogeneous MCAR setting. Fix U ∈ Rn×K and VK ∈ Od×K with

∥VK∥2→∞ ≤ µ(K/d)1/2, and let Y := UV⊤
K , with c := σK(Y)/∥Y∥F. Suppose that V̂

(in)
K , V̂

(out)
K ∈

Od×K , O, Ô ∈ OK×K and Ξ ∈ Rd×K are as in Proposition 3, let C∗ := ∥Ξ∥op/∥Ξ∥2→∞, and suppose
that

∥Ξ∥op ≤ min

{
p(1− p)1/2

44µK3/2(σ∗ ∨ 1) log(24nK/δ)
,

(
c

8σ2∗

)1/2

,
c

4µσ2∗K

(
d

logK

)1/2}
.
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Fix δ ∈ (0, 1] and suppose that dp ≥ 8 log(3/δ). Then with probability at least 1 − δ, the output

V̂
(out)
K := refine

(
K, V̂

(in)
K ,Ω,YΩ

)
of Algorithm 1 satisfies

∥V̂(out)
K −VKÔ∥op ≤

125

c

{
K1/2(1− p)1/2 + log1/2(3/δ)

C∗

}
∥V̂(in)

K −VKO∥op.

To understand the conclusion of Corollary 1, it is instructive to consider the special case K = 1. Here,

c = 1 and C∗ is the ratio of the ℓ2 and ℓ∞ norms of the vector V̂
(in)
1 − sgn(V⊤

1 V̂
(in)
1 )V1. When the

entries of this vector are of comparable magnitude, C∗ is therefore of order d1/2, so the contraction
rate is of order (1− p)1/2 + d−1/2.

3.3. Other missingness mechanisms
Another interesting aspect of our theory is that the guarantees provided in Theorem 3 are deterministic.
Provided we start with a sufficiently good initialiser, Theorem 3 describes the way in which the
performance of primePCA improves over iterations. An attraction of this approach is that it offers
the potential to study the performance of primePCA under more general missingness mechanisms. For
instance, one setting of considerable practical interest is the Missing At Random (MAR) model, which
postulates that our data vector y = (y1, . . . , yd) and observation indicator vector ω satisfy

P(ω = ϵ | y = a) = P
(
ω = ϵ

∣∣∣∣ ⋂
j:ϵj=1

{yj = aj}
)

(14)

for all ϵ = (ϵ1, . . . , ϵd)
⊤ ∈ {0, 1}d and a = (a1, . . . , ad)

⊤ ∈ Rd. In other words, the probability of
seeing a particular missingness pattern only depends on the data vector through components of this
vector that are observed. Thus, if we want to understand the performance of primePCA under different
missingness mechanisms, such as specific MAR (or even Missing Not At Random (MNAR)) models, all
we require is an analogue of Theorem 4 on the performance of the initialiser in these new missingness
settings. Such results, however, are likely to be rather problem-specific in nature, and it can be that
choosing an initialiser based on available information on the dependence between the observations and
the missingness mechanism makes it easier to prove the desired performance guarantees.

We now provide an example to illustrate how such initialisers can be constructed and analysed.
Consider an MAR setting where the missingness pattern depends on the data matrix only through a
fully observed categorical variable. In this case, we can construct a variant of the OPW estimator,
denoted V̂OPWv

K , by modifying the weighted sample covariance matrix in (8) to condition on the fully
observed covariate, and then take the leading eigenvectors of an appropriate average of these condi-
tional weighted sample covariance matrices. Specifically, suppose that our data consist of indepen-
dent and identically distributed copies (y1,ω1), . . . , (yn,ωn) of (y,ω) = (y0, y1, . . . , yd, ω0, ω1, . . . , ωd),
where ω0 = 1, where y0 is a categorical random variable taking values in {1, . . . , L} and where

(y1, . . . , yd) | y0 ∼ Nd(0,Σy0) is independent of ωj | y0
iid∼ Bern(py0) for all j ∈ [d]. Writing

y−0 := (y1, . . . , yd)
⊤, ω−0 := (ω1, . . . , ωd)

⊤ and ỹ−0 := y−0 ◦ ω−0, we have that Cov(y0,y−0) = 0,
i.e. Cov(y) is block diagonal. Thus, introducing the subscript i for our ith observation, as a starting

point to construct V̂OPWv
K , it is natural to consider an oracle estimator of Cov(y−0), given by

G :=
1

n

L∑
ℓ=1

∑
i:yi0=ℓ

ỹi,−0ỹ
⊤
i,−0 ◦Wℓ,

where Wℓ := p−2
ℓ

{
1d1

⊤
d − (1− pℓ)Id

}
. Observe that we can write

G =

L∑
ℓ=1

nℓ
n
G(ℓ),
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where nℓ := |{i : yi0 = ℓ}| and where G(ℓ) := n−1
ℓ

∑
i:yi0=ℓ

ỹi,−0ỹ
⊤
i,−0 ◦Wℓ is the OPW estimator of

Σℓ based on the observations with yi0 = ℓ. Hence, G is unbiased for Cov(y−0), because

E(G) =

L∑
ℓ=1

E
(
nℓ
n
E(G(ℓ) | y10, . . . , yn0)

)
=

L∑
ℓ=1

E(nℓ)
n

Σℓ = Cov(y−0).

In practice, when pℓ is unknown, we can estimate it by

p̂ℓ :=
1

dnℓ

∑
i:yi0=ℓ

d∑
j=1

ωij ,

and substitute this estimate into Wℓ to obtain empirical estimators G̃(ℓ) and G̃ of G(ℓ) and G
respectively. Finally, V̂OPWv

K can be obtained as the matrix of topK eigenvectors of the (d+1)×(d+1)
matrix ( 1

n

∑n
i=1 y

2
i0 − ( 1n

∑n
i=1 yi0)

2 0⊤

0 G̃

)
.

To sketch the way to bound the sinΘ loss of such an initialiser, we can condition on y10, . . . , yn0 and
apply matrix Bernstein concentration inequalities similarly to those in the proof of Theorem 1 to show
that G̃(ℓ) is close to Σℓ for each ℓ. Simple binomial concentration bounds then allow us to combine
these to control ∥G̃ − Cov(y−0)∥op, and then apply a variant the Davis–Kahan theorem to obtain a
final result.

While different initialisers can be designed and analysed theoretically in specific missingness set-
tings, as shown in the example above, our empirical experience, nevertheless, is that regardless of the
missingness mechanism, primePCA is extremely robust to the choice of initialiser. This is evident from
the discussion of the performance of primePCA in MAR and MNAR settings given in Section 4.4.

4. Simulation studies

In this section, we assess the empirical performance of primePCA, as proposed in Algorithm 2, with

initialiser ṼK from Section 3.1, and denote the output of this algorithm by V̂prime
K . In Sections 4.1, 4.2

and 4.3, we generate observations according to the model described in (1), (2) and (3) where the rows of
the matrix U are independent Nd(0,Σu) random vectors, for some positive semi-definite Σu ∈ Rd×d.
We further generate the observation indicator matrix Ω, independently of U and Z, and investigate
the following four missingness mechanisms that represent different levels of heterogeneity:

(H1) Homogeneous: P(ωij = 1) = 0.05 for all i ∈ [n], j ∈ [d];

(H2) Mildly heterogeneous: P(ωij = 1) = PiQj for i ∈ [n], j ∈ [d], where P1, . . . , Pn
iid∼ U [0, 0.2] and

Q1, . . . , Qd
iid∼ U [0.05, 0.95] independently;

(H3) Highly heterogeneous columns: P(ωij = 1) = 0.19 for i ∈ [n] and all odd j ∈ [d] and P(ωij =
1) = 0.01 for i ∈ [n] and all even j ∈ [d].

(H4) Highly heterogeneous rows: P(ωij = 1) = 0.18 for j ∈ [d] and all odd i ∈ [n] and P(ωij = 1) = 0.02
for j ∈ [d] and all even i ∈ [n].

In Sections 4.1, 4.2 and 4.3 below, we investigate primePCA in noiseless, noisy and misspecified set-
tings respectively. Section 4.4 is devoted to MAR and MNAR settings. In all cases, the average
statistical error was estimated from 100 Monte Carlo repetitions of the experiment. For comparison,
we also studied the softImpute algorithm (Mazumder, Hastie and Tibshirani, 2010; Hastie et al.,
2015), which is considered to be state-of-the-art for matrix completion (Chi, Lu and Chen, 2018).
This algorithm imputes the missing entries of Y by solving the following nuclear-norm-regularised
optimisation problem:

Ŷsoft := argmin
X∈Rn×d

{
1

2
∥YΩ −XΩ∥2F + λ∥X∥∗

}
,
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where λ > 0 is to be chosen by the practitioner. The softImpute estimator of VK is then given by the

matrix of top K right singular vectors V̂soft
K of Ŷsoft. In practice, the optimisation is carried out by

representing X as AB⊤, and performing alternating projections to update A ∈ Rn×K and B ∈ Rd×K
iteratively. The fact that the softImpute algorithm was originally intended for matrix completion
means that it treats the left and right singular vectors symmetrically, whereas the primePCA algorithm,
which has the advantage of a clear geometric interpretation as exemplified in Figure 1, focuses on the
target of inference in PCA, namely the leading right singular vectors.

Figure 2 presents Monte Carlo estimates of EL(V̂prime
K ,VK) for different choices of σ∗ in two

different settings. The first uses the noiseless set-up of Section 4.1, together with missingness mech-
anism (H1); the second uses the noisy setting of Section 4.2 with parameter ν = 20 and missingness
mechanism (H2). We see that the error barely changes when σ∗ varies within [2, 10]; very similar plots
were obtained for different data generation and missingness mechanisms, though we omit these for
brevity. For definiteness, we therefore fixed σ∗ = 3 throughout our simulation study.
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Fig. 2. Estimates of EL(V̂prime
K ,VK) for various choices of σ∗ under (H1) in the noiseless setting of Section 4.1

(left) and (H2) in the noisy setting of Section 4.2 with ν = 20 (right).

4.1. Noiseless case
In the noiseless setting, we let Z = 0, and also fix n = 2000, d = 500, K = 2 and Σu = 100I2. We set

VK =

√
1

500

(
1250 1250
1250 −1250

)
∈ R500×2.

In Figure 3, we present the (natural) logarithm of the estimated average loss of primePCA and
softImpute under (H1), (H2), (H3) and (H4). We set the range of y-axis to be the same for each
method to facilitate straightforward comparison. We see that the statistical error of primePCA de-
creases geometrically as the number of iterations increases, which confirms the conclusion of Theorem 3
in this noiseless setting. Moreover, after a moderate number of iterations, its performance is a substan-
tial improvement on that of the softImpute algorithm, even if this latter algorithm is given access
to an oracle choice of the regularisation parameter λ. The high statistical error of softImpute in
these settings can be partly explained by the default value of the tuning parameter thresh in the
softImpute package in R, namely 10−5, which corresponds to the red curve in the right-hand panels
of Figure 3. By reducing the values of thresh to 10−7 and 10−9, corresponding to the green and blue
curves in Figure 3 respectively, we were able to improve the performance of softImpute to some ex-
tent, though the statistical error is sensitive to the choice of the regularisation parameter λ. Moreover,
even with the optimal choice of λ, it is not competitive with primePCA. Finally, we mention that for
the 2000 iterations of setting (H2), primePCA took on average just under 10 minutes per repetition to
compute, whereas the solution path of softImpute with thresh = 10−9 took around 36 minutes per
repetition.
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Fig. 3. Logarithms of the average Frobenius norm sinΘ error of primePCA and softImpute under various
heterogeneity levels of missingness in absence of noise. The four rows of plots above, from the top to bottom,
correspond to (H1), (H2), (H3) and (H4).
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Table 1. Average losses (with standard errors in brackets) under (H1), (H2), (H3) and
(H4).

ν = 10 ν = 20 ν = 40 ν = 60
(H1) hardImpute 0.891(0.005) 0.444(0.001) 0.251(0.001) 0.186(0.0005)

softImpute(oracle) 0.377(0.0009) 0.186(0.0004) 0.095(0.0002) 0.064(0.0002)
primePCA init 0.449(0.001) 0.306(0.001) 0.266(0.001) 0.259(0.001)

primePCA 0.368(0.001) 0.171(0.0004) 0.084(0.0002) 0.056(0.0001)
(H2) hardImpute 0.920(0.006) 0.473(0.001) 0.291(0.001) 0.236(0.001)

softImpute(oracle) 0.519(0.001) 0.308(0.001) 0.185(0.001) 0.141(0.001)
primePCA init 0.549(0.002) 0.399(0.002) 0.357(0.001) 0.349(0.001)

primePCA 0.475(0.002) 0.232(0.001) 0.115(0.001) 0.077(0.0005)
(H3) hardImpute 0.792(0.003) 0.479(0.001) 0.385(0.001) 0.427(0.001)

softImpute(oracle) 0.622(0.002) 0.374(0.001) 0.222(0.001) 0.170(0.001)
primePCA init 0.624(0.002) 0.486(0.001) 0.449(0.001) 0.442(0.001)

primePCA 0.581(0.002) 0.290(0.001) 0.145(0.001) 0.097(0.0004)
(H4) hardImpute 0.368(0.001) 0.174(0.0005) 0.089(0.0003) 0.062(0.0003)

softImpute(oracle) 0.243(0.0006) 0.121(0.0002) 0.062(0.0001) 0.042(0.0001)
primePCA init 0.290(0.0007) 0.203(0.001) 0.175(0.0005) 0.169(0.0004)

primePCA 0.238(0.0006) 0.116(0.0003) 0.058(0.0002) 0.038(0.0001)

4.2. Noisy case

Here, we generate the rows of Z as independent Nd(0, Id) random vectors, independent of all other
data. We maintain the same choices of n, d, K and VK as in Section 4.1, set Σu = ν2I2 and vary
ν > 0 to achieve different signal-to-noise ratios. In particular, defining SNR := trCov(x1)/ tr Cov(z1),
the choices ν = 10, 20, 40, 60 correspond to the very low, low, medium and high signal-to-noise ratios
SNR = 0.4, 1.6, 6.4, 14.4, respectively. For an additional comparision, we consider a variant of the
softImpute algorithm called hardImpute (Mazumder, Hastie and Tibshirani, 2010), which retains
only a fixed number of top singular values in each iteration of matrix imputation; this can be achieved
by setting the argument λ in the softImpute function to be 0.

To avoid confounding our study of the statistical performance of the softImpute algorithm with
the choice of regularisation parameter λ, we gave the softImpute algorithm a particularly strong form
of oracle choice of λ, namely where λ was chosen for each individual repetition of the experiment, so as
to minimise the loss function. Naturally, such a choice is not available to the practitioner. Moreover,
in order to ensure the range of λ was wide enough to include the best softImpute solution, we set
the argument rank.max in that algorithm to be 20.

In Table 1, we report the statistical error of primePCA after 2000 iterations of refinement, to-
gether with the corresponding statistical errors of our initial estimator primePCA init and those of
softImpute(oracle) and hardImpute. Remarkably, primePCA exhibits stronger performance than
these other methods across each of the signal-to-noise ratio regimes and different missingness mecha-
nisms. We also remark that hardImpute is inaccurate and unstable, because it might converge to a
local optimum that is far from the truth.

4.3. Near low-rank case

In this subsection, we set n = 2000, d = 500, K = 10, Σu = diag(210, 29, . . . , 2), and fixed VK once
for all experiments to be the top K eigenvectors of one realisation‡ of the sample covariance matrix
of n independent Nd(0, Id) random vectors. Here d1/2∥VK∥2→∞ < 1.72, and we again generated the
rows of Z as independent Nd(0, Id) random vectors. Table 2 reports the average loss of estimating the

top K̂ eigenvectors of Σy, where K̂ varies from 1 to 5. Interestingly, even in this misspecified setting,
primePCA is competitive with the oracle version of softImpute.

‡In R, we set the random seed to be 2019 before generating VK .
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Table 2. Average losses (with standard errors in brackets) in the setting of Section 4.3 under
(H1), (H2), (H3) and (H4).

K̂ = 1 K̂ = 2 K̂ = 3 K̂ = 4 K̂ = 5
(H1) hardImpute 0.308(0.002) 0.507(0.002) 0.764(0.004) 1.199(0.006) 1.524(0.004)

softImpute(oracle) 0.107(0.001) 0.182(0.001) 0.275(0.001) 0.401(0.001) 0.596(0.001)
primePCA init 0.203(0.001) 0.345(0.001) 0.554(0.003) 1.074(0.007) 1.427(0.006)

primePCA 0.141(0.001) 0.200(0.001) 0.269(0.001) 0.374(0.001) 0.580(0.001)
(H2) hardImpute 0.298(0.002) 0.466(0.002) 0.696(0.003) 1.124(0.006) 1.452(0.004)

softImpute(oracle) 0.188(0.001) 0.283(0.001) 0.410(0.001) 0.562(0.001) 0.751(0.001)
primePCA init 0.285(0.001) 0.443(0.004) 0.757(0.013) 1.201(0.004) 1.533(0.003)

primePCA 0.190(0.002) 0.267(0.002) 0.368(0.003) 0.543(0.008) 0.797(0.009)
(H3) hardImpute 0.302(0.001) 0.482(0.002) 0.695(0.002) 1.004(0.006) 1.373(0.004)

softImpute(oracle) 0.206(0.001) 0.338(0.001) 0.492(0.001) 0.664(0.002) 0.878(0.002)
primePCA init 0.341(0.001) 0.528(0.019) 1.097(0.008) 1.306(0.008) 1.597(0.004)

primePCA 0.222(0.001) 0.330(0.002) 0.452(0.003) 0.641(0.008) 0.919(0.007)
(H4) hardImpute 0.090(0.001) 0.148(0.001) 0.226(0.001) 0.3460.002 0.589(0.007)

softImpute(oracle) 0.071(0.001) 0.112(0.001) 0.164(0.001) 0.233(0.001) 0.332(0.001)
primePCA init 0.139(0.001) 0.220(0.001) 0.325(0.001) 0.475(0.002) 0.805(0.012)

primePCA 0.098(0.001) 0.135(0.001) 0.176(0.001) 0.236(0.001) 0.328(0.001)

4.4. Other missingness mechanisms
Finally in this section, we investigate the performance of primePCA, as well as other alternative
algorithms, in settings where the MCAR hypothesis is not satisfied. We consider two simulation
frameworks to explore both MAR (see (14)) and MNAR mechanisms. In the first, we assume that
missingness depends on the data matrix Y only through a fully observed covariate, as in the example
in Section 3.3. Specifically, for some α ≥ 0, for K = 2, and for two matrices§ V+,V− ∈ Od×2, the
pair (y1,ω1) = (y10, y11 . . . , y1d, ω10, ω11, . . . , ω1d) is generated as follows:

ω10 = 1, y10 ∼ Unif{−1, 1},
(y11, . . . , y1d), ω11, . . . , ω1d are conditionally independent given y10,

(y11, . . . , y1d)
⊤ | y10 ∼

{
Nd(0,V+diag(40, 10)V

⊤
+ + Id) if y10 = 1

Nd(0,V−diag(40, 10)V
⊤
− + Id) if y10 = −1,

P(ω1j = 1 | y10) =
{
1 + exp

(
j

d
+ y10α

)}−1

, for j ∈ [d].

(15)

The other rows of (Y,Ω) are taken to be as independent copies of (y1,ω1). Thus, when α = 0, the
matrices Y and Ω are independent, and we are in an MCAR setting; when α ̸= 0, the data are MAR
but not MCAR, and α measures the extent of departure from the MCAR setting. The covariance
matrix of y1 is

Σy =

(
1 0⊤

0 1
2V+diag(40, 10)V

⊤
+ + 1

2V−diag(40, 10)V
⊤
− + Id

)
∈ R(d+1)×(d+1).

In this example, we can construct a variant of the OPW estimator, which we call the OPWv estimator,
by exploiting the fact that, conditional on the fully observed first column of Y, the data are MCAR.
To do this, let

Σ̂
OPWv

:=

(
1 0⊤

0 1
2G̃+ + 1

2G̃−

)
,

where G̃+ and G̃− are the weighted sample covariance matrices computed as in (8), based on data
(yij , ωij)i:yi0=1,j∈[d] and (yij , ωij)i:yi0=−1,j∈[d] respectively. The OPWv estimator is the matrix of the

§To be completely precise, in our simulations, V+ and V− were generated independently (and independently
of all other randomness) and were drawn from Haar measure on Od×2; however, these matrices were then fixed
for every replication, so it is convenient to regard them as deterministic for the purposes of this description.
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Table 3. Root mean squared errors of the sinΘ loss function (with standard errors in brackets)
over 100 repetitions from the data generating mechanism in (15) for OPW estimator and its
class-weighted variant (OPWv), EM and primePCA with both the OPW or OPWv initialisers.
d α OPW OPWv EM EMv primePCA primePCAv
25 0.1 0.266(0.005) 0.247(0.004) 0.414(0.045) 0.464(0.053) 0.206(0.004) 0.206(0.004)
25 0.5 0.346(0.009) 0.248(0.005) 0.445(0.047) 0.378(0.056) 0.248(0.014) 0.248(0.008)
50 0.1 0.287(0.003) 0.265(0.003) 0.350(0.032) 0.346(0.032) 0.220(0.002) 0.220(0.002)
50 0.5 0.591(0.025) 0.290(0.003) 0.588(0.033) 0.369(0.03) 0.255(0.005) 0.255(0.005)

first two eigenvectors of Σ̂
OPWv

. Both the OPW and OPWv estimators are plausible initialisers for
the primePCA algorithm.

In low-dimensional settings, likelihood-based approaches, often implemented via an EM algorithm,
are popular for handling MAR data (14) (Rubin, 1976). In Table 3, we compare the performance
of primePCA in this setting with that of an EM algorithm derived from the suggestion in Little and
Rubin (2019, Section 11.3), and considered both the OPW and OPWv estimators as initialisers. We set

n = 500, d ∈ {25, 50}, α ∈ {0.1, 0.5} and took K̂ = 2 for both the primePCA and the EM algorithms.
From the table, we see that the OPWv estimator is able to exploit the group structure of the data to
improve upon the OPW estimator, especially for the larger value of α. It is reassuring to find that
the performance of primePCA is completely unaffected by the choice of initialiser, and, remarkably,
it outperforms the OPWv estimator, even though the latter has access to additional model structure
information. The worse root mean squared error of the EM algorithm is mainly due its numerical
instability when performing Schur complement computations¶.

The second simulation framework is as follows. Let Σ := (min{j, k})j,k∈[d] ∈ Rd×d and let ξ =
(ξij)i∈[n],j∈[d] be a latent Bernoulli thinning matrix. The data matrix Y = (yij)i∈[n],j∈[d] and revelation
matrix Ω = (ωij)i∈[n],j∈[d] are generated in such a way that Y and ξ are independent,

(yi1, . . . , yid)
⊤ iid∼ Nd(0,Σ), for i ∈ [n],

ξij
iid∼ Bern(p),

ωij = ξij1{max1≤t<j |yit|<τ}, for some τ > 0,

(16)

(where the maximum of the empty set is −∞ by convention). As usual, we observe (Y ◦ Ω,Ω).
In other words, viewing each (yi1, . . . , yid) as a d-step standard Gaussian random walk, we observe
Bernoulli-thinned paths of the process up to (and including) the hitting time of the threshold ±τ . We
note that the observations satisfy the MAR hypothesis if and only if p = 1, and as p decreases from 1,
the mechanism becomes increasingly distant from MAR, as we become increasingly likely to fail to
observe the threshold hitting time. We take K = 1.

In Table 4, we compare the performance of primePCA with that of the EM algorithm, and in both
cases, we can initialise with either the OPW estimator or a mean-imputation estimator, obtained by
imputing all missing entries by their respective population column means. We set n = 500, d = 100,
τ = d1/2, took K̂ = 1 for both primePCA and the EM algorithm, and took p ∈ {0.25, 0.5, 0.75, 1}.
From the table, we see that primePCA outperforms the EM algorithm except in the MAR case where
p = 1, which is tailor-made for the likelihood-based EM approach. In fact, primePCA is highly ro-
bust statistically and stable computationally, performing well consistently across different missingness
settings and initialisers. On the other hand, the EM algorithm exhibits a much heavier dependence
on the initialiser: its statistical performance suffers when initialised with the poorer mean-imputation
estimator and runs into numerical instability issues when initialised with the OPW estimator in the
MNAR settings. We found that these instability issues are exacerbated in higher dimensions, and

¶In fact, to try to improve the numerical stability of the EM procedure, we prevented the sample covariance
estimators from exiting the cone of positive semi-definite matrices during iterations and took Moore–Penrose
pseudoinverses with eigenvalues below 10−10 regarded as 0. Both of these modifications did indeed improve
the algorithm, but some instability persists. Moreover, use of the SWEEP operator (Beaton, 1964), which is
designed to compute the Schur complement in a numerically stable way, failed to remedy the situation, yielding
identical (increasing) log-likelihood trajectories as the vanilla algorithm.



20 Ziwei Zhu, Tengyao Wang and Richard J. Samworth

Table 4. Root mean squared errors of the sinΘ loss function (with standard errors in brackets)
over 100 repetitions from the data generating mechanism in (16) for mean-imputation estimator
(MI), OPW estimator, EM and primePCA with both MI and OPW initialisers (distinguished by
subscripts in table header).
p MI OPW EMMI EMOPW primePCAMI primePCAOPW

1 0.548(0.004) 0.282(0.004) 0.086(0.003) 0.056(0.002) 0.096(0.002) 0.096(0.002)
0.75 0.551(0.004) 0.285(0.004) 0.117(0.004) 0.353(0.041) 0.097(0.002) 0.097(0.002)
0.5 0.557(0.005) 0.29(0.004) 0.186(0.025) 0.944(0.013) 0.1(0.002) 0.1(0.002)
0.25 0.575(0.005) 0.309(0.005) 0.228(0.005) 0.989(0.001) 0.112(0.002) 0.123(0.006)

moreover, that the EM algorithm quickly becomes computationally infeasible∥. This explains why we
did not run the EM algorithm on the larger-scale problems in Sections 4.1, 4.2 and 4.3, as well as the
real data example in Section 5 below.

5. Real data analysis: Million Song Dataset

We apply primePCA to a subset of the Million Song Dataset∗∗ to analyse music preferences. The
original data can be expressed as a matrix with 110,000 users (rows) and 163,206 songs (columns),
with entries representing the number of times a song was played by a particular user. The proportion
of non-missing entries in the matrix is 0.008%. Since the matrix is very sparse, and since most songs
have very few listeners, we enhance the signal-to-noise ratio by restricting our attention to songs that
have at least 100 listeners (1,777 songs in total). This improves the proportion of non-missing entries
to 0.23%. Further summary information about the filtered data is provided below:

(a) Quantiles of non-missing matrix entry values:

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
1 1 1 1 1 1 2 3 5 8 500

90% 91% 92% 93% 94% 95% 96% 97% 98% 99% 100%
8 9 9 10 11 13 15 18 23 33 500

(b) Quantiles of the number of listeners for each song:

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
100 108 117 126 139 154 178 214 272.8 455.6 5043

(c) Quantiles of the total play counts of each user:

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0 0 1 3 4 6 9 14 21 38 1114

90% 91% 92% 93% 94% 95% 96% 97% 98% 99% 100%
38 41 44 48 54 60 68 79 97 132 1114

We mention here a respect in which the data set does not conform exactly to the framework studied
in the paper, namely that we treat zero entries as missing data (this is very common for analyses of
user-preference data sets). In practice, while it may indeed be the case that a zero play count for

∥Each iteration of the EM algorithm involves the inversion of n matrices, where the dimension of the ith

such matrix is
∑d

j=1 ωij ×
∑d

j=1 ωij (i.e. O(d) × O(d)). Using standard matrix inversion algorithms, then,

each iteration has computational complexity of order nd3, and moreover the number of iterations required for
numerical convergence can be very large in higher dimensions. This meant that even when d = 100, primePCA
was nearly 50 times faster than the EM algorithm.
∗∗https://www.kaggle.com/c/msdchallenge/data
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song j by user i provides no indication of their level of preference for that song, it may also be the
case that it reflects a dislike of that song. To address this issue, following our main analysis we will
present a study of the robustness of our conclusions to different levels of true zeros in the data.

From point (a) above, we see that the distribution of play counts has an extremely heavy tail, and
in particular the sample variances of the counts will be highly heterogeneous across songs. To guard
against excessive influence from the outliers, we discretise the play counts into five interest levels as
follows:

Play count 1 2 – 3 4 – 6 7 – 10 ≥ 11
Level of interest 1 2 3 4 5
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Fig. 4. Leading eigenvalues of Σ̂y.

We are now in a position to analyse the data using primePCA, noting that one of the attractions of
estimating the principal eigenspaces in this setting (as opposed to matrix completion, for instance), is
that it becomes straightforward to make recommendations to new users, instead of having to run the
algorithm again from scratch. For i = 1, . . . , n = 110,000 and j = 1, . . . , d = 1,777, let yij ∈ {1, . . . , 5}
denote the level of interest of user i in song j, let K̂ = 10 and let I = {i : ∥ωi∥1 > K̂}. Our initial goal

is to assess the top K̂ eigenvalues of Σy to see if there is low-rank signal in Y = (yij). To this end,

we first apply Algorithm 2 to obtain V̂
prime

K̂
; next, for each i ∈ I, we run Steps 2–5 of Algorithm 1 to

obtain the estimated principal score ûi, so that we can approximate yi by ŷi = V̂
prime

K̂
ûi. This allows

us to estimate Σy by Σ̂y = n−1
∑

i∈I ŷiŷ
⊤
i . Figure 4 displays the top K̂ eigenvalues of Σ̂y, which

exhibit a fairly rapid decay, thereby providing evidence for the existence of low-rank signal in Y.
In the left panel of Figure 5, we present the estimate V̂prime

2 of the top two eigenvectors of the
covariance matrix Σy, with colours indicating the genre of the song. The outliers in the x-axis of this
plot are particularly interesting: they reveal songs that polarise opinion among users (see Table 5) and
that best capture variation in individuals’ preferences for types of music measured by the first principal
component. It is notable that Rock songs are overrepresented among the outliers (see Table 6), relative
to, say, Country songs. Users who express a preference for particular songs are also more likely to enjoy
songs that are nearby in the plot. Such information is therefore potentially commercially valuable,
both as an efficient means of gauging users’ preferences, and for providing recommendations.

The right panel of Figure 5 presents the principal scores {ûi}ni=1 of the users, with frequent users
(whose total song plays are in the top 10% of all users) in red and occasional users in blue. This plot
reveals, for instance, that the second principal component is well aligned with general interest in the
website. Returning to the left plot, we can now interpret a positive y-coordinate for a particular song
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Table 5. Titles, artists and genres of the 22 outlier songs in Figure 5.
ID Title Artist Genre
1 Your Hand In Mine Explosions In The Sky Rock
2 All These Things That I’ve Done The Killers Rock
3 Lady Marmalade Christina Aguilera / Lil’ Kim/ Pop

Mya / Pink
4 Here It Goes Again Ok Go Rock
5 I Hate Pretending (Album Version) Secret Machines Rock
6 No Rain Blind Melon Rock
7 Comatose (Comes Alive Version) Skillet Rock
8 Life In Technicolor Coldplay Rock
9 New Soul Yael Näım Pop
10 Blurry Puddle Of Mudd Rock
11 Give It Back Polly Paulusma Pop
12 Walking On The Moon The Police Rock
13 Face Down (Album Version) The Red Jumpsuit Apparatus Rock
14 Savior Rise Against Rock
15 Swing Swing The All-American Rejects Rock
16 Without Me Eminem Rap
17 Almaz Randy Crawford Pop
18 Hotel California Eagles Rock
19 Hey There Delilah Plain White T’s Rock
20 Revelry Kings Of Leon Rock
21 Undo Björk Rock
22 You’re The One Dwight Yoakam Country

(which is the case for the large majority of songs) as being associated with an overall interest in the
music provided by the site.

●●●
●

●
●

● ●

●

●●●●●●
●

●

●●

●

●●●
●

●

●
●

●
●

●

● ●

●

●

● ●

●

●●

●

●

●
●
●

● ●

●●
●

● ●

●
●

●

●
●

●

●

● ●●

●

●

●● ●
●

●

● ●

●

●

●

●

●
●

●

●
●

●●

●
● ●

●●

●
●

●

●

●●●
●●
●

●

●●●●

● ●
●

●

●
●

● ●

●

●

● ●
●
●

●

●

●

●

●●
●

●

●

●
●

●
●●●
●●

●
●

●
●
●

●

●
●

●●

●

● ●

●

●●

●

●

● ●●●
● ●

●
●
●

●

●
●

●

●
●

●
●

●
● ●●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●
●●

●

●●
●

● ●

●
●

●●

●

●
●
●●

●

●
●

● ●●

●●

●

●●
●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

● ●
●

●
●

●

●●
●●

●

●

●
●

●

●
●

●

●

● ●

●

●

●
●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●
●
●

●

●●
●

●●

●
●

●●

●
● ●● ●

●●

●●
●

●

●
●

●
●●

●

●

●

●

●
●

●

●

● ●
● ●

●

●●
● ●

●

●

●●

●

●
●

● ●

●

●●

●

● ●●●
●●
●

● ●
●

●

●

●

●
●

● ●

●

●

●●●
●

●

●
●

● ●
● ●

●

●
● ●

●

●
●

●

● ●
●

●●

●

●

●●
●

●

●

●
●

●

●

●

●●

● ●
●

●
●

●
●●●

●
●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●●
●
●

●
●● ●

●●
●

●

●

●

●●
●

●

●

●

●

●

●
●● ●

●

● ●
●

●

●●

●
●

●
●

●
●

●

●

●
● ●●

●
●

●
●

●

●

●

● ●
●●

●
●

●

●
●●

●

●

●

●●

●

● ●

●

●

●●
●

●●

●

●

● ●

●

●

●

●●
● ●

●

●●

●

●● ●
●

●
●

●● ●● ●
● ●●

●

● ●

●
●

●
●

● ●
●

●
●

●

●

●

● ●
●● ●
●

●●
●

●

●

●●●
●

●

●
●

●

●

●
●

●

●●●
●

●

●
●

●●

● ●

●
●

●

●●
●●

●

●

●

●

●

●

●

●
●

●

●●
●●

●

●
●

●●●

●

●

●

● ●

●

●

●

●

●●
●

● ●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●
● ●

● ●

●

●

●

●
●

●
●

●

●

●

●
● ●

●

●
●

●

●
●

●

●
●

● ●

●

●

●●

●

●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
● ●

●

●
●

●

●
● ●
●
●

●
●●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●●
●

●

● ●

●
●

●

●

●

●
●

●

● ●
●

●

●

●●

●

●

●
●

●

●
●
●

●
●

●
● ●

●
●

●●

●

●
●

● ●●●
●

● ●

●

●
●

●
●
●●

●

●
●

●
●●

● ●
●

●

●●

●
●

●

●
●
●
●

●
●

●●●
●

●●●● ●

●
●●●

●

●

●

●

●● ●●

●
●

●●●●
●

●

●

●

● ●

●
●
●

●
●

●

●
●

●

●
● ●

●

●

●●

● ●
●

●

●
●

●

●●

●
●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●
●

●

●
●

●
●●

●●●

●
●

●

●

●
●

●

●●
●●

●●

● ●

●

●

●

●
●●●●

●

●
●

●

●
●

●

●

● ●●● ●
●

● ●

●

●

●
●

●

●
● ●

●●● ●
●●

●●

●

●●
●

●

●

●●●

●

●
●● ●● ●●
●

●
●

●●
●● ●

●

●
●

●

●

●

●

●●
●

●

●

●

●●
●
●

●

●
●

●
●

●
●

●
● ●

●
●

●
●●●

●
● ●

●●●

●
●

●

●
●

●
●

●

●

●

● ●●●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●●●

●

●

●

●

● ●

●

●

●
●

●
●
●

●

●

●
●● ●

●
● ●

●

●

●●
●

●

●
●

●

●

●● ●

●

●●
●●
●

●●●●
●●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●●●

●

●

●
●

●

●●
● ●

●

●

●

●●

●
●●

●●

●

●
● ●●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●

● ●

●●
●

●
●

●

●

●●

●
●●

●●
●

●
●

●

●

●

●●

●

−0.2 −0.1 0.0 0.1

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20

First PC coordinate

S
ec

on
d 

P
C

 c
oo

rd
in

at
e

●●●

●●
● ●
●●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●
●

●● ●

●●●

●
●●

●
●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●●● ●

●

● ●

●●●
●

●●●

●
●

●● ● ●
●●

●
●

●
●

●
●

●
●●

●●
●

●
●●
●●

●

●

●
●

●
●

●

●●
●●●
●●

●

●
● ●

●

●

●●●
●

●

●

●

●

●●

●
●●

●

●

●
● ●

●
●●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●●
●

●
●

●
●

●

●

●

●

●
●

●

●

●●●●

●
●
●●

●
●

●
●

●

●
●

●

●

●

●
●

●

● ●
●

●●

●

●
●●

●

●
●

● ●●
●●

● ●

●
●

●

●

●
●

● ●
●

●

●

●

●
●

●●
●

●
●

●
●

●

●

●

●
● ● ●

●
●

●

●

●●●
●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●●

●
●●

● ●

●

●

●
●

●

● ●

●

●
●

●

●

●

●
●●

●
●

●

●
●

● ●●●
●
●

● ●

●
●

● ●●● ●
●●

●●
● ●●●

●
●●

●

●
●

●

●
●

●
●

●
●

●
● ●

●

●

●●

●

●

● ●

●

●
●

●

●
●

●●

●

●

●●
●
●●

●

●

●
● ●●●●●

●●●

●

●
●

●

●

●●

●

●●

●
●
●

●●

●
●

●

●
●●●

●
●

●

●
●●●

●

●

●

●●

●

●

●●
●

●

●
●● ●●

●
●●●●

●

●

●●

●

● ●
●

●●●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●
●

●

● ●
●

●●
●

● ●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●●●
●●

●
● ●

●

●
●●

●

●●
●

●
●●●

●●

●
●●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●
●
●
●
●●

●

●
●
●

●●●
●●●

●

●● ●

●

● ●●

●

●●
●● ●●

●

●

●●●

●

● ●
●●

●

●

1
2

3 4
5

67
8

9 10
11
1213

14
15

16
17 18 19

2021
22

●

●

●

Others
Rock
Country

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

● ●●
●●

●

●

●

●

●
●

●
●

● ●●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

● ●
● ●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

● ●
●

●

●
●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●● ●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●●

●●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●●

●

●

●

●

●●

●

●

● ●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

● ●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

● ●
●● ●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●● ● ●

●

●●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●
●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
● ●

●

● ●

●
●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●
●

●

●

●
● ●

●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●
●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●
●

●● ●

●

●
●

●

●

●

●

●
●

●

●● ●

●
●

● ●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

● ●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●● ●

●●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●●●

●
●

●

●

●

●

●
●

● ●

●●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●●●

●

● ●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

● ●

●

●●●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●
●

●●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●●

●

●

● ●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●●

● ●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●●
●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●
●

●

●

●

●
●

● ●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●● ●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●
●
●

●

●

●

●
●

●● ●

●

●
●

●

●●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●
●● ●

●

●●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●
●●

●●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

● ●

●

●

●●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

● ●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●●●

●●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●● ●

●

●

●

●

● ● ●

● ●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●●
●

●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

● ●

●
●

●

●
●

●

●
●

●

●

●
●

●
●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●● ●

●●

● ●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●
●●

●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●
●

●
●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

● ●

●

●

●

●●

●

●

●
● ●

●

●
● ● ●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

● ●

●

●
●

●●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

−300 −200 −100 0 100 200 300

−
20

0
−

10
0

0
10

0
20

0

First PC score

S
ec

on
d 

P
C

 s
co

re

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

Frequent
Occasional

Fig. 5. Plots of the first two principal components V̂prime
2 (left) and the associated scores {ûi}ni=1 (right).

As discussed above, it may be the case that some of the entries that we have treated as missing
in fact represent a user’s aversion to a particular song. We therefore studied the robustness of our
conclusions by replacing some of the missing entries with an interest level of 1 (i.e. the lowest level
available). More precisely, for some α ∈ {0.05, 0.1, 0.2}, and independently for each user i ∈ [n], we
generated Ri ∼ Poisson(α∥ωi∥1), and assigned an interest level of 1 to Ri uniformly-random chosen
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Table 6. Genre distribution of the outliers (songs whose corresponding coordinate in the estimated leading
principal component is of magnitude larger than 0.07).

Rock Pop Electronic Rap Country RnB Latin Others
Population (Total = 1,777) 48.92% 18.53% 9.12% 7.15% 4.33% 2.35% 2.26% 7.34%

Outliers (Total = 22) 72.73% 18.18% 0% 4.54% 4.54% 0% 0% 0%

Table 7. Robustness assessment: average inner products (over
100 repetitions) between top two eigenvectors obtained by run-
ning primePCA on the original data and with some of the missing
entries imputed with an interest level of 1. Standard errors are
given in brackets.
α ⟨v̂1, v̂

′

1⟩ ⟨v̂1, v̂
′

2⟩ ⟨v̂2, v̂
′

1⟩ ⟨v̂2, v̂
′

2⟩
0.05 0.816(0.018) −0.042(0.007) −0.012(0.007) 0.910(0.002)
0.1 0.756(0.018) −0.027(0.007) −0.070(0.008) 0.893(0.002)
0.2 0.546(0.025) −0.067(0.010) −0.085(0.010) 0.859(0.002)

songs that this user had not previously heard through the site. We then ran primePCA on this imputed
dataset, obtaining estimators v̂

′

1 and v̂
′

2 of the two leading principal components. Denoting the original
primePCA estimators for the two columns of V2 by v̂1 and v̂2 respectively, Table 7 reports the average
of the inner product ⟨v̂j , v̂

′

k⟩, where j, k ∈ {1, 2}, based on 100 independent Monte Carlo experiments.
Bearing in mind that the average absolute inner product between two independent random vectors
chosen uniformly on S1776 is around 0.020, this table is reassuring that the conclusions are robust to
the treatment of missing entries.

6. Discussion

Heterogeneous missingness is ubiquitous in contemporary, large-scale data sets, yet we currently un-
derstand very little about how existing procedures perform or should be adapted to cope with the
challenges this presents. Here we attempt to extract the lessons learned from this study of high-
dimensional PCA, in order to see how related ideas may be relevant in other statistical problems
where one wishes to recover low-dimensional structure with data corrupted in a heterogeneous man-
ner.

A key insight, as gleaned from Section 2.2, is that the way in which the heterogeneity interacts with
the underlying structure of interest is crucial. In the worst case, the missingness may be constructed
to conceal precisely the structure one seeks to uncover, thereby rendering the problem infeasible by
any method. The only hope, then, in terms of providing theoretical guarantees, is to rule out such
an adversarial interaction. This was achieved via our incoherence condition in Section 3, and we look
forward to seeing how the relevant interactions between structure and heterogeneity can be controlled
in other statistical problems such as those mentioned in the introduction. For instance, in sparse linear
regression, one would anticipate that missingness of covariates with strong signal would be much more
harmful than corresponding missingness for noise variables.

Our study also contributes to the broader understanding of the uses and limitations of spectral
methods for estimating hidden low-dimensional structures in high-dimensional problems. We have seen
that the OPW estimator is both methodologically simple and, in the homogeneous missingness setting,
achieves near-minimax optimality when the noise level is of constant order. Similar results have been
obtained for spectral clustering for network community detection in stochastic block models (Rohe et
al., 2011) and in low-rank-plus-sparse matrix estimation problems (Fan, Liao and Mincheva, 2013). On
the other hand, the OPW estimator fails to provide exact recovery of the principal components in the
noiseless setting. In these other aforementioned problems, it has also been observed that refinement
of an initial spectral estimator can enhance performance, particularly in high signal-to-noise ratio
regimes (Gao et al., 2016; Zhang, Cai and Wu, 2018), as we were able to show for our primePCA

algorithm. This suggests that such a refinement has the potential to confer a sharper dependence
of the statistical error rate on the signal-to-noise ratio compared with a vanilla spectral algorithm,
and understanding this phenomenon in greater detail provides another interesting avenue for future
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A. Proof of main results

In this section, we give the proofs of our main results stated in Zhu, Wang and Samworth (2021),
hereafter referred to as the main text. Auxiliary lemmas, together with their proofs, are deferred to
Section B.

We define two linear maps D,F : Rd×d → Rd×d, such that for any A = (Aij) ∈ Rd×d, we have
[D(A)]ij := Aij1{i=j} and F(A) := A − D(A). In other words, D(A) and F(A) correspond to the

diagonal and off-diagonal parts of A respectively. For j ∈ [d], let ej ∈ Rd denote the standard basis
vector along the jth coordinate axis and let 1d denote the all-one vector in Rd. Moreover, for a, b ≥ 0,
we write a . b if there exists a universal constant C > 0 such that a ≤ Cb, and, where a and b may
depend on an additional variable x, say, we write a .x b if there exists C > 0, depending only on x,
such that a ≤ Cb.

Proof (of Theorem 1). To simplify notation, we write V̂K = V̂OPW
K in this proof. Since yi =

VKui + zi, we have that

‖yi‖ψ2
≤ ‖VKui‖ψ2

+ ‖zi‖ψ2
= ‖ui‖ψ2

+ ‖zi‖ψ2
≤ (λ

1/2
1 + 1)τ. (1)

Moreover, since maxj∈[d] ‖y1j‖ψ2
≤ M1/2 by Lemma 1, it follows from van der Vaart and Wellner

(1996, Lemma 2.2.2) that there exist a universal constant C > 0 such that†∥∥‖yi‖∞∥∥ψ2
≤ {CM log d}1/2. (2)

Recall that ỹ>i = (ỹi1, . . . , ỹid) denotes the ith row of YΩ. Define Ai := F(ỹiỹ
>
i ) and Bi := D(ỹiỹ

>
i ).

We have the following decomposition:

Ĝ =
1

n

n∑
i=1

(
1

p̂2
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1

p2
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)
+

1

n
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i=1
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EBi

)
+ Σy

=
1

np̂2
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− 1
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)
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p

)
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=
1

np̂2
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i=1

(Ai − EAi) +
1

np̂
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i=1

(Bi − EBi) +
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− 1

)
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=
1
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np̂
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)
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p̂2
Σy.

†In van der Vaart and Wellner (1996), the ψ2-norm of a random variable is defined slightly differently as

‖X‖ψ2
:= inf{a : Ee(X/a)2 ≤ 2}. It can be shown (Vershynin, 2012, Lemma 5.5) that these two norms are

equivalent.
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We regard Ĝ as a perturbed version of (p2/p̂2)Σy. Applying Yu, Wang and Samworth (2015,
Theorem 2), we have

L(V̂K ,VK)

≤ 2K1/2p̂2

p2λK

∥∥∥∥ 1

np̂2

n∑
i=1

(Ai − EAi) +
1

np̂

n∑
i=1

(Bi − EBi) +

(
p
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p̂2

)
D(Σy)
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op

≤ 2K1/2

λK

(∥∥∥∥ 1

np2
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op
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np2
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op

+

∥∥∥∥( p̂p − 1

)
D(Σy)
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op

)
. (3)

We will control the expectation of the three terms on the right-hand side of (3) separately. Define

p̂i := d−1
∑d

j=1 ωij . For notational simplicity, we write P′ and E′ respectively for the probability

and expectation conditional on (p̂1, . . . , p̂n). Also, let p̂
(2)
i := E′(ωi1ωi2) and p̂

(3)
i := E′(ωi1ωi2ωi3) (if

d = 2, then p̂
(3)
i := 0). For the first term, we apply a symmetrisation argument. Let {A∗i }ni=1 denote

copies of {Ai}ni=1 that are independent of {ui, zi,ωi}ni=1, let {εi}ni=1 be independent Rademacher
random variables that are independent of {ui, zi,ωi,A∗i }ni=1 and write E∗ for expectation conditional
on {ui, zi,ωi}ni=1. Then by Jensen’s inequality,
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Since Ai = ỹiỹ
>
i −D(ỹiỹ

>
i ), we have that
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For two symmetric matrices A,B ∈ Rd×d, we write A � B if B − A is positive semidefinite.
Writing yi,−t := yi − yitet, we then have
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Now, observe that ‖Ai‖op ≤ dp̂i‖yi‖2∞, so for q ≥ 2,
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By the Cauchy–Schwarz inequality, we therefore have that
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where C ′ > 0 is a universal constant, the second inequality uses (1) and (2) and the penultimate
bound uses Stirling’s inequality.

Let ρ := 4eCMd(maxi p̂i) log d and σ2 := C ′Mn−1d log d
∑n
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}
. Then by

Tropp (2012, Theorem 6.2), we obtain that
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Consequently, for t0 := 2σn−1/2 log1/2 d+ 4ρn−1 log d, we have
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Given (4), integrating the left-hand side of the above inequality over (p̂i)
n
i=1 yields
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where the first inequality uses Jensen’s inequality and the second inequality uses Lemma 4.
For the second sum on the right-hand side of (3), we have by van der Vaart and Wellner (1996,

Lemma 2.2.2) again that∥∥∥∥∥∥∥∥ 1
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where the final inequality uses Lemma 2 and the fact that ‖ỹ2i1 − Eỹ2i1‖ψ1
≤ ‖ỹ2i1‖ψ1

+ Eỹ2i1 ≤ 2M .
Now by the Cauchy–Schwarz inequality,
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∥∥∥∥
op

≤
{
E
(
p̂2

p4

)
E
(∥∥∥∥ 1

n

n∑
i=1

(Bi − EBi)

∥∥∥∥2
op

)}1/2

.

{(
1

p2
+

1

ndp3

)
M2 log2 d

n

}1/2

.
M log d

p
√
n

, (6)

which is dominated by the bound in (5).
Finally, for the third term on the right-hand side of (3), we have by the Cauchy–Schwarz inequality

again that

E
∥∥∥∥( p̂p − 1

)
D(Σy)

∥∥∥∥
op

.
M√
ndp

, (7)
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which is also dominated by the bound in (5). Substituting (5), (6) and (7) into (3) establishes (5) in
the main text.

If we regard M and τ as constants and if n ≥ d log2 d log2 n/(λ1p+ log d), then the second term in
the curly bracket of the right-hand side of (5) in the main text is dominated up to a constant by the
first term, and claim (6) in the main text follows immediately.

Proof (of Theorem 2). Without loss of generality, we may assume that d ≥ 50 and that d
is even, and write d = 2h for some h ∈ N. By the Gilbert–Varshamov lemma (see, e.g. Massart,
2007, Lemma 4.7), there exist W ⊆ {0, 1}h such that log |W | ≥ h/16 and for any distinct pair of
vectors w,w′ ∈ W , their Hamming distance, denoted by dH(w,w′), is at least h/4. Let γ ∈ [0, π/2]
be a real number to be specified later. Recall also that the Kronecker product of two matrices
A = (Aij) ∈ Rd1×d2 and B = (Bij) ∈ Rd′1×d′2 is defined as the block matrix

A⊗B :=

A11B · · · A1d2B
...

. . .
...

Ad11B · · · Ad1d2B

 ∈ Rd1d′1×d2d′2 .

To each w ∈W , we can associate a distribution Pw ∈ Pn,d(λ1, p) such that U is a random vector (n×1
random matrix) with independent N(0, λ1) entries, Z is an n × d random matrix with independent
N(0, 1) entries, and

V1 = V1,w :=
1√
h

{
w ⊗

(
cos γ
sin γ

)
+ (1h −w)⊗

(
cos γ
− sin γ

)}
∈ Sd−1.

Fixing distinct w,w′ ∈ W , we write v = (vj)j∈[d] := V1,w and v′ = (v′j)j∈[d] := V1,w′ and let
Qw and Qw′ denote respectively the marginal distribution of (ỹ1,ω1) under Pw and Pw′ . Define
S := {j ∈ [d] : ω1j = 1} and also set v̄S := (vj1{j∈S})j∈[d] ∈ Rd and v̄′S := (v′j1{j∈S})j∈[d] ∈ Rd. Then
the Kullback–Leibler divergence‡ from Pw′ to Pw is given by

KL(Pw, Pw′) = KL(Q⊗nw , Q⊗nw′ ) = nKL(Qw, Qw′) = nEQw

{
EQw

(
log

dQw

dQw′

∣∣∣∣ ω1

)}
= nEKL

(
Nd(0, Id + λ1v̄Sv̄>S ), Nd(0, Id + λ1v̄

′
Sv̄
′>
S )
)
, (8)

where the final expectation is over the marginal distribution of S under Pw. We partition S =
S0 t S1+ t S1−, where S0 := {j ∈ S : j is odd}, S1+ := {j ∈ S : j is even and vj = v̄′j} and S1− :=

{j ∈ S : j is even and vj 6= v′j}. Since by construction we always have ‖v̄S‖2 = ‖v̄′S‖2, we can apply
Lemma 5 to obtain

KL
(
N(0, Id + λ1v̄Sv̄>S ), N(0, Id + λ1v̄

′
S(v̄′S)>)

)
=
λ21(‖v̄S‖42 − 〈v̄S , v̄′S〉2)

2(1 + λ1‖v̄S‖22)

≤
λ21〈v̄S , v̄S + v̄′S〉〈v̄S , v̄S − v̄′S〉

2 max{1, λ1‖v̄S‖22}
=
λ21
(∑

j∈S0∪S1+
2v2j
)(∑

j∈S1−
2v2j
)

2 max{1, λ1
∑

j∈S v
2
j }

≤ min

{
2λ21
h2
(
|S0 × S1−| sin2 γ cos2 γ + |S1+ × S1−| sin4 γ

)
,

2λ1|S1−| sin2 γ

h

}
.

Substituting the above bound into (8), we have

KL(Pw, Pw′) ≤ 2nλ1pmin{1, λ1p} sin2 γ. (9)

On the other hand, since dH(w,w′) ≥ h/4, we also have

sin2 Θ(v,v′) = 1− (v>v′)2 = 1−
(

1− 2dH(w,w′) sin2 γ

h

)2

≥ 1

2
sin2 γ. (10)

‡Recall that for two distributions P1 and P2 defined on the same measurable space (X ,A) and such that
P1 is absolutely continuous with respect to P2, the Kullback–Leibler divergence from P2 to P1 is given by
KL(P1, P2) :=

∫
X log dP1

dP2
dP1.
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By (9), (10) and Fano’s inequality (Yu, 1997, Lemma 3),

inf
v̂

sup
P∈Pn,d,1(λ1,p)

EPL(v̂,v) ≥ inf
v̂

max
w∈W

EPw
L(v̂,v)

≥ 1

2
√

2
sin γ

(
1− log 2 + 2nλ1pmin{1, λ1p} sin2 γ

log |W |

)
.

We now choose γ ∈ [0, π/2] such that sin2 γ = min
{ log |W |
8nλ1pmin{1,λ1p} , 1

}
. Since d ≥ 50, we obtain

log |W | ≥ d/32 ≥ 2 log 2. Therefore,

inf
v̂

sup
P∈Pn,d,1(λ1,p)

EPL(v̂,v) ≥ 1

8
√

2
sin γ ≥ min

{
1

200λ1

√
dmax(1, λ1p)

np2
,

1

8
√

2

}
,

as desired.

Proof (of Proposition 1). For notational simplicity, we write V̂K := V̂
(in)
K and V̂S,K :=

(V̂K)S for any S ⊆ [d], and let W ∈ OK×K be the solution to the Procrustes problem for VK

and R, so that W = argminO∈OK×K ‖V̂K −RO‖F and ‖V̂K −RW‖2→∞ = T (V̂K ,R) (see the dis-

cussion around (7) in the main text). For i ∈ I, let `>i ∈ RK denote the ith row of L. For any i ∈ I,
we have ŷi,Ji

= yi,Ji
and

ŷi,J c
i
− yi,J c

i
= V̂J c

i ,K(V̂>Ji,KV̂Ji,K)−1V̂>Ji,Kyi,Ji
− yi,J c

i

= V̂J c
i ,K(V̂>Ji,KV̂Ji,K)−1V̂>Ji,KRJi

WW−1Γ`i −RJ c
i
Γ`i

= V̂J c
i ,K(V̂>Ji,KV̂Ji,K)−1V̂>Ji,K(RJi

W − V̂Ji,K)W−1Γ`i + (V̂J c
i ,K −RJ c

i
W)W−1Γ`i.

Thus

‖ŷi,J c
i
− yi,J c

i
‖∞ ≤ σ∗

√
d‖V̂J c

i ,K‖2→∞‖RJi
W − V̂Ji,K‖2→∞‖Γ`i‖2 + ‖V̂J c

i ,K −RJ c
i
W‖2→∞‖Γ`i‖2

≤ ∆‖Γ`i‖2
(
1 + σ∗

√
d‖V̂K‖2→∞

)
≤ ∆σ1(Γ)µ

(
K

n

)1/2{
1 + σ∗

(
µ
√
K + ∆

√
d
)}

≤ C ′

n1/2
∆σ1(Γ)µ2K =: m,

say, where C ′ > 0 depends only on σ∗ and c1. Note that the inequality above holds for all i ∈ I. Writing
E := Ŷ−Y for convenience, we have found that ‖E‖∞ ≤ m. Let L⊥ ∈ On×(n−K),R⊥ ∈ Od×(d−K) be
the orthogonal complements of L ∈ On×K and R ∈ Od×K respectively, so that (L,L⊥) ∈ On×n and
(R,R⊥) ∈ Od×d. We wish to apply Cai and Zhang (2018a, Theorem 1). To this end, note that

‖L>ER‖op = sup
s,t∈SK−1

(Ls)>E(Rt) ≤ ‖L‖2→∞‖R‖2→∞‖E‖1 ≤
Kµ2m‖Ωc‖1√

nd
.

Hence, writing α := σK(Γ + L>ER), we have by Weyl’s inequality that

σK(Γ)− Kµ2m‖Ωc‖1√
nd

≤ α ≤ σK(Γ) +
Kµ2m‖Ωc‖1√

nd
.

Now, writing β := ‖L>⊥ŶR⊥‖op = ‖L>⊥ER⊥‖op, we have

β ≤ ‖E‖op ≤ ‖E‖F ≤ m
√
‖Ωc‖1.

In addition, by Cauchy–Schwarz and Jensen’s inequality,

‖L>E‖op = sup
s∈SK−1

t∈Sd−1

(Ls)>Et ≤ ‖L‖2→∞ sup
t∈SK−1

‖Et‖1

≤ µ(Kn)1/2
1

n

n∑
i=1

m
√
‖ωc

i‖1 ≤ µm(K‖Ωc‖1)1/2.
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Similarly,
‖ER‖op ≤ µm(K‖Ωc‖1)1/2.

Hence there exists c1 > 0, depending only on σ∗, such that whenever ∆ ≤ c1σK(Γ)

K2µ4σ1(Γ)
√
d
, we have

α2 − β2 −min(‖L>E‖2op, ‖ER‖2op) ≥
σ2K(Γ)

2
and α, β ≤ 2σK(Γ).

Now let Ŷ = L̂Γ̂R̂> be an SVD of Ŷ. We can now apply Cai and Zhang (2018a, Theorem 1) to
deduce that for such c1,

‖ sin Θ(R̂,R)‖op ≤
α‖L>E‖op + β‖ER‖op

α2 − β2 −min(‖L>E‖2op, ‖ER‖2op)
≤ 8mµ(K‖Ωc‖1)1/2

σK(Γ)

≤ 8C ′K3/2σ1(Γ)µ3

σK(Γ)

(
‖Ωc‖1
n

)1/2

∆ =: κ∆,

say. Similarly,

‖ sin Θ(L̂,L)‖op ≤
α‖ER‖op + β‖L>E‖op

α2 − β2 −min(‖L>E‖2op, ‖ER‖2op)
≤ κ∆.

We are now in a position to show contraction in terms of two-to-infinity norm. By Cape, Tang and
Priebe (2018, Theorem 3.7),

T (R̂,R) ≤
2‖R⊥R>⊥E>LL>‖2→∞

σK(Γ)
+

2‖R⊥R>⊥E>L⊥L>⊥‖2→∞
σK(Γ)

‖ sin Θ(L̂,L)‖op

+ ‖ sin Θ(R̂,R)‖2op‖R‖2→∞ =: T1 + T2 + T3, (11)

say. Note that

‖R⊥R>⊥‖∞→∞ ≤ ‖Id‖∞→∞ + ‖RR>‖∞→∞ = 1 + sup
‖v‖∞≤1

‖RR>v‖∞

≤ 1 + sup
‖v‖2≤

√
d

‖R‖2→∞‖R>v‖2 ≤ 1 +
√
Kµ.

Hence,

T1 ≤
2(1 +

√
Kµ)‖E>LL>‖2→∞
σK(Γ)

≤ 2(1 +
√
Kµ)‖E>L‖2→∞
σK(Γ)

≤ 2(1 +
√
Kµ)µ

√
Km‖Ωc‖1→1√

nσK(Γ)
.
K2µ4σ1(Γ)‖Ωc‖1→1∆

nσK(Γ)
.

Moreover,

T2 ≤
2(1 +

√
Kµ)‖E>‖2→∞κ∆

σK(Γ)
≤ 2(1 +

√
Kµ)m‖Ωc‖1/21→1κ∆

σK(Γ)

.
K3/2µ3σ1(Γ)‖Ωc‖1/21→1κ∆2

√
nσK(Γ)

.

Finally,

T3 ≤ µκ2∆2

(
K

d

)1/2

.

Write

η :=
K2σ1(Γ)‖Ωc‖1/21→1√

nσK(Γ)
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for simplicity, so that κ .σ∗ µ
3(d/K)1/2η. Given that T (V̂

(out)
K ,VK) = T (R̂,R), substituting the

bounds for T1, T2, T3 into (11) yields that

T (V̂
(out)
K ,VK) .σ∗

{
µ4η

(
‖Ωc‖1→1

n

)1/2

+ µ6
d1/2

K
η2∆ + µ7

(
d

K

)1/2

η2∆

}
∆

≤ η2
{
σK(Γ)µ4

K2σ1(Γ)
+ 2µ7

(
d

K

)1/2

∆

}
∆ .

µ4η2σK(Γ)

K2σ1(Γ)
∆

=
µ4K2σ1(Γ)‖Ωc‖1→1

σK(Γ)n
∆,

as desired.

Proof (of Theorem 3). We prove this result by induction on t. The case t = 0 is true by
definition of ∆, so suppose that the conclusion holds for some t ∈ {0} ∪ [niter − 1]. We make the
following two claims:

(a) I(t) = I;

(b) The error is further contracted by refinement, i.e., T (V̂
(t+1)
K ,VK) ≤ ρT (V̂

(t)
K ,VK).

To prove claim (a), similarly to the proof of Proposition 1, let W ∈ OK×K be the solution to the

Procrustes problem for V̂
(t)
K and VK . Notice that for each i ∈ [n], by Weyl’s inequality and the

inductive hypothesis,∣∣σK((V̂(t)
K )Ji

)
− σK((VK)Ji

)
∣∣ =

∣∣σK((V̂(t)
K )Ji

)
− σK

(
(VK)Ji

W
)∣∣

≤
∥∥(V̂

(t)
K )Ji

− (VK)Ji
W
∥∥
op

≤ |Ji|1/2T
(
V̂

(t)
K ,VK

)
≤ |Ji|1/2ρt∆.

Now, for i ∈ I,

σK
(
(V̂

(t)
K )Ji

)
≥ σK

(
(VK)Ji

)
−
∣∣σK((V̂(t)

K )Ji

)
− σK

(
(VK)Ji

)∣∣
≥
(
σ−1∗ + ε−

√
d∆
)
(|Ji|/d)1/2.

On the other hand, if i ∈ Ic and ‖ωi‖1 > K, then

σK
(
(V̂

(t)
K )Ji

)
≤ σK

(
(VK)Ji

)
+ |σK

(
(V̂

(t)
K )Ji

)
− σK

(
(VK)Ji

)
|

≤
(
σ−1∗ − ε+

√
d∆
)
(|Ji|/d)1/2.

Hence, if we choose c1 ≤ ε, then
√
d∆ < ε, so for i ∈ I,

σK
(
(V̂

(t)
K )Ji

)
>
( |Ji|
dσ∗

)1/2
;

moreover, for i ∈ Ic,

σK
(
(V̂

(t)
K )Ji

)
<
( |Ji|
dσ∗

)1/2
.

Claim (a) follows. As for claim (b), note that V̂
(t+1)
K = refine(K, V̂

(t)
K ,ΩI(t) , (YΩ)I(t)). Taking

c1, C > 0 from Proposition 1, and reducing c1 if necessary so that c1 ≤ ε, we may apply this proposition
to deduce that whenever

(i) T (V̂
(t)
K ,VK) ≤ c1σK(Γ)

K2µ4σ1(Γ)
√
d
;

(ii) ρ := CK2µ4σ1(Γ)‖Ωc
I‖1→1

σK(Γ)|I| < 1,
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we have T (V̂
(t+1)
K ,VK) ≤ ρT (V̂

(t)
K ,VK). But the conditions (i) and (ii) are ensured by the inductive

hypothesis and our assumptions, so the conclusion follows.

It is convenient to prove Proposition 2 before Theorem 4.

Proof (of Proposition 2). In this proof, we use the shorthand Du := diag(u) for u ∈ Rd. We

represent G̃ under the orthonormal basis (VK ,V−K) as follows:

G̃ = (VK ,V−K)

(
V>KG̃VK V>KG̃V−K
V>−KG̃VK V>−KG̃V−K

)(
V>K
V>−K

)
.

Define

G∗ := (VK ,V−K)

(
V>KG̃VK 0

0 V>−KG̃V−K

)(
V>K
V>−K

)
.

In the sequel, we regard G̃ as a corrupted version of G∗ with the off-diagonal blocks V>KG̃V−K and

V>−KG̃VK as perturbations. We have

‖V>KG̃V−K‖F = ‖V>K(G̃−Σy)V−K‖F ≤ ‖V>K(G̃− EΩG̃)‖F

We control the right-hand side through a concentration inequality, and for k ∈ [K] let vk denote the
kth column of VK . For any j ∈ [d] and k ∈ [K],

v>k (G̃− EΩG̃)ej =
1

n

n∑
i=1

v>k
{
ỹiỹ
>
i ◦ W̃ − EΩ

(
ỹiỹ
>
i ◦ W̃

)}
ej

=
1

n

n∑
i=1

{
ỹ>i Dvk

W̃Dej
ỹi − EΩ

(
ỹ>i Dvk

W̃Dej
ỹi
)}

=
1

n

n∑
i=1

{
ỹijỹ

>
i Dvk

W̃j − EΩ
(
ỹijỹ

>
i Dvk

W̃j

)}
, (12)

where W̃j denotes the jth column of W̃.
Note that

‖yi‖ψ∗2 ≤ sup
v∈Sd−1

‖v>VKui‖ψ2
+ ‖v>zi‖ψ2√

v>VKΣuV>Kv + 1
≤ 2τ.

Thus for any vector a ∈ Rd, we have by Lemma 1 that

‖yij(a>yi)‖ψ1
≤ 2‖yij‖ψ2

‖a>yi‖ψ2
≤ 4τ(Ma>Σya)1/2.

For i ∈ [n], let ai := ωijW̃j ◦ vk ◦ ωi. Now for any q ≥ 2,

EΩ
∣∣ỹij(W̃>

j Dvk
ỹi)
∣∣q = EΩ|yija>i yi|q ≤

(
4qτ
√
Ma>i Σyai

)q
≤ 16qqτ2µ2KMR

d

(
4τµ

√
KMR‖W̃j‖22/d

)q−2 d∑
t=1

W̃ 2
tjωitωij

≤ 8e2q!τ2µ2KMR

d

(
4eτµ

√
KMR‖W̃j‖22/d

)q−2 d∑
t=1

W̃ 2
tjωitωij ,

where the penultimate inequality uses the fact that ‖ai‖22 ≤ Kµ2‖W̃j‖22/d, and the last inequality is
due to Stirling’s approximation.
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Hence,

1

n

n∑
i=1

EΩ|ỹijW̃>
j Dvk

ỹi|q ≤
8e2q!τ2µ2KMR

d

(
4eτµ

√
KMR‖W̃j‖22/d

)q−2 d∑
t=1

n∑
i=1

W̃ 2
jtωitωij

n

=
8e2q!τ2µ2KMR

d

(
4eτµ

√
KMR‖W̃j‖22/d

)q−2
‖W̃j‖1.

Thus by (12) and Bernstein’s inequality (Boucheron, Lugosi and Massart, 2013, Theorem 2.10), we
have that for any ξ > 0,

PΩ

{∣∣v>k (G̃− EΩG̃)ej
∣∣ ≥ 25/2eτµ

(
KMR

d

)1/2((ξ‖W̃j‖1
n

)1/2

+
ξ‖W̃j‖2

n

)}
≤ 2e−ξ. (13)

By a union bound over (j, k) ∈ [d]× [K], for any ξ > 1,

PΩ

{
‖V>KG̃V−K‖F ≥ 8eKτµ

(
MR

d

)1/2(ξ1/2‖W̃‖1/21 log1/2 d

n1/2
+
ξ‖W̃‖F log d

n

)}
≤ 2Kd−(ξ−1). (14)

Now we provide a condition under which λmin(V>KG̃VK) > ‖V>−KG̃V−K‖op, which ensures that
VK is the top K eigenspace of G∗. Note that

λmin(V>KG̃VK) ≥ λK + 1− ‖V>K(G̃−Σy)VK‖op ≥ λK + 1− ‖G̃−Σy‖op

and

‖V>−KG̃V−K‖op ≤ 1 + ‖G̃−Σy‖op.

This implies that if λK > 4‖G̃−Σy‖op, then

λmin(V>KG̃VK)− ‖V>−KG̃V−K‖op > λK/2. (15)

In the following, we derive an exponential tail bound for ‖G̃ − Σy‖op = ‖G̃ − EΩG̃‖op. Let Ai :=

ỹiỹ
>
i ◦ W̃ and note that ‖Ai‖op ≤ ‖yi‖2∞‖W̃‖op. Recalling the definition of the matrix absolute

value§, for any v = (v1, . . . , vd)
> ∈ Sd−1 and any integer q ≥ 2, we have

EΩ
(
v>|Ai|qv

)
≤ EΩ

(∥∥Ai

∥∥q−2
op

v>A2
iv
)
≤ EΩ

{(
‖W̃‖op‖yi‖2∞

)q−2
v>
(
ỹiỹ
>
i ◦ W̃

)2
v
}

= ‖W̃‖q−2op EΩ
{
‖yi‖2(q−2)∞ v>Dỹi

W̃Dỹi
Dỹi

W̃Dỹi
v
}

= ‖W̃‖q−2op EΩ
{
‖yi‖2(q−2)∞ tr(D2

ỹi
W̃Dỹi

vv>Dỹi
W̃)

}
= ‖W̃‖q−2op

d∑
j=1

ωijEΩ
{
y2ij‖yi‖2(q−2)∞

(
W̃>

j Dvỹi
)2}

.

Now, for each j ∈ [d], and q ≥ 2,

EΩ
{
y2ij‖yi‖2(q−2)∞ (W̃>

j Dvỹi)
2
}

= EΩ
[
y2ij‖yi‖2(q−2)∞ {(W̃j ◦ v ◦ ωi)>yi}2

]
≤
(
Ey8ij

)1/4{E(‖yi‖8(q−2)∞
)}1/4

8Rτ2‖W̃j ◦ v ◦ ωi‖22

.MRτ2{8(q − 2)CM log d}q−2
d∑
t=1

(vtW̃tjωit)
2,

§This is defined formally just before Lemma 3.
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where the last inequality is due to the fact that
∥∥‖yi‖∞∥∥ψ2

≤ (CM log d)1/2 by (2). Therefore,

n∑
i=1

EΩ
(
v>|Ai|qv

)
.MRτ2

{
8(q − 2)CM‖W̃‖op log d

}q−2 d∑
j,t=1

n∑
i=1

ωijωitv
2
t W̃

2
tj

= nMRτ2
{

8(q − 2)CM‖W̃‖op log d
}q−2 d∑

j,t=1

v2t W̃tj

. q!nMRτ2‖W̃>‖1→1

(
8eCM‖W̃‖op log d

)q−2
,

where ‖W̃>‖1→1 = sup‖u‖1=1‖W̃>u‖1 = ‖W̃‖1→1. Since the above inequality holds for all v ∈ Sd−1,
we have ∥∥∥∥ n∑

i=1

EΩ
(
|Ai|q

)∥∥∥∥
op

. q!nMRτ2‖W̃‖1→1

(
8eCM‖W̃‖op log d

)q−2
.

By a version of the Matrix Bernstein inequality for non-central absolute moments, which we give as
Lemma 3, there exists a universal constant C1 > 0 such that for any ξ > 1,

PΩ

{∥∥G̃− EΩG̃
∥∥
op
≥ C1

((
MRτ2‖W̃‖1→1ξ log d

n

)1/2

+
M‖W̃‖opξ log2 d

n

)}
≤ 4d−(ξ−1). (16)

Now let

A :=

{
λmin(V>KG̃VK)− ‖V>−KG̃V−K‖op >

λK
2

}
.

From (15) and (16), we deduce that for any ξ > 1, if

λK ≥ 4C1

{(
MRτ2‖W̃‖1→1ξ log d

n

)1/2

+
M‖W̃‖opξ log2 d

n

}
, (17)

then PΩ(Ac) ≤ PΩ
{
‖G̃ − Σy‖op ≥ λK/4

}
≤ 4d−(ξ−1). The desired result follows immediately by

combining this with (14) and applying Yu, Wang and Samworth (2015, Theorem 2).

Proof (of Theorem 4). Let E := G̃ − EΩG̃ = G̃ − Σy. By Cape, Tang and Priebe (2018,
Theorem 3.7), when λK ≥ 2‖E‖op, we have that

T (ṼK ,VK) ≤ 2λ−1K ‖V−KV>−KEVKV>K‖2→∞
+ 2λ−1K ‖V−KV>−KEV−KV>−K‖2→∞‖ sin Θ(ṼK ,VK)‖op
+ 2λ−1K ‖V−KV>−KΣyV−KV>−K‖2→∞‖ sin Θ(ṼK ,VK)‖op
+ ‖ sin Θ(ṼK ,VK)‖2op‖VK‖2→∞

=: T1 + T2 + T3 + T4.

Note that if λK satisfies (17) for some ξ > 1, then PΩ(‖E‖op ≥ λK/4) ≤ 4d−(ξ−1). In fact, since

‖W̃‖op ≤ ‖W̃‖F, there exists cM,τ > 0 such that (10) in the main text implies (17), which, together

with (16) ensures that PΩ(‖E‖op ≥ λK/2) ≤ 4d−(ξ−1).
To bound T1, we have

‖V−KV>−KEVKV>K‖2→∞ ≤ ‖V−KV>−K‖∞→∞‖EVKV>K‖2→∞
≤ (1 +Kµ) max

j∈[d]
sup

u∈SK−1

e>j EVKu, (18)

where the second inequality is due to the fact that

‖V−KV>−K‖∞→∞ ≤ ‖Id‖∞→∞ + ‖VKV>K‖∞→∞ ≤ 1 + ‖VK‖∞→∞‖V>K‖∞→∞
≤ 1 +K1/2‖VK‖2→∞ · d1/2‖V>K‖2→∞ ≤ 1 +Kµ.
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We use a covering argument to bound the supremum term. Let NK(1/2) be a 1/2-net of the Euclidean
sphere SK−1, i.e., for any u ∈ SK−1, there exists a point π(u) ∈ NK(1/2) such that ‖u−π(u)‖2 ≤ 1/2.
Note that for any u ∈ SK−1,

e>j EVKu = e>j EVKπ(u) + e>j EVK(u− π(u)) ≤ max
v∈NK(1/2)

e>j EVKv +
1

2
sup

v∈SK−1

e>j EVKv,

which further implies that

sup
u∈SK−1

e>j EVKu ≤ 2 max
u∈NK(1/2)

e>j EVKu. (19)

We then argue similarly as in (13), with VKu taking the role of vk there (since ‖VKu‖∞ ≤ µ(K/d)1/2)
to obtain that for any ξ > 0 and u ∈ NK(1/2),

PΩ

{
|e>j EVKu| ≥ 25/2eτµ

(
KMR

d

)1/2(ξ1/2‖W̃j‖1/21

n1/2
+
ξ‖W̃j‖2

n

)}
≤ e−ξ.

By Vershynin (2012, Lemma 5.2), |NK(1/2)| ≤ 5K . Hence, by (18), (19) and a union bound, we have
for any ξ > log 5 that

PΩ

{
T1 ≥

29/2eτµ(1 +Kµ)

λK

(
KMR

d

)1/2(ξ1/2‖W̃‖1/2∞→∞
n1/2

+
ξ‖W̃‖2→∞

n

)}
≤ deK log 5−ξ.

Next we bound T2. Note that

‖V−KV>−KEV−KV>−K‖2→∞ ≤ ‖V−KV>−K‖∞→∞‖E‖2→∞ ≤ (1 +Kµ)‖E‖2→∞.

For j, k ∈ [d], let Ijk := {i : ωijωik = 1} and njk := |Ijk| = n/W̃jk. Then

Ejk =
1

n

n∑
i=1

ỹij ỹikW̃jk − [EΩG̃]jk =
1

njk

∑
i∈Ijk

yijyik − [EΩG̃]jk.

By applying both parts of Lemma 1, for any i ∈ [n] and j, k ∈ [d], we have that ‖yijyik‖ψ1
≤

2‖yij‖ψ2
‖yik‖ψ2

≤ 2M . Applying Bernstein’s inequality (Boucheron, Lugosi and Massart, 2013, The-
orem 2.10) yields that for any ξ > 0,

PΩ

{
|Ejk| ≥ 2eM

((
2ξW̃jk

n

)1/2

+
ξW̃jk

n

)}
≤ 2e−ξ.

Therefore, a union bound with (j, k) ∈ [d]× [d] yields that

PΩ

{
T2 ≥

4
√

2eM(1 +Kµ)

λK

((
2ξ‖W̃‖∞→∞

n

)1/2

+
ξ‖W̃‖2→∞

n

)
‖ sin Θ(ṼK ,VK)‖op

}
≤ 2d2e−ξ.

Now we bound T3. We have that

T3 =
2‖V−KV>−K‖2→∞

λK
‖ sin Θ(ṼK ,VK)‖op ≤

2
{

1 + µ(K/d)1/2
}

λK
‖ sin Θ(ṼK ,VK)‖op.

Finally, T4 satisfies

T4 ≤
µK1/2

d1/2
‖ sin Θ(ṼK ,VK)‖2op.

Since ‖ sin Θ(ṼK ,VK)‖op ≤ min
{
L(ṼK ,VK), 1

}
, combining our bounds for {Tj}4j=1 yields that there

exists CM,τ > 0 such that for any ξ > 2,

PΩ

{
T (ṼK ,VK) ≥

KµCM,τ

λK

{
L(ṼK ,VK)+ µ

(
KR

d

)1/2}(ξ1/2‖W̃‖1/2∞→∞
n1/2

+
ξ‖W̃‖2→∞

n

)
+ µ

(
K1/2

d1/2
+

4

λK

)
L(ṼK ,VK)

}
≤ deK log 5−ξ + 2d2e−ξ + 4d−(ξ−1).
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It therefore follows from Proposition 2 in the main text, which applies because condition (10) in the

main text for a suitable cM,τ implies (11) in the main text, together with the facts that ‖W̃‖1 ≤
d‖W̃‖∞→∞ and ‖W̃‖F ≤ d1/2‖W̃‖2→∞, that the first conclusion of the theorem holds. The second
conclusion then follows immediately.

Proof (of Proposition 3). As an abbreviation, we write V̂K := V̂
(in)
K . For any i ∈ [n], define

B̂(i) := (V̂>Ji,K
V̂Ji,K)−1V̂>Ji,K

ΞJi
∈ RK×K . Note that

‖B̂(i)‖op ≤
σ2∗d‖V̂>Ji,K

ΞJi
‖op

|Ji|
≤
σ2∗d
(
‖V>Ji,K

ΞJi
‖op + ‖ΞJi

‖2op
)

|Ji|

≤ σ2∗(κ1 + κ2)‖Ξ‖2op + σ2∗κ1
µK(logK)1/2‖Ξ‖op

d1/2
=: M.

Now define Ỹ := Y − (B̂(1)O>u1, . . . , B̂
(n)O>un)>O>V>K , and let E := Ŷ − Ỹ. For any i ∈ [n], we

have

ei,Ji
= (ŷi − ỹi)Ji

= VJi,KOB̂(i)O>ui.

Now, for i ∈ [n], define ũi := (IK −OB̂(i)O>)ui. Then

ei,J c
i

= (ŷi − ỹi)J c
i

= V̂J c
i ,K(V̂>Ji,KV̂Ji,K)−1V̂>Ji,Kyi,Ji

−VJ c
i ,K ũi

= V̂J c
i ,K(V̂>Ji,KV̂Ji,K)−1V̂>Ji,K(V̂Ji,K −ΞJi

)O>ui −VJ c
i ,K ũi

=
(
V̂J c

i ,K − V̂J c
i ,KB̂(i) −VJ c

i ,KO + VJ c
i ,KOB̂(i)

)
O>ui

= ΞJ c
i
(IK − B̂(i))O>ui = ΞJ c

i
O>ũi.

Now, by Weyl’s inequality, we have that

σK(Ỹ) ≥ σK(Y)−
∥∥(B̂(1)O>u1, . . . , B̂

(n)O>un)
∥∥
F
≥ σK(Y)−M‖Y‖F.

By Theorem 1.4 of Wang (2016), there exists Ô ∈ OK×K such that

‖V̂out
K −VKÔ‖F ≤

8

σK(Y)−M‖Y‖F

{∑
i∈[n]

(
‖ui‖22‖B̂(i)‖2op + ‖ũi‖22‖ΞJ c

i
‖2op
)}1/2

≤ 8

(c−M)‖Y‖F

{(∑
i∈[n]

‖ui‖22‖B̂(i)‖2op
)1/2

+

(∑
i∈[n]

‖ũi‖22‖ΞJ c
i
‖2op
)1/2}

≤
8
{
M + κ

1/2
3 (1 +M)‖Ξ‖op

}
c−M

.

When ‖Ξ‖op ≤ min
{(

c
4σ2
∗(κ1+κ2)

)1/2
, c
4µκ1σ2

∗

(
d

K logK

)1/2}
, we have M ≤ c/2. Thus

‖V̂out
K −VKÔ‖op ≤ ‖V̂out

K −VKÔ‖F

≤ 16‖Ξ‖op
c

{
σ2∗(κ1 + κ2)‖Ξ‖op + σ2∗κ1µK

(
logK

d

)1/2

+ κ
1/2
3

(
1 +

c

2

)}
,

as required.

Proof (of Corollary 1). Under the p-homogeneous MCAR missingness mechanism, we have
for any i ∈ [n] that

E(V>Ji,KΞJi
) = pV>KΞ = −(p/2)OΞ>Ξ and E(Ξ>Ji

ΞJi
) = pΞ>Ξ.
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For j ∈ [d], let v>j ∈ RK and ξ>j ∈ RK denote the jth rows of VK and Ξ respectively. Then

V>Ji,K
ΞJi

=
∑d

j=1 ωijvjξ
>
j , and for q = 2, 3, . . .,

E
(
(ωijvjξ

>
j ξjv

>
j )q/2

)
� p‖vj‖q2‖ξj‖

q
2IK �

pµ2K‖ξj‖22
d

{
µ

(
K

d

)1/2

‖Ξ‖op
}q−2

IK .

Similarly,

E
((
ωijξjv

>
j vjξ

>
j

)q/2) � pµ2K‖ξj‖22
d

{
µ

(
K

d

)1/2

‖Ξ‖op
}q−2

IK .

Applying Corollary 3 therefore gives that for every t > 0 and i ∈ [n],

P
(∥∥∥∥V>Ji,KΞJi

+
p

2
OΞ>Ξ

∥∥∥∥
op

≥ t
)
≤ 8K exp

(
−t2/32

pµ2K‖Ξ‖2F/d+ µ(K/d)1/2‖Ξ‖opt/3

)
.

Thus, for any δ ∈ (0, 1], with probability at least 1− δ/3, we have

‖V>Ji,KΞJi
‖op ≤

p

2
‖Ξ‖2op + 22‖Ξ‖op

µK log(24K/δ)

d1/2
. (20)

In addition, Ξ>Ji
ΞJi

=
∑d

j=1 ωijξjξ
>
j , and E

(
(ωijξjξ

>
j )q
)
� p‖ξj‖

2q
2 IK for q = 2, 3, . . .. Applying

Lemma 3 yields that for all t > 0 and i ∈ [n],

P
(∥∥Ξ>Ji

ΞJi
− pΞ>Ξ

∥∥
op
≥ t
)
≤ 4K exp

(
−t2/32

p
∑d

j=1‖ξj‖42 + ‖Ξ‖2opt/3

)
≤ 4K exp

(
−t2/32

p‖Ξ‖2F‖Ξ‖2op + ‖Ξ‖2opt/3

)
.

Thus, for any δ ∈ (0, 1], with probability at least 1− δ/3, we have∥∥ΞJi

∥∥2
op
≤ 22K1/2‖Ξ‖2op log(12K/δ). (21)

By the multiplicative Chernoff bound, when dp ≥ 8 log(3/δ), we have

P(|Ji| < dp/2) ≤ e−dp/8 ≤ δ/3. (22)

On the other hand, we have by the usual Bernstein’s inequality that

P
(
‖ΞJ c

i
‖2F > (1− p)‖Ξ‖2F + t

)
≤ exp

(
−t2/2

p(1− p)
∑d

j=1 ‖ξj‖42 + ‖Ξ‖22→∞t/3

)
≤ exp

(
−t2/2

K(1− p)‖Ξ‖4op/C2
∗ + ‖Ξ‖2opt/(3C2

∗ )

)
,

where the last step uses the fact that ‖Ξ‖2→∞ ≤ ‖Ξ‖op/C∗. Thus, for any δ ∈ (0, 1], with probability
at least 1− δ/3, we have that

‖ΞJ c
i
‖2op ≤ K(1− p)‖Ξ‖2op +

2

C∗
{K(1− p) log(3/δ)}1/2‖Ξ‖2op +

4

3C2
∗
‖Ξ‖2op log(3/δ)

≤
{

2K(1− p) +
7

3C2
∗

log(3/δ)

}
‖Ξ‖2op.

Combining (20), (21) and (22) with a union bound, we see that in Proposition 3, if we take

κ1 =
44

p
K‖Ξ‖op log(24nK/δ), κ2 =

44

p
K1/2‖Ξ‖2op log(12nK/δ)

κ3 = 2K(1− p) +
7 log(3n/δ)

3C2
∗

,
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then the conditions (12) of that proposition hold simultaneously with probability at least 1 − δ.
Moreover, since ‖Ξ‖op ≤ p/

(
44K log(24nK/δ)

)
, we have κ2 ≤ κ1 ≤ 1, and hence condition (13) of

Proposition 3 is also satisfied. Therefore, by Proposition 3, we have

‖V̂(out)
K −VKÔ‖op ≤

16

c

(
3κ1µKσ

2
∗ + 2κ

1/2
3

)
‖Ξ‖op ≤

80

c
κ
1/2
3 ‖V̂

(in)
K −VKÔ‖op,

where we used the fact that ‖Ξ‖op ≤ p(1−p)1/2
22
√
2µK3/2σ2

∗ log(24nK/δ)
in the final bound.

B. Auxiliary lemmas used in Section A

Lemma 1. Let X and Y be two sub-Gaussian random variables. Then we have ‖X‖2ψ2
≤ ‖X2‖ψ1

and ‖XY ‖ψ1
≤ 2‖X‖ψ2

‖Y ‖ψ2
.

Proof. For any x ≥ 0, let dxe := inf{z ∈ N : z ≥ x}. According to the definitions of the ψ1-norm
and ψ2-norm, we have that

‖X‖2ψ2
= sup

p∈N

E(|X|p)2/p

p
≤ sup

p∈N

{
E
(
X2dp/2e)} 1

dp/2e

p
≤ ‖X2‖ψ1

,

where the penultimate inequality is due to Jensen’s inequality and the last inequality is due to the
fact that p ≥ dp/2e. For the second inequality,

‖XY ‖ψ1
= sup

p∈N

(E|XY |p)1/p

p
≤ 2 sup

p∈N

(E|X|2p)1/(2p)√
2p

(E|Y |2p)1/(2p)√
2p

≤ 2 sup
p∈N

(E|X|2p)1/(2p)√
2p

sup
q∈N

(E|Y |2q)1/(2q)√
2q

≤ 2‖X‖ψ2
‖Y ‖ψ2

,

as required.

Lemma 2. If X1, . . . , Xn are independent centred random variables with maxi∈[n] ‖Xi‖ψ1
< ∞,

then there exists a universal constant C > 0 such that∥∥∥∥ n∑
i=1

Xi

∥∥∥∥
ψ1

≤ C
( n∑
i=1

‖Xi‖2ψ1

)1/2

.

Proof. Write Ki := ‖Xi‖ψ1
and K := (K1, . . . ,Kn)>. From Vershynin (2012, Lemma 5.15), there

exist universal constants c1, C1 > 0 such that for |t| ≤ c1/‖K‖∞,

E exp

{
t

n∑
i=1

Xi

}
=

n∏
i=1

E exp{tXi} ≤ exp
{
C1t

2‖K‖22
}
.

Setting t = min{C−1/21 ‖K‖−12 , c1‖K‖−1∞ } in the above expression, the right-hand side is bounded
above by e. The desired result follows from the fact that (5.15) and (5.16) in Vershynin (2012) are
two definitions that yield equivalent ψ1-norms.

The following lemma provides a variant of the existing matrix Bernstein inequality (Tropp, 2012,
Theorem 6.2). The primary difference is that we impose non-central absolute moment inequalities,
as opposed to central moment inequalities. We believe that this inequality may be of independent
interest, with applications beyond the scope of this paper. To state the result, for any symmetric
matrix A ∈ Rd×d with eigendecomposition Q diag(µ1, . . . , µd)Q

>, where Q ∈ Od×d, we define its
matrix absolute value as |A| := Q diag(|µ1|, . . . , |µd|)Q>.
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Lemma 3 (A matrix Bernstein inequality with non-central moment conditions). Let
{Xi}i∈[n] be independent symmetric d× d random matrices. Assume that

E
(
|Xi|q

)
� q!

2
Rq−2A2

i for q = 2, 3, 4, . . .

for some R > 0 and deterministic d-dimensional symmetric matrices {Ai}i∈[n]. Define the variance
parameter

σ2 :=

∥∥∥∥ n∑
i=1

A2
i

∥∥∥∥
op

.

Then for each t > 0,

P
[
λmax

{ n∑
i=1

(Xi − EXi)

}
≥ t
]
≤ 4d exp

(
−t2/32

σ2 +Rt

)
.

Proof. Let X̃1, . . . , X̃n, ε1, . . . , εn be independent random matrices and variables, independent

of (X1, . . . ,Xn), satisfying X̃i
d
= Xi and εi ∼ U({−1, 1}) for i ∈ [n]. Write Sn :=

∑n
i=1(Xi −

EXi) and S̃n :=
∑n

i=1(X̃i − EXi). Given X1, . . . ,Xn, let v∗ = v∗(X1, . . . ,Xn) be a leading unit-

length eigenvector of Sn. Let ṽ1, . . . , ṽd denote orthonormal eigenvectors of X̃1 with corresponding
eigenvalues µ̃1, . . . , µ̃d; fix v ∈ Sd−1, and let wj := (ṽ>j v)2 for j ∈ [d]. Since

∑d
j=1wj = 1, we have by

Jensen’s inequality that for q ∈ {2, 3, . . .},

|v>X̃1v|q =

∣∣∣∣ d∑
j=1

wjµ̃j

∣∣∣∣q ≤ d∑
j=1

wj |µ̃j |q = v>|X̃1|qv.

We deduce that E
{

(v>X̃iv)q+
}
≤ E

{
|v>X̃iv|q

}
≤ q!

2R
q−2v>A2

iv for i ∈ [n], so by Bernstein’s in-
equality (Boucheron, Lugosi and Massart, 2013, Corollary 2.11),

P
(
v>∗ S̃nv∗ > t/2

∣∣ X1, . . . ,Xn

)
≤ exp

(
−t2/8

v>∗
∑n

i=1 A2
iv∗ +Rt

)
≤ exp

(
−t2/8
σ2 +Rt

)
.

We may assume that the right-hand side of the above inequality is at most 1/2, since otherwise the
lemma is trivially true. Therefore,

P{λmax(Sn) ≥ t} = P(v>∗ Snv∗ ≥ t) ≤ 2E
{
P
(
v>∗ S̃nv∗ ≤ t/2

∣∣ X1, . . . ,Xn

)
1{v>∗ Snv∗≥t}

}
= 2P

(
v>∗ S̃nv∗ ≤ t/2 and v>∗ Snv∗ ≥ t

)
≤ 2P(v>∗ (Sn − S̃n)v∗ ≥ t/2)

≤ 2P
[
λmax

{ n∑
i=1

εi(Xi − X̃i)

}
≥ t/2

]
≤ 4P

{
λmax

( n∑
i=1

εiXi

)
≥ t/4

}
, (23)

where we have used the fact that εi(Xi − X̃i)
d
= Xi − X̃i for all i in the penultimate inequality.

Since E(εiXi) = 0 and E
{

(εiXi)
q
}
� E(|Xi|q) � q!

2R
q−2A2

i for q ∈ {2, 3, . . .}, applying the matrix
Bernstein inequality (Tropp, 2012, Theorem 6.2) to the sequence {εiXi}i∈[n] yields

P
{
λmax

( n∑
i=1

εiXi

)
≥ t/4

}
≤ d exp

(
−t2/32

σ2 +Rt

)
.

We attain the conclusion by combining the above inequality with (23).

Lemma 4. Let X1, . . . , Xn be independent Bin(d, p) random variables and let p̂i := Xi/d. When
dp ≥ 1 and n ≥ 2, we have

Emax
i∈[n]

p̂i ≤ 10p log n.
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Proof. By Bernstein’s inequality (van der Vaart and Wellner, 1996, Lemma 2.2.9) and a union
bound,

P
(

max
i∈[n]

p̂i ≥ p+ t
)
≤ n exp

(
− dt2

2(p+ t/3)

)
.

Setting t0 := 2
√
pd−1 log n+ 4

3d log n, we have

Emax
i∈[n]

p̂i = p+ t0 +

∫ ∞
t0

n{e−dt2/(4p) + e−3dt/4} dt ≤ p+ t0 +

√
πp

d
+

4

3d
≤ 10p log n,

where we have used log n ≥ log 2 and 1/d ≤ p in the final inequality.

The following lemma controls the Kullback–Leibler divergence between two centred multivariate
normal distributions.

Lemma 5. Suppose that β,η ∈ Rd and ‖η‖2 = ‖β‖2. Let Σ1 := Id + ββ> and Σ2 := Id + ηη>.
Then

KL
(
Nd(0,Σ1), Nd(0,Σ2)

)
=
‖η‖42 − (η>β)2

2(1 + ‖η‖22)
.

Proof. Since ‖η‖2 = ‖β‖2, the matrices Σ1 and Σ2 share the same set of eigenvalues. Hence
det Σ1 = det Σ2 and we have

KL
(
Nd(0,Σ1), Nd(0,Σ2)

)
=

1

2

{
tr
(
Σ−12 Σ1

)
− d
}

=
1

2

{
tr
(
(Id + ηη>)−1(Id + ββ>)

)
− d
}
.

Now, by the Sherman–Morrison formula,

(Id + ηη>)−1 = Id −
ηη>

1 + ‖η‖22
and thus we have

KL
(
Nd(0,Σ1), Nd(0,Σ2)

)
=

1

2

[
tr

((
Id −

ηη>

1 + ‖η‖22

)
(Id + ββ>)

)
− d
]

=
1

2

(
‖β‖22 −

‖η‖22
1 + ‖η‖22

− (η>β)2

1 + ‖η‖22

)
=
‖η‖42 − (η>β)2

2(1 + ‖η‖22)
,

as required.

Theorem 4 and Proposition 2 in the main text exhibit bounds on T (ṼK ,VK) and L(ṼK ,VK)
given a deterministic observation scheme. The following lemma derives probabilistic bounds for various

norms of W̃.

Lemma 6. Let Ω = (ωij) ∈ {0, 1}n×d have independent and identically distributed rows, and write

pjk := E(ω1jω1k) for j, k ∈ [d]. Define W = (Wjk) ∈ [0,∞]d×d by Wjk := 1/pjk, and let W̃ =

(W̃jk)j,k∈[d] be defined as in (9). Then there exists an event of probability at least 1−
∑

j,k∈[d] e
−npjk/8

on which each of the following inequalities holds:

(i) ‖W̃‖∞→∞ ≤ 2‖W‖∞→∞ = 2 maxj∈[d]
∑

k∈[d] 1/pjk;

(ii) ‖W̃‖1 ≤ 2‖W‖1 = 2
∑

j,k∈[d] 1/pjk;

(iii) ‖W̃‖F ≤ 2‖W‖F = 2
(∑

j,k∈[d] 1/p
2
jk

)1/2
;

(iv) ‖W̃‖2→∞ ≤ 2‖W‖2→∞ = 2 maxj∈[d]
(∑

k∈[d] 1/p
2
jk

)1/2
.

Proof. Define the event

A :=

{
max
j,k∈[d]

W̃jk/Wjk ≤ 2

}
.
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For j, k ∈ [d], write p̂jk := n−1
∑n

i=1 ωijωik. Then by a union bound and the multiplicative form of
Bernstein’s inequality (McDiarmid, 1998, Theorem 2.3(c)), we have

P(Ac) ≤
d∑
j=1

d∑
k=1

P
(
p̂jk < pjk/2

)
≤

d∑
j=1

d∑
k=1

e−npjk/8.

The desired bounds on the event A then follow from the definitions of the norms.
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