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Robust Mean Change Point Testing in
High-dimensional Data with Heavy Tails

Mengchu Li, Yudong Chen, Tengyao Wang and Yi Yu

Abstract

We study mean change point testing problems for high-dimensional data, with exponentially- or polynomially-decaying tails. In
each case, depending on the ℓ0-norm of the mean change vector, we separately consider dense and sparse regimes. We characterise
the boundary between the dense and sparse regimes under the above two tail conditions for the first time in the change point
literature and propose novel testing procedures that attain optimal rates in each of the four regimes up to a poly-iterated logarithmic
factor. To be specific, when the error distributions possess exponentially-decaying tails, a near-optimal CUSUM-type statistic is
considered. As for polynomially-decaying tails, admitting bounded α-th moments for some α ≥ 4, we introduce a median-of-
means-type test statistic that achieves a near-optimal testing rate in both dense and sparse regimes. Our investigation in the even
more challenging case of 2 ≤ α < 4, unveils a new phenomenon that the minimax testing rate has no sparse regime, i.e. testing
sparse changes is information-theoretically as hard as testing dense changes. Finally, we consider various extensions where we
also obtain near-optimal performances, including testing against multiple change points, allowing temporal dependence as well as
fewer than two finite moments in the data generating mechanisms. We also show how sub-Gaussian rates can be achieved when
an additional minimal spacing condition is imposed under the alternative hypothesis.

Index Terms

Change points, Heavy-tailed error, Minimax testing, High-dimensional data, Robustness

I. INTRODUCTION

IN this paper, we study change point testing problems when the observations are corrupted by heavy-tailed errors. To be
specific, consider the ‘signal plus noise’ model

Xt = θt + Et ∈ Rp, t = 1, . . . , n,

where Xt represents the p-variate observation at time t, θt the signal and Et the error term. Writing X := (X1, . . . , Xn) ∈ Rp×n,
and similarly for θ and E, we express the model in matrix form as:

X = θ + E, (1)

where X , θ and E are all p×n matrices. We start by assuming the entries of E are independent random variables with zero mean
and unit variance and we denote the distribution of E as Pe ∈ Q. We are interested in understanding the fundamental difficulty
of testing whether the columns of θ undergo a change at some unknown location when the class Q contains heavy-tailed
distributions. Focusing on the single change point alternative hypothesis for now, our goal can be formalised as testing

H0 : θ ∈ Θ0(p, n) vs. H1 : θ ∈ Θ(p, n, s, ρ) :=

n−1⋃
t0=1

Θ(t0)(p, n, s, ρ), (2)

with

Θ0(p, n) := {θ : θt = µ for all t = 1, . . . , n, for some µ ∈ Rp} (3)

and

Θ(t0)(p, n, s, ρ) :=

{
θ : θt = µ1 for t = 1, . . . , t0, θt = µ2 for t = t0 + 1, . . . , n,

for some µ1, µ2 ∈ Rp s.t. ∥µ1 − µ2∥0 ≤ s,
t0(n− t0)

n
∥µ1 − µ2∥22 ≥ ρ2

}
. (4)
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For any v =
(
v(1), . . . , v(d)

)⊤ ∈ Rd, we denote ∥v∥0 :=
∑d
i=1 1{v(i)̸=0} and ∥v∥2 :=

{∑d
i=1 v(i)

2
}1/2

. To put it in words,
we use Θ0(p, n) to denote the space of signals without a change point, and Θ(t0)(p, n, s, ρ) to denote the space of signals with
a change at location t0 of entry-wise sparsity level s and (normalised) signal strength ρ. The multiplicative factor t0(n−t0)n−1

of ∥µ1 − µ2∥22 can be regarded as the effective sample size of the problem. It reflects the fact that the difficulty of testing
change point is related to where the change happens.

Change point analysis as a broad topic has received increasing attention in recent years. Various models [1]–[6] are considered
in the literature focusing on different tasks, including testing the existence of change points, estimating their locations and
quantifying the uncertainty of the proposed estimators. From a theoretical point of view, many of the problems studied are
shown to exhibit a phase transition phenomenon, i.e. a change point can only be reliably tested or accurately localised when
its signal strength, measured in some problem-dependent way, exceeds some threshold. It is, therefore, crucial to understand
the boundary of this phase transition behaviour. For the testing problem that we are concerned with here, the key quantity is
the minimax testing rate, v∗Q(p, n, s), defined below. For a given θ and E ∼ Pe, we write Pθ,Pe

the probability measure of the
data X generated from (1) and Eθ,Pe

the corresponding expectation operator.

Definition 1 (Minimax testing rate). Let Φ denote the set of all measurable test functions ϕ : Rp×n → {0, 1}. Consider the
minimax testing error

RQ(ρ) := inf
ϕ∈Φ

RQ(ρ, ϕ) := inf
ϕ∈Φ

{
sup
Pe∈Q

sup
θ∈Θ0(p,n)

Eθ,Pe
(ϕ) + sup

Pe∈Q
sup

θ∈Θ(p,n,s,ρ)

Eθ,Pe
(1− ϕ)

}
.

For a fixed ε ∈ (0, 1/2), we say that v∗Q(p, n, s) is the minimax testing rate if RQ(ρ) ≤ ε when ρ2 ≥ Cv∗Q(p, n, s), and
RQ(ρ) ≥ 1/2 when ρ2 ≤ cv∗Q(p, n, s), where c, C > 0 are constants depending only on ε and Q.

Note that in Definition 1, C is allowed to depend on ε. Since the primary goal of the paper is to characterise the minimal
size of the signal, in terms of various model parameters, where the testing problem starts to become feasible, we will treat ε
as a constant throughout the rest of the paper.

A minimax testing rate is previously studied in [2] under model (1), where the entries of noise matrix E are assumed to be
independent standard normal random variables. It is shown that

v∗N⊗(0,1)(p, n, s) =
{√

p log log(8n) ∧
[
s log

{
eps−2 log log(8n)

}]}
∨ log log(8n), (5)

where N⊗(0, 1) denotes the joint distribution of all pn independent N(0, 1) entries in E. Our main contribution, presented
in Section I-A, is to characterise the impact of heavy-tailed distributions on the minimax testing rate. More specifically, we
consider two classes of error distributions.

Definition 2 (Gα,K class of distributions). For K > 0 and α ∈ (0, 2], let Gα,K denote the class of distributions on R such
that for any P ∈ Gα,K and random variable W ∼ P , it holds that

E(W ) = 0, E(W 2) = 1 and E
(
exp
{
|W/K|α

})
≤ 2.

The Gα,K class consists of sub-Weibull distributions of order α with mean 0, variance 1 and the Orlicz ψα-norm upper
bounded by K (see Definitions 6 and 7). By Proposition 29(a), they possess exponentially-decaying tails, as P(|W | ≥ x) ≤
2e−(x/K)α , for x > 0.

Definition 3 (Pα,K class of distributions). For K > 0 and α ≥ 2, let Pα,K denote the class of distributions on R such that
for any P ∈ Pα,K and random variable W ∼ P , it holds that

E(W ) = 0, E(W 2) = 1 and E
(
|W/K|α

)
≤ 1.

In words, each distribution within this class has its α-th moment bounded above by Kα <∞ and possesses a polynomially-
decaying tail. This is typically much heavier than an exponentially-decaying tail and thus poses a much bigger statistical
challenge.

We study the minimax rate of testing v∗Q(p, n, s) defined in Definition 1 for Q = G⊗
α,K and Q = P⊗

α,K , respectively. Let
G⊗
α,K and P⊗

α,K denote the class of joint distributions of all the entries in the error matrix E ∈ Rp×n, when each entry of E
independently follows a distribution on R that belongs to the class Gα,K and Pα,K , respectively. Throughout the paper, we
treat K and α as constants.

A. Main results and outline

Our main results, developed in Sections II and III, characterise the minimax testing rates under both exponentially- and
polynomial-decaying tails. In particular, we establish that in the case of exponentially-decaying tails

v∗G⊗
α,K

(p, n, s) ≍ Lmin{√p, s log2/α(ep/s)}+ log log(8n) (6)
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for some L ∈
[
1,
√
log log(8n)

]
, and in the case of polynomial-decaying tails

v∗P⊗
α,K

(p, n, s) ≍ Lmin{p 2
α∨ 1

2 , s(p/s)
2
α }+ log log(8n) (7)

for some L ∈ [1, log log(8n)]. Upper and lower bounds with explicit dependence on iterated logarithmic factors are detailed
in Section II-C and section III-C.

Note that as the level of sparsity s increases from 1 to p, there is a changeover in the dominating term in both (6) and (7).
Depending on whether directly involving s in the final rates, we refer to the resulting regimes the sparse and dense regimes,
with their transition boundaries s∗G and s∗P determined by s∗G log2/α(ep/s∗G) =

√
p for G⊗

α,K and s∗P(p/s
∗
P)

2
α = p

2
α∨ 1

2 for
P⊗
α,K .
The transition boundaries are demonstrated in Figure 1. When Pe ∈ P⊗

α,K , the minimax testing rate transition occurs at
s∗P = p1/2−1/(α−2) when α ≥ 4. When α ∈ [2, 4), there is essentially no sparse regime, since in this range of α, there does not
exist any s ∈ [1, p] such that s(p/s)α/2 < p2/α. This observation implies that testing sparse change is information-theoretically
as hard as testing dense changes when α ∈ [2, 4], as the minimax testing rate is independent of s. When Pe ∈ G⊗

α,K , the
transition boundary takes a simpler form of s∗G ≍ √

p log−2/α(ep) for α ∈ (0, 2].

Fig. 1. Minimax testing rate transition boundaries between dense and sparse regimes when the distribution of the error matrix belongs to P⊗
α,K (left panel)

and G⊗
α,K (right panel). The left panel plots the curve γ(α) = (α− 2)−1 ∧ 1/2 for α ∈ [2,∞), and the two regimes are separated by s∗P = p1/2−γ . The

right panel plots the curve β(α) = 2/α for α ∈ (0, 2], and the two regimes are separated by s∗G ≍ √
p log−β(ep).

The upper bounds on (6) and (7) are each obtained by analysing two different testing procedures separately, targeting at
dense and sparse regimes. In practice, the level of sparsity is usually unknown and we address the issue of adaptation to sparsity
in Section IV. We show that there is no additional cost of adaptation in achieving the optimal minimax testing rates. Finally,
in Section VI, we consider extensions in four interesting directions, including (1) testing against multiple change points, (2)
accounting for temporal dependence among observations, (3) addressing the case where the noise matrix entries have fewer
than two finite moments, and (4) examining the situation where an additional minimal spacing condition is imposed between
the potential change point and the boundary time points. Generally speaking, we develop near-optimal procedures under these
more general settings and demonstrate an interesting phenomenon in (4)—tests can achieve sub-Gaussian performances under
heavy-tailed noise assumptions if it is known that the potential change point is away from the endpoints by a small distance
that only depends on the model parameters p, n and s through logarithmic terms.

To highlight our contributions relative to the existing literature, we note that in previous works on robust mean change
point testing problems [7], [8], change point locations are required to be comparable to the length of time series in order to
achieve near-optimal guarantees. Our results, in comparison, cover a much more general parameter space, where the change
point locations may be arbitrarily close to the boundary. Compared to recent works on optimal mean change point testing
problems without robustness [2], [6], our results allow for general classes of distributions beyond Gaussian and sub-Gaussian
cases and quantify the costs of heavy-tailedness. Finally, compared to relevant recent works on robust estimation in sequence
models [9], we investigate the more challenging case where noise entries have fewer than four finite moments, and unveil a
new phenomenon on the effects of sparsity that was previously unknown even in sequence models. More in-depth discussions
on these works can be found in Section I-B.
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B. Relation to existing literature

Many real-world data such as financial returns and macroeconomic variables exhibit heavy-tail phenomena, which often
violate the convenient sub-Gaussian/exponential assumptions adopted by data analysts. Statistical procedures that mitigate the
effects of heavy-tailed and/or contaminated data, therefore, have been sought after in practice, see [10] for more in-depth
discussions. In the realm of change point analysis, one line of recent works [4], [5], [11] consider change point models
with exponentially-decaying heavy-tailed noise and study the performance of non-robust algorithms that perform well under
sub-Gaussian noise assumptions. Theoretical results therein all require stronger assumptions on the strength of change points
compared to the setting under sub-Gaussian assumptions. One motivation for our work is thus to investigate to what extent
ideas from robust statistics are useful in analysing change points within high-dimensional heavy-tailed data streams.

Another line of work develops algorithms with robust components for change point analysis. In particular, in the univariate
mean change setting, [12] propose to swap the commonly used ℓ2-loss with other loss functions, including the biweight and
Huber loss functions to enhance robustness against heavy-tailed errors in localising change points. [13] deploy a robust mean
estimator with a scanning window idea to estimate multiple change point locations under a more general Huber contamination
framework. Their results show that, in terms of the minimax detection boundary, there is essentially no cost of relaxing the
sub-Gaussian assumption to more flexible finite moment assumptions. Robust change point analysis methodologies have also
been proposed in other contexts including change point detection in stump models [14], high-dimensional linear models [15]
and functional time series [16], as well as detecting covariance changes [17] and distributional changes [18]. There is also
work exploring rank-based methods and focusing on univariate time series data [19]–[23]. We remark that some works focus
on robust online change point detection [24]–[26], which is different from the offline version that we study here1.

Closer to our high-dimensional mean change point setting, [7] and [8] both consider the testing problem (2) and propose
robust methodology targeting at sparse and dense changes, respectively. [7] formulate the problem as testing location parameter
change, which in contrast to our model, allows the noise distribution to have mean parameter being infinite. Their methodology
involves a U-statistic with an anti-symmetric and bounded kernel, followed by an ℓ∞ aggregation. The power analysis of their
proposed test (cf. Theorem 3.3 therein) along with subsequent remarks provide finite sample results showing that their test
is able to detect the change point when it is sufficiently away from the boundary. In particular, their Remark 4 suggests that
detection is only possible for local alternative when the change point location satisfies

t0 ∧ (n− t0) ≥ c
√
n log(np),

for some absolute constant c > 0. In comparison, our results hold for the parameter space Θ(p, n, s, ρ) that covers all possible
locations of change points. Moreover, as discussed in Remark 5 therein, their procedure achieves the sparse regime rate in
v∗N⊗(0,1)(p, n, s) up to a poly-logarithmic factor in n and p only when t0 = cn for some fixed constant c ∈ (0, 1). [8] consider
the same mean change point testing problem as ours but without sparsity constraints, while allowing for a form of weak spatial
dependence across coordinates. In terms of methodology, they also utilise a robustified U-statistic and combine it with the
self-normalisation technique. They derive the limiting distributions of the proposed test under the sequential asymptotics. It
is discussed in Remark 2 therein that, asymptotically, their test achieves the dense rate v∗N⊗(0,1)(p, n, p) up to a logarithmic
factor in n, when the change point location satisfies t0 = cn for some fixed constant c ∈ (0, 1).

In comparison to the results in [7] and [8], our results are non-asymptotic and reveal that when considering the whole
parameter space Θ(p, n, s, ρ), where the change point locations may be arbitrarily close to the boundary, the fundamental
difficulty of the testing problem changes drastically. In particular, the heavy-tailed distributions manifest a strong impact on the
minimax testing rates and one can no longer achieve the Gaussian-like minimax testing rates, especially in the sparse regime.
Moreover, our results are generally sharper in the sense that we characterise the minimax testing rates up to a factor of at most
log log(8n).

Lastly, we mention two recent works [9] and [2], that are technically related to ours. [9] study the sparse sequence models
where

Yi = θi + σξi, i = 1, . . . , p.

The noise random variables ξi’s are i.i.d. with some distribution belonging to either Gα,K or Pα,K , and the signal θ is assumed
to be ℓ0-sparse with sparsity s. They provide minimax rates for estimating ∥θ∥2 among other results (cf. Table 1 therein)
under these two noise classes. Our results recover theirs when n is of constant order and provide a link between these two
problems, while significantly generalising to the arbitrary n case. To achieve the minimax estimation rates, [9] first estimate
θ via a penalised least squares estimator θ̂ in the sparse regime, and use ∥θ̂∥2 as an estimator for ∥θ∥2. We adopt a different
yet more intuitive hard-thresholding methodology in extracting information from sparse changes. Moreover, their upper bound
rate under Pα,K requires the assumption of bounded fourth moments, i.e. α ≥ 4. We investigate the more challenging case
when α ∈ (2, 4), as well as α ≤ 2 in Section VI, and unveil a previously unknown phase transition behaviour even when n is
of constant order.

1In an online change point analysis problem, one monitors the change points while collecting data. In the offline context, the change point analysis is
conducted retrospectively.
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[2] study the same testing problem (2) as ours under the Gaussian noise assumption while also considering spatial and
temporal dependence. Their proposed testing procedure computes CUSUM-type statistics [27] at each location on a dyadic
grid. This also serves as the starting point of various procedures in our work. By comparing the results in Table I with the
rate v∗N⊗(0,1)(p, n, s) derived by [2] under the Gaussianity assumption, we show that the heavy-tailed errors mainly affect the
difficulty of testing sparse changes, whereas in the P⊗

α,K case with α ∈ [2, 4), the dense rate also changes dramatically. In the
special case of p = s = 1, our results (both upper and lower bounds in all cases) reduce to log log(8n), which is the same
rate as v∗N⊗(0,1)(1, n, 1). This shows that, in the univariate setting, there is no extra cost of allowing for heavy-tailed errors in
testing change point compared to Gaussian errors.

C. Notation

We introduce the notation used throughout the paper. Let Z+ denote the set of positive integers. For d ∈ Z+, write
[d] := {1, . . . , d}. Let ⌈·⌉, ⌊·⌋ and Γ(·) denote the ceiling, floor and Gamma functions, respectively. Given a, b ∈ R, denote
a∧b := min(a, b) and a∨b := max(a, b). For a set S, use 1S and |S| to denote its indicator function and cardinality respectively.
For a vector v =

(
v(1), . . . , v(d)

)⊤ ∈ Rd, define ∥v∥1 :=
∑d
i=1 |v(i)| and ∥v∥∞ := maxi∈[d] |v(i)|. For two vectors

v, w ∈ Rd, we use ⟨v, w⟩ to denote their inner product. For a matrix A = (Aij)i∈[d1],j∈[d2] =
(
Aj(i)

)
i∈[d1],j∈[d2]

∈ Rd1×d2 ,

denote the Frobenius norm ∥A∥F :=
(∑d1

i=1

∑d2
j=1A

2
ij

)1/2
, the operator norm ∥A∥2 := maxv∈Rd2 ,v ̸=0 ∥Av∥2/∥v∥2, the

two-to-infinity norm ∥A∥2→∞ := maxv∈Rd2 ,v ̸=0 ∥Av∥∞/∥v∥2 and the max norm ∥A∥max := maxi∈[d1],j∈[d2] |Aij |. For
two probability measures P and Q on a measurable space (X ,A), denote the total variation distance between them as
TV(P,Q) := supA∈A |P (A)−Q(A)|. If, in addition, P and Q are absolute continuous with respect to some base measure λ,
then define the squared Hellinger distance between them as H2(P,Q) :=

∫
X
(√

p(x)−
√
q(x)

)2
λ(dx), where p and q are the

Radon–Nikodym derivatives of P and Q with respect to λ respectively. When the distribution is clear from the context, let P,
E and Var be probability, expectation and variance operators respectively. Finally, we write a ≳ b if a ≥ C1b, write a ≲ b if
a ≤ C2b, and write a ≍ b if C3b ≤ a ≤ C4b, for some constants C1, C2, C3, C4 > 0 that depend only on α, K, and ε, which
are treated as constants throughout this work.

II. TESTING UNDER SUB-WEIBULL NOISE DISTRIBUTIONS

In this section, we consider the entries of the noise matrix E to be independent random variables and each follows a
distribution belonging to the class Gα,K ; see Definition 2. Recall the definitions of minimax testing rates, v∗Gα,K

(p, n, s), the
worst case testing error of a given test ϕ, RG(ρ, ϕ), and the minimax testing error RG(ρ), from Definition 1. For notational
simplicity, we use G in place of G⊗

α,K .
As mentioned in Section I-A, we shall establish an upper bound on RG(ρ) by developing two testing procedures, targeting

at dense and sparse change signals. We provide the details of these two testing procedures with corresponding theoretical
guarantees leading to the dense and sparse rates in Sections II-A and II-B. The minimum between the two rates serves as an
upper bound on RG(ρ) and we prove and discuss its optimality in Section II-C.

A. Testing for dense signals

To derive the dense rate, we consider the testing procedure that is used in [2]. Consider T :=
{
1, 2, 4, . . . , 2⌊log2(n/2)⌋

}
and

a CUSUM-type statistic

Yt :=

∑t
i=1Xi −

∑t
i=1Xn+1−i√

2t
.

We define our test as
ϕG,dense := 1{maxt∈T At>r}, (8)

where

At :=

p∑
j=1

{
Y 2
t (j)− 1

}
(9)

and r > 0 is the detection threshold specified in Theorem 1. Note that it suffices to test for a change point over the dyadic grid
T since for any true change point location t0 ∈ [n− 1] under the alternative, there exists some t ∈ T such that t ≤ t0 ≤ 2t,
approximating the true change location up to a constant factor. The logarithmic size of T is the main reason behind the
appearance of the log log(8n) terms in our bounds below. The following theorem establishes the theoretical guarantee of the
test ϕG,dense.

Theorem 1. Let 0 < α ≤ 2 and K > 0. For any ε ∈ (0, 1), there exist constants C1, C2 > 0 depending only on α, K and ε,
such that the test ϕG,dense defined in (8) with

r = C1

(√
p log log(8n) + log log(8n)

)
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satisfies
RG(ρ, ϕG,dense) ≤ ε,

as long as ρ2 ≥ C2v
U
G,dense, where

vUG,dense :=
√
p log log(8n) + log log(8n).

Note that this simple test actually achieves the same rate in the dense regime as v∗N⊗(0,1) defined in (5), even though the
noise distributions possess heavier tails than Gaussian and sub-Gaussian distributions. One key technical ingredient is a careful
analysis of the probability of the Type I error using Lemma 35 instead of a crude union bound.

B. Testing for sparse signals

To derive the sparse rate, we employ a sample-splitting testing procedure similar to that proposed in Section 5.1 of [28].
Intuitively, we first use half of the data to identify coordinates that exhibit strong signals of change, and then use the other
half to aggregate the selected ‘signal’ coordinates. Such a methodology is applicable for testing potential change locations
t ∈ T \ {1} and we deal with testing the special case of t = 1 separately.

To be specific, for t ∈ T \ {1}, we define a sample-splitting version of (9) that

ϕG,sparse := 1{maxt∈T \{1} At,a>r} ∨ 1{A1,a>r1}, (10)

with

Yt,1 :=

∑t/2
i=1X2i−1 −

∑t/2
i=1Xn+2−2i√

t
, Yt,2 :=

∑t/2
i=1X2i −

∑t/2
i=1Xn+1−2i√
t

(11)

and

At,a :=

{∑p
j=1

{
Y 2
t,1(j)− 1

}
1{|Yt,2(j)|≥a}, t ≥ 2,∑p

j=1

{
Y 2
t (j)− 1

}
1{|Yt(j)|≥a}, t = 1,

(12)

where a, r, r1 are specified in Theorem 2.

Theorem 2. Let 0 < α ≤ 2 and K > 0. For any ε ∈ (0, 1), there exist constants C1, C2, C3, C4 > 0 depending only on α, K
and ε, such that the test ϕG,sparse defined in (10) with

a = C1

[
log1/α(ep/s) + s−1/2 log1/2{log(8n)}

]
,

r = C2

(√
s log log(8n) + log log(8n)

)
and r1 = C3s log

2/α(ep/s),

satisfies that
RG(ρ, ϕG,sparse) ≤ ε,

as long as ρ2 ≥ C4v
U
G,sparse, where

vUG,sparse := s log2/α(ep/s) + log log(8n).

The idea of selecting coordinates via hard-thresholding has been widely used and in particular, in the change point context,
considered in [2] and [28] under the Gaussian noise assumption. Our use of sample-splitting prompts the independence between
the coordinate selection step and the ℓ2-aggregation step. It simplifies the analysis while achieving the optimal testing rate, as
we will show in Section II-C.

C. Minimax optimality

We derive lower bounds on the minimax testing rate and discuss the optimality of our testing procedures in this section. First,
note that the theoretical guarantees in Theorems 1 and 2 hold for any sparsity level s. In other words, for any given s ∈ [1, p],
we can simultaneously run the two testing procedures described in Sections II-A and II-B and take ϕG,dense ∨ ϕG,sparse as our
test. This leads to an upper bound

vUG,dense ∧ vUG,sparse =
{
s log2/α(ep/s) ∧

√
p log log(8n)

}
+ log log(8n) (13)

on the minimax testing rate v∗G⊗
α,K

(p, n, s). The following theorem presents a corresponding lower bound.

Theorem 3. Let 0 < α ≤ 2, K ≥ Kα and s ≥ c, for some absolute constant c ≥ 1 and some constant Kα > 0 depending
only on α. There exists some constant c′ > 0 depending only on α and K, such that RG(ρ) ≥ 1/2 whenever ρ2 ≤ c′vLG , where

vLG :=
{
s log2/α(ep/s) ∧

√
p{log log(8n)}ω1

}
+ log log(8n)

and ω1 = 1{
s>

√
p log log(8n)

}.
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By combining the lower bound vLG in Theorem 3 and the upper bound in (13), we are able to quantify the minimax test rate
up to a factor of

√
log log(8n) and conclude that our testing procedures are minimax rate optimal up to an iterated logarithmic

factor. Moreover, a closer look into the sparse and dense regimes, as defined in Section I-A, reveals that our results exactly
quantify v∗G⊗

α,K

(p, n, s) in almost all regimes of sparsity.
Both the upper and lower bounds consist of a minimum of two terms, directly involving the sparsity level s and not. As

s grows, the final rate undergoes a phase transition, namely from a sparse regime to a dense one. To better understand the
transition, we focus on the relationship between p and s, setting the boundary between the sparse and the dense regime to be
the solution to s∗G log2/α(ep/s∗G) =

√
p, i.e.

s∗G ≍
√
p

log2/α(ep)
. (14)

We summarise this phenomenon in Table I. From the table, it is clear that our upper and lower bounds match exactly in the
entire sparse regime (i.e. s < s∗G) and the majority region of the dense regime (i.e. s >

√
p log log(8n)). The

√
log log(8n) gap

between the upper and lower bounds, only exists in the region s∗G ≤ s ≤
√
p log log(8n) within the dense regime. Closing such

gap is challenging and a similar gap exists even when each entry of the noise matrix follows a sub-Gaussian, yet Gaussian,
distribution; see Section 7.1 of [29], where it is suggested that a procedure exploring the exact distribution of the noise might
be required to close this gap.

TABLE I
BOUNDS ON THE MINIMAX TESTING RATES IN THE SUB-WEIBULL NOISE DISTRIBUTION CLASS G⊗

α,K , WHERE ω1 = 1{
s>

√
p log log(8n)

} . UPPER

BOUNDS ARE OBTAINED IN THEOREMS 1 AND 2. LOWER BOUNDS ARE OBTAINED IN THEOREM 3.

Upper bound Lower bound

G⊗
α,K

Dense
√

p log log(8n) + log log(8n)
√

p{log log(8n)}ω1 + log log(8n)

Sparse s log2/α(ep/s) + log log(8n) s log2/α(ep/s) + log log(8n)

To highlight the effects of sub-Weibull distributions on the minimax test rate, we note that allowing heavier tails does not
affect the minimax testing rate when s >

√
p log log(8n), relative to the results under Gaussian noise assumptions; see (5).

However, the tail behaviour, quantified by the parameter α, does affect the minimax rate in the sparse regime and hence the
transition boundary. Specifically, as α decreases (i.e. the tail becomes heavier), the sparse rate increases, meaning that it is
fundamentally more difficult to detect sparse changes as the tail of the noise distribution becomes heavier. As a prelude to
Section VI-D, we also show that a modification of the test ϕG,sparse in Section II-B can achieve a sparse rate that is independent of
α, if a different alternative hypothesis is considered, where the change point is known to be at least log(ep/s)+s−1 log log(8n)
away from the end points 1 and n.

III. TESTING UNDER FINITE MOMENT NOISE DISTRIBUTIONS

In this section, we consider the case when Pe ∈ P⊗
α,K , or equivalently, we assume that the distribution of each entry in

the noise matrix E has only finite α-th moments, for some constant α ≥ 2, see Definition 3. Compared to the Gα,K class of
distributions considered in Section II, where standard CUSUM-type testing procedures already achieve near-optimal minimax
testing rates, the Pα,K class of distributions include a much wider range of noise distributions, e.g. t distributions and centred
Pareto distributions. As a result, it poses a much larger statistical challenge. New approaches to tackle the testing problem are
thus required.

Similar to Section II, we write the worst case testing error as RP(ρ, ϕ) and the minimax testing error as RP(ρ). We again
assume the sparsity level to be known and derive the dense and sparse testing rates separately in Sections III-A and III-B.

A. Testing for dense signals

We consider a testing procedure built on the median-of-means-type statistics. For i ≤ n/2, we denote Zi := (Xi −
Xn−i+1)/

√
2. For t ∈ T , we split {Z1, . . . , Zt} into Gt groups of equal size (assuming that t is always a multiple of chosen

Gt for simplicity) that
Zt,1,Zt,2, . . . ,Zt,Gt

,

where each group contains t/Gt ≥ 1 elements and the number of groups Gt is specified later in (18). Set Vt,g ∈ Rp with

Vt,g(j) := Z
2

t,g(j)−
Gt
t
, g ∈ [Gt], (15)
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where Zt,g ∈ Rp is the sample mean of the g-th group. This quantity Vt,g can be thought as a scaled version of the statistic
At defined in (9), but computed using only a subset of the data. To achieve robustness against heavy-tailed errors, we consider
the following median-of-means-type statistic

AMoM
t := t ·median

(
p∑
j=1

Vt,1(j),

p∑
j=1

Vt,2(j), . . . ,

p∑
j=1

Vt,Gt
(j)

)
. (16)

Our test is denoted as
ϕP,dense := 1{maxt∈T AMoM

t /rt>1}, (17)

with the detection threshold rt specified in (18). Before presenting the theoretical guarantee of the test ϕP,dense in Theorem 4,
we first briefly explain the significance of median-of-means-type statistics and the novelty of our procedure.

Median-of-means-type statistics like (16) have been applied in a wide range of statistical problems [30]–[34]. The most
well-known and simplest form is its univariate mean estimation version. Suppose that we have i.i.d. data of sample size n with
mean µ and variance σ2. The median-of-means estimator µ̂MoM is obtained by first partitioning the data into G groups of
equal size, then calculating the sample mean within each group and finally computing the median of these G sample means.
It is shown in Theorem 2 of [35] that, for δ ∈ (0, 1), when the number of groups G is chosen to be at least 8 log(1/δ), with
probability at least 1− δ, the estimator µ̂MoM = µ̂MoM(δ) satisfies that

|µ̂MoM − µ| ≤ σ

√
32 log(1/δ)

n
.

Thus, the median-of-means estimator can achieve sub-Gaussian performance in mean estimation under only the assumption of
finite second moment.

However, in our context, the aforementioned methodology is not applicable for testing potential change point that is too
close to the boundary, as we will not have enough data to split into the required number of groups to ensure good statistical
guarantees. Therefore, for t ∈ T such that t ≤ ∆ with the threshold ∆ specified in (18), we directly take the median of t
statistics in (16), i.e. Gt = t. We now present the theoretical guarantee of the test ϕP,dense in (17).

Theorem 4. Assume α ≥ 2. For any ε ∈ (0, 1), there exist C1, C2 > 0 depending only on α, K and ε, such that the test
ϕP,dense defined in (17) with

rt = C1p
(1/2)∨(2/α)Gt, Gt = t ∧∆ and ∆ = 23+⌈log2 log log(8n)⌉, (18)

satisfies that
RP(ρ, ϕP,dense) ≤ ε,

as long as ρ2 ≥ C2v
U
P,dense, where

vUP,dense := p(2/α)∨(1/2) log log(8n)

One challenge in our context is analysing the performance of the test ϕP,dense when α ∈ [2, 4]. Since we compute a second-
order statistic Vt,g within each group g, standard variance-based analysis would require a bounded fourth moment condition
on the distribution. However, through a more refined analysis, we extend our results to this more demanding case of α ∈ [2, 4].
In this setting, the dense testing rate vUP,dense is affected by α, and we reveal a phase transition in the rate at α = 4.

An even more challenging scenario arises when the distribution of each entry of E lacks a finite variance. In this case, an
alternative test to ϕP,dense is required, as the mean of the aforementioned second-order statistic Vt,g is no longer guaranteed
to be finite. We defer a detailed discussion of this setting to Section VI-C.

B. Testing for sparse signals

To derive the sparse rate, we employ a mean estimator satisfying a general condition detailed in Condition 1 in Appendix A5
to construct our test. There are potentially many choices of such a mean estimator, but one specific choice µ̂RSM is given in
[36]:

µ̂RSM
n,s ({Wi}ni=1; η) := inf

µ∈Ls

sup
u∈N 1/2

2s (Sp−1)

∣∣u⊤µ− 1DRobust({u⊤Wi}ni=1, η/(6ep/s)
s)
∣∣, (19)

where W1, . . . ,Wn ∈ Rp are input data, Ls := {v ∈ Rp : ∥v∥0 ≤ s} is the set of s-sparse vectors in Rp, N 1/2
2s (Sp−1)

is a (1/2)-cover of the set of 2s-sparse unit vectors with cardinality |N 1/2
2s (Sp−1)| ≤ (6ep/s)s [37], and 1DRobust is a

univariate robust mean estimator defined in Algorithm 2 of [36]. Other univariate robust mean estimators can be considered in
place of 1DRobust, including the median-of-means and trimmed mean variants [38]. Notably, the estimator in (19) achieves a
near-optimal statistical guarantee for sparse mean estimation (Corollary 11 of [36]), despite its high computational complexity,
which scales exponentially in s.



IEEE TRANSACTIONS ON INFORMATION THEORY 9

We describe our test ϕRSM
P,sparse using µ̂RSM

n,s ({Wi}ni=1; η). For ∆̃1 specified in (21) and for t ≤ ∆̃1, we use the non-robust
statistic At,a as defined in (12). For t ∈ T ∩ {t > ∆̃1}, we construct the statistic from the ℓ2-norm of this robust sparse mean
estimator:

ARSM
t := t

∥∥µ̂RSM
t,s,ηt

∥∥2
2
= t
∥∥µ̂RSM

t,s ({Zi}ti=1; ηt)
∥∥2
2
.

With all the parameters a, ∆̃1, r̃t, r
RSM
t and ηt specified later in (21), we define

ϕRSM
P,sparse := 1{maxt∈T ∩{t≤∆̃1} At,a/r̃t>1} ∨ 1{maxt∈T ∩{t>∆̃1} A

RSM
t /rRSM

t >1}. (20)

The theoretical guarantee of ϕRSM
P,sparse is established as follows.

Theorem 5. Assume α ≥ 4. For any ε ∈ (0, 1), there exist C1, C2, C3, C4, C5 > 0 depending only on α, K and ε, such that
the test ϕRSM

P,sparse defined in (20) with

a = C1

(
(p/s)1/α + s−1/2 log1/2(log ∆̃1)

)
, r̃t = C2

(
s(p/s)2/α1{t=1} +

√
s log ∆̃11{t>1}

)
,

ηt = exp

{
s log(ep/s)− t ∧ ∆̃2

C3

}
, rRSM

t = C4(t ∧ ∆̃2),

∆̃1 = C3

(
s log(ep/s) + log(16/ε)

)
and ∆̃2 = C3

(
s log(ep/s) + log(16 log(2n)/ε)

)
,

(21)

satisfies that
RP(ρ, ϕ

RSM
P,sparse) ≤ ε,

as long as ρ2 ≥ C5v
U
P,sparse, where

vUP,sparse := s(p/s)2/α + log log(8n). (22)

The main reason we separate T into different regions in our test (20) is that (19) cannot be applied when t is too close to
the boundary in order to achieve the required statistical performance. We, therefore, resort to the non-robust testing statistics
At,a for t close to boundaries.

A significant drawback of using the robust sparse mean estimator to construct our test, ϕRSM
P,sparse, is its high computational

cost, which scales exponentially with s. We defer the discussion of this issue and a two-component remedy that achieves the
same rate, which is in fact optimal, in polynomial time to Section III-C3.

C. Minimax optimal testing using a polynomial-time procedure

Similar to Section II-C, we first derive lower bounds on the minimax testing rate under Pα,K and examine the optimality of
our testing procedures in both the dense and sparse regimes in Section III-C1. Then, in Sections III-C2 and III-C3, we address
the computational intractability issue of ϕRSM

P,sparse by combining it with a median-of-means-type test, yielding a procedure that
is both minimax optimal in the sparse regime and computationally feasible, with complexity polynomial in p and n.

1) Minimax optimality: For any given s ∈ [1, p], by simultaneously running ϕP,dense and ϕRSM
P,sparse when α ≥ 4 and only

running ϕP,dense when 2 ≤ α < 4, we obtain an upper bound{{
s(p/s)2/α ∧√

p log log(8n)
}
+ log log(8n), when α ≥ 4,

p2/α log log(8n), when 2 ≤ α < 4,
(23)

on the minimax testing rate v∗G⊗
α,K

(p, n, s). This upper bound also implies the one presented in (7), i.e.{
s(p/s)2/α ∧ p 2

α∨ 1
2

}
log log(8n).

The following result provides a corresponding lower bound.

Theorem 6. Let α ≥ 2, K ≥ Kα and s ≥ c, for some absolute constant c ≥ 1 and some constant Kα > 0 depending only
on α. There exists some constant c′ > 0 depending only on α and K, such that RP(ρ) ≥ 1/2 whenever ρ2 ≤ c′vLP , where

vLP :=
{
s(p/s)2/α ∧ p(2/α)∨(1/2)(log log(8n))ω2

}
+ log log(8n)

and ω2 = (1/2)1{
s>

√
p log log(8n)

}
∩{α≥4}

.

Similar to the exponentially-decaying tail case, by combining the lower bound vLP from Theorem 6 with the upper bound
in (23), we quantify the minimax test rate up to a factor of log log(8n) and conclude that our testing procedures are minimax
rate near-optimal. Importantly, our results reveal a critical phenomenon that the minimax testing rate is independent of s when
α ∈ [2, 4]. As in this case, both (23) and vLP reduce to p2/α, up to a factor of log log(8n). In other words, knowing the change
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is sparse does not make the testing problem easier, and it is fundamentally impossible to exploit the sparse structure of the
change in pursuit of better results. We further discuss its consequence in the language of sparse and dense regimes below.

To understand the effect of sparsity, we again ignore the iterated logarithmic factor in n and focus on the relationship
between s and p. The boundary between the dense and sparse regimes is obtained by determining which term dominates the
upper/lower bound rate in the minimum operator. As defined in Section I-A, the boundary is

s∗P := p
1
2−( 1

α−2∧
1
2 ), (24)

which satisfies s∗P(p/s
∗
P)

2
α = p

2
α∨ 1

2 . The dense and sparse regimes are those where the sparsity level s is directly involved in
the rate or not. The characterisation is summarised in Table II. Notably, when 2 ≤ α ≤ 4, we always have

1

α− 2
∧ 1

2
=

1

2
,

which means that there is no sparse regime in this extremely heavy-tailed setting.

TABLE II
BOUNDS ON THE MINIMAX TESTING RATES UNDER FINITE MOMENT NOISE DISTRIBUTION CLASS P⊗

α,K WITH α ≥ 2, WHERE

ω2 = (1/2)1{
s>

√
p log log(8n)

}
∩{α≥4} .

Upper bound Lower bound

P⊗
α,K

Dense (α ≥ 2) p(2/α)∨(1/2) log log(8n) p(2/α)∨(1/2)(log log(8n))ω2 + log log(8n)

Sparse (α ≥ 4) s(p/s)2/α + log log(8n) s(p/s)2/α + log log(8n)

From the table, we observe that our upper and lower bounds match exactly across the entire sparse regime (s < s∗P ) when
it exists (α ≥ 4). In the dense regime, the upper and lower bounds are off by a factor of order at most log log(8n). We briefly
note that the upper bound in the special case of α = 2 can be improved to p + log log(8n), matching the lower bound in
this case up to constants. This is achieved as a by-product when we consider noise distributions with no more than two finite
moments in Section VI-C.

We now discuss the effects of α on the minimax testing rates. When both the dense and sparse regimes exist (α ≥ 4),
we observe from Table II that the dense rate is not affected by α since 2/α ≤ 1/2. Moreover, even compared to the dense
rate

√
p log log(8n) under Gaussian noise assumptions, the cost of heavy-tailedness is minimal. However, the sparse rates are

completely different from their counterparts in Section II-C, implying a significant increase of difficulty in detecting sparse
changes under heavy-tailed noises. We note that this difficulty can be largely mitigated if one assumes that the change point is
away from the boundary, and we discuss this interesting extension in Section VI-D. Finally, as α further decreases to between
2 and 4, the sparse regime becomes empty, and the dense rates are also affected by α.

2) A median-of-means-type test: As mentioned in Section III-B, one challenge of using a robust estimator such as (19) to
construct our testing procedure ϕRSM

P,sparse is its computational intractability. This stems from the need to project data onto every
2s-sparse unit vector or its covering set, causing the computational complexity to scale exponentially in s. This issue is, in
fact, common in high-dimensional robust statistics.

From Table II, we observe that ϕRSM
P,sparse is used to establish the upper bound rate only in the sparse regime s < s∗P =

p
1
2−( 1

α−2∧
1
2 ), where it achieves minimax optimality. A natural question, then, is whether a polynomial-time algorithm can also

attain minimax optimality. To answer this, we first examine a computationally-efficient test that combines the median-of-means
approach with a hard-thresholding step for coordinate selection.

Recall that Zi = (Xi−Xn−i+1)/
√
2 for i ∈ [n/2]. For t ∈ T \{1}, we split {Z1, . . . , Zt} into two halves: {Z1, Z3, . . . , Zt−1}

and {Z2, Z4, . . . , Zt}. We further split the first set into Gt groups of equal size, denoted as Zt,1,1,Zt,2,1, . . . ,Zt,Gt,1, with
the number of groups Gt specified later in (29), and use Zt,g,1 to denote the sample mean of the g-th group. The set
{Z2, Z4, . . . , Zt} is reserved for selecting the signal coordinates as we did in Section II-B. Consider the statistic Vt,g,a ∈ Rp
with

Vt,g,a(j) :=

(
Z

2

t,g,1(j)−
2Gt
t

)
1{|Yt,2(j)|≥a}, j ∈ [p], (25)

where Yt,2(j) is defined in (11) and a is a selection threshold to be specified in (29). Our test statistic takes the same form as
in the dense case that

AMoM
t,a :=

t

2
·median

(
p∑
j=1

Vt,1,a(j),

p∑
j=1

Vt,2,a(j), . . . ,

p∑
j=1

Vt,Gt,a(j)

)
. (26)

For t = 1, we cannot perform sample-splitting and therefore we deal with it separately by considering

AMoM
1,a := A1,a =

p∑
j=1

(Z2
1 (j)− 1)1{|Z1(j)|≥a}. (27)
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Finally, the test is given by
ϕMoM
P,sparse := 1{maxt∈T AMoM

t,a /rt>1}. (28)

Proposition 7. Assume α ≥ 4. For any ε ∈ (0, 1), there exist C1, C2, C3 > 0 depending only on α, K and ε, such that
ϕMoM
P,sparse defined in (28) with

a = C1

(
(p/s)1/α + s−1/2 log1/2(log(8n))

)
, rt = C2

(
s(p/s)2/α1{t=1} +

√
sGt1{t>1}

)
,

Gt = (t ∧∆)/2 and ∆ = 24+⌈log2 log log(8n)⌉,
(29)

satisfies that
RP(ρ, ϕ

MoM
P,sparse) ≤ ε,

as long as ρ2 ≥ C3v
U,MoM
P,sparse, where

vU,MoM
P,sparse := s

(
(p/s)2/α + log log(8n)

)
.

We observe that the rate vU,MoM
P,sparse is dominated by vUP,sparse = s(p/s)2/α + log log(8n) in Theorem 5, meaning that

using solely this MoM-type test ϕMoM
P,sparse is not statistically optimal. However, the computational complexity of each step in

constructing this test (defined in (25), (26), (27) and (28)) is polynomial in n and p, making it a feasible polynomial-time
testing procedure.

It is also worth mentioning that in the hard-thresholding step, we simply use the non-robust quantity Yt,2 to estimate the
signal of each coordinate instead of its robust counterparts to avoid further complication of the procedure. If, however, we
know that the change point is sufficiently far away from the endpoints, employing a robust procedure for coordinate selection
can significantly improve the testing rate. This additional assumption requires modifying the alternative space in (2), leading
to a different testing problem. A detailed discussion of this scenario is provided in Section VI-D.

3) An optimal polynomial-time test in the sparse regime: By comparing vUP,sparse and vU,MoM
P,sparse, as established in Theorem 5

and Proposition 7, we observe that the improvement offered by ϕRSM
P,sparse over ϕMoM

P,sparse occurs only when (p/s)2/α <

log log(8n), in which case ϕMoM
P,sparse attains the suboptimal rate s log log(8n). Given the range of s in the sparse regime,

we deduce that the computationally expensive ϕRSM
P,sparse is only necessary when p < logα−2(log(8n)), whereas ϕMoM

P,sparse can
be used otherwise. We define the following combined testing procedure:

ϕP,sparse :=

{
ϕRSM
P,sparse, if p < logα−2(log(8n)),

ϕMoM
P,sparse, otherwise.

(30)

The corollary below confirms that this combined test runs in polynomial time in both n and p while achieving the optimal
rate vUP,sparse in the sparse regime.

Corollary 8. Assume α ≥ 4 and s < s∗P . Consider the test ϕP,sparse defined in (30), with its two components ϕRSM
P,sparse and

ϕMoM
P,sparse described in Sections III-B and III-C2, respectively. For any ε ∈ (0, 1), there exists a constant C > 0 depending only

on α, K, and ε, such that ϕP,sparse, with the parameters of its two components chosen according to (21) and (29), satisfies
that

RP(ρ, ϕP,sparse) ≤ ε,

as long as ρ2 ≥ C1v
U
P,sparse, with vUP,sparse defined in (22). Moreover, the computational complexity of ϕP,sparse is polynomial

in both n and p.

We conclude this section by summarising in Table III the main features of each test constructed to achieve the upper bounds
of the minimax testing rates in Tables I and II for Gα,K and Pα,K and under both dense and sparse signals.

TABLE III
A SUMMARY OF MAIN FEATURES OF EACH TEST CONSTRUCTED TO ACHIEVE THE UPPER BOUNDS OF THE MINIMAX TESTING RATES IN TABLES I AND II.

Dense Sparse

G⊗
α,K CUSUM-type, ℓ2 aggregation CUSUM-type, thresholding, ℓ2 aggregation

P⊗
α,K MoM-type, ℓ2 aggregation Big p: MoM-type, thresholding, ℓ2 aggregation

Small p: Robust sparse mean estimator based test

When the noise has exponentially decaying tails, CUSUM-type statistics with ℓ2 aggregation are sufficient to achieve near-
optimal testing. In contrast, for polynomially decaying tails, robust methods such as median-of-means or robust sparse mean
estimation are required to construct near-optimal tests. For both types of heavy-tailed noise, when testing sparse signals, a
thresholding step is applied to identify the signal coordinates before aggregation. Finally, under finite-moment noise distributions,
the two robust methods, chosen according to whether p is large or small, combine to yield an optimal and computationally
efficient testing procedure.
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IV. ADAPTATION TO SPARSITY

In Sections II and III, we have studied the change point testing problem under two types of heavy-tail assumptions on the
error distributions: (1) exponentially-decaying/sub-Weibull tails and (2) polynomially-decaying/finite α-th moment assumption
with α ≥ 2. The corresponding upper bound rates, e.g. vUG,sparse and vUP,sparse, are currently achieved by testing procedures
that take the sparsity level s as an input. In this section, we study the adaptation of these procedures to unknown sparsity
levels.

First off, in the very heavy-tailed setting, i.e. each entry of E has only finite α-th moments for α ∈ [2, 4], there is no sparse
regime; see the discussion in Section III-C1. The test ϕP,dense defined in (17) with its parameters specified in Theorem 4 does
not require the knowledge of the sparsity, and, therefore, the corresponding rate vUP,dense = p2/α log log(8n) can already be
achieved by an adaptive procedure.

We focus on the case where Pe ∈ P⊗
α,K for α > 4. Recall from Theorem 4 and Corollary 8 that the tests ϕP,dense and

ϕP,sparse achieve the rates vUP,dense and vUP,sparse, respectively, when the sparsity level is known. To address the scenario where
sparsity is unknown, we propose the following adaptive testing procedure that combines these two tests:

ϕP,adaptive := ϕP,dense ∨max
s∈K

ϕP,sparse,s, (31)

where the dependence of ϕP,sparse on s is made explicit by writing it as ϕP,sparse,s, and the set K := {1, 2, 4, . . . , 2⌈log2(p)⌉−1}
is a dyadic grid. The details of this test along with its parameter choices are provided in Appendix B1.

Theorem 9. Assume α ≥ 4. For any ε ∈ (0, 1), there exists a test ϕP,adaptive of the form (31) that satisfies

RP(ρ, ϕP,adaptive) ≤ ε,

as long as ρ2 ≥ C
(
vUP,dense ∧ vUP,sparse

)
, with C > 0 being a constant depending only on α, K and ε.

Theorem 9 establishes that the adaptive test ϕP,adaptive achieves the same rate as (23) without requiring the sparsity parameter
as an input. Therefore, the discussion on the optimality in Section III-C1 also holds. When the errors have exponentially-
decaying tails instead, a similar adaptive testing procedure ϕG,adaptive can be constructed using (31) with ϕG,dense and
ϕG,sparse instead and achieve the same rate as in (13). For brevity, we omit further details here.

V. ILLUSTRATIVE SIMULATIONS

In this section, we illustrate our main results, as presented in Section I-A via simulation studies. Specifically, we numerically
verify the shrinkage of sparse regimes as the tail becomes heavier in both exponentially- and polynomially-decaying tail cases.

In our simulations, we set p = 100 and n = 300. The data matrices X ∈ R100×300 are generated according to (1), where
the entries of the noise matrix E are i.i.d. following some distribution F . Let tk denotes the t-distribution with k degrees of
freedom. We consider the following four choices for the distribution F :

• GG(2): standard normal distribution, which belongs to the class G2,K for some K;
• GG(0.5): Generalised Gaussian distribution with mean 0, shape parameter 0.5, and scale parameter chosen so that the

variance is 1; this belongs to the class G0.5,K for some K;
• Nt(8):

√
3/4 · t8, which has variance 1 and belongs to the class P8−ϵ,K for any ϵ > 02;

• Nt(3):
√
1/3 · t3, which has variance 1 and belongs to the class P3−ϵ,K for any ϵ > 0.

We adopt the adaptive tests ϕP,adaptive defined in (31), and ϕG,adaptive, the corresponding version for the class Gα,K . To
calibrate the constants in our tests, we set θ to be the matrix with all entries being zero. In both the exponentially- and
polynomially-decaying tail cases, the adaptive test consists of a dense test and a collection of sparse tests. For the dense test
ϕG,dense (or ϕP,dense), we calibrate the constant in the detection threshold r (or rt) so that the empirical Type I error is below
0.025. For the sparse tests, we specify two constants that appear in a and r (or rt), used in the thresholding and detection
steps, respectively. We select these constants so that the empirical Type I error is below 0.025. Taken together, this ensures
that the overall Type I error of the adaptive test is controlled at 0.05.

The power of our adaptive test is evaluated empirically on a grid of (s, Signal) values, where s ∈ {1, . . . , 50} and Signal

varies over a fine grid within a suitable interval, which may differ across the tail cases. For each fixed (s, Signal) pair, the
mean matrix θ = (θ1, . . . , θ300) ∈ R100×300 is generated as follows. The change point location t0 is chosen uniformly at
random from {1, . . . , 150}, and we set

θt = 0 ∈ R100, 1 ≤ t ≤ t0,

and
θt =

√
n

t0(n− t0)

Signal√
s

(1, . . . , 1︸ ︷︷ ︸
s

, 0, . . . , 0︸ ︷︷ ︸
p−s

)⊤, t0 + 1 ≤ t ≤ n.

2A t distribution with ν degrees of freedom has (ν − ϵ)-th moment finite for any ϵ > 0.
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The power for each pair (s, Signal) is calculated by repeating the process 500 times of generating θ, E, and thus X ,
and computing ϕG,adaptive (or ϕP,adaptive) with the constants calibrated as described above. We plot two heatmaps showing
the power of ϕG,adaptive, with Signal on the horizontal axis and sparsity s on the vertical axis, for GG(2) and GG(0.5),
respectively, in Figure 2. Similarly, heatmaps of the power of ϕP,adaptive for Nt(8) and Nt(3), respectively, are shown in
Figure 3.

Fig. 2. Simulation results for noise GG(2) (left panel) and GG(0.5) (right panel). The dashed line represents the 0.5 contour of the power.

Fig. 3. Simulation results for noise Nt(8) (left panel) and Nt(3) (right panel). The dashed line represents the 0.5 contour of the power.

In both Figures 2 and 3, we observe that as the tails become heavier (moving from the left panel to the right panel), the
power generally decreases, as indicated by the need for higher signal levels to achieve the same power. Moreover, the power
for detecting sparse changes is much more affected than for dense changes as the tails become heavier. In Figure 2, when
the noise is GG(2), there exists a range of sparsity levels where higher power can be achieved compared to dense changes
at the same signal level. However, when the noise is GG(0.5), this advantage for sparse changes diminishes significantly. A
similar pattern is seen in Figure 3. Moreover, as suggested by our theoretical results and now verified here, when the noise
distribution has fewer than four finite moments, there is no sparsity level for which testing sparse changes is easier than testing
dense changes.

VI. EXTENSIONS

In the previous sections, we characterised the minimax rates for testing a single mean change within independent high-
dimensional data streams under two broad classes of heavy-tailed noise distributions. In this section, we consider several
extensions, including (1) testing against multiple change points in Section VI-A, (2) accounting for temporal dependence
among observations in Section VI-B, (3) addressing the case where noise matrix entries have fewer than two finite moments
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in Section VI-C, and (4) examining a modified testing problem where the potential change point is known to be some distance
away from the endpoints in Section VI-D.

A summary of the problem setups and notation is provided in Table IV. Specifically, within each section, we propose testing
procedures ϕ and control their worst case testing error, which takes the form

RQ,#(ρ, ϕ) := sup
Pe∈Q

sup
θ∈H0

Eθ,Pe(ϕ) + sup
Pe∈Q

sup
θ∈H1

Eθ,Pe
(1− ϕ),

where # denotes the problem-dependent quantities and ρ is some measure of change strength defined clearly in each alternative
parameter space. Lower bounds on the minimax testing rates will be provided where available by considering infϕRQ,#(ρ, ϕ)
and, for brevity, we do not separately define the minimax testing rates for each problem.

TABLE IV
SUMMARY OF THE DIFFERENT SETTINGS IN SECTION VI.

Alternative hypothesis H1 Noise distribution Q Notation

Section VI-A θ ∈ Θmulti(p, n, ρ) (32) P⊗
α,K RP,multi

Section VI-B θ ∈ Θ(p, n, p, ρ) (2) PTemp (Definition 4) RPTemp

Section VI-C θ ∈
⋃n−1

t0=1 Θ(p, n, ρt0 ) (37) W⊗
α (Definition 5) RW⊗

α

Section VI-D θ ∈ Θres(p, n, s, ρ) (40) P⊗
α,K & G⊗

α,K RQ,res

A. Testing against multiple change points

We consider the following testing problem between no change point and at least one change point:

H0 : θ ∈ Θ0(p, n) vs. H1 : θ ∈ Θmulti(p, n, ρ) :=
⋃
k∈Z+

⋃
1≤τ1<...<τk≤n−1

Θ(τ1,...,τk)(p, n, ρ), (32)

where Θ0(p, n) is the same as in (3) and

Θ(τ1,...,τk)(p, n, ρ) :=

{
θ : θτi−1+1 = . . . = θτi = µi for all i ∈ [k + 1], for some µ1, . . . , µk+1 ∈ Rp,

where there exists i ∈ [k] s.t. ∆i ≥ 4 log(n) and κ2i∆i ≥ ρ2, with
∆i := min{τi − τi−1, τi+1 − τi}, κi := ∥µi+1 − µi∥2 for i ∈ [k],

τ0 = 0 and τk+1 = n by convention
}
.

The worst case testing error for a measurable test function ϕ is

RQ,multi(ρ, ϕ) := sup
Pe∈Q

sup
θ∈Θ0(p,n)

Eθ,Pe
(ϕ) + sup

Pe∈Q
sup

θ∈Θmulti(p,n,ρ)

Eθ,Pe
(1− ϕ).

Throughout this subsection, we consider the class of distributions Q = P⊗
α,K with α ≥ 4 and K <∞.

Theorem 10. Assume n ≥ 50 and α ≥ 4. For any ε ∈ (0, 1), there exists a test ϕMoM
P,multi that satisfies

RP,multi(ρ, ϕ
MoM
P,multi) ≤ ε,

as long as
ρ2 ≥ C

√
p log(n),

where C > 0 is a constant depending only on α, K and ε.

The details of the test ϕMoM
P,multi is described in Appendix D1. At a high level, it exhibits a multi-scale nature by performing a

collection of ‘local tests’ at all possible change locations with a dyadic grid of scales. Such multi-scale statistics are commonly
used for detecting multiple change points [29], [39]. The robustness property is achieved by integrating the median-of-means
methodology into the local tests. Another ideal feature of our test is that it is adaptive to the unknown number of change
points k under the alternative hypothesis, i.e. it does not take k as an input.

In contrast to the single change point setting where we allow the potential change point to be arbitrarily close to the
endpoints, here, we impose a mild minimum spacing condition ∆i ≥ 4 log(n) for some change point. However, this condition
is not required for testing under Gaussian or sub-Gaussian assumptions [29]. In Appendix D1, we provide a heuristic example
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illustrating why the heavy-tailed nature of the data necessitates a minimum spacing condition to achieve a rate that has
logarithmic dependence on n.

The following proposition shows that the test ϕMoM
P,multi is minimax rate-optimal up to a factor of

√
log(n) when α ≥ 4.

Proposition 11. Let n ≥ 72, α ≥ 4 and K ≥
√
α+ 1. Then it holds that infϕRP,multi(ρ, ϕ) ≥ 1/2 whenever

ρ2 ≤ c
(√

p log(n) + log(n)
)
,

for some absolute constant c > 0.

By comparing Theorem 10 and Proposition 11 for testing against multiple change points, with Theorems 4 and 6 for the single
change point problem in Section III, we observe that the main difference is the presence of log(n) instead of log log(n) in the
rates. This distinction has been observed in the change point literature for univariate data under sub-Gaussian noise distributions
[6]. Our results reaffirm this phenomenon even in the context of high dimensional data with heavy-tailed distributions.

B. Temporal dependence

We now consider temporal dependence in heavy-tailed observations. To isolate its impact, we focus on the case where s = p
(eliminating the effect of sparsity) and assume that the error matrix E has independent rows.

For simplicity, assume n ≥ 4 to be an even number. The temporal dependence assumption to be introduced involves the
interlaced α-mixing coefficient of our noise sequence {Ei}i∈[n]:

α∗(i) := sup
S,T⊆[n]:

mins∈S,t∈T |s−t|≥i

sup
A∈σ(Ej :j∈S),
B∈σ(Ej :j∈T )

∣∣P(A ∩B)− P(A)P(B)
∣∣. (33)

Throughout this subsection, we consider the class of distributions Q = PTemp, defined as follows:

Definition 4 (PTemp class of distributions). For K > 0, α ≥ 2 and c1, c2 > 0, let PTemp denote the class of all distributions
of the error matrix E satisfying the following conditions:

1) the matrix E has independent rows;
2) the marginal distribution of each entry in E belongs to Pα,K; and
3) the interlaced α-mixing coefficient satisfies that

α∗(i) ≤ c1e
−c2i, for all i ∈ [n− 1]. (34)

Theorem 12. Assume α > 4. For any ε ∈ (0, 1), there exists a test ϕPTemp that satisfies

RPTemp(ρ, ϕPTemp) ≤ ε,

as long as
ρ2 ≥ C p1/2{log log(8n)}{log log log(64n)}2,

where C is a constant depending only on α, K, c1, c2 and ε.

The test is essentially constructed in the same way as in Section III-A and we leave the detailed description to Appendix D2.
We also note that a similar result can be obtained for the case of 2 < α ≤ 4; see Remark 1 in Appendix D2. By comparing
Theorem 12 with Theorem 4, we conclude that under certain weak dependence settings, described by the class PTemp, we can
still achieve nearly the same rate as in the independence setting, up to a factor of squared triple logarithm.

To further interpret the main temporal dependence condition (34) required for PTemp, we note that (34) on the interlaced
α-mixing coefficient (33) of the noise sequence is stricter than imposing the same condition on the (usual) α-mixing coefficient.
The reason we choose this interlaced version of the coefficient is that our technique involves pairing observations (first with
last, second with second last, etc.) to form Zi’s before grouping and averaging.

A sufficient condition for (34) is shown in Theorem 5.1(b) and Equation (1.12) of [40]. If each component series {Ei(j)}i∈[n]

of the noise sequence satisfies

sup
S,T⊆[n]:

mins∈S,t∈T |s−t|≥i

sup
f∈L2(σ(Ek(j):k∈S))
g∈L2(σ(Ek(j):k∈T ))

Corr(f, g) ≤ c1e
−c2i, (35)

then the α∗-mixing rate condition (34) is satisfied with constants c1 and c2. This fact implies that moving average processes
essentially belong to the class PTemp. Specifically, consider a data-generating mechanism in which {Ei(j)}i∈[n], the j-th
component series of the noise, is a moving average process of order qj , j ∈ [p]. Assuming that there exists a constant qmax

such that maxj∈[p] qj ≤ qmax, each univariate component series satisfies (35) with c1 = eqmax and c2 = 1. We present a more
detailed analysis of an MA(1) example in Appendix D2. For further discussion and examples satisfying (34) or (35), see [41].
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C. Fewer than two finite moments

In Section III, we studied the minimax testing rate when Pe ∈ P⊗
α,K , for some constant α ≥ 2 and K <∞. Now, we tackle

the even more challenging case when each entry of the noise matrix does not necessarily have a finite variance. Given our
main findings that when α ∈ [2, 4), there is no sparse regime (c.f. Sections I-A and III-C), we do not need to consider sparse
changes in this even more challenging setting. We first introduce the class of distributions Wα that we work with.

Definition 5. For 1 ≤ α ≤ 2, let Wα denote the class of distributions on Rp such that for any P ∈ Wα and random variable
W ∼ P , it holds that

EW = 0 and E|⟨W, v⟩|α ≤ 1, ∀v ∈ Rp, ∥v∥2 = 1. (36)

Let W⊗
α denote the class of joint distributions of all entries in the error matrix E, where each column of E independently

follows a distribution on Rp that belongs to the class Wα. It follows by Jensen’s inequality that P⊗
2,1 ⊆ W⊗

α ⊆ W⊗
α′ for all

1 ≤ α′ ≤ α ≤ 2.
We now specify the alternative parameter space. For a given sequence of {ρt0}t0∈[n−1], let

H1 : θ ∈
n−1⋃
t0=1

Θ(p, n, ρt0),

where

Θ(p, n, ρt0) :=

{
θ : θt = µ1 for t = 1, . . . , t0, θt = µ2 for t = t0 + 1, . . . , n,

for some µ1, µ2 ∈ Rp s.t. ∥µ1 − µ2∥22 ≥ ρ2t0

}
. (37)

Letting ρt0 = ρ
√
t−1
0 (n− t0)−1n, we see that the alternative parameter space (37) is a superset of Θ(t0)(p, n, p, ρ) defined in

(4). When the noise variances are finite, the factor t−1
0 (n− t0)

−1n is the variance of the natural test statistic t−1
0

∑t0
i=1Xi −

(n− t0)
−1
∑n
i=t0+1Xi, when p = 1. Therefore, the normalising factor t0(n− t0)n

−1 in (4) ensures a variance-stable signal
strength parameter ρ across different change locations. In the absence of finite variance assumptions, as considered in this
section, we opt out for such a specific normalising factor and use the general form ρt0 .

For a given sequence {ρt0}t0∈[n−1], the worst case testing error for a given test ϕ is

RW⊗
α
({ρt0}t0∈[n−1], ϕ) := sup

Pe∈W⊗
α

sup
θ∈Θ0(p,n)

Eθ,Pe
(ϕ) + sup

Pe∈W⊗
α

sup
θ∈

⋃n−1
t0=1 Θ(p,n,ρt0 )

Eθ,Pe
(1− ϕ).

To establish an upper bound on the minimax testing rates, we develop a test ϕRM
Wα

, which has two components that separately
target at whether the potential change point is sufficiently away from the boundary or not. When the potential change is away
from the boundary, our test utilises on a robust mean estimator µ̂RM from Algorithm 1-7 of [42]. Similar to the previous
subsections in Section VI, we directly present the result, with the details of the test ϕRM

Wα
deferred to Appendix D3.

Theorem 13. Assume 1 ≤ α ≤ 2. For any ε ∈ (0, 1), if

ρt0 ≥ C

{√
p

t0 ∧ (n− t0)
+
( p

t0 ∧ (n− t0)

)α−1
α

+
( log log(n)

t0 ∧ (n− t0)

)α−1
α

}
, (38)

for all t0 ∈ [n− 1], where C > 0 is some constant that depends only on α and ε, then there exists a test ϕRM
Wα

such that

RW⊗
α
({ρt0}t0∈[n−1], ϕ

RM
Wα

) ≤ ε.

To interpret the requirement on ρt0 and compare it with the cases where at least two finite moments exist, we first note that
for any t0 ∈ [n− 1],

(n− t0) ∧ t0
2

≤ t0(n− t0)

n
≤ (n− t0) ∧ t0,

i.e. the normalising factor in (4) is of the same order as (n− t0)∧ t0. Since ∥µ1 −µ2∥22 ≥ ρ2t0 under (37), we can rewrite (38)
as

t0(n− t0)

n
∥µ1 − µ2∥22 ≳ p+ p

2α−2
α

{
t0 ∧ (n− t0)

} 2−α
α + log

2α−2
α log(n)

{
t0 ∧ (n− t0)

} 2−α
α . (39)

We observe that in the special case when α = 2, the right hand side of (39) reduces to p+ log log(n). Theorem 13 shows that
when the noise distribution belongs to W⊗

2 , the worst case testing error is controlled at ε, under this condition on the normalised
signal strength. Since P⊗

2,1 ⊆ W⊗
2 , we conclude that the minimax testing rate under P⊗

2,1 satisfies v∗P⊗
2,1

(p, n, s) ≲ p+log log(8n)

for all s ∈ [p], which improves upon the result in Theorem 4 in the special case α = 2. Combining this with Theorem 6 leads
to an exact characterisation of the minimax testing rate under P⊗

2,1, i.e. v∗P⊗
2,1

(p, n, s) ≍ p+ log log(8n).
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Investigating optimality under the more general alternative hypothesis (37) is conceptually more challenging, as it actually
necessitates lower bound constructions that are valid at every potential change location t0 in order to derive the optimal form
of {ρt0}t0∈[n−1]. When p = 1, we show in Proposition 26 in Appendix D3 that infϕRW⊗

α
({ρt0}t0∈[n−1], ϕ) ≥ 1/2, if

ρt0 ≤
{
t0 ∧ (n− t0)

}−(α−1
α )

,

for some t0 ∈ [n−1], which confirms the optimality of our upper bound (38) up to logarithmic factors. Establishing optimality
in general dimension p is significantly more challenging and we leave that for future investigation.

D. Change away from boundary

In this final extension, we aim to address whether it is possible to achieve the sub-Gaussian rate in the sparse regime,
s log(ep/s)+ log log(8n) (c.f. Table I with α = 2), when it is known a priori that the change location is at least some distance
away from the endpoints, 1 and n. We denote this minimum requirement on the distance from boundary by tres ≥ 1, and
modify the alternative space in (4) to include additional restrictions (we use sub/superscripts ‘res’ to denote this):

H1 : θ ∈ Θres(p, n, s, ρ) :=

n−tres⋃
t0=tres+1

Θ(t0)(p, n, s, ρ). (40)

We separately consider the cases Q = P⊗
α,K with α ≥ 4 and Q = G⊗

α,K for 0 < α ≤ 2. Notice that in both cases, the rates
in the dense regime are not affected by the level of heavy-tailedness α, and they differ from the sub-Gaussian dense rate by
at most a factor of log log(n); see Tables I and II. Therefore, we are interested in whether the same phenomenon can happen
in the sparse regime by considering a ‘simpler’ problem with a restricted alternative parameter space specified in (40). For a
given test ϕ, we denote the worst case testing error, with (40) as the alternative hypothesis, by RQ,res(ρ, ϕ).

For Q = P⊗
α,K with α ≥ 4, we modify the median-of-means-type test proposed in Section III-C2 and provide the details

of the new test ϕMoM+res
P,sparse in Appendix D4. Our new test relies on a more robust coordinate selection step compared to (25),

which is made possible due to the additional assumption that the change location is away from boundary.

Theorem 14. Let tres = 32
{
log(e2p/s) + s−1 log log(8n)

}
and Q = P⊗

α,K with α ≥ 4. For any ε ∈ (0, 1), there exists a test
ϕMoM+res
P,sparse such that

RQ,res(ρ, ϕ
MoM+res
P,sparse ) ≤ ε,

as long as ρ2 ≥ CvMoM+res
P,sparse , where

vMoM+res
P,sparse := s

{
log(ep/s) + log log(8n)

}
,

and C is a constant that only depends on α,K and ε.

The rate in Theorem 14 offers a significant improvement over the original sparse rate, s
{
(p/s)2/α+ log log(8n)

}
, achieved

in Proposition 7. In particular, the rate vMoM+res
P,sparse depends on the dimension p only through a logarithmic factor and is

independent of α—the number of finite moments assumed for the noise variables. We emphasise that this improvement is
achieved by restricting the original alternative parameter space in (4) to (40) with tres = 32

{
log(e2p/s) + s−1 log log(8n)

}
,

i.e. we only consider testing a potential change point that is not too close to the boundary. Finally, we observe that when
log(ep/s) ≥ log log(8n), with a very mild condition imposed by tres that the change is away from the endpoints by at least
the order of log(ep/s), the rate vMoM+res

P,sparse matches the sparse sub-Gaussian rate for all α ≥ 4.
For Q = G⊗

α,K with 0 < α < 2, a similar result can be shown with the test construction deferred to Appendix D4.

Theorem 15. Let tres = 32
{
log(e2p/s) + s−1 log log(8n)

}
and Q = G⊗

α,K with 0 < α < 2. For any ε ∈ (0, 1), there exists a
test ϕresG,sparse such that

RQ,res(ρ, ϕ
res
G,sparse) ≤ ε,

as long as ρ2 ≥ CvresG,sparse, where
vresG,sparse := s log(ep/s) + log log(8n),

and C is a constant that only depends on α,K and ε.

Theorem 15 parallels Theorem 14 and demonstrates that ϕresG,sparse achieves the sparse sub-Gaussian rate when testing against
change that is at least the order of log(ep/s) + s−1 log log(8n) away from the boundary. We note that this idea of obtaining
sub-Gaussian rates by assuming change is away from the boundary is also briefly explored in [7]. Compared to their result,
our result offers a significant improvement on the requirement of how far a change needs to be away from the endpoints, in
order to achieve sub-Gaussian rates; see Appendix D4 for detailed discussions. More generally, it would be interesting, from
a lower bound perspective, to understand the smallest order of tres such that it is possible to achieve sub-Gaussian rates. We
leave this as an interesting future research direction.
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VII. DISCUSSION

In this paper, we have studied the problem of testing against a single mean change point for high-dimensional heavy-
tailed data. We have characterised the minimax testing rates of this problem up to iterated logarithm factors in both the
exponentially-decaying and polynomially-decaying tail cases. The transition boundary between the sparse and dense regimes
occurs at s∗G ≍ √

p log−2/α(ep) for Gα,K with α ∈ (0, 2]. For Pα,K , the transition happens at s∗P = p1/2−1/(α−2) when α ≥ 4
and there is no sparse regime when α ∈ [2, 4). Our results also quantify the costs of heavy-tailed distributions in this problem
by comparing to the previous results under Gaussian error assumption [2] and unveil a new phenomenon that the minimax
testing rates of mean change point problem undergo a phase transition when the error distribution has finite fourth moment.
There are several avenues for future research and we briefly discuss them below.

Spatial dependence. Throughout this paper, we have assumed independence across coordinates. To relax this independence
assumption, one could allow for weak or strong coordinate-wise dependence via ρ-mixing, and employ alternative finite-sample
analysis tools, as in, for example, [8]. Alternatively, for allowing a general covariance matrix Σ, if we assume that Σ−1/2E has
independent components with all eigenvalues of Σ being of constant order, then at least in the dense case, all our theoretical
results remain valid. We leave a thorough investigation into these two generalisations for future endeavours.

Adaptation to α. All of our proposed testing procedures require the knowledge of α, the tail decay index in the case of Gα,K and
the number of finite moments in the case of Pα,K , through the choices of parameters. Note that if we under-specify α, all of our
theoretical guarantees still hold, albeit non-optimal rates achieved by the procedures. On the other hand, an over-specification
of α would invalidate our results. In practice, practitioners, based on domain knowledge, usually have a conservative idea
on how heavy the tails may be. There have been some recent works on distinguishing between exponentially-decaying and
polynomially-decaying tails, e.g. [43], [44], and on estimating the tail index parameter for sub-Weibull distributions [45], which
may be combined with our tests to obtain adaptivity. We leave this ambitious task for the future.
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APPENDIX

The proofs of all theoretical results are presented in the Appendix. Appendix A contains proofs of upper bound results,
including Theorem 1, Theorem 2, Theorem 4, Theorem 5, Proposition 7 and Corollary 8. Theorem 9 regarding the adaptive
test is proved in Appendix B. The lower bound results, Theorem 3 and Theorem 6, are proved in Appendix C. Technical
details of Section VI are collected in Appendix D. Appendix E contains auxiliary results.

A. Proofs of upper bound results in Sections II and III

Throughout the proofs in this subsection, we fix Pe ∈ G⊗
α,K (resp. P⊗

α,K) and write Eθ in place of Eθ,Pe for the ease of
notation. In every proof, we desire to control the two terms supθ∈Θ0(p,n) Eθϕ (‘null term’) and supθ∈Θ1(p,n,s,ρ) Eθ(1 − ϕ)
(‘alternative term’) respectively. The values of the constants C1, C2, . . . vary from proof to proof. Note also that the order
of the constants in each proof do not necessarily match that in the statement of the result, e.g. C2 in the proof of Theorem 1
below corresponds to C1 in the statement of Theorem 1.

1) Proof of Theorem 1: Null term. For any θ ∈ Θ0(p, n), we can write

Yt =

∑t
i=1(Xi − θ1)−

∑t
i=1(Xn+1−i − θ1)√

2t
.

Observe that Yt = (Yt(1), . . . , Yt(p))
⊤ has independent components, each having mean 0 and variance 1. Moreover, each

Xi(j) − θ1(j) is a (centered) sub-Weibull random variable of order α belonging to the class Gα,K . Now, we consider the
following block diagonal matrix B ∈ R2tp×2tp:

B :=


Bblock 0 · · · 0

0 Bblock · · · 0
...

...
. . .

...
0 0 · · · Bblock

 ,

where Bblock = (bij)i,j∈[2t] ∈ R2t×2t is defined as follows:

bij =


1
2t if i = j,
1
t if 1 ≤ i ̸= j ≤ t or t < i ̸= j ≤ 2t,

− 1
t if 1 ≤ i ≤ t < j ≤ 2t or 1 ≤ j ≤ t < i ≤ 2t.
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Let Ui(j) := Xi(j)− θ1(j) for i ∈ [n] and j ∈ [p]. Now, we can write∑
j∈[p]

Y 2
t (j) =

∑
j∈[p]

1

2t

( t∑
i=1

Ui(j)−
t∑
i=1

Un+1−i(j)

)2

= Ũ⊤BŨ,

where Ũ ∈ R2tp has its first 2t coordinates as

(U1(1), U2(1), . . . , Ut(1), Un+1−t(1), . . . , Un(1))
⊤,

and the remaining entries take the same form but with the coordinate index changing from 1 to p.
We calculate four different norms of matrix B:

∥B∥F =

√
2tp

(
1

4t2
+

2t− 1

t2

)
≤ 2

√
p,

∥B∥2 =
1

2t
+

2t− 1

t
≤ 2,

∥B∥2→∞ = max
i∈[2t]

√∑
j∈[2t]

b2ij ≤
√

2

t
,

∥B∥max = 1/t.

For α ∈ [1, 2], we observe by Proposition 30 that Gα,K ⊆ G1,K′ for some constant K ′ > 0, depending only on K. Recall that
At =

∑
j∈[p] Y

2
t (j)− p. Thus, for any α ∈ (0, 2], by applying Proposition 32, we have

Pθ(At > r) ≤ exp

{
1−

(
r

C1
√
p

)2
}

+ exp

{
1− r

C1

}
+ exp

{
1−

(
r
√
t

C1

) 2α
2+α∧ 2

3

}

+ exp

{
1−

(
rt

C1

)α
2 ∧ 1

2

}
, (41)

where C1 > 0 is some constant depending only on α and K from Proposition 32. Then, by union bounds (for all four terms)

and Lemma 35 (for the last two terms), we obtain that for any θ ∈ Θ0(p, n) and r ≥ C1

{(
2

α
2+α∧ 1

3 − 1
)−( 2+α

α ∨3
)
∨
(
2

α
2 ∧ 1

2 −

1
)−( 2

α∨2
)}

,

EθϕG,dense = Pθ
(
max
t∈T

At,0 > r
)
≤ e log2(n) exp

{
−
(

r

C1
√
p

)2
}

+ e log2(n) exp

{
− r

C1

}

+ e
∑
t∈T

exp

{
−
(
r
√
t

C1

) 2α
2+α∧ 2

3

}
+ e

∑
t∈T

exp

{
−
(
rt

C1

)α
2 ∧ 1

2

}

≤ e log2(n) exp

{
−
(

r

C1
√
p

)2
}

+ e log2(n) exp

{
− r

C1

}

+ 2e exp

{
−
(
r

C1

) 2α
2+α∧ 2

3

}
+ 2e exp

{
−
(
r

C1

)α
2 ∧ 1

2

}
, (42)

Thus, when

r ≥
{
C1

√
p log(8eε−1 log2(n))

}
∨
{
C1 log(8eε

−1 log2(n))

}
∨
{
C1 log

2+α
2α ∨ 3

2 (16eε−1)

}
∨
{
C1 log

2
α∨2(16eε−1)

}
,

each of the four terms in (42) can be upper bounded by ε/8. Equivalently, when

r ≥ C2

(√
p log log(8n) + log log(8n)

)
,

for some constant C2 > 0, depending only on α, K and ε, we have EθϕG,dense ≤ ε/2 for any θ ∈ Θ0(p, n).



IEEE TRANSACTIONS ON INFORMATION THEORY 20

Alternative term. For any θ ∈ Θ(p, n, s, ρ), there exists some t0 ∈ [n], such that the mean change happens at time t0, with
t0(n−t0)

n ∥µ1 − µ2∥2 ≥ ρ2. We may assume without loss of generality that t0 ≤ n/2. By the definition of T , there exists a
unique t̃ ∈ T such that t0/2 < t̃ ≤ t0. Note that then we can write

Yt̃ =

√
t̃

2
(µ1 − µ2) +

∑t̃
i=1(Xi − µ1)−

∑t̃
i=1(Xn+1−i − µ2)√

2t̃
=: δ + Y ′

t̃ , (43)

where ∥δ∥22 ≥ t0∥µ1 − µ2∥22/4 ≥ ρ2/4. Note also that for all j ∈ [p], we have Eθ[Y ′
t̃
(j)] = 0 and E[(Y ′

t̃
(j))2] = 1. By

Proposition 29(b) and Lemma 36(a), we have E[(Y ′
t̃
(j))4] ≤ C3 for some constant C3 > 0, depending only on α and K.

When ρ2 ≥ 8r ≥ 8C2

(√
p log log(8n) + log log(8n)

)
, we have by Chebyshev’s inequality that

Eθ(1− ϕG,dense) ≤ Pθ
(
max
t∈T

p∑
j=1

Yt(j)
2 − p ≤ ρ2/8

)
≤ Pθ

( p∑
j=1

(
Yt̃(j)

2 − δ(j)2 − 1
)
≤ −∥δ∥22/2

)

≤
4
∑p
j=1 Varθ(Yt̃(j)

2)

∥δ∥42
=

4
∑p
j=1 Varθ

(
Y ′
t̃
(j)2 + 2δ(j)Y ′

t̃
(j)
)

∥δ∥42

≤
4
∑p
j=1

{
2Varθ(Y

′
t̃
(j)2) + 8δ(j)2Varθ(Y

′
t̃
(j))

}
∥δ∥42

≤
∑p
j=1

{
8Eθ[Y ′

t̃
(j)4] + 32δ(j)2

}
∥δ∥42

≤ 8C3p+ 32∥δ∥22
∥δ∥42

≤ 128

(
C3p

ρ4
+

1

ρ2

)
≤ 2C3

C2
2 log log(8n)

+
16

C2

√
p log log(8n)

, (44)

where we have used the fact that Var(X + Y ) ≤ 2(Var(X) + Var(Y )) in the fourth inequality. Therefore, by having C2 >
max

{
64/ε,

√
8C3/ε

}
, we are guaranteed that Eθ(1− ϕG,dense) ≤ ε/2 and the desired result follows.

2) Proof of Theorem 2: Null term. For any θ ∈ Θ0(p, n), we have by a union bound that

EθϕG,sparse ≤ Pθ(A1,a > r1) +
∑

t∈T \{1}

Pθ(At,a > r). (45)

We first control the second term in (45). Recall the definition of Yt,1 and Yt,2 from (11) and denote Jt,a := {j ∈ [p] :
|Yt,2(j)| ≥ a} for t ∈ T and a ≥ 0. Note that Jt,a is a random set. Then,∑

t∈T \{1}

Pθ(At,a > r) ≤
∑

t∈T \{1}

Pθ

( ∑
j∈Jt,a

(
Y 2
t,1(j)− 1

)
> r

)

=
∑

t∈T \{1}

Eθ

[
Pθ

( ∑
j∈Jt,a

(
Y 2
t,1(j)− 1

)
> r

∣∣∣∣∣ Jt,a
)]

=
∑

t∈T \{1}

∑
J⊆[p]

{
Pθ

(∑
j∈J

(
Y 2
t,1(j)− 1

)
> r

)
Pθ(Jt,a = J)

}

≤
∑

t∈T \{1}

Pθ(|Jt,a| > s) +
∑

t∈T \{1}

sup
J⊆[p]:|J|≤s

Pθ

(∑
j∈J

(
Y 2
t,1(j)− 1

)
> r

)
, (46)

where the third line follows from the independence of Yt,1 and Yt,2. We now control the two terms in (46) respectively. Using
Proposition 31 with ui = t−1/2 for i = 1, . . . , t/2 and ui = −t−1/2 for i = t/2 + 1, . . . , t, we obtain that for any t ∈ T ,
j ∈ [p] and x ≥ 0

Pθ(|Yt,2(j)| ≥ x) ≤ exp

{
1−min

{(
x

C1

)2

,

(
x

C1∥u∥β(α)

)α}}
,

for some constant C1 ≥ 1 depending only on α and K. For α ≤ 1, we have ∥u∥β(α) = ∥u∥∞ = t−1/2 and for 1 < α ≤ 2,
we have ∥u∥β(α) = ∥u∥α/(α−1) = t1/2−1/α. Thus

qt,a := Pθ(|Yt,2(j)| ≥ a) ≤ exp

{
1−min

{(
a

C1

)2

,

(
a

C1t(−
1
2 )∨( 1

2−
1
α )

)α}}
. (47)

For 0 < α < 2, by a binomial tail bound, equation (2.1) in Theorem 1 of [46], we have

Pθ(|Jt,a| > s) ≤
(
qt,a
s/p

)s(
1− qt,a
1− s/p

)p−s
=

(
pqt,a
s

)s(
1 +

s− pqt,a
p− s

)p−s
≤
(
pqt,a
s

)s
es−pqt,a ≤

(
epqt,a
s

)s
. (48)
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Combining this with (47), we have∑
t∈T \{1}

Pθ(|Jt,a| > s) ≤
∑

t∈T \{1}

(
epqt,a
s

)s

≤ log2(n)

(
2e2p

s

)s
exp

{
−sa

2

C2
1

}
+

(
2e2p

s

)s ∑
t∈T \{1}

exp

{
−s

(
a

2α
α∧(2−α) t

C
2α

α∧(2−α)

1

)α∧(2−α)
2

}

≤ log2(n)

(
2e2p

s

)s
exp

{
−sa

2

C2
1

}
+ 2

(
2e2p

s

)s
exp

{
−sa

α

Cα1

}
, (49)

provided that a ≥ C1

(
2

α∧(2−α)
2 − 1

)−1/α
, where we have used Lemma 35 in the last inequality. In fact, for α = 2, by (47),

the final bound in (49) remains valid for all a ≥ 0. Now, the first term in the final bound above can be bounded by ε/16 when

a ≥ C1s
−1/2 log1/2(16ε−1 log2(n)) + C1 log

1/2(2e2p/s),

and the second term can be bounded by ε/16 when

a ≥ C1s
−1/α log1/α(32ε−1) + C1 log

1/α(2e2p/s).

Thus, as long as we choose a to satisfy

a ≥ C2

(
log1/α(ep/s) + s−1/2 log1/2(ε−1 log(8n)) + s−1/α log1/α(eε−1)

)
for some large enough C2 > 0, depending only on α and K, we are guaranteed that∑

t∈T \{1}

Pθ(|Jt,a| > s) ≤ ε/8. (50)

We now begin to bound the second term in (46). By replacing p with |J | in (41), we have

Pθ

(∑
j∈J

(
Y 2
t,1(j)− 1

)
> r

)
≤ exp

{
1−

(
r

C3

√
|J |

)2
}

+ exp

{
1− r

C3

}
+ exp

{
1−

(
r
√
t

C3

) 2α
2+α∧ 2

3

}

+ exp

{
1−

(
rt

C3

)α
2 ∧ 1

2

}
,

where C3 > 0 is some constant depending only on α and K from Proposition 32. Then, by the same technique as used in (42)
in the proof of Theorem 1 (applying union bounds to the first two terms, and using Lemma 35 for the last two terms), we

obtain that for all r ≥ C3

{(
2

α
2+α∧ 1

3 − 1
)−( 2+α

α ∨3
)
∨
(
2

α
2 ∧ 1

2 − 1
)−( 2

α∨2
)}

∑
t∈T \{1}

sup
J⊆[p]:|J|≤s

Pθ

(∑
j∈J

(
Y 2
t,1(j)− 1

)
> r

)

≤
∑

t∈T \{1}

{
exp

{
1−

(
r

C3
√
s

)2
}

+ exp

{
1− r

C3

}
+ exp

{
1−

(
r
√
t

C3

) 2α
2+α∧ 2

3

}

+ exp

{
1−

(
rt

C3

)α
2 ∧ 1

2

}}

≤ e log2(n) exp

{
−
(

r

C3
√
s

)2
}

+ e log2(n) exp

{
− r

C3

}
+

∑
t∈T \{1}

exp

{
1−

(
r
√
t

C3

) 2α
2+α∧ 2

3

}

+
∑

t∈T \{1}

exp

{
1−

(
rt

C3

)α
2 ∧ 1

2

}

≤ e log2(n) exp

{
−
(

r

C3
√
s

)2
}

+ e log2(n) exp

{
− r

C3

}
+ 2e exp

{
−
(
r

C3

) 2α
2+α∧ 2

3

}

+ 2e exp

{
−
(
r

C3

)α
2 ∧ 1

2

}
. (51)
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Thus, when

r ≥
{
C3

√
s log(32eε−1 log2(n))

}
∨
{
C3 log(32eε

−1 log2(n))

}
∨
{
C3 log

2+α
2α ∨ 3

2 (64eε−1)

}
∨
{
C1 log

2
α∨2(64eε−1)

}
,

each of the four terms in (51) can be upper bounded by ε/32. Equivalently, when

r ≥ C4

(√
s log(ε−1 log(8n)) + log(ε−1 log(8n)) + log

2
α∨2(eε−1)

)
,

for some constant C4 > 0, depending only on α and K, we are guaranteed∑
t∈T \{1}

sup
J⊆[p]:|J|≤s

Pθ

(∑
j∈J

(
Y 2
t,1(j)− 1

)
> r

)
≤ ε/8. (52)

Finally, for the first term in (45), by Proposition 34(a), whenever r1 ≥ C ′
4s log

2/α(ep/s) for some sufficiently large C ′
4 > 0,

depending on α,K and ε, we have
Pθ(A1,a > r1) ≤ ε/4. (53)

By combining (45), (46), (50), (52) and (53), we conclude that EθϕG,sparse ≤ ε/2 for all θ ∈ Θ0(p, n).

Alternative term. We use the same argument as at the beginning of the alternative part of the proof of Theorem 1. Recall
that there exists a unique t̃ ∈ T such that t0/2 < t̃ ≤ t0. We first consider the case t0 ≥ 2. This implies t̃ ≥ 2. Now, similar
to (43), we can write

Yt̃,1 =

√
t̃

2
(µ1 − µ2) +

∑t̃/2
i=1(X2i−1 − µ1)−

∑t̃/2
i=1(Xn−2i+1 − µ2)√

t̃
=: δ + Y ′

t̃,1,

Yt̃,2 =

√
t̃

2
(µ1 − µ2) +

∑t̃/2
i=1(X2i − µ1)−

∑t̃/2
i=1(Xn−2i+2 − µ2)√
t̃

=: δ + Y ′
t̃,2.

The quantity δ :=
√
t̃(µ1 − µ2)/2 satisfies ∥δ∥22 ≥ ρ2/8. Denote Sδ := {j ∈ [p] : δ(j) ̸= 0} and Hδ,a := {j ∈ [p] :

|δ(j)| ≥ 2a}. Note that these two sets are deterministic, while Jt̃,a = {j ∈ [p] : |Yt̃,2(j)| ≥ a} is random. Then, when
ρ2 ≥ 192(r + 2s) log(8/ε), we have

Eθ(1− ϕG,sparse) ≤ Pθ
( ∑
j∈Jt̃,a

(
Y 2
t̃,1(j)− 1

)
≤ r

)

= Pθ
( ∑
j∈Jt̃,a∩Hc

δ,a

(
Y 2
t̃,1(j)− 1

)
+

∑
j∈Jt̃,a∩Hδ,a

(
Y 2
t̃,1(j)− 1

)
≤ r

)

≤ Pθ
(
|Jt̃,a| > 2s

)
+ Pθ

( ∑
j∈Jt̃,a∩Hδ,a

(
Y 2
t̃,1(j)− 1

)
≤ r + 2s

)

≤ Pθ
(
|Jt̃,a| > 2s

)
+ Pθ

( ∑
j∈Jt̃,a∩Hδ,a

δ(j)2 <
∥δ∥22

12 log(8/ε)

)

+ Pθ
( ∑
j∈Jt̃,a∩Hδ,a

(
Y 2
t̃,1(j)− δ(j)2 − 1

)
≤ − ∥δ∥22

24 log(8/ε)

)
. (54)

We now control the three terms in (54) respectively. By (50), we have

Pθ
(
|Jt̃,a| > 2s

)
≤ Pθ

(
|Jt̃,a ∩ Scδ | > s

)
≤ ε/8. (55)

For the second term, we observe that for all j ∈ Hδ,a

Pθ(j /∈ Jt̃,a) = Pθ(|Yt̃,2(j)| < a) = Pθ(|δ(j) + Y ′
t̃,2(j)| < a) ≤ Pθ(|Y ′

t̃,2(j)| > |δ(j)| − a)

≤ exp
{
1−

(
(|δ(j)| − a)/C1

)α} ≤ 1

256 log(8/ε)
, (56)

where the last two inequalities follow from (47) and the choice a ≥ C1 log
1/α(700 log(8/ε)). Consequently,∑

j∈Hδ,a

Varθ
(
δ(j)21{j∈Jt̃,a}

)
≤

∑
j∈Hδ,a

δ(j)4Pθ(j /∈ Jt̃,a) ≤
∑p
j=1 δ(j)

4

256 log(8/ε)
≤ ∥δ∥42

256 log(8/ε)
. (57)
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Moreover, when ρ2 ≥ 64a2s, we obtain ∑
j∈Hδ,a

δ(j)2 ≥ ∥δ∥22 − s(2a)2 ≥ ∥δ∥22/2. (58)

We first consider the case ∥δ∥2 ≥
√
12 log(8/ε)∥δ∥∞. Then, by combining (56), (57), (58) and Bernstein’s inequality, we

have

Pθ
( ∑
j∈Jt̃,a∩Hδ,a

δ(j)2 < ∥δ∥22/8
)

= Pθ
( ∑
j∈Hδ,a

δ(j)21{j∈Jt̃,a} < ∥δ∥22/8
)

≤ Pθ
( ∑
j∈Hδ,a

δ(j)2
(
1{j∈Jt̃,a} − Pθ(j ∈ Jt̃,a)

)
< −∥δ∥22/8

)

≤ exp

{
− ∥δ∥42/64
2
∑
j∈Hδ,a

Varθ
(
δ(j)21{j∈Jt̃,a}

)
+ ∥δ∥2∞∥δ∥22/12

}

≤ max

{
exp{− log(8/ε)}, exp

{
− ∥δ∥22
12∥δ∥2∞

}}
≤ ε/8. (59)

If instead ∥δ∥∞ ≤ ∥δ∥2 <
√

12 log(8/ε)∥δ∥∞, we assume that |δ(j∗)| = ∥δ∥∞ for some j∗ ∈ Hδ,a. Note that when
ρ2 ≥ 384C2

1 log
α+2
α (8e/ε), we have |δ(j∗)| ≥ 2C1 log

1/α(8e/ε) and thus

Pθ
( ∑
j∈Jt̃,a∩Hδ,a

δ(j)2 <
∥δ∥22

12 log(8/ε)

)
≤ Pθ

(
δ(j∗)21{j∗∈Jt̃,a} <

∥δ∥22
12 log(8/ε)

)
≤ Pθ(|Yt̃,2(j∗)| < a) ≤ exp{1− (|δ(j∗)|/(2C1))

α} ≤ ε/8. (60)

For the third and final term in (54), we have by Chebyshev’s inequality that

Pθ
( ∑
j∈Jt̃,a∩Hδ,a

(
Y 2
t̃,1(j)− δ(j)2 − 1

)
≤ − ∥δ∥22

24 log(8/ε)

)

≤

∑
j∈Hδ,a

Varθ

((
Y 2
t̃,1
(j)− δ(j)2 − 1

)
1{|Yt̃,2(j)|≥a}

)
∥δ∥42/(576 log

2(8/ε))
≤
∑
j∈Hδ,a

Varθ
(
Y 2
t̃,1
(j)
)

∥δ∥42/(576 log
2(8/ε))

≤ C5 log
2(8/ε)

(
s

ρ4
+

1

ρ2

)
, (61)

where C5 ≥ 1 is a constant depending on α and K and the penultimate inequality follows from a similar argument to (44).
Hence, when

ρ2 ≥ C5ε
−1 max

{
192(r + 2s) log(8/ε), 64a2s, 384C2

1 log
α+2
α (8e/ε)

}
,

we have by combining (54), (55), (59), (60) and (61) that

Eθ(1− ϕG,sparse) ≤ ε/4 + C5 log
2(8/ε)

(
s

ρ4
+

1

ρ2

)
≤ ε/2.

Finally, We consider the case that the mean change happens at t0 = 1 instead. Recall that in this case we have t̃ = 1. (54)
remains true when ρ2 ≥ 192(r1 + 2s) log(8/ε) if we redefine Jt̃=1,a := {j ∈ [p] : |Y1(j)| ≥ a}. All three terms in (54) can
be controlled in the same way as when t0 ≥ 2 and this completes the proof.

3) Proof of Theorem 4: We first prove the result for α ≥ 4.
Null term. For any θ ∈ Θ0(p, n), we have EθZt,g(j) = 0 and VarθZt,g(j) = Gt/t for every t ∈ T , g ∈ [Gt] and j ∈ [p].
Furthermore, from the class assumption E|Ei(j)|α ≤ Kα, for all i ∈ [n] and j ∈ [p] and Jensen’s inequality, we deduce
EEi(j)4 ≤ K4. We thus obtain, for all i ≤ n/2 and j ∈ [p]

EθZ4
i (j) = Eθ

[
Xi(j)−Xn−i(j)√

2

]4
=

Eθ
[
Ei(j)− En−i(j)

]4
4

≤ K4 + 3

2
=: C1. (62)

Then, by Chebyshev’s inequality (or, alternatively, Lemma 37) and Lemma 36(a), with rt = C2
√
pGt, we have for all t ∈ T

and g ∈ [Gt] that

Pθ
(
t

p∑
j=1

Vt,g(j) > rt

)
= Pθ

( p∑
j=1

(
Z

2

t,g(j)−
Gt
t

)
>
C2

√
pGt

t

)
≤
t2
∑p
j=1 EθZ

4

t,g(j)

C2
2pG

2
t
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≤ 3pt2C1(Gt/t)
2

C2
2pG

2
t

≤ 3C1

C2
2

≤ ε/36, (63)

where C2 is chosen to satisfies C2 ≥
√
108C1ε−1. We denote

Bt :=
{
g ∈ [Gt] : t

p∑
j=1

Vt,g(j) > rt

}
.

By (63) and the multiplicative Chernoff bound, e.g. Corollary 4.9 of [47], we have for t ∈ T

Pθ(AMoM
t > rt) ≤ Pθ(|Bt| ≥ Gt/2) = Pθ

(
|Bt| ≥

εGt
36

(
1 +

(18
ε

− 1
)))

≤ exp

{
−εGt

36

(
18

ε
log
(18
ε

)
− 18

ε
+ 1

)}
≤ exp

{
−Gt

2
log
(
6/ε
)}
. (64)

Thus, by (63), (64), the choices of Gt and ∆ in (18) and a union bound, we conclude that

EθϕP,dense ≤ Pθ
( p∑
j=1

Vt=1,1(j) > rt=1

)
+

∑
t∈T : 2≤t≤∆

Pθ
(
AMoM
t > rt

)
+

∑
t∈T : t>∆

Pθ
(
AMoM
t > rt

)
≤ ε/36 +

∑
t∈T : 2≤t≤∆

(6/ε)−t/2 +
∑

t∈T : t>∆

(6/ε)−∆/2

≤ ε/36 +
(6/ε)−1

1− (6/ε)−1
+ log2(n/2)(6/ε)

−∆/2 ≤ ε/36 + ε/5 + ε/5 < ε/2, (65)

for all θ ∈ Θ0(p, n).

Alternative term. We again follow the argument in the first paragraph of the alternative term part of the proof of Theorem 1.
In particular, recall that there exists a unique t̃ ∈ T such that t0/2 < t̃ ≤ t0, where t0 (without loss of generality t0 ≤ n/2)
is the true mean change location. For all i ≤ n/2, we denote

Z ′
i := Zi −

µ1 − µ2√
2

=
(Xi − µ1)− (Xn+1−i − µ2)√

2
,

and correspondingly Z
′
t̃,g := Z t̃,g − (µ1 − µ2)/

√
2, for g ∈ [Gt̃]. It follows from the null term part of the proof that

EθZ
′
t̃,g(j) = 0, VarθZ

′
t̃,g(j) = Gt̃/t̃ and Eθ(Z ′

i(j))
4 ≤ C1, where C1 is as in (62). When ρ2 ≥ 16C2

√
p∆, we have

2t̃∥µ1 − µ2∥2 ≥ t0(n− t0)

n
∥µ1 − µ2∥2 ≥ ρ2 ≥ 16C2

√
pGt̃ = 16rt̃,

since Gt̃ ≤ ∆. Thus, for all g ∈ [Gt̃], we have

Pθ
(
t̃

p∑
j=1

Vt̃,g(j) ≤ rt̃

)
= Pθ

(
p∑
j=1

((
Z

′
t̃,g(j) +

µ1(j)− µ2(j)√
2

)2

− Gt̃
t̃

)
≤ rt̃

t̃

)

= Pθ

(
p∑
j=1

((
Z

′
t̃,g(j)

)2 − Gt̃
t̃

+
√
2
(
µ1(j)− µ2(j)

)
Z

′
t̃,g(j)

)
≤ rt̃

t̃
− ∥µ1 − µ2∥22

2

)

≤ Pθ

(
p∑
j=1

((
Z

′
t̃,g(j)

)2 − Gt̃
t̃

+
√
2
(
µ1(j)− µ2(j)

)
Z

′
t̃,g(j)

)
≤ − ρ2

16t̃
− ∥µ1 − µ2∥22

4

)
. (66)

By Chebyshev’s inequality and Lemma 36(a), we obtain

Pθ
( p∑
j=1

((
Z

′
t̃,g(j)

)2 −Gt̃/t̃
)
≤ − ρ2

16t̃

)
≤

256(t̃)2
∑p
j=1 Eθ

(
Z

′
t̃,g(j)

)4
ρ4

≤
768C1pG

2
t̃

ρ4
, (67)

and

Pθ
( p∑
j=1

√
2
(
µ1(j)− µ2(j)

)
Z

′
t̃,g(j) ≤ −∥µ1 − µ2∥22

4

)
≤ 32Gt̃∥µ1 − µ2∥22/t̃

∥µ1 − µ2∥42
≤ 64Gt̃

ρ2
.

Combining these with (66), as long as

ρ2 ≥ max

{
16C2

√
p∆, 96

√
2C4

ε

√
p∆,

1536∆

ε

}
,
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we are guaranteed

Pθ
(
t̃

p∑
j=1

Vt̃,g(j) ≤ rt̃

)
≤ ε/12.

If t̃ = 1, then Gt̃ = 1 and we immediately have

Eθ(1− ϕP,dense) ≤ Pθ
(
AMoM
t̃ ≤ rt̃

)
= Pθ

(
t̃

p∑
j=1

Vt̃,1(j) ≤ rt̃

)
≤ ε/12.

If t̃ ≥ 2, then Gt̃ ≥ 2 and we use the same binomial tail bound argument as in (64) to conclude that

Eθ(1− ϕP,dense) ≤ Pθ
(
AMoM
t̃ ≤ rt̃

)
≤ exp

{
−εGt̃

12

(
6

ε
log
(6
ε

)
− 6

ε
+ 1

)}
≤
(2
ε

)−1

.

This completes the proof for α ≥ 4. We now consider the case α < 4. The proof is similar to above and we essentially replace
Chebyshev’s inequality wherever used by Lemma 37. We only highlight the difference for brevity.
Null term. Note that for all t ∈ T and g ∈ [Gt], using Lemma 37 with k = α/2 < 2 and L = t/Gt, we have with
rt = C2p

2/αGt that

Pθ
(
t

p∑
j=1

Vt,g(j) > rt

)
= Pθ

(
t

Gt

p∑
j=1

(
Z

2

t,g(j)−
Gt
t

)
> C2p

2/α

)
≤ ε

36
, (68)

for C2 ≥ Cα/2(36/ε)
2/α, where Cα/2 > 0 is the constant depending on α and K from Lemma 37. By substituting (63)

with (68) and following the rest of the argument in the above proof, we prove that EθϕP,dense ≤ ε/2 for all θ ∈ Θ0(p, n).

Alternative term. For all g ∈ [Gt̃], again using Lemma 37 with k = α/2 < 2 and L = t̃/Gt̃, we have

Pθ
( p∑
j=1

((
Z

′
t̃,g(j)

)2 −Gt̃/t̃
)
≤ − ρ2

16t̃

)
= Pθ

(
t̃

Gt̃

p∑
j=1

((
Z

′
t̃,g(j)

)2 −Gt̃/t̃
)
≤ − ρ2

16Gt̃

)
≤ ε

24
, (69)

for ρ2 ≥ 24(2+α)/αCα/2ε
−2/αp2/α∆, where Cα/2 is, as above, a constant depending only on α and K. By substituting (67)

with (69) and following the rest of argument in the above proof, we prove that as long as

ρ2 ≥ max

{
16C2p

2/α∆, 24(2+α)/αCα/2ε
−2/αp2/α∆,

1536∆

ε

}
,

we can control Eθ(1− ϕP,dense) ≤ ε/2.
4) Proof of Proposition 7: Null term. For any θ ∈ Θ0(p, n), we have by a union bound that

EθϕMoM
P,sparse ≤ Pθ(A1,a > r1) +

∑
t∈T \{1}

Pθ
(
AMoM
t,a > rt

)
. (70)

We first control the second term. Recall that Jt,a = {j ∈ [p] : |Yt,2(j)| ≥ a} for t ∈ T \ {1}. For J ⊆ [p], we denote

AMoM
t,∗,J :=

t

2
·median

{∑
j∈J

(
Z

2

t,g,1(j)−
2Gt
t

)
: g ∈ [Gt]

}
.

Note that AMoM
t,a = AMoM

t,∗,Jt,a
. Using the same technique as (46) in the proof of Theorem 2, we have∑

t∈T \{1}

Pθ(AMoM
t,a > rt) ≤

∑
t∈T \{1}

Pθ(|Jt,a| > s) +
∑

t∈T \{1}

sup
J⊆[p]:|J|≤s

Pθ(AMoM
t,∗,J > rt), (71)

where s is the sparsity. From the assumption that E|Ei(j)|α ≤ Kα, for all i ∈ [n] and j ∈ [p] and Jensen’s inequality, we
deduce that

Eθ|Zi(j)|α =
Eθ
∣∣Ei(j)− En−i(j)

∣∣α
2α/2

≤
Eθ
(
|Ei(j)|+ |En−i(j)|

)α
2α/2

≤ 2α/2Kα.

Then, by Fuk–Nagaev inequality (Proposition 33), we have

qt,a = Pθ(|Yt,2(j)| ≥ a) ≤ 2

(
(α+ 2)(Kα2α/2t/2)1/α

αa
√
t/2

)α
+ 2 exp

{
− 2a2

(α+ 2)2eα

}
≤ Kα

(a/3)αtα/2−1
+ exp

{
1− a2

2α2eα

}
, (72)
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where we have used α ≥ 4 in the last inequality. Similar to (48) and (49), by a binomial tail bound, we have∑
t∈T \{1}

Pθ(|Jt,a| > s) ≤
∑

t∈T \{1}

(
epqt,a
s

)s
≤
(

2epKα

s(a/3)α

)s
+ log2(n)

(
2e2p

s

)s
exp

{
− sa2

2α2eα

}
. (73)

Thus, as long as we choose a to satisfy

a ≥ C1

(
ε−1(p/s)1/α + s−1/2 log1/2(ε−1 log(8n))

)
(74)

for some large enough C1 > 0, depending only on α and K, we are guaranteed that∑
t∈T \{1}

Pθ(|Jt,a| > s) ≤ ε

8
.

Furthermore, By setting rt = C2
√
sGt with a sufficently large C2 > 0 and ∆ = 24+⌈log2 log log(8n)⌉ and by following the

argument from (63) to (65), we can upper bound the second term in (71) at ε/8 as well. Finally, to control the first term
in (70), by Proposition 34(b), whenever r1 ≥ C ′

1s(p/s)
2/α for sufficiently large C ′

1 > 0, depending on α,K and ε, we have
Pθ(A1,a > r1) ≤ ε/4. Hence, we conclude that EθϕMoM

P,sparse ≤ ε/2 for all θ ∈ Θ0(p, n).

Alternative term. Recall the definitions of δ, Sδ and Hδ,a from the alternative term part of the proof of Theorem 2:

δ =

√
t̃

2
(µ1 − µ2), Sδ = {j ∈ [p] : δ(j) ̸= 0}, Hδ,a = {j ∈ [p] : |δ(j)| ≥ 2a},

and the notation Z
′
t̃,g := Z t̃,g − (µ1 − µ2)/

√
2, for g ∈ [Gt̃] introduced at the start of the alternative term part of the proof of

Theorem 4. We first consider the case t0 ≥ 2, which implies t̃ ≥ 2. For J ⊆ [p], we further denote

AMoM′

t,∗,J =
t

2
·median

{∑
j∈J

(
Z

2

t,g,1(j)−
(µ1(j)− µ2(j))

2

2
− 2Gt

t

)
: g ∈ [Gt]

}
.

Observe that for g ∈ [Gt̃] ∑
j∈Jt̃,a∩Hδ,a

(
Z

2

t̃,g,1(j)−
(µ1(j)− µ2(j))

2

2
− 2Gt̃

t̃

)
−
∑
j∈Jt̃,a

Vt̃,g,a(j)

= −

∑
j∈Jt̃,a∩Hδ,a

(µ1(j)− µ2(j))
2

2
+

∑
j∈Jt̃,a∩Hδ,a

Vt̃,g,a(j)−
∑
j∈Jt̃,a

Vt̃,g,a(j)

≤ −

∑
j∈Jt̃,a∩Hδ,a

(µ1(j)− µ2(j))
2

2
+

2Gt̃|Jt̃,a|
t̃

.

Then, on the event {|Jt̃,a| ≤ 2s} ∩
{∑

j∈Jt̃,a∩Hδ,a
δ(j)2 ≥ ∥δ∥2

2

12 log(8/ε)

}
, by Lemma 38, we deduce

AMoM′

t̃,∗,Jt̃,a∩Hδ,a
≤ AMoM

t̃,∗,Jt̃,a
− ∥δ∥22

12 log(8/ε)
+ 2sGt̃,

and consequently, when ρ2 ≥ 192C2s∆ log(8/ε), we have, with C2 ≥ 2, that

∥δ∥22
24 log(8/ε)

≥ C2s∆ ≥ max
t∈T \{1}

{rt + 2sGt},

where the first inequality is due to ∥δ∥22 ≥ ρ2/8 and the second inequality is due to the choice of Gt = (t ∧∆)/2. Hence

Eθ(1− ϕMoM
P,sparse) ≤ Pθ

(
AMoM
t̃,a ≤ rt̃

)
= Pθ

(
AMoM
t̃,∗,Jt̃,a

≤ rt̃
)

≤ Pθ
(
|Jt̃,a| > 2s

)
+ Pθ

( ∑
j∈Jt̃,a∩Hδ,a

δ(j)2 <
∥δ∥22

12 log(8/ε)

)
+ Pθ

(
AMoM′

t̃,∗,Jt̃,a∩Hδ,a
≤ − ∥δ∥22

24 log(8/ε)

)
. (75)

We control the three terms respectively. The arguments below mirror those made in the proof of Theorem 2 between (55)
and (61) and we will omit details in places where the same reasoning is used in the last proof. First, it remains true that

Pθ
(
|Jt̃,a| > 2s

)
≤ ε/8.

By (72) and the choice a ≥ {3K(512 log(8/ε))1/α} ∨ {2αeα/2 log1/2(700 log(8/ε))}, we have for all j ∈ Hδ,a that

Pθ(j /∈ Jt̃,a) = Pθ(|Yt̃,2(j)| < a) ≤ Kα(
(|δ(j)| − a)/3

)α + exp

{
1− (|δ(j)| − a)2

2α2eα

}
≤ 1

256 log(8/ε)
,
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and thus again ∑
j∈Hδ,a

Varθ
(
δ(j)21{j∈Jt̃,a}

)
≤ ∥δ∥42

256 log(8/ε)
.

At this point, we consider

ρ2 ≥ C3 max
{
192C2s∆ log2(8/ε), 64a2s, 3456K2(16/ε)2/α log(8/ε), 768α2eα log2(16e/ε)

}
,

with some C3 ≥ 1. Then, by repeating the argument in (58), (59) and (60), we obtain

Pθ
( ∑
j∈Jt̃,a∩Hδ,a

δ(j)2 <
∥δ∥22

12 log(8/ε)

)
≤ ε/8.

We now bound the third and final term in (75). By Chebyshev’s inequality, we deduce that for g ∈ [Gt]

P

(
t̃

2

∑
j∈Jt̃,a∩Hδ,a

(
Z

2

t̃,g,1(j)−
(µ1(j)− µ2(j))

2

2
− 2Gt̃

t̃

)
≤ − ∥δ∥22

24 log(8/ε)

)

≤

∑
j∈Hδ,a

Varθ

(
Z

2

t̃,g,1(j)
)

∥δ∥42/(144t̃2 log
2(8/ε))

≤

∑
j∈Hδ,a

2t̃2Varθ

((
Z

′
t̃,g,1(j)

)2)
+
∑
j∈Hδ,a

16t̃δ(j)2Varθ

(
Z

′
t̃,g,1(j)

)
∥δ∥42/(144 log

2(8/ε))

≤ C4 log
2(8/ε)

(
s∆2

ρ4
+

∆

ρ2

)
≤ ε/48,

when C3 ≥ 1 is sufficiently large. The third inequality above follows from (67) and C4 is a constant depending only on α
and K. If t̃ = 2, then Gt̃ = 1 and we immediately have

Pθ
(
AMoM′

t̃,∗,Jt̃,a∩Hδ,a
≤ − ∥δ∥22

24 log(8/ε)

)
≤ ε/48.

If t̃ > 2, then Gt̃ ≥ 2 and we again use the binomial tail bound argument as in (64) to obtain

Pθ
(
AMoM′

t̃,∗,Jt̃,a∩Hδ,a
≤ − ∥δ∥22

24 log(8/ε)

)
≤ exp

{
−εGt̃

48

(
24

ε
log
(24
ε

)
− 24

ε
+ 1

)}
≤ ε

8
.

By (75), we conclude Eθ(1− ϕMoM
P,sparse) ≤ ε/2. Finally, for the case that the mean change happens at t0 = 1 instead, similar

to the last paragraph of the proof of Theorem 2, we can still control the three terms in (75) in the same way respectively when
we redefine Jt̃=1,a := {j ∈ [p] : |Y1(j)| ≥ a} instead.

5) Proof of Theorem 5: We actually prove a more general result. Any mean estimator that satisfies the following condition
can be used in place of µ̂RSM

n,s,η(·) = µ̂RSM
n,s (·; η) introduced in Section III-B while Theorem 5 still holds.

Condition 1. Assume α ≥ 4. Let W1, . . . ,Wn be independent random vectors in Rp, each with mean µW and covariance
matrix Ip. Assume ∥µW ∥0 ≤ s and E|Wi(j) − µW (j)|α ≤ (

√
2K)α for i ∈ [n] and j ∈ [p]. Then there exist constants

C1, C2 ≥ 1, depending only on α and K such that for any given 0 < η < 1, when n ≥ C1

(
s log(ep/s)+ log(1/η)

)
, then with

probability at least 1− η, we have∥∥µ̂RSM
n,s (W1, . . . ,Wn; η)− µW

∥∥
2
≤
√
C2

(√
s log(ep/s)

n
+

√
log(1/η)

n

)
.

In particular, the robust sparse mean estimator that we use from [36] satisfies the condition above as shown in Corollary 113

therein.
In the rest of the proof, we denote T̃1 := {t ∈ T : t ≤ ∆̃1}, T̃2 := {t ∈ T : ∆̃1 < t ≤ ∆̃2} and T̃3 := {t ∈ T : t > ∆̃2}

and recall that Jt,a = {j ∈ [p] : |Yt,2(j)| ≥ a} for t ∈ T \ {1}.

Null term. For θ ∈ Θ0(p, n), we have

EθϕRSM
P,sparse = Pθ(A1,a > r̃1) +

∑
t∈T̃1\{1}

Pθ(At,a > r̃t)

+
∑
t∈T̃2

Pθ(ARSM
t > rRSM

t ) +
∑
t∈T̃3

Pθ(ARSM
t > rRSM

t ). (76)

3Note that their result is under the assumption that for each vector v with ∥v∥2 = 1, E(v⊤(W −µW ))α ≤ C[E(v⊤(W −µW ))2]α/2 for some absolute
constant C, which is certainly satisfied by our assumption E|W (j)− µW (j)|α ≤ (

√
2K)α for j ∈ [p] in Condition 1 with C = (

√
2K)α.(Rio09-(1.2))
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For the first term, similar to the proof of Theorem 2, by Proposition 34(b), when r̃1 ≥ C ′
4s(p/s)

2/α, for some large enough
C ′

4 > 0, depending only on α, K and ε, we have Pθ(A1,a > r̃1) ≤ ε/8. To control the second term in (76), we closely follow
the arguments in the null term part of the proof of Theorem 2 and Proposition 7. By (46), we have∑

t∈T̃1\{1}

Pθ(At,a > r̃t) ≤
∑

t∈T̃1\{1}

Pθ(|Jt,a| > s) +
∑

t∈T̃1\{1}

sup
J⊆[p]:|J|≤s

Pθ

(∑
j∈J

(
Y 2
t,1(j)− 1

)
> r̃t

)
. (77)

For the first term on the right hand side, by (73), we obtain∑
t∈T̃1\{1}

Pθ(|Jt,a| > s) ≤
(

2epK

s(a/3)α

)s
+ log2(∆̃1)

(
2e2p

s

)s
exp

{
− sa2

2α2eα

}
.

The choice of a in (21) with a large enough constant C3 > 0 guarantees that
∑
t∈T̃1\{1} Pθ(|Jt,a| > s) ≤ ε/16. For the second

term, we fix J ⊆ [p] with |J | ≤ s. By the same technique as in (63), we obtain

Pθ

(∑
j∈J

(
Y 2
t,1(j)− 1

)
> r̃t

)
≤ ε

16 log2(∆̃1)
,

when r̃t = C4

√
s log ∆̃1, for some large enough C4 > 0, depending only on α, K and ε. Thus, we deduce

∑
t∈T̃1\{1} Pθ(At,a >

r̃t) ≤ ε/8.
Now, we control the third and fourth terms in (76). For t ∈ T̃2 ∪ T̃3, we observe that

C1

(
s log(ep/s) + log(1/ηt)

)
= min(t, ∆̃2) ≤ t.

Since Z1, . . . , Zt are independent and identically distributed random vectors with mean 0 and covariance matrix Ip and satisfy
E|Zi(j)|α ≤ 2α/2Kα for i ∈ [t], j ∈ [p] under the null, by Condition 1, we obtain

Pθ(ARSM
t > rRSM

t ) = Pθ
(
t
∥∥µ̂RSM

t,s,ηt

∥∥2
2
> 2C2

(
s log(ep/s) + log(1/ηt)

))
≤ ηt,

and therefore,∑
t∈T̃2

Pθ(ARSM
t > rRSM

t ) +
∑
t∈T̃3

Pθ(ARSM
t > rRSM

t ) ≤
∑
t∈T̃2

exp

{
s log(ep/s)− t

C1

}
+
∑
t∈T̃3

ε

16 log 2n

≤ 2 exp

{
s log(ep/s)− ∆̃1

C1

}
+
ε log2(n/2)

16 log 2n
< ε/4, (78)

where we use Lemma 35 in the second inequality. Hence, we conclude that EθϕRSM
P,sparse ≤ ε/2 for all θ ∈ Θ0(p, n).

Alternative term. As in all previous proofs of alternative term, we consider the unique t̃ ∈ T , such that t0/2 ≤ t̃ ≤ t0, where
t0(≤ n/2) is the true change point location. When t0 = 1, we simply use the final paragraph of the proof of Proposition 7.
When t0 ≥ 2, we consider separately the two cases t̃ ∈ T̃1\{1} and t̃ ∈ T̃2 ∪ T̃3. When t̃ ∈ T̃1\{1}, the arguments are again
almost the same as those used in the alternative term part of the proof of Proposition 7. We thus omit the details and directly
state the conclusion: as long as

ρ2 ≥ C6 max
{
(r̃1{t ̸=1} + 2s) log2(8/ε), a2s, (1/ε)2/α log(8/ε)

}
,

for some large enough C6 > 0, depending only on α and K, we have Eθ(1−ϕRSM
P,sparse) ≤ ε/2. Note that if ρ2 ≥ C5v

U
P,sparse,

for some large enough C5 > 0, depending only on α, K and ε, then the above condition is satisfied.
If t̃ ∈ T̃2 ∪ T̃3 instead, then Z1, . . . , Zt are independent and identically distributed random vectors with mean (µ1 −µ2)/

√
2

and covariance matrix Ip and satisfy E
∣∣Zi(j) − µ1(j)−µ2(j)√

2

∣∣α ≤ 2α/2K for i ∈ [t], j ∈ [p]. Recall that t̃∥µ1 − µ2∥22 ≥ ρ2/2.
Hence, when ρ2 ≥ 24C2

(
s log(ep/s) + log(16 log(2n)/ε)

)
, we have by Condition 1 that

Eθ(1− ϕRSM
P,sparse) = Pθ(ARSM

t̃,a ≤ rRSM
t̃ ) = Pθ

(
t̃
∥∥µ̂RSM

t̃,s,ηt̃

∥∥2
2
≤ 2C2

(
s log(ep/s) + log(1/ηt̃)

))
≤ Pθ

(√
t̃

∣∣∣∣∥∥∥µ1 − µ2√
2

∥∥∥
2
−
∥∥∥µ̂RSM

t̃,s,ηt̃
− µ1 − µ2√

2

∥∥∥
2

∣∣∣∣ ≤√2C2

(√
s log(ep/s) +

√
log(1/ηt̃)

))
≤ Pθ

(√
t̃
∥∥∥µ̂RSM

t̃,s,ηt̃
− µ1 − µ2√

2

∥∥∥
2
>
√
C2

(√
s log(ep/s) +

√
log(1/ηt̃)

))
≤ ηt̃

≤ exp

{
s log(ep/s)− min(t, ∆̃2)

C1

}
≤ ε

16
,

as desired.
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6) Proof of Corollary 8: We first consider the statistical property of ϕP,sparse. By comparing the two rates vU,MoM
P,sparse and

vUP,sparse, we note that the improvement offered by ϕRSM
P,sparse over ϕMoM

P,sparse only exists when

(p/s)2/α < log log(8n),

since otherwise vU,MoM
P,sparse = vUP,sparse. Combining this with the fact that we are in the sparse regime s < p(α−4)/(2α−4), we

deduce that p < logα−2(log(8n)). The desired result is then an immediate consequence of Theorem 5 and Proposition 7.
Now onto the computational complexity claim. For each t ∈ T , computing the statistics AMoM

t,a and At,a in ϕMoM
P,sparse and

ϕRSM
P,sparse take time polynomial in n and p since they only involve performing basic operations and finding the median of
Gt ≤ 8 log log(8n) quantities. The computationally demanding part lies in computing ARSM

t , or equivalently the robust sparse
mean estimator µ̂RSM

t,s,ηt . Note that we are using this only when p < logα−2(log(8n)). For each fixed t, we claim that the
computation/approximation of µ̂RSM

t,s,ηt can be performed in time that is polynomial in n. We now show this by arguing that
each component below has time complexity that is polynomial in n. In the rest of the proof, we omit the subscripts and adopt
the notation µ̂RSM for clarity.

1) Each evaluation of the function 1DRobust(·) in Algorithm 2 of [36] of t data point requires time of order t log t ≤ n log n
(in order to find the shortest interval).

2) The total number of projection |N 1/2
2s (Sp−1)| can be bounded by |N 1/2

2s (Sp−1)| ≤ (6ep/s)s ≤ (6ep)p ≤ exp(6ep2) ≤
exp(Cα log(n)) = nCα for some constant Cα > 0, depending only on α. Denote

g(µ) := max
u∈N 1/2

2s (Sp−1)

|u⊤µ− 1DRobust({u⊤Zi}ti=1, ηt/(6ep/s)
s)|.

Thus for a fixed µ ∈ Rp, the computational complexity of evaluating g(µ) is polynomial in n.
3) The optimisation problem defining µ̂RSM can be written as

min
µ∈Ls

g(µ).

We solve this by first considering each possible s-sparsity coordinate pattern individually before working out the minimum
among these

(
p
s

)
≤ nCα minima.

4) Fix U ⊆ Rp with |U| = s. We solve the optimisation problem

min
µ∈Rp:µ(j)=0 ∀j∈Uc

g(µ)

by subgradient descent. Denote the optimal value to be g∗,U and the k-th iterate to be µ(k)
U . Note that g(µ) is 1-Lipschitz

and ∂g(µ) ⊆
{
±u : u ∈ N 1/2

2s (Sp−1)
}

. Standard result on the convergence of subgradient descent, e.g. Theorem 3.2.2
of [48], shows that

(
mink∈[K] g

(
µ
(k)
U
))

− g∗,U ≤ υ in K ≍ 1/υ2 steps, where we choose υ =
√
s log(ep/s)t−1. The

computational complexity is again at most polynomial in n. Denote µ̃RSM
U to be the update that attains the best objective

value in K iterations.
Write

µ̃RSM := argmin
µ∈
{
µ̃RSM
U : |U|=s

} g(µ),
as our final estimator (an approximation of µ̂RSM). We have now shown that µ̃RSM can be obtained in time that is polynomial
in n. Finally, we prove that µ̃RSM still satisfies Condition 1. Indeed, following the proof of Lemma 4 and Corollary 12 in [36],
we have

∥µ̃RSM − µZ∥2 ≤ ∥µ̃RSM − µ̂RSM∥2 + ∥µ̂RSM − µZ∥2 ≤ g
(
µ̃RSM

)
+ g
(
µ̂RSM

)
+ g
(
µ̂RSM

)
+ g(µZ)

≤ g
(
µ̂RSM

)
+ υ + 2g

(
µ̂RSM

)
+ g(µZ) ≤ υ + 4g(µZ)

≤
√
C

(√
s log(ep/s)

t
+

√
log(1/ηt)

t

)
,

for some C ≥ 1, where µZ = EZ1.

B. Proof of the adaptation result in Section IV

1) Adaptive testing procedure: We focus on the case when Pe ∈ P⊗
α,K for α > 4. We introduce an adaptive testing procedure

based on these two tests:

ϕP,adaptive := ϕP,dense ∨max
s∈K

ϕP,sparse,s

=

{
ϕP,dense ∨maxs∈K ϕ

MoM
P,sparse,s, if p > logα−2(log(8n)),

ϕP,dense ∨maxs∈K ϕ
RSM
P,sparse,s, if p ≤ logα−2(log(8n)),

(79)
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where the dependence of ϕP,sparse on s is made explicit by writing it as ϕP,sparse,s, and the set K :=
{
1, 2, 4, . . . , 2⌈log2(p)⌉−1

}
is a dyadic grid. Recall that ϕP,dense does not require the knowledge of s, and we keep its original parameter choices as in (18),
with a potentially larger constant C1 in rt:

rt = C1p
(1/2)∨(2/α)Gt, Gt = t ∧∆ and ∆ = 23+⌈log2 log log(8n)⌉. (80)

For ϕMoM
P,sparse,s, we modify the original parameter choices (29) as follows:

as = C2

(
(p/s)1/α + s−1/2 log1/2(log(8n))

)
, rt,s = C3

(
s(p/s)2/α1{t=1} + s3/4Gt1{t>1}

)
,

Gt = (t ∧∆)/2 and ∆ = 24+⌈log2 log log(8n)⌉.
(81)

Comparing with (29), we use the same as (but potentially larger constants) and modify rt,s. Finally, for ϕRSM
P,sparse,s, we modify

its original parameter choices (21) to be:

as = C4

(
(p/s)1/α + s−1/2 log1/2(log ∆̃1,s)

)
, r̃t,s = C5

(
s(p/s)2/α1{t=1} + s3/4

√
log ∆̃11{t>1}

)
,

ηt,s = exp

{
s log(ep/s)− t ∧ ∆̃2

C6

}
, rRSM

t,s = C7(t ∧ ∆̃2,s),

∆̃1,s = C6

(
s log(ep/s) + log(80s/ε)

)
and ∆̃2,s = C6

(
s log(ep/s) + log(80s log(2n)/ε)

)
.

(82)

2) Proof of Theorem 9: We prove the following theorem on the theoretical guarantee of the test ϕP,adaptive, fully constructed
and specified above in Appendix B1. Theorem 9 then follows as an immediate consequence.

Theorem 16. Assume α ≥ 4. For any ε ∈ (0, 1), there exist C1, . . . , C8 > 0 depending only on α, K and ε, such that the test
ϕP,adaptive defined in (79) with its parameters specified in (80), (81) and (82) satisfies

RP(ρ, ϕP,adaptive) ≤ ε,

as long as ρ2 ≥ C8

(
vUP,dense ∧ vUP,sparse

)
.

Proof. This proof is based on the proofs of Theorem 4, Theorem 5 and Proposition 7. For brevity, we only highlight the main
steps and differences.
Null term. By a union bound, (70) and (76), we have

EθϕP,adaptive

≤ EθϕP,dense + Eθ
[
max
s∈K

ϕMoM
P,sparse,s

]
1{p>logα−2(log(8n))} + Eθ

[
max
s∈K

ϕRSM
P,sparse,s

]
1{p≤logα−2(log(8n))}

≤ EθϕP,dense +

(
Pθ
(
max
s∈K

A1,as,s

r1,s
> 1

)
+
∑
s∈K

∑
t∈T \{1}

Pθ
(
AMoM
t,as,s > rt,s

))
1{p>logα−2(log(8n))}

+

(
Pθ
(
max
s∈K

A1,as,s

r̃1,s
> 1

)
+
∑
s∈K

∑
t∈T̃1,s\{1}

Pθ(At,as,s > r̃t,s)

+
∑
s∈K

∑
t∈T̃2,s

Pθ(ARSM
t,s > rRSM

t,s ) +
∑
s∈K

∑
t∈T̃3,s

Pθ(ARSM
t,s > rRSM

t,s )

)
1{p≤logα−2(log(8n))}

≤ EθϕP,dense + Pθ
(
max
s∈K

A1,as,s

r1,s ∧ r̃1,s
> 1

)
+
∑
s∈K

∑
t∈T \{1}

Pθ
(
AMoM
t,as,s > rt,s

)
+
∑
s∈K

∑
t∈T̃1,s\{1}

Pθ(At,as,s > r̃t,s) +
∑
s∈K

( ∑
t∈T̃2,s

Pθ(ARSM
t,s > rRSM

t,s ) +
∑
t∈T̃3,s

Pθ(ARSM
t,s > rRSM

t,s )

)
, (83)

where we denote T̃1,s := {t ∈ T : t ≤ ∆̃1,s}, T̃2,s := {t ∈ T : ∆̃1,s < t ≤ ∆̃2,s} and T̃3,s := {t ∈ T : t > ∆̃2,s}. In the
following, we bound each of the five terms in (83) by ε/10.
Term 1. By closely following the null term part of the proof of Theorem 4, with a sufficiently large constant C1, we deduce,
similar to (65), that

EθϕP,dense ≤ ε/180 +
(32/ε)−1

1− (32/ε)−1
+ log2(n/2)(32/ε)

−∆/2 ≤ ε/180 + ε/31 + ε/31 < ε/10.

Term 2. By having C3 and C5 sufficiently large, by Proposition 34(c), we can control this term at level ε/10.
Term 3. For this, we follow the null term part of the proof of Proposition 7. The key step in that proof was to bound both terms
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in (71). The first term can be controlled via (73). A careful inspection reveals that the condition on a (same as as here) given
in (74) with a possibly larger value of the leading constant can guarantee the control of both terms in (73) at ε/(160s1/2).
Bounding the second term in (71) required the argument from (63) to (65), within which the dimension p was replaced by s.
Our new choice of rt,s = C3s

3/4Gt for t > 1 with a sufficiently large C3 allows us to have ε/(1100s1/2) as the RHS bound
in (63) (dimension being s). Correspondingly, the RHS of (64) now becomes

exp

{
− εGt
1100

√
s

(
550

√
s

ε
log
(550√s

ε

)
− 550

√
s

ε
+ 1

)}
≤ exp

{
−Gt

2
log
(
200

√
s/ε
)}
.

Thus, the second term in (71) can now be bounded instead by

ε

1100
√
s
+

(200
√
s/ε)−1

1− (200
√
s/ε)−1

+ log2(n/2)(200
√
s/ε)−∆/4 ≤ ε

1100
√
s
+

ε

199
√
s
+

ε

199
√
s
<

ε

80
√
s
.

Putting everything together, we conclude that∑
s∈K

∑
t∈T \{1}

Pθ
(
AMoM
t,as,s > rt,s

)
≤
∑
s∈K

ε

40
√
s
<

ε

10
.

Term 4. We follow the null term part of the proof of Theorem 5. More specifically, this term can be split into two terms
according to (77). Similar to the argument made for the second term above, with C4 sufficiently large, the first term in (77)
can be guaranteed to be at most ε/(80s1/2). The second term, with the new choice of r̃t,s and its leading constant C5 being
sufficiently large, can also be bounded above by

ε|T̃1,s\{1}|
80
√
s log2(∆̃1,s)

≤ ε/(80s1/2).

Therefore, we can again control the fourth term at level ε/10.
Term 5. We again follow the null term part of the proof of Theorem 5. By Condition 1 and similar to (78), we can now bound∑

s∈K

( ∑
t∈T̃2,s

Pθ(ARSM
t,s > rRSM

t,s ) +
∑
t∈T̃3,s

Pθ(ARSM
t,s > rRSM

t,s )

)

≤
∑
s∈K

( ∑
t∈T̃2,s

exp

{
s log(ep/s)− t

C6

}
+
∑
t∈T̃3,s

exp

{
s log(ep/s)− ∆̃2,s

C6

})

≤
∑
s∈K

(
2 exp

{
s log(ep/s)− ∆̃1,s

C6

}
+ log2(n/2)

ε

80s log n

)
<
∑
s∈K

ε

20s
≤ ε

10
,

as desired.

Alternative term. First, let s1 satisfy s1(p/s1)2/α+log log(8n) =
√
p log log(8n) and s2 satisfy s2

(
(p/s2)

2/α+log log(8n)
)
=√

p log log(8n). Note that s1 ≥ s2. For θ ∈ Θ(p, n, s, ρ), we consider all four possible (p, s) regimes below.
(1) p ≥ logα−2(log(8n)) and s ≥ s2/2. We have Eθ(1− ϕP,adaptive) ≤ Eθ(1− ϕP,dense). By the alternative term part of the
proof of Theorem 4, we can bound the above quantity by ε/2 as long as ρ2 ≥ C ′√p log log(8n) with a sufficiently large C ′.
We also note that when s2/2 ≤ s < s2, we have

1

2

√
p log log(8n) ≤ s

(
(p/s)2/α + log log(8n)

)
≤ √

p log log(8n).

(2) p ≥ logα−2(log(8n)) and s < s2/2. By the definition of K, there exists an s̃ ∈ K such that s ≤ s̃ < 2s. We have
Eθ(1−ϕP,adaptive) ≤ Eθ(1−ϕMoM

P,sparse,s̃). Now, by carefully inspecting the alternative term part of the proof of Proposition 7,
we can still deduce Eθ(1− ϕMoM

P,sparse,s̃) ≤ ε/2 as long as ρ satisfies

ρ2 ≥ C ′
(
s
(
(p/s)2/α + log log(8n)

))
≥ C ′

2

(
s̃
(
(p/s̃)2/α + log log(8n)

))
≥ C ′′ max

{
log2(8/ε) max

t∈T \{1}
(rt,s̃ + 2s̃Gt), (r1,s̃ + 2s̃) log2(8/ε), a2s̃ s̃

}
, (84)

for sufficiently large C ′ and C ′′, where the final inequality in (84) remains true with our modified choice of rt,s.
(3) p < logα−2(log(8n)) and s ≥ s1/2. We use the same argument as in (1) to obtain the same condition ρ2 ≥
C ′√p log log(8n). Similarly, we also note that when s1/2 ≤ s < s1, we have

1

2

√
p log log(8n) ≤ s(p/s)2/α + log log(8n) ≤ √

p log log(8n).
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(4) p < logα−2(log(8n)) and s < s1/2. Similar to (2), we have Eθ(1 − ϕP,adaptive) ≤ Eθ(1 − ϕRSM
P,sparse,s̃). By carefully

examining the alternative term part of the proof of Theorem 5, we can obtain Eθ(1− ϕRSM
P,sparse,s̃) ≤ ε/2 as long as

ρ2 ≥ C ′(s(p/s)2/α + log log(8n)
)
≥ C ′

2

(
s̃(p/s̃)2/α + log log(8n)

)
≥ C ′′ max

{
(r̃t ̸=1,s̃ + 2s̃) log2(8/ε), (r̃1,s̃ + 2s̃) log2(8/ε), a2s̃ s̃, s̃ log(ep/s̃) + log log(8n)

}
, (85)

for sufficiently large C ′ and C ′′, where the final inequality in (85) remains true with our new choices of as and r̃t,s.
The desired result then follows from Corollary 8 and the first part of its proof.

C. Proofs of lower bound results in Sections II and III

For Q = G⊗
α,K , to prove Theorem 3, we establish the lower bound separately for the sparse and dense regimes. In the sparse

regime s <
√
p log−2/α(ep), we have

s log2/α(ep/s) ≤ √
p =

√
p(log log(8n))ω1 ,

and we shall prove the lower bound s log2/α(ep/s) + log log(8n), as stated in Proposition 17 below. In the dense regime, we
first consider when

√
p log−2/α(ep) ≤ s ≤

√
p log log(8n), we have

s log2/α(ep/s) ≳
√
p =

√
p(log log(8n))ω1 .

When s >
√
p log log(8n), we still have

s log2/α(ep/s) ≥ s ≥
√
p log log(8n).

Thus, in the dense regime, it suffices to prove the lower bound
√
p(log log(8n))ω1 + log log(8n), as stated in Proposition 18

below.
Similarly for Q = P⊗

α,K , to prove Theorem 6, it suffices to establish Proposition 19 for the sparse regime and Proposition 20
for the dense regime.

Proposition 17. For Q = G⊗
α,K with 0 < α ≤ 2 and K ≥ Kα, for some constant Kα > 0 depending only on α. Assume

c ≤ s <
√
p log−2/α(ep), for some absolute constant c ≥ 1. There exists some constant c′ > 0 depending only on α and K,

such that RG(ρ) ≥ 1/2 whenever ρ2 ≤ c′vLG,sparse, where

vLG,sparse := s log2/α(ep/s) + log log(8n).

Proposition 18. For Q = G⊗
α,K with 0 < α ≤ 2 and K ≥ Kα, for some constant Kα > 0 depending only on α. Assume

s ≥ √
p log−2/α(ep) ∨ c, for some absolute constant c ≥ 1. There exists some constant c′ > 0 depending only on α and K,

such that RG(ρ) ≥ 1/2 whenever ρ2 ≤ c′vLG,dense, where

vLG,dense :=
√
p(log log(8n))ω1 + log log(8n)

and ω1 = 1{
s≥

√
p log log(8n)

}.

Proposition 19. For Q = P⊗
α,K with α ≥ 2 and K ≥ Kα, for some constant Kα > 0 depending only on α. Assume

c ≤ s < p
1
2−( 1

α−2∧
1
2 ), for some absolute constant c ≥ 1. There exists some constant c′ > 0 depending only on α and K, such

that RP(ρ) ≥ 1/2 whenever ρ2 ≤ c′vLP,sparse, where

vLP,sparse := s(p/s)2/α + log log(8n).

Proposition 20. For Q = P⊗
α,K with α ≥ 2 and K ≥ Kα, for some constant Kα > 0 depending only on α. Assume

s ≥ p
1
2−( 1

α−2∧
1
2 ) ∨ c, for some absolute constant c ≥ 1. There exists some constant c′ > 0 depending only on α and K, such

that RP(ρ) ≥ 1/2 whenever ρ2 ≤ c′vLP,dense, where

vLP,dense := p(2/α)∨(1/2)(log log(8n))ω2 + log log(8n)

and ω2 = (1/2)1{
s>

√
p log log(8n)

}
∩{α≥4}

.

We now prove all these four lower bound results. Throughout the proof, we use Pθ,Ξ to denote the probability distribution
of X ∈ Rp×n that satisfies X − θ ∼ Ξ, and Eθ,Ξ the corresponding expectation under this distribution. It suffices to prove the
five lower bound rate claims below, as they then immediately imply Propositions 17, 18, 19 and 20.
(i). log log(8n), for G⊗

α,K with 0 < α ≤ 2 and K ≥ 21+2/α and for P⊗
α,K with α > 2 and K ≥

√
α+ 1 or α = 2 and

K ≥ 1;
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(ii).
√
p log log(8n) when s ≥

√
p log log(8n), for G⊗

α,K with 0 < α ≤ 2 and K ≥ 21+2/α and for P⊗
α,K with α > 2 and

K ≥
√
α+ 1 or α = 2 and K ≥ 1;

(iii). p2/α when s ≥ 30, for P⊗
α,K with α > 2 and K ≥

√
2 or α = 2 and K ≥ 1;

(iv). s(p/s)2/α when 30 ≤ s ≤ p
α−4
2α−4 , for P⊗

α,K with α ≥ 4 and K ≥
√
2;

(v). s log2/α(ep/s) when 30 ≤ s ≤ √
p log−2/α(ep), for G⊗

α,K with 0 < α ≤ 2 and K ≥ 21+2/α.

Proof of claim (i). We first consider that each entry of the noise matrix E follows an independent standard normal distribution.
Then for 0 < α ≤ 2, i ∈ [n], j ∈ [p] and x ≥ 21+2/α, we have

E

[
exp

{(
|Ei(j)|
x

)α}]
= E

[
exp

{(
|Ei(j)|
x

)α}
1{|Ei(j)|≥2}

]
+ E

[
exp

{(
|Ei(j)|
x

)α}
1{|Ei(j)|<2}

]

≤ E

[
exp

{(
|Ei(j)|

2

)2}
1{|Ei(j)|≥2}

]
+ exp

{
(2/x)α

}
=

√
2− E

[
exp

{(
|Ei(j)|

2

)2}
1{|Ei(j)|<2}

]
+ exp

{
(2/x)α

}
≤

√
2−

(
1− exp(−2)

)
+ exp

{
(2/x)α

}
< 2,

where the penultimate inequality follows from the standard Gaussian tail bound. Thus, for any K ≥ 21+2/α, we have
∥Ei(j)∥ψα ≤ K. Furthermore, by Jensen’s inequality, we obtain for α > 2

E|Ei(j)|α ≤
{
E|Ei(j)|2⌈α/2⌉

} α/2
⌈α/2⌉

=

{⌈α/2⌉∏
i=1

(2i− 1)

} α/2
⌈α/2⌉

≤
(
2⌈α/2⌉ − 1

)α/2 ≤ (α+ 1)α/2.

Therefore Pe ∈ G⊗
α,K for all 0 < α ≤ 2 and K ≥ 21+α/2 and Pe ∈ P⊗

α,K for all α ≥ 2 and K ≥
√
α+ 1 or α = 2 and K ≥ 1.

For the mean vectors µ1 and µ2 in the definition of Θ(t0)(p, n, s, ρ), we restrict them to be equal in all coordinates except
perhaps the first. Then under this setting, the lower bound log log(8n) of the detection rate is established in Proposition 4.2
of [49]. Note that this lower bound holds for all 1 ≤ s ≤ p.

Proof of claim (ii). When s ≥
√
p log log(8n), we again consider the independent standard normal noise structure. The lower

bound
√
p log log(8n) is shown in Proposition 3 of [2].

We now use a unified approach to establish the three remaining rates. Let ξ and ξ̃ be two independent random variables on
R, whose distributions are to be specified later; let ω̃ be an discrete random variable (independent of ξ, ξ̃), taking values

ω̃ =


+1 w.p. s

4p

(
1 + γ2s

2p

)−1

−1 w.p. s
4p

(
1 + γ2s

2p

)−1

0 otherwise,

(86)

where γ > 0 is also to be specified later; let π̃ := ξ̃ + γω̃. We remark that ω̃ can be viewed as a Rademacher random
variable being multiplied by a Bernoulli random variable. Denote ξ := (ξ(1), . . . , ξ(p))⊤ ∈ Rp, where the coordinates are i.i.d.
copies of ξ and we use similar notations ξ̃, ω̃, π̃. Let ν denote the distribution of γω̃ ∈ Rp, and ν̄ the distribution restricted to
Vs := {v ∈ Rp : s/6 ≤ ∥v∥0 ≤ s}, i.e. ν̄(A) = ν(A∩Vs)

ν(Vs)
for any Borel set A ⊆ Rp. Consequently, the support of this restricted

measure satisfies
supp(ν̄) ⊆

{
v ∈ Rp : ∥v∥0 ≤ s, ∥v∥22 ≥ sγ2/6

}
. (87)

We also have

−ν(Vcs) = −
( 1

ν(Vs)
− 1
)
ν(Vs) ≤ ν(A)− ν̄(A) = ν(A ∩ Vcs)−

( 1

ν(Vs)
− 1
)
ν(A ∩ Vs) ≤ ν(Vcs). (88)

for any Borel set A. Denote Ξ∗ to be the distribution of (ξ,R2, . . . , Rn) ∈ Rp×n, Ξ̃∗ the distribution of (ξ̃, R2, . . . , Rn), and
Π̃ the distribution of (π̃, R2, . . . , Rn), where (Ri(j))i∈{2,...,n},j∈[p] are i.i.d. Rademacher random variables, independent of
ξ, ξ̃, π̃. Now we consider the following mixture measures:

P̄∗ :=

∫
Pθ(1),Ξ∗ ν̄(dθ1), P∗ :=

∫
Pθ(1),Ξ∗ ν(dθ1), and P̃∗ :=

∫
Pθ(1),Ξ̃∗ ν(dθ1),

where θ(1) := (θ1, 0, . . . , 0) ∈ Rp×n. Observe that P̃∗ = P0,Π̃, as both sides represent the distribution of (π̃, R2, . . . , Rn). We
first provide an upper bound on the total variation distance between P∗ and P̄∗. By (88), we have

TV(P∗, P̄∗) ≤ TV(ν, ν̄) = sup
A

|ν(A)− ν̄(A)| ≤ ν(Vcs) = P
(
∥ω̃∥0 > s

)
+ P

(
∥ω̃∥0 < s/6

)
. (89)
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Suppose γ is chosen to satisfy γ ≤
√
p/s. Then from (86), we deduce s

3p ≤ P(ω̃(1) ̸= 0) < s
2p . By Chernoff bounds, we have

P
(
∥ω̃∥0 > s

)
≤

E
[
e∥ω̃∥0 log 2

]
es log 2

≤
(
1 + s/(2p)

)p
es log 2

≤ e−s/6,

P
(
∥ω̃∥0 < s/6

)
≤

E
[
e−∥ω̃∥0 log 2

]
e−(s log 2)/6

≤
(
1− s/(6p)

)p
e−(s log 2)/6

≤ e−s/20. (90)

The key step of the proof is to carefully construct two random variables ξ and ξ̃ such that the following three conditions are
satisfied:

Ξ∗ ∈ Gα,K (resp. Pα,K), (91)

Π̃ ∈ Gα,K (resp. Pα,K), (92)

H2(Pξ, Pξ̃) ≤
1

16p
, (93)

where, in a slight abuse of notation, we denote Pξ and Pξ̃ to be the distribution of ξ and ξ̃ respectively. Then, by data processing
inequality as well as some basic properties of the total variation distance and the Hellinger distance, we obtain

TV(P̃∗,P∗) ≤ TV(P0,Ξ̃∗ , P0,Ξ∗) ≤ TV
(
Pξ̃, Pξ

)
≤ H

(
Pξ̃, Pξ

)
=
√
2
(
1− (1−H2(Pξ̃, Pξ)/2)

p
)

≤
√
pH2(Pξ, Pξ̃) ≤ 1/4, (94)

where the penultimate inequality follows from the fact that (1 − x)p ≥ 1 − px for all 0 ≤ x ≤ 1 and p ≥ 1.
Combining (87), (89), (90), and (94), when s ≥ 30, for all ρ2 ≤ sγ2/12, we have

RQ(ρ) = inf
ϕ∈Φ

{
sup
Pe∈Q

sup
θ∈Θ0(p,n)

Eθ,Peϕ+ sup
Pe∈Q

sup
θ∈Θ(p,n,s,ρ)

Eθ,Pe(1− ϕ)

}
≥ 1− TV(P0,Π̃, P̄

∗) = 1− TV(P̃∗, P̄∗) ≥ 1− TV(P̃∗,P∗)− TV(P∗, P̄∗)

≥ 3/4− e−s/6 − e−s/20 ≥ 1/2,

where the class Q is either G⊗
α,K or P⊗

α,K . Below, we give three constructions of ξ and ξ̃ that satisfy conditions (91), (92)
and (93), and specify the corresponding choices of γ. Each construction corresponds to a rate given at the beginning of the
proof.

Proof of claim (iii). We work within the noise distribution class P⊗
α,K with α > 2 and K ≥

√
2 or α = 2 and K ≥ 1 and we

only consider s = 30 (a constant) in this construction. Let ξ and ξ̃ be two independent discrete random variables such that

ξ̃ =

{(
1 + γ2s

2p

)−1/2
w.p. 1/2

−
(
1 + γ2s

2p

)−1/2
w.p. 1/2

and ξ =



(
1 + γ2s

2p

)−1/2
w.p. t20−1

2

(
t20−
(
1+ γ2s

2p

)−1
)

−
(
1 + γ2s

2p

)−1/2
w.p. t20−1

2

(
t20−
(
1+ γ2s

2p

)−1
)

t0 w.p.
1−
(
1+ γ2s

2p

)−1

2

(
t20−
(
1+ γ2s

2p

)−1
)

−t0 w.p.
1−
(
1+ γ2s

2p

)−1

2

(
t20−
(
1+ γ2s

2p

)−1
) .

Direct calculations show that both ξ and ξ̃ + γω̃ have mean 0 and variance 1. Choose

γ = max

{
−1 +

{
(Kα − 1)p/s

}1/α
max{32,K}

,

√
2

32

}
and t0 = 32γ ≥

√
2.

Note that we have γ ≤
√
p/s. Now, to check (91) and (92), it suffices to only verify that E|ξ|α ≤ Kα and that E

∣∣ξ̃+γω̃∣∣α ≤ Kα

respectively. Indeed, as α > 2 and K ≥
√
2, we have

E|ξ|α ≤ 1 + tα0
1−

(
1 + γ2s

2p

)−1

t20 −
(
1 + γ2s

2p

)−1 ≤ 1 + tα0
γ2s/(2p)

t20 − 1
= 1 +

γ2stα−2
0

p
≤ 1 +

32α−2γαs

p

≤ 1 + max

{
Kα − 1, 2α/2−10

}
≤ Kα,
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and

E
∣∣ξ̃ + γω̃

∣∣α ≤ 1 + (1 + γ)α · P(ω̃ ̸= 0) ≤ 1 +
(1 + γ)αs

2p
≤ 1 + max

{
Kα − 1,

(17/16)α

2

}
≤ Kα.

We also verify (93):

H2(Pξ, Pξ̃) =

(
1−

√√√√ t20 − 1

t20 −
(
1 + γ2s

2p

)−1

)2

+
1−

(
1 + γ2s

2p

)−1

t20 −
(
1 + γ2s

2p

)−1 ≤
2
(
1−

(
1 + γ2s

2p

)−1)
t20 −

(
1 + γ2s

2p

)−1

≤ 2γ2s

pt20
=

60γ2

(32γ)2p
≤ 1

16p
.

We thus conclude that under the noise distribution class P⊗
α,K with α > 2 and K ≥

√
2, whenever s ≥ 30 and

ρ2 ≤ 30

12

(
max

{
−1 +

{
(Kα − 1)p/30

}1/α
max{32,K}

,

√
2

32

})2

≤ c · p2/α,

for some c > 0 depending only on α and K, we have RP(ρ) ≥ 1/2. When α = 2, we can simply set γ =
√
p/s and t0 = 32γ

and reach the same conclusion.

Proof of claim (iv). We work within the noise distribution class P⊗
α,K with α ≥ 4 and K ≥

√
2. We first define an auxiliary

random variable ξaux and with the following density elsewhere:

fξaux(x) =


1000(x− sgn(x) · 0.9)2 0.9 ≤ |x| < 0.95

5− 1000(x− sgn(x))2 0.95 ≤ |x| ≤ 1.05

1000(x− sgn(x) · 1.1)2 1.05 < |x| ≤ 1.1

0 otherwise.

Observe that Eξaux = 0 and σ2
aux := Eξ2aux ∈ (1, 1.01). Now let ξ and ξ̃ be independent random variables such that

ξ
d
= σ−1

auxξaux and ξ̃
d
=
(
1 + γ2s

2p

)−1/2
σ−1
auxξaux. Again, direct calculations show that both ξ and ξ̃ + γω̃ have mean 0 and

variance 1. For condition (91), since |ξ| < 1.1 holds with probability one, we have Ξ∗ ∈ Pα,K for all α ≥ 4 and K ≥
√
2.

We choose
γ =

1

12
(p/s)1/α.

Note that γ ≤
√
p/s. We verify (92) as follows:

E
∣∣ξ̃ + γω̃

∣∣α ≤ 1.1α + (1.1 + γ)α · P(ω̃ ̸= 0) ≤ 1.1α +
(1.1 + γ)αs

2p
≤ 1.1α +

max{1.2, 12γ}αs
2p

≤ max

{
1.1α +

1.2α

2
, 1.1α +

1

2

}
≤ 2α/2 ≤ Kα. (95)

Finally, by Theorem 7.6 of [50], we have when s ≤ p
α−4
2α−4

H2(Pξ, Pξ̃) ≤

(
σ−1
aux −

(
1 + γ2s

2p

)−1/2
σ−1
aux

)2
4

sup

u∈
[(

1+ γ2s
2p

)−1/2
σ−1
aux,σ

−1
aux

]
∫
supp(ξaux)

(
f ′ξaux(x)

)2
/fξaux(x) dx

u2

≤

((
1 + γ2s

2p

)1/2 − 1
)2

4

∫
supp(ξaux)

(
f ′ξaux(x)

)2
/fξaux(x) dx

≤ γ4s2

64p2
· 4
(∫ 0.05

0

(−2000x)2

5− 1000x2
dx+

∫ 0.1

0.05

(2000(x− 0.1))2

1000(x− 0.1)2
dx

)
≤ 25γ4s2

p2
≤ 1

16p
, (96)

and this verifies (93). Therefore, under the noise distribution class P⊗
α,K with α ≥ 4 and K ≥

√
2, whenever 30 ≤ s ≤ p

α−4
2α−4

and ρ2 ≤ s(p/s)2/α/1728, we have RP(ρ) ≥ 1/2.

Proof of claim (v). We work within the noise distribution class G⊗
α,K with 0 < α ≤ 2 and K ≥ 21+2/α. We use the same

construction as in (iv), but now choose instead

γ =
1

3 · (8/α)1/α
log1/α(ep/s).
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Since log x ≤ 2
eαx

α/2 for all x ≥ e, we can verify that γ ≤
√
p/s. Again, for condition (91), since |ξ| < 1.1 holds with

probability one, we have Ξ∗ ∈ Gα,K for all α ≥ 4 and K ≥ 21+2/α, as exp{(1.1/K)α} ≤ e1/4 < 2. We now verify (92)
using the technique in (95):

E

[
exp

{(
|ξ̃ + γω̃|
K

)α}]
≤ exp

{(
1.1

K

)α}
+

s

2p
exp

{(
max{2, 3γ}

K

)α}

≤ e1/4 +max

{
e1/4

s

2p
,
( s
2p

)1− 2α
8Kα

}
≤ e1/4 +max

{
e1/4/2,

√
1/2
}
< 2.

We then follow (96) to verify (93) as well:

H2(Pξ, Pξ̃) ≤
25γ4s2

p2
≤ 1

16p
,

when s ≤ √
p log−2/α(ep). Therefore, under the noise distribution class G⊗

α,K with α ≤ 2 and K ≥ 21+2/α, whenever

30 ≤ s ≤ √
p log−2/α(ep) and ρ2 ≤ s log2/α(ep/s)

36·(8/α)1/α , we have RG(ρ) ≥ 1/2.

D. Technical details of Section VI

1) Multiple change points: To describe our testing procedure for multiple change points, we first denote

J :=
{
(ℓ, t) : t = 21+⌈log2(log(n))⌉, 22+⌈log2(log(n))⌉, . . . , 2⌊log2(n)⌋−1, ℓ = t, . . . , n− t

}
.

Recall that in Section III-A, we use a median-of-means-type statistic AMoM
t in (16) to determine whether there is a single

change at or near each t ∈ T based on data X1, . . . , Xt, Xn−t+1, . . . Xn. Here, we compute the same statistic using
Xℓ−t+1, . . . , Xℓ, Xℓ+1, . . . , Xℓ+t for each pair (ℓ, t) ∈ J , i.e. Zi,ℓ,t := (Xℓ−t+i − Xℓ+t+1−i)/

√
2 for i ∈ [t]. We then

split {Z1,ℓ,t, Z2,ℓ,t, . . . , Zt,ℓ,t} into G groups of equal size, with G specified later in Theorem 21. Let Vg,ℓ,t ∈ Rp be with j-th
coordinate Vg,ℓ,t(j) := Z

2

g,ℓ,t(j)−G/t, j ∈ [p] and g ∈ [G], where Zg,ℓ,t is the sample mean of the g-th group. We then have
that

Tℓ,t := 1{AMoM
ℓ,t >r},

where

AMoM
ℓ,t := t ·median

(
p∑
j=1

V1,ℓ,t(j),

p∑
j=1

V2,ℓ,t(j), . . . ,

p∑
j=1

VGt,ℓ,t(j)

)
,

and the threshold r is specified in Theorem 21. Our test for the multiple change points case is

ϕMoM
P,multi := max

(ℓ,t)∈J
Tℓ,t. (97)

We prove the following theorem on the theoretical guarantee of the test ϕMoM
P,multi, constructed above. Theorem 10 then follows

as an immediate consequence.

Theorem 21. Assume n ≥ 50 and α ≥ 4. For any ε ∈ (0, 1), there exist C1, C2 > 0 depending only on α, K and ε, such that
the test ϕMoM

P,multi defined in (97) with

r = C1
√
pG and G = 21+⌈log2(log(n))⌉

satisfies that
RP,multi(ρ, ϕ

MoM
P,multi) ≤ ε,

as long as ρ2 ≥ C2v
U
P , where

vUP :=
√
p log(n).

Proof. Null term. For any θ ∈ Θ0(p, n), we have, by a union bound

EθϕMoM
P,multi = Pθ

(
max
(ℓ,t)∈J

Tℓ,t = 1
)
≤

∑
(ℓ,t)∈J

Pθ(Tℓ,t = 1).

Note that, for a fixed pair (ℓ, t), the test variable Tℓ,t is constructed in the exact same way as the MoM test ϕP,dense we
studied in Section III-A. Therefore, by following the proof of Theorem 4 and, in particular, (64), we have

Pθ(Tℓ,t = 1) = Pθ
(
AMoM
ℓ,t > r

)
≤ exp

{
−G

2
log(6/ε)

}
,
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when we choose r = C1
√
pG for some sufficiently large constant C1 that depends on ε. Now, with G = 21+⌈log2(log(n))⌉ ≥

2 log(n) and n ≥ 50, we have for all (ℓ, t) ∈ J that

Pθ(Tℓ,t = 1) ≤ exp

{
−G

2
log(6/ε)

}
≤ exp

{
−4

3
log(n)− log(6/ε)

}
=

ε

6n4/3
,

where the second inequality is derived from the calculation
(
log(n)−1

)(
log(6/ε)−4/3

)
≥ 4/3. Therefore, as long as n ≥ 50,

we conclude ∑
(ℓ,t)∈J

Pθ(Tℓ,t = 1) ≤ ε

6n4/3
|J | ≤ ε

6n4/3
n log2(n/2) ≤

ε

4
.

Alternative term. For any θ ∈ Θmulti(p, n, ρ), by definition, there exists an i∗ ∈ Z+ such that ∆i∗ ≥ 4 log(n) and κ2i∗∆i∗ ≥ ρ2.
Consequently, there exists a corresponding (τi∗ , t

∗) ∈ J such that ∆i∗/2 ≤ t∗ ≤ ∆i∗ . Then, we have

Eθ
(
1− ϕMoM

P,multi

)
= Pθ

(
max
(ℓ,t)∈J

Tℓ,t = 0
)
≤ Pθ

(
Tτi∗ ,t∗ = 0

)
.

Since we use the same type of test statistic as ϕP,dense, and that {Z1,τi∗ ,t∗ , . . . , Zt∗,τi∗ ,t∗} are independent random vectors
each with mean (µ1 − µ2)/

√
2, we can again follow the proof of Theorem 4 to obtain

Pθ
(
Tτi∗ ,t∗ = 0

)
≤ exp

{
−εG

12

(
6

ε
log
(6
ε

)
− 6

ε
+ 1

)}
≤ ε

4
,

provided that t∗∥µ1 − µ2∥22/2 ≥ ρ2/4 ≥ C2

4

√
p log(n) for some sufficiently large constant C2 that depends on ε and this

completes the proof.

Proof of Proposition 11. Throughout this proof, we take Pe = N⊗(0, 1). Recall that N⊗(0, 1) denotes the joint distribution
of all pn independent N(0, 1) entries in E. Following the calculation in the lower bound proof of claim (i) in Section C, we
confirm that Pe ∈ P⊗

α,K for all α ≥ 2 and K ≥
√
α+ 1. We write Pθ,E to denote the distribution of θ+E where θ ∈ Rp×n,

and E ∈ Rp×n is a matrix with entries being i.i.d standard normal random variables. We also write Pθ∼π,E to denote the
distribution of θ + E when θ ∼ π.

This result essentially follows from Theorem 2 in [29]. To lower bound the minimax testing error, we have

RP,multi(ρ) = inf
ϕ∈Φ

{
sup

Pe∈P⊗
α,K

sup
θ∈Θ0(p,n)

Eθ,Pe
(ϕ) + sup

Pe∈P⊗
α,K

sup
θ∈Θmulti(p,n,ρ)

Eθ,Pe
(1− ϕ)

}
≥ 1− TV(P0,E , Pθ∼π,E),

for any π that has support only on θ with two change points such that min{∆1,∆2} ≥ 4 log(n). The constructions of Θ̃(2)

and Θ̃(3) in Case 2 and Case 3 in the proof of Theorem 2 in [29] with r = 4 log(n) both have support on θ with two change
points such that min{∆1,∆2} ≥ 4 log(n). The remaining calculation therein shows that when n/4 ≥ ⌈4 log(n)⌉ and

ρ2 ≤ c
{√

p log(n) + log(n)
}
,

for some sufficiently small constant c > 0, we have TV(P0,E , Pθ∼π,E) ≤ 1/2.

A heuristic example for requiring minimum spacing: We provide a heuristic example illustrating why the heavy-tailed
nature of the data necessitates a minimum spacing condition to achieve a rate with logarithmic dependence on n.

Consider independent univariate random variables U1, . . . , Un ∈ R with EUi = µi for i ∈ [n]. For α ≥ 2 and K < ∞, we
assume that E

[(
|Ui − µi|/K

)α] ≤ 1 for all i. Now, consider the testing problem

H0 : µ1 = · · · = µn = 0 vs. H1 : ∃j ∈ [n] s.t. µi = 0 for all i ̸= j and |µj | ≥ ρ.

This can be viewed as testing for a single outlier caused by a mean shift at an unknown time, which corresponds to two change
points with no minimum spacing requirement.

A natural test to consider is
max
i∈[n]

1{|Ui|≥r},

for some threshold r. Suppose we want to control the Type I error probability at some ε > 0. Under the null, applying a union
bound and Chebyshev’s inequality, we obtain the upper bound

Type I error prob. ≤
n∑
i=1

P(|Ui| ≥ r) ≤ n

(r/K)α
.

This is at most ε when r ≥ K(n/ε)1/α. To distinguish the null from the alternative, the signal strength ρ must exceed this
threshold, implying that ρ must be at least of order n1/α, i.e. polynomial in n.
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2) Temporal dependence: Denote Zi :=
(
Xi−Xn+1−i

)
/
√
2 for i ∈ [n/2]. For t ∈ T , we split {Z1, . . . , Zt} into Gt groups

of equal size that

Zt,1 :=
{
Z1, . . . , Z t

Gt

}
, Zt,2 :=

{
Z t

Gt
+1, . . . , Z 2t

Gt

}
, . . . , Zt,Gt :=

{
Z (Gt−1)t

Gt
+1
, . . . , Zt

}
.

The procedure to form the test remains the same as in (15) and (16) from Section III-A, except that we replace Gt/t with
EZ2

t,g(j) in Vt,g(j). Our test is
ϕPTemp

:= 1{maxt∈T AMoM
t /rTemp

t >1}, (98)

with the detection threshold rTemp
t specified in Theorem 22. We assume EZ2

t,g(j) to be known, though this can be relaxed
if this quantity can be estimated reasonably well. We discuss this aspect in detail and provide a specific example where the
noise is generated by a moving average process at the end of this subsection.

We prove the following theorem on the theoretical guarantee of the test ϕPTemp , constructed above. Theorem 12 then follows
as an immediate consequence.

Theorem 22. Assume α > 4. For any ε ∈ (0, 1), there exist C1, C2, C3 > 0 depending only on α, K, c1, c2 and ε, such that
the test ϕPTemp defined in (98) with

rTemp
t = C1p

1/2Gt, Gt = t ∧∆ and ∆ = 2⌈log2(C2(log log(8n))(log log log(16n))2)⌉,

satisfies that
RPTemp

(ρ, ϕPTemp
) ≤ ε,

as long as ρ2 ≥ C3v
U
PTemp

, where
vUPTemp

:= p1/2(log log(8n))(log log log(64n))2.

Proof. If we define {Ẽi}i∈[n] as the reordered sequence of {Ei}i∈[n] with

Ẽi =

{
E(i+1)/2 for odd i,
En+1−i/2 for even i,

(99)

then we verify that the (usual) α-mixing coefficient of this reordered process {Ẽi}i∈[n] satisfies

αpa(i) := sup
ℓ∈[n−i]

sup
A∈σ(Ẽj :1≤j≤ℓ),B∈σ(Ẽj :ℓ+i≤j≤n)

∣∣P(A ∩B)− P(A)P(B)
∣∣

≤ α∗(⌊i/2⌋) ≤ c1e
−c2i/3, (100)

for all i ∈ [n− 1].
Null term. Similar to the proof of Theorem 4, we still have for all t ∈ T and g ∈ [Gt] that

Pθ
(
t

p∑
j=1

Vt,g(j) > rTemp
t

)
= Pθ

( p∑
j=1

(
Z

2

t,g(j)− EZ2

t,g(j)

)
>
C1

√
pGt

t

)
≤
t2
∑p
j=1 EθZ

4

t,g(j)

C2
1pG

2
t

≤ pt2C4(Gt/t)
2

C2
1pG

2
t

=
C4

C2
1

. (101)

for some C4 > 0, depending on α,K and c. The second inequality above now follows from Theorem 4.1 of [51]. According
to the reordered sequence {Ẽi}i∈[n] defined in (99), we have, for g ∈ [Gt]

1{
t
∑p

j=1 Vt,g(j)>r
Temp
t

} ∈ σ
(
Ẽi :

2(g − 1)t

Gt
+ 1 ≤ i ≤ 2gt

Gt

)
.

Thus, as long as C4/C
2
1 ≤ 1/4 in (101), by (100) and Theorem 1 of [52]4, we have for all t ∈ T with Gt ≥ 4

Pθ
(
AMoM
t > rTemp

t

)
≤ Pθ

(
Gt∑
g=1

1{
t
∑p

j=1 Vt,g(j)>r
Temp
t

} ≥ Gt/2

)
≤ exp

{
− C5Gt
logGt log logGt

}
, (102)

for some C5 > 0, depending only on c1 and c2, the constants in the interlaced α-mixing condition (34). To this end, we
observe that there exists sufficiently large C2 > 0, depending only on C5 and ε, such that for all t ≥ C2/12 and for our choice
∆ ≥ C2(log log(8n))(log log log(64n))

2 > C2/12, we have

exp

{
− C5t

log t log log t

}
≤ ε

10
e−

√
t, (103)

4Theorem 1 in the cited work assumes that the α-mixing coefficient is bounded by α(i) ≤ e−ci for some c > 0. A closer examination of the proof reveals
that this result remains valid even if the bound is relaxed to c′e−ci for some constants c, c′ > 0.
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and

exp

{
− C5∆

log∆ log log∆

}
≤ ε

10 log2(n/2)
, (104)

Thus, by choosing C1 >
√
C2

2C4/ε and combining (101), (102), (103), (104) and a union bound, we conclude, when C2 is
sufficiently large, that

EθϕPTemp
≤

∑
t∈T : t<C2/12

∑
g∈[t]

Pθ
(
t

p∑
j=1

Vt,g(j) > rTemp
t

)
+

∑
t∈T :C2/12≤t≤∆

Pθ
(
AMoM
t > rTemp

t

)
+

∑
t∈T : t>∆

Pθ
(
AMoM
t > rTemp

t

)
≤ C2

2C4

12C2
1

+
∑

t∈T :C2/12≤t≤∆

ε

10
e−

√
t +

∑
t∈T : t>∆

ε

10 log2(n/2)
≤ ε/12 + ε/10 + ε/10 < ε/2.

for all θ ∈ Θ0(p, n).

Alternative term. We again follow the proof of Theorem 4 and reach

Pθ
(
t̃

p∑
j=1

Vt̃,g(j) ≤ rTemp

t̃

)

≤ Pθ

(
p∑
j=1

((
Z

′
t̃,g(j)

)2 − E
(
Z

′
t̃,g(j)

)2
+

√
2
(
µ1(j)− µ2(j)

)
Z

′
t̃,g(j)

)
≤ − ρ2

16t̃
− ∥µ1 − µ2∥22

4

)
. (105)

Again by Theorem 4.1 of [51], we have

Pθ
( p∑
j=1

((
Z

′
t̃,g(j)

)2 − E
(
Z

′
t̃,g(j)

)2) ≤ − ρ2

16t̃

)
≤

256(t̃)2
∑p
j=1 Eθ

(
Z

′
t̃,g(j)

)4
ρ4

≤
C6pG

2
t̃

ρ4
,

and

Pθ
( p∑
j=1

√
2
(
µ1(j)− µ2(j)

)
Z

′
t̃,g(j) ≤ −∥µ1 − µ2∥22

4

)
≤

32
∑p
j=1(µ1(j)− µ2(j))

2Eθ
(
Z

′
t̃,g(j)

)2
∥µ1 − µ2∥42

≤ C6Gt̃
ρ2

,

for some C6 > 0, depending only on α, K and c. Combining these with (105), as long as

ρ2 ≥ C3p
1/2(log log(8n))(log log log(64n))2,

for sufficiently large C3, we are guaranteed that

Pθ
(
t̃

p∑
j=1

Vt̃,g(j) ≤ rTemp

t̃

)
≤ C4

C2
1

<
ε

12
.

Note that

Eθ(1− ϕPTemp
) ≤ Pθ

(
AMoM
t̃ ≤ rTemp

t̃

)
≤ Pθ

(
Gt̃∑
g=1

1{
t̃
∑p

j=1 Vt̃,g(j)≤r
Temp

t̃

} ≥ Gt̃/2

)
.

We consider three cases separately: (i) t̃ < Cε, (ii) Cε ≤ t̃ < ∆, and (iii) t̃ ≥ ∆. Using the same argument as in controlling
the null term, we can show that Eθ(1− ϕPTemp) ≤ ε/2 and this completes the proof for α > 4.

Remark 1. A similar result can be obtained for 2 < α ≤ 4. In this case, Theorem 22 holds with rTemp
t = C1p

2/α′
Gt and

vUPTemp
= p2/α

′
(log log(8n))(log log log(64n))2 for any α′ < α, with Gt and ∆ remaining unchanged.
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An MA(1) example: When forming the test ϕPTemp
, we assume EZ2

t,g(j) is known for all t ∈ T , g ∈ [Gt], and j ∈ [p].
This term also appears in the setting with independent observations, where it simplifies to Gt/t, given the assumption that the
variance of each error term is 1; see Definition 3. A close examination of the proof of Theorem 22 reveals that if, with high
probability,

∑p
j=1 EZ

2

t,g(j) can be accurately estimated with an error of O(
√
pGt/t) for all t ∈ T , g ∈ [Gt], and j ∈ [p], then

the conclusion of Theorem 22 still holds for the modified test ϕPTemp
, where the exact expectations EZ2

t,g(j) are replaced by
their estimators.

We consider an example of a specific temporal dependence model. Assume that E has independent component series, and
for each j ∈ [p], the j-th component series {Ei(j)}i∈[n] follows a moving average process of order 1 (MA(1))

Ei(j) = ωi(j) + πmaωi−1(j), (106)

where {ωi(j)}i=0,1,... is an independent white noise sequence satisfying E[ωi(j)2] = (1 + π2
ma)

−1 and E
∣∣ωi(j) +

πmaωi−1(j)
∣∣α ≤ Kα for all i. The lag-1 autocorrelation is given by r1 := πma/(1 + π2

ma). As discussed in Section VI-B,
the interlaced α-mixing coefficient of our noise sequence {Ei}i∈[n] satisfies α∗(i) ≤ e1−i for all i ∈ [n− 1]. Now, if we can
estimate r1 well, then a plug-in estimator for EZ2

t,g(j) can be used. We formalise this in the following corollary.

Corollary 23. Assume α > 4 and let ε ∈ (0, 1). Consider the MA(1) data-generating mechanism for the noise sequence
described by (106) and in the last paragraph. Let r̂1 be any estimator for r1 satisfying

P
(
|r̂1 − r1| > cp−1/2

)
≤ ε/2, (107)

for some c > 0, depending on ε. Then, after modifying Vt,g to become

Vt,g(j) := Z
2

t,g(j)−
(t/Gt) + 2

{
(t/Gt)− 1

}
r̂1

(t/Gt)2
,

the theoretical guarantee on ϕPTemp
in Theorem 22 remains valid, with possibly increased values of C1, C2 and C3.

Suppose we have a (historical) dataset X(h)
1 , . . . , X

(h)
m of size m ∈ Z+, within which no change point is present. Each

observation can be written as X(h)
i = µ0 + E

(h)
i , where the noise follows the data-generating mechanism described in the

previous paragraph. The lag-1 autocorrelation can be estimated by

r̂1 :=
1

(m− 1)p

p∑
j=1

m−1∑
i=1

(
X

(h)
i (j)− 1

m

m∑
k=1

X
(h)
k (j)

)(
X

(h)
i+1(j)−

1

m

m∑
k=1

X
(h)
k (j)

)
.

This estimator can be shown to satisfy condition (107) when, informally speaking, the sample size m is significantly larger
than

√
p.

Note that in (106), all components share the same lag-1 coefficient. If this assumption does not hold, then the requirement
on the estimators becomes P

(∑p
j=1 |r̂1(j)− r1(j)| > cp−1/2

)
≤ ε/2 in place of (107) in Corollary 23, where r1(j) denotes

the lag-1 autocorrelation for the j-th component series and r̂1(j) its estimator.
3) Fewer than two finite moments: As mentioned in Section VI-C of the main text, our test procedure has two components.

One component utilises a robust mean estimator µ̂RM from Algorithm 1-7 of [42], developed specifically for distributions
satisfying (36).

Proposition 24 ( [42], Theorem 1.2). Let 1 ≤ α ≤ 2. For t ∈ Z+, let X1, . . . , Xt be independent random vectors in Rp with
mean µ. Assume that the distribution of Wi := Xi − µ belongs to Wα for each i ∈ [t]. Then, there exists a polynomial-time
algorithm that, given inputs X1, . . . , Xt and η > 0, outputs µ̂RM

t ({Xi}ti=1; η). There exist absolute constants C01, C02 > 0
such that, for any 0 < η < 1, when t ≥ C01 log(1/η), with probability at least 1− η, it holds that

∥µ̂RM
t ({Xi}ti=1; η)− µ∥2 ≤ C02

{√
p

t
+
(p
t

)α−1
α

+

(
log(1/η)

t

)α−1
α

}
.

Similar to the limitations of using µ̂RSM as discussed in Section III-B, test statistics based on µ̂RM only have theoretical
guarantee when the change is sufficiently away from the boundary, due to the condition t ≥ C01 log(1/η) in Proposition 24.
To cover the case when the potential change occurs near the boundary, we need to adopt a different strategy that does not
have this limitation on the minimal sample size.

Recall that Zi = (Xi −Xn−i+1)/2, for i ≤ n/2. We let{
Ãt = ∥

∑t
i=1 Zi/t∥2, t ∈ T ∩ {t ≤ ∆̃1},

ÃRM
t = ∥µ̂RM

t ({Zi}ti=1; ηt)∥2, t ∈ T ∩ {t > ∆̃1},

and define the test
ϕRM
Wα

:= 1{maxt∈T ∩{t≤∆̃1} Ãt/r̃t>1} ∨ 1{maxt∈T ∩{t>∆̃1} Ã
RM
t /r̃RM

t >1}, (108)
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where ∆̃1, r̃t, r̃
RM
t and ηt are specified later in Theorem 25.

We prove the following theorem on the theoretical guarantee of the test ϕRM
Wα

, constructed above. Theorem 13 then follows
as an immediate consequence.

Theorem 25. Assume 1 ≤ α ≤ 2. For any ε ∈ (0, 1), there exist C1, C2, C3, C4 > 0 depending only on α and ε, such that
the test defined in (108) with

r̃t = C1∆̃
2−α
2α

1 log
1
α (∆̃1)

√
p

t
,

ηt = exp

{
− t ∧ ∆̃2

C2

}
, r̃RM

t = C3

(√
p

t
+
(p
t

)α−1
α

+

(
log(1/ηt)

t

)α−1
α

)
,

∆̃1 = C2 log(16/ε) and ∆̃2 = C2 log(16 log(2n)/ε),

satisfies that
RW⊗

α
({ρt0}t0∈[n−1], ϕ

RM
Wα

) ≤ ε,

as long as

ρt0 ≥ C4

{√
p

t0 ∧ (n− t0)
+
( p

t0 ∧ (n− t0)

)α−1
α

+
( log log(n)

t0 ∧ (n− t0)

)α−1
α

}
, (109)

for all t0 ∈ [n− 1].

Proof. We denote T̃1 := {t ∈ T : t ≤ ∆̃1}, T̃2 := {t ∈ T : ∆̃1 < t ≤ ∆̃2} and T̃3 := {t ∈ T : t > ∆̃2}. Null term. Under
the null hypothesis, we need to control

EθϕRM
Wα

=
∑
t∈T̃1

Pθ(Ãt > r̃t) +
∑
t∈T̃2

Pθ(ÃRM
t > r̃RM

t ) +
∑
t∈T̃3

Pθ(ÃRM
t > r̃RM

t ).

We first control the first term. Notice that Zi are independent random vectors satisfying (36), since EθZi = 0 and

Eθ|⟨Zi, v⟩|α =
1

2α
Eθ|⟨Xi −Xn−i+1, v⟩|α ≤ Eθ|⟨Xi − µ, v⟩|α ≤ 1,

for any unit vector v. Thus, we have by Lemma 39

Pθ(Ãt > r̃t) ≤
π

Cα1 (∆̃1/t)
2−α
2 log(∆̃1)

.

Now, by setting C1 ≥ (16π/ε)1/α, we are guaranteed to have∑
t∈T̃1

Pθ(Ãt > r̃t) ≤ ε/4.

Now, for the second and third terms, we note that t ≥ C2 log(1/ηt). Thus, by using Proposition 24 with η = ηt, we have
P(ÃRM

t > r̃RM
t ) ≤ ηt and thus∑

t∈T̃2

Pθ(ÃRM
t > r̃RM

t ) +
∑
t∈T̃3

Pθ(ÃRM
t > r̃RM

t ) ≤
∑
t∈T̃2

exp

{
− t

C2

}
+
∑
t∈T̃3

ε

16 log(2n)

≤ 2 exp

{
−∆̃1

C2

}
+
ε log2(n/2)

16 log(2n)
< ε/4.

We therefore conclude EθϕRM
Wα

< ε/2.

Alternative term. Consider, as before, the point t̃ ∈ T such that t0/2 < t̃ ≤ t0 ≤ n/2. We shall deal with the case t0 > n/2
later. Note that Z1, . . . , Zt̃ are independent with mean (µ1 − µ2)/2 and that Zi − (µ1 − µ2)/2 satisfies (36) for each i. We
first consider the case t̃ ≤ ∆̃1. In this case, we have

Pθ(Ãt̃ < r̃t̃) = Pθ

(∥∥∥∥ t̃∑
i=1

Zi/t̃

∥∥∥∥
2

< r̃t̃

)
≤ Pθ

(∣∣∣∣∣
∥∥∥∥µ1 − µ2

2

∥∥∥∥
2

−
∥∥∥∥ t̃∑
i=1

Zi/t̃−
µ1 − µ2

2

∥∥∥∥
2

∣∣∣∣∣ < r̃t̃

)
. (110)

By Lemma 39 and the choice of r̃t̃ with C1 ≥ (16π/ε)1/α, we have

Pθ

(∥∥∥∥ t̃∑
i=1

Zi/t̃−
µ1 − µ2

2

∥∥∥∥
2

> r̃t̃

)
≤ ε

16
,
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Therefore, as long as ∥∥∥∥µ1 − µ2

2

∥∥∥∥
2

≥ 4C1∆̃
2−α
2α

1 log
1
α (∆̃1)

√
p

t0
,

we obtain
∥∥µ1−µ2

2

∥∥
2
≥ 2r̃t̃ and thus Eθ(1 − ϕRM

Wα
) ≤ Pθ(Ãt̃ < rt̃) ≤ ε/16. In the case of t0 > n/2, we should consider

instead the point t̃ ∈ T such that (n− t0)/2 < t̃ ≤ n− t0 ≤ n/2, and the same arguments as above show that Eθ(1−ϕRM
Wα

) ≤
Pθ(Ãt̃ < rt̃) ≤ ε/16 as long as ∥∥∥∥µ1 − µ2

2

∥∥∥∥
2

≥ 4C1∆̃
2−α
2α

1 log
1
α (∆̃1)

√
p

n− t0
.

Now, consider the case t̃ > ∆̃1, when t0 ≤ n/2. Similar to (110), we now have

Pθ(ÃRM
t̃ < r̃RM

t̃ ) = Pθ
(∥∥∥µ̂RM

t̃ ({Zi}t̃i=1; ηt̃)
∥∥∥
2
< r̃RM

t̃

)
≤ Pθ

(∣∣∣∣∣
∥∥∥∥µ1 − µ2

2

∥∥∥∥
2

−
∥∥∥∥µ̂RM

t̃ ({Zi}t̃i=1; ηt̃)−
µ1 − µ2

2

∥∥∥∥
2

∣∣∣∣∣ < r̃RM
t̃

)
.

Thus, as long as ∥∥∥∥µ1 − µ2

2

∥∥∥∥
2

≥ 4C3

(√
p

t0
+
( p
t0

)α−1
α

+
( log log(n)

t0

)α−1
α

)
,

we have Pθ(ÃRM
t̃

< r̃RM
t̃

) ≤ ε/16. In the case of t0 > n/2, we should consider instead the point t̃ ∈ T such that (n− t0)/2 <
t̃ ≤ n− t0 ≤ n/2, and the same arguments as above show that Pθ(ÃRM

t̃
< r̃RM

t̃
) ≤ ε/16 as long as∥∥∥∥µ1 − µ2

2

∥∥∥∥
2

≥ 4C3

(√
p

n− t0
+
( p

n− t0

)α−1
α

+
( log log(n)

n− t0

)α−1
α

)
.

Together, we obtain Eθ(1− ϕRM
Wα

) ≤ ε/16, as long as

ρt0 ≥ C4

(√
p

t0 ∧ (n− t0)
+
( p

t0 ∧ (n− t0)

)α−1
α

+
( log log(n)

t0 ∧ (n− t0)

)α−1
α

)
,

for all t0 ∈ [n− 1] and some C4 > 0.

Proposition 26. For the testing problem

H0 : θ ∈ Θ0(p, n) vs. H1 : θ ∈
n−1⋃
t0=1

Θ(p, n, ρt0),

when p = 1, it holds that
inf
ϕ∈Φ

RW⊗
α
({ρt0}t0∈[n−1], ϕ) ≥ 1/2,

if
ρt0 ≤

(
t0 ∧ (n− t0)

)−(1− 1
α )
, (111)

for some t0 ∈ [n− 1].

Proof. Consider two distributions P+ and P− on R such that

P+({0}) = P−({0}) = 1− u, P+({c}) = P−({−c}) = u,

where u ∈ [0, 1] and c > 0 are to be specified. Let µ+ = cu and µ− = −cu denote the mean of P+ and P−, respectively.
Note that we have |µ+ − µ−| = 2cu. Also, we have the α-th central moment of both distributions satisfies

EP+(|X − µ+|α) = EP−(|X − µ−|α) = cαu(1− u)(uα−1 + (1− u)α−1) ≤ 2cαu,

if u ≤ 1/2.

We first focus on the case where t0 ≤ n/2, i.e. when
(

1
t0

)α−1
α

dominates. Consider the following two sequences of random
variables

X1, . . . , Xn
i.i.d∼ P+, Y1, . . . , Yt0

i.i.d∼ P−, Yt0+1, . . . , Yn
i.i.d∼ P+.

Let P⊗n
+ and P⊗n

− denote the n-fold product distribution of P+ and P−, respectively. With the choice of u = 1/(2t0) and
c = (2u)−

1
α , we have 2cαu ≤ 1 and

1− TV(P⊗t0
+ , P⊗t0

− ) ≥ 1− t0TV(P+, P−) = 1− t0u ≥ 1/2,
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with |µ+ − µ−| = t
−α−1

α
0 , which proves the claim.

In the case of t0 > n/2, one simply chooses

Y1, . . . , Yt0
i.i.d∼ P+, Yt0+1, . . . , Yn

i.i.d∼ P−,

and the same arguments lead to the corresponding result.

4) Change away from boundary: For Q = P⊗
α,K with α ≥ 4, we modify the median-of-means-type test proposed in

Section III-B. Recall that {Z2, Z4, . . . , Zt} is used for coordinate selection in (25). We now split this set into Gres groups
of equal size, and use Zt,g,2 to denote the sample mean of the g-th group. Our new test relies on a more robust coordinate
selection step compared to (25) by considering the following statistic:

V res
t,g,ares(j) :=

(
Z

2

t,g,1(j)−
2Gt
t

)
1{√

t/(2Gres)
∣∣median

(
Zt,1,2(j),...,Zt,Gres,2(j)

)∣∣≥ares}, j ∈ [p],

where both the number of groups Gres and the threshold ares are to be specified in Theorem 27. With T res := T ∩
{
⌈(tres +

1)/2⌉, . . . , n+ 1− ⌈(tres + 1)/2⌉
}

, our test is

ϕMoM+res
P,sparse := 1{maxt∈T res AMoM

t,ares/rt>1}, (112)

where AMoM
t,ares is the same as (26) but with each Vt,g,a(j) replaced by V res

t,g,ares(j), for g ∈ [Gt].
For Q = G⊗

α,K with 0 < α < 2, we adopt a similar robust strategy for selecting signal coordinates in the sparse regime by
replacing (12) with the following statistic:

At,a :=

p∑
j=1

{
Y 2
t,1(j)− 1

}
1{√

t/(2Gres)
∣∣median

(
Zt,1,2(j),...,Zt,Gres,2(j)

)∣∣≥ares},
and the test takes the form of

ϕresG,sparse := 1{maxt∈T res At,a>r}. (113)

We prove the following theorem on the theoretical guarantee of the test ϕMoM+res
P,sparse , constructed above. Theorem 14 then

follows as an immediate consequence.

Theorem 27. Let tres = 32
{
log(e2p/s) + s−1 log log(8n)

}
and Q = P⊗

α,K with α ≥ 4. For any ε ∈ (0, 1), there exist
C1, C2, C3 > 0 depending only on α, K and ε, such that the test ϕMoM+res

P,sparse defined in (112) with

ares = C1, G
res = 2⌊log2(t

res/2)⌋, rt = C2

√
sGt, Gt = (t ∧∆)/2 and ∆ = 24+⌈log2 log log(8n)⌉,

satisfies that
RP(ρ, ϕ

MoM+res
P,sparse ) ≤ ε,

as long as ρ2 ≥ C3v
MoM+res
P,sparse , where

vMoM+res
P,sparse := s

{
log(ep/s) + log log(8n)

}
.

Proof. The proof is analogous to that of Proposition 7; we thus omit many details and highlight those places where the
arguments differ.
Null term. For any θ ∈ Θ0(p, n), we have by a union bound that

EθϕMoM+res
P,sparse ≤

∑
t∈T res

Pθ
(
AMoM
t,a > rt

)
≤
∑
t∈T res

Pθ(|Jt,ares | > s) +
∑
t∈T res

sup
J⊆[p]:|J|≤s

Pθ(AMoM
t,∗,J > rt), (114)

with AMoM
t,∗,J unchanged from the proof of Proposition 7 and Jt,ares modified to be

Jt,ares :=
{
j ∈ [p] :

√
t/2Gres

∣∣median
(
Zt,1,2(j), . . . , Zt,Gres,2(j)

)∣∣ ≥ ares
}
,

for t ∈ T res. The second term in (114) can still be bounded by ε/8 with rt, Gt and ∆ unchanged from Proposition 7. We now
bound the first term. By Fuk–Nagaev inequality (Proposition 33), we have for any j ∈ [p], g ∈ [Gres] and t ∈ T res

Pθ
(√

t

2Gres

∣∣Zt,g,2(j)∣∣ ≥ ares
)

≤ 2

(
(α+ 2)(Kα2α/2t/(2Gres))1/α

αares
√
t/(2Gres)

)α
+ 2 exp

{
− 2(ares)2

(α+ 2)2eα

}
.

≤ Kα

(ares/3)α(t/Gres)α/2−1
+ exp

{
1− (ares)2

2α2eα

}
≤ (3K/ares)α + exp

{
1− (ares)2

2α2eα

}
≤ ε/36,
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when ares = C1 is sufficiently large, depending on K,α and ε. Consequently, by the multiplicative Chernoff bound, we have
for j ∈ [p]

Pθ(j ∈ Jt,ares) ≤ Pθ

(∣∣∣∣{g ∈ [Gres] :

√
t

2Gres

∣∣Zt,g,2(j)∣∣ ≥ ares
}∣∣∣∣ ≥ Gres/2

)

≤ Pθ

(∣∣∣∣{g ∈ [Gres] :

√
t

2Gres

∣∣Zt,g,2(j)∣∣ ≥ ares
}∣∣∣∣ ≥ εGres

36

(
1 +

(18
ε

− 1
)))

≤ exp

{
−εG

res

36

(
18

ε
log
(18
ε

)
− 18

ε
+ 1

)}
≤ exp

{
−G

res

2
log
(
6/ε
)}

≤ (ε/6)G
res/2. (115)

Then, again by a standard binomial tail bound and a union bound∑
t∈T res

Pθ(|Jt,ares | > s) ≤ log2(n)

(
ep(ε/6)G

res/2

s

)s
≤ ε/4,

when Gres ≥ 2
(
log(e2p/s) + s−1 log log(8n)

)
. Putting things together, we reach EθϕMoM+res

P,sparse ≤ ε/2.

Alternative term. First, according to our definition of T res, there still exists a unique t̃ ∈ T res such that t0/2 < t̃ ≤ t0, where
t0 ≥ tres + 1 (and without loss of generality t0 ≤ n/2) is the true change point location. We retain most notation used in the
proof of Proposition 7, with one modification Hδ,ares :=

{
j ∈ [p] : |δ(j)| ≥ 2ares

√
Gres

}
. The reasoning behind this change is√

t̃

2Gres
median

(
Z t̃,1,2(j), . . . , Z t̃,Gres,2(j)

)
=

√
t̃

2Gres
median

(
Z

′
t̃,1,2(j), . . . , Z

′
t̃,Gres,2(j)

)
+

δ(j)√
Gres

. (116)

The only major difference in the proof lies in the argument for establishing

Pθ
( ∑
j∈Jt̃,ares∩Hδ,ares

δ(j)2 <
∥δ∥22

12 log(8/ε)

)
≤ ε/8. (117)

For j ∈ Hδ,ares , we have by (116) and (115)

Pθ(j /∈ Jt̃,ares) = Pθ

(√
t̃/2Gres

∣∣median
(
Z t̃,1,2(j), . . . , Z t̃,Gres,2(j)

)∣∣ < ares

)

≤ Pθ

(√
t̃/2Gres

(
median

(
Z

′
t̃,1,2(j), . . . , Z

′
t̃,Gres,2(j)

))
< −ares

)
≤ (ε/6)G

res/2 ≤ ε

2048
≤ 1

256 log(8/ε)
,

whenever Gres ≥ 10. Thus, we still have∑
j∈Hδ,ares

Varθ
(
δ(j)21{j∈Jt̃,ares}

)
≤ ∥δ∥42

256 log(8/ε)
.

The condition ρ2 ≥ 64a2s in the previous proof is replaced by ρ2 ≥ 64(ares)2sGres in order to obtain∑
j∈Hδ,ares

δ(j)2 ≥ ∥δ∥22 − s
(
2ares

√
Gres

)2 ≥ ∥δ∥22/2.

With these in place, (117) can be established and we can deduce Eθ(1− ϕMoM+res
P,sparse ) ≤ ε/2 whenever

ρ2 ≥ C
(
s∆+ (ares)2sGres

)
with a sufficiently large C.

Theorem 15 is again a direct consequence of the following result, which provides a theoretical guarantee for the test ϕresG,sparse
constructed earlier in (113).

Theorem 28. Let tres = 32
{
log(e2p/s) + s−1 log log(8n)

}
and Q = G⊗

α,K with 0 < α < 2. For any ε ∈ (0, 1), there exist
C1, C2, C3 > 0 depending only on α, K and ε, such that the test ϕMoM+res

G,sparse defined in (113) with

ares = C1, Gres = 2⌊log2(t
res/2)⌋ and r = C2

{√
s log log(8n) + log log(8n)

}
,
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satisfies that
RG(ρ, ϕ

res
G,sparse) ≤ ε,

as long as ρ2 ≥ C3v
res
G,sparse, where

vresG,sparse := s log(ep/s) + log log(8n).

The proof of Theorem 28 is omitted, as it is very similar to the last proof.
Comparison with [7]: We compare Theorem 15 with the minimum signal strength requirement for a bootstrapped U-

statistics-based test in Theorem 3.3 of [7]. Their result indicates that, for the sub-exponential noise class G⊗
1,K , if log(p) =

o(n1/7) (a mild dimension condition required for size control in Theorem 3.1 therein) and the change is away from the
boundary by at least O(log5/2(np)), then the sum of Type I error and Type II error probabilities can be controlled provided
that

t0(n− t0)∥µ1 − µ2∥∞ ≳ n3/2 log1/2(np). (118)

One immediate observation is that our requirement on the boundary removal, O
(
log(ep/s)+s−1 log log(8n)

)
, is much smaller

than their required O(log5/2(np)).
Now, suppose the s-sparse mean shift µ1 − µ2 takes the form

µ1 − µ2 = (a, . . . , a︸ ︷︷ ︸
s

, 0, . . . , 0︸ ︷︷ ︸
p−s

)⊤.

Without loss of generality, assume t0 ≤ n/2. Under our framework, the signal strength condition ρ2 ≥ C3v
res
G,sparse implies

a ≳ t
−1/2
0

(
log1/2(ep/s) + s−1/2 log1/2 log(8n)

)
,

while (118) requires
a ≳ (n/t0)

1/2t
−1/2
0

(
log1/2(p) + log1/2(n)

)
.

Our rate is clearly smaller across all parameter settings, with the advantage becoming particularly pronounced when the change
location is not near the middle of the sequence, i.e. when t0 is not of the same order as n.

E. Auxiliary results

We first present the definition and some basic properties of sub-Weibull random variables. For a more in-depth introduction
and discussion, we refer to [45] and Section 2 of [53].

Definition 6 (Orlicz norms). Let f : [0,∞) → [0,∞) be a non-decreasing function with f(0) = 0. The f -Orlicz norm of a
real-valued random variable X is

∥X∥f := inf{t > 0 : Ef(|X|/t) ≤ 1}.

Definition 7 (sub-Weibull random variables). A random variable X is sub-Weibull of order α > 0, denoted sub-Weibull(α), if
it has mean zero and

∥X∥ψα
<∞,

with the function ψα defined by ψα(x) := exp(xα)− 1 for x ≥ 0.

Proposition 29 ( [45], Theorem 2.1). Let X be a sub-Weibull(α) random variable with 0 < α ≤ 2 and ∥X∥ψα
= K < ∞.

Then, we have the following properties:
(a) the tails of X satisfy

P(|X| ≥ x) ≤ 2 exp{−(x/K)α} for all x ≥ 0;

(b) Let ∥X∥k := E(|X|k)1/k, k ≥ 1, then
∥X∥k ≤ K ′k1/α

for some absolute constant K ′ > 0.
(c) Conversely, if a random variable X has mean zero and satisfies P(|X| ≥ x) ≤ 2 exp{−(x/K)α} for all x ≥ 0, then there
exists K ′′ > 0, depending only on α and K, such that

E exp
{
(|X|/K ′′)α

}
≤ 2.

In other words, X is a sub-Weibull(α) random variable with ∥X∥ψα ≤ K ′′ <∞.

Proposition 30 ( [45], Proposition 2.1). Let α > α′ > 0 and X be a sub-Weibull(α) random variable with ∥X∥ψα
= K <∞.

Then there exists K ′ > 0, depending only on α′ and K, such that X is a sub-Weibull(α′) random variable with ∥X∥ψα′ ≤
K ′ <∞.
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We now provide two tail bound results from literature for sums and quadratic forms of independent sub-Weibull random
variables respectively. Proposition 32 below can be viewed as an extension of the Hanson–Wright inequality [54].

Proposition 31 ( [53], Theorem 3.1). Let α > 0 and n ∈ Z+. Let X1, . . . , Xn be independent mean zero sub-Weibull random
variables of order α, with ∥Xi∥ψα

≤ K for all i ∈ Z+ and for some K > 0. Then, there exists a constant C > 0, depending
only on α and K, such that for any vector u = (u1, . . . , un)

⊤ ∈ Rn and x ≥ 0, we have

P
(∣∣∣ n∑
i=1

uiXi

∣∣∣ ≥ x
)
≤ exp

{
1−min

{(
x

C∥u∥2

)2

,

(
x

C∥u∥β(α)

)α}}
,

where β(α) = ∞ when α ≤ 1 and β(α) = α/(α− 1) when α > 1.

Proposition 32 ( [55], Proposition 1.5). Let α ∈ (0, 1] ∪ {2}, A = (aij) ∈ Rn×n be a symmetric matrix and X1, . . . , Xn be
independent mean zero sub-Weibull random variables of order α, with EX2

i = σ2
i and ∥Xi∥ψα

≤ K for all i ∈ Z+ and for
some K > 0. Then, there exists a constant C > 0, depending only on α and K, such that for any x ≥ 0, we have

P
(∣∣∣ ∑

1≤i,j≤n

aijXiXj −
n∑
i=1

aiiσ
2
i

∣∣∣ ≥ x

)
≤ exp

(
1− ηα(x/C;A)

)
,

where

ηα(x;A) := min

{(
x

∥A∥F

)2

,
x

∥A∥2
,

(
x

∥A∥2→∞

) 2α
2+α

,

(
x

∥A∥max

)α
2

}
.

The following proposition presents a concentration inequality for sums of independent random variables with only finite
certain number of moments. We use the form of the Fuk–Nagaev type inequalities appeared in [56].

Proposition 33 ( [57], [58]). Let X1, . . . , Xn be independent random variables, each having mean 0 and variance σ2. Assume
further that for some q ≥ 2 and Cq > 0, we have for all i ∈ [n]

E[{max(Xi, 0)}q] ≤ Cq.

Then for any x > 0, we have

P
( n∑
i=1

Xi ≥ x

)
≤

(
(q + 2)(nCq)

1/q

qx

)q
+ exp

{
− 2x2

n(q + 2)2eqσ2

}
.

Proposition 34. Let X1, . . . , Xp be independent random variables, each with mean zero and unit variance. Let a ≥ 0 and
Z :=

∑p
i=1(X

2
i − 1)1{|Xi|≥a}.

(a) Let α > 0, K > 0, 0 < ε ≤ 1 and 1 ≤ s ≤ √
p. Assume that X1, . . . , Xp are independent sub-Weibull random variables

of order α, with ∥Xi∥ψα
≤ K for all i ∈ [p]. By setting

a ≥ K log1/α
(4ep
εs

)
and r = 22/αK2s log2/α

( 4p√
εs

)
,

we have P(Z > r) ≤ ε.
(b) Let α ≥ 2, K > 0, 0 < ε ≤ 1 and 1 ≤ s ≤ p. Assume that E|Xi/K|α ≤ 1 for all i ∈ [p]. By setting

a ≥ K
(2ep
εs

)1/α
and r =

α− 2

α
K2s

(2ep
εs

)2/α
,

we have P(Z > r) ≤ ε.
(c) Assume the same conditions as in (b). Write Zs :=

∑p
i=1(X

2
i − 1)1{|Xi|≥as} to make the dependence on s explicit. By

choosing the same as and rs as in (b), we have

P
(
max
s∈[p]

Zs/rs > 1
)
≤ 2ε.

Proof. We denote the order statistics of |X1|, . . . , |Xp| as |X|(1) ≤ . . . ≤ |X|(p). For x ≥ 0, we write qx := mini∈[p] P(|Xi| ≥
x) and Jx := {i ∈ [p] : |Xi| ≥ x}.
(a) Note that qx ≤ 2 exp{−(x/K)α} by Proposition 29(a). Since s ≤ √

p, we observe that
s∑
j=1

K2 log2/α
(4ep
εj

)
≤

s∑
j=1

K2 log2/α
(4ep2
εs2

)
≤ 22/αK2s log2/α

( 4p√
εs

)
= r.

Then, by a union bound and a binomial tail bound, we have

P(Z > r) ≤ P(|Ja| > s) + P

(
s∑
j=1

(
|X|2(p−j+1) − 1

)
> r

)
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≤ P(|Ja| > s) +

s∑
j=1

P
(
|X|(p−j+1) > K log1/α

(4ep
εj

))

≤
(ep
s

)s{
2 exp

{
−
( a
K

)α}}s
+

s∑
j=1

(ep
j

)j{
2 exp

{
−
(
K log1/α

(
4ep
εj

)
K

)α}}j

≤ (ε/2)s +

s∑
j=1

(ε/2)j ≤ ε.

(b) Note that qx ≤ (K/a)α by Chebyshev’s inequality. We now observe that
s∑
j=1

K2
(2ep
εj

)2/α
≤ K2

(2ep
ε

)2/α{
1 +

∫ s

1

x−2/α dx

}
≤ α− 2

α
K2s

(2ep
εs

)2/α
= r

The rest then follows from the proof for part (a).
(c) By a union bound and the proof for the previous parts, we have

P
(
max
s∈[p]

Zs/rs > 1
)
≤

(
p∑
s=1

P(|Ja(s)| > s)

)
+ P

(
max
s∈[p]

∑s
j=1

(
|X|2(p−j+1) − 1

)
rs

> 1

)

≤
p∑
s=1

(ε/2)s +

p∑
j=1

P
(
|X|(p−j+1) > K

(2ep
εj

)2/α)

≤
p∑
s=1

(ε/2)s +

p∑
j=1

(ε/2)j ≤ 2ε.

Lemma 35. Let γ > 0. Then, for all x ≥ (2γ − 1)−1/γ we have
∞∑
i=0

exp
{
−(x2i)γ

}
≤ 2 exp(−xγ).

Proof. By the convexity of y 7→ 2γy, we have that 2(i+1)γ − 2iγ ≥ 2iγ − 2(i−1)γ and thus

2iγ = 1 +

i∑
j=1

(2jγ − 2(j−1)γ) ≥ 1 + i(2γ − 1).

for all i ∈ Z+. Denote x̃ := exp(xγ). We hence deduce that when x̃ > 2
1

2γ−1 ,
∞∑
i=0

exp
{
−(x2i)γ

}
=

∞∑
i=0

x̃−2iγ ≤
∞∑
i=0

x̃−1−i(2γ−1) =
1

x̃
(
1− x̃−(2γ−1)

) ≤ 2x̃−1.

Lemma 36. Let Z1, . . . , Zn be independent mean zero random variables.
(a) Assume that there exists C > 0 such that EZ4

i ≤ C for all i ∈ [n]. Then for any v = (v1, . . . , vn)
⊤ ∈ Rn, we have

E
[( n∑

i=1

viZi

)4]
≤ 3C∥v∥42.

(b) Assume that there exists C > 0 such that E
(
|Zi|2k

)
≤ C for some k ≥ 1. Then, there exists a constant Ck > 0, depending

only on k and C such that

E
[∣∣∣ n∑

i=1

Zi/n
∣∣∣2k] ≤ Ckn

−k.

Proof. (a) Since EZ0
i = 1 and EZ1

i = 0 for all i ∈ [n], we have

E
[( n∑

i=1

viZi

)4]
=

n∑
i=1

v4i EZ4
i +

∑
1≤i<j≤n

6v2i v
2
jE(Z2

i Z
2
j ) ≤ C

( n∑
i=1

v4i +
∑

1≤i<j≤n

6v2i v
2
j

)
≤ 3C

( n∑
i=1

v2i

)2
,
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where the first inequality follows from Jensen’s inequality.
(b) Note that Sj :=

∑j
i=1 Zi is a martingale (adapted to the natural filtration) and [S]j :=

∑j
i=1 Z

2
i can be viewed as the

quadratic variation of this martingale. By Burkholder–Davis–Gundy inequality, e.g. Theorem 1.1 of [59], we have for any
k ≥ 1,

E
[
|Sn|2k

]
≤ E

[(
max
j≤n

|Sj |
)2k]

≤ Ck,1E
[(
[S]n

)k]
,

for some constant Ck,1 > 0, depending only on k. Thus, we have

E
[∣∣∣ n∑

i=1

Zi/n
∣∣∣2k] ≤ Ck,1

n2k
E
[( n∑

i=1

Z2
i

)k]
≤ Ck,1

nk
E
[∑n

i=1 |Zi|2k

n

]
≤ CCk,1

nk
,

where we have used Jensen’s inequality in the second inequality.

Lemma 37. Let k ≥ 1 and V1, . . . , VL be independent random vectors in Rp, each having zero mean and independent
coordinates. Assume that there exists C > 0 such that E

[
|Vi(j)|2k

]
≤ C for all i ∈ [L] and j ∈ [p]. Denote V :=

∑L
i=1 Vi/L.

Then for any δ ∈ (0, 1), we have

P

(∣∣∣∣ p∑
j=1

L
(
V

2
(j)− 1/L

)∣∣∣∣ > Ck
p

1
2∨

1
k

δ1/k

)
≤ δ

for some constant Ck > 0, depending only on C and k.

Proof. We first prove the result for 1 ≤ k ≤ 2. Note that for any η > 0

P
(∣∣∣∣ p∑

j=1

L
(
V

2
(j)− 1/L

)∣∣∣∣ > η

)
≤ pP

(∣∣L(V 2
(1)− 1/L

)∣∣ > η
)

+ P
(∣∣∣∣ p∑

j=1

L
(
V

2
(j)− 1/L

)
1
{∣∣L(V 2

(j)− 1/L
)∣∣ ≤ η

}∣∣∣∣ > η

)
. (119)

We control the two terms separately. For the first term, we have

P
(∣∣L(V 2

(1)− 1/L
)∣∣ > η

)
≤

E
[∣∣LV 2

(1)− 1
∣∣k]

ηk
≤

2k−1
(
E
∣∣LV 2

(1)
∣∣k + 1

)
ηk

≤ 2k−1(C0,k + 1)

ηk
, (120)

where the three inequalities follow, respectively, from Markov’s inequality, Jensen’s inequality and Lemma 36(b), with C0,k

being the constant that depends only on C and k in that lemma. For convenience, we denote C1,k := 2k−1(C0,k+1) hereafter.
For the second term in (119), we have

P
(∣∣∣∣ p∑

j=1

L
(
V

2
(j)− 1/L

)
1
{∣∣L(V 2

(j)− 1/L)
∣∣ ≤ η

}∣∣∣∣ > η

)

≤ 1

η2

{
pE
[(
LV

2
(1)− 1

)2
1
{∣∣L(V 2

(1)− 1/L)
∣∣ ≤ η

}]

+ p2
(
E
[
L
(
V

2
(1)− 1/L

)
1
{∣∣L(V 2

(1)− 1/L)
∣∣ > η

}])2
}

≤ p

η2
E
[∣∣LV 2

(1)− 1
∣∣kη2−k]+ p2

η2

{
E
[∣∣LV 2

(1)− 1
∣∣k]}2/k{

P
(∣∣L(V 2

(1)− 1/L
)∣∣ > η

)}2(k−1)/k

≤ C1,kp

ηk
+
C

2/k
1,k p

2

η2

(
C1,k

ηk

)2(k−1)/k

, (121)

where we have used Markov’s inequality for the first inequality, Hölder’s inequality for the second one and (120) for the last
one. Combining (119), (120) and (121), we have

P
(∣∣∣∣ p∑

j=1

L
(
V

2
(j)− 1/L

)∣∣∣∣ > η

)
≤ 2C1,kp

ηk
+
C2

1,kp
2

η2k
.

Note that if C1,kp/η
k > 1, the bound above holds trivially. Therefore we obtain

P
( p∑
j=1

L(V
2
(j)− 1/L) > η

)
≤ 3C1,kp

ηk
,
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for any η > 0, which is equivalent to the claimed bound.
For k > 2, by Markov’s inequality, (120) and Lemma 36(b), there exists a constant C2,k > 0, depending only on k and C

such that

P
(∣∣L(V 2

(1)− 1/L
)∣∣ > η

)
≤

E
[∣∣∣∑p

j=1 L
(
V

2
(j)− 1/L

)∣∣∣k]
ηk

≤ C2,kp
k/2

ηk
,

which proves the desired result.

Lemma 38. Let n ∈ Z+ and c ∈ R. Let a1, . . . , an, b1, . . . , bn be 2n real numbers. Suppose that ai − bi ≤ c for all i ∈ [n].
Then

median(a1, . . . , an)−median(b1, . . . , bn) ≤ c.

Proof. We sort the two arrays respectively and obtain a(1) ≤ . . . ≤ a(n) and b(1) ≤ . . . ≤ b(n). We show that a(i) − b(i) ≤ c
for all i ∈ [n]. Indeed, there exists a set Ii ⊆ [n] with |Ii| ≥ i such that

b(i) = max{bj : j ∈ Ii} ≥ max{aj − c : j ∈ Ii} ≥ a(i) − c.

The desired results follows by observing that the median is a convex combination of the order statistics.

Lemma 39. Let 1 ≤ α ≤ 2 and X1, . . . , Xn be independent random vectors in Rp with mean µ. Assume that the distribution
of Xi − µ belongs to Wα for each i ∈ [n]. Then

P
(∣∣∣∥X∥2 − ∥µ∥2

∣∣∣ ≥ u
)
≤ πp

α
2

nα−1uα
,

for any u > 0.

Proof of Lemma 39. By Lemma 4.2 in [42], we have

E|⟨X − µ, v⟩|α ≤ 2

nα−1
,

for any unit vector v ∈ Rp. This means that X − µ also satisfy (36) but with a different constant instead of 1. Then, we use
Lemma 4.1 in [42] to deduce

E∥X − µ∥α2 ≤ π

nα−1
p

α
2 .

By triangle inequality and Markov’s inequality, we have

P
(∣∣∣∥X∥2 − ∥µ∥2

∣∣∣ ≥ u
)
≤ P(∥X − µ∥2 ≥ u) ≤ πp

α
2

nα−1uα
,

as desired.

REFERENCES

[1] T. Wang and R. J. Samworth, “High dimensional change point estimation via sparse projection,” Journal of the Royal Statistical Society, Series B
(Statistical Methodology), vol. 80, pp. 57–83, 2018.

[2] H. Liu, C. Gao, and R. J. Samworth, “Minimax rates in sparse, high-dimensional change point detection,” Annals of Statistics, vol. 49, no. 2, pp.
1081–1112, 2021.

[3] D. Wang, Y. Yu, and A. Rinaldo, “Optimal change point detection and localization in sparse dynamic networks,” Annals of Statistics, vol. 49, no. 1, pp.
203–232, 2021.

[4] D. Wang and Z. Zhao, “Optimal change-point testing for high-dimensional linear models with temporal dependence,” arXiv preprint, p. arXiv:2205.03880,
2022.

[5] H. Xu, D. Wang, Z. Zhao, and Y. Yu, “Change-point inference in high-dimensional regression models under temporal dependence,” Annals of Statistics,
vol. 52, no. 3, pp. 999–1026, 2024.

[6] N. Verzelen, M. Fromont, M. Lerasle, and P. Reynaud-Bouret, “Optimal change-point detection and localization,” Annals of Statistics, vol. 51, pp.
1586–1610, 2023.

[7] M. Yu and X. Chen, “A robust bootstrap change point test for high-dimensional location parameter,” Electronic Journal of Statistics, vol. 16, no. 1, pp.
1096–1152, 2022.

[8] F. Jiang, R. Wang, and X. Shao, “Robust inference for change points in high dimension,” Journal of Multivariate Analysis, vol. 193, pp. 105–114, 2023.
[9] L. Comminges, O. Collier, M. Ndaoud, and A. B. Tsybakov, “Adaptive robust estimation in sparse vector model,” Annals of Statistics, vol. 49, no. 3,

pp. 1347–1377, 2021.
[10] S. I. Resnick, Heavy-tail Phenomena: Probabilistic and Statistical Modeling. Springer Science & Business Media, 2007.
[11] H. Cho and D. Owens, “High-dimensional data segmentation in regression settings permitting temporal dependence and non-gaussianity,” Electronic

Journal of Statistics, vol. 18, no. 1, pp. 2620–2664, 2024.
[12] P. Fearnhead and G. Rigaill, “Changepoint detection in the presence of outliers,” Journal of the American Statistical Association, vol. 114, no. 525, pp.

169–183, 2019.
[13] M. Li and Y. Yu, “Adversarially robust change point detection,” Advances in Neural Information Processing Systems, vol. 34, pp. 22 955–22 967, 2021.
[14] D. Mukherjee, M. Banerjee, and Y. Ritov, “On robust learning in the canonical change point problem under heavy tailed errors in finite and growing

dimensions,” Electronic Journal of Statistics, vol. 16, no. 1, pp. 1153–1252, 2022.



IEEE TRANSACTIONS ON INFORMATION THEORY 50

[15] B. Liu, Z. Qi, X. Zhang, and Y. Liu, “Change point detection for high-dimensional linear models: A general tail-adaptive approach,” arXiv preprint, p.
arXiv:2207.11532, 2022.

[16] L. Wegner and M. Wendler, “Robust change-point detection for functional time series based on u-statistics and dependent wild bootstrap,” arXiv preprint,
p. arXiv:2206.01458, 2022.

[17] K. Ramsay and S. Chenouri, “Robust multiple change-point detection for multivariate variability using data depth,” arXiv preprint, p. arXiv:2011.09558,
2020.

[18] S. Chenouri, A. Mozaffari, and G. Rice, “Robust multivariate change point analysis based on data depth,” Canadian Journal of Statistics, vol. 48, no. 3,
pp. 417–446, 2020.
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[34] J. Kwon, G. Lecué, and M. Lerasle, “A mom-based ensemble method for robustness, subsampling and hyperparameter tuning,” Electronic Journal of

Statistics, vol. 15, pp. 1202–1227, 2021.
[35] G. Lugosi and S. Mendelson, “Mean estimation and regression under heavy-tailed distributions: a survey,” Foundations of Computational Mathematics,

vol. 9, pp. 1145–1190, 2019.
[36] A. Prasad, S. Balakrishnan, and P. Ravikumar, “A unified approach to robust mean estimation,” arXiv preprint, p. arXiv:1907.00927, 2019.
[37] R. Vershynin, “On the role of sparsity in compressed sensing and random matrix theory,” in 2009 3rd IEEE International Workshop on Computational

Advances in Multi-Sensor Adaptive Processing (CAMSAP). IEEE, 2009, pp. 189–192.
[38] G. Lugosi and S. Mendelson, “Robust multivariate mean estimation: the optimality of trimmed mean,” Annals of Statistics, vol. 49, no. 1, pp. 393–410,

2021.
[39] K. Frick, A. Munk, and H. Sieling, “Multiscale change point inference,” Journal of the Royal Statistical Society, Series B (Statistical Methodology),

vol. 76, no. 3, pp. 495–580, 2014.
[40] R. C. Bradley, “Basic properties of strong mixing conditions. a survey and some open questions.” Probability Surveys, vol. 2, pp. 107–144, 2005.
[41] ——, “Every “lower psi-mixing” markov chain is “interlaced rho-mixing”,” Stochastic Processes and Their Applications, vol. 72, pp. 221–239, 1997.
[42] Y. Cherapanamjeri, N. Tripuraneni, P. Bartlett, and M. Jordan, “Optimal mean estimation without a variance,” in Conference on Learning Theory. PMLR,

2022, pp. 356–357.
[43] J. D. Castillo, J. Daoudi, and R. Lockhart, “Methods to distinguish between polynomial and exponential tails,” Scandinavian Journal of Statistics, vol. 41,

no. 2, pp. 382–393, 2014.
[44] D. Bhati, “A test procedure for distinguishing logarithmically decaying tail from polynomially decaying tail,” Journal of the Korean Statistical Society,

vol. 49, pp. 841–862, 2020.
[45] M. Vladimirova, S. Girard, H. Nguyen, and J. Arbel, “Sub-weibull distributions: Generalizing sub-gaussian and sub-exponential properties to heavier

tailed distributions,” Stat, vol. 9, no. 1, p. e318, 2020.
[46] W. Hoeffding, “Probability inequalities for sums of bounded random variables,” Journal of the American Statistical Association, vol. 58, pp. 13–30,

1963.
[47] M. Mitzenmacher and E. Upfal, Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis. Cambridge

University Press, 2017.
[48] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course. Springer Science & Business Media, 2003, vol. 87.
[49] C. Gao, F. Han, and C.-H. Zhang, “On estimation of isotonic piecewise constant signals,” Annals of Statistics, vol. 48, no. 2, pp. 629–654, 2020.
[50] I. A. Ibragimov and R. Z. Has’ Minskii, Statistical Estimation: Asymptotic Theory. Springer Science & Business Media, 2013, vol. 16.
[51] Q.-M. Shao and H. Yu, “Weak convergence for weighted empirical processes of dependent sequences,” Annals of Probability, vol. 24, pp. 2098–2127,

1996.
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