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Abstract

We propose a new method for high-dimensional semi-supervised learning prob-
lems based on the careful aggregation of the results of a low-dimensional procedure
applied to many axis-aligned random projections of the data. Our primary goal
is to identify important variables for distinguishing between the classes; existing
low-dimensional methods can then be applied for final class assignment. Motivated
by a generalized Rayleigh quotient, we score projections according to the traces of
the estimated whitened between-class covariance matrices on the projected data.
This enables us to assign an importance weight to each variable for a given pro-
jection, and to select our signal variables by aggregating these weights over high-
scoring projections. Our theory shows that the resulting Sharp-SSL algorithm is
able to recover the signal coordinates with high probability when we aggregate over
sufficiently many random projections and when the base procedure estimates the
whitened between-class covariance matrix sufficiently well. The Gaussian EM al-
gorithm is a natural choice as a base procedure, and we provide a new analysis of
its performance in semi-supervised settings that controls the parameter estimation
error in terms of the proportion of labeled data in the sample. Numerical results on
both simulated data and a real colon tumor dataset support the excellent empirical
performance of the method.

1 Introduction

Semi-supervised learning, where we attempt to assign observations to one of finitely
many groups based on partially-labeled training data, represents a core modern statistical
challenge. It is sufficiently general to incorporate, at either extreme, the unsupervised
case of no labeled training data (clustering) and the supervised setting of fully-labeled
training data (classification). Such tasks abound in many application areas, including
genomics (e.g., Eisen et al., 1998), image processing (Jain and Flynn, 1996; Cheplygina,
de Bruijne and Pluim, 2019), natural language processing (Liang, 2005; Turian, Ratinov
and Bengio, 2010) and anomaly detection (Akcay, Atapour-Abarghouei and Breckon,
2019; Wang et al., 2019). Entry points to the literature on semi-supervised learning
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include Zhu (2005), Zhu and Goldberg (2009), Chapelle, Schölkopf and Zien (2006) and
Van Engelen and Hoos (2020). For introductions to clustering, see Xu and Wunsch
(2005), Kaufman and Rousseeuw (2009) and Xu and Tian (2015), and for classification,
see Devroye, Györfi and Lugosi (2013) and Hastie, Tibshirani and Friedman (2009).

A common feature of contemporary semi-supervised learning problems is high-
dimensionality, since we may record many covariates having a possible association with
the labels corresponding to different observations. This represents a significant challenge,
as can be seen by considering a simple two-class problem with more covariates than ob-
servations. For any given assignment of class labels, if no subset of n0 observations lies
in an (n0 − 2)-dimensional affine space, then we can find hyperplanes with orthogonal
normal vectors, each of which achieves zero training error (in other words, they perfectly
separate the classes). Nevertheless, even in the simple setting where the true Bayes deci-
sion boundary is linear, many such hyperplanes may be little better than a random guess
on test data.

An appealing approach to tackling high-dimensionality is via random projections into
lower-dimensional spaces. Such projections may almost preserve the pairwise distances
between observations, as seen from the Johnson–Lindenstrauss lemma (Johnson and Lin-
denstrauss, 1984; Dasgupta and Gupta, 2003). Moreover, in cases where we have reason
to believe that only a relatively small proportion of the variables recorded are relevant
for the learning task, we can choose our random projections to be axis-aligned in order
to preserve this structure. A third benefit is the possibility of aggregating results over
multiple random projections, though this must be done with care so as to avoid noise
accumulation. These attractions have meant that random projections have now been
employed in many high-dimensional statistical problems, including precision matrix esti-
mation (Marzetta, Tucci and Simon, 2011), two-sample mean testing (Lopes, Jacob and
Wainwright, 2011), classification (Durrant and Kabán, 2015; Cannings and Samworth,
2017), (sparse) principal component analysis (Yang et al., 2021; Gataric, Wang and Sam-
worth, 2020), linear regression (Thanei, Heinze and Meinshausen, 2017; Slawski, 2018;
Dobriban and Liu, 2019; Ahfock, Astle and Richardson, 2021), clustering (Dasgupta,
1999; Fern and Brodley, 2003; Han and Boutin, 2015; Yellamraju and Boutin, 2018; An-
derlucci, Fortunato and Montanari, 2022) and dimensionality reduction (Bingham and
Mannila, 2001; Reeve, Kabán and Bootkrajang, 2022). See Cannings (2021) for a review
of recent developments in the area.

In this paper, we propose a new method, called Sharp-SSL (short for Selective high-
dimensional, axis-aligned random projections for Semi-Supervised Learning). Our pri-
mary goal is to identify a small subset of variables that are particularly helpful for label
assignment; existing low-dimensional methods can then be used to complete the learn-
ing task. To this end, we generate a large number of axis-aligned random projections,
and apply a base learning procedure such as a semi-supervised version of the Gaussian
Expectation–Maximization (EM) algorithm to our projected data. Motivated by the no-
tion of a generalized Rayleigh quotient (see (2) below for a formal definition), and to avoid
the noise accumulation issue mentioned above, we score the projections by computing the
trace of the corresponding estimated whitened between-class covariance matrices. This
enables us to assign an importance weight to each variable for a given projection, and we
select our signal variables by aggregating these importance weights over the high-scoring
projections. See Section 2 for a more detailed description of our methodology.

Section 3 is devoted to a theoretical analysis of our Sharp-SSL algorithm. We first
show in Theorem 2 that provided the low-dimensional base learning procedure satisfies
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a guarantee on the proximity of the estimated whitened between-class covariance matrix
to its population analogue, the corresponding high-dimensional semi-supervised learning
algorithm can recover the signal coordinates with high probability when we aggregate
over sufficiently many random projections. It turns out that both Linear Discriminant
Analysis and an EM algorithm are examples of low-dimensional learning procedures that
satisfy this proximity guarantee, as we prove in Theorems 3 and 6 respectively. The latter
is particularly challenging, and one of the main novel contributions of our analysis is to
provide a guarantee on the performance of a d-dimensional Gaussian EM algorithm in
a semi-supervised setting. In particular, we control the parameter estimation error in
terms of the proportion of labeled data in the sample, showing that with a sample size
of n it smoothly interpolates between the (d/n)1/4 rate for unsupervised learning and
the (d/n)1/2 rate for fully-labeled data, up to logarithmic factors. An advantage of the
modular approach to our analysis is that it illustrates the way in which the Sharp-SSL

algorithm can be combined with different base learning algorithms to adapt to different
problem settings and reflect the preferences of the practitioner.

In Section 4, we study the numerical performance of the Sharp-SSL algorithm. Our
first goal, in Section 4.1, is to study the effect of the choices of input parameters to our
method, which allows us to recommend sensible default choices for application in our
subsequent comparisons. Section 4.2 presents the results of a simulation study involv-
ing the Sharp-SSL method, as well as five alternative approaches, on high-dimensional
clustering tasks (since not all of the competing methods are able to leverage partial label
information). We find that the Sharp-SSL algorithm is able to attain a misclustering
rate very close to that of the optimal Bayes classifier, even with only around 50 observa-
tions per cluster, in settings where these alternative techniques may perform poorly. In
Section 4.3, we investigate the extent to which the different versions of the Sharp-SSL

method are able to leverage partial label information. The results here are consistent
with the phase transition phenomenon articulated by our theory. Finally, in Section 4.4,
we apply the Sharp-SSL algorithm, as well as the other methods from our simulation
study, on a colon tumor dataset, where we withhold the true labels from the algorithms
in order to assess performance. Our analysis supports the ability of the Sharp-SSL algo-
rithm to identify signal coordinates (genes) that are useful for identifying patients with
and without tumors.

In the broader literature on high-dimensional learning problems, a large number of
methods have been developed to leverage sparse low-dimensional structures for both clus-
tering (Witten and Tibshirani, 2010; Azizyan, Singh and Wasserman, 2013; Wasserman,
Azizyan and Singh, 2014; Azizyan, Singh and Wasserman, 2015; Jin and Wang, 2016;
Verzelen and Arias-Castro, 2017; Löffler, Wein and Bandeira, 2022; Löffler, Zhang and
Zhou, 2021) and classification (Cai and Liu, 2011; Witten and Tibshirani, 2011; Mai, Zou
and Yuan, 2012; Cai and Zhang, 2019). These methods are not designed for partially-
labeled (semi-supervised) settings. Another common approach is to project the data into
the span of the top few principal components, and run a standard low-dimensional method
such as k-means clustering or the EM algorithm (Butler et al., 2018). This approach can
fail if the directions of largest variation in the data are not aligned with the directions
separating the clusters. Finally, recent developments in other aspects of semi-supervised
learning include self-training (Oymak and Gulcu, 2020), mean estimation (Zhang, Brown
and Cai, 2019), choice of k in k-nearest neighbour classification (Cannings, Berrett and
Samworth, 2020) and linear regression (Chakrabortty and Cai, 2018).

Proofs of all of our results are provided in Section 5, and we conclude this introduction
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with some notation used throughout the paper. We write Sd×d for the set of d-dimensional
symmetric matrices, write Sd×d+ for the subset that are invertible, and write Sd×dK−1 the
subset of matrices in Sd×d of rank at mostK−1. We write Rd×d for the set of d-dimensional
matrices. For p ≥ d, let Op×d denote the set of p×d matrices with orthonormal columns.
The Euclidean norm is denoted by ‖ · ‖, and the operator norm of a matrix is denoted by
‖ · ‖op, so that ‖A‖op := sup{x:‖x‖=1} ‖Ax‖. Given two sequences (an) and (bn), we write
an . bn when there exists a universal constant C > 0 such that an ≤ Cbn, and, given an
additional problem parameter R, we write an .R bn when there exists C > 0, depending
only on R, such that an ≤ Cbn.

For any set S ⊆ Rd and d ≤ |S|, we write
(
S
d

)
:= {A ⊆ S : |A| = d}. If S ⊆ Rd,

we define sargmaxS to be the smallest element in the argmax in the lexicographic order.
For a positive integer k, we define [k] := {1, . . . , k}. For a vector v = (v1, . . . , vk)

> ∈ Rk,
and j ∈ [k], we define v−j = (v1, . . . , vj−1, vj+1, . . . , vk)

> ∈ Rk−1.

2 The Sharp-SSL algorithm

In this section, we describe in detail the Sharp-SSL algorithm for K-class semi-supervised
learning, with K ≥ 2. We aim to provide a unified treatment of clustering, semi-
supervised learning and classification. To this end, we assume that for i ∈ [n], the
observation xi ∈ Rp has a true label y∗i ∈ [K], but it may be the case that we do not
observe y∗i . Instead, we assume that our observed label yi takes values in [K]∪{0}, where
yi := y∗i when the true class label is observed, and yi := 0 otherwise. Thus, our data can
be regarded as (x1, y1), . . . , (xn, yn) ∈ Rp×([K]∪{0}), and our goal is to construct a data-
dependent classifier 1, i.e. a Borel measurable function C : Rp×

(
Rp×([K]∪{0})

)n → [K],
with the interpretation that C

(
x; (x1, y1), . . . , (xn, yn)

)
is the predicted class of x ∈ Rp.

To motivate our Sharp-SSL algorithm, it is instructive first to consider a canonical
Gaussian classification problem, where our data can be regarded as n independent real-
izations of a pair (X, Y ) taking values in Rp× [K], with prior probability πk := P(Y = k)
for the kth class and X | Y = k ∼ Np(νk,Σw), for class means ν1, . . . , νK ∈ Rp and

within-class covariance matrix Σw ∈ Sp×p+ . Let ν :=
∑K

k=1 πkνk ∈ Rp denote the grand
population mean, let

Σb :=
K∑
k=1

πk(νk − ν)(νk − ν)> ∈ Sp×pK−1 (1)

denote the between-class covariance matrix, and consider D ∈ Op×(K−1) with a column
space spanned by Σ−1

w (ν1 − ν), . . . ,Σ−1
w (νK − ν). Observe that for k 6= `,

log

{
P(Y = k | X = x)

P(Y = ` | X = x)

}
= log

(πk
π`

)
− 1

2
(νk + ν`)

>Σ−1
w (νk − ν`) + x>Σ−1

w (νk − ν`),

from which we deduce that this likelihood ratio, and hence the Bayes classifier x 7→
argmaxk∈[K] P(Y = k | X = x), only depends on x through D>x. Thus, for the purposes
of classification, no signal would be lost (and the noise would be reduced) if X were
replaced with D>X.

1It is convenient to use the term ‘classifier’ here, even though some or all of the labels may be
unobserved.
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In high-dimensional settings with p� n, the matrix Σ−1
w is not consistently estimable

in general, but we can nevertheless make progress if the vectors Σ−1
w (ν1−ν), . . . ,Σ−1

w (νK−
ν) are sparse. In other words, writing S0 for the union of the set of coordinates for which
these vectors are non-zero, we suppose that |S0| � p; this is a very common assumption
in high-dimensional LDA (e.g. Cai and Liu, 2011; Witten and Tibshirani, 2011; Mai, Zou
and Yuan, 2012; Cai and Zhang, 2019).

In such a setting, the column space of D has a sparse basis, so it is natural to consider
projecting the data onto a small subset of its coordinates. For d ∈ [p], define the set of
axis-aligned projection matrices Pd :=

{
P ∈ {0, 1}d×p : PP> = Id

}
, i.e. the set of binary

d×p matrices with orthonormal rows. By the argument above, if d ≥ |S0| then there exists
P ∗ ∈ Pd such that the error of the Bayes classifier is unchanged by projecting the data
along P ∗. In practice, it would typically be computationally too expensive to enumerate
through all p(p−1) · · · (p−d+1) axis-aligned projections. Instead, we consider a randomly
chosen subset of projections within Pd. An axis-aligned projection chosen uniformly at
random is unlikely to capture all the signal coordinates S0, but by aggregating over a
carefully-chosen subset of these random projections, we can nevertheless recover the set
of signal coordinates under suitable conditions; see Theorem 2 below. To describe our
method for choosing good projections, for V ∈ Op×d, we define the generalized Rayleigh
quotient along V by

J(V ; Σb,Σw) := tr{(V >ΣwV )−1(V >ΣbV )}. (2)

Proposition 1 below motivates seeking to choose projections to maximize the generalized
Rayleigh quotient by showing that the column span of any maximizer J(V ; Σb,Σw) over
V ∈ Op×d must contain the column space of D.

Proposition 1. Let K ≥ 2 and d ≥ K − 1. Assume that the convex hull of ν1, . . . , νK is
(K − 1)-dimensional, and let V ∗ ∈ argmaxV ∈Op×d J(V ; Σb,Σw). Then the column space
of V ∗ contains the eigenspace corresponding to the K−1 non-zero eigenvalues2 of Σ−1

w Σb,
which is equal to the space spanned by

(
Σ−1

w (νk − ν) : k ∈ [K]
)
.

Based on Proposition 1, a natural conceptual approach to maximizing the generalized
Rayleigh quotient is to compute the leading (K − 1)-dimensional eigenspace of Σ−1

w Σb.
This strategy, however, runs into difficulties when we replace these population quantities
with their sample versions in the setting of the opening paragraph of this section. More
precisely, writing nk :=

∑n
i=1 1{yi=k} for k ∈ [K], as well as

Σ̃w :=
1

n

K∑
k=1

n∑
i=1

(xi − ν̂k)(xi − ν̂k)>1{yi=k} ∈ Rp×p

Σ̃b :=
K∑
k=1

nk
n

(ν̂k − ν̂)(ν̂k − ν̂)> ∈ Rp×p,

for the sample versions of the within-class and between-class covariance matrices respec-
tively, the matrix Σ̃w is not invertible whenever p > n. Fortunately, though, this issue
can be resolved by working with the projected data, as long as we choose d ≤ n − K:
the projected data {PXi : i ∈ [n]} has within-class covariance matrix PΣwP

> ∈ Rd×d

2Even though Σ−1
w Σb is not guaranteed to be symmetric, it is similar (i.e. conjugate) to the symmetric

matrix Σ
−1/2
w ΣbΣ

−1/2
w , so has real eigenvalues and eigenvectors.
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and between-class covariance matrix PΣbP
> ∈ Rd×d, so with probability one, the sample

version P Σ̃wP
> is invertible.

Returning to the general setting of the opening paragraph of this section, then, we
seek projections P with large J(P>; Σ̃b, Σ̃w) = tr

{
(P Σ̃wP

>)−1(P Σ̃bP
>)
}

. To this end,
for fixed A,B ∈ N, we sample a set of projections {P a,b : a ∈ [A], b ∈ [B]} uniformly
at random from Pd. For each a and b, we apply a low-dimensional base algorithm
ψ :

(
Rd × ([K] ∪ {0})

)n → Sd×d+ to the projected data (P a,bx1, y1), . . . , (P a,bxn, yn)

to obtain an estimator Q̂a,b of (P a,bΣwP
a,b,>)−1(P a,bΣbP

a,b,>), the whitened between-
class covariance matrix of the projected data. We assume throughout for conve-
nience that ψ is permutation equivariant in the sense that ψ

(
(Πz1, y1), . . . , (Πzn, yn)

)
=

Πψ
(
(z1, y1), . . . , (zn, yn)

)
Π> for every permutation matrix Π ∈ Rd×d. One choice for the

base algorithm is to set Q̂a,b = (Σ̂a,b
w )−1Σ̂a,b

b , where Σ̂a,b
w and Σ̂a,b

b are estimated projected
within- and between-class (or cluster) covariance matrices.

To select projections, for each a ∈ [A], we define

b∗(a) := sargmax
b∈[B]

tr(Q̂a,b),

and select P a,b∗(a). The main rationale for dividing the projections into A groups and
selecting one within each group—as opposed to selecting the A projections with the
largest values of tr(Q̂a,b)—is that, conditional on the original data, the selected projections
are independent and identically distributed. This facilitates our theoretical analysis by
enabling the application of concentration inequalities in the proof of Theorem 2.

The diagonal entries of {Q̂a,b∗(a) : a ∈ [A]} measure the importance of the projected
variables for the semi-supervised learning task. These can then be converted into im-
portance scores for the original variables by ‘back-projecting’ into the higher-dimensional
space, i.e. by forming the vector ŵ = (ŵ1, . . . , ŵp)

> ∈ Rp given by

ŵj :=
1

A

A∑
a=1

[
P a,b∗(a),>Q̂a,b∗(a)P a,b∗(a)

]
j,j
, j ∈ [p].

Finally, we rank the variables by their importance scores, and our estimate Ŝ of the set
of signal coordinates is given by the largest ` entries in ŵ, breaking ties arbitrarily if
necessary, where ` ∈ [p] is specified by the practitioner. Pseudocode for the Sharp-SSL

procedure is given in Algorithm 1.
After applying Algorithm 1 to obtain an estimated set Ŝ of signal variables, we can

then apply any existing semi-supervised learning method for low-dimensional data with
input (PŜxi,, yi)i∈[n], where PŜ denotes the projection onto the coordinates in Ŝ.

2.1 Base learning methods

Algorithm 1 relies on a base learning method for low-dimensional data to estimate the
projected whitened between-class covariance matrix from the projected data. When all or
almost all of the input data are labeled, we can use the procedure outlined in Algorithm 2,
which ignores any unlabeled data, for this purpose. On the other hand, when we have a
substantial amount of unlabeled data, Algorithm 2 may be inaccurate. In such circum-
stances, it may be preferable to use Algorithm 3, which runs an Expectation–Maximization
(EM) procedure to predict the unobserved labels and subsequently estimate the whitened
between-class covariance matrix. More precisely, from M random initializations of the
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Algorithm 1: Sharp-SSL: Clustering and semi-supervised learning via ensem-
bles of axis-aligned random projections.

Input: Data (x1, y1), . . . , (xn, yn) ∈ Rp× ([K] ∪ {0}) (where yi = 0 denotes a
missing label);
Projected dimension d ∈ [min(p, n−K)], number of selected signal
coordinates ` ∈ [p];
Number A ∈ N of groups of projections, number B ∈ N of projections in
each group;
Permutation equivariant base algorithm ψ :

(
Rd × ([K] ∪ {0})

)n → Sd×d+ .
Generate axis-aligned random projections {P a,b : a ∈ [A], b ∈ [B]} independently
and uniformly from Pd.

for a ∈ [A] do
for b ∈ [B] do

Let Q̂a,b := ψ
(
(P a,bx1, y1), . . . , (P a,bxn, yn)

)
.

end

Set b∗(a) := sargmaxb∈[B] tr(Q̂a,b).

end

Let ŵ = (ŵ1, . . . , ŵp)
>, where ŵj := 1

A

∑A
a=1[P a,b∗(a),>Q̂a,b∗(a)P a,b∗(a)]j,j.

Output: Ŝ ⊆ [p], defined as the index set of the ` largest components of ŵ,
breaking ties randomly.

cluster means and the within-class covariance matrix, Algorithm 3 uses the EM algorithm
to update these quantities, and thereby compute the whitened between-cluster sample
covariance matrix estimators

{
Q̂[m] = (Σ̂

[m]
w )−1(Σ̂

[m]
b ) : m ∈ [M ]

}
. We select m̂ ∈ [M ]

such that Q̂[m̂] is in best agreement with results from the other EM runs; this is made
precise in (6).

The algorithm also allows the practitioner to incorporate prior knowledge about the
true cluster means and within-cluster covariance matrices, both through optimizing over
a restricted constraint set C in the M step of the EM algorithm, and through the choice
of a distribution supported on C for the initialization of these quantities. An alternative
to the EM algorithm for unsupervised learning would be to apply k-means clustering as a
base procedure. Previous studies have suggested that these approaches have comparable
empirical performance (e.g., de Souto et al., 2008; Rodriguez et al., 2019, and references
therein), but the EM algorithm is more amenable to theoretical analysis in our setting.

3 Theoretical guarantees

3.1 Results for the high-level algorithm

In this subsection, we consider independent triples (X1, Y1, Y
∗

1 ), . . . , (Xn, Yn, Y
∗
n ) taking

values in Rp × ([K] ∪ {0}) × [K]. We recall that Y ∗i denotes the true label of the ith
observation, and that Yi := Y ∗i if the ith label is observed, and Yi := 0 otherwise. For
k ∈ [K], let πk := P(Y ∗1 = k) and ν∗k := E(X1 | Y ∗1 = k) denote the prior probability
and the cluster mean of the kth cluster respectively, let ν∗ :=

∑K
k=1 πkν

∗
k denote the

weighted cluster mean and let Σw := Cov(X1 | Y ∗1 = k) denote the common within-
cluster covariance matrix. With the between-cluster covariance matrix Σb from (1), our
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Algorithm 2: Base learning using only labeled data

Input: (z1, y1), . . . , (zn, yn) ∈ Rd × ([K] ∪ {0}), where the convex hull of (zi)i:yi=k
is d-dimensional for at least one k ∈ [K].

Compute µ̂ := n−1
∑n

i=1 zi
for k ∈ [K] do

Set nk := |{i : yi = k}| and n′ :=
∑K

k=1 nk
Compute µ̂k := n−1

k

∑
i:yi=k

zi (with the convention that µ̂k := 0 if nk = 0).

end
Compute the within-class and between-class covariance matrices as

Σ̂w :=
1

n′

n∑
i=1

(zi − µ̂yi)(zi − µ̂yi)> and Σ̂b :=
K∑
k=1

nk
n′

(µ̂k − µ̂)(µ̂k − µ̂)>. (3)

Output: Q̂ := Σ̂−1
w Σ̂b.

goal is to estimate the set of signal coordinates,

S0 :=
{
j ∈ [p] : (Σ−1

w Σb)j,j 6= 0
}
,

and we write s0 := |S0|.
Our first main theoretical result shows that if the base algorithm is accurate on each

low-dimensional projection and A is large, then with high probability, all signal coordi-
nates are selected.

Theorem 2. Define γmin := minj∈S0(Σ
−1
w Σb)j,j and γmax := maxj∈S0(Σ

−1
w Σb)j,j. Let Ŝ be

the output of Algorithm 1 with input K, p, (X1, Y1), . . . , (Xn, Yn), A, B, d ≥ s0, ` ≥ s0

and permutation equivariant base procedure ψ. Write

ε := P
(

max
P∈Pd

∥∥ψ((PXi, Yi)i∈[n]

)
− PΣ−1

w ΣbP
>∥∥

op
≥ γmin

4(K − 1)

)
. (7)

Then
P(S0 ⊆ Ŝ) ≥ 1− ε− pe−Aγ2min/(50p2γ2max).

In fact, we can see from the proof of Theorem 2 that the following stronger conclusion
holds: for any realization (xi, yi)i∈[n] of the data satisfying

max
P∈Pd

∥∥ψ((Pxi, yi)i∈[n]

)
− PΣ−1

w ΣbP
>∥∥

op
<

γmin

4(K − 1)
, (8)

we have P
(
S0 ⊆ Ŝ | (Xi, Yi)i∈[n] = (xi, yi)i∈[n]

)
≥ 1 − pe−Aγ

2
min/(50p2γ2max). Note here

that, after conditioning on the data, the probability is taken over the randomness in the
projections. An attraction of Theorem 2 is its generality, and in particular the fact that
we do not impose strong distributional assumptions — we simply require control of ε
in (7). The price we pay for this generality is that the probability bound may be loose in
particular cases; for example, the bound holds even with B = 1, though in practice we
would expect it to improve as B increases.
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Algorithm 3: Base learning using partially labeled data via an EM algorithm

Input: Data (z1, y1), . . . , (zn, yn) ∈ Rd × ([K] ∪ {0}). A constraint set
C ⊆ (Rd)K × Sd×d+ and a probability distribution πC supported on C.
Number of random initializations M . Number of iterations T .

for m ∈ [M ] do

Randomly sample (µ̂1, . . . , µ̂K , Σ̂w) ∼ πC.
for t ∈ [T ] do

(E step) Compute the soft-label matrix (Li,k)i∈[n],k∈[K]

Li,k :=

(
e−

1
2

(zi−µ̂k)>Σ̂−1
w (zi−µ̂k)∑K

`=1 e
− 1

2
(zi−µ̂`)>Σ̂−1

w (zi−µ̂`)

)
1{yi=0} + 1{yi=k}. (4)

(M step) Update parameter estimates by

(µ̂1, . . . , µ̂K , Σ̂w)

:= argmin
(µ1,...,µK ,Σ)∈C

{
1

n

n∑
i=1

K∑
k=1

Li,k(zi − µk)>Σ−1(zi − µk) + log det Σ

}
.

(5)

end

Compute (Li,k)i∈[n],k∈[K] using the final values of (µ̂1, . . . , µ̂K , Σ̂w) as in (4).

Compute µ̂tot := n−1
∑n

i=1

∑K
k=1 Li,kµ̂k and the between-class covariance

matrix

Σ̂b :=
1

n

n∑
i=1

K∑
k=1

Li,k(µ̂k − µ̂tot)(µ̂k − µ̂tot)
>.

Set Q̂[m] := Σ̂−1
w Σ̂b.

end
Set

m̂ ∈ argmin
m∈[M ]

median
(
‖Q̂[m] − Q̂[m′]‖op : m′ ∈ [M ] \ {m}

)
. (6)

Output: Q̂ := Q̂[m̂].

9



3.2 Theory for base learning using labeled data

In this subsection, we demonstrate how the high-level result in Theorem 2 can be used to
derive performance guarantees for a high-dimensional classification algorithm that uses
the Sharp-SSL procedure in Algorithm 1 in conjunction with the low-dimensional base
method described in Algorithm 2 for estimating the projected whitened between-class
covariance matrix. The following theorem provides uniform control of the output of
Algorithm 2 for all axis-aligned d-dimensional projected datasets.

Theorem 3. Fix ε ∈ (0, 1], K ∈ {2, 3, . . . , }, p, d ∈ N with p ≥ d and n ∈ N with
n ≥ Kd + 1. Suppose that (X1, Y1), . . . , (Xn, Yn) are independent and identically dis-
tributed pairs, with P(Y1 = k) = πk and X1 | Y1 = k ∼ Np(ν∗k ,Σw) for k ∈ [K], and
let ψ

(
(PXi, Yi)i∈[n]

)
be the output of Algorithm 2 with input (Xi, Yi)i∈[n], for P ∈ Pd.

Suppose that ‖ν∗k − ν∗` ‖ ≤ R1 for all k, ` ∈ [K] and some R1 > 0, and that Σw is diagonal
and well-conditioned in the sense that max{‖Σw‖op, ‖Σ−1

w ‖op} ≤ R2 for some R2 ≥ 1. If

16R2
2K

n
≤ 1 and

32R2
2

n1/2
log1/2

(
8 · 9d

(
p
d

)
ε

)
≤ 1, (9)

then with probability at least 1− ε, we have

max
P∈Pd

∥∥ψ((PXi, Yi)i∈[n]

)
− (PΣwP

>)−1PΣbP
>∥∥

op

.R1,R2

K

n
+

√
d log(ep/d) + log(1/ε)

n
.

The sample size condition (9) can be restated as n &R1,R2 d log p + log(1/ε) + K,
so may be regarded as mild. Regarding K as a constant, Theorem 3 confirms that the
uniform control of Algorithm 2 is at the parametric rate, up to a logarithmic factor. The
following corollary then follows immediately by combining Theorems 2 and 3.

Corollary 4. Fix ε ∈ (0, 1]. Suppose that the conditions of Theorem 3 hold, and moreover
that λmin(Σb) ≥ 1/R3 for some R3 > 0. Then there exist C1, C2 > 0, depending only on
R1, R2 and R3, such that if

C1

(
K

n
+

√
d log(ep/d) + log(1/ε)

n

)
≤ 1

K
,

then the output Ŝ of Algorithm 1 with input K, p, d ≥ s0, ` ≥ s0, (X1, Y1), . . . , (Xn, Yn),
A, B, and base procedure ψ from Algorithm 2 satisfies

P(S0 ⊆ Ŝ) ≥ 1− ε− p exp

(
− A

C2p2

)
.

Thus, under the conditions of Corollary 4, the Sharp-SSL algorithm can, with high
probability, select the signal variables in the top s0 output variables, provided that the
number A of groups of random projections is large by comparison with p2. In other
words, the algorithm reduces the problem to a low-dimensional one, for which standard
learning techniques can be applied. The guarantees for these methods (e.g. Anderson,
2003, Theorem 6.6.1) can then be combined on the high-probability event of Corollary 4
to establish theoretical results for the full procedure.
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3.3 Theory for semi-supervised based learning

When the proportion of labeled data is low, Algorithm 2 may be inaccurate when used as
the base procedure in Algorithm 1. The aim of this subsection, therefore, is to study the
base procedure of Algorithm 3, which is able to leverage both the labeled and unlabeled
data via an EM algorithm to estimate the whitened between-class covariance matrix
for each projected data set. Our analysis builds on several recent breakthroughs in our
understanding of the EM algorithm. This line of work includes Balakrishnan, Wainwright
and Yu (2017), Daskalakis, Tzamos and Zampetakis (2017), Yan, Yin and Sarkar (2017),
Dwivedi et al. (2020a), Dwivedi et al. (2020b), Davis, Diaz and Wang (2021), Ho et al.
(2020), Ndaoud (2022), Wu and Zhou (2022) and Doss et al. (2023), all of which focus
on the unsupervised case.

For simplicity, we will focus on the setting where independent and identically dis-
tributed (X1, Y

∗
1 ), . . . , (Xn, Y

∗
n ) are generated from a mixture of two Gaussians with op-

posite means and identity covariance matrix:

Y ∗i ∼ Unif({1, 2}), Xi | Y ∗i ∼ Np
(
(−1)Y

∗
i ν∗, Ip

)
, and Yi = Y ∗i 1{i≤nL} for all i ∈ [n].

(10)
We assume that we observe (X1, Y1), . . . , (XnL

, YnL
), XnL+1, . . . , Xn for some nL ∈

{0, . . . , n}. In other words, we are given nL labeled observations and nU := n − nL

unlabeled ones. Thus, nL = 0 corresponds to the fully unsupervised case, i.e., clustering,
while nL = n corresponds to the supervised case, i.e., classification. We define Yi = Y ∗i
for i ∈ [nL], and Yi = 0 for i ∈ {nL + 1, . . . , n}.

We first study the performance of the EM procedure after the covariates have been
projected into a lower-dimensional space. In other words, for some fixed P ∈ Pd, define
Zi := PXi for i ∈ [n] and µ∗ := Pν∗ ∈ Rd, so that Zi | Y ∗i ∼ Nd((−1)Y

∗
i µ∗, Id). In this

setting, we have a single unknown parameter µ∗ to estimate, and this can be achieved by
applying Algorithm 3 to (Zi, Yi)i∈[n] with K = 2 and the constraint set

C :=
{

(−µ, µ, Id) : µ ∈ Rd
}
. (11)

After initializing the EM algorithm at some fixed (−µ̂(0), µ̂(0), Id) ∈ C, for t ∈ N, the tth
iterate of the EM iteration described in (4) and (5) is (−µ̂(t), µ̂(t), Id), where

µ̂(t) :=
1

n

{∑
i:Yi 6=0

(−1)YiZi +
∑
i:Yi=0

Zi tanh
〈
Zi, µ̂

(t−1)
〉}

; (12)

see Lemma 15. Since we allow nL = 0, where µ is only identifiable up to sign, and
since the between-class sample covariance matrix Σ̂b computed in Algorithm 3 is equal to
Σ̂b = µ̂1µ̂

>
1 − µ̂totµ̂

>
tot, which is invariant to flipping the signs of µ̂1 and µ̂2 simultaneously,

it is natural to consider the loss function L : Rd × Rd → [0,∞) given by

L(µ, µ′) := ‖µ− µ′‖ ∧ ‖µ+ µ′‖.

Proposition 5 below provides a theoretical guarantee for this semi-supervised EM al-
gorithm. For notational simplicity, we define γ := nL/n, ω0 :=

√
{d log n+ log(1/δ)}/nU

and ζ0 := min{ω0γ
−1/2, ω

1/2
0 } throughout this section. Thus, treating d as a con-

stant and ignoring polylogarithmic terms, ω0 is of order n
−1/2
U and ζ0 is of order

min{n−1/2
L , n

−1/4
U } when γ < 1/2. We remark that n

−1/2
L is the critical `2-testing ra-

dius for distinguishing the means of two labeled Gaussian distributions with identity
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covariance using nL observations. On the other hand, as we show in Lemma 16, no
test of the null hypothesis H0 : Nd(0, Id) against the two-component mixture alternative
H1 : 1

2
Nd(µ∗, Id) + 1

2
Nd(−µ∗, Id) based on nU observations can have large power unless

the signal strength ‖µ∗‖ is at least of order n
−1/4
U .

Proposition 5. Fix δ ∈ (2e−n, 1] and r ≥ 1, and suppose that ‖µ∗‖ ≤ r and γ < 1/2.
There exists c > 0, depending only on r, such that if ω0 ≤ c and n ≥ 3, then the following
statements hold:

(i) For any µ̂(0) ∈ Rd with ‖µ̂(0)‖ ≤ r + 3, we have with probability at least 1− 2δ that

lim sup
t→∞

L(µ̂(t), µ∗) .r ζ0 ∨ ‖µ∗‖.

(ii) There exists C > 0, depending only on r, such that if ‖µ∗‖ ≥ Cζ0

√
d log n and

µ̂(0) = (ζ0 ∨ rω0)η0 with η0 ∼ Unif(Sd−1), then with probability at least 1 − 2δ −√
2/(π log nU), we have

lim sup
t→∞

L(µ̂(t), µ∗) .r
ω0

‖µ∗‖
∧ ω0

γ1/2
.

In order to interpret Proposition 5(i), consider the regime where ‖µ∗‖ ≤ ζ0. In this
case, as discussed above, the two mixture components are essentially indistinguishable,
and the bound reveals that the EM algorithm performs no worse than the trivial zero
estimator, up to constant factors. On the other hand, part (ii) studies the more interesting
regime where the two mixture components are distinguishable, and we establish a faster
convergence rate for the EM algorithm in this strong signal regime.

The following theorem combines the two convergence regimes in Proposition 5 to de-
rive a convergence guarantee for the estimated whitened between-class covariance matrix
output by Algorithm 3. To state the result, recall the definition of C from (11). For any
ζ > 0, we write U(ζ) for the pushforward measure on C induced by Unif(ζSd−1) under
the map µ 7→ (−µ, µ, Id).

Theorem 6. Fix δ ∈ (2e−n, 1], and r ≥ 1 and suppose that ‖µ∗‖ ≤ r and γ < 1/2. There
exists c > 0, depending only on r, such that if ω0 ≤ min{c, (d log n)−3} and n ≥ 108,
then the sequence of outputs (Q̂(T ))T∈N of Algorithm 3 with inputs (Z1, Y1), . . . , (Zn, Yn),
C, πC = U(ζ0 ∨ rω0), M ∈ N and T ∈ N satisfies with probability at least 1− 3δ− e−M/50

that
lim sup
T→∞

‖Q̂(T ) − µ∗µ∗>‖op .r
ω0

‖µ∗‖
∧ ζ0.

Finally in this section, we study the implications of Theorem 6 for the recovery of the
signal coordinates in the semi-supervised learning setting. We write ψ(M,T ) for the base
procedure that takes (zi, yi)i∈[n] ∈ Rd × ([K] ∪ {0}) as input and returns the output of
Algorithm 3 when run with these inputs together with C, πC, M and T . Let S0 denote
the set of coordinates where ν∗ ∈ Rp is non-zero, and let s0 := |S0|.

Corollary 7. Fix ε ∈ (8e−n/2, 1], r ≥ 1, and suppose that ‖µ∗‖ ≤ r, M ≥ 50 log(4/ε) +
50d log p and γ < 1/2. Let ν∗max := ‖ν∗‖∞ and let ν∗min denote the minimum absolute
value of a non-zero component of ν∗. There exist C1, C2 > 0, depending only on r, such
that if n ≥ C1(d log p)6{d log p+ log(1/ε)}, and

C2 min

[{
d log(p ∨ n) + log(1/ε)

n

}1/4

,

√
d log(p ∨ n) + log(1/ε)

nL

]
≤ (ν∗min)2

4
,

12



then the sequence of outputs (Ŝ(T ))T≥1 of Algorithm 1 with inputs K = 2, p, d ≥ s0,
` ≥ s0, (Xi, Yi)i∈[n], A, B and base procedure ψ(M,T ) satisfies

lim inf
T→∞

P(S0 ⊆ Ŝ(T )) ≥ 1− ε− pe−A(ν∗min)4/(50p2(ν∗max)4).

Corollary 7 reveals in particular that, treating ν∗max and ν∗min as constants and under
the stated sample size conditions, we again recover all of the signal coordinates in the top
s0 output entries, provided that A is large by comparison with p2. Thus, in this sense,
we can achieve a similar guarantee to that provided by Corollary 4, though the number
of groups of projections required for a high probability guarantee in Corollary 7 may be
significantly larger in settings where the ratio ν∗max/ν

∗
min is large.

4 Numerical studies

Throughout this section, unless otherwise stated, data (Xi, Yi, Y
∗
i )i∈[n] are sampled from

an equal-probability normal mixture as follows: P(Y ∗i = k) = 1/K for k ∈ [K], P(Yi =
Y ∗i ) = 1 − P(Yi = 0) = γ and Xi | Y ∗i ∼ Np(µY ∗i ,Σw). The cluster means (µk)k∈[K] are
chosen to be s0-sparse and we define the signal-to-noise ratio of the problem to be3

SNR :=
mink,k′∈[K],k 6=k′ ‖µk − µk′‖√

tr(Σw)/p
. (13)

In our numerical studies, we slightly modify Algorithm 3 so that instead of randomly
initializing the cluster means and the covariance matrix, we use the output of hierarchical
clustering to initialize the EM algorithm as implemented in the mclust R package (Fraley
and Raftery, 1998). This allow us to run Algorithm 3 with M = 1.

4.1 Choice of tuning parameters

The purpose of this subsection is to investigate the effect of the various input parameters
A, B, d and ` in Algorithm 1, and to recommend sensible default choices. In Figure 1,
we plot the misclustering rate with Algorithm 3 as a base procedure in our Gaussian
semi-supervised learning setting as each of these parameters varies, for four different
SNR levels. After applying Algorithm 1, we obtain our final estimated cluster labels by
using Algorithm 3 again on the data projected onto the selected coordinates with a single
hierarchical clustering initialization. We then output the predicted labels, computed as
ŷi := sargmaxk∈[K] Li,k for i ∈ [n], instead of Q̂.

The panels in Figure 1 reveal that the misclustering rate is quite robust to the choices
of A, B and d, and that it is less serious (and may even help) to choose ` larger—rather
than smaller—than s0. In particular, it seems that A = 150 suffices for almost optimal
performance (though there appears to be some penalty for choosing it to be as small as
50), and B = 75 appears adequate. There is no clear trend on performance with the
choice of d, so for simplicity we took d = s0 in our remaining simulations below. Finally,
the misclustering rate appears to decrease as ` increases, with an elbow in the curve
visible at the highest value of the SNR when ` is set to the true sparsity level s0. Of
course, if ` is chosen to be very large, then we will include many noise variables, and

3In some of our simulations, Σw was generated randomly for convenience. In such settings, we replaced
tr(Σw)/p in the denominator of (13) with E{tr(Σw)}/p.
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Figure 1: Average misclustering rate over 200 repetitions in our anisotropic Gaussian
semi-supervised learning problem with n = 250, p = 600, s = 4, K = 3, γ = 0.05,
SNR ∈ {2.5, 3, 3.5, 4} and Σw = V ΛV >, where Λ ∈ Rp×p is diagonal with independent
Unif[0, 2] diagonal entries and V is independent of Λ, and generated according to the
Haar measure on Op×p. For each of the four panels, we fix three of d = 4, ` = 4, A = 150,
B = 75, and vary the remaining one. The shaded regions represent interpolated 95%
confidence intervals at each of the points.

the misclustering rate will eventually deteriorate. Nevertheless, the bottom-right panel
of Figure 1 indicates that the gain in increasing the probability of including all signal
variables may outweigh the penalty of also including more noise variables—as expected,
this effect is larger when the SNR is larger. For simplicity we choose ` = s0 in our
remaining simulations, though we recommend practitioners err on the side of choosing
larger `.

4.2 Comparison with existing methods

In this subsection, we compare the empirical performance of the Sharp-SSL algorithm
in high-dimensional clustering tasks with several existing approaches. We apply the
Sharp-SSL algorithm using the EM algorithm of Algorithm 3 as a base procedure, with
input parameters A = 150, B = 75, d = ` = s0 as discussed in Section 4.1, and our final
estimated cluster labels are then obtained as described there.

We compare the Sharp-SSL algorithm with five alternative high-dimensional cluster-
ing methods: spectral clustering (e.g. von Luxburg, 2007), the `1-penalized approach of
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Figure 2: Average misclustering rate over 100 repetitions using Sharp-SSL followed
by the EM algorithm, as well as using the other methods from Section 4.2. Data are
generated from the normal mixture distribution described at the beginning of Section 4
with K = 3 and p = 200 (left) as well as p = 600 (right). The three cluster means are
given by µ1 = a(1, 1, 0,0p−3), µ2 = a(−1, 0, 1,0p−3) and µ3 = a(0,−1,−1,0p−3), where
the scale a is chosen such that their pairwise distances are all equal to SNR. For isotropic
settings (left), Σw = Ip; for anisotropic settings (right), Σw = V ΛV >, where Λ ∈ Rp×p

is diagonal with independent Unif[0, 2] diagonal entries and V is independent of Λ, and
sampled from the Haar measure on Op×p. The Bayes risk is shown as the gray dashed
line. In the top panels, n = 250 and the SNR varies; in the bottom panels, SNR = 3 and
n varies. The shaded regions represent interpolated 95% confidence intervals at each of
the points.
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Witten and Tibshirani (2010) and the RPEClus algorithm of Anderlucci, Fortunato and
Montanari (2022) as well as a pair of methods that, like Sharp-SSL, apply dimension
reduction prior to a low-dimensional clustering algorithm.

In more detail, the spectral clustering approach first constructs a J-nearest neighbour
graph adjacency matrix A = (Ai,i′)i,i′∈[n] ∈ {0, 1}n×n, where Ai,i′ := 1 if either Xi is one
of the J = 10 nearest neighbours of Xi′ in Euclidean distance or vice versa, and Ai,i′ := 0
otherwise. It then computes an n × K matrix of eigenvectors associated with the K
smallest nonzero eigenvalues of the Laplacian matrix L := D − A, where D ∈ Rn×n is
a diagonal matrix with diagonal entries Di,i :=

∑
i′∈[n] Ai,i′ . The final step is to apply

the K-means clustering algorithm (Lloyd, 1982), as implemented in the kmeans base R

function with 100 random initializations, to the rows of L with the oracle choice of K.
The Witten and Tibshirani (2010) method, which is implemented in the sparcl R

package, determines the estimated cluster memberships by maximizing a coordinatewise-
weighted between-cluster sum of squares criterion, subject to an `1 constraint on the
weights. A permutation approach is used to select the `1 tuning parameter.

In the RPEClus algorithm of Anderlucci, Fortunato and Montanari (2022), we gener-
ate B random orthogonal projections and incorporate the d-dimensional projected data
as covariates for a linear regression with the orthogonal complement of the projected
data as the response. We then use the Bayesian Information Criteria (BIC) from both an
application of the EM algorithm to the projected data and the aforementioned regression
to identify good projections, and aggregate using the consensus clustering technique of
Dimitriadou, Weingessel and Hornik (2002) over the best B∗ projections chosen according
to the sum of the BIC scores. Following the recommendation of Anderlucci, Fortunato
and Montanari (2022), we took B = 1000 and B∗ = 100 as well as d = s0. It turned out
that this approach had a misclustering rate almost identical to that of a random guess,
likely because it did not leverage the sparsity of the signal. We therefore modified this
method by generating random axis-aligned projections instead of orthogonal ones, and
report this version in our comparison.

The first of the two-stage approaches applies principal component analysis (PCA) to
project the data into the oracle choice of K − 1 dimensions (the dimension of the space
spanned by the K cluster means); the second uses sparse principal component analysis
(SPCA), as implemented in the SPCAvRP algorithm (Gataric, Wang and Samworth, 2020)
with inputs A = 600, B = 200, and the oracle choices d = ` = s0, to project into s0

dimensions. Thereafter, both algorithms apply K-means to the projected data as above.
We also explored the option of replacing the K-means steps in these latter algorithms
with the EM algorithm, but observed very little difference, so do not report these results
here.

Given true labels y1, . . . , yn ∈ [K] and estimated labels ŷ1, . . . , ŷn ∈ [K] from a clus-
tering algorithm, we measure the performance of the algorithm via its misclustering rate,
defined as4

L({y1, . . . , yn}, {ŷ1, . . . , ŷn}) := min
σ∈SK

1

n

n∑
i=1

1{σ(ŷi)6=yi},

where SK is the group of all permutations of [K]. In particular, Figure 2 presents the aver-
age misclustering rates over 100 Monte Carlo repetitions of the different high-dimensional
clustering algorithms described above. Across two different dimensions p ∈ {200, 600},

4Here, the minimum over permutations is taken because it is only the cluster groupings, and not the
labels themselves, that are important.
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isotropic and anisotropic settings, and for different values of n and SNR, we see a con-
sistent picture of the Sharp-SSL algorithm combined with EM producing the lowest
misclustering rates, often by a large margin. Indeed, for all but the smallest sample sizes
or values of SNR, the Sharp-SSL+EM algorithm nearly attains the Bayes risk in all of the
problems considered here.

4.3 Effect of observed fraction on misclustering rate

One of the key attractions of our procedure is that it offers a unified framework to
perform classification or clustering with an arbitrary fraction of labeled observations. In
this subsection, we explore the performance of the algorithm as we vary the proportion
of observed labels.

Recall that we have two different options for the way in which we implement the
Sharp-SSL algorithm to estimate the set of signal coordinates: we can either use only the
labeled data, as in the supervised learning approach of Algorithm 2, or we can try to lever-
age in addition the unlabeled data via the semi-supervised EM approach of Algorithm 3.
In the extreme case of this latter version, we have no labeled data, so the algorithm is
unsupervised. In Figure 3 we compare the performance of these three methods in both
high- and low-dimensional versions of the normal mixture distribution data generation
mechanism described at the beginning of Section 4 as the proportion γ of observed labels
varies.

More precisely, for the semi-supervised and unsupervised algorithms, we adopt the
same implementation of Sharp-SSL as described at the beginning of Section 4.2. The
supervised algorithm is very similar, but applies Algorithm 2 in place of Algorithm 3
to select coordinates, and obtains final predicted labels by applying LDA again on the
projected labeled data. In cases where the proportion of labeled data was so small that
the convex hull of the projected labeled data was less than full-dimensional for every
class, we forced Algorithm 2 to return a zero matrix (this only happened when γ was
very small).

The top panels of Figure 3 present the results in high-dimensional settings with p ∈
{200, 600}. Since the unsupervised approach has no access to the labels, it has constant
misclustering rate. The performance of the semi-supervised approach is always at least
as good as that of the unsupervised algorithm, and improves as γ increases. In other
words, it effectively leverages the additional information provided by the class labels.
When γ is very small, the supervised algorithm—which ignores the unlabeled data—is
inaccurate, as it has very little data to work with. On the other hand, its performance
also improves as γ increases, and once around 5% of our data are labeled, it outperforms
the unsupervised algorithm. Further, it essentially matches the semi-supervised approach
when about a third of the data are labeled. We truncate the plot at γ = 1/2 to ensure
that we have enough test data on which to compute the misclustering rate.

In the bottom panels of Figure 3, we explore the performance of the three algorithms
above in two low-dimensional settings with different values of SNR, in order to provide
further insight into the phenomena described in the previous paragraph. Here, we take
K = 2 and report the average Frobenius norm loss

L
(
(µ̂1, µ̂2), (µ1, µ2)

)
:= min

{
‖(µ̂1, µ̂2)− (µ1, µ2)‖F, ‖(µ̂2, µ̂1)− (µ1, µ2)‖F

}
of the estimated means, over 100 repetitions. If there are insufficient labeled data to
run Algorithm 2, then we output µ̂1 = µ̂2 = 0p. We see that, already in these low-
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Figure 3: Effect of label fraction on performance of supervised, semi-supervised and
unsupervised Sharp-SSL learning methods. Data are generated from the normal mixture
distribution described at the beginning of Section 4 with K = 2 and Σw = Ip, µ1 =
−µ2 = a(1s,0p−s)

> ∈ Rp, where a is chosen such that ‖µ1 − µ2‖ = SNR. Bottom:
average Frobenius loss of estimating the (µ1, µ2) ∈ Rp×2 over 100 repetitions via the semi-
supervised approach (Algorithm 3), supervised approach (Algorithm 2) and unsupervised
approach (Algorithm 3 without using the labels). Top: average misclustering rate over
100 repetitions from applying the above three methods as base algorithms in Algorithm 1.
The shaded regions represent interpolated 95% confidence intervals at each of the points.
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dimensional problems, a similar picture emerges: if the proportion of labeled data is
small, then the unsupervised algorithm outperforms the supervised one, but this situation
may be reversed when γ is larger. The semi-supervised algorithm is able to leverage
both the unlabeled and labeled data to obtain the best of both worlds. These empirical
observations agree with our theory from Section 3, in particular in the way in which
Theorem 6 bounds the accuracy of mean estimation for the semi-supervised algorithm by
a minimum of a term that does not depend on γ and one that decreases as γ increases.
It appears that the switch in the minimum occurs around γ = 0.02 in these examples.

4.4 Empirical data analysis

In this subsection we apply the Sharp-SSL algorithm, as well as several competing meth-
ods, to the gene expression data set from Alon et al. (1999), which contains observations
on 62 patients. A preprocessed version of the data can be downloaded from the R package
‘datamicroarray’ (Ramey, 2016), with a total of 2000 features (genes) measured on 40
patients with colon tumors and 22 without tumors. We first exclude 9 genes to remove
perfect collinearity and then standardize each of the remaining p = 1991 columns of the
dataset to have unit variance.

We apply the Sharp-SSL algorithm using EM (Algorithm 3) as the base procedure,
with input parameters A = 150, B = 75, d = ` = 5. In addition to our approach
(Sharp-SSL+EM), we also compare the performance of the spectral clustering (SC) method,
the Witten and Tibshirani (2010) method (WT2010, as well as four two-stage methods
(PCA+Kmeans, PCA+EM, SPCA+Kmeans, SPCA+EM), where we first reduce dimension of the
data to a 5-dimensional subspace using either PCA or SPCA and then apply either the
EM algorithm or K-means clustering on the low-dimensional data. For SPCA, we use the
SPCAvRP algorithm (Gataric, Wang and Samworth, 2020) with inputs A = 600, B = 200
and d = ` = 5. The true labels are hidden to all algorithms and are only used to evaluate
the final misclustering rate.

Over 100 Monte Carlo repetitions of the randomized algorithms, the Sharp-SSL+EM

method had an average misclustering rate of 28.8%, whereas all other competitors had a
misclustering rate above 40%, as can be seen from the right-hand data points in Figure 4.
To investigate this performance further, we applied each method to a subset of the fea-
tures. These were constructed from the top ` = 5 genes identified through Sharp-SSL,
together with m = 0, 10, 50, 200 and 600 randomly chosen genes from the remaining 1986.
The results are presented as the other data points in Figure 4. We see that the improved
performance of the Sharp-SSL+EM relative to the other methods persists, even when only
a small number of potentially non-discriminative covariates are present. When m = 0,
Sharp-SSL+EM has a slight disadvantage as other algorithms benefit from the ensemble
effect of combining two different learning methods; nevertheless it remains competitive.
This reinforces the point that the primary contribution of the Sharp-SSL algorithm is
to identify signal coordinates that are helpful for semi-supervised learning, and once this
task has been accomplished, a variety of low-dimensional procedures are available to the
practitioner.

5 Proof of the main results
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Figure 4: Average misclustering rate (over 100 repetitions for randomized algorithms)
for the colon tumor data, using Sharp-SSL followed by the EM algorithm, as well as
the other methods described in Section 4.4. The right-hand data points plot the average
misclustering rate on the full data set. The other points were obtained by applying each
method to a subset of genes formed from the top five genes identified by Sharp-SSL

together with randomly sampled genes. The shaded regions represent interpolated 95%
confidence intervals at each of the points.

5.1 Proof of Proposition 1

The assumption that the convex hull of ν1, . . . , νK is (K − 1)-dimensional implies that

Σb is of rank K − 1. Define A := Σ
−1/2
w ΣbΣ

−1/2
w ∈ Rp×p, which has rank K − 1. Given

V ∈ Op×d, we can find Q ∈ Op×d with the same column span as that of Σ
1/2
w V and let

R := Q>Σ
1/2
w V ∈ Rd×d, so that R is invertible, and Σ

1/2
w V = QR. We observe that

tr{(V >ΣwV )−1(V >ΣbV )} = tr{(R>R)−1(R>Q>AQR)} = tr(Q>AQ).

Thus, J(V ; Σb,Σw) depends on V only through the column space of Σ
1/2
w V . Moreover,

tr(Q>AQ) is maximized when Q, or equivalently Σ
1/2
w V , spans a d-dimensional space

that contains the (K − 1)-dimensional eigenspace corresponding to the non-zero eigen-
values of A. Note that if for some v ∈ Rp \ {0} and λ ≥ 0, we have Av = λv, then

Σ−1
w ΣbΣ

−1/2
w v = Σ

−1/2
w Av = λΣ

−1/2
w v, so Σ

−1/2
w v is an eigenvector of Σ−1

w Σb with eigen-
value λ. Hence V maximizes J(V ; Σb,Σw) over Op×d if and only if V spans a d-dimensional
space that contains the (K − 1)-dimensional eigenspace corresponding to the K − 1 non-
zero eigenvalues of Σ−1

w Σb. Finally, for any v ∈ Rp \ {0},

v>Σ−1/2
w ΣbΣ−1/2

w v =
K∑
k=1

πkv
>Σ−1/2

w (νk − ν)(νk − ν)>Σ−1/2
w v 6= 0

if and only if v>Σ
−1/2
w (νk − ν) 6= 0 for some k ∈ [K]. Thus, the eigenspace corresponding

to the non-zero eigenvalues of A is spanned by
(
Σ
−1/2
w (νk − ν) : k ∈ [K]

)
, and so the

eigenspace corresponding to non-zero eigenvalues of Σ−1
w Σb is spanned by

(
Σ−1

w (νk − ν) :
k ∈ [K]

)
.
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5.2 Proof of Theorem 2

We write Sa,b := {j ∈ [p] : (P a,b,>P a,b)j,j = 1}. For any S = {j1, . . . , jd}> ∈
(

[p]
d

)
,

we identify the set S with the sequence ji1 < . . . < jid sorted in increasing order; and
with a slight abuse of notation, we will use S to refer to either object, which will always
be clear depending on the context. We define P S ∈ Pd by (P S)`,j := 1{j=j`}, so that

P S,>P S = diag
(
(1{j∈S})j∈[p]

)
. Define QS := (P SΣwP

S,>)−1P SΣbP
S,> ∈ Rd×d and Q̂S :=

ψ
(
(P SXi, Yi)i∈[n]

)
∈ Rd×d. Note that Q̂a,b = Q̂Sa,b in this notation, and we will similarly

denote Qa,b := QSa,b for simplicity. Recalling the definition of Ω from (8), in our new
notation, and recalling that ψ is permutation-equivariant, we can write

Ω =

{
max
S∈([p]

d )

∥∥Q̂S −QS
∥∥

op
<

γmin

4(K − 1)

}
,

and have P(Ω) ≥ 1− ε by (7). We will work on the event Ω throughout the remainder of
the proof, and assume also that γmin > 0, because otherwise the conclusion is trivial.

By Weyl’s inequality (Weyl, 1912; Stewart and Sun, 1990, Corollary IV.4.9), we have
on Ω that

|tr(Q̂S)− tr(QS)| ≤ (K − 1)‖Q̂S −QS‖op ≤
γmin

4
.

On the other hand, we note that tr(QS) =
∑

j∈S∩S0
(Σ−1

w Σb)j,j. Therefore, by the triangle

inequality, for any S, S ′ ∈
(

[p]
d

)
such that S ∩ S0 is a proper subset of S ′ ∩ S0, we have on

Ω that
tr(Q̂S)− tr(Q̂S′) ≤ γmin

2
−

∑
j∈(S′\S)∩S0

(Σ−1
w Σb)j,j < 0. (14)

Fix a ∈ [A], and for any j̃ ∈ [p], define qj̃ := P
(
j̃ ∈ Sa,b∗(a) | (Xi, Yi)i∈[n]

)
. Now fix

some j ∈ S0 and j′ ∈ [p] \ S0. We claim that

(qj − qj′)1Ω ≥ 0. (15)

To verify this claim, define for j̃ ∈ {j, j′} and b ∈ [B] the sets

Sb,j̃ :=
{

(Sa,1, . . . , Sa,B) : b∗(a) = b, j̃ ∈ Sa,b
}

and Sb :=
{

(Sa,1, . . . , Sa,B) : b∗(a) = b
}
.

Let f :
(

[p]
d

)
→
(

[p]
d

)
be a map defined by

f(S) :=

{
(S \ {j′}) ∪ {j} if j /∈ S and j′ ∈ S
S otherwise.

If j /∈ Sa,b and j′ ∈ Sa,b, then f(Sa,b)∩S0 = (Sa,b∪{j})∩S0 = (Sa,b∩S0)∪{j}, so Sa,b∩S0

is a proper subset of f(Sa,b)∩S0; on the other hand, if either j ∈ Sa,b or j, j′ /∈ Sa,b, then
f(Sa,b) = Sa,b. It follows by (14) that on Ω we have

tr(Q̂Sa,b) ≤ tr(Q̂f(Sa,b)). (16)

Now let F : Sb,j′ → Sb,j be defined as

F (Sa,1, . . . , Sa,B) :=
(
Sa,1, . . . , Sa,b−1, f(Sa,b), Sa,b+1, . . . , Sa,B

)
.
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We claim that F is both well-defined and injective on Ω. For the first of these claims, we
note that since j′ ∈ Sa,b, we must have j ∈ f(Sa,b). Moreover, if (Sa,1, . . . , Sa,B) ∈ Sb,j′ ,
then b∗(a) = b. But (16) holds on Ω, so

(
Sa,1, . . . , Sa,b−1, f(Sa,b), Sa,b+1, . . . , Sa,B

)
∈ Sb,j.

Hence F is well-defined. For the second claim, suppose that S1, S2 ∈
(

[p]
d

)
are such that

j′ ∈ S1 ∩ S2 and f(S1) = f(S2). If j ∈ S1 ∩ S2, then S1 = f(S1) = f(S2) = S2; if j ∈ S1

but j /∈ S2, then j ∈ f(S2) \ f(S1), a contradiction. Similarly, we cannot have j /∈ S1 but
j ∈ S2. Finally, if j ∈ Sc

1 ∩Sc
2, then S1 =

(
f(S1)\{j}

)
∪{j′} =

(
f(S2)\{j}

)
∪{j′} = S2.

We deduce that f is injective on {S : j′ ∈ S}. Since j′ ∈ Sa,b for (Sa,1, . . . , Sa,B) ∈ Sb,j′ ,
this establishes the injectivity of F . In particular, |Sb,j′ | ≤ |Sb,j|. Consequently, on Ω, we
have for all b ∈ [B] that

P
(
j ∈ Sa,b∗(a) | (Xi, Yi)i∈[n], b

∗(a) = b
)

=
P
(
j ∈ Sa,b∗(a), b∗(a) = b | (Xi, Yi)i∈[n]

)
P
(
b∗(a) = b | (Xi, Yi)i∈[n]

) =
|Sb,j|
|Sb|

≥ |Sb,j
′|

|Sb|
=

P
(
j′ ∈ Sa,b∗(a), b∗(a) = b | (Xi, Yi)i∈[n]

)
P
(
b∗(a) = b | (Xi, Yi)i∈[n]

)
= P

(
j′ ∈ Sa,b∗(a) | (Xi, Yi)i∈[n], b

∗(a) = b
)
,

which implies Claim (15). We remark that one consequence of (15) is that, since d ≥ s0,
we have on Ω that

qj ≥
∑

j̃∈([p]\S0)∪{j} qj̃

p− s0 + 1
=
d−

∑
j̃∈S0\{j} qj̃

p− s0 + 1
≥ d− s0 + 1

p− s0 + 1
≥ 1

p
. (17)

Again fixing j ∈ S0 and j′ /∈ S0, we observe on Ω ∩ {j ∈ Sa,b∗(a)} that

3

4
γmin ≤

[
P a,b∗(a),>Qa,b∗(a)P a,b∗(a)

]
j,j
−
∥∥Q̂a,b∗(a)−Qa,b∗(a)

∥∥
op
≤
[
P a,b∗(a),>Q̂a,b∗(a)P a,b∗(a)

]
j,j

≤ [P a,b∗(a),>Qa,b∗(a)P a,b∗(a)]j,j +
∥∥Q̂a,b∗(a) −Qa,b∗(a)

∥∥
op
≤ 5

4
γmax,

and similarly on Ω ∩ {j′ ∈ Sa,b∗(a)} that
∣∣[P a,b∗(a),>Q̂a,b∗(a)P a,b∗(a)

]
j′,j′

∣∣ ≤ γmin/4. Recall

also that
[
P a,b∗(a),>Q̂a,b∗(a)P a,b∗(a)

]
j̃,j̃

= 0 for all j̃ /∈ Sa,b∗(a). Combining the above bounds

on the diagonal entries of Q̂a,b∗(a) with (15) and (17), we have on Ω that

E
([
P a,b∗(a),>Q̂a,b∗(a)P a,b∗(a)

]
j,j
−
[
P a,b∗(a),>Q̂a,b∗(a)P a,b∗(a)

]
j′,j′
| (Xi, Yi)i∈[n]

)
= E

([
P a,b∗(a),>Q̂a,b∗(a)P a,b∗(a)

]
j,j
1{j∈Sa,b∗(a)}

−
[
P a,b∗(a),>Q̂a,b∗(a)P a,b∗(a)

]
j′,j′

1{j′∈Sa,b∗(a)} | (Xi, Yi)i∈[n]

)
≥ qjγmin

2
≥ γmin

2p
. (18)

Now, let a, j, j′ be freely varying again. Since ŵj = A−1
∑

a∈[A][P
a,b∗(a),>Q̂a,b∗(a)P a,b∗(a)]j,j,

on Ω we have for any j ∈ S0 and j′ /∈ S0 that E
(
ŵj − ŵj′ | (Xi, Yi)i∈[n]

)
≥ γmin/(2p)
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from (18). Since ` ≥ s0, we have by Hoeffding’s inequality that on Ω,

P
(
S0 6⊆ Ŝ | (Xi, Yi)i∈[n]

)
≤ P

(
min
j∈S0

ŵj ≤ max
j′ /∈S0

ŵj′
∣∣∣ (Xi, Yi)i∈[n]

)
≤
∑
j∈S0

P
{
ŵj − E(ŵj | (Xi, Yi)i∈[n]) ≤ −

γmin

4p

∣∣∣∣ (Xi, Yi)i∈[n]

}
+
∑
j /∈S0

P
{
ŵj − E(ŵj | (Xi, Yi)i∈[n]) ≥

γmin

4p

∣∣∣∣ (Xi, Yi)i∈[n]

}

≤ p exp

{
−A

2

(
γmin

4p

)2 / (
5γmax

4

)2}
≤ pe−Aγ

2
min/(50p2γ2max),

as desired.

5.3 Proof of Theorem 3

The main ingredient of the proof of Theorem 3 is the following proposition, which controls
the rate of convergence of the sample between- and within-class covariance matrices to
their respective population versions in a classification problem.

Proposition 8 (Rate of convergence for LDA). Suppose that (Z1, Y1), . . . , (Zn, Yn) ∈
Rd × [K] are independent and identically distributed data-label pairs, such that P(Y1 =
k) = πk and Z1 | Y1 = k ∼ Nd(µk,Σw) for k ∈ [K]. Write µ :=

∑
k∈[K] πkµk and

Σb :=
∑

k∈[K] πk(µk − µ)(µk − µ)> and let Σ̂w and Σ̂b be computed as in (3) applied to

(Z1, Y1), . . . , (Zn, Yn). If ‖µk − µ‖ ≤ R1 for all k ∈ [K] and ‖Σw‖op ≤ R2 for some
R1, R2 > 0, then for every δ ∈ (0, 1/4], we have with probability at least 1− δ that

‖Σ̂b − Σb‖op ≤
12R2{K + log(8 · 9d/δ)}

n
+
(
4R1

√
R2 +R2

1 +R1

)√2 log(8 · 9d/δ)
n

,

‖Σ̂w − Σw‖op ≤
4R2{K + log(8 · 9d/δ)}

n
+ 4R2

√
log(8 · 9d/δ)

n
.

Proof. We first control the rate of convergence of Σ̂b. For nk :=
∑n

i=1 1{Yi=k} and

µ̃ :=
∑

k∈[K](nk/n)µk, we define Σ̃
(1)
b :=

∑K
k=1(nk/n)(µk − µ)(µk − µ)> and Σ̃

(2)
b :=∑K

k=1(nk/n)(µk − µ̃)(µk − µ̃)>. We have the following decomposition

‖Σ̂b − Σb‖op ≤ ‖Σ̃(1)
b − Σb‖op + ‖Σ̃(2)

b − Σ̃
(1)
b ‖op + ‖Σ̂b − Σ̃

(2)
b ‖op. (19)

We will control the three terms on the right-hand side above separately. For the first
term, we note that ‖µk − µ‖ ≤ R1 for all k ∈ [K]. Since n1, . . . , nK are functions of
Y1, . . . , Yn, we have by McDiarmid’s inequality (see, e.g. Boucheron, Lugosi and Massart,
2013, Theorem 6.2) that with probability at least 1− δ/4,

‖Σ̃(1)
b − Σb‖op ≤ R2

1

K∑
k=1

∣∣∣∣nkn − πk
∣∣∣∣ ≤ R2

1

√
2 log(4/δ)

n
. (20)

For the second term, we first apply McDiarmid’s inequality again to see that with prob-
ability at least 1− δ/4, we have

‖µ̃− µ‖ ≤
K∑
k=1

∣∣∣∣nkn − πk
∣∣∣∣‖µk − µ‖ ≤ R1

√
2 log(4/δ)

n
.
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Thus, we have with probability at least 1− δ/4 that

‖Σ̃(2)
b − Σ̃

(1)
b ‖op ≤ 2

K∑
k=1

nk
n
‖(µk − µ)(µ− µ̃)>‖op +

K∑
k=1

nk
n
‖(µ− µ̃)(µ− µ̃)>‖op

≤ 2R1‖µ− µ̃‖+ ‖µ− µ̃‖2 ≤ 3R1‖µ− µ̃‖ ≤ 3R2
1

√
2 log(4/δ)

n
. (21)

Finally, for the third term, we write µ̂k :=
∑

i:Yi=k
Zi and note that Vk := n

1/2
k µ̂k satisfies

Vk | Y1, . . . , Yn ∼ Nd(n1/2
k µk,Σw). Defining N := (n

1/2
1 , . . . , n

1/2
K )> and P := NN>/n ∈

RK×K , we may write

nΣ̂b =
K∑
k=1

nkµ̂kµ̂
>
k − nµ̂µ̂> = V >(IK − P )V,

where V := (V1, . . . , VK)>, and where µ̂ := n−1
∑n

i=1 Zi =
∑K

k=1(nk/n)µ̂k. By Lemma 17,

we deduce that nΣ̂b conditional on Y1, . . . , Yn has a d-dimensional non-central Wishart
distribution with K − 1 degrees of freedom, covariance matrix Σw and non-centrality
matrix nΣ̃

(2)
b , which we denote as

nΣ̂b | Y1, . . . , Yn ∼ Wd(K − 1,Σw;nΣ̃
(2)
b );

a formal definition is given just before Lemma 17. For any fixed u ∈ Sd−1, we have by
Muirhead (2009, Theorem 10.3.6) that

u>Σ̂bu | Y1, . . . , Yn ∼
u>Σwu

n
χ2
K−1

(
nu>Σ̃

(2)
b u

u>Σwu

)
,

where χ2
r(λ) denotes a non-central chi-squared distribution with r degrees of freedom and

non-centrality parameter λ. By Birgé (2001, Lemma 8.1), for every δ′ ∈ (0, 1/2], we have
with probability at least 1− 2δ′ conditional on Y1, . . . , Yn, that

|u>(Σ̂b − Σ̃
(2)
b )u| ≤ u>Σwu

n

{
K + 2

√(
K +

2nu>Σ̃
(2)
b u

u>Σwu

)
log(1/δ′) + 2 log(1/δ′)

}

≤ u>Σwu

n

{
2K + 3 log(1/δ′)

}
+

√
8u>Σwuu>Σ̃

(2)
b u log(1/δ′)

n

≤
3
(
K + log(1/δ′)

)
‖Σw‖op

n
+

√
8‖Σw‖op‖Σ̃(2)

b ‖op log(1/δ′)

n
.

Let N be a 1/4-net of the sphere Sd−1, which can be chosen to have cardinality at most 9d

(Vershynin, 2012, Lemma 5.2). Hence, through a union bound, and taking δ′ := δ/(8 ·9d),
we have with probability at least 1− δ/4 conditional on Y1, . . . , Yn that

‖Σ̂b − Σ̃
(2)
b ‖op ≤ 2 max

u∈N
|u>(Σ̂b − Σ̃

(2)
b )u|

≤
6R2

(
K + log(8 · 9d/δ)

)
n

+

√
32R2

1R2 log(8 · 9d/δ)
n

. (22)
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Combining (19), (20), (21) and (22), we have that the desired bound on ‖Σ̂b − Σb‖op

occurs on an event with probability at least 1− 3δ/4.
We now turn to control ‖Σ̂w−Σw‖op. Let Q :=

∑
k∈[K](n

−1
k 1{Yi=k,Yi′=k})

n
i,i′=1 ∈ Rn×n,

so that

nΣ̂w =
n∑
i=1

ZiZ
>
i −

K∑
k=1

nkµ̂kµ̂
>
k = Z>(I −Q)Z,

where Z := (Z1, . . . , Zn)>. It therefore follows again by Lemma 17 that Σ̂w | Y1, . . . , Yn ∼
n−1Wd(n−K,Σw). Another application of Muirhead (2009, Theorem 10.3.6) then yields
for any u ∈ Sd−1 that

u>Σ̂wu | Y1, . . . , Yn ∼
u>Σwu

n
χ2
n−K .

By Laurent and Massart (2000, Lemma 1), we have with probability at least 1 − 2δ′ =
1− δ/(4 · 9d) that

|u>(Σ̂w − Σw)u| ≤ R2

n

{
K + 2

√
n log(1/δ′) + 2 log(1/δ′)

}
.

Again, taking a union bound over the 1/4-net N , we conclude that with probability at
least 1− δ/4, we have

‖Σ̂w − Σw‖op ≤ 2 max
u∈N
|u>(Σ̂w − Σw)u| ≤ 4R2

n

{
K +

√
n log(8 · 9d/δ) + log(8 · 9d/δ)

}
,

as desired.

Proof of Theorem 3. Define δ :=
(
p
d

)−1
ε. Since Algorithm 2 is permutation-equivariant,

by a union bound, it suffices to show that for every P ∈ Pd, with probability at least
1 − δ, the desired upper bound holds for

∥∥ψ((PXi, Yi)i∈[n]

)
− (PΣwP

>)−1PΣbP
>
∥∥

op
.

Recall that nk :=
∑n

i=1 1{Yi=k}. Write Σw,P := PΣwP
> and Σb,P := PΣbP

>, µ̂k,P :=
n−1
k

∑
i:yi=k

PXi, µ̂P := n−1
∑n

i=1 PXi and

Σ̂w,P :=
1

n

n∑
i=1

(PXi−µ̂Yi,P )(PXi−µ̂Yi,P )> and Σ̂b,P :=
K∑
k=1

nk
n

(µ̂k,P−µ̂P )(µ̂k,P−µ̂P )>.

Observe that since n ≥ Kd+ 1, we have maxk∈[K] nk ≥ d+ 1, so Σ̂w,P is positive definite
with probability 1. Thus, by the triangle inequality, for each P ∈ Pd, we have∥∥ψ((PXi, Yi)i∈[n]

)
− (PΣwP

>)−1PΣbP
>∥∥

op
=
∥∥Σ̂−1

w,P Σ̂b,P − Σ−1
w,PΣb,P

∥∥
op

≤ ‖Σ̂−1
w,P Σ̂b,P − Σ−1

w,P Σ̂b,P‖op + ‖Σ−1
w,P Σ̂b,P − Σ−1

w,PΣb,P‖op. (23)

By Proposition 8 and our hypothesis, there is an event ΩP with probability at least 1− δ,
on which

‖Σ̂w,P − Σw,P‖op ≤
4R2{K + log(8 · 9d/δ)}

n
+ 4R2

√
log(8 · 9d/δ)

n
≤ 1

2R2

.

‖Σ̂b,P − Σb,P‖op .R1,R2

K + d+ log(1/δ)

n
+

√
d+ log(1/δ)

n
.R2 1.

(24)
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Thus, for the first term in (23), by Weyl’s inequality, on ΩP , we have

‖Σ̂−1
w,P Σ̂b,P − Σ−1

w,P Σ̂b,P‖op ≤ ‖Σ−1
w,P − Σ̂−1

w,P‖op‖Σ̂b,P‖op

≤ ‖Σ−1
w,P‖op‖Σ̂−1

w,P‖op‖Σ̂b,P‖op‖Σ̂w,P − Σw,P‖op

≤
(
‖Σb,P‖op + ‖Σ̂b,P − Σb,P‖op

)
‖Σ̂w,P − Σw,P‖op

λmin(Σw,P )
(
λmin(Σw,P )− ‖Σ̂w,P − Σw,P‖op

)
≤
R2

(
R2

1 + ‖Σ̂b,P − Σb,P‖op

)
‖Σ̂w,P − Σw,P‖op(

1/R2 − ‖Σ̂w,P − Σw,P‖op

)
.R1,R2 ‖Σ̂w,P − Σw,P‖op .R2

K

n
+

√
d+ log(1/δ)

n
, (25)

where we used (24) in the penultimate inequality. For the second term in (23), we also
have on ΩP that

∥∥Σ−1
w,P Σ̂b,P −Σ−1

w,PΣb,P

∥∥
op
≤ ‖Σ−1

w,P‖op‖Σ̂b,P −Σb,P‖op .R1,R2

K

n
+

√
d+ log(1/δ)

n
. (26)

The desired result follows by combining (25) and (26), and using the fact that log(1/δ) ≤
d log(ep/d) + log(1/ε).

5.4 Proofs of Proposition 5 and Theorem 6

In the proof of Proposition 5, we show the convergence of the EM iterates µ̂(t) by analyzing
their components parallel and orthogonal to µ∗ separately. Writing η := µ∗/‖µ∗‖, let
αt ∈ R, βt ≥ 0 be defined by

µ̂(t) = αtη + βtξt, (27)

where ξt ∈ Sd−1 is orthogonal to η. Our proof will combine several propositions that
control αt and βt under different conditions. We begin by laying some groundwork and
defining some quantities that will be used throughout this subsection.

First, it will be convenient to relabel the two classes as {−1, 1} instead of {1, 2}. By
the rotational symmetry of the problem, we may assume without loss of generality that
µ∗ = (s, 0, . . . , 0)> ∈ Rd for some s ≥ 0, and that the first nL observations are labeled
(i.e., Yi 6= 0 for i ∈ [nL]). We assume throughout this section that s ≤ r and r ≥ 1.
Let µ̂nL

:= n−1
L

∑nL

i=1 ZiYi, with the convention that µ̂nL
:= 0 if nL = 0, and define the

function fnU
: Rd → Rd by

fnU
(v) :=

1

nU

n∑
i=nL+1

Zi tanh〈Zi, v〉, (28)

with fnU
:= 0 if nU = 0. Throughout, and without further comment, we assume that

n = nL + nU ≥ 2. In this notation, the EM update (12) can be rewritten, defining the
function gn : Rd → Rd, as

µ̂(t) = gn(µ̂(t−1)) := γµ̂nL
+ (1− γ)fnU

(µ̂(t−1)).

The corresponding population quantities are

f(v) := EZ1 tanh〈v, Z1〉 and g(v) := γµ∗ + (1− γ)f(v).
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Writing ∆nU
:= fnU

− f , we have

gn(v) = g(v) + (1− γ)∆nU
(v) + γ(µ̂nL

− µ∗). (29)

For ω, φ > 0 and r ≥ 1, we define the following two events that control the terms in the
EM iteration involving the unlabeled and labeled data respectively:

Ω1(ω) :=

{
sup
v∈Rd
‖gn(v)‖ ≤ 2(r +

√
d)

}
∩
{

sup
‖v‖≤2(r+

√
d)

v 6=0

‖∆nU
(v)‖

‖v‖
≤ ω

}
Ω2(φ) :=

{
‖µ̂nL

− µ∗‖ ≤ φ
}
.

(30)

Proposition 9. There exists Cr > 0, depending only on r, such that for any δ ∈ (2e−n, 1]

and ω = Cr

√
d logn+log(1/δ)

nU
, we have P

(
Ω1(ω)c

)
≤ δ. Moreover, for any δ ∈ (0, 1] and for

φ =
√

2d+3 log(1/δ)
nL

, we have P
(
Ω2(φ)c

)
≤ δ.

Proof. For any v ∈ Rd,

‖gn(v)‖ = ‖(1− γ)fnU
(v) + γµ̂nL

‖ ≤ (1− γ) · 1

nU

n∑
i=nL+1

‖Zi‖+
γ

nL

nL∑
i=1

‖Zi‖

=
1

n

n∑
i=1

‖Zi‖ ≤
(

1

n

n∑
i=1

‖Zi‖2

)1/2

.

Since
∑n

i=1 ‖Zi‖2 ∼ χ2
nd(ns

2), by Birgé (2001, Lemma 8.1), we have with probability at
least 1− δ/2 that

sup
v∈Rd
‖gn(v)‖2 ≤ d+ s2 + 2

√
(d+ 2s2) log(2/δ)

n
+

2 log(2/δ)

n

≤ 2d+ 3s2 +
3 log(2/δ)

n
≤ 4(r +

√
d)2. (31)

Also, by a very similar argument as in the proof of Wu and Zhou (2022, Theorem 4), we
have with probability at least 1− δ/2 that

sup
‖v‖≤2(r+

√
d)

v 6=0

‖∆nU
(v)‖

‖v‖
≤ Cr

√
d log n+ log(1/δ)

nU

, (32)

for some Cr > 0 depending only on r. The first claim follows by combining (31) and (32).
For the second claim, we have µ̂nL

∼ Nd(µ
∗, n−1

L Id). Hence, by Laurent and Massart
(2000, Lemma 1), we have

P
(
Ω2(φ)c

)
= P

(
nL‖µ̂nL

− µ∗‖2 > nLφ
2
)

≤ P
(
nL‖µ̂nL

− µ∗‖2 > d+ 2
√
d log(1/δ) + 2 log(1/δ)

)
≤ δ,

as required.
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For any a ∈ R, b ∈ [0,∞) and ξ ∈ Sd−1 that is orthogonal to η, we define F (a, b) :=
η>f(aη + bξ) and G(a, b) := ‖(Id − ηη>)f(aη + bξ)‖. Note that the distribution of Z1 is
orthogonally invariant along the axis µ∗; in other words, if P ∈ Rd×d is orthogonal and

has µ∗ as an eigenvector with eigenvalue 1, then PZ1
d
= Z1. It follows that f(aη + bξ),

and hence F (a, b) and G(a, b), do not depend on ξ. We remark that

f(αtη + βtξt) = F (αt, βt)η +G(αt, βt)ξ
′
t+1

for some ξ′t+1 ∈ Sd−1 that is orthogonal to η.
Proposition 10 controls the magnitude of the component βt of the EM algorithm

iterates that is orthogonal to the signal direction η. We define ζ := ωγ−1/2 ∧ ω1/2.

Proposition 10. Assume that φγ1/2 ≤ ω ≤ min{1/12, 1/(r+3)} and that ‖µ̂(0)‖ ≤ r+3.
On the event Ω1(ω) ∩ Ω2(φ), we have

lim sup
t→∞

βt ≤ 60(ζ ∨ rω).

Moreover, on the same event, if βt0 ≤ 60(ζ ∨ rω) for some t0 ∈ N0, then βt ≤ 60(ζ ∨ rω)
for all t ≥ t0.

Proof. We first claim that on the event Ω1(ω) ∩ Ω2(φ), we have ‖µ̂(t)‖ ≤ r + 3 for all
t ∈ N0. The case t = 0 is true by the assumption on the initializer µ̂(0), and if the claim
holds for t ∈ N0, then since 2(r+

√
d) ≥ 2(r+ 1) ≥ r+ 3, we have on Ω1(ω)∩Ω2(φ) that

‖µ̂(t+1)‖ ≤ (1− γ)
{
|F (αt, βt)|+G(αt, βt) + ‖∆nU

(µ̂(t))‖
}

+ γ(s+ φ)

≤ s+ 2
√

2/π + ω‖µ̂(t)‖+ γφ ≤ r + 2 +
‖µ̂(t)‖
r + 3

≤ r + 3,

where the second inequality uses Wu and Zhou (2022, Lemma 5(5)). Moreover, from (29),
we have on Ω1(ω) ∩ Ω2(φ) that for t ∈ N,

βt+1 =
∥∥(Id − ηη>)

{
(1− γ)

(
f(µ̂(t)) + ∆nU

(µ̂(t))
)

+ γµ̂nL

}∥∥
≤ (1− γ)

{
G(αt, βt) + ω(|αt|+ βt)

}
+ γφ

≤ βt(1− γ)

{
1 + ω − (α2

t + β2
t ) ∧ 1

6

}
+ γφ+ ω|αt|, (33)

where the final bound uses Wu and Zhou (2022, Lemma 5(8)). If α2
t +β2

t > 1 or γ > 1/2,
then using the fact that ω ≤ 1/12, we have from (33) that

βt+1 ≤
11

12
βt + γφ+ (r + 3)ω ≤ 11

12
βt + (r + 4)ω. (34)

On the other hand, if α2
t + β2

t ≤ 1 and γ ≤ 1/2, then

βt+1 ≤ βt

(
1 + ω − γ − α2

t + β2
t

12

)
+ γφ+ ω|αt|. (35)

Note that the right-hand side of (34) is increasing in βt and the right-hand side of (35) is
increasing in βt for α2

t + β2
t ≤ 1 and γ ≤ 1/2. Combining (34) and (35), denoting β∞ :=
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lim supt→∞ βt and using the fact that 0 ≤ 3
β∞

(ω−|αt|β∞/6)2 = 3ω2/β∞−ω|αt|+α2
tβ∞/12,

we have

β∞ ≤ max

{
11

12
β∞ + (r + 4)ω, β∞

(
1 + ω − γ − β2

∞
12

)
+ γφ+

3ω2

β∞

}
. (36)

From the first term in the maximum in (36), we obtain

β∞ ≤ (1r + 38)ω ≤ 60rω. (37)

From the second term in the maximum in (36), we obtain

β∞

(
γ − ω +

β2
∞

12

)
≤ γφ+

3ω2

β∞
. (38)

If γ < 2ω, then from (38),
β∞ ≤ 5ω1/2 ≤ 5

√
2ζ, (39)

since otherwise we would have that the left-hand side would be at least (−5+125/12)ω3/2

and the right-hand side would at most (
√

2 + 3/5)ω3/2, contradicting the inequality. On
the other hand, if γ ≥ 2ω, then we derive from (38) that

β2
∞ − 2φβ∞ −

6ω2

γ
≤ 0.

Solving this inequality, we find that

β∞ ≤ φ+
√
φ2 + 6ω2/γ ≤ 4ωγ−1/2 = 4ζ. (40)

The first claim of the proposition follows by combining (36), (37), (39) and (40). We now
prove the second claim by induction on t. The base case t = t0 is true by assumption,
so we assume that βt ≤ 60(ζ ∨ rω) for some t ≥ t0. Again we consider two cases. If
βt ≤ 36(ζ ∨ rω), then from (33) and using that |αt| ≤ ‖µ̂(t)‖ ≤ r + 3 for t ≥ 2,

βt+1 ≤ βt(1 + ω) + γφ+ ω|αt| ≤ 44(ζ ∨ rω),

as desired. On the other hand, if βt > 36(ζ ∨ rω), then combining (34) and (35), we
obtain that

βt+1 ≤ max

{
60(ζ ∨ rω), βt

(
1 + ω − γ − β2

t

12

)
+ γφ+

3ω2

βt

}
.

It suffices to show the second term in the maximum is no larger than βt. To this end, if
γ ≤ 2ω, then ζ2 ≤ ω ≤ 2ζ2, and so

βt

(
1 + ω − γ − β2

t

12

)
+ γφ+

3ω2

βt
≤ βt + 2ζ2βt −

β3
t

12
+ γ1/2ω +

3ω2

βt

≤ βt + 120(ζ ∨ rω)ζ2 − 363(ζ ∨ rω)3

12
+ 4ζ3 +

ζ3

3
≤ βt.

On the other hand, if γ > 2ω, then ζ = ωγ−1/2 ≥ φ, and so

βt

(
1 + ω − γ − β2

t

12

)
+ γφ+

3ω2

βt
≤ βt −

γβt
2

+ γφ+
3ω2

βt

≤ βt − 18γζ + γζ +
ω2

12ζ
≤ βt,

as desired, which completes the induction.
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The following result bounds the magnitude of the signal component, αt, of the EM
iterates.

Proposition 11. Assume that φγ1/2 ≤ ω ≤ min{1/12, 1/(r+3)} and that ‖µ̂(0)‖ ≤ r+3.
Then there exists Cr > 0, depending only on r, such that on the event Ω1(ω)∩Ω2(φ), we
have

lim sup
t→∞

|αt| ≤ Cr(ζ ∨ s).

Proof. By definition of αt+1 and (29), we have for every t ∈ N0 that

αt+1 = η>
{

(1− γ)
(
f(µ̂(t)) + ∆nU

(µ̂(t))
)

+ γµ̂nL

}
.

Thus, by the first claim in the proof of Proposition 10, we have on the event Ω1(ω)∩Ω2(φ)
that ∣∣αt+1 − (1− γ)F (αt, βt)− γs

∣∣ ≤ (1− γ)ω(|αt|+ βt) + γφ (41)

for every t ∈ N0. From Wu and Zhou (2022, Lemma 5(1) and Lemma 5(7)), α 7→ F (α, β)
is an increasing and odd function satisfying |F (α, β)− F (α, 0)| ≤ (1 + s2)|α|β2 for every
α, β ∈ R. Hence, by (41), we have on Ω1(ω) ∩ Ω2(φ) that

|αt+1| ≤ (1− γ)
{
F (|αt|, 0) + (1 + s2)|αt|β2

t + ω(|αt|+ βt)
}

+ γ(s+ φ). (42)

Note the right-hand side of (42) is increasing in |αt|. Define α∞ := lim supt→∞ |αt|, so that
α∞ ≤ r+ 3 on Ω1(ω)∩Ω2(φ), again by the first claim in the proof of Proposition 10. We
may also assume that α∞ > s, because otherwise the result is clear. Since α 7→ F (α, 0)
is continuous, we have from (42) that on Ω1(ω) ∩ Ω2(φ),

α∞ ≤ (1− γ)
{
F (α∞, 0) + (1 + r2)α∞β

2
∞ + ω(α∞ + β∞)

}
+ γ(s+ φ), (43)

where we recall that β∞ := lim supt→∞ βt. Define q : [0,∞)→ R by

q(α) :=

{
F (α, 0)/α if α 6= 0
1 + s2 if α = 0.

(44)

By Lemma 20, we have q(s) = 1 (which confirms that µ∗ is a fixed point of the population
EM iteration), and that q′(α) ≤ −crα for all α ∈ (0, r], where cr ∈ (0, 1] depends only on
r. Thus, dividing both sides of (43) by α∞, we have

1 ≤ (1− γ)

{
q(s) +

∫ α∞

s

q′(α) dα + (1 + r2)β2
∞ + ω

(
1 +

β∞
α∞

)}
+
γ(s+ φ)

α∞

≤ (1− γ)

{
1− cr

2
(α2
∞ − s2) + (1 + r2)β2

∞ + ω

(
1 +

β∞
α∞

)}
+
γ(s+ φ)

α∞
. (45)

Now β∞ ≤ 60(1+r)ζ by Proposition 10. We now claim that α∞ ≤ 4s+120c
−1/2
r (1+r)2ζ.

Indeed, assuming the contrary, we would have crα
2
∞/4 > crs

2/2+(1+r2)β2
∞ and β∞/α∞ <

1. Hence from (45), we have

1 ≤ (1− γ)

(
1− crα

2
∞

4

)
+
γs

α∞
+

(
2 +

γ1/2

α∞

)
ω.
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We consider two cases. First, if γ ≤ 4ω, then 2ζ ≥ ω1/2 ≥ γ1/2/2 and hence

(1− γ)

(
1− crα

2
∞

4

)
+
γs

α∞
+

(
2 +

γ1/2

α∞

)
ω

≤ max

{
1− crα

2
∞

4
, 0

}
+
γ

4
+ 3ω ≤ max

{
1− ζ2,

γ

4
+ 3ω

}
< 1,

a contradiction. Second, if γ > 4ω, then ζ = ωγ−1/2 and

(1− γ)

(
1− crα

2
∞

4

)
+
γs

α∞
+

(
2 +

γ1/2

α∞

)
ω ≤ 1− γ +

γ

4
+ 2ω +

γζ

α∞
< 1,

again a contradiction. This establishes the claimed upper bound on α∞.

Recall the definitions L(µ, µ∗) = ‖µ − µ∗‖ ∧ ‖µ + µ∗‖. Our next result shows that if
αt ever becomes sufficiently large, then improved bounds can be derived on the limiting
behaviour of αt, βt and L(µ̂(t), µ∗).

Proposition 12. Assume that γ ∈ [0, 1/2). Given any c > 0, there exists C, c1 > 0,
depending only on r and c, such that if |αt0 | ≥ cs, βt0 ≤ 60(ζ ∨ rω) for some iteration t0,
and φγ1/2 ≤ ω ≤ c1 and s ≥ Cζ, then on the event Ω1(ω) ∩ Ω2(φ), we have

lim sup
t→∞

|αt − s| .r,c
ω

s
∧ ω

γ1/2
, (46)

lim sup
t→∞

βt .r,c
ω

s
∧ ω

γ1/2
, (47)

lim sup
t→∞

L(µ̂(t), µ∗) .r,c
ω

s
∧ ω

γ1/2
. (48)

Proof. By flipping the sign of µ∗ if necessary, we may assume without loss of general-
ity that αt0 ≥ 0 and that c1 ≤ min{1/12, 1/(r + 3)}. From (41) and the argument
immediately below it, we have

(1− γ)
{
F (αt, 0)− (1 + s2)αtβ

2
t − ω(αt + βt)

}
+ γ(s− φ) ≤ αt+1

≤ (1− γ)
{
F (αt, 0) + (1 + s2)αtβ

2
t + ω(αt + βt)

}
+ γ(s+ φ). (49)

For any t such that αt ≥ cs, since βt ≤ 60rω1/2 by Proposition 10, we have that

(1 + s2)αtβ
2
t + ω(αt + βt) ≤

{
(1 + r2)602r2ω + ω

(
1 +

60sζ

cs

)}
αt ≤ c′′ωα (50)

where c′′ := 602(1 + r2)r2 + (1 + 60rc−1C−1). Moreover, if αt ≥ cs, then

γφ ≤ ωγ1/2 ≤

{
γζ ≤ C−1γs if γ ≥ ω

ω3/2 = ωζ ≤ c−1C−1ωαt otherwise.
(51)

Let c′ := c′′ + 2c−1C−1 and define functions H,L : [0,∞)→ R by

H(α) := (1− γ)
{
F (α, 0) + c′ωα

}
+ γ(s+ φ),

L(α) := (1− γ)
{
F (α, 0)− c′ωα

}
+ γmax(s− φ, s/2),
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From (49), (50) and (51), we obtain that for αt ≥ cs and C ≥ 2,

L(αt) ≤ αt+1 ≤ H(αt). (52)

Define auxiliary sequences (α+
t )t≥t0 and (α−t )t≥0 by α+

t0 := αt0 =: α−t0 and for t ≥ t0,

α+
t+1 := H(α+

t ) and α−t+1 := L(α−t ).

We first derive some properties of the two recursion maps H and L. For the former,
we have by Wu and Zhou (2022, Lemma 3) that F , and hence H, is increasing and
concave on [0,∞) with H(0) > 0 when γ > 0 and H ′(0) > ∂1F (0, 0) > 1 when γ = 0.
Moreover, since F is bounded, we can choose c1 > 0, depending only on r and c, such that
limα→∞H

′(α) = (1 − γ)c′ω ≤ (1 − γ)c′c1 < 1/2. On the other hand, we have L(0) > 0
when γ > 0. When γ = 0, we have ω1/2 = ζ ≤ s/C, which means that after increasing
C ≡ C(r, c) > 0 if necessary, L′(0) = ∂1F (0, 0) − c′ω ≥ 1 + s2 − c′s2/C2 > 1. By Wu
and Zhou (2022, Lemma 3), α 7→ F (α, 0) is differentiable, increasing and concave for
α ∈ [0,∞). Reducing c1 ≡ c1(r, c) > 0 if necessary to ensure that c1 ≤ ∂1F (r + 3, 0)/c′,
we have for α ∈ [0, r + 3] that

L′(α) = ∂1F (α, 0)− c′ω ≥ ∂1F (r + 3, 0)− c′c1 ≥ 0.

In other words, L is increasing on [0, r + 3], and moreover, similarly to H, it is also
concave on this interval. Finally, we claim that for c̃ := min

{
c, 32(3 + r4)/3}−1/2

}
, and

α̃ := c̃s, we have L(α̃) ≥ α̃. To verify this, we note by Wu and Zhou (2022, Lemma 3(3)
and Equation (98)), we have

L(α̃) ≥ (1−γ)α̃

{
1+s2− 8

3
(3+r4)α̃2−c′ω

}
+2γα̃ ≥ (1−γ)α̃

(
1+

3s2

4
−c′ω

)
+2γα̃. (53)

To control the right-hand side of (53), if γ ≤ c′ω, we have ζ = ω1/2 ∧ ωγ−1/2 ≥ (ω/c′)1/2.
Hence, from the condition s ≥ Cζ, if we choose C > 2c′ (which is possible because c′ is
a decreasing function of C), we have c′ω ≤ (c′s/C)2 ≤ s2/4 and consequently the right-
hand side of (53) is at least α̃. If γ > c′ω, then we have L(α̃) ≥ (1− γ)2α̃ + 2γα̃ ≥ α̃ as
desired. This establishes the claim.

We now show by induction that for all t ≥ t0,

α̃ ≤ α−t ≤ αt ≤ α+
t . (54)

The base case is clear by the definition of α−t0 and α+
t0 above. Now suppose that (54) holds

for some iteration t ≥ 0, so in particular, (52) applies.
Using the monotonicity of H and (52), we have αt+1 ≤ H(αt) ≤ H(α+

t ) = α+
t+1.

Observe that αt ≤ ‖µ̂(t)‖ ≤ r+ 3 by the proof of Proposition 10. Using the monotonicity
of L on [0, r + 3], we find that αt+1 ≥ L(αt) ≥ L(α−t ) = α−t+1. Moreover,

α−t+1 = L(α−t ) ≥ L(α̃) ≥ α̃,

which completes the induction.
To prove (46), we will analyze the sequences (α+

t )t≥t0 and (α−t )t≥t0 , which sandwich
(αt)t≥t0 . We start by considering the behaviour of (α+

t )t≥t0 . The properties of H derived
above mean that we can apply Lemma 19 to obtain that α+

t converges to a limit, denoted
α+, satisfying α+ = H(α+). By Lemma 20, we have F (s, 0) = s and so H(s) = (1 −
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γ)(s + c′ωs) + γ(s + φ) > s. Hence from Lemma 19 again, we have α+ > s. On
the other hand, since F (α, 0) ≤ E|Z1,1| ≤ (EZ2

1,1)1/2 ≤ (1 + s2)1/2 ≤ 1 + r, we have
α+ = H(α+) ≤ (1− γ)(1 + r) +α+/2 + γr+ 1 ≤ r+ 2 +α+/2, so α+ ≤ 2r+ 4. Recalling
the definition of q from (44), by Lemma 20 again, we have

q(α+) = q(s) +

∫ α+

s

q′(α) dα ≤ 1− c2

(
(α+)2 − s2

)
for some c2 > 0 depending only on r. Consequently,

α+ = H(α+) = (1− γ)α+
{
q(α+) + c′ω

}
+ γ(s+ φ)

≤ (1− γ)α+
{

1− c2

(
(α+)2 − s2

)
+ c′ω

}
+ γ(s+ ωγ−1/2),

so

(α+)2 − s2 ≤ c′ω

c2

− γ

(1− γ)c2

α+ − s− ωγ−1/2

α+
. (55)

We now prove that

α+ − s .r,c
ω

s
∧ ω

γ1/2
(56)

by considering two cases. If α+ ≤ 2s, then from (55), we have

α+ − s ≤ (1− γ)c′ω + γ1/2ω/α+

(1− γ)c2(α+ + s) + γ/α+
.r,c

ω

s
· 1 + γ1/2/s

1 + γ/s2
.
ω

s
∧ ω

γ1/2
.

On the other hand, if α+ > 2s, then we have from (55) again that

3(α+)2

4
+

γ

2c2

≤ (α+)2 − s2 +
γ(α+ − s)

(1− γ)c2α+
≤ (c′ + 2γ1/2/α+)ω

c2

. (57)

In particular, γ/2 ≤ (c′ + γ1/2/s)ω ≤ c′ω + C−1(γ1/2ω1/2 ∨ γ), so γ .r,c ω and α+ &r,c

ζ &r,c γ
1/2. Consequently from (57),

α+ − s ≤ α+ .r,c ω
1/2 .r,c

ω

α+
∧ ω

γ1/2
.
ω

s
∧ ω

γ1/2
,

which establishes (56). We now consider (α−t )t≥t0 . Define L̃ : [0,∞)→ [0,∞) by L̃(α) :=
L
(
α ∧ (r + 3)

)
. Since α−t ≤ αt ≤ r + 3 for all t ≥ 0, we have α−t+1 = L̃(α−t ) for all t ≥ t0.

From the properties of L derived above, we see that L̃ satisfies the conditions of Lemma 19,
and hence α−t converges to a limit, denoted α−, satisfying α− = L̃(α−) = L(α−). By
Lemma 20, F (s, 0) = s, so we have L̃(s) = L(s) ≤ (1 − γ)(s − c′ωs) + γs < s, so by
Lemma 19, we must have α− < s. By Lemma 20 again, we have

q(α−) = q(s)−
∫ s

α−
q′(α) dα ≥ 1 + c′2

(
s2 − (α−)2

)
,

where c′2 > 0 depends only on r. Consequently, we have

α− = L(α−) ≥ (1− γ)α−
{

1 + c′2
(
s2 − (α−)2

)
− c′ω

}
+ γ(s− ωγ−1/2),

which after rearranging and using the fact that α− ≥ α̃ &r s leads to

s− α− ≤ (1− γ)c′ω + γ1/2ω/α−

(1− γ)c′2(s+ α−) + γ/α−
.r,c

ω

s
· 1 + γ1/2/s

1 + γ/s2
.
ω

s
∧ ω

γ1/2
. (58)
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Combining (54), (56) and (58), we have established (46).
We now turn to prove (47). By increasing C if necessary, we have for all sufficiently

large t that s/2 ≤ αt ≤ 2s. Consequently, we have by (33) that for all large t,

βt+1 ≤ βt(1−γ)

(
1+ω−s

2/4 ∧ 1

6

)
+γφ+2sω ≤ βt(1−γ)(1+ω−c3s

2)+(γ1/2+2s)ω, (59)

with c3 := 1/(6r2 + 24). Denote β∞ := lim supt→∞ βt. If γ ≤ 2ω, then ζ ∈ [(ω/2)1/2, ω1/2]
so ω ≤ 2s2/C2 ≤ c3s

2/2 for C sufficiently large. Hence, from (59), and the fact that
γ1/2 ≤ 2ζ ≤ s,

β∞ ≤
(γ1/2 + 2s)ω

c3s2/2
.r

ω

s
=
ω

s
∧ ω

γ1/2
.

On the other hand, if γ > 2ω, then (1−γ)(1+ω−c3s
2) ≤ 1−γ/2−c3s

2/2 and from (59),
we obtain

β∞ ≤
(γ1/2 + 2s)ω

(γ + c3s2)/2
.r

ω

s
· 1 + γ1/2/s

1 + γ/s2
.
ω

s
∧ ω

γ1/2
.

Combining the above two cases establishes (47).
Finally, recalling the decomposition of µ̂(t) in (27), we see that (48) follows immediately

from (46) and (47).

Next, we show that provided the initialization is not too uncorrelated with the true
parameter, |αt| reaches a level that makes Proposition 12 applicable after a sufficient
number of iterations.

Proposition 13. Assume that n ≥ 3, that φγ1/2 ≤ ω ≤ min{1/12, 1/(r + 3)} and that
γ ∈ [0, 1/2). Suppose that µ̂(0) is chosen such that c′(ζ ∨ rω) ≤ ‖µ̂(0)‖ ≤ 60(ζ ∨ rω) for
some c′ ∈ (0, 1) and that |〈µ̂(0)/‖µ̂(0)‖, η〉| ≥

√
1/(d log nU). Then there exist c4, c5 > 0,

depending only on r and c′, such that if s ≥ c4ζ
√
d log nU, then on Ω1(ω) ∩ Ω2(φ), we

have

|αt| ≥ c5s

for some t > 0.

Proof. By flipping the sign of µ∗ if necessary, we may assume without loss of generality
that α0 ≥ 0. Assuming that the desired result is not true, we will prove by induction that
on Ω1(ω)∩Ω2(φ), (a) αt/βt ≥ c′/(60

√
d log nU) and (b) αt+1 ≥ (1 +ω

√
d log nU)αt for all

t ≥ 0. We show this by first verifying the base case of (a), then proving that (a) implies
(b) for each t, and finally proving that αt+1/βt+1 ≥ 1/(60

√
d log nU) once (b) holds for a

given t.
For the base case, from the assumption on µ̂(0), we have

α0

β0

≥ α0

‖µ̂(0)‖
=

〈
µ̂(0)

‖µ̂(0)‖
, η

〉
≥ 1√

d log nU

≥ c′

60
√
d log nU

since c′ ≤ 60.
Now assume that αt/βt ≥ c′/(60

√
d log nU) and that α0 ≤ αt < c5s for some t ≥ 0.

We aim to show that (b) holds for the same t, and start by controlling e>1 f(µ̂(t)). Let
W = (W1, . . . ,Wd)

> be an independent copy of Z1, independent of all other randomness

in the problem, and define ut :=
{

tanh(W1αt + W>
−1µ̂

(t)
−1) − tanh(W1αt −W>

−1µ̂
(t)
−1)
}
/2.
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Then by applying the second part of Lemma 18 with a = W1αt and b = W>
−1µ̂

(t)
−1 (so that

a+ b = W>µ̂(t)), we have

e>1 f(µ̂(t)) = E
{
W1 tanh(W1αt +W>

−1µ̂
(t)
−1)
}

≥ E
{
αtW

2
1 −

α3
tW

4
1

3
− αtW 2

1 (W>
−1µ̂

(t)
−1)2

}
+ E(W1ut)

= αt(1 + s2)(1− β2
t )− α3

t (1 + 2s2 + s4/3),

where in the final step we have used the fact that ut is an odd function of W>
−1µ̂

(t)
−1, which

has a symmetric distribution about 0, conditional on (W1, µ̂
(t)
−1), and hence E(W1ut) =

E
{
E(W1ut | W1, µ̂

(t)
−1)
}

= 0. From the assumption s ≥ c4ζ, and using βt ≤ 60(1 + r)ζ
from Proposition 10, we have for sufficiently large c4 that β2

t (1 + s2) ≤ {60(1 + r)}2(1 +
r2)s2/c2

4 ≤ s2/4. By choosing c5 > 0, depending only on r, sufficiently small, we may
assume that α2

t (1 + 2s2 + s4/3) < c2
5(1 + 2r2 + r4/3)s2 ≤ s2/4. Recall the definition of

fnU
from (28). Since on the event Ω1(ω) ∩ Ω2(φ), we have ‖µ̂(t)‖ ≤ r + 3 ≤ 2(r +

√
d) as

in the first line of the proof of Proposition 10, we have on the event Ω1(ω) ∩ Ω2(φ) that

αt+1 = (1− γ)e>1 fnU
(µ̂(t)) + γe>1 µ̂nL

≥ (1− γ)
{
e>1 f(µ̂(t))− ω‖µ̂(t)‖

}
+ γ(s− φ)

≥ (1− γ)
{
αt(1 + s2/2)− ω(αt + βt)

}
+ γ(s− φ).

If γ ≥ ω, then φ ≤ ωγ−1/2 = ζ ≤ s/2 (assuming c4 ≥ 2). If γ < ω, then

γφ ≤ ωγ1/2 < ω3/2 = ωζ ≤ α0ω

c′

√
d log nU ≤

2(1− γ)αtω

c′

√
d log nU.

Hence, in either case, we have on Ω1(ω) ∩ Ω2(φ) that

αt+1 ≥ (1− γ)αt
{

1 + s2/2− ω(1 + 62/c′)
√
d log nU)

}
+
γs

2

≥ (1− γ)αt
{

1 + s2/2 + (1 + 62/c′)(2γ − ω
√
d log nU)

}
,

where the final bound holds provided we reduce c5 to be at most 1/(2+124/c′) if necessary.
Now, when γ ≤ ω

√
d log nU, we have ζ = ω1/2∧ωγ−1/2 ≥ ω1/2(d log nU)−1/4 and hence

by the condition on s in the proposition, we have s2 ≥ c2
4ζ

2d log nU ≥ c2
4ω
√
d log nU. Thus,

by increasing c4 to be at least
√

4 + 248/c′ if necessary, we have (1 + 62/c′)ω
√
d log nU ≤

s2/4. Hence, in this case, and on the event Ω1(ω) ∩ Ω2(φ),

αt+1 ≥ (1− γ)(1 + s2/4 + (2 + 124/c′)γ)αt ≥
(

1 +
s2

8

)
αt ≥ (1 + ω

√
d log nU)αt.

On the other hand, when γ > ω
√
d log nU, we have

αt+1 ≥ (1− γ)(1 + (1 + 62/c′)γ)αt ≥ (1 + γ)αt ≥ (1 + ω
√
d log nU)αt.

Combining the two bounds above proves (b) for this given t.
It remains to verify (a) for t+ 1, assuming that (a) and (b) hold up to and including

t. Since β0 ≤ ‖µ̂(0)‖ ≤ 60(ζ ∨ rω), we have by Proposition 10 that βt+1 ≤ 60(ζ ∨ rω) ≤
60(c′)−1‖µ̂(0)‖. Thus,

αt+1

βt+1

≥ α0

60‖µ̂(0)‖/c′
≥ c′

60
√
d log nU

,
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which completes the induction. In particular, the geometric growth of αt implied by (b)
means that αt will exceed c5s for sufficiently large t > 0. This establishes our desired
contradiction, and hence proves the result.

Proof of Proposition 5. Define φ0 := ω0γ
−1/2, and recall the definitions of Ω1(ω) and

Ω2(φ) from (30). By Proposition 9, there exists Cr ≥ 1, depending only on r, such that
for ω = Crω0 and φ = Crφ0, we have P

(
Ω1(ω) ∩ Ω2(φ)

)
≥ 1− 2δ.

(i) By the definition of ω and φ, we have ω = φγ1/2. If we choose c such that
c ≤ C−1

r min{1/12, 1/(r + 3)}, then ω ≤ min{1/12, 1/(r + 3)}. Thus, we may apply
Propositions 10 and 11 to obtain that on Ω1(ω) ∩ Ω2(φ), we have

lim sup
t→∞

‖µ̂(t) − µ∗‖ ≤ lim sup
t→∞

(|αt|+ βt + ‖µ∗‖) .r ζ ∨ ‖µ∗‖.

The first claim follows.

(ii) From Lemma 21 and by considering the case d = 1 separately, for the chosen η0,
we have

P
(
|e>1 η0| ≤ 1/

√
d log nU

)
≤
√

2

π log nU

.

Again, if we choose c ≤ C−1
r min{1/12, 1/(r + 3)}, then φγ1/2 = ω ≤ min{1/12, 1/(r +

3)}. Also, ‖µ̂(0)‖ = ζ0 ∨ rω0 ∈ [C−1
r (ζ ∨ rω), ζ ∨ rω]. Thus, applying Proposition 13

with c′ = 1/Cr, there exists c > 0, depending only on r, and t0 ∈ N such that on
Ω1(ω) ∩ Ω2(φ) ∩ {|e>1 η0| > 1/

√
d log nU}, we have |αt0| ≥ cs.

Since β0 ≤ ‖µ̂(0)‖ ≤ ζ∨rω, we can apply Proposition 10 to obtain that βt ≤ 60(ζ∨rω)
for all t ≥ 0. Hence all conditions of Proposition 12 are satisfied, and the desired result
then follows from (48).

To prove Theorem 6, we need the following proposition, which relates the loss of
estimating µ∗ to the operator norm loss of estimating µ∗µ∗>.

Proposition 14. Assume that n ≥ 3 and that (Z1, Y1, Y
∗

1 ), . . . , (Zn, Yn, Y
∗
n ) are indepen-

dent with

Y ∗i ∼ Unif{−1, 1}, Zi | Y ∗i ∼ Nd(Y ∗i µ∗, Id), Yi = Y ∗i 1{i≤nL} for i ∈ [n].

For µ ∈ Rd and i ∈ [n], let Li(µ) := Yi1{Yi 6=0} + tanh〈Zi, µ〉1{Yi=0}, µtot(µ) :=
µn−1

∑n
i=1 Li(µ) and Σb(µ) := µµ> − µtot(µ)µtot(µ)>. For any δ ∈ (0, 1) and B > 0, we

have with probability at least 1− δ that

sup
µ:‖µ‖≤B

{
‖Σb(µ)−µ∗µ∗>‖op− (B+s)L(µ, µ∗)

}
. B2(s2∨1)

(
d log(2Bn+ e) + log(1/δ)

n

)
.

Proof. For any µ ∈ Rd with ‖µ‖ ≤ B, we have

‖Σb(µ)− µ∗µ∗>‖op ≤ ‖µµ> − µ∗µ∗>‖op + ‖µtot(µ)µtot(µ)>‖op

≤ (B + s)L(µ, µ∗) +B2

(
1

n

n∑
i=1

Li(µ)

)2

.
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Thus, it is enough to show that supµ:‖µ‖≤B n−1
∑n

i=1 Li(µ) .
√

(s2∨1){d log(2Bn+e)+log(1/δ)}
n

with probability at least 1− δ. To this end, we have

sup
µ:‖µ‖≤B

1

n

n∑
i=1

Li(µ) =
1

n

nL∑
i=1

Yi +
1

n
sup

µ:‖µ‖≤B

n∑
i=nL+1

tanh〈Zi, µ〉. (60)

For the first term on the right-hand side of (60), by Hoeffding’s inequality, we have

P
(

1

n

nL∑
i=1

Yi >

√
2nL log(3/δ)

n

)
≤ δ

3
. (61)

For the second term on the right-hand side of (60), let N be a ε-net of {v : ‖v‖ ≤ B}
with respect to the Euclidean distance, for some ε ∈ (0, 1/2] to be specified later. Since
a maximal ε-packing set is an ε-net, we may assume that |N | ≤ (B + ε/2)d/(ε/2)d =
(2B/ε + 1)d. Using the fact that x 7→ tanhx is 1-Lipschitz, together with the Cauchy–
Schwarz inequality, we have

sup
v:‖v‖≤B

n∑
i=nL+1

tanh〈Zi, v〉

≤ sup
v∈N

n∑
i=nL+1

tanh〈Zi, v〉+ sup
u,v:‖u−v‖≤ε

n∑
i=nL+1

(tanh〈Zi, u〉 − tanh〈Zi, v〉)

≤ sup
v∈N

n∑
i=nL+1

tanh〈Zi, v〉+ ε
n∑

i=nL+1

‖Zi‖.

Hence taking ε = 1/n, and defining τ := log(3/δ)
d log(2Bn+e)

> 0, we have

P
(

1

n
sup

v:‖v‖≤B

n∑
i=nL+1

tanh〈Zi, v〉 > 2

√
2(s2 ∨ 1)(1 + τ)d log(2Bn+ e)

n

)

≤ P
(

1

n
sup
v∈N

n∑
i=nL+1

tanh〈Zi, v〉 >
√

2(s2 ∨ 1)(1 + τ)d log(2Bn+ e)

n

)

+ P
(

1

n

n∑
i=nL+1

‖Zi‖ ≥
√

2(s2 ∨ 1)(1 + τ)nd log(2Bn+ e)

)

≤ |N |
e(1+τ)d log(2Bn+e)

+ P
(

1

n

n∑
i=nL+1

‖Zi‖2 ≥ 2(s2 ∨ 1)(1 + τ)nd log(2Bn+ e)

)
≤ 2δ

3
, (62)

where the penultimate bound uses Hoeffding’s inequality and the Cauchy–Schwarz in-
equality and the final bound uses the fact that

∑n
i=nL+1 ‖Zi‖2 ∼ χ2

nUd
(nUs

2) and Birgé
(2001, Lemma 8.1). Combining (60), (61) and (62), we have with probability at least
1− δ that

sup
µ:‖µ‖≤B

1

n

n∑
i=1

Li(µ) ≤
√

2nL log(3/δ)

n
+ 2

√
2(s2 ∨ 1)(1 + τ)d log(2Bn+ e)

n

.

√
(s2 ∨ 1){d log(2Bn+ e) + log(1/δ)}

n
,

as desired.
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Proof of Theorem 6. We write µ̂[m] ≡ µ̂
(T )
[m] for the T th (final) iterate of the EM update

in Algorithm 3 starting from the mth random initializer µ̂
(0)
[m]. Let ω = Crω0, φ = Crφ0,

Ω1(ω) and Ω2(φ) be defined as in the proof of Proposition 5. Further, let Σb(µ) be defined
as in Proposition 14. By Proposition 9, the first claim in the proof of Proposition 10 and
Proposition 14, we have for some C > 0 depending only on r that

P
[

max
m∈[M ]

sup
T∈N

{
‖Σb(µ̂

(T )
[m])− µ

∗µ∗>‖op − (2r + 3)L(µ̂
(T )
[m] , µ

∗)
}
≤C{d log(rn) + log(1/δ)}

n

]
≥ 1− δ.

In this balanced two-cluster setup, for the tth EM iteration starting from the mth random
initializer, we have −µ̂1 = µ̂2 = µ̂, where we suppress the dependence on t and m for
convenience. For i ≥ nL + 1, we have Li,1 = ez

>
i µ̂1/(ez

>
i µ̂1 + ez

>
i µ̂2), Li,2 = ez

>
i µ̂2/(ez

>
i µ̂1 +

ez
>
i µ̂2) and hence Li,2 − Li,1 = tanh〈Zi, µ̂〉. Thus, µ̂tot = n−1µ̂

∑n
i=1{tanh〈Zi, µ̂〉1{Yi=0} +

Yi1{Yi 6=0}}. Also, we note that

Σ̂b =
1

n

n∑
i=1

2∑
k=1

Li,k(µ̂k−µ̂tot)(µ̂k−µ̂tot)
> =

1

n

n∑
i=1

2∑
k=1

Li,kµ̂kµ̂
>
k −µ̂totµ̂

>
tot = µ̂µ̂>−µ̂totµ̂

>
tot.

Consequently, using the notation of Proposition 14 and Algorithm 3, we have Q̂ ≡ Q̂(T ) ≡
Q̂[m̂] = Σb

(
µ̂

(T )
[m̂]

)
.

We consider two cases. If ‖µ∗‖ ≤ ω
1/3
0 ∧ζ

1/2
0 , then by the proof of Proposition 5(i), we

have on the event Ω1(ω)∩Ω2(φ) that lim supT→∞ L(µ̂
(T )
[m] , µ

∗) .r ζ0∨‖µ∗‖ .r ω
1/3
0 ∧ζ

1/2
0 for

every m ∈ [M ]. Thus, by Proposition 14, with probability at least P
(
Ω1(ω)∩Ω2(φ)

)
−δ ≥

1− 3δ, we have

lim sup
T→∞

‖Q̂− µ∗µ∗>‖op .r (ω
1/3
0 ∧ ζ1/2

0 ) lim sup
T→∞

max
m∈[M ]

L(µ̂
(T )
[m] , µ

∗)

+ (ω
2/3
0 ∧ ζ0)

(
d log n+log(1/δ)

n

)
.r ω

2/3
0 ∧ ζ0 =

ω0

ω
1/3
0 ∧ ζ1/2

0

∧ ζ0 ≤
ω0

‖µ∗‖
∧ ζ0. (63)

We now turn to the case where ‖µ∗‖ > ω
1/3
0 ∧ ζ1/2

0 . Let M0 be the set of m ∈ [M ]

such that |〈µ̂(0)
[m], µ

∗〉|/(‖µ∗‖‖µ̂(0)
[m]‖) ≥

√
1/(d log nU) and let M0 := |M0|. By definition

of the EM initializers, the random variables
{
〈µ̂(0)

[m], µ
∗〉/(‖µ∗‖‖µ̂(0)

[m]‖) : m ∈ [M ]
}

are
independent, and moreover, by Lemma 21 we have

P
( |〈µ̂(0)

[m], µ
∗〉|

‖µ∗‖‖µ̂(0)
[m]‖
≥
√

1

d log nU

)
≥ 1−

√
2

π log nU

>
3

5
.

Defining Ω3 := {M0 > M/2}, by Hoeffding’s inequality, we have

P(Ωc
3) ≤ e−M/50.

Let

M1 :=
{
m ∈ [M ] \ {m̂} : ‖Q̂[m]− Q̂[m̂]‖op ≤ median(‖Q̂[m′]− Q̂[m̂]‖op : m′ ∈ [M ] \ {m̂})

}
.
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Since |M1∪{m̂}| ≥ d(M − 1)/2e+ 1 > M/2, we have on Ω3 thatM0∩ (M1∪{m̂}) 6= ∅.
Thus, on the event Ω1(ω) ∩ Ω2(φ) ∩ Ω3, we can let m̃ := min

(
M0 ∩ (M1 ∪ {m̂})

)
, so by

definition of m̂, we have

‖Q̂[m̂] − µ∗µ∗>‖op ≤ ‖Q̂[m̂] − Q̂[m̃]‖op + ‖Q̂[m̃] − µ∗µ∗>‖op

≤ median(‖Q̂[m′] − Q̂[m̂]‖op : m′ ∈ [M ] \ {m̂}) + ‖Q̂[m̃] − µ∗µ∗>‖op

≤ median(‖Q̂[m′] − Q̂[m̃]‖op : m′ ∈ [M ] \ {m̃}) + ‖Q̂[m̃] − µ∗µ∗>‖op

≤ max
m,m′∈M0

‖Q̂[m] − Q̂[m′]‖op + ‖Q̂[m̃] − µ∗µ∗>‖op

≤ 3 max
m∈M0

‖Q̂[m] − µ∗µ∗>‖op.

Since ω0 ≤ (d log n)−3, by discussing cases of γ < ω, ω ≤ γ ≤ ω2/3 and γ > ω2/3, we see

that ω
1/3
0 ∧ ζ1/2

0 ≥ ζ0

√
d log n. From the proof of Proposition 5(ii), we have on the event

Ω1(ω) ∩ Ω2(φ) that lim supT→∞maxm∈M0 L(µ̂
(T )
[m] , µ

∗) .r
ω0

‖µ∗‖ ∧ (ω0γ
−1/2). Let Ω4 be the

event on which the conclusion of Proposition 14 holds. Then on Ω1(ω)∩Ω2(φ)∩Ω3∩Ω4,
we therefore have

lim sup
T→∞

‖Q̂[m̂] − µ∗µ∗>‖op .r lim sup
T→∞

max
m∈M0

L(µ̂
(T )
[m] , µ

∗) +
d log n+ log(1/δ)

n

.r

(
ω0

‖µ∗‖
∧ ω0

γ1/2

)
+
d log n+ log(1/δ)

n

.r
ω0

‖µ∗‖
∧ ζ0. (64)

The desired result follows by combining (63) and (64), and the fact that P
(
Ω1(ω)∩Ω2(φ)∩

Ω3 ∩ Ω4

)
≥ 1− 3δ − e−M/50.

5.5 Proof of Corollary 7

Proof of Corollary 7. Fix P ∈ Pd, define Zi := PXi for i ∈ [n], µ∗ := Pν∗, δ := ε/
{

4
(
p
d

)}
,

ω0 :=
√

d logn+log(1/δ)
nU

and ζ0 := ω
1/2
0 ∧ ω0γ

−1/2. Then, provided C1 > 2, we have δ ≥
2e−n/2/pd > 2e−n, and ‖µ∗‖ ≤ ‖ν∗‖ ≤ r. Let c > 0 be chosen, depending only on r,
to satisfy Theorem 6. By increasing C1 > 0, depending only on r, if necessary, we may
assume that ω0 ≤ min{c, (d log n)−3}. Hence, since (PΣwP

>)−1PΣbP
> = µ∗µ∗>, we can

apply Theorem 6 to obtain that for some C ′2 > 0 depending only on r, with probability
at least 1− 3δ − e−M/50 we have that

lim sup
T→∞

∥∥ψ(T )
(
(PXi, Yi)i∈[n]

)
− (PΣwP

>)−1PΣbP
>∥∥

op
≤ C ′2ζ0

≤ C2 min

[{
d log(p ∨ n) + log(1/ε)

n

}1/4

,

√
d log(p ∨ n) + log(1/ε)

nL

]
≤ (ν∗min)2

4
.
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Since ψ(T ) is permutation equivariant for each T ≥ 0, by Fatou’s lemma and a union
bound, we have that

lim sup
T→∞

P
(

max
P∈Pd

∥∥ψ(T )
(
(PXi, Yi)i∈[n]

)
− (PΣwP

>)−1PΣbP
>∥∥

op
>

(ν∗min)2

4

)
≤ P

(
lim sup
T→∞

max
P∈Pd

∥∥ψ(T )
(
(PXi, Yi)i∈[n]

)
− (PΣwP

>)−1PΣbP
>∥∥

op
>

(ν∗min)2

4

)
≤
∑
P∈Pd

P
(

lim sup
T→∞

∥∥ψ(T )
(
(PXi, Yi)i∈[n]

)
− (PΣwP

>)−1PΣbP
>∥∥

op
>

(ν∗min)2

4

)
≤
(
p

d

)
(3δ + e−M/50) ≤ 3

4
ε+ e−M/50+d log p ≤ ε.

The result now follows from Theorem 2, noting that γmin = (ν∗min)2 and γmax = (ν∗max)2.

6 Auxiliary lemmas

Lemma 15. Suppose that K = 2 and C is defined as in (11). Let (−µ̂(t), µ̂(t), Id) ∈ C be
the tth iterate of the EM iteration described in (4) and (5) with data (Z1, Y1), . . . , (Zn, Yn),
starting from (−µ̂(0), µ̂(0), Id). Then for all t ≥ 1, we have

µ̂(t) =
1

n

{∑
i:Yi 6=0

(−1)YiZi +
∑
i:Yi=0

Zi tanh〈Zi, µ̂(t−1)〉
}
.

Proof. At step t ≥ 1, in the E-step, by (4), we have for k ∈ {1, 2} that Li,k = 1{Yi=k} if
Yi 6= 0 and

Li,k =
e−‖Zi−(−1)kµ̂(t−1)‖2/2

e−‖Zi−µ̂(t−1)‖2/2 + e−‖Zi+µ̂(t−1)‖2/2

otherwise. In the M-step, defining

Q(µ | µ̂(t−1)) :=
1

n

n∑
i=1

(Li,1‖Zi + µ‖2 + Li,2‖Zi − µ‖2),

we have µ̂(t) = argminµ∈Rd Q(µ | µ̂(t−1)). Differentiating Q(µ | µ̂(t−1)) with respect to µ,
we obtain

µ̂(t) =
1

n

n∑
i=1

(Li,2 − Li,1)Zi.

The desired result follows since Li,2 − Li,1 = (−1)Yi if Yi ∈ {1, 2}, and

Li,2−Li,1 =
e−‖Zi−µ̂

(t−1)‖2/2 − e−‖Zi+µ̂(t−1)‖2/2

e−‖Zi−µ̂(t−1)‖2/2 + e−‖Zi+µ̂(t−1)‖2/2
=
e〈Zi,µ̂

(t−1)〉 − e−〈Zi,µ̂(t−1)〉

e〈Zi,µ̂(t−1)〉 + e−〈Zi,µ̂(t−1)〉
= tanh〈Zi, µ̂(t−1)〉

if Yi = 0.

Lemma 16. Let X1, . . . , Xn
iid∼ P for some distribution P on Rd. If ‖µ∗‖ ≤ n−1/4, then

for any Borel measurable function ψ : (Rd)n → {0, 1} of the null hypothesis H0 : P =
Nd(0, Id) against the alternative H1 : P = 1

2
Nd(µ∗, Id) + 1

2
Nd(−µ∗, Id), we have

PH0

(
ψ(X1, . . . , Xn) = 1

)
+ PH1

(
ψ(X1, . . . , Xn) = 0

)
> 1/2.
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Proof. Write X = (X1, . . . , Xn)>. Observe that, writing dTV for the total variation
distance between probability measures,

PH0

(
ψ(X) = 1

)
+ PH1

(
ψ(X) = 0

)
≥ 1− dTV(PH0 ,PH1)

= 1− 1

2

∫ ∣∣∣∣dPH1

dPH0

− 1

∣∣∣∣ dPH0 ≥ 1− 1

2

{∫ (
dPH1

dPH0

− 1

)2

dPH0

}1/2

= 1− 1

2

{∫ (
dPH1

dPH0

)2

dPH0 − 1

}1/2

. (65)

To control the chi-squared divergence in the right-hand side of (65) above, we let ξ =
(ξ1, . . . , ξn)> have independent Rademacher components and W = (Wi,j)i∈[n],j∈[d] be a

random matrix with independent N(0, 1) entries, independent of ξ. Then X
d
= W under

H0 and X
d
= ξµ∗>+W under H1. Let ξ̃ be an independent copy of ξ. Using the Ingster–

Suslina device, see, e.g., Ingster and Suslina (2012), Liu, Gao and Samworth (2021),
Lemma 21, we have that∫ (

dPH1

dPH0

)2

dPH0 = E exp〈ξµ∗>, ξ̃µ∗>〉 = coshn(‖µ∗‖2) ≤ en‖µ
∗‖4/2 ≤ e1/2,

where we used the fact that coshx ≤ ex
2/2 for all x ∈ R in the penultimate step. The

desired result follows from substituting the above bound into (65) and the fact that
1− (e1/2 − 1)1/2/2 > 1/2.

We prove a generalization of Cochran’s theorem for quadratic forms of independent
Gaussian random vectors with a common covariance matrix, which result in independent
noncentral Wishart distributions. Recall that if X is a matrix, then vec(X) is the vec-
torization of X, obtained by stacking its columns on top of each other. The Kronecker
product between matrices A = (Ai,j)i∈[m],j∈[n] and B is defined as

A⊗B :=

A1,1B · · · A1,nB
...

. . .
...

Am,1B · · · Am,nB

 .

Recall also that when X1, . . . , Xn
iid∼ Nd(0,Σ), the matrix

∑n
i=1XiX

>
i has a d-dimensional

Wishart distribution with n degrees of freedom and covariance matrix Σ ∈ Sd×d, denoted
Wd(n,Σ). More generally,

∑n
i=1(Xi+µi)(Xi+µi)

> has a non-central Wishart distribution
with n degrees of freedom, covariance matrix Σ and non-centrality matrix Ω =

∑n
i=1 µiµ

>
i ,

written Wd(n,Σ; Ω). Thus Wd(n,Σ; 0)
d
=Wd(n,Σ).

Lemma 17. Let Z1, . . . , Zn be independent with Zi ∼ Nd(µi,Σ) for i ∈ [n], and write
Z := (Z1, . . . , Zn)> ∈ Rn×d and M := E(Z). If P1, . . . , Pk ∈ Rn×n are positive semidef-
inite matrices such that P1 + · · · + Pk = In and rank(P1) + · · · + rank(Pk) = n, then
Z>P1Z, . . . , Z

>PkZ are independent with Z>PrZ ∼ Wd

(
rank(Pr),Σ;M>PrM

)
.

Proof. As in the proof of the classical Cochran’s theorem (Cochran, 1934), we first note
that P1, . . . , Pk can be simultaneously diagonalised such that

Pr = QDrQ
>,
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for some Q ∈ On×n and Dr = diag
(
(1{j∈Sr})j∈[n]

)
, where Sr ⊆ [n], |Sr| = rank(Pr) and

Sr ∩ Sr′ = ∅ for all r 6= r′. In particular, P1, . . . , Pk satisfy P 2
r = Pr for r ∈ [k] and

PrPr′ = 0 for all r 6= r′. Since P1Z, . . . , PkZ are jointly Gaussian, with

Cov
(
vec(PrZ), vec(Pr′Z)

)
= Cov

(
(Id ⊗ Pr)vec(Z), (Id ⊗ Pr′)vec(Z)

)
= (Id ⊗ Pr)(Σ⊗ In)(Id ⊗ Pr′)> = 0,

we have that P1Z, . . . , PkZ are independent. But Z>PrZ = (PrZ)>PrZ, so it follows that
Z>P1Z, . . . , Z

>PkZ are independent. Moreover, writing W = (W1, . . . ,Wn)> := Q>Z,
we have vec(Z) ∼ Nnd

(
vec(M),Σ⊗ In

)
, so

vec(W ) = (Id⊗Q>)vec(Z) ∼ Nnd
(
(Id⊗Q>)vec(M),Σ⊗ In

) d
= Nnd

(
vec(Q>M),Σ⊗ In

)
.

Therefore,

Z>PrZ = W>DrW =
∑
i∈Sr

WiW
>
i ∼ Wd

(
|Sr|,Σ;

∑
i∈Sr

E(Wi)E(Wi)
>
)

d
=Wd

(
rank(Pr),Σ;M>PrM

)
,

as desired.

Lemma 18. For any a, b ∈ R, we have

1

2
{tanh(a+ b)− tanh(a− b)} ≤ |b|

and
a

2
{tanh(a+ b) + tanh(a− b)} ≥ a2 − a4

3
− a2b2

Proof. For the first inequality, since the left-hand side is an increasing function of b, and
an even function of a, we may assume that a ≥ 0 and b ≥ 0. Notice that ∂

∂a

(
tanh(a+b)−

tanh(a− b)
)

= 1/ cosh2(a+ b)− 1/ cosh2(|a− b|) ≤ 0, since x 7→ cosh(x) is an increasing
function on [0,∞). Hence

1

2
{tanh(a+ b)− tanh(a− b)} ≤ tanh b ≤ b.

as desired.
For the second inequality, since both sides are even functions of both a and b, we may

again assume without loss of generality that a > 0 and b ≥ 0. We may also assume that
b ≤ 1 since otherwise, the right-hand side is negative and the inequality holds trivially.
But then

1

2
{tanh(a+ b) + tanh(a− b)} =

1

2

(
tanh a+ tanh b

1 + tanh a tanh b
+

tanh a− tanh b

1− tanh a tanh b

)
=

tanh a

(1− tanh2 a tanh2 b) cosh2 b
≥ tanh a

cosh2 b

≥ (1− b2) tanh a ≥ (1− b2)

(
a− a3

3

)
≥ a− a3

3
− ab2,

as desired. Here, the second inequality holds because (1−b2) cosh2 b ≤ (1−b2)eb
2 ≤ 1.
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Lemma 19. Let H : [0,∞)→ [0,∞) be an increasing, concave function with H ′(x0) < 1
for some x0 ≥ 0 and either H(0) > 0 or both H(0) = 0 and H ′(0) > 1. Then there exists
a unique α∗ > 0 such that

H(α)− α


> 0 α ∈ (0, α∗)

= 0 α = α∗

< 0 α ∈ (α∗,∞).

Moreover, if α0 > 0, then the sequence (αt)t≥0 given by αt := H(αt−1) monotonically
converges to α∗.

Proof. For the first claim, consider the concave function H̃(x) := H(x)−x, which satisfies
H̃(x) > 0 for sufficiently small x > 0, and for x ≥ x0, we have that any supergradient
vx ∈ R of H̃ at x satisfies vx ≤ −

{
1 − H ′(x0)

}
< 0. It follows that H̃(x) → −∞

as x → ∞, so by the intermediate value theorem, there exists α∗ ∈ (0,∞) such that
H̃(α∗) = 0, i.e. H(α∗) = α∗. Again using the facts that H̃(x) > 0 for sufficiently small
x > 0, and H̃(x) → −∞ as x → ∞, we see that the concave function H̃ can only cross
the x-axis at one positive value α∗, and H̃(α) > 0 for α ∈ (0, α∗) and H̃(α) < 0 for
α ∈ (α∗,∞).

Next, note that if α ∈ (0, α∗), then α < H(α) < H(α∗) = α∗. Thus, if α0 < α∗, then
(αt)t≥0 is an increasing sequence, bounded above by α∗, so it converges to a limit. But
then, taking limits on both sides of the recursion αt := H(αt−1), we deduce that this limit
must be α∗. A similar argument can be used to show that if α0 ∈ (α∗,∞) then (αt)t≥0

decreases down to the limit α∗, while if α0 = α∗, then αt = α∗ for all t.

Lemma 20. Let µ∗ be a non-zero vector in Rd, let Z ∼ 1
2
Nd(−µ∗, Id) + 1

2
Nd(µ∗, Id), let

η := µ∗/‖µ∗‖, and define q : [0,∞)→ [0,∞) by

q(α) :=

{
α−1η>E(Z tanh〈αη, Z〉) if α > 0
1 + ‖µ∗‖2 if α = 0.

Then q is a differentiable function with q(‖µ∗‖) = 1 and for any h ≥ ‖µ∗‖, we have

sup
α∈[0,h]

q′(α)

α
≤ − e−h

2/2

3 · 211
√

2π(h5 ∨ 1)
.

Proof. Write s := ‖µ∗‖. The fact that q(s) = 1 follows from Xu, Hsu and Maleki (2016,
Theorem 1). By Wu and Zhou (2022, Lemma 3(4)), q is differentiable with q′(α) ≤
−(2α/3) · E

(
Z̃4/ cosh2(αZ̃)

)
for α ∈ [0,∞), where Z̃ ∼ 1

2
N (−s, 1) + 1

2
N (s, 1). We can
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now compute that for α, s ∈ [0, h],

E
(

Z̃4

cosh2(αZ̃)

)
≥ E(Z̃4e−2α|Z̃|) ≥ 1

2
√

2π

∫ ∞
0

y4e−2αye−(y−s)2/2 dy

=
1

2
√

2π

∫ ∞
0

y4e−(y−s+2α)2/2−2αs+2α2

dy

≥

 e−2αs+2α2

2
√

2π

∫ 1
2(2α−s)

0
1
2
y4e−(2α−s)2/2 dy if s+ 1 ≤ 2α

e−2αs+2α2

2
√

2π

∫ s−2α+2

s−2α+1
y4e−2 dy if s+ 1 > 2α

≥

 e−s
2/2

27·5
√

2π

(
1

2α−s

)5

if s+ 1 ≤ 2α

e−2αs+2α2−2

10
√

2π
if s+ 1 > 2α

≥ e−h
2/2

212 · 5
√

2π(h5 ∨ 1)
,

which establishes the desired bound.

Lemma 21. Let d ≥ 2, and let η = (η1, . . . , ηd)
> ∼ Unif(Sd−1). Then for any a > 0, we

have

P
(
|η1| ≤

a√
d

)
≤
√

2

π
a.

Proof. Leting Z = (Z1, . . . , Zd)
> ∼ Nd(0, Id), we have η

d
= Z/‖Z‖ and in particular

η2
1

d
= Z2

1/(Z
2
1 + · · ·+ Z2

d) ∼ Beta
(
1/2, (d− 1)/2

)
. Thus,

P
(
|η1| ≤

a√
d

)
= P

(
Z2

1

‖Z‖2
≤ a2

d

)
=

Γ(d/2)

Γ(1/2)Γ
(
(d− 1)/2

) ∫ a2/d

0

t−1/2(1− t)(d−3)/2 dt

≤ 2Γ(d/2)a√
dΓ(1/2)Γ((d− 1)/2)

≤
√

2

π
a,

where the final bound uses, e.g., Dümbgen, Samworth and Wellner (2021, Corollary 11).
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