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Abstract

Spectral methods have become increasingly popular in designing fast algorithms for modern high-
dimensional datasets. This thesis looks at several problems in which spectral methods play a central
role. In some cases, we also show that such procedures have essentially the best performance among
all randomised polynomial time algorithms by exhibiting statistical and computational trade-offs
in those problems.

In the first chapter, we prove a useful variant of the well-known Davis—Kahan theorem, which is a
spectral perturbation result that allows us to bound of the distance between population eigenspaces
and their sample versions.

We then propose a semi-definite programming algorithm for the sparse principal component
analysis (PCA) problem, and analyse its theoretical performance using the perturbation bounds
we derived earlier. It turns out that the parameter regime in which our estimator is consistent is
strictly smaller than the consistency regime of a minimax optimal (yet computationally intractable)
estimator. We show through reduction from a well-known hard problem in computational complex-
ity theory that the difference in consistency regimes is unavoidable for any randomised polynomial
time estimator, hence revealing subtle statistical and computational trade-offs in this problem.

Such computational trade-offs also exist in the problem of restricted isometry certification.
Certifiers for restricted isometry properties can be used to construct design matrices for sparse
linear regression problems. Similar to the sparse PCA problem, we show that there is also an
intrinsic gap between the class of matrices certifiable using unrestricted algorithms and using
polynomial time algorithms.

Finally, we consider the problem of high-dimensional changepoint estimation, where we estimate
the time of change in the mean of a high-dimensional time series with piecewise constant mean
structure. Motivated by real world applications, we assume that changes only occur in a sparse
subset of all coordinates. We apply a variant of the semi-definite programming algorithm in
sparse PCA to aggregate the signals across different coordinates in a near optimal way so as
to estimate the changepoint location as accurately as possible. Our statistical procedure shows

superior performance compared to existing methods in this problem.
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Chapter 1

A useful variant of the
Davis—Kahan theorem for

statisticians

1.1 Introduction

Many statistical procedures rely on the eigendecomposition of a matrix. Examples include prin-
cipal components analysis and its cousin sparse principal components analysis (Zou, Hastie and
Tibshirani, 2006), factor analysis, high-dimensional covariance matrix estimation (Fan, Liao and
Mincheva, 2013) and spectral clustering for community detection with network data (Donath and
Hoffman, 1973). In these and most other related statistical applications, the matrix involved is
real and symmetric, e.g. a covariance or correlation matrix, or a graph Laplacian or adjacency

matrix in the case of spectral clustering.

In the theoretical analysis of such methods, it is frequently desirable to be able to argue that
if a sample version of this matrix is close to its population counterpart, and provided certain
relevant eigenvalues are well-separated in a sense to be made precise below, then a population
eigenvector should be well approximated by a corresponding sample eigenvector. A quantitative
version of such a result is provided by the Davis—Kahan sin 6 theorem (Davis and Kahan, 1970).
This is a deep theorem from operator theory, involving operators acting on Hilbert spaces, though
as remarked by Stewart and Sun (1990), its ‘content more than justifies its impenetrability’. In
statistical applications, we typically do not require this full generality; in Theorem 1.1 below,
we state a version in a form typically used in the statistical literature (e.g. von Luxburg, 2007;
Rohe, Chatterjee and Yu, 2011). Since the theorem allows for the possibility that more than one
eigenvector is of interest, we need to define a notion of distance between subspaces spanned by
two sets of vectors. This can be done through the idea of principal angles: if V,V € RP*4 both
have orthonormal columns, then the vector of d principal angles between their column spaces is
(cos™loy,...,cos tay)T, where oy > --- > g are the singular values of VTV. Thus, principal
angles between subspaces can be considered as a natural generalisation of the acute angle between
two vectors. We let @(f/, V') denote the d x d diagonal matrix whose jth diagonal entry is the

jth principal angle, and let sin 6(‘7, V) be defined entrywise. A convenient way to measure the



2 CHAPTER 1. A VARIANT OF THE DAVIS-KAHAN THEOREM

distance between the column spaces of V and V is via ||sin ©®(V, V)|, where || - | denotes the

Frobenius norm of a matrix.

Theorem 1.1 (Davis Kahan sinf theorem). Let ¥,% € RP*P be symmetric, with eigenvalues
At >0 2> A, and 5\1 > 0> 5\p respectively. Fizr 1 < r < s < p, letd :=s—r+1, and
let V.= (vp,vp41,...,05) € RP*? and V= (O, Dpy1s-- -, 0s) € RPXD have orthonormal columns
satisfying Yv; = A\jv; and f]f)j = j\jﬁj forj=mrr+1,...,s. Writed = inf{|5\f)\| tAE [)\S,)\T],S\ €
(=00, Ass1]U[Ar_1,00)}, where we define Ao := 0o and ;\p+1 := —00, and assume that § > 0. Then

_IE-Sie

[sin©(V,V)llp < = (1.1)

Theorem 1.1 is an immediate consequence of Theorem V.3.6 of Stewart and Sun (1990). Despite
the attractions of this bound, an obvious difficulty for statisticians is that we may have § = 0 for a
particular realisation of ﬁ], even when the population eigenvalues are well-separated. As a toy exam-
ple to illustrate this point, suppose that ¥ = diag(50, 40, 30, 20, 10) and 3= diag(54, 37, 32,23, 21).
If we are interested in the eigenspaces spanned by the eigenvectors corresponding to the second,
third and fourth largest eigenvalues, so r = 2 and s = 4, then Theorem 1.1 above cannot be
applied, because 6 = 0.

Ignoring this issue for the moment, we remark that both occurrences of the Frobenius norm
in (1.1) can be replaced with the operator norm || - ||op, or any other orthogonally invariant norm.

Frequently in applications, we have r = s = 7, say, in which case we can conclude that

”EszOP

sin ©(0;,v;) < ———= > .
min([Aj—1 — ;] [Aj+1 — Aj)

Since we may reverse the sign of 9; if necessary, there is a choice of orientation of ©; for which

T
J
the Euclidean norm.

©]w; > 0. For this choice, we can also deduce that ||9; —v;|| < 2'/2sin ©(d;,v;), where || - || denotes

Theorem 1.1 is typically used to show that 9; is close to v; as follows: first, we argue that S is
close to X. This is often straightforward; for instance, when 3 is a population covariance matrix,
it may be that ¥ is just an empirical average of independent and identically distributed random
matrices; cf. Section 1.3. Then we argue, e.g. using Weyl’s inequality (Weyl, 1912; Stewart and
Sun, 1990), that with high probability, |A;_1 — Aj| > (\j_1—A;)/2 and |Ajr1—Aj| > (Nj—Aj41)/2,
so on these events ||0; — v, || is small provided we are also willing to assume an eigenvalue separation,
or eigen-gap, condition on the population eigenvalues.

The main purpose of our work in this chapter, in Theorem 1.2 in Section 1.2 below, is to
give a variant of the Davis—Kahan sin # theorem that has two advantages for statisticians. First,
the only eigen-gap condition is on the population eigenvalues, in contrast to the definition of ¢
in Theorem 1.1 above. Similarly, only population eigenvalues appear in the denominator of the
bounds. This means there is no need for the statistician to worry about the event where [\;_; — \;|
or [Ajy1 — Aj| is small. Second, we show that the expression || — X||r appearing in the numerator
of the bound in (1.1) can be replaced with min(d"/?||% — 2|lop, [|£ — B||r). In Section 1.3, we give
applications where our result could be used to allow authors to assume more natural conditions or
to simplify proofs, and also give a detailed example to illustrate the potential improvements of our
bounds. Our result is also used to provide theoretical control for the spectral methods proposed

in Chapter 2 and Chapter 4. The recent result of Vu et al. (2013, Corollary 3.1) has some overlap
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with our Theorem 1.2. We discuss the differences between our work and theirs shortly after the
statement of Theorem 1.2.

Singular value decomposition, which may be regarded as a generalisation of eigendecomposition,
but which exists even when a matrix is not square, also plays an important role in many modern
algorithms in statistics and machine learning. Examples include matrix completion (Candes and
Recht, 2009), robust principal components analysis (Candeés et al., 2009) and motion analysis
(Kukush, Markovsky and Van Huffel, 2002), among many others. Wedin (1972) provided the
analogue of the Davis—Kahan sin § theorem for such general real matrices, working with singular
vectors rather than eigenvectors, but with conditions and bounds that mix sample and population
singular values. In Section 1.4, we extend the results of Section 1.2 to such settings; again our
results depend only on a condition on the population singular values. Proofs are deferred to
Section 1.5.

1.2 Main results

Theorem 1.2. Let X, Y € RPXP e symmetric, with eigenvalues \y > --- > X\, and 5\1 > 2> 5\1,
respectively. Fiz 1 < r < s < p and assume that min(A._1 — Ar, Ay — As41) > 0, where we define
Ao = 00 and Apy1 = —oo. Letd :==s—r+1, and let V = (vp,0p41,...,05) € RPX? gnd
V = (b, Opg1,...,0s) € RP*? have orthonormal columns satisfying Sv; = A\jv; and $0; = \;j0;
forj=rr+1,....s. Then

2min(d"?||E — Bllop, [|£ — Bllr)

inQ(V,V)|r < 1.2
Jsin®(7, V) e < 2= (12)
Moreover, there exists an orthogonal matrix O € R¥™4 gych that
5 A 23/2 min(d/2 (|2 = X[op, |2 — 2

min(A—1 — A, As — Ast1)

We remark that even though we have stated Theorem 1.2 for V and V being matrices of
eigenvectors corresponding to blocks of consecutive eigenvalues, which is the most interesting case
in statistical applications, the same result holds if we let V' and V be eigenvectors corresponding
to an arbitrary subset of the spectra of ¥ and by respectively. More precisely, let J C {1,...,p},
define Ay :={\;:j € J}, A= {S\J :j € J}, and let V,V € RP*? have orthonormal columns that

are respectively eigenvectors corresponding to Ay and Ms. Then we have

) 2 min(d/2[|% = 2lop, IS — Elr)
nO(V, V)| < L
Isin©(V, V)|lp < min{|\; = \j/|:je Jj & J}

the proof which is almost exactly the same as the proof of Theorem 1.2 after changing min(A,_1 —
Ar, As — Asy1) tomin{|A; — Aj| 1 j € J, 5" € J} when necessary.

As mentioned briefly in the introduction, apart from the fact that we only impose a population
eigen-gap condition, the main difference between this result and that given in Theorem 1.1 is
in the min(d"/2||% = Blop, ||X — X[/r) term in the numerator of the bounds. In fact, the original
statement of the Davis-Kahan sin @ theorem has a numerator of ||V’ A— V|| in our notation, where
A = diag(Ar, Arg1, ..., As). However, in order to apply that theorem in practice, statisticians have

bounded this expression by ||ﬁ] — ||, yielding the bound in Theorem 1.1. When p is large, though,
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one would often anticipate that || — X||op, which is the £o, norm of the vector of eigenvalues of
3 — ¥, may well be much smaller than || — X||r, which is the 5 norm of this vector of eigenvalues.
Thus when d < p, as will often be the case in practice, the minimum in the numerator may
well be attained by the first term. It is immediately apparent from (1.8) and (1.9) in our proof
that the smaller numerator ||[VA — V|| could also be used in our bound for ||sin©(V,V)|r in
Theorem 1.2, while 2'/2|[VA — £V||g could be used in our bound for |[VO — V||p. Our reason
for presenting the weaker bound in Theorem 1.2 is to aid direct applicability; see Section 1.3 for
examples.

As mentioned in the introduction, Vu et al. (2013, Corollary 3.1) is similar in spirit to Theo-
rem 1.2 above, and only involves a population eigen-gap condition, but there are some important
differences. First, their result focuses on the eigenvectors corresponding to the top d eigenvalues,
whereas ours applies to any set of d eigenvectors corresponding to a block of d consecutive eigen-
values, as in the original Davis—Kahan theorem. Their proof, which uses quite different techniques
from ours, does not appear to generalise immediately to this setting. Second, Corollary 3.1 of Vu
et al. (2013) does not include the d*/2(| — ¥|p term in the numerator of the bound. As discussed
in the previous paragraph, it is this term that would typically be expected to attain the minimum
in (1.2), especially in high-dimensional contexts. We also provide Theorem 1.4 to generalise the

result to asymmetric or non-square matrices.

The constants presented in Theorem 1.2 are sharp, as the following example illustrates. Fix
de{l,...,|p/2]} and let ¥ = diag(Aq,...,Ap), where Ay = -+ = Ap_2qg = 5, Ap_2gqq1 = -+ =
Ap—d =3 and A\p_g41 = -+ = A, = 1. Suppose that 3 is also diagonal, with first p — 2d diagonal
entries equal to 5, next d diagonal entries equal to 2, and last d diagonal entries equal to 2 + €,
for some € € (0, 3). If we are interested in the middle block of eigenvectors corresponding to those
with corresponding eigenvalue 3 in ¥, then for every orthogonal matrix O € RIxd,

_ 22d2|8 — 5lop

VO —Vllp = 2| sin©(V, V)|lr = (24)"/% < (24)'*(1 +¢) = 5 ’

where § := min(A,_2q — Ap—24+1, Ap—d — Ap—d+1). In this example, the column spaces of V' and
V were orthogonal. However, even when these column spaces are close, our bound (1.2) is tight
up to a factor of 2, while our bound (1.3) is tight up to a factor of 23/2. To see this, suppose that
. = diag(3,1) while 3 = Vdiag(3,1)V T, where

o ((1_62)1/2 e )
€ (1- 62)1/2

for some € > 0. If v = (1,0)" and & = ((1 — €)1/, fe)T denote the top eigenvectors of ¥ and 3
respectively, then sin ©(0,v) = ¢, || — v[|> = 2 — 2(1 — €2)/2 and 2||% — Z||op/(3 — 1) = 2e.

It is also worth mentioning that there is another theorem in the Davis and Kahan (1970)
paper, the so-called sin 20 theorem, which provides a bound for || sin 20(V, V)||p assuming only a
population eigen-gap condition. In the case d = 1, this quantity can be related to the square of

the length of the difference between the sample and population eigenvectors v and v as follows:
. . N . 1. . N
sin” 20(0,v) = (20" 0)*{1 = (07 0)*} = Z[lo = v[*@ = o —0o[*)(4 = [0 = 0l*).  (14)

Equation (1.4) reveals, however, that ||sin20(V,V)||g is unlikely to be of immediate interest to
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statisticians, and in fact, we are not aware of applications of the Davis—Kahan sin 26 theorem in
statistics. No general bound for ||sin©(V,V)|r or |[VO — V||g can be derived from the Davis—
Kahan sin 26 theorem since we would require further information such as v > 1/2'/2 when d = 1,
and such information would typically be unavailable. The utility of our bound comes from the fact
that it provides direct control of the main quantities of interest to statisticians.

Many if not most applications of this result will only need s = r, i.e. d = 1. In that case, the

statement simplifies a little; for ease of reference, we state it as a corollary:

Corollary 1.3. Let %, 3 € RPXP pe symmetric, with eigenvalues A\y > --- > X\, and ;\1 > > ;\p
respectively. Fiz j € {1,...,p}, and assume that min(A;_1 — X\j, \; — Aj41) > 0, where we define
Ao i=00 and Apq1 := —o0. If v,0 € RP satisfy Xv = A\jv and S0 = Xjﬁ, then

2% — 2lo
sin ©(0,v) < — ” lop .
min(Aj—1 = Aj; Aj = Ajra)
Moreover, if v >0, then
23/2|8 — %
”@_UH < ” Hop

min(Aj—1 = A5, A = Aj)

1.3 Applications in statistical contexts

In the introduction, we explained how the fact that our variant of the Davis—Kahan sin # theorem
only relies on a population eigen-gap condition can be used to simplify many arguments in the
statistical literature. These include the work of Fan, Liao and Mincheva (2013) on large covariance
matrix estimation problems, Cai, Ma and Wu (2013) on sparse principal component estimation, and
Fan and Han (2013) on estimating the false discovery proportion in large-scale multiple testing
with highly correlated test statistics. Although our notation suggests that we have covariance
matrix estimation in mind, we emphasise that the real, symmetric matrices in Theorem 1.2 are
arbitrary, and could be for example inverse covariance matrices, or graph Laplacians as in the work
of von Luxburg (2007) and Rohe, Chatterjee and Yu (2011) on spectral clustering in community
detection with network data.

We now give some simple examples to illustrate the improvements afforded by our bound in
Theorem 1.2. Consider the spiked covariance model in which X1, ..., X,, are independent random
vectors having the N, (0, X) distribution, where ¥ = (3;) is a diagonal matrix with 3;; =1+ 6
for some § > 0 for 1 < j < dand X;; = 1ford+1 < j < p. Let 3 = ntS XX
denote the sample covariance matrix, and let V' and V denote the matrices whose columns are
unit-length eigenvectors corresponding to the d largest eigenvalues of ¥ and by respectively. Fixing
n = 1000, p = 200, d = 10 and # = 1, we found that our bound (1.2) from Theorem 1.2 was
an improvement over that from (1.1) in Theorem 1.1 in every one of 100 independent data sets
drawn from this model. In fact, no bound could be obtained from Theorem 1 for 25 realisations
because ¢ defined in that result was zero. The median value of ||sin ©(V, V)| was 1.80, while the
median values of the right-hand sides of (1.2) in Theorem 1.2 and (1.1) in Theorem 1.1 were 7.30
and 376 respectively. Some insight into the reasons for this marked improvement can be gained by
considering an asymptotic regime in which p/n — v € (0,1) as n — oo and d and 6 are considered
fixed. Then, in the notation of Theorem 1.1, § = max(\g — 3\d+170) — max(f — 2712 — ~,0),
almost surely, where the limit follows from Baik and Silverstein (2006, Theorem 1.1). On the other
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hand, the denominator of the right-hand side of (1.2) in Theorem 1.2 is #, which may be much
larger than max (@ — 2v'/2 — ~,0). For the numerator, in this example, it can be shown that

2)  2d(p+2
p+)+ (p+2)

£(1% - 5jp) = A2 g+ 1022

n n

2
92>
- n

Moreover, by Theorem 1.1(b) of Baik, Ben Arous and Péché (2005) and a uniform integrability

argument,
(1+6)y }2

BIS - 31%) < B0 - 12} - {0+ 08

We therefore expect the minimum in the numerator of (1.2) to be attained by the term d1/2||fl —
Y||op in this example.

To illustrate our bound in a high-dimensional context, consider the same data generating mecha-
nism as in our previous example. Given an even integer k € {1,...,p}, let 3= f]k be the tapering
estimator for high-dimensional sparse covariance matrices introduced by Cai, Zhang and Zhou
(2010). In other words, S is the Hadamard product of the sample covariance matrix and a weight
matrix W = (w;;) € RP*P where w;; = 1if |i — j| < k/2, w;; =2 — w if k/2 < |i —j| < k and
w;; = 0 otherwise. To compare the bounds provided by Theorems 1.1 and 1.2, we drew 100 data
sets from this model for each of the settings n € {1000,2000}, p € {2000,4000}, d = 10, 6 =1
and k = 20. The bound (1.2) improved on that in (1.1) for every realisation in each setting; the

medians of these bounds are presented in Table 1.3.

n P RHS1 RHS2 n P RHS1 RHS2
1000 2000 12.1 2.65 1000 4000  17.3 2.69
2000 2000  7.20 1.92 2000 4000  10.2 1.90

Table 1.1: Median values of RHS1 and RHS2, the bounds obtained from (1.1) and (1.2) respectively.

1.4 Extension to general real matrices

We now describe how the results of Section 1.2 can be extended to situations where the matrices
under study may not be symmetric and may not even be square, and where interest is in controlling

the principal angles between corresponding singular vectors.

Theorem 1.4. Suppose that A,A € RPX? have singular values o1 > -+ > Opin(p,q) = 0 and

01> -+ > Omin(p,q) Tespectively. Fiz 1 <r < s < rank(A) and assume that min(o,_1 — oy, 0, —
0s41) > 0, where we define 0g := 00 and Orank(ay+1 = —00. Let d := s —r+1, and let V =
(Vpy Vi1, ..., 0s) € R and V= (O, Vpyt, ..., 0s) € RI*X? have orthonormal columns satisfying

AT Av; = O'?’Uj and ATAOj = &?ﬁj forj=rr+1,....s. Then

4min(d'?[|A — Allop, 2'||A — Allr)

min(o,«,l —0pr,0s — Js+1)

Isin©(V,V)|lr < : (1.5)

Moreover, there exists an orthogonal matriz O € R™? gsych that

25/2 min(d/2|| A — Allop, 2/2||A — Allp)

min(ar,l —0r;, 05 — Uerl)

VO -V <
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Theorem 1.4 gives bounds on the proximity of the right singular vectors of A and A. Identical
bounds also hold if V and V are replaced with the matrices of left singular vectors U and U, where
U = (Up g1, us) € RP*? and U = (G, Gipg1, .- ., Gs) € RP*? have orthonormal columns
satisfying AATuj = ojzuj and AAde = &?ﬁj forj=rr+1,...,s.

As mentioned in the introduction, Theorem 1.4 can be viewed as a variant of the generalised
sin @ theorem of Wedin (1972). Similar to the situation for symmetric matrices, there are many
places in the statistical literature where Wedin’s result has been used, but where we argue that
Theorem 1.4 above would be a more natural result to which to appeal. Examples include the papers
of Van Huffel and Vandewalle (1989) on the accuracy of least squares techniques, Anandkumar
et al. (2014) on tensor decompositions for learning latent variable models, Shabalin and Nobel
(2013) on recovering a low-rank matrix from a noisy version and Sun and Zhang (2012) on matrix

completion.

1.5 Appendix

We first state an elementary lemma that will be useful in several places.

Lemma 1.5. Let A € R™*"™ and let U € R™*P and W € R™*? both have orthonormal rows.
Then |UT AW ||g = ||Allg. If instead U € R™*P and W € R"*4 both have orthonormal columns,
then |UT AW ||g < || AllF-

Proof. For the first claim,
[ UTAW |2 =tr(UTAWW TATU) = tr(AATUU ") = tr(AAT) = || A3

For the second part, find a matrix U; € R™*(™~P) such that (U U1) is orthogonal, and a matrix
W, € R"*("=9) guch that (W Wl) is orthogonal. Then

ol UT
| Alg = || <U1T> a(w w) <U1T> AW

as desired. O

>

F

> [|UT AW g
F

Proof of Theorem 1.2. Define matrices A := diag(A,, Ary1,...,As) and A = diag(A,, ..., As).
Then
=SV -VA=SV-VA+(E-)V-V(A-A).

Hence

IVA=SVp < [|(E =)V e+ V(A= A)e
< d1/2||2 B Z”op + HA _ A”F < 2d1/2||2 — E”op, (16)

where we have used Lemma 1.5 in the second inequality and Weyl’s inequality (e.g. Stewart and
Sun, 1990, Corollary IV.4.9) for the final bound. Alternatively, we can argue that

VA =2Vlp < (£ =)V e + VA~ A)|r
<|E - Zllp + 1A - Allr < 2| - Zllr, (1.7)
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where the second inequality follows from two applications of Lemma 1.5, and the final inequality
follows from the Wielandt—Hoffman theorem (e.g. Wilkinson, 1965, pp. 104-108).
Let Ay = diag(A1,..., Ar—1, Ast1,.- -, Ap), and let V4 be a p x (p — d) matrix such that P =

(V Vl) is orthogonal and such that
A
PSP = a
0 A

Then

[VA=SV]p = [VVTVA+ VIV, VA—VAVTV —VIMV, Ve
> |V VA= VIM VI Vg > [VTVA = M VTV |, (1.8)

where the first inequality follows because V' 'V} = 0, and the second from another application of
Lemma 1.5. For real matrices A and B, we write A ® B for their Kronecker product (e.g. Stewart
and Sun, 1990, p. 30) and vec(A) for the vectorisation of A, i.e. the vector formed by stacking its
columns. We recall the standard identity vec(ABC) = (C'T ® A)vec(B), which holds whenever the
dimensions of the matrices are such that the matrix multiplication is well-defined. We also write

I,,, for the m-dimensional identity matrix. Then
IViTVA = MV Ve = [(A® Iy — 1o © Ay)vec(V;TV)]|

> min(Ar—1 — Ary As — Asp1)|[vee(V," V)|
=min(Ar_1 — Ay As — Aoy 1) sin OV, V)||r, (1.9)

where the final step follows from

[vec(Vi" V)||> = te(VTVAV,' V) = tr((L, —VV)VV ) =d — [V V|
= [[sin©(V, V)|
Now (1.2) follows from (1.9), (1.8), (1.7) and (1.6).
For the second conclusion, by a singular value decomposition, we can find orthogonal matrices

Ol, Oy € R4%4 guch that
O VTVO, = diag(cos by, ..., cos0y),

where 61,...,604 are the principal angles between the column spaces of V' and V. Setting 0 =
0,07, we have

VO - V|i =tx(VO - V)T (VO - V)) = 2d - 2tr(0.0{ V' V)

d d
=2d— 2Zcosé)j <2d-— 220052 0; = 2||sinO(V, V)|
j=1 j=1
The result now follows from our first conclusion. O
Proof of Theorem 1.4. Let ui, ..., Unin(p,q) € RP and vi,..., Uninp,q) € RY be the two sets of

orthonormal vectors that are left and right singular vectors of A corresponding to the singular

values 01, ..., 0min(p,q)- In other words, we have Av; = oju; and ATuj = o0;v;j. Define similarly
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U1y ooy Umin(p,g) a0d D1, ..., Dmin(p,q) to be left and right singular vectors of A corresponding to

singular values 61 > --- > Omin(p,q) = 0. We symmetrise Aand A by defining

0 AT ., 0 AT
B = and B=| . .
A 0 A 0

We can check that B is symmetric with eigenvalues +o1,. .., £0nin(p,q),0;---,0 and if we define
wj = 2_1/2(v;'—,u;'—)—r, then wy, ..., Win(p,q)
if we define w; := 2-1/2 (f)]T, ﬁ;)i then w1, ..., Wnin(p,q) are orthonormal and Bwj = 0;0;.

Let W = (w,,...,ws) € RUTP*d and W = (i, ...,1w,) € RWHP)*d Then by Theorem 1.2,

we have

are orthonormal and satisfy Bw; = ojw;. Similarly,

2min(d"/2||B — Bllop, || B — Bl|r)

i ! < . 1.1
[ sin©W, W)llp < Y P —— (1.10)
On the other hand, we can bound
o ~ 1. - N
[sin®W, W)|g =d— W W|E =d- EIIVTV +UTU|2
> (94 IVTV3 (2 ITTU|R
2 2 2 2
1 . ~ . N

= 5(||sm®(v,V)\|§ + | sinOU, U)||}). (1.11)

The bound in (1.5) then follows from (1.10), (1.11) and the facts that || B — Bllop = ||A — AJlop and
|B — Bl||p = 2'/2||A — A||p. Finally, the bound for |[VO — V|| follows immediately from (1.5) as
in the proof of Theorem 1.2. O
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CHAPTER 1.

A VARIANT OF THE DAVIS-KAHAN THEOREM



Chapter 2

Statistical and computational
trade-offs in estimation of sparse

principal components

2.1 Introduction

Principal Component Analysis (PCA), which involves projecting a sample of multivariate data onto
the space spanned by the leading eigenvectors of the sample covariance matrix, is one of the oldest
and most widely-used dimension reduction devices in Statistics. It has proved to be particularly
effective when the dimension of the data is relatively small by comparison with the sample size.
However, the work of Johnstone and Lu (2009) and Paul (2007) shows that PCA breaks down in
the high-dimensional settings that are frequently encountered in many diverse modern application
areas. For instance, consider the spiked covariance model where X7i,...,X,, are independent
N,(0,%) random vectors, with ¥ = I, + fvjv{ for some § > 0 and an arbitrary unit vector
v; € RP. In this case, vy is the leading eigenvector (principal component) of ¥, and the classical
PCA estimate would be ©1, a unit-length leading eigenvector of the sample covariance matrix

Y:=n"'Y"  X;X,". In the high-dimensional setting where p = p,, is such that p/n — ¢ € (0,1),

Paul (2007) showed that
1—c/02 .
To s ) Ve H0>e
0 if < /.

In other words, 97 is inconsistent as an estimator of v; in this asymptotic regime. This phenomenon
is related to the so-called ‘BBP’ transition in random matrix theory (Baik, Ben Arous and Péché,
2005).

Sparse Principal Component Analysis was designed to remedy this inconsistency and to give
additional interpretability to the projected data. In the simplest case, it is assumed that the leading
eigenvector v; of the population covariance matrix ¥ belongs to the k-sparse unit Euclidean sphere

in R?, given by

P
Spil(lf) = {u = (ul, FN ,up)T cRP: Z ]]-{uj;éO} S k, H’LLHQ = 1} (21)
j=1

11
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A remarkable number of recent papers have proposed estimators of vy in this setting, including
Jolliffe, Trendafilov and Uddin (2003), Zou, Hastie and Tibshirani (2006), d’Aspremont et al.
(2007), Johnstone and Lu (2009), Witten, Tibshirani and Hastie (2009), Journée et al. (2010),
Birnbaum et al. (2013), Cai, Ma and Wu (2013), Ma (2013), Shen, Shen and Marron (2013) and
Vu and Lei (2013).

Sparse PCA methods have gained high popularity in many diverse applied fields where high-
dimensional datasets are routinely handled. These include computer vision for online visual track-
ing (Wang, Lu and Yang, 2013) and pattern recognition (Naikal, Yang and Sastry, 2011), signal
processing for image compression (Majumdar, 2009) and Electrocardiography feature extraction
(Johnstone and Lu, 2009), and biomedical research for gene expression analysis (Zou, Hastie and
Tibshirani, 2006; Chun and Siindiiz, 2009; Parkhomenko, Tritchler and Beyene, 2009; Chan and
Hall, 2010), RNA-seq classification (Tan, Petersen and Witten, 2014) and metabolomics studies
(Genevera and Maletié-Savatié¢, 2011). In these applications, Sparse PCA is employed to identify
a small number of interpretable directions that represent the data succinctly, typically as the first
stage of a more involved procedure such as classification, clustering or regression.

The success of the ultimate inferential methods in the types of application described above
depends critically on how well the particular Sparse PCA technique involved identifies the relevant
meaningful directions in the underlying population. It therefore becomes important to understand
the ways in which our ability to estimate these directions from data depends on the characteristics
of the problem, including the sample size, dimensionality, sparsity level and signal-to-noise ratio.
Such results form a key component of any theoretical analysis of an inference problem in which
Sparse PCA is employed as a first step.

In terms of the theoretical properties of existing methods for Sparse PCA, Ma (2013) was able
to show that his estimator attains the minimax rate of convergence over a certain Gaussian class of
distributions, provided that & is treated as a fixed constant. Both Cai, Ma and Wu (2013) and Vu
and Lei (2013) also study minimax properties, but treat k as a parameter of the problem that may
vary with the sample size n. In particular, for a certain class Pp(n, k) of subgaussian distributions

and in a particular asymptotic regime, Vu and Lei (2013) show! that

k1l
inf sup Ep{l— (v 0)*} = ﬂ,
Y PePp(n,k) n
where the infimum is taken over all estimators 9; see also Birnbaum et al. (2013). Moreover, they

show that the minimax rate is attained by a leading k-sparse eigenvector of f], given by

€ argmax u' u. (2.2)
wesP—1(k)

vmax

The papers cited above would appear to settle the question of sparse principal component
estimation (at least in a subgaussian setting) from the perspective of statistical theory. However,
there remains an unsettling feature, namely that neither the estimator of Cai, Ma and Wu (2013),
nor that of Vu and Lei (2013), is computable in polynomial time?. For instance, computing the
estimator (2.2) is an NP-hard problem, and the naive algorithm that searches through all (¥) of
the k x k principal submatrices of by quickly becomes infeasible for even moderately large p and k.

Given that Sparse PCA is typically applied to massive high-dimensional datasets, it is crucial

'Here and below, a, < by, means 0 < liminfp_— oo |an /bn| < limsup,,_, o |an/bn| < co.
2To keep the thesis as self-contained as possible, a brief introduction to this topic is provided in Section 2.8.
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to understand the rates that can be achieved using only computationally efficient procedures.
Specifically, in this chapter, we address the question of whether it is possible to find an estimator
of vy that is computable in (randomised) polynomial time, and that attains the minimax optimal
rate of convergence when the sparsity of vy is allowed to vary with the sample size. Some progress
in a related direction was made by Berthet and Rigollet (2013a,b), who considered the problem
of testing the null hypothesis Hy : ¥ = I, against the alternative Hy : v' %o > 1 + 6 for some
v € SP71(k) and # > 0. Of interest here is the minimal level § = 6, , ) that ensures small
asymptotic testing error. Under a hypothesis on the computational intractability of a certain
well-known problem from theoretical computer science (the ‘Planted Clique’ detection problem),
Berthet and Rigollet showed that for certain classes of distributions, there is a gap between the
minimal 6-level permitting successful detection with a randomised polynomial time test, and the
corresponding #-level when arbitrary tests are allowed.

The particular classes of distributions considered in Berthet and Rigollet (2013a,b) were highly
tailored to the testing problem, and do not provide sufficient structure to study principal component
estimation. The thesis of the current chapter, however, is that from the point of view of both theory
and applications, it is the estimation of sparse principal components, rather than testing for the
existence of a distinguished direction, that is the more natural and fundamental (as well as more
challenging) problem. Indeed, we observe subtle phase transition phenomena that are absent from
the hypothesis testing problem; see Section 2.4.4 for further details. It is worth noting that different
results for statistical and computational trade-offs for estimation and testing were also observed in
the context of k-SAT formulas in Feldman, Perkins and Vempala (2015) and Berthet (2015).

Our first contribution, in Section 2.2, is to introduce a new Restricted Covariance Concentration
(RCC) condition that underpins the classes of distributions P,(n, k, ) over which we perform the
statistical and computational analyses (see (2.4) for a precise definition). The RCC condition is
satisfied by subgaussian distributions, and moreover has the advantage of being more robust to
certain mixture contaminations that turn out to be of key importance in the statistical analysis

under the computational constraint. We show that subject to mild restrictions on the parameter

. R [klogp
inf  sup EpL(d,v1) =< ,
0 PeP,(nk,0) (9,v1) no?

where L(u,v) := {1 —(u"v)?}'/2, and where no restrictions are placed on the class of estimators ©.
By contrast, in Section 2.3, we show that a variant ¢5PF of the semidefinite relaxation estimator of
d’Aspremont et al. (2007) and Bach, Ahipagaoglu and d’Aspremont (2010), which is computable

in polynomial time, satisfies

k21
sup  EpL(8°PF,0) < (16V2+2)1/ —oL.
PeP,(n,k,0) nd

Our main result, in Section 2.4, is that, under a much weaker Planted Clique hypothesis than

values,

that in Berthet and Rigollet (2013a,b), for any « € (0, 1), there exists a moderate effective sample
size asymptotic regime in which every sequence (9(™) of randomised polynomial time estimators

satisfies

nb?
—————  sup  EpL(®™, ) = .
ki*elogp pep,(nk.0)

This result shows that there is a fundamental trade-off between statistical and computational
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efficiency in the estimation of sparse principal components, and that there is in general no consistent
sequence of randomised polynomial time estimators in this regime. Interestingly, in a high effective
sample size regime, where even randomised polynomial time estimators can be consistent, we are
able to show in Theorem 2.7 that under additional distributional assumptions, a modified (but still
polynomial time) version of #5PF attains the minimax optimal rate. Thus, the trade-off disappears
for a sufficiently high effective sample size, at least over a subset of the parameter space.

Statistical and computational trade-offs have also recently been studied in the context of convex
relaxation algorithms (Chandrasekaran and Jordan, 2013), submatrix signal detection (Ma and
Wu, 2015; Chen and Xu, 2016), sparse linear regression (Zhang, Wainwright and Jordan, 2014),
community detection (Hajek, Wu and Xu, 2015) and Sparse Canonical Correlation Analysis (Gao,
Ma and Zhou, 2014). Given the importance of computationally feasible algorithms with good
statistical performance in today’s era of Big Data, it seems clear that understanding the extent of
this phenomenon in different settings will represent a key challenge for theoreticians in the coming
years.

Proofs of our main results are given in Section 2.6, while several ancillary results are deferred to
Section 2.7. We end this section by introducing some notation used throughout this chapter. We
write SP~! for the unit sphere in RP. For a vector u = (u1,...,up)’ € RM, a matrix A = (4;;) €
RM*N and for ¢ € [L,00), we write [Jull, == (XM, Juil?)* and [|A]l, == (DM, XN, [4i07)
for their (entrywise) ¢,-norms. We also write |ullo := Ef\il Ly, 20y, supp(u) = {i : u; # 0},
lAllo := Zf\il Zf;l Iga,;#0y and supp(A) := {(4,7) : Aijj # 0}. For S C {1,...,M} and T' C
{1,..., N}, we write ug := (u; : i € S)T and write Mg 7 for the |S| x |T| submatrix of M obtained
by extracting the rows and columns with indices in S and T respectively. For positive sequences

(an) and (by,), we write a,, < b, to mean a, /b, — 0.

2.2 Restricted Covariance Concentration and minimax rate

of estimation

Let p > 2 and let P denote the class of probability distributions P on R? with [, 2dP(x) = 0
and such that the entries of $(P) := [;, zz " dP(z) are finite. For P € P, write A1(P),..., A,(P)
for the eigenvalues of ¥(P), arranged in decreasing order. When A (P) — A\y(P) > 0, the first
principal component v;(P), i.e. a unit-length eigenvector of ¥ corresponding to the eigenvalue
A1 (P), is well-defined up to sign. In some places below, and where it is clear from the context,
we suppress the dependence of these quantities on P, or write the eigenvalues and eigenvectors as
M(Z), ..., A (2) and v1(X), ..., v,(X) respectively. Let X7, ..., X, be independent and identically
distributed random vectors with distribution P, and form the n x p matrix X := (X1,..., X,,)".
An estimator of v; is a measurable function from R®*P to RP, and we write V), ,, for the class of
all such estimators.

Given unit vectors u,v € R?, let ©(u, v) := cos~!(Ju' v|) denote the acute angle between u and

v, and define the loss function

L(u,v) == sin ©(u,v) = {1 — (u"v)?}/2 = Tz

1 T
—||uu " — v
7!

Note that L(-,-) is invariant to sign changes of either of its arguments. The directional variance of
P along a unit vector u € R? is defined to be V(u) := E{(u" X1)?} = u" Yu. Its empirical version
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is V(u):==n"t3" (u' X;)? = u' Su, where 3 := n~1 3" | X; X7 denotes the sample covariance
matrix.
Recall the definition of the k-sparse unit ball SP~!(k) from (2.1). Given £ € {1,...,p} and C €

(0,00), we say P satisfies a Restricted Covariance Concentration (RCC) condition with parameters
p,n, ¢ and C, and write P € RCCy(n, ¢, C), if

IP’{ sup V() - V(w)| > C’Inax( Clog(p/9) “Og(p/‘s))} <5 (2.3)

uweSP1(£) n n -

for all § > 0. It is also convenient to define

[e%e] p
RCC,(4,C) := [ RCCp(n,£,C) and RCC,(C) := (RCC,(L,C).
=1

n=1

The RCC conditions amount to uniform Bernstein-type concentration properties of the directional
variance around its expectation along all sparse directions. This condition turns out to be partic-
ularly convenient in the study of convergence rates in Sparse PCA, and moreover, as we show in
Proposition 2.1 below, subgaussian distributions satisfy an RCC condition for all sample sizes n
and all sparsity levels £. Recall that a mean-zero distribution Q) on R? is subgaussian with parame-
ter® o2 € (0,00), written Q € subgaussian, (6, if whenever Y ~ Q, we have E(e“Ty) < e Iull?/2
for all u € RP.

Proposition 2.1. (i) For every o > 0, we have subgaussian,(¢%) C RCC,(1662(1 4 9/logp)).
(ii) In the special case where P = N,(0,%), we have P € RCC,,(8A1(P)(1 4+ =)).

logp

Our convergence rate results for sparse principal component estimation will be proved over the

following classes of distributions. For 6 > 0, let
Py(n. k,0) == {P € RCC,(n,2,1) NRCC,(n, 2k, 1) : v1(P) € SP~L(k), A (P) — Mo(P) > 9}. (2.4)

Observe that RCC classes have the scaling property that if the distribution of a random vector Y
belongs to RCCp(n,¢,C) and if r > 0, then the distribution of 7Y belongs to RCC,(n, £, r2C). It
is therefore convenient to fix C' =1 in both RCC classes in (2.4), so that 6 becomes a measure of
the signal-to-noise level.

For a symmetric A € RPXP define 0F, (A) := Sargmax,, csp—1 (k) u” Au to be the k-sparse
maximum eigenvector of A, where sargmax denotes the smallest element of the argmax in the lexi-

cographic ordering. (This choice ensures that ¢%

max

(A) is a measurable function of A.) Theorem 2.2
below gives a finite-sample minimax upper bound for estimating vy (P) over Py(n, k,§). For similar
bounds over Gaussian or subgaussian classes, see Cai, Ma and Wu (2013) and Vu and Lei (2013),
who consider the more general problem of principal subspace estimation. As well as working with

a larger class of distributions, our different proof techniques facilitate an explicit constant.

Theorem 2.2. For 2klogp < n, the k-sparse empirical maximum eigenvector, @fnax(ﬁ), satisfies

. S 1 klogp klogp
sup  EpL(0F, . (2),v1(P <2\/§<1+ >\/ <7\/ )
PEP,(n,k,0) r ( (2, v )) log p n? no?

3Note that some authors say that distributions satisfying this condition are subgaussian with parameter o, rather

than o2.



16 CHAPTER 2. SPARSE PRINCIPAL COMPONENT ESTIMATION

A matching minimax lower bound of the same order in all parameters k,p,n and 6 is given

below. The proof techniques are adapted from Vu and Lei (2013).

Theorem 2.3. Suppose that 7T < k < p“2 and 0 < 0 < W Then
log p

. . . 1 Jklogp 5 }
inf su EpL(?0,v1(P)) > min , .
0EVn p Pépp(g,k,e) PL{Bu(P) {1660 nb? " 18v/3

We remark that the conditions in the statement of Theorem 2.3 can be strengthened or weak-

ened, with a corresponding weakening or strengthening of the constants in the bound. For in-
stance, a bound of the same order in k, p,n and 6 could be obtained assuming only that k < p'~—°
for some 6 > 0. The upper bound on 6 is also not particularly restrictive. For example, if
P = N,(0,0%I, + Oeye] ), where e is the first standard basis vector in RP, then it can be shown

that the condition P € P,(n, k,0) requires that § < 1 — o2.

2.3 Computationally efficient estimation

As was mentioned in the introduction, the trouble with the estimator 9, (3) of Section 2.2, as well
as the estimator of Cai, Ma and Wu (2013), is that there are no known polynomial time algorithms
for their computation. In this section, we therefore study the (polynomial time) semidefinite
relaxation estimator ¢SPF defined by the Algorithm 2.1 below. This estimator is a variant of
one proposed by d’Aspremont et al. (2007), whose support recovery properties were studied for
a particular class of Gaussian distributions and a known sparsity level by Amini and Wainwright
(2009).

To motivate the main step (Step 2) of Algorithm 2.1, it is convenient to let M denote the class
of p X p non-negative definite real, symmetric matrices, and let My := {M € M : tr(M) = 1}. Let
M1 (k*) = {M € My :rank(M) = 1, ||M||o = k*} and observe that

max u' Yu= max tr(Suu')= tr(SM).

max

weSP—1(k) w€SP—1 (k) MeM; 1 (k2)
In the final expression, the rank and sparsity constraints are non-convex. We therefore adopt
the standard semidefinite relaxation approach of dropping the rank constraint and replacing the

sparsity (¢p) constraint with an ¢; penalty to obtain the convex optimisation problem

e {ex(SM) — A|M] } (2.5)

Algorithm 2.1: Pseudo-code for computing the semidefinite relaxation estimator ¢5PP

Input: X = (X1,...,X,)T €R™P X\ >0,¢>0
begin
Step 1: Set ¥+ n X TX.
Step 2: For f(M) := t}r(ﬁ]M) — | M||1, let M€ be an e-maximiser of f in Mj. In other
words, M€ satisfies f(M€) > maxpren, f(M) — €.
Step 3: Let 95PF := @EQP € argmax,,. ||, =1 u” Meu.
end
Output: ¢5PP
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We now discuss the complexity of computing 9°PF in detail. One possible way of implementing
Step 2 is to use a generic interior-point method. However, as shown in Nesterov (2005), Nemirovski
(2004) and Bach, Ahipagaoglu and d’Aspremont (2010), certain first-order algorithms (i.e. methods
requiring O(1/€) steps to find a feasible point achieving an e-approximation of the optimal objective
function value) can significantly outperform such generic interior-point solvers. The key idea in
both Nesterov (2005) and Nemirovski (2004) is that the optimisation problem in Step 2 can be

rewritten in a saddlepoint formulation:

Jmase tr(SM) =AMy = max mintx((3+ U)M),
where U = {U € RP*? : UT = U, ||U|l < A}. The fact that tr((ﬁ) + U)M) is linear in
both M and U makes the problem amenable to proximal methods. In Algorithm 2.2 below,
we state a possible implementation of Step 2 of Algorithm 2.1, derived from the ‘basic im-
plementation’ in Nemirovski (2004). In the algorithm, the || - ||s-norm projection IT;(A) of a
symmetric matrix A = (A4;;) € RP*P onto U is given by (HM(A))ij = sign(A;;) min(| 4], A).
For the projection I, (A), first decompose A =: PDPT for some orthogonal P and diagonal
D = diag(d), where d = (di,...,d,)" € RP. Now let IT)y(d) be the projection image of d on the
unit (p—1)-simplex W := {(w1, ..., wp) 1 w; >0, Z?:l w; = 1}. Finally, transform back to obtain
I, (A) == Pdiag(Iy(d))PT. The fact that Algorithm 2.2 outputs an e-maximiser of the opti-
misation problem in Step 2 of Algorithm 2.1 is a consequence of Nemirovski (2004, Theorem 3.2),
which implies in our particular case that after N iterations,

. . . o ~o o ApP 4

max min tr(C+U)M) — ?Elgtr((Z +U)M*) < ~/aN
In Algorithm 2.1, Step 1 takes O(np?) floating point operations; Step 3 takes O(p?) operations in
the worst case, though other methods such as the Lanczos method (Lanczos, 1950; Golub and Van
Loan, 1996) require only O(p?) operations under certain conditions. Our particular implementation
(Algorithm 2.2) for Step 2 requires O(%) iterations in the worst case, though this number

may often be considerably reduced by terminating the for loop if the primal-dual gap
M (Us + ) = {tr(ME) — M| Myl 1}

falls below €, where U, := ¢~ Y\, U/ and M; := t~' 3, M!. The most costly step within
the for loop is the eigendecomposition used to compute the projection ITpg,, which takes O(p?)

operations. Taking )\ := 4 l(’% and € = lffflp as in Theorem 2.5 below, we find an overall

5 np®
? logp
We now turn to the theoretical properties of the estimator ©°

complexity for the algorithm of O(max(p )) operations in the worst case.

DP computed using Algorithm 2.1.
Lemma 2.4 below is stated in a general, deterministic fashion, but will be used in Theorem 2.5
below to bound the loss incurred by the estimator on the event that the sample and population
covariance matrices are close in fo-norm. See also Vu et al. (2013, Theorem 3.1) for a closely
related result in the context of a projection matrix estimation problem. Recall that M denotes

the class of p X p non-negative definite real, symmetric matrices.

Lemma 2.4. Let ¥ € M be such that 0 := A () = Xa(X) > 0. Let X € R™? and 3 := n~ X T X.
For arbitrary A > 0 and € > 0, if ||f] — Yoo < A, then the semidefinite relazation estimator ©5PF
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Algorithm 2.2: A possible implementation of Step 2 of Algorithm 2.1
Input: € M, A>0, e > 0.
begin

Set My < I,/p, Uy < 0 € RP*P and N « Pi’fgﬂ.

fort+ 1to N do

U/ « Iy (Up—1 — %Mt—1)7 M T, (M1 + %i + %Ut—l)-
Up My (U1 — %Mt’), My + O, (My—q + %z + %Ut’).
end
Y 1 N /
Set .2\4-6 — N Zt:l Mt'
end
Output: Me¢

in Algorithm 2.1 with inputs X, \, € satisfies

L(55PF 0y(%)) < —4\/?]“ + 2\/5

DP over the classes

Theorem 2.5 below describes the statistical properties of the estimator ©°
Pp(n,k,0). It reveals in particular that we incur a loss of statistical efficiency of a factor of VE
compared with the minimax upper bound in Theorem 2.2 in Section 2.2 above. As well as applying
Lemma 2.4 on the event {||% — %||oo < A}, the proof relies on Lemma 2.12 in Section 2.7, which
relates the event {||¥ — ¥||oc > A} to the RCC,(n,2,1) condition. Indeed, this explains why we

incorporated this condition into the definition of the P,(n, k, ) classes.

Theorem 2.5. For an arbitrary P € Pp(n,k,0) and X1,..., X, ud P, we write 95PP(X) for
the output of Algorithm 2.1 with input X = (X1,...,X,) ", X = 4\/10% and € = ]i%. If
4logp < n < k*p?0=2logp and 0 € (0,k], then

k21
sup  EpL(85PP(X),v1(P)) < min{(m\/i +2)y/ ol 1}. (2.6)
PEPy(n,k,0) nf

We remark that 95PF has the attractive property of being fully adaptive in the sense that it can

be computed without knowledge of the sparsity level k. On the other hand, 45PF is not necessarily
k-sparse. If a specific sparsity level is desired in a particular application, Algorithm 2.1 can be
modified to obtain a (non-adaptive) k-sparse estimator having similar estimation risk. Specifically,

we can find

o5PP € argmin L(¢°PP

ueSP—1(k)

).

Since L(95PF u)? =1 — (uTﬁSDP)Q, we can compute 05°F by setting all but the top k coordinates

SDP A[S)DP

of v in absolute value to zero and renormalising the vector. In particular, v is computable

in polynomial time. We deduce that under the same conditions as in Theorem 2.5, for any P €
Pp(na k7 9)7

EL(@(?DP’UI) < E[{L(ﬁgDP,@SDP) +L('f)SDP»'Ul)}]l{”i)—Eng)\}] +P(||f] = Yo > )\)

~SDP 3 V2 k?log p
<2E{L(5"", v1) L s syo<n ) HP(IE = Zlle > A) < (32v2+3) o
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where the final inequality follows from the proof of Theorem 2.5.

2.4 Computational lower bounds

Theorems 2.5 and 2.2 reveal a gap between the provable performance of our semidefinite relaxation

D

estimator ¥5PF and the minimax optimal rate. It is natural to ask whether there exists a compu-

tationally efficient algorithm that achieves the statistically optimal rate of convergence. In fact, as
we will see in Theorem 2.6 below, the effective sample size region over which #5P¥ is consistent is
essentially tight among the class of all randomised polynomial time algorithms*. Indeed, any ran-
domised polynomial time algorithm with a faster rate of convergence could otherwise be adapted
to solve instances of the Planted Clique problem that are believed to be hard; see Section 2.4.1
below for formal definitions and discussion. In this sense, the extra factor of vk is an intrinsic
price in statistical efficiency that we have to pay for computational efficiency, and the estimator
©5PP studied in Section 2.3 has essentially the best possible rate of convergence among computable

estimators.

2.4.1 The Planted Clique problem

A graph G := (V(G), E(G)) is an ordered pair in which V(G) is a countable set, and E(G) is a
subset of {{z,y}: z,y € V(G),z # y}. For z,y € V(G), we say = and y are adjacent, and write
x ~y, if {z,y} € E(G). A clique C is a subset of V(G) such that {x,y} € E(G) for all distinct
z,y € C. The problem of finding a clique of maximum size in a given graph G is known to be
NP-complete (Karp, 1972). It is therefore natural to consider randomly generated input graphs
with a clique ‘planted’ in, where the signal is much less confounded by the noise. Such problems
were first suggested by Jerrum (1992) and Kucera (1995) as a potentially easier variant of the
classical Clique problem.

Let G,, denote the collection of all graphs with m vertices. Define G,, to be the distribution
on G,, associated with the standard Erdés—Rényi random graph. In other words, under G,,, each
pair of vertices is adjacent independently with probability 1/2. For any x € {1,...,m}, let Gy x
be a distribution on G,, constructed by first picking x distinct vertices uniformly at random and
connecting all edges (the ‘planted clique’), then joining each remaining pair of distinct vertices
by an edge independently with probability 1/2. The Planted Clique problem has input graphs
randomly sampled from the distribution G, . Due to the random nature of the problem, the
goal of the Planted Clique problem is to find (possibly randomised) algorithms that can locate a
maximum clique K, with high probability.

(K| as :
) STogem 7 1 (e.g. Grimmett and

It is well known that, for a standard Erdés—Rényi graph
McDiarmid, 1975). In fact, if kK = K, is such that liminf,, . m > 1, it can be shown
that the planted clique is asymptotically almost surely also the unique maximum clique in the
input graph. As observed in Kucera (1995), there exists C' > 0 such that, if & > Cy/mlogm,
then asymptotically almost surely, vertices in the planted clique have larger degrees than all other
vertices, in which case they can be located in O(m?) operations. Alon, Krivelevich and Sudakov
(1998) improved the above result by exhibiting a spectral method that, given any ¢ > 0, identifies
planted cliques of size k > ¢y/m asymptotically almost surely.

4In this section, terms from computational complexity theory defined Section 2.8 are written in italics at their
first occurrence.
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Although several other polynomial time algorithms have subsequently been discovered for the
Kk > cy/m case (e.g. Feige and Krauthgamer, 2000; Feige and Ron, 2010; Ames and Vavasis, 2011),
there is no known randomised polynomial time algorithm that can detect below this threshold.
Jerrum (1992) hinted at the hardness of this problem by showing that a specific Markov chain ap-
proach fails to work when x = O(m!/27%) for some § > 0. Feige and Krauthgamer (2003) showed
that Lovacz—Schrijiver semidefinite programming relaxation methods also fail in this regime. Feld-
man et al. (2013) recently presented further evidence of the hardness of this problem by showing
that a broad class of algorithms, which they refer to as ‘statistical algorithms’, cannot solve the
Planted Clique problem with x = O(m'/?~%) in randomised polynomial time, for any § > 0. Tt is
now widely accepted in theoretical computer science that the Planted Clique problem is hard, in

the sense that the following assumption holds with 7 = 0:

(A1)(7) For any sequence x = k,, such that x < m# for some 0 < 8 < 1/2 — 7, there is no
randomised polynomial time algorithm that can correctly identify the planted clique with

probability tending to 1 as m — oo.

We state the assumption in terms of a general parameter 7 € [0,1/2), because it will turn out
below that even if only (A1)(7) holds for some 7 € (0,1/6), there are still regimes of (n,p, k,8) in
which no randomised polynomial time algorithm can attain the minimax optimal rate.

Researchers have used the hardness of the planted clique problem as an assumption to prove
various impossibility results in other problems. Examples include cryptographic applications (Juels
and Peinado, 2000; Applebaum, Barak and Wigderson, 2010), testing k-wise independence (Alon
et al., 2007) and approximating Nash equilibria (Hazan and Krauthgamer, 2011). Recent works
by Berthet and Rigollet (2013a,b) and Ma and Wu (2015) used a stronger hypothesis on the
hardness of detecting the presence of a planted clique to establish computational lower bounds
in sparse principal component detection and sparse submatrix detection problems respectively.
Our Assumption (A1)(0) assumes only the computational intractability of identifying the entire
planted clique, so in particular, is implied by Hypothesis Apc of Berthet and Rigollet (2013b) and
Hypothesis 1 of Ma and Wu (2015).

2.4.2 Main theorem

In this section, we use a reduction argument to show that, under Assumption (Al)(7), it is im-
possible to achieve the statistically optimal rate of sparse principal component estimation using
randomised polynomial time algorithms. For p € N, and for z € R, we let [z], denote z in its
binary representation, rounded to p significant figures. Let [R], := {[z], : # € R}. We say (9(™)) is
a sequence of randomised polynomial time estimators of v, € RP» if 5(") is a measurable function
from R™*P» to RP» and if, for every p € N, there exists a randomised polynomial time algorithm
M, such that for any x € ([R],)"*P» we have [6(")(x)], = [My:(x)],. The sequence of semidefinite

(,IA}SDP)

programming estimators defined in Section 2.3 is an example of a sequence of randomised

polynomial time estimators of v (P).

Theorem 2.6. Fiz 7 € [0,1/6), assume (A1)(t), and let « € (0,1=5%). For any n € N, let

(p, k,0) = (D kn, 0n) be parameters indexed by n such that k = O(p*/2>~7=9) for some § € (0,1/2—
7), n = o(plogp) and 0 < k*/(1000p). Suppose further that

ko]
k*elogp

n6? 0
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as n — 00. Let X be an n X p matrix with independent rows, each having distribution P. Then

every sequence (0() of randomised polynomial time estimators of v1(P) satisfies

no?
——— sup EpL(d"™(X),1(P)) =
K108 D pep,(nio) (0"(X), v1(P)

as n — oQ.

We note that the choices of parameters in the theorem imply that

k?logp

liminf =2 > 1inrgi£f% = o0. (2.7)
As remarked in Section 2.4.1 above, the main interest in this theorem comes from the case 7 = 0.
Here, our result reveals not only that no randomised polynomial time algorithm can attain the
minimax optimal rate, but also that in the effective sample size regime described by (2.7), and
provided the other side conditions of Theorem 2.6 hold, there is in general no consistent se-
quence of randomised polynomial time estimators. This is in contrast to Theorem 2.2, where
we saw that consistent estimation with a computationally inefficient procedure is possible in
the asymptotic regime (2.7). A further consequence of Theorem 2.6 is that, since any sequence
(p, k,0) = (pn, kn, 0,) satisfying the conditions of Theorem 2.6 also satisfies the conditions of The-
orem 2.5 for large n, the conclusion of Theorem 2.5 cannot be improved in terms of the exponent of
k (at least, not uniformly over the parameter range given there). As mentioned in the introduction,
for a sufficiently large effective sample size, where even randomised polynomial time estimators can
be consistent, the statistical and computational trade-off revealed by Theorems 2.2 and 2.6 may
disappear. See Section 2.4.4 below for further details, and Gao, Ma and Zhou (2014) for recent
extensions of these results to different classes of distributions.

Even though Assumption (A1)(0) is widely believed, we also present results under the weaker
family of conditions (A1)(7) for 7 € (0,1/6) to show that a statistical and computational trade-
off still remains for certain parameter regimes even in these settings. The reason for assuming
7 < 1/6 is to guarantee that there is a regime of parameters (n, p, k, 0) satisfying the conditions of
the theorem. Indeed, if 7 € [0,1/6) and a € (0, 1=5T), we can set p = n, k = n'/2777% for some

7 1-2T1
§€ (0,5 —7—35—),0=Fk/(1000n), and in that case,

E'**logp  10°nlogn
nH? - f3—«

— 0,

as required.

2.4.3 Sketch of the proof of the main theorem

The proof of Theorem 2.6 relies on a randomised polynomial time reduction from the Planted Clique
problem to the sparse principal component estimation problem. The reduction is adapted from
the ‘bottom-left transformation’ of Berthet and Rigollet (2013b), and requires a rather different
and delicate analysis.

In greater detail, suppose for a contradiction that we were given a randomised polynomial time
algorithm © for the Sparse PCA problem with a rate suppep (o 5,0) EPL(0,01) < 4/ klt:% for

some « < 1. Set m = plogp and k =~ klogp, so we are in the regime where (A1l)(7) holds. Given
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any graph G ~ G,, ., with planted clique K C V(G), we draw n + p vertices u1,..., Uy, w,...,wp
uniformly at random without replacement from V(G). On average there are about x/log  clique
vertices in {w1,...,w,}, and our initial aim is to identify a large fraction of these vertices. To do

this, we form an n x p matrix A := (1y;~w,)i,j, Which is an off-diagonal block of the adjacency

i
matrix of G. We then replace each 0 in A with —1 and flip the signs of each row independently with
probability 1/2 to obtain a new matrix X. Each component of the ith row of X has a marginal
Rademacher distribution, but if u; is a clique vertex, then the components {j : w; € K} are
perfectly correlated. Writing 7' := (1{w,ex})j=1,...p, the leading eigenvector of E{XTX/n|y'} is
proportional to 4/, which suggests that a spectral method might be able to find {w1,...,wp} N K
with high probability. Unfortunately, the joint distribution of the rows of X is difficult to deal with
directly, but since n and p are small relative to m, we can approximate 4’ by a random vector
having independent Bern(x/m) components. We can then approximate X by a matrix Y, whose
rows are independent conditional on « and have the same marginal distribution conditional on
~ = g as the rows of X conditional on 4/ = g.

It turns out that the distribution of an appropriately scaled version of an arbitrary row of Y,
conditional on v = g, belongs to Py(n, k, 8) for g belonging to a set of high probability. We could
therefore apply our hypothetical randomised polynomial time Sparse PCA algorithm to the scaled
version of the matrix Y to find a good estimate of 4, and since - is close to 4/, this accomplishes
our initial goal. With high probability, the remaining vertices in the planted clique are those
having high connectivity to the identified clique vertices in {wsi,...,w,}, which contradicts the
hypothesis (A1)(7).

2.4.4 Computationally efficient optimal estimation on a subparameter

space in the high effective sample size regime

Theorems 2.2, 2.3, 2.5 and 2.6 enable us to summarise, in Table 2.1 below, our knowledge of the best
possible rate of estimation in different asymptotic regimes, both for arbitrary statistical procedures
and for those that are computable in randomised polynomial time. (For ease of exposition, we omit
here the additional, relatively mild, side constraints required for the above theorems to hold.) The

k‘2

fact that Theorem 2.6 is primarily concerned with the setting in which 182 _ oo raises the

no
question of whether computationally efficient procedures could attain a faster rate of convergence
2
in the high effective sample size regime where n > %.

The purpose of this section is to extend the ideas of Amini and Wainwright (2009) to show that,
indeed, a variant of the estimator ¢5PF introduced in Section 2.3 attains the minimax optimal rate
of convergence in this asymptotic regime, at least over a subclass of the distributions in Pp(n, k, 6).
Ma (2013) and Yuan and Zhang (2013) show similar results for an iterative thresholding algorithm
for other subclasses of P,(n, k, ) under an extra upper bound condition on Ay(P)/A1(P); see also

Wang, Lu and Liu (2014) and Deshpande and Montanari (2014).

Let T denote the set of non-negative definite matrices ¥ € RP*P of the form

I 0
M= 9’(}11};— + <(;€ 1—‘ ) s
p—k

where v; € RP is a unit vector such that S := supp(vi) has cardinality k& and where I',_j €
R(P=k)x(P=k) i non-negative definite and satisfies A\;(T',_x) < 1. (Here, and in the proof of
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Table 2.1: Rates of convergence of in different asymptotic regimes

klo klo k21o k210
n < 92gp 92gp <n< 92&0 n> 02gp
k1 k1
all estimators =1 - m - \/E
k21
poly-time estimators =1 =1 < og p
n?

Theorem 2.7 below, the block matrix notation refers to the (S,5), (S,5¢), (5S¢, S) and (5S¢, S°)
blocks.) We now define a subclass of distributions

N . klogp
Pp(n, k,0) = {P € Pp(n,k,0) : E(P)eT, Brlelél|vl,j| > 164/ 02 }

We remark that P, (n, k, ) is non-empty only if 1/ % < 1%, since

k2 logp
1= > kY2 mi | > 16 .
[v1,5l2 > min o4l 2 164/ =5

This is one reason that the theorem below only holds in the high effective sample size regime.
Our variant of 5P is described in Algorithm 2.3 below. We remark that 9MSPP like 9SPP | is

computable in polynomial time.

Algorithm 2.3: Pseudo-code for computing the modified semidefinite relaxation estimator
~MSDP
0

Input: X = (X1,...,X,)" €R™P X>0,e>0,7>0.
begin
Step 1: Set ¥+ n X TX.

Step 2: For f(M) = tr(f]M) — M|M]|1, let M€ be an e-maximiser of f in M;. Step 3:
Let S « {j e{l,...,p}: M 27’} and 9MSPP ¢ RP by ﬁg/[cSDP + 0 and

JJ
~MSDP TS
g € argmax, cpis| U 2ggU.
end

Output: oMSPP

Theorem 2.7. Assume that X1,...,X, dp for some P € 75p(n, k,0).

(a) Let A :=4 10%. The function f in Step 2 of Algorithm 2.3 has a mazimiser M € M; 1 (k%)

satisfying sgn(M) = sgn(viv] ).

(b) Assume that logp < n, 62 < Bk'/? for some B > 1 and p > 0(n/k)"/?. We write ?™5PF for
the output of Algorithm 2.8 with input parameters X := (X1,...,X,)T € R"*P \:=4 105”,

e := (1952)5/2 gnd 1 := (1982)2. Then

k1
sup EP{L(@MSDPml)} <6 o8p.
! o2
PePy(n,k,0)
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Theorem 2.7 generalises Theorem 2 of Amini and Wainwright (2009) in two ways: first, we relax
a gaussianity assumption to an RCC condition; second, the leading eigenvector of the population

covariance matrix is not required to have non-zero entries equal to +k~1/2.

2.5 Numerical experiments

In this section we present the results of numerical experiments to illustrate the results of Theo-
rems 2.5, 2.6 and 2.7. We generate v; € R? by setting vy j := k=2 for j = 1,...,k, and v, j := 0
for j = k+1,...,p. We then draw Xy,..., X, S N,(0,%), where X := I, + fv1v] and 6 = 1.
We apply Algorithm 2.1 to the data matrix X := (Xi,...,X,)" and report the average loss of
the estimator 95PF over Ny, := 100 repetitions. For p € {50,100, 150,200} and k = |p'/2], we

repeat the experiment for several choices of n to explore the three parameter regimes described

2
in Table 2.1. Since the boundaries of these regimes are n =< % lg§ P oand n =< & é‘;gp , we plot the

average loss of the experiments against effective samples sizes

nb? nb?
Viin and  Vquad :=

:lclog;p7 k2logp

The results are shown in Figure 2.1. The top left panel of Figure 2.1 shows a sharp phase transition

for the average loss, as predicted by Theorems 2.5 and 2.6. The right panels of Figure 2.1 suggest

that in the high effective sample size regime, 9°PP converges at rate ki%%p in this setting.
This is the same rate as was proved for the modified semidefinite relaxation estimator ®MSPP in

Theorem 2.7.

It is worth noting that it is relatively time-consuming to carry out the simulations for the
settings in the right-hand tails of the plots in Figure 2.1. These extreme settings were chosen,
however, to illustrate that the linear scaling is the correct one in this tail. For example, when
Vquad = 200 and p = 200, we require n = 207694, and the pre-processing of the data matrix to
obtain the sample covariance matrix is the time-limiting step. In general, in our experience, the
semi-definite programming algorithm is certainly not as fast as simpler methods such as diagonal

thresholding, but is not prohibitively slow.

2.6 Appendix: Proofs of the main results

Proof of Proposition 2.1. (1) If Xq,..., X, “optor P e subgaussianp(UQ), then, for any u €

SP=1(¢) and ¢t > 0, we have a tail probability bound P(uTX; > t) < et/ E(ett X1/7%) <
e=t/(20%) Similarly, P(—uT X3 > t) < /(2% Write 1, := E{(u" X1)2}; since
1 2 2 tu' X t252 /2 L 5, 2
1+§uut +o(t?) =E(e™ *1)<e'”? :1—1—5015 + o(t%),

as t — 0, we deduce that p, < o?. Now, for any integer m > 2,

B X0 = ") < [ P{WT X0~z e
0

o my, 1 m
< 2/ e~ TEE gt u = m!(202)m{26_““/(2”2) +— (M—u?) } < 2m!(20%)™,
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Figure 2.1: Average loss of the estimator 45PF over Nrep = 100 repetitions against effective sample

sizes Vquaa (top left) and v, (top right). The tail behaviour under both scalings is examined under
logarithmic scales in the bottom left and bottom right panels.
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where the final inequality follows because the function  — 2e~% + 2™ /m! is decreasing on [0,1/2].
This calculation allows us to apply Bernstein’s inequality (e.g. van de Geer, 2000, Lemma 5.7,
taking K = 202, R = 40? in her notation), to deduce that for any s > 0,

. ns?
— > < _ .
P(|V(u) = V(u)| > s) < 2exp( 1075 +3204)

It follows by Lemma 2.9 in Section 2.7, taking ¢ = 1/4 in that result, that if n > 0 is such that
Clog(p/n) < n, then for C := 802, we have

]P’( sup  |V(u) — V(u)| >
u€SP—1(¢) n

< 2r(t/? (?) (ﬁ)“ exp (_ C2¢log(p/n) )

V255 4C o2 / £log(p/n) + 3204
£ 128 \¢-1

<ot (5) (o) <

= £/ \\/255 -

Similarly, if ¢log(p/n) > n, then

9 flog(p/n)) 1/2 (p) 128 \6-1 2 9
P S 1% -V > 20— ) <27¢ _— < .
(uegggw| (w) = V()] 2 20582 < gz (B) (DB T < oo

Setting 4 := €7, we find (noting that we only need to consider the case & € (0,1]) that

P{ sup |V<u>—v(u>|21602(1+b310)max< 510«‘»’(?/5),“%(19/5))}

u€SP—1(0) n n
. log (e log (e
< IP’{ sup |V (u)=V(u)| > 1602max( tlog(e p/é)’ tlogfe p/é))} < 4.

uwesP—1(0) n n

ii) By Lemma 1 of Laurent an assart , if Y1,...,Y,, are independent x7 random
(ii) By L 1of L d M (2000), if Y; Y, ind d 2 d

variables, then for all a > 0,
(15
hl - n
ni|<
=1
Setting n :=e™" min(%’%), we deduce that

P{rlz iy | 4max< log(l/n)’ log(l/n)>} <o,

n n

2

> a> < 9~ 3(+a—VIF2a) £ go—nmin(§.45)

Hence, using Lemma 2.9 again, and by a similar calculation to Part (i),

N o Jios ) o\ _ o
B s 170 = V) > 5y (P 22O BRI L < vty

The result follows on setting § := e”p‘n. O

Proof of Theorem 2.2. Fix an arbitrary P € Pp,(n, k,0). For notational simplicity, we write v :=
v1(P) and © := 9% __(3) in this proof. We now exploit the Curvature Lemma of Vu et al. (2013,

max



2.6. APPENDIX: PROOFS OF THE MAIN RESULTS 27

Lemma 3.1), which is closely related to the Davis—-Kahan sin 6 theorem (cf. Davis and Kahan (1970)
and Chapter 1. This lemma gives that

[\

067 —vo |3 < Ztr(S(vo” —007)) < Ztr((E = B)(vo" —o07)).

>
SR

A A 1 T — DD T . .
When 60" # vv ", we have that M has rank 2, trace 0 and has non-zero entries in at most

2k rows and 2k columuns. It follows that its non-zero eigenvalues are +1/ \/§7 so it can be written
as (zz"” —yy")/v/2 for some x,y € SP~1(2k). Thus

1 1 .
EL(9,0v) = E—|[00T —ovv' || < ZEtr((Z =) (zz| —yy "
(9, v) \/ill > < SEbr(( )( yy'))

2 ~ 1 klogp
<-E sup V(u)—VU)|S2\/§<1+)\/ ;
0 wese—1(2k) | ( logp n6?
where we have used Proposition 2.8 in Section 2.7 to obtain the final inequality. O
Proof of Theorem 2.3. Set 0% := —L5—~ — 6. By Proposition 2.1(ii), we have that N,(0,0%I, +

8(1+
fviv{ ) belongs to P,(n, k, #) for any unit vector v; € SP~1(k). Define kg := k — 1 and py := p — 1.

logp)

Applying the variant of the Gilbert—Varshamov lemma given as Lemma 2.10 in Section 2.7 with
a:=1/2 and B := 1/4, we can construct a set Ny of ko-sparse vectors in {0, 1}P° with cardinality
at least (pg/ko)*/8, such that the Hamming distance between every pair of distinct points in N

is at least ko. For € € (0, 1] to be chosen later, define a set of k-sparse vectors in R? by

ko_l/2€'LL0
Observe that if u,v are distinct elements of A/, then
Lu,v) = {1 — (u0)2}/2 > {1 — (1 — €2/2)2}/% > V3¢/2,

and similarly L(u,v) < e. For u € N, let P, denote the multivariate normal distribution
N,(0,021, + QuuT). For any estimator & € V,,, we define Uy = sargmin, ¢ - L(0, ), where
sargmin denotes the smallest element of the argmin in the lexicographic ordering. Note that
{15 # u} C {L(d,u) > v/3¢/4}. We now apply the generalised version of Fano’s lemma given
as Lemma 2.11 in Section 2.7. Writing D(P]|Q) for the Kullback-Leibler divergence between two

probability measures defined on the same space, we have

inf sup EpL(0,v1(P)) > inf maxEp L(0,u)
VE€Vn,p PePy(n,k,0) ( ) VEVn,p uEN

S Ve

inf mz?\)/cPf’"(z/}g #u) > \/f€<1 -

maxy, ve A uzo D(PE"|PE™) + log 2 (2.8)
DEVn, p UE . .

(ko/8)log(po/ko)

We can compute, for distinct points u,v € N,

n
D(PE"™||PE™) = nD(P,||P,) = 5tr((crzfp + Ouu') " (02, + Ovv ") — I,,)

_n 2 Ty-1 T Ty L 2L (u,v) < no?e®
= 2tr((a I+ 0uu' ) '0(vo' —uu')) = 20202+ 0) = 20202+ 0)° (2.9)
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Let € := min{+/a/(3b),1}, where a := 1—% and b := 02(02+0)4]z)9120g(p0/k0). Then from (2.8)
and (2.9), we find that

. . . 1 Jklogp 5 }
inf su EpL(?0,v1(P)) > min , ,
D€V, PEPP(TI;,’?,‘g) ) {1660 nt* " 18v/3

as required. O

Proof of Lemma 2.4. For convenience, we write v := v1(%), ¥ := 9°PF and M := M€ in this proof.
We first study vo " — M, where M € M, is computed in Step 2 of Algorithm 2.1. By the Curvature
Lemma of Vu et al. (2013, Lemma 3.1),

[\

oo T — M2 < étr(Z(va - M))

Moreover, since vv! € M, we have the basic inequality
tr(SM) — M| M|y > tr(Sov ") = Moo ||y — e

Let S denote the set of indices corresponding to the non-zero components of v, and recall that
|S| < k. Since by hypothesis || — %||o < A, we have

oo — M2 < %{tr(i(mﬁ — M) +tr(( =) (vo" — M))}

2 A . R
< 2 (Aov I = NI 4 e+ % — Dlclfon” — 211)
2 - N 2€
< g(”vsvgﬂl — | Ms sl + llvsvg — Ms,si) + 7
4\ N 2¢ 4Nk N 2¢
< ?HUSU; — Ms,s|1 + 7 < THUUT — M|+ E

We deduce that

- ANk 2e

§
~ M|y < 228 42

oo™ = Mlla < 55 +14/5

ovT — M2 = tr((vo” — M)Q) =1—20" Mv+ tr(M?)
>1—20" Mo+ tr(M?) = ||[oo" — M|2.

On the other hand,

We conclude that

1 1 - N ~ 420k
L(5,0) = 08T~ < - (100” ~ M+ o — 1)) < Vo i < 2P 13, [0

as required. O

Proof of Theorem 2.5. Fix P € P,(n,k,0). By Lemma 2.4, and by Lemma 2.12 in Section 2.7,

EL(9°PF,v1(P)) = E{L(2°°F,v1(P)) 11{”27&&9}} +E{L(5PF, vl(P))]l{Hﬁizﬂmw\}}

< VA + 2\/?—&- IF’( sup }V(u) —V(u)| > 24/ logp> (2.10)
¢ ¢ u€eSP=1(2) n
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Since P € RCC,(n,2,1), we have for each 6 > 0 that

n»{ sup  |V(u) - V(w)| > max( 210g(p/9) 2@@/5))} <5,

u€SP—1(2) n n
Set § := kzlgggp. Since 4logp < n, which in particular implies n > 3, we have
21 s 1 1 62 1 1 1
M <-+ flog(ni> < -+ e _ —loglog2 < 1.
n 2 n kZlogp 2 n n

Moreover, since n < k*p?0—2logp,

2

n
= —_— < .
2log(p/0) = 2logp + log<k2 logp) <4logp
We deduce that
. 10gp> [kZlogp

P su V(u)—V(u)|l >2 < . 2.11
<uesz71?(2)’ ) ( )| n )= nb? (2.11)
The desired risk bound follows from (2.10), the fact that § < k, and (2.11). O

Proof of Theorem 2.6. Suppose, for a contradiction, that there exist an infinite subset N of N,

K € [0,00) and a sequence (9(™) of randomised polynomial time estimators of v;(P) satisfying

k1+a1
sup  EpL(60(X), 01(P)) < Koy o8P
PeP,(n,k,0) nb

for all n € M. Let L := [logp,], let m = m,, := [10Lp, /9] and let K = k,, := Lk,. We claim
that Algorithm 2.4 below is a randomised polynomial time algorithm that correctly identifies the
Planted Clique problem on m,, vertices and a planted clique of size k,, with probability tending to
1 as n — oo. Since Kk, = O(m,l/ZfT*(S log my,), this contradicts Assumption (A1)(r). We prove the
claim below.

Let G ~ Gy, 1, and let K C V(G) denote the planted clique. Note that the matrix A defined
in Step 1 of Algorithm 2.4 is the off-diagonal block of the adjacency matrix of G associated
with the bipartite graph induced by the two parts {w; : ¢ = 1,...,n} and {w; : j = 1,...,p}.
Let € = (¢},....¢,)" and v = (+],...,7)"

S={j: 'y;» =1}
It is convenient at this point to introduce the notion of a Graph Vector distribution. We say

, where €; 1= lyyexy, 7 = L{uw,ck), and set

Y has a p-variate Graph Vector distribution with parameters g = (g1,...,9,)" € {0,1}? and

mo € [0, 1], and write Y ~ GV (7o), if we can write
V=¢{(1-€eR+e(g+R)},

where &, € and R are independent, where £ is a Rademacher random variable, where € ~ Bern(mg),
where R = (Ry,..., Rp)T € RP has independent Rademacher components, and where R =
(Ry,...,R,)T with R, := (1 — g;)R;.

Let (€,4)" = (é1,---,€n,71,---,7p) be n+ p independent Bern(x/m) random variables. For
i=1,...,n, let Y; := @{(1 — )R +e(v+ Rl)} so that, conditional on -, the random vectors
Yi,...,Y, are independent, each distributed as GV} (x/m). As shorthand, we denote this condi-
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Algorithm 2.4: Pseudo-code for a planted clique algorithm based on a hypothetical ran-
domised polynomial time sparse principal component estimation algorithm.

Input: meN, ke {l,...,m},GeG,,, LEN

begin
Step 1: Let n < [9m/(10L)], p < pn, k < [x/L]. Draw ui,...,up, wi,...,wp
uniformly at random without replacement from V' (G). Form
A = (Aij) + (Lgu,ow,y) € R™P and X < diag(&y, .- -, 60) (2A — 1y,xp), where &1, ..., &p
are independent Rademacher random variables (independent of uy, ..., up, w1, ..., wp),
and where every entry of 1,,, € R"*? is 1.
Step 2: Use the randomised estimator (™) to compute & = 0™ (X //750).
Step 3: Let § = 5() be the lexicographically smallest k-subset of {1,...,p} such that
(0 : j € S) contains the k largest coordinates of © in absolute value.
Step 4: For v € V(G) and W C V(G), let nb(u, W) := Liuew} + D pew L{u~w}- Set
K= {ueV(G) :nb(u,{w; : j € S} > 3k/4}.
end
Output: K

tional distribution as @, and write S := {j : 7; = 1}. Note that by Lemma 2.13 in Section 2.7,
Q- € NEZP/ORIRCE, (¢, 750).

Let Y := (Y1,...,Y,)". Recall that if P and Q are probability measures on a measurable space
(X, B), the total variation distance between P and @ is defined by

dry(P,Q) := sup |P(B) — Q(B)].

Writing £(Z) for the distribution (or law) of a generic random element Z, and using elementary

properties of the total variation distance given in Lemma 2.16 in Section 2.7, we have

drv (L£(X),L(Y)) < drv (£(€/a v, (Rig), (&), L(€,7, (Riz), (fz)))

2(n + p) <9(n+p)
m  ~ bplogp’

=drv(L(€,7), L(e,7)) < (2.12)

Here, the penultimate inequality follows from Diaconis and Freedman (1980, Theorem 4). In view
of (2.12), we initially analyse Steps 2, 3 and 4 in Algorithm 2.4 with X replaced by Y. Observe
that E(Y;|y) = 0 and, writing A := diag(vy) € RP*P, we have
Sy = Cov(Y;]y) =E{(1 — &) R:R] +ei(y + Ri)(v + R:) |7}
K
=L+ —(y7" - A
Writing N, = Z§:1 7j, it follows that the largest eigenvalue of ¥, is 1 + (N, — 1), with

corresponding eigenvector '7/N71/ 2 e Sp_l(Nw). The other eigenvalues are 1, with multiplicity
p— Ny, and 1 — = with multiplicity Ny — 1. Hence A1(3) — A2(X4) = Z (N, — 1). Define

k
<77
- 20

where N, := Zle g;j- We note that by Bernstein’s inequality (e.g. Shorack and Wellner, 1986,
p. 855) that

PR
N, — —

Ty = 0,117 :
0 {96{7} m

P(y € To) > 1 — 2~ F/800, (2.13)
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If g € Ty, the conditional distribution of Y;/+/750 given v = g belongs to classes Pp(n, k, 8) for

0 < =5—(Ny — 1) and all n € NV sufficiently large. By hypothesis, it follows that for g € T'o,

kltelogp
no?

E{L(0") (¥ /VT50),01(@4)) | 7= 9} < Ko

for all large n € A/. Then by Lemma 2.14 in Section 2.7, for 5‘() defined in Step 3 of Algorithm 2.4,
for g € T'g, and large n € NV,
E{$\ S (¥ /VT50))| | 7 = g} < 2NE{L(6") (Y /V/750),01(Q4))” | ¥ = 9}

kltelogp

< 2Ny Ko\ ——

We deduce by Markov’s inequality that for g € I'g, and large n € N,

IP{]S N 560 (Y /V/T50)) | < 16N,/17 ‘ y = g} < 34K, % (2.14)
Let
Qo = {v € Lo} N {|SNS(H™ (Y /V750))| > 16N, /17}
Q) ={v €To}n{|SNS(™(X/VT50))| > 16N, /17} = Q) , N Q% .,
say, where N,/ := ?:1 fy;-. When n € NV is sufficiently large, we have on the event Qg’n that
[{j € S("™) (X /V750)) : w; € K}| > 3k/4. (2.15)
Now set

Q5,, = {nb(u,{w; : j € §'}) <k/2forall u e V(G)\ K}.

Recall the definition of K from Step 4 of Algorithm 2.4. We claim that for sufficiently large n € N,
Q%.,N0s,, C {K = K}. To see this, note that for n € A sufficiently large, on Qp,, we have K C K
by (2.15). For the reverse inclusion, note that if u € V/(G) \ K, then on Qg ,, N Q3 ., we have for

sufficiently large n € N that

nb(u, {wj:je S’(ﬁ“”(X/\/ﬁ))}) < Hw;:je 5}\K‘ +nb(u, {w; : j € S}HK)

< |{w; :j € S}\ K| +nb(u,{w;:j€8}) < §+§: %
This establishes our claim. We conclude that for sufficiently large n € N,
P(K # K) <P((, NQ%,)°) < P((.,)°) +P(, N (D%,)°). (2.16)
Now, by Lemma 2.16, we have
B(2,) — P(Q00)] < doy (L(X.7), LY, )) < 20EP) (2.17)

5plogp
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Moreover, by a union bound and Hoeffding’s inequality, for large n € N,

P(Q), N (%)) < Y P((Q%,)Ny = 9)P(y = g) < me™ /5. (2.18)

g€lo

We conclude by (2.16), (2.17), (2.13), (2.14) and (2.18) that for large n € N,

ks 9 k1+a 1
P(K # K) < 9(n +p) 40 k/B00 4 g JETT 08P L —k/s00 )
5plogp n6?2
as n — oo. This contradicts Assumption (A1)(7), and therefore completes the proof. O

Proof of Theorem 2.7. Setting 6 := p~!in (2.3), there exist events €2; and Qy, each with probability
at least 1 — p~ !, such that on Q; and s, we respectively have

N 1 - 1
sup  |[V(u) —V(u)| <2 Flogp and sup |V(u)—V(u)] <2 08D (2.19)

uweSP—1(2k) N n ueSP—1(2) N n

Let Qg := Q1 N Q. We work on 2 henceforth. The main ingredient for proving both parts of the

theorem is the following weak-duality inequality:

max tr(SM) — A|M|; = max min tr((X — U)M)

MeM;, MeM,Uelu
< mi tr((X — U)M) = min A, (X - U). 2.20
< pl e, (- DM =pip B0 220
It is convenient to denote «y := kznlgzgp , and note that

< Y minfory) < = Jous]
— MIin (V1 4 — |V = —.
1= 716 Yeg Vil = 1gllvLSI2 T 9

Proof of (a). From (2.20), it suffices to exhibit a primal-dual pair (M,U) € M; x U, such that
(C1) M = 667 with sgn(d) = sgn(vy).
(C2) tr(SM) =AMy = M (2= D).

We construct the primal-dual pair as follows. Define

ﬁ — )\sgn(v175)sgn(v175)T ESS“ — ESSC

ZSCS_ZSCS ZSCSC_ESCSC
By (2.19) and Lemma 2.12, we have that |X — X|loc < 44/82 < X\, 5o U € U. Let w =
(w1,...,wg) be a unit-length leading eigenvector of Ygg — Uss such that U)T’ULS > 0. Then,

define ¥ componentwise by

0g € argmax u' (Zss — U55>u, Bge = 0,
uw€RP ||ulj2=1
uTwZO

and set M := 90". Note that our choices above ensure that M € M,;. To verify (C1), we now

show that sgn(vs) = sgn(w) = sgn(vy g). By a variant of the Davis—Kahan theorem (Yu, Wang
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and Samworth, 2015, Theorem 2),

2v2|255 — Sssllop
0

IN

|w — bsl2 < V2L(bg,w) <

22 N
2v2 sup  |V(u) — V(u)| < 4vV2yk~1/2, (2.21)
0 uesr—1(2k)

lw = sl

where the final inequality uses (2.19). But w is also a leading eigenvector of
1 3 T T
g(Zss —Uss — Iy) = v1,5v, g —4yss ',

where s 1= 22LS) Wiite s = au; g + Bu, for some a, 8 € R with a? + 82 = 1, and a unit
lIsgn(vi,s)ll )

vector v, € RF orthogonal to v1,s. Then
1—4va? —dvyap\ (v]
’ULs’UIS —4yss| = (’ULS ’UJ_) 5 1.’FS
—4yaff  —4~p v
( ) ar by d, O ai as v;r S
= v v . )
1.8 + a2 bg 0 dg b1 bQ ’l)j_r
T T
where d; > ds and (al ag) , (bl b2) are eigenvalues and corresponding unit-length eigenvec-

tors of the middle matrix on the right-hand side of the first line. Direct computation yields that
d121/2>02d2 and

—8yaf3

ag

<a1> N (1 — dya? + 4732 + /16752 + (1 — 47)2> .

Consequently, w is a scalar multiple of

101,58 + agvy = {1 + 4y 4 /16762 + (1 — 4’y)2}vl,s — 8vyas. (2.22)

Since

{1 +4y+ /1682 + (1 - 47)2} min vy 5 > 2min vy 5| > 327k~ > 8ya sl
VIS JjE

we have sgn(w) = sgn(vy g). Hence by (2.22),

{1447+ V16357 + (T 07)7} minjes fon | — 8vals]
min |w;| >
=Lk la1v,s + azv |2
32 — 8a)yk~1/? 129k71/2 48
( )y > 227 > D12 (2.23)

T4+ /16982 + (1 —49)2 ~ 144y T 5 ’
By (2.21) and (2.23), we have min; |w;| > ||w—120g]|«. So sgn(ts) = sgn(w) = sgn(vy g) as desired.
It remains to check condition (C2). Since sgn(dg) = sgn(vy,g), we have

tr(SM) — M| M| = tr(Sssisia ) — tr(Usstgig )

= 0§ (Xss — Uss)ts = M (Ess — Uss).
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Moreover, 3 — U is block diagonal with blocks Yg¢ — Ugs and Fp—k. As Mi(Tp—x) < 1 by
assumption, it suffices to show that /\1(255 — USS) > 1. By Weyl’s inequality (see e.g. Horn and
Johnson (2012, Theorem 4.3.1))

M(Ess — Uss) > M (Zss — Uss) — [|Ess — Zssllop
k1 360
>14 9)\1(1)1,511{3 —dyssT) — 24/ % >1+ ik 1. (2.24)

Proof of (b). We claim first that S = S. Let ¢* := f(M) be the optimal value of the semidefinite
programme (2.5). From (2.24), we have ¢* > 1+ 36/8. The proof strategy here is to use dual
matrices U defined in part (a) and U’ to be defined below to respectively bound tr(Mg.q.) from
above and bound My, from below for each r € S. We then check that for the choice of € we have
in the theorem, the diagonal entries of M€ are above the threshold log p/(6n) precisely when they
belong to the (S, .5)-block of the matrix.

From (2.20) and the fact that tr(AB) < tr(A)A(B) for symmetric matrices A and B, we have

tr(SM€) — | M1 < tr((E - U)M) = tr((Ess — Uss)MSg) + tr(Esese Mege)
< tr(Mgs)d" + tr(Mese) M (Tp-)
= ¢* —tr(M§ege)(¢* — 1) < ¢* — 30 tr(Meg.)/8.

On the other hand, tr(SM€) — A||M€||; > ¢* — €. Tt follows that

- 8¢ 1 logp2
tr(Moge) < = < = . 2.2
(0550 < o < 5 (o2) <7 (2.25)

Next, fix an arbitrary 7 € S and define Sy := S\ {r}. Define U’ by

. Asgn(My;) ifi,j € Sy

ij =9 -

Yij —2i;  otherwise.

We note that on Qq, we have U’ € U. Again by (2.20),

tr(i]ME) — /\||M€H1 < tr((i - U/)ME)

= tr((isosﬂ — USOSO)ME'OSU) + Z Ziiji —+ tr(ESCSCMg‘CSC)

(i,5)eSxS
i=Tor j=r

< tr(Mg’oSo)/\l (25’050 - USOSO) + Z ZijM;i + tr(M:g“SC))‘l (F;D—k)- (2'26)
(i,7)€SxS

i=rorj=r
We bound the three terms of (2.26) separately. By Lemma 2.15 in Section 2.7,
M (Es,50 — Usyso) <M (Ess — Uss) — {>\1(2ss — Uss) — Aa2(Sgs — Uss)} rjrggﬁf
From (2.21) and (2.23),

min 8] > min |w;| — w — Oslee > 3.97k7/2.
J J
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Also, by Weyl’s inequality,

M(Ess — Uss) — Xa(Bss — Uss) > M(Zss — Uss) — Aa(Zss — Uss) — 2| Lss — Lss|lop

klo
> G{Al(vl,gvls —4yss ) — AQ(Ul,SUIS - 4'yssT)} —4 ngp
>0(1/2 — 4vk~Y?) > 0/4.
It follows that
M (Zs,5, — Usys,) < 0" — 3.8v2k710. (2.27)
For the second term in (2.26), observe that
S SyNG < L+ 00 )M +2 > Ovy v, MY,
(i,7)€SxS €S, iF#r
i=rorj=r
< M+ 200o | - lorlli/ Mg, < M, + 20VE/ M, (2.28)

where the penultimate inequality uses the fact that ]\;[fr < M;M € \/ . for a non-negative
definite matrix M¢€. Substituting (2.27) and (2.28) into (2.26),

tr(SNT) = N[ M|y < (MG, g,) (6" —2550) 4 NS, + 207/ kDI, + tr( M. g.)
< ¢" — 3.8y kO tr(ME, g,) + 201/ kD¢,
< ¢" — 3.8y kT10{1 — tr(MSege) } + 20(VE + 1.99%)1/ M,
By definition, tr($M€) — A||M€||; > ¢* — €, so together with (2.25), we have

e s 3.87%*19(1*%;)*6 LOVZE~1(1-8) ¢

39) €
TS 20(VE+1.992) T (VE+ D) 20
8e €
> 1.842%—3/2 _ €
218K (1- ) - o
1.8k'/2log p logp > log p 1.410gp
> 28— /2, 2.2
=T e { G(Bn)} 32<Bn> =" Bn 7 (2:29)

From (2.25) and (2.29) we conclude that $ = S, as claimed.

To conclude, by Yu, Wang and Samworth (2015, Theorem 2), on €,

R R 2||Sss — Sssl klogp
L MSDP L MSDP < op <4
(U 9 7]1) (US ULS) =~ A](ESS) — )\2(255) = n02 9

where we used (2.19) and Lemma 2.12 in the final bound.

For the final part of the theorem, when p > 0/n/k,

. klogp klogp 1 klogp
sup  Ep{L(tMSPP )} <4 +P(Q5) < 4 +2p71 <6 :
PEP, (n,h,0) nf? nb? nb?

as desired. O
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2.7 Appendix: Ancillary results
We collect here various results used in the proofs in Appendix 2.6.

Proposition 2.8. Let P € RCCy(n,¢,C) and suppose that {logp < n. Then

E sup |V(u)—V(u)< (1—!—

1 )C Llogp
u€eSP—1(0)

logp n

Proof. By setting 6 = p'~* in the RCC condition, we find that

N 1 1
IE”( sup  |V(u) —V(u)| > Cmax{\/ i ng7 tﬁogp}) < min(1,p'™")
u€SP—1(¢) n n

for all t > 0. It follows that

B s [V - V(]| = /pr< sup V(u>V<u>|zs)ds

ugspP—1 uesr—1(£)
‘1 ‘1 | ‘1 o
< C\/ ogp —|—C\/ ng/ fpl_tt_lm dt +C ng/ pltdt
n n 1 2 n s
/1 o 1 /1
< Cy/ ogp{1+/ pl_tdt}: (1+ )C\/ o8P
n 1 logp n
as required. O

Lemma 2.9. Lete € (0,1/2), let £ € {1,...,p} and let A € RP*P be a symmetric matriz. Then
there exists N, C SP~1(¢) with cardinality at most (9)m¢/2(1 — €2/16)~(=1/2(2/€)*~1 such that

sup |u' Au| < (1 —2¢)" ! max |u" Aul.
uesr—1(¢) ueN.,
Proof. Let Zy := {I C {1,...,p} : [I| = ¢}, and for I € Ty, let By := {u € SP7*(¢) : uze = 0}.
Thus
sr='(e)= | Br.

IeZ,
For each I € Zy, by Lemma 10 of Kim and Samworth (2016), there exists N7 . C B such that
INT.o| < m/2(1—€2/16)~=1/2(2/¢)~1 and such that for any @ € By, there exists ' € N7, with

|z — 2| < e. Let ur € argmax,¢p, |u" Au| and find v; € N7, such that |lu; — v/ < e. Then

luf Aur| < o] Avy| + |(ur —vr) " Avg| + |uf A(ug —vg)]
< max |u' Au| + 2¢|u; Aug|.

UENT e

Writing NV, = U[ezzNLe, we note that A, has cardinality smaller than or equal to (’Z’)ﬂél/Q(l —
€2/16)~(=1/2(2/€)=1 and that

sup  |u' Au| = max sup |u' Au| < (1 — 2¢) ! max max |u' Au|
ueSP—1(¢) I€ly yeB; I€Zy ueNT,.

= (1 —2¢)" " max |u' Aul,
ue/\/'e
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as required. O

Lemma 2.10 (Variant of the Gilbert—Varshamov Lemma). Let a,B € (0,1) and k,p € N be such
that k < afp. Writing S := {z = (z1,...,2,)" € {0,1}P: ¥,
of S such that for all distinct x = (x1,. .., p)T, y=(y1,---,Yp) " € So, we have E§:1 Lip, 2y} 2
2(1 — a)k and such that log|So| > pklog(p/k), where p := “Toaapy (Tlog B+ —1).

zj =k}, there exists a subset Sy

Proof. See Massart (2007, Lemma 4.10). O

Let P and @ be two probability measures on a measurable space (X, B). Recall that if P is
absolutely continuous with respect to @, then the Kullback—Leibler divergence between P and @
is D(P||Q) := [, log(dP/dQ) dP, where dP/dQ denotes the Radon-Nikodym derivative of P with
respect to Q. If P is not absolutely continuous with respect to @, we set D(P||Q) :=

Lemma 2.11 (Generalised Fano’s Lemma). Let Py, ..., Py be probability distributions on a mea-
surable space (X, B), and assume that D(P;||P;) < B for all i # j. Then any measurable function
VX = {1,..., M} satisfies

_ B+log2
123’1(”13(1/’7& D=1

Proof. See Yu (1997, Lemma 3). O

Lemma 2.12. Suppose that P € P and that Xi,..., X, WP Let ¥ = = [pr 2z dP(z) and
Ni=n Y XX I V() = B{(uT X1)?} and V(u) = n" 00 (u X;)? for u € SP1(2),
then

IS =Slle <2 sup  |V(w) = V(u)].
ueSP—1(2)

Proof. Let e, denote the rth standard basis vector in R? and write X; = (X, 1,...,X;,) . Then

S_Ecx;: erXzs_ X17X1 6
| [ 761?35471)} z; E(X1,X1,s)
1e~(/1 1 \T 1 1 \T. 2
< i S b)) Bl G+ 5e)
R n;{(f +26‘) gfrt36) M
1 e~(/1 1 \T._ 32 1 1 \T_ 2
P25 (e 3e) )
w5 (5o - ) 3~ 5%) X

<2 sup |V(u)—V(u)
uesr—1(2)

as required. O

Recall the definition of the Graph Vector distribution GV (o) from the proof of Theorem 2.6.

Lemma 2.13. Let g = (g1,...,9p) " € {0,1}?, and let Y1,...,Y,, be independent random vectors,
each distributed as GV (mo) for some m € (0,1/2]. For any u € SP71((), let V(u) := E{(u"Y1)?}
and V(u) :=n~' 30 (u"Y;)2. Then for every 1 < € < 2/m, every n € N and every § > 0,

P| sup |V(u)—V(u)|> 750max{ -

weSP—1(0)

Zlog(p/é)’ Llog(p/0) H < 6.

In other words, GV§(mo) € RCCy(¢,750) for all mo € (0,1/2] and £ < 2/m.
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Proof. We can write
Y, =&{(1 - e)Ri +ei(g + Ri)},

where &;, ¢; and R; are independent, where & is a Rademacher random variable, where ¢; ~
Bern(mg), where R; = (7i1,. .. J‘ip)T has independent Rademacher coordinates, and where R, =

(Fity .-y Tip) | with 75 := (1 — g;)ri;. Thus, for any u € SP~1(¢), we have
(u'Y)? = (1—e)(u' Ri)> + e(u'g)* +ei(u Ri)® + 26 (u’ Ri)(u' g).

Hence, writing S := {j : g; = 1}, and using the definition of V (u), we have

n

V(W) = V(w)| < ],11 > —e){(u R’ ~ 1}] ML <uTg>Z+ Jus- 13
S e )P sl

We now control the four terms on the right-hand side of (2.30) separately. For the first term, note
that the distribution of R; is subgaussian with parameter 1. Writing Ne := >, ¢;, it follows by
the same argument as in the proof of Proposition 2.1(i) that for any s > 0,

Z(Q‘ —7T0)

i=1

2uT g T
(v’ Ry
+|= ;e(u )

(2.30)

n

1
n

( sup 1—61 uR —1}‘>25)
ueSP—1(¢) 1

1=

:E{IE”( swp | ‘Z{ (uT R;)? —1}‘ 2”8

uesp—1 iie,=0

< ol Y] <oy exp<4sn532)_

We deduce that for any ¢ > 0,
IE”( sup lz 1—e){(u' R;)> —1}‘ > 16 max { Clog(p/9) élog(p/é)}) <. (2.31)
uesSr—1(¢)| M i—1

n n
For the second term on the right-hand side of (2.30), note first that for any u € SP~1(¢), we have
by Cauchy—Schwarz that

)

(u'9)* < lluslollusll3 < [[usllo < ¢.

n

We deduce using Bernstein’s inequality for Binomial random variables (e.g. Shorack and Wellner,
sup Z(q — ) Z(e —7)| >

1986, p. 855) that for any s > 0,
erifeoli)
ueSP—1(¢) n i=1 n i=1

{ 1+ (u'g)® + lus: |13 s
P il
3¢
< 2ex ( 77182 ) 2 max{ex < ns’ ) ( > }
= 2P T 180 m + 250 PU o+ vBheem, '
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By assumption, ¢my < 2. Hence, for any § > 0,

i(q _m)‘ (s max( Zlog}ll/é)’ élogfll/é))} < 2.

i=1

1 T,.)\2 . 2
P{ wp (9 fuselB
u€SP—1(¢) n

(2.32)
The third term on the right-hand side of (2.30) can be handled in a very similar way to the first.
We find that for every § > 0,

1 n
n Z — Jluse %

> 16 max{ tlog(p/9) , tlog(p/9) }) < €%. (2.33)

( sup
uesSP—1(¢) n n

For the final term, by definition of R;, we have for any u € SP=1(¢) that

2u’g ¢ Th
" Zez(u R;) Z Uj Z rij| < — max
i=1

n =0
j:9;=0 ite;=1 729

(1/2

E Tij.

ie;=1

Hence by Hoeffding’s inequality, for any s > 0,
2u'yg ns
z ’L < EJP ij > = Ne
U ENEL P SEAEE S}

n?s? n2s?
< [ < i _
_2pIE{exp< 8€2N5>} _2pt12£{exp< 8€2t) + P(N, >t)}
< 2pinf< ex —nQSQ +exp| —tlo t +t — nm
=PI P 802t P & nmo o)

where the final line follows by Bennett’s inequality (e.g. Shorack and Wellner, 1986, p. 440).

IE”{ sup
ueSP—1(¢)

Choosing ¢ = max (e?nmo, 5355 ), we find

We deduce that for any § > 0,

2uT g & -
v 9 E ei(uTRi)
n

i=1

We conclude from (2.30), (2.31), (2.32), (2.33) and (2.34) that for any § > 0,

P [ sup
ueSP—1(¢)

> de max{ Flog(p/) “nglp/é) H < 46. (2.34)

n

Pl sup [V(u)— V(u)| > 750 maxd | 108@/0) Log®/) 1] _ 5
s (V) - V() { , b <s

uweSP—1(0) n n

as required. O

Lemma 2.14. Let v = (vy,...,v,) | € SP~Y(k) and let © = (91,...,9,)T € RP be a unit vector.
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Let S:={j €{1,...,p} :v; #0}. Then for any S € argmax, <, < <j, <p Zle |0;,.], we have

Proof. By the Cauchy—Schwarz inequality, and then by definition of S,

| L) = ( S ot Y @jvj)zg (2 SRS v?)(; S Y v?)

jeS\S jesns jes\S jesns jeS\S jesns
1 1
.2 .92 .92 2 2
(Terrar T )iy T )5 X
jeS\S jes\S jesns jes\S jes\S
as required. O

Lemma 2.15. Let A € R™9 be a symmetric matriz. Let A" be the principal submatriz of A
obtained by deleting the rth row and rth column of A. If A has a unique (up to sign) leading
eigenvector v, then

A2(A) < M (AT) < M (A) =07 (A1 (A) = Aa(A))

Proof. The first inequality in the lemma is implied by Cauchy’s Interlacing Theorem (see, e.g. Horn
and Johnson (2012, Theorem 4.3.17)). It remains to show the second inequality. Let A; > Ag >
-+« > Ag be eigenvalues of A (counting multiplicities), and vy, . .., v4 be unit-length eigenvectors of
A such that Av; = \;v; and v;vj =0 for all ¢ # j. We have

d
Al(A(T)) = max u' Au= max u' (Z )\iviv;)u

I\Zﬂfl I\Zﬂz:ol P
d

< max {()\1 — )\Q)UT’Uﬂ);—U + dou' (Z U,»U?)u}
llull2=1 —
up=0 =

: I\Hlllaxl()‘1 —A)|ulor P+ X < (A= A)(1—0f,) 4+ X2 = A — 07 (A1 — Aa),
ulla=
u7.2:0

where we used Cauchy-Schwarz inequality in the penultimate line. O

Recall the definition of the total variation distance dpvy given in the proof of Theorem 2.6.

Lemma 2.16. Let X and Y be random elements taking values in a measurable space (F,F), and

let (G,G) be another measurable space.

(a) If ¢ : F — G is measurable, then drv (L(¢(X)), L(9(Y))) < drv(L(X),L(Y)).
(b) Let Z be a random element taking values in (G,G), and suppose that Z is independent of
(X,Y). Then dov (L(X,Z),L(Y, Z)) = drv(L(X),L(Y)).

Proof. (a) For any A € G, we have
IP{p(X) € A} = P{o(Y) € A}| = [P{X € ¢~ '(A)} = P{Y € ¢~ (A)}] < drv(L(X), L(Y)).

Since A € G was arbitrary, the result follows.
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(b) Define ¢ : F' x G — F by ¢(w, z) := w. Then ¢ is measurable. By part (a), we have

For the other inequality, let A denote the set of subsets A of F ® G with the property that given
€ > 0, there exist sets By p,..., B, r € F and disjoint sets B; ¢,...,Bp,g € G such that, writing
B := U (B r X B; ), we have P((X,Z) € AAB) < € and P((Y,Z) € AAB) < e. Here, the
binary operator A denotes the symmetric difference of two sets, so that AAB := (ANB°)U(A°NB).
Note that FxG C A. Now suppose A € A so that, given € > 0, we can find sets B1 p,...,Bpr € F

and disjoint sets By g, ..., Bp,g € G with the properties above. Observe that we can write
= J (ﬂB;FxﬂBi,GmﬂB;G)
IC{1,...,n} Mel iel iele

Foreach I C {1,...,n}, the sets N;e; Bf - belong to F, and {ﬂieIBi,Gﬂﬂichf’G I CA{L,... ,n}}

is a family of disjoint sets in G. Moreover,
P((X,Z) € A°AB°) =P((X,Z) € AAB) <,

and similarly P((Y,Z) € A°AB¢) < e. We deduce that A® € A. Finally, if (4,) is a disjoint
sequence in A, then let A := US2;A,, and given ¢ > 0, find m € N such that ]P’((X7 Z) €
A\UZA) < €/2 and P((Y,Z) € A\ U2 A;) < €/2. Now, for each i = 1,...,m, find sets
Bii,r,...,Bin, r € F and disjoint sets B;1 ¢, ..., Bin,,¢ € G such that, writing B; := U?;l(BmF X
Bij.c), we have P((X, Z) € A;AB;) < ¢/(2m) and P((Y, Z) € A;AB;) < €/(2m). It is convenient
to relabel the sets {(Bjj.r, Bij,c) :i=1,...,m,j=1,...,n;} as {(C1,r,C1.¢),-..,(Cn,r,Cn,c)},

where N := """ | n;. This means that we can write

m N
UBi=J(CrrxCre) = U (U Crrx [ Cran () C,i)g)-
i=1

k=1 KC{1,..,N},K#) k€K keK keKe

Now, for each non-empty subset K of {1,..., N}, the set Upe x Cj, r belongs to F, and {ﬂkeKCk,Gﬂ
MkekCig: K C{l,...,N}, K # Q]} is a family of disjoint sets in G. Moreover,

P((X,Z) € AAUR, B) <Y P((X,2) € AibB) + 5 <
i=1
and similarly, P((Y, Z) € AA U™, B;) < e. We deduce that A € A, so A is a -algebra containing
F x G, so A contains F ® G.

Now suppose that A € F ® G. By the argument above, given ¢ > 0, there exist sets
Bip,...,Bpr € F and disjoint sets By g,...,Bn ¢ € G such that ]P’((X, Z) e AANU™, (B F X
Bic)) <e€/2and P((Y,Z) € AAU, (Bir X B;g)) < €/2. 1t follows that

[P((X,Z) € A)-P((Y,2) € A)| <> |P(X € Bir,Z € Big)~P(Y € B;p,Z € B;g)| + ¢

i=1

P(Z € Bi,c)|P(X € B p)—P(Y € B; )|+€ < drv (L(X),L(Y)) + €.

.

i=1
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Since A € A and € > 0 were arbitrary, we conclude that
dTV (‘C(Xv Z)v ﬁ(Y7 Z)) < dTV (‘C(X)a L(Y))a

as required. O

2.8 Appendix: A brief introduction to computational com-

plexity theory

The following is intended to give a short introduction to notions in computational complexity
theory. A good reference for further information is Arora and Barak (2009), from which much of
the following is inspired.

A computational problem is the task of generating a desired output based on a given input.
Formally, defining {0,1}* := U$2,{0,1}* to be the set of all finite strings of zeros and ones, we
can view a computational problem as a function F : {0,1}* — P({0,1}*), where P(A) denotes
the power set of a set A. The interpretation is that F'(s) describes the set of acceptable output
strings (solutions) for a particular input string s.

Loosely speaking, an algorithm is a collection of instructions for performing a task. Despite the
widespread use of algorithms in mathematics throughout history, it was not until 1936 that Alonzo
Church and Alan Turing formalised the notion by defining notational systems called the A-calculus
and Turing machines respectively (Church, 1936; Turing, 1936). Here we define an algorithm to

be a Turing machine:

Definition 2.1. A Turing machine M is a pair (Q,J), where
e () is a finite set of states, among which are two distinguished states gstart and guant-
e § is a ‘transition’ function from @ x {0,1,.} to @ x {0,1,.} x {L,R}.

A Turing Machine can be thought of as having a reading head that can access a tape consisting
of a countably infinite number of squares, labelled 0,1,2,.... When the Turing machine is given
an input s € {0,1}*, the tape is initialised with the components of s in its first |s| tape squares
(where | - | denotes the length of a string in {0,1}*) and with ‘blank symbols’ . in its remaining
squares. The Turing machine starts in the state gstart € @ with its head on the Oth square and
operates according to its transition function 4. When the machine is in state ¢ € @ with its head
over the ith tape square that contains the symbol a € {0,1,.}, and if 6(q,a) = (¢',a’,L), the
machine overwrites a with o', updates its state to ¢/, and moves to square ¢ — 1 (or to square i + 1
if the third component of the transition function is R instead of L). The Turing machine stops
if it reaches state gnaix € @ and outputs the vector of symbols on the tape before the first blank
symbol. If the Turing machine M terminates (in finitely many steps) with input s, we write M(s)
for its output.

We say an algorithm (Turing machine) M solves a computational problem F if M terminates
for every input s € {0,1}*, and M (s) € F(s). A computational problem is solvable if there exists a
Turing machine that solves it. It turns out that other notions of an algorithm (including Church’s
A-calculus and modern computer programming languages) are equivalent in the sense that the set

of solvable problems is the same.
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A polynomial time algorithm is a Turing machine M for which there exist a,b > 0 such that
for all input strings s € {0,1}*, M terminates after at most a|s|’ transitions. We say a problem F
is polynomial time solvable, written F' € P, if there exists a polynomial time algorithm that solves
it5.

A nondeterministic Turing machine has the same definition as that for a Turing machine except
that the transition function § becomes a set-valued function 6 : @ x {0,1,.} — P(Q x {0,1,.} x
{L, R}) The idea is that, while in state g with its head over symbol a, a nondeterministic Turing
machine replicates |§(g, a)| copies of itself (and its tape) in the current configuration, each exploring
a different possible future configuration in the set d(q,a). Each replicate branches to further
replicates in the next step. The process continues until one of its replicates reaches the state
Gnalt- At that point, the Turing machine replicate that has halted outputs its tape content and all
replicates stop computation. A nondeterministic polynomial time algorithm is a nondeterministic
Turing machine Mg for which there exist a,b > 0 such that for all input strings s € {0,1}*, Mg
terminates after at most a|s|® steps. (We count all replicates of M,q making one parallel transition
as one step.) We say a computational problem F is nondeterministically polynomial time solvable,
written F' € NP, if there exists a nondeterministic polynomial time algorithm that solves itS.

Clearly P € NP, but it is not currently known if these classes are equal. It is widely believed
that P # NP, and many computational lower bounds for particular computational problems have
been proved conditional under this assumption. Working under this hypothesis, a common strat-
egy is to relate the algorithmic complexity of one computational problem to another. We say a
computational problem F' is polynomial time reducible to another problem G, written as F' <p G,
if there exist polynomial time algorithms Mj, and My, such that Moyt 0 G o Min(s) € F(s). In
other words, F' <p G if we can convert an input of F' to an input of G through Mj,, and translate

every solution of G back to a solution for F' through Mt.

Definition 2.2. A computational problem G is NP-hard if F' <p G for all FF € NP. It is NP-
complete if it is in NP and is NP-hard.

Karp (1972) showed that a large number of natural computational problems are NP-complete,
including the Clique problem mentioned in Section 2.4. The Turing machines and nondeterministic
Turing machines introduced above are both non-random. In some situations (e.g. statistical

problems), it is useful to consider random procedures:

Definition 2.3. A probabilistic Turing machine M, is a triple (Q,d, X), where
e () is a finite set of states, among which are two distinguished states gstart and guals-
e ¢ is a transition function from @ x {0,1,.} x {0,1} to @ x {0,1,.} x {L,R}.
e X =(X;1,Xs,...) is an infinite sequence of independent Bern(1/2) random variables.

In its tth step, if a probabilistic Turing machine M, is in state ¢ with its reading head over
symbol a, and d(q,a,X;) = (¢',a’, L), then M, overwrites a with a’, updates its state to ¢
and moves its reading head to the left (or to the right if 6(q,a, Xy) = (¢’,a’, R)). A randomised

polynomial time algorithm is a probabilistic Turing machine My, for which there exist a,b > 0 such

5In fact, some authors write FP (short for ‘Functional Polynomial Time’) for the class we have denoted as P here.
The notation P is then reserved for the subset of computational problems consisting of so-called decision problems
F, where F(s) € {{0},{1}} for all s € {0,1}*.

6 Again, some authors write FNP for the class we have denoted as NP here.
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that for any s € {0,1}*, M, terminates in at most als|® steps. We say a computational problem
F' is solvable in randomised polynomial time, written as F' € BPP, if, given € > 0, there exists a
randomised polynomial time algorithm My, . such that P(Mp, ((s) € F(s)) >1—e.

In the above discussion, the classes P, NP, BPP are all defined through worst-case performance
of an algorithm, since we require the time bound to hold for every input string s. However, in
many statistical applications, the input string s is drawn from some distribution D on {0, 1}*,
and it is the average performance of the algorithm, rather than the worst case scenario, that is
of more interest. We say such a random problem is solvable in randomised polynomial time if,
given € > 0, there exists a randomised polynomial time algorithm M, . such that, when s ~ D,
independent of X, we have P(M,,(s) € F(s)) > 1—e. Note that the probability here is taken over
both the randomness in s and the randomness in X. Similar to the non-random cases, we can talk
about randomised polynomial time reduction. If Mg is a randomised polynomial time algorithm
for a computational problem F', then Mg, o Mg o M, is a potential randomised polynomial time
algorithm for another problem G for suitably constructed randomised polynomial time algorithms
M;, and Myy,t. One such construction is the key to the proof of Theorem 2.6.



Chapter 3

Average-case hardness of

restricted isometry certification

3.1 Introduction

In many areas of data science, high-dimensional signals contain rich structure. It is of great
interest to leverage this structure to improve our ability to describe characteristics of the signal
and to make future predictions. Sparsity is a structure of wide applicability (see, e.g. Mallat, 1999;
Rauhut and Foucart, 2013; Eldar and Kutyniok, 2012), with a broad literature dedicated to its
study in various scientific fields.

The sparse linear model takes the form y = X5 + ¢, where y € R" is a vector of observations,
X € R™*P is a design matrix, ¢ € R" is noise and the vector f € RP is assumed to have a
small number k of non-zero entries. Estimating S or the mean response, X3, are among the
most widely studied problems in signal processing, as well as in statistical learning. In high-
dimensional problems, one would wish to recover [ with as few observations as possible. For
an incoherent design matrix, it is known that an order of k2 observations suffice (Donoho and
Elad, 2003; Donoho, Elad and Temlyakov, 2006). However, this appears to require a number of
observations far exceeding the information content of 8, which has only k variables, albeit with
unknown locations.

This dependence in k can be greatly improved by using design matrices that are almost isome-
tries on some low dimensional subspaces, i.e., matrices that satisfy the restricted isometry property
with parameters k and 6, or RIP,, ,,(k, 0) (see Definition 3.1). It is a highly robust property, and in
fact implies that many different polynomial time algorithms, such as greedy methods (Blumensath
and Davies, 2009; Dai and Milenkovic, 2009; Needell and Tropp, 2009) and convex optimisation
(Candes and Tao, 2005; Candes, Romberg and Tao, 2006b; Candés and Tao, 2006; Candes, 2008),
are stable in recovering #. Random matrices are known to satisfy the RIP when the number n
of observation is of higher order than klog(p)/0?. These results were developed in the field of
compressed sensing (Candes, Romberg and Tao, 2006a; Candes and Tao, 2006; Rauhut and Fou-
cart, 2013; Donoho, 2006; Eldar and Kutyniok, 2012), where the use of randomness is pivotal for
near-optimal results. While the assumption of randomness allows great theoretical leaps, it leaves
open questions for practitioners.

Scientists working on data closely following this model cannot always choose their design matrix

45
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X, or at least choose one that is completely random. Moreover, it is in general practically impossible
to check that a given matrix satisfies these desired properties, as RIP certification is NP-hard
(Bandeira et al., 2012). Having access to a function, or a statistic, of X that could be easily
computed, which determines how well 5 may be estimated, would therefore be of great help.

The search for such statistics has been of great importance for over a decade now, and several
have been proposed (d’Aspremont, Bach and El Ghaoui, 2008; Lee and Bresler, 2008; d’ Aspremont
and El Ghaoui, 2011; Juditsky and Nemirovski, 2011). Perhaps the simplest and most popular is the
incoherence parameter, which measures the maximum inner product between distinct, normalised,
columns of X. However, all of these are known to necessarily fail to guarantee good recovery when
p > 2n unless n is of order k% (d’Aspremont and El Ghaoui, 2011). Given a specific problem
instance, the strong recovery guarantees of compressed sensing cannot be verified based on these
statistics.

In this chapter, we study the problem of average-case certification of the Restricted Isometry
Property (RIP). A certifier takes as input a design matrix X, always outputs ‘false’ when X does
not satisfy the property, and outputs ‘true’ for a large proportion of matrices (see Definition 3.4).
Indeed, worst-case hardness does not preclude a problem from being solvable for most instances.
The link between restricted isometry and incoherence implies that polynomial time certifiers exists
in a regime where n is of order k?log(p)/6?. It is natural to ask whether the RIP can be certified
for sample size n > klog(p)/0?, where most matrices (with respect to, say, the Gaussian measure)
are RIP. If it does, it would also provide a Las Vegas algorithm to construct RIP design matrices of
optimal sizes. This should be compared with the currently existing limitations for the deterministic
construction of RIP matrices.

Our main result is that certification in this average sense is computationally hard even in a
near-optimal parameter regime, assuming a new, weaker assumption on detecting dense subgraphs,
related to the Planted Clique hypothesis.

Theorem (Informal). There is no computationally efficient, average-case certifier for the class

RIP,, ,(k,0) uniformly over an asymptotic regime where n < k¥ /0%, for any o < 1.

This suggests that even in the average case, RIP certification requires almost k?log(p)/6?
observations. This contrasts highly with the fact that a random matrix satisfies RIP with high
probability when n exceeds about klog(p)/6*. Thus, there appears to be a large gap between
what a practitioner may be able to certify given a specific problem instance, and what holds for
a random matrix. On the other hand, if a certifier is found which fills this gap, the result would
not only have huge practical implications in compressed sensing and statistical learning, but would
also disprove a long-standing conjecture from computational complexity theory.

Our result shares many characteristics with a hypothesis by Feige (2002) on the hardness
of refuting random satisfiability formulas. Indeed, our statement is also about the hardness of
verifying that a property holds for a particular instance (RIP for design matrices, instead of
unsatisfiability for boolean formulas). It concerns a regime where such a property should hold
with high probability (n of order k'*®/62 linear regime for satisfiability), cautiously allowing
only one type of errors, false negatives, for a problem that is hard in the worst case. In these
two examples, such certifiers exist in a sub-optimal regime. Our problem is conceptually different
from results regarding the worst-case hardness of certifying this property (see, e.g. Bandeira et al.,
2012; Koiran and Zouzias, 2012; Tillmann and Pfetsch, 2014). It is closer to another line of work

concerned with computational lower bounds for statistical learning problems based on average-case
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assumptions. The planted clique assumption has been used to prove computational hardness results
for statistical problems such as estimation and testing of sparse principal components (Berthet and
Rigollet (2013a,b), see also Chapter 2), testing and localisation of submatrix signals (Ma and Wu,
2015; Chen and Xu, 2016), community detection (Hajek, Wu and Xu, 2015) and sparse canonical
correlation analysis (Gao, Ma and Zhou, 2014). The intractability of noisy parity recovery problem
(Blum, Kalai and Wasserman, 2003) has also been used recently as an average-case assumption to
deduce computational hardness of detection of satisfiability formulas with lightly planted solutions
(Berthet and Ellenberg, 2015). Additionally, several unconditional computational hardness results
are shown for statistical problems under constraints of learning models (Feldman et al., 2013;
Feldman, Perkins and Vempala, 2015). The present work has two main differences compared to
previous computational lower bound results. First, in a detection setting, these lower bounds
concern two specific distributions (for the null and alternative hypothesis), while ours is valid for
all sub-Gaussian distributions, and there is no alternative distribution. Secondly, our result is
not based on the usual assumption for the Planted Clique problem. Instead, we use a weaker
assumption on a problem of detecting planted dense graphs. This does not mean that the planted
graph is a random graph with edge probability ¢ > 1/2 as considered in (Arias-Castro and Verzelen,
2013; Bhaskara et al., 2010; Awasthi et al., 2015), but that it can be any graph with an unexpectedly
high number of edges (see section 3.4.1). This choice is made to strengthen our result: it would
‘survive’ the discovery of an algorithm that would use very specific properties of cliques (or even
of random dense graphs) to detect their presence. As a consequence, the analysis of our reduction
is more technically complicated.

This chapter is organised in the following manner. We recall in Section 3.2 the definition of the
restricted isometry property, and some of its known properties. In Section 3.3, we define the notion
of certifier, and prove the existence of a computationally efficient certifier in a sub-optimal regime.
Our main result is developed in Section 3.4, focused on the hardness of average-case certification.

The proofs of the main results are in Appendix 3.5 and those of auxiliary results in Appendix 3.6.

3.2 Restricted isometry property

3.2.1 Formulation

We use the definition of Candes and Tao (2005), who introduced the notion of restricted isometry.

Below, for a vector u € RP, we define ||u||o to be the number of its non-zero entries.

Definition 3.1 (RIP). A matrix X € R"*P satisfies the restricted isometry property with sparsity
ke {l,...,p} and distortion 8 € (0,1), denoted by X € RIP,, ,,(k,6), if it holds that

1—0<|Xu|2<1+06,

for every u € SP7H(k) := {u € R? : ||lullz = 1, |Jullo < k}.

This can be equivalently defined by a property on submatrices of the design matrix: X is in
RIP,, ,,(k,0) if and only if for any set S of k columns of X, the submatrix, X,g, formed by taking
any these columns is almost an isometry, i.e. if the spectrum of its Gram matrix is contained in
the interval [1 — 60,1 + 6]:

1X, 5 X5 — Inllop < 0.
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Denote by || - |lop,» the k-sparse operator norm, defined for a matrix A as

[Allop.k := " sup [[Azlla.
z€S k)

This yields another equivalent formulation of the RIP property: X € RIP,, ,(k,0) if and only if
IXTX — I lopse < 6.

We assume in the following discussion that the distortion parameter 6 is upper-bounded by 1.
Forv e R? and T C {1,...,p}, we write vr for the #T-dimensional vector obtained by restricting
v to coordinates indexed by 7. Similarly, for an n x p matrix A and subsets S C {1,...,n} and
T C{1,...,p}, we write Ag, for the submatrix obtained by restricting A to rows indexed by S,
A, for the submatrix obtained by restricting A to columns indexed by T'.

3.2.2 Generation via random design

Matrices that satisfy the restricted isometry property have many interesting applications in high-
dimensional statistics and compressed sensing. However, there is no known way to generate them
deterministically in general. It is even NP-hard to check whether a given matrix X belongs to
RIP, ,(k,0) (see, e.g Bandeira et al., 2012). Several deterministic constructions of RIP matrices
exist for sparsity level k < 0y/n. For example, using equi-triangular tight frames and Gershgorin’s
circle theorem, one can construct RIP matrices with sparsity k& < /n and distortion 6 bounded
away from 0 (see, e.g. Bandeira et al., 2012). The limitation k¥ < 64/n is known as the ‘square root
bottleneck’. To date, the only constructions that break the ‘square root bottleneck’ are due to
Bourgain et al. (2011) and Bandeira, Mixon and Moreira (2014), both of which give RIP guarantee
for k of order n'/?*¢ for some small € > 0 and fixed @ (the latter construction is conditional on a
number-theoretic conjecture being true).

Interestingly, though, it is easy to generate large matrices satisfying the restricted isometry
property through random design, and compared to the fixed design matrices mentioned in the
previous paragraph, these random design constructions are much less restrictive on the sparsity
level, typically allowing &k up to the order n/logp (assuming 6 is bounded away from zero). They
can be constructed easily from any centred sub-Gaussian distribution. We recall that a distri-

bution @ (and its associated random variable) is said to be sub-Gaussian with parameter o if
Jp e dQ(z) < N o/2 for all A € R.

Definition 3.2. Define Q@ = Q, to be the set of sub-Gaussian distributions @) over R with zero

mean, unit variance, and sub-Gaussian parameter at most o.

The most common choice for a @ € Q is the standard normal distribution N(0,1). Note that
by Taylor expansion, for any @ € Q, we necessarily have 0% > [ 22 dQ(z) = 1. In the rest of the
chapter, we treat o as fixed. Define the normalised distribution Q to be the distribution of Z /\/n
for Z ~ Q. The following well-known result states that by the concentration of measure, random
matrices generated with distribution Q®(™*?) satisfy restricted isometries (see, e.g. Candes and
Tao (2005) and Baraniuk et al. (2008)). For completeness, we include a proof that establishes
these particular constants stated here. All proofs are deferred to Appendix 3.5 and Appendix 3.6.
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Proposition 3.1. Suppose X is a random matriz with distribution Q2™ P) where Q € Q. It

holds that

2
P(X € RIP, ,(k,0)) > 1 — Qexp{klog<9ep> nb } (3.1)

k) 25604

In order to clarify the notion of asymptotic regimes discussed in this chapter, we introduce the

following definition.

Definition 3.3. For 0 < a < 1, define the asymptotic regime

Elte]
Ra = {(pnak’ruen)n 5p7k; — oo and n > nogpn}

o5

We note that in this notation, Proposition 3.1 implies that for (p, k,0),, = (Pn, kn,0n)n € Ro
we have lim,, o, Q¥"*P)(X € RIP,, ,(k,6)) = 1, and this convergence is uniform over Q € Q.

3.3 Certification of restricted isometry

3.3.1 Objectives and definition

In practice, it is useful to know with certainty whether a particular realisation of a random design
matrix satisfies the RIP condition. It is known that the problem of deciding if a given matrix is
RIP is NP-hard (Bandeira et al., 2012). However, NP-hardness is only a statement about worst-
case instances. It would still be of great use to have an algorithm that can correctly decide RIP
property for an average instance of a design matrix, with some accuracy. Such an algorithm should
identify a high proportion of RIP matrices generated through random design and make no false

positive claims. We call such an algorithm an average-case certifier, or a certifier for short.

Definition 3.4 (Certifier). Given a parameter sequence (p, k,0) = (pp, kn, 0r), we define a certifier
for Q2 xP) _random matrices to be a sequence (1n)n of measurable functions ¢, : R"*? — {0,1},
such that
Y '(1) CRIP, (K, 0)  and  limsup Q¥P) (v, 1(0)) < 1/3. (3.2)
n—oo

Note the definition of a certifier depends on both the asymptotic parameter sequence (py, kn, )
and the sub-Gaussian distribution Q. However, when it is clear from the context, we will suppress
the dependence and refer to certifiers for RIP, ,(k, ) properties of Q®(™*P)_random matrices
simply as ‘certifiers’.

The two defining properties in (3.2) can be understood as follows. The first condition means
that if a certifier outputs 1, we know with certainty that the matrix is RIP. The second condition
means that the certifier is not overly conservative; it is allowed to output 0 for at most one third
(with respect to Q®("*P) measure) of the matrices. The choice of 1/3 in the definition of a certifier
is made to simplify proofs. However, all subsequent results will still hold if we replace 1/3 by any
constant in (0,1). In view of Proposition 3.1, the second condition in (3.2) can be equivalently

stated as
lim Q®P {4, (X)=1|X € RIP, ,(k,0)} > 2/3.

n—oo

With such a certifier, given an arbitrary problem fitting the sparse linear model, the matrix

X could be tested for the restricted isometry property, with some expectation of a positive result.
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This would be particularly interesting given a certifier in the parameter regime n < 62k2, in which
presently known polynomial-time certifiers cannot give positive results.

Even though it is not the main focus of the discussion in this chapter, we also note that a certifier
1 with the above properties for some distribution @ € Q would form a certifier /distribution couple
(1, @), that yields in the usual manner a Las Vegas algorithm to generate RIP matrices. The
(random) algorithm keeps generating random matrices X ~ Q®(mxP) yntil Yn(X) = 1. The
number of times that the certifier is invoked has a geometric distribution with success probability
Q®(nxp) (¢, *(1)). Hence, the Las Vegas algorithm runs in randomised polynomial time if and only

if 4),, runs in randomised polynomial time.

3.3.2 Certifier properties

Although our focus is on algorithmically efficient certifiers, we establish first the properties of a
certifier that is computationally intractable. This certifier serves as a benchmark for the perfor-
mance of other candidates. Indeed, we exhibit in the following proposition a certifier, based on
the k-sparse operator norm, that works uniformly well in the same asymptotic parameter regime
Ro, where Q®(™*P)_random matrices are RIP with asymptotic probability 1. For clarity, we stress
that our criterion when judging a certifier will always be its uniform performance over asymptotic

regimes R, for some « € [0, 1].

Proposition 3.2. Suppose (p,k,0) = (pp, kn,0n) € Ro. Furthermore, if Q € Q and X ~ Q®(xp),

Then the sequence of tests (Vop,k)n based on sparse operator norms, defined by
op (X) = 1{ [XTX = Iylp < 0}.

is a certifier for Q®("*P) _random matrices.

By a direct reduction from the clique problem, one can show that it is NP-hard to compute the k-
sparse operator norm of a matrix. Hence the certifier 1, 1, is computationally intractable. The next
proposition concerns the certifier property of a test based on the maximum incoherence between
columns of the design matrix. It follows directly from a well-known result on the incoherence
parameter of a random matrix (see, e.g. Rauhut and Foucart (2013, Proposition 6.2)) and allows the
construction of a polynomial-time certifier that works uniformly well in the asymptotic parameter

regime Rq.

Proposition 3.3. Suppose (p, k,0) = (pn, kn,0n) satisfies n > 1960k? log(p)/6%. Let Q € Q and
X ~ Q®"XP)  then the tests 1oy defined by oo(X) = ]l{XTX — Iylloo < 1402 lofbp} is a

certifier for Q®"*P) _random matrices.

Proposition 3.3 shows that, when the sample size n is above k?log(p)/6? in magnitude (in
particular, this is satisfied asymptotically when (p, k,0) = (pn, kn,0,) € R1), there is a polynomial
time certifier. In other words, in this high-signal regime, the average-case decision problem for
RIP property is much more tractable than indicated by the worst-case result. On the other hand,
the certifier in Proposition 3.3 works in a much smaller parameter range when compared to op.
in Proposition 3.2. Combining Proposition 3.2 and 3.3, we have the following schematic diagram

(Figure 3.3.2). When the sample size is lower than specified in Ry, the property does not hold, with
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klogp
Ro: /zw > 3
1 \
k2logp
92
no certifier works | | Ir poly time certifier exists K

1 ] T > n

Ri:n>
A

Eklta]g
Ra:n> Tgp

Figure 3.1: Schematic diagram for the existence of certifiers in different asymptotic regimes.

high probability, and no certifier exists. A computationally intractable certifier works uniformly
over Ry. On the other end of the spectrum, when the sample size is large enough to be in Ry,
a simple certifier based on the maximum incoherence of the design matrix is known to work in
polynomial time. This leaves open the question of whether (randomised) polynomial time certifiers
can work uniformly well in Rg, or R, for any « € [0,1). We will see in the next section that,
assuming a weaker variant of the Planted Clique hypothesis from computational complexity theory,
R is essentially the largest asymptotic regime where a randomised polynomial time certifier can

exist.

3.4 Hardness of certification

3.4.1 Planted dense subgraph assumptions

We show in this section that certification of RIP property is an average-case hard problem in the
parameter regime R, for any a < 1. This is precisely the regime not covered by Proposition 3.3.
The average-case hardness result is proved via reduction to the planted dense subgraph assumption.

For any integer m > 0, denote G, the collection of all graphs on m vertices. We write V(G)
and E(G) for the set of vertices and edges of a graph G. For H € G, where x € {0,...,m},
let G(m,1/2, H) be the random graph model that generates a random graph G on m vertices as
follows. It first picks x random vertices K C V(G) and plants an isomorphic copy of H on these
K vertices, then every pair of vertices not in K x K is connected by an edge independently with
probability 1/2. We write Py for the probability measure on G,,, associated with G(m,1/2, H).
Note that if H is the empty graph, then G(m,1/2,0) describes the Erdés—Rényi random graph.
With a slight abuse of notation, we write Py in place of Py. On the other hand, for € € (0,1/2], if
H belongs to the set

H=Hyo = {H € Gy : #E(H) > (1/2+e)“(“2_1)},

then G(m,1/2, H) generates random graphs that contain elevated local edge density. The planted

dense graph problem concerns testing apart the following two hypotheses:
Hy:G~G(m,1/2,0) and Hy:G~G(m,1/2,H) for some H € H,, . (3.3)

It is widely believed that for k = O(ml/ 2-9) | there does not exist randomised polynomial time
tests to distinguish between Hy and H; (see, e.g. Jerrum (1992); Feige and Krauthgamer (2003);
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Feldman et al. (2013)). More precisely, we have the following assumption.

Assumption (A1l). Fix ¢ € (0,1/2] and ¢ € (0,1/2). let (km)m be any sequence of integers
such that x,, — co and k,, = O(ml/ 2*5). For any sequence of randomised polynomial time tests
(¢m : Gpy — {0,1}),, we have

hn}njmf{Po(qs(G) = 1)+ max Pr(4(C) = 0))} >1/3.

We remark that if € = 1/2, then H, . contains only the x-complete graph and the testing
problem becomes the well-known planted clique problem (cf. Jerrum (1992) and references in
Berthet and Rigollet (2013a,b)).

The difficulty of this problem has been used as a primitive for the hardness of other tasks, such
as cryptographic applications, in Juels and Peinado (2000), testing for k-wise dependence in Alon
et al. (2007), approximating Nash equilibria in Hazan and Krauthgamer (2011). In this case, As-
sumption (A1) is a version of the planted clique hypothesis (see, e.g. Berthet and Rigollet (2013b,
Assumption Apc) and Assumption (A1)(7) in Chapter 2). We emphasise that Assumption (A1)
is significantly milder than the planted clique hypothesis (since it allows any € € (0,1/2]), or that
a hypothesis on planted random graphs. We also note that when x > C.y/m, spectral methods
can be used to detect such graphs with high probability.

The following theorem relates the hardness of the planted dense subgraph testing problem to
the hardness of certifying restricted isometry of random matrices. We recall that the distribution
of X is that of an n x p random matrix with entries independently and identically sampled from
Q 4 Q/v/n, for some @Q € Q. We also write ¥, for the class of randomised polynomial time

certifiers.

Theorem 3.4. Assume (A1) and fix any o € [0,1). Then there exists a sequence (p,k,0) =
(Pns kn, 0n) € Ra, such that there is no certifier/distribution couple (1, Q) € U, x Q with respect

to this sequence of parameters.

Our proof of Theorem 3.4 relies on the following ideas: Given a graph G, an instance of the
planted clique problem in the assumed hard regime, we construct n random vectors based on
the adjacency matrix of a bipartite subgraph of G, between two random sets of vertices. Each
coefficient of these vectors is then randomly drawn from one of two carefully chosen distributions,
conditionally on the presence or absence of a particular edge. This construction ensures that if the
graph is an Erdés—Rényi random graph (i.e. with no planted graph), the vectors are independent
with independent coefficients, with distribution Q. Otherwise, we show that with high probability,
the presence of an unusually dense subgraph will make it very likely that the matrix does not
satisfy the restricted isometry property, for a set of parameters in R,. As a consequence, if there
existed a certifier/distribution couple (¢, Q) € ¥,, x Q in this range of parameters, it could be
used - by using as input in the certifier the newly constructed matrix - to determine with high
probability the distribution of G, violating our assumption (A1l).

We remark that this result holds for any distribution in Q, in contrast to computational lower
bounds in statistical learning problems, that apply to a specific distribution. For the sake of
simplicity, we have kept the coefficients of X identically distributed, but our analysis is not depen-
dent on that fact, and our result can be directly extended to the case where the coefficients are

independent, with different distributions in Q.
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Theorem 3.4 may be viewed as providing an asymptotic lower bound of the sample size n for
the existence of a computationally feasible certifier. It establishes this computational lower bound
by exhibiting some specific ‘hard’ sequences of parameters inside R, and shows via a reduction to
the planted dense subgraph problem. All hardness results, whether in a worst-case (NP-hardness,
or other) or the average-case (by reduction from a hard problem), are by nature statements on
the impossibility of accomplishing a task in a computationally efficient manner, uniformly over a
range of parameters. They are therefore always based on the construction of a ‘hard’ sequence of
parameters used in the reduction, for which a contradiction is shown. Here, the ‘hard’ sequence
is explicitly constructed in the proof to be some (p,k,0) = (pn,kn,0,) satisfying p > n and
nt/B=a=48) « |k <« n!/2=P=3 for B € [0,(1 — a)/3) and any small § > 0. The tuning parameter
(B is to allow additional flexibility in choosing these ‘hard’ sequences. More precisely, using an
averaging trick first seen in Ma and Wu (2015), we are able to show that the existence of such
‘hard’ sequences is not confined only in the sparsity regime k < n'/? . We note that in all our
‘hard’ sequences, #,, must depend on n. An interesting extension is to see if similar computational

lower bounds hold when restricted to a subset of R, where 0 is constant.

3.5 Appendix: Proofs of the main results

Proof of Theorem 3.4. We prove by contradiction. Assume the contrary, that (¢, ), is a polynomial
time computable certifier for Q®("*P)-random matrices. Let & denote the median of Q. By the
definition of the median, there exists a unique decomposition of the probability measure Q as
Q= %Q*‘ + %Q‘, where Qt and Q~ are probability measures supported on (—oc,£] and [€, 00)
respectively.

For o < 1and 0 < B < 1(1 —a), let (p,k,0) = (pn,kn,0n) € Ra be a sequence satisfying
p > n, nia & k < n775 " for some § > 0. Let L := 10 and £ := |kP|. Define m := Lén
and k := Lk. We check that k2 =< k> PkP <« n'=9¢ ~ m'=% for some positive 8’ that depends
on ¢ only. We prove below that Algorithm 3.1, which runs in randomised polynomial time, can

distinguish between Py and P g with zero asymptotic error for any choice of H € H, .

Algorithm 3.1: Pseudo-code for an algorithm to distinguish between Py and Py.
Input: meN, ke {l,....m}, Ge€G,,, LeN

begin
Step 1: Let N <+ |m/L|, £ + |k?], n < |N/¢], p < pn, k < |x/L]. Draw
Uly ..., UN, WY, ..., wy uniformly at random without replacement from V(G). Form

A= (Ay) € RV*N where Ajj = 2+ Ly, mu,) — 1.

Step 2: Let Y = (Y;7) and Y~ = (Y;;) be N x N random matrices independent from
all other random variables and from each other, and such that YJ RN Q* and

Y, "K' Q. Define Z = (Zy) by Zyj + 1{Ay; = 1}Y;} + 1{A;; = ~1}Y;.

SNtep 3: For 0 < a,b<{—1, define Z(@b) ¢ R"*" by Zi(f;’b) <~— Zan+ipn+j- Define

X 07" Y caper Z(@ Finally, let X (~X X') where X’ € R"*(P~™) has entries
independently drawn from the distribution Q.

Step 4: Let ¢(G) + 1 — ¢, (X).

end

Output: ¢(G)
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First, we assume that G ~ Pg. Then matrix A from Step 1 of Algorithm 3.1 have independent
Rademacher entries, which implies that X ~ Q®("*P)_ Therefore, by (3.2) in Section 3.3 we must
have lim sup Po(¢(G) = 1) = limsup Q®"*?) (¢ 1(0)) < 1/3 as desired.

Next, suppose G is generated with probability measure Py for some H € H, .. We claim
that X ¢ RIP, , (k, ne2) for some absolute positive constant ¢. By conditions of the theorem,

715722 > kHa > 6. Hence if the claim is true, then for large n, X ¢ RIP,, ,(k,0), which implies

that X is not an RIP,, ,(k,0) matrix and liminf,, maxgey, . P (¢(G) = 0)) < 1/3, contradicting
Assumption (A1).

It remains to verify the claim. Let K C V(G) be the k-subset of vertices on which the subgraph
H is supported. We write U = {u1,...,uny} and W = {wy,...,wn} for the two random subsets
of vertices. Let Ny w,x be the random variable counting the number of edges in G with two
endpoints in U N K and W N K respectively. Then

Nuw.x = #{{u,w} cE(G):ueUNK,we WmK}
= Z Z 1{u e U}1{w € W}1{u ~ w}.

ueK weK

Define

1 e € €
Q) = {NUW;K > <2+4>k2}m{\#UmK—ky < 8k}m{]#WnK—k\ < 8k}.

Lemma 3.5 below shows that {2; has asymptotic probability 1. Note €; is in the o-algebra of
(U,W). Let U = Uy and W = Wy be any realisation satisfying Q;. We write PUo-Wo and EVo.Wo
as shorthand for the probability and expectation conditional on U = Uy and W = W,.

For each j € {1,...,n}, define s; := > ynx Aij. We write by := (1 — ¢/8)k and k2 :=
(14+¢/8)k. Let S :={i:u; € UNK}, and let T be a subset of k indices in {1, ..., n} corresponding
to the k; largest values of s; (breaking ties arbitrarily). Note that S and 7" are functions of U and
V. On the event U = Uy and W = Wy, both #S = #U N K and #W N K are bounded in the
interval [kq, ko). In particular, k; < #W N K. Therefore, we have

S si=2Nuwik — #UNK) x #(WNK) > {(1+¢/2) — (1+¢/8)2 1k > ng.
w;eWNK

As T indexes columns of A corresponding to largest values of s;s, on the event {U = Uy, W = Wy},

€.9 € k%kq
_ L 2 € > Skk 3.4
];SJ*#WmKE) =5k — 6V (3-4)

Define the unit vector v € R™ by vy := 161_1/21;cl and vre 1= 0. Note that v is ki-sparse and hence
k-sparse. Conditional on U = Uy and W = Wy, we have Z;; = U Tf A, ij = 1land Z;; = Y, i if
A;; = —1. By the definitions of Q" and @, and the fact that Q is not a point mass, we have
IEEYZ;r = —EY}; = ¢1/y/n for some absolute constant ¢; > 0. By (3.4), the sum

be bounded below in conditional expectation by

i€8,jET Z;j can

B S 2y 2B (Y (1A = DY 4 LAy = -1075)) 2 Sk,

€S, JET i€S,jeT
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Lemma 3.7 tells us that both YJ —IEYl;r and Y;; —EY;; are sub-Gaussian with parameters at most
co0 /+/n for some absolute constant co > 0. By Hoeffding’s inequality for sums of sub-Gaussian

random variables (see e.g. Vershynin (2012, Proposition 5.10)), we have that

(s k)2
P%M%( Zi; > )21—2%@{—1%ﬁ}%1. (3.5)

ieSz,j:ET ’ 12\f 2¢50°kka/n
Combining (3.5) with the fact that P(£2;) — 1, we deduce that the event Qg := {Zies,jeT Zi; >

clekkl/(12n1/2)} has asymptotic probability 1

Now define S := {i € {1,...,n} : Uanps € UNK forsome 0<a</l—1} and T := {j €
{1,...,n} : Wppy; € WNK for some 0 <b</¢—1}. Also, let v® = (Vppg1s. .. Vpnan) | for
0<b< V-1, Usym = Zo<b<zf1v(b) and ¥ := Usum/||Usum|l2- By Lemma 3.10, we have that

—1/2

1Tsum|lco < c2ky with asymptotic probability 1, for some ¢y depending on S only. Hence

|9sum |2 < co. Thus, by Cauchy—Schwarz inequality, we have that with asymptotic probability 1

c;;ek
1X 5,82 > [[Bsumlly " (#8) ™21 X g, Bsumllr > 18] (#5) 1/2 Z Zij 2
ZES €T ff

On the other hand, the submatrix X ge, has independent and identically distributed entries.
By Vershynin (2012, Lemma 5.9), for i € 5S¢ and 1 < j < n, X;; = £~} Zf; e OZéZi)Z bntj 1S 2
centred sub-Gaussian random variable with sub-Gaussian parameter o/+/n and variance 1/n. Let
X; denote the ith row vector of the matrix X, then X, is also a centred sub-Gaussian random

variable with parameter o//n and variance 1/n. Using Lemma 3.9, we derive that

~ n— #5' logn logn
P( || Xgesd|? — < - _ ) < -
(H sex0l[3 n = n—#S> _exp{ 6404} =0

Since #5 < ko with asymptotic probability 1, the event Qg := {||X§C*17H§ >1- %2 - 1/210%}
has asymptotic probability 1. Finally, since X0 = (f(g*f), ch*v)T, on s N N3,

Ae?k? ko 2logn

Xo|2 =X Xz, >1
I X01 = 1 %5, 008 + | X0l 2 1+ B0 - 22— [2
The right hand side is at least 1 + ck?/(nf?) for some absolute positive constant ¢ for all large

values of n. This verifies the claim and concludes the proof of the theorem. O

Lemma 3.5. Let G be a graph on m vertices and K a k-subset of V(G), such that the edge density
of G restricted to K is at least 1/2 + €. Let n,p be integers less than m/2. Choose uy, ..., u, and
wi,...,w, independently at random without replacement from V(G). Denote U = {u1,...,u,}
and W = {w1,...,wp}. Define Nyw.k to be the number of edges with two endpoints in U and W

respectively. Then for m,n,p, k sufficiently large, we have

nkKk

PH#UQK—
m

>
8m | ~ enk 8m

enn}<64m P{‘#Wﬂ

> €DK < 64m’
— e2pk

and

P Nyw.x < 14_5 npk? < 16m(p/€+nm+m).
k) ) 2 4 m2 62np/<.:2



56 CHAPTER 3. CERTIFYING RESTRICTED ISOMETRY

Proof. The cardinality of U N K has HyperGeom(m, k,n) distribution. Hence

E(#UNK) == and var#UNK)=np— 2070 L 08
m m m m—1 m

The first inequality in the lemma now follows from an application of Chebyshev’s inequality. A
similar argument establishes the second inequality. For the final inequality in the lemma, we have

that for x sufficiently large,

E(Nuw.k) = Z Z P(u € Uw e W)1{v ~ w}
ueK weK

n nNpr{KkK — € ’I’LI<Q2
nmp—n%u;{““”wp (é“)nw> (%*5) o

We then compute the variance of Ny w,x by

var(Nyw.k) = COV(Z Z {ueUwe W,u~ w}, Z Z H{u' e Uw' € W' ~ w’})

ueK weK weK w'eK
= Z cov(l{u € U,w € W,u ~ w}, 1{u’ € U,w' € W,u' ~w'}).

u,2w,u’ weK

We break up the final sum into four terms I, II, IIT and IV handling sums over subsets of indices
{(u,w, v, w') € K* i u # v w # w'}, {(u,w, v/, w') € K* :u=u',w# w'}, {(u,w,v/,w") € K*:
u# v, w=w}and {(u,w, v, w') € K*:u=u',w=w'} respectively. We bound the four terms

separately. For the first term, we have

- S {P(u,u’EU,w,w’GW)fIP’(ueU,wEW)]P’(u’GU,w’GW)}

w,u’ ,w,w’ distinct % ]].{U ~ w}]]_{u/ ~ ’LU/}

-2 {m<mn£n1><iz)p—(p2><:n)—s>‘(m(vzp—1>>2}““Nw”{“'”w'}'

w,u’ ,w,w’ distinct

When m > max(2n, 2p), the term in bracket above is non-positive, hence I < 0. For the second

term, we get that

n- ¥ {P(ueU,w,w’ EW) —P(ue Uwe W)P(ue U,uw eW)}

u,w,w’ distinct ~ ]l{u ~ w}]l{u' ~ ’U}/}

-y ety Gar 1>)2}““ ~wiliu~wy

u,w,w’ distinct

np(p — 1) Z H{u~wl{u~w'} < an:B.

~ m(m—1)(m—2) m

u,w,w’ distinct

Similarly,
(n—1)pr(k —1)(k — 2) < n?pr3

n
I < -
- m(m —1)(m — 2) - m3

And finally we bound the last term by

npr(k —1) _ npr?

m(m—1) = m?’

V= Y {Puectiwew)-Puetwew)}i{un~w}<

w,w distinct
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Sum up the four terms, we get that

2
npr K nkKk
V&I‘(NU,W;K) S p2 (p + — + ].)
m m m

An application of Chebyshev’s inequality gives that

Pl Ny s < l—l-f npk> S% m(p/i—knn—i—m)’
o 2 4) m2 € npk2

as desired. 0

3.6 Appendix: Ancillary results
Proof of Proposition 3.1. Let X; denote the ith row vector of X. Then for any fixed u € SP~1(k),

Eex(xfu) _ H EeAXiiui < Hevu?/(zgzn) _ ekz/(ggzn).
1<j<p J

Applying Lemma 3.9 to || Xul3 — 1 =n"1Y" {(v/nX; u)? — E(v/nX; u)?}, and using the fact
that 0/(80%) < 1, we have that
P(1—0< || Xul2 <1+06)>1—2e"0/04),

We claim that there is a set A of cardinality at most (i) 9% such that

sup ||| Xull3 — 1| <2 sup ||| Xu3 - 1] (3.6)
ueSP—1(k) ueN

For any cardinality k subset J C {1,...,p}, let By = {u € SP~*(k) : uye = 0}. Each B, contains
a 1/4-net, Ny, of cardinality at most 9k (Vershynin, 2012, Lemma 5.2). Then N := U ;N form
a 1/4-net for SP~!(k). Define u; € argmax,cp, || Xul/* and let vy be an element in N closest in
Euclidean distance to u;. Define A := X "X — I,. We have that

1
luy Aug| < |vj Avg| + [(ug —vg) T Avg| + |uy A(uy —vy)| < max |u” Aul? + §|u}AuJ|
I

Hence

sup  |u' Au| < 2max |u' Aul,
uesSP=1(k) ueN

which verifies the claim in (3.6). By a union bound, we obtain that

P(X € RIP(k,0)) = ]P( sup ||| Xul2 —1] < 9) > P(supmxuu; —1| < 9/2)
(k) ueN

uesp—1

2
P\ ok ,—nb%/(2560") 9ep no
>1-2 >1-2 klog( == ) —
= <k;)9 € = R 25601 |

as desired. 0

Proof of Proposition 3.2. By definition, | X "X — L|lopx < 6 if and only if X € RIP, ,(k,8).
Moreover, by Proposition 3.1, Q®(”XP){X € RIPn’p(kﬁ)} — 1. The proposed test hence satisfies
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the two defining properties of a certifier. O

Proof of Proposition 3.3. The proposed test is clearly polynomial time computable (it has time
complexity O(n?p)). To verify that it is a certifier, we check that (i) v, (1) C RIP,, ,(k,6) and
(i) limy 00 QPP (471 (1)) > 2/3.

For (i), on the event || X T X — I, oo < 1402 \/@, for any index set T' € {1,...,p} of cardinality

k, we have that || X X.r — I | < 1402 logp , which implies that

1
XD X — Iillop < 1402k 222 < g
n

as desired. For (ii), we first note that for a general A € RP*?

[Alloo = sup [Assllec < sup [Assllop = [|Allop,2- (3.7)
SC{1,....p}, #5=2 SC{1L,....p}, #5=2

Using Lemma 3.9 and (3.7), we can derive that

lo 1
]P{HXTX — Lo < 14074/ gp} > ]P’{ sup ||| Xul? —1] < 1402,/0”}
u€SP—1(2) n

19604 log p
>1-2(P)9? {—”7}>1—12 31 1.
( )9 7P - > 81p* exp{—3logp} —

as desired. ]

Lemma 3.6. Let Z be a non-negative random variable and r > 2, then E(Z") > E(|Z —EZ|"). In

other words, centring a nonnegative random variable shrinks its second or higher absolute moments.

Proof. Let u:=E(Z) and define Y := Z—pu. Let P denote the probability measure on R associated
with the random variable Y. Hence f[ﬂL Oo) ydP(y) = 0. Without loss of generality, we may assume
that Z is not a point mass. Then [ (=y) dP(y) = [ )y dP(y) = A for some A > 0. For any

measurable function f: R — [0, 00), we may write

Al swirw= [ coare) [ swire s [ ware [ geieo
/uG(O o) /ve[ 1,0] (u - vf(v) T U i vf(u)) (u—wv)dP(v)dP(u). (3.8)

Let (U, V) be a bivariate random vector having probability measure

20— )0y (0101 (v) AP () dP(0)

on R? (that this is a probability measure follows from substituting f(y) = 1 in (3.8)). Then (3.8)

can be rewritten as v

B{r)} = 2{ 00 -

Now consider choosing f to be f1(y) = |y|” and fa(y) = (y+pu)" respectively in the above equation.
Note that for u € (0,00) and v € [—p, 0] and r > 2, we always have

ufa(v) —vfa(u) > —vfa(u) > —v(u—v)" > (=) u+ (—v)u” > ufi(v) —vfi(u).
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Therefore,

B(v1") = B L V) - i) b < B{ T 20) - @)} =By o,

as desired. 0
Lemma 3.7. Suppose X is a sub-Gaussian random variable with parameter o and median €. Let

Xt =X|X>¢and X~ =X | X <& Then Xt —EXT and X~ —EX~ are both sub-Gaussian

with parameters are most co for some absolute constant c.

Proof. By Vershynin (2012, Lemma 5.5), X is sub-Gaussian with parameter o, which implies that

E|X[P)V/?P < ¢y0 for some absolute constant ¢;. Hence by Lemma 3.6, we have
(E[X[P) VD y :
E(|X+ —EX*")7 < (E[x*")" = 2(B|X1{xX 2 &}") """ < 20005

Using Vershynin (2012, Lemma 5.5) again, we have that X ™ —EX ™ is sub-Gaussian with parameter

at most co for some absolute constant c. A similar argument holds for X~ —EX ™. O

Lemma 3.8. Suppose X is a random variable satisfying Ee X < e N /2 for all X\ € R. Define
Y := X2 —EX2. Then Ee*Y < e167*Y for all Al < 225

Proof. By Markov’s inequality,
P(IX|> 1) =P(X > )+ P(—X > t) = e /7 E(eX/7) 4 e /TR (e71X/77) < 26717/,
From Lemma 3.6, for r > 2

E(|Y|") <E(|X[*) = / P(|X| > t)(2r)t2 Lt < / Art2r =120 gt — 2(20%)"T(r + 1).
0 0

Consequently, if [202\| < 1/2, then

> NEYT > 4,2
Bt =% S <142) (20°0) <14 160"\ <e'O7 N,
T
r=0 r=2

as desired. O

Lemma 3.9. Let X1, Xo, ..., X, be independent sub-Gaussian random variables with sub-Gaussian
parameters at most o. Let Y; := X? —EX?. Then

- 62 0 - 62

i=1

Proof. Using Markov’s inequality, we have

P(ZYi > 9> = P(e’\z'iy" > e’w) < e_)‘QHEe’\Y".
i=1 i
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Set A\ = 32;%,4 A ﬁ. By Lemma 3.8, we have
n
P(ZY" > 9> < e—)\9+16)\2na4 < e—Ao/27
i=1

which establishes the first desired inequality. Applying the same argument with —Y; in place of Y;

(35 0) <l (on ) a9

i=1

we get

Taylor expand the moment generating function of X; around 0, we have EX? < 2. Hence we

2

may assume 6 < no?. Then we have $ < %, which together with (3.9) implies the desired

result. O

Lemma 3.10. Suppose nf balls are arranged in an array of n rows and ¢ columns and k balls
(k < n) are chosen uniformly at random. Let V; be the number of chosen balls in row i and
V=WVi...,V,)T. Then

k2 1
<k——— < .
]P<||V0 <k o \/klogk) <12

Moreover, if k <n? for some v <1, then
P(||V]o > a) < n=e0= (1 = p=(=7)),

Proof. Let U; be the number of balls chosen in row ¢ when balls are drawn with replacement from
the array and U = (Uy,...,U,)". Then |[V||o is stochastically larger than ||U|lo and ||V is
stochastically smaller than ||U|p. So it suffices to show the desired inequalities with U replacing
V. In the following argument, we consider only drawing with replacement.

Let X = {ey,...,e,} where e; denotes the ith standard basis vector in R™. For 1 < r < k, let
X, be uniformly distributed in X. Then U 4 Zf_:l X,. We note that changing the value of any
one X, affects the value of ||U||p by at most 1. By McDiarmid’s inequality (McDiarmid, 1989), we
have that for any ¢ > 0,

B(Ullo — EIU]o < —1) < ™. (3.10)

For 1 < i < n. Define J; = 1{no ball is chosen in row i}, then

E|U]lo :n—ZEJi =n—-n(l—1/n)%> k<1 - k)

. 2n
i=1

Thus, together with (3.10), we have

k2
P(HUHO o \/klogk) < P(HUHO _EJUlo < —\/klogk) < ook _ -2
n

as desired. For the second inequality, we have by a union bound that

k 0 a
B0 2 @) <03 (F)ar <03 /my = n B0 < ot o0,

as desired. 0O



Chapter 4

High-dimensional changepoint

estimation via sparse projection

4.1 Introduction

One of the most commonly-encountered issues with Big Data is heterogeneity. When collecting
vast quantities of data, it is usually unrealistic to expect that stylised, traditional statistical models
of independent and identically distributed observations can adequately capture the complexity of
the underlying data generating mechanism. Departures from such models may take many forms,
including missing data, correlated errors and data combined from multiple sources, to mention just
a few.

When data are collected over time, heterogeneity often manifests itself through non-stationarity,
where the data generating mechanism varies with time. Perhaps the simplest form of non-
stationarity assumes that population changes occur at a relatively small number of discrete time
points. If correctly estimated, these ‘changepoints’ can be used to partition the original data set
into shorter segments, which can then be analysed using methods designed for stationary time se-
ries. Moreover, the locations of these changepoints are often themselves of great practical interest.

In this chapter, we study high-dimensional time series that may have changepoints; moreover,
we consider in particular settings where at a changepoint, the mean structure changes in a sparse
subset of the coordinates. Despite their simplicity, such models are of great interest in a wide
variety of applications. For instance, in the case of stock price data, it may well be the case that
stocks in related industry sectors experience virtually simultaneous ‘shocks’ (Chen and Gupta,
1997). In internet security monitoring, a sudden change in traffic at multiple routers may be
an indication of a distributed denial of service attack (Peng, Leckie and Ramamohanarao, 2004).
In functional Magnetic Resonance Imaging (fMRI) studies, a rapid change in blood oxygen level
dependent (BOLD) contrast in a subset of voxels may suggest neurological activity of interest
(Aston and Kirch, 2012).

Our main contribution is to propose a new method for estimating the number and locations of
the changepoints in such high-dimensional time series, a challenging task in the absence of knowl-
edge of the coordinates that undergo a change. In brief, we first seek a good projection direction,
which should ideally be closely aligned with the vector of mean changes. We can then apply an

existing univariate changepoint estimation algorithm to the projected series. For this reason, we

61
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call our algorithm inspect, short for informative sparse projection for estimation of changepoints.
Software implementing the methodology is available in the R package InspectChangepoint (Wang
and Samworth, 2016b).

In more detail, in the single changepoint case, our first observation is that at the population
level, the vector of mean changes is the leading left singular vector of the matrix obtained as the
cumulative sum (CUSUM) transformation of the mean matrix of the time series. This motivates
us to begin by applying the CUSUM transformation to the time series. Unfortunately, computing
the k-sparse leading left singular vector of a matrix is a combinatorial optimisation problem, but
nevertheless, we are able to formulate an appropriate convex relaxation of the problem, similar to
the semidefinite relaxation (2.5) constructed in Chapter 2. We then derive our projection direction
from the optimiser of this convex problem. At the second stage of our algorithm, we compute
the vector of CUSUM statistics for the projected series, identifying a changepoint if the maximum
absolute value of this vector is sufficiently large. For the case of multiple changepoints, we combine
our single changepoint algorithm with the method of Wild Binary Segmentation (Fryzlewicz, 2014)

to identify changepoints recursively.

1001

1497

projected CUSUM statistics
peak of projected CUSUM

0 500 1000 1500 2000 0 500 1000 1500 2000

candidate changepoint location nodes in binary segmentation algorithm

Figure 4.1: An example of inspect algorithm in action. Top-left: visualisation of the data matrix.
Top-right: its CUSUM transformation. Bottom-left: overlay of the projected CUSUM statistics for
the three changepoints detected. Bottom-right: visualisation of thresholding; the three detected
changepoints are above the threshold (dotted red line) whereas the remaining numbers are the
test statistics obtained if we run the wild binary segmentation to completion without applying a
termination criterion.

A Dbrief illustration of the inspect algorithm in action is given in Figure 4.1. Here, we simulated
a 2000 x 1000 data matrix having independent normal columns with identity covariance and with
three changepoints in the mean structure at locations 500, 1000 and 1500. Changes occur in 40
coordinates, where consecutive changepoints overlap in half of their coordinates, and the squared
{5 norms of the vectors of mean changes were 0.4, 0.9 and 1.6 respectively. The top-left panel shows
the original data matrix and the top-right shows its CUSUM transformation, while the bottom-left

panel shows overlays for the three detected changepoints of the univariate CUSUM statistics after
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projection. Finally, the bottom-right panel displays the largest absolute values of the projected
CUSUM statistics obtained by running the wild binary segmentation algorithm to completion (in
practice, we would apply a termination criterion instead, but this is still helpful for illustrative
purposes). We see that the three detected changepoints are very close to their true locations, and
it is only for these three locations that we obtain a sufficiently large CUSUM statistic to declare a

changepoint.

Our theoretical development proceeds first by controlling the angle between the estimated
projection direction and the optimal direction, which is given by the normalised vector of mean
changes. Under appropriate conditions, this enables us to provide finite-sample bounds which
guarantee that with high probability we both recover the correct number of changepoints, and
estimate their locations to within a specified accuracy. Our extensive numerical studies indicate

that the algorithm performs extremely well in a wide variety of settings.

The study of changepoint problems dates at least back to Page (1955), and has since found ap-
plications in many different areas, including genetics (Olshen et al., 2004), disease outbreak watch
(Sparks, Keighley and Muscatello, 2010) and aerospace engineering (Henry, Simani and Patton,
2010), in addition to those already mentioned. There is a vast and rapidly growing literature on
different methods for changepoint detection and localisation, especially in the univariate problem.
Surveys of various methods can be found in Csorgd and Horvéth (1997) and Horvéath and Rice
(2014). In the case of univariate changepoint estimation, state-of-the-art methods include Pruned
Exact Linear Time method (PELT) (Killick, Fearnhead and Eckley, 2012), Wild Binary Segmen-
tation (WBS) (Fryzlewicz, 2014) and Simultaneous Multiscale Changepoint Estimator (SMUCE)
(Frick, Munk and Sieling, 2014).

Some of the univariate changepoint methodologies have been extended to multivariate settings.
Examples include Horvéth, Kokoszka and Steinebach (1999), Ombao, Von Sachs and Guo (2005),
Aue et al. (2009) and Kirch, Mushal and Ombao (2014). However, there are fewer available tools for
high-dimensional changepoint problems, where both the dimension p and the length n of the data
stream may be large, and where we may allow a sparsity assumption on the coordinates of change.
Bai (2010) investigates the performance of the least squares estimator of a single changepoint in
the high-dimensional setting. Zhang et al. (2010), Horvdth and Huskova (2012) and Enikeeva
and Harchaoui (2014) consider estimators based on ¢y aggregations of CUSUM statistics in all
coordinates, but without using any sparsity assumptions. Enikeeva and Harchaoui (2014) also
consider a scan statistic that takes sparsity into account. Jirak (2015) considers an £, aggregation
of the CUSUM statistics that works well for sparse changepoints. Cho and Fryzlewicz (2015)
propose Sparse Binary Segmentation, which also takes sparsity into account and can be viewed as
a hard-thresholding of the CUSUM matrix followed by an ¢; aggregation. Cho (2016) proposes a
double-CUSUM algorithm that performs a CUSUM transformation along the location axis on the
columwise-sorted CUSUM matrix. In a slightly different setting, Lavielle and Teyssiere (2006), Aue
et al. (2009), Biicher et al. (2014), Preuf} et al. (2015) and Cribben and Yu (2016) deal with changes
in cross-covariance. Aston and Kirch (2014) considered the asymptotic efficiency of detecting a
single changepoint in a high-dimensional setting, and the oracle projection-based estimator under

cross-sectional dependence structure.

The outline of the rest of the paper is as follows. In Section 4.2, we give a formal description
of the problem and the class of data generating mechanisms under which our theoretical results

hold. Our methodological development in the single changepoint setting is presented in Section 4.3,
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and includes theoretical guarantees on both the projection direction and location of the estimated
changepoint. Section 4.4 extends these ideas to the case of multiple changepoints with the aid of
Wild Binary Segmentation, and our numerical studies are given in Section 4.5.

We conclude this section by introducing some notation used throughout this chapter. For a

vector u = (ug,...,up)| € RM  a matrix A = (4;;) € RM*N and for ¢ € [1,00), we write
Jullg == (M, |ui|q)1/q and [|A], = (X, Z;v:1 IAiqu)l/q for their (entrywise) {,-norms, as
well as |[ulloo = max;=1, am |ui] and [|A]|e = maxj=1,  amj=1,.. .~ |Ai;|. We write ||A|. =
ZET(M’N) 0;(A) and || A|lop := max; 0;(A) respectively for the nuclear norm and operator norm
of matrix A, where 01(A),...,0min(m,n)(A) are its singular values. We also write |lullo :=

S M Lpuzoy. For 8 C {1,...,M} and T C {1,...,N}, we write ug := (u; : i € )7 and

write Mg p for the |S| x |T| submatrix of A obtained by extracting the rows and columns with in-

]RMXN

dices in S and T respectively. For two matrices A, B € , we denote their trace inner product

as (A, B) = tr(AT B). For two non-zero vectors u,v € RP, we write Z(u,v) := cosfl(%) for

the acute angle bounded between them. We let SP~! := {z € R? : ||z||3 = 1} be the unit Euclidean
sphere in R?, and let SP~1(k) := {z € SP~1 : ||z||o < k}.

4.2 Problem description

Let X1,...,X, be independent p-dimensional random vectors sampled from
X, ~ Ny(ps,0%,),  1<t<n, (4.1)
and combine the observations into a matrix X = (X1,...,X,) € RP*" We assume that the mean

vectors follow a piecewise-constant structure with at most v 4+ 1 segments. In other words, there
exist v changepoints
1<z1 <2< <z, <n-1

such that
Hzi+1 = =" = Mz, ::M(i)7 Vo<i<v,

where we adopt the convention that zy := 0 and z,41 :=n. Fori=1,... v, write

00) .= ) _ =D

for the difference in means between consecutive stationary segments. We assume that the changes
in mean are sparse in the sense that there exists k € {1,...,p} (typically k is much smaller than
p) such that [|§( ||y < k for each i = 1,...,v.

Our goal is to estimate the set of changepoints {z1,...,2,} in the high-dimensional regime,
where p may be comparable to, or even larger than, the length n of the series. The signal strength
of the estimation problem is determined by the magnitude of mean changes {H(i) :1<i<v}and
the run lengths of stationary segments {z;11 — 2z; : 0 < i < v}, whereas the noise is related to
the variance 02 and the dimensionality p of the observed data points. We let P(n, p, k, v, 9,7, 02)
denote the class of distributions of X = (Xq,...,X,) € RP*™ with independent columns drawn

from (4.1), where the changepoint locations satisfy

ntmin{z 1 —2:0<i<v}>T,
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and the magnitudes of mean changes are such that
1093 > k?,  V1<i<w.

Suppose that an estimation procedure outputs © changepoints located at 1 < 27 < --- < 25 <
n — 1. Our finite-sample bounds will imply a rate of convergence for inspect in an asymptotic
setting where (p, k,v,9,7,02) = (P, kns Vn, On, Tn,02). In this context, we follow the convention
in the literature (e.g. Venkatraman, 1992) and say that the procedure is consistent with rate of

convergence p, if

sup ]P’p{D =vand |% — z| <np, forall 1 <i< 1/} —1 (4.2)
PeP(n,p,k,v,9,1,02)

as n — oo. We remark that consistency as defined above is a rather strong notion, in the sense

that it implies convergence in several other natural metrics. For example, if we let

du(A, B) = { inf |a — b|, sup inf —b}
(A, B) := max 2‘;352:;'“ |§‘€1§;2A‘a |

denote the Hausdorff distance between non-empty sets A and B on R, then (4.2) implies that with
probability tending to 1,

1
—da({2:1<i<p}{z:1<i<v}) <p,.
n
Similarly, denote the Li-Wasserstein distance between probability measures P and @ on R by

dw(P,Q):= inf EU-V
w (P, Q) L | |

where the infimum is taken over all pairs of random variables U and V defined on the same
probability space with U ~ P and V ~ Q. Then (4.2) also implies that with probability tending
to 1,

1 1< 1
ndw<ﬁ;5£“y;(szi) < pn,

where §, denotes a Dirac point mass at a.

4.3 Sparse projection estimator for a single changepoint

We first consider the problem of estimating a single changepoint (i.e. ¥ = 1) in a high-dimensional
time series dataset X € RP*™. For simplicity, write z := 21, 6 = (01,...,60,)" = 61 and
7 := n~'min{z,n — 2z}. We seek to aggregate the rows of the data matrix X in an almost
optimal way so as to maximise the signal-to-noise ratio, and then locate the changepoint using a

one-dimensional procedure. For any a € SP~!, a" X is a one-dimensional time series with
a X; ~ N(aT,ut, 02).

Hence, the choice a = 0/]|0||2 maximises the magnitude of the difference in means between the two

segments. However, 6 is typically unknown in practice, so we should seek a projection direction
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that is close to the oracle projection direction v := 6/||0]|2. Our strategy is to perform sparse
singular value decomposition on the CUSUM transformation of X. The method and limit theory
of CUSUM statistics in the univariate case can be traced back to Darling and Erdds (1956). For
p € N and n > 2, we define the CUSUM transformation 7, ,, : RPX™ — RPX(—1) by

Tl = (o 8 a1 300, )

r=t+1

In fact, to simplify the notation, we will write 7 for 7T, ,, since p and n can be inferred from the
dimensions of the argument of 7. Note also that 7 reduces to computing the vector of classical

one-dimensional CUSUM statistics when p = 1. We write

X=p+W,
where o = (p1, ..., fn) € RP*™ and W = (W1, ..., W,,) is a p x n random matrix with independent
N,(0,0%I,) columns. Let T := T(X), A := T(u) and E := T(W), so by the linearity of the
CUSUM transformation we have the decomposition

T=A+E.

In the single changepoint case, the entries of the matrix A can be computed explicitly:

A, — \/%(n_z)ej, ift<z
=
] \/%Zejv if t > z.

A=06yT, (4.4)

Hence we can write

where

7;:\/15( nil(n—z), nfz(n—z),...,\/m,,/”;jglz,...,\/Zz>T. (4.5)

In particular, this implies that the oracle projection direction is the leading left singular vector of

the rank 1 matrix A. In the ideal case where k is known, we could in principle let Omax,x be a

k-sparse leading left singular vector of T, defined by

Omax.k € argmax || T79||a, (4.6)
peESP—1(k)

and it can then be shown using a perturbation argument akin to the Davis—Kahan ‘sin #’ theorem
(cf. Davis and Kahan (1970) and Chapter 1) that Omax i iS & consistent estimator of the oracle
projection direction v under mild conditions (see Proposition 4.9 in Section 4.7). However, the
optimisation problem in (4.6) is non-convex and hard to implement. In fact, computing the k-
sparse leading left singular vector of a matrix is known to be NP-hard (e.g. Tillmann and Pfetsch
(2014)). The naive algorithm that scans through all possible k-subsets of the rows of T has running
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time exponential in k, which quickly becomes impractical to run for even moderate sizes of k.
A natural approach to remedy this computational issue is to work with a convex relaxation of

the optimisation problem (4.6) instead. In fact, we can write

max HuTTHg: max uw' Tw
ueSP—1(k) u€eSP—1(k),wesSn—2
-
= a T) = max (M, T 4.7
uesw,wglsn}fz,||u“ogk<“w’ ) = max (M,T), (4.7)

where M := {M € RP*(»=1 . ||M||, = 1,rank(M) = 1, M has at most k non-zero rows}. The
final expression in (4.7) has a convex (linear) objective function M ~— (M,T). The require-
ment rank(M) = 1 in the constraint set M is equivalent to ||[o(M)|o = 1, where o(M) :=
(o1 (M), ..., Umin(p’n,l)(M))T is the vector of singular values of M. This motivates us to absorb
the rank constraint into the nuclear norm constraint, which we relax from an equality constraint
to an inequality constraint in order to make it convex. Furthermore, we can relax the row sparsity
constraint in the definition of M to an entrywise ¢;-norm penalty. The optimisation problem of
finding

M € argmax{(T, M) — \| M|, }, (4.8)

MeS;

where S; := {M € RP*(®=1) . || M|, < 1} and X > 0 is a tuning parameter to be chosen later, is
therefore a convex relaxation of (4.6). The convex problem (4.8) may be solved using the alternating
direction method of multipliers algorithm (ADMM, see e.g. Gabay and Mercier (1976); Boyd et
al. (2011)) as in Algorithm 4.1. More specifically, by a variable-splitting trick, the optimisation

Algorithm 4.1: Pseudo-code for an ADMM algorithm that computes the solution to the
optimisation problem (4.8).
Input: 7 € RP*(=D X > 0.
Set: Y =Z=R=0¢cR*(n"D
repeat
Y« s (Z—R+1T)
Z «soft(Y + R, \)
R+~ R+ (Y -2)
until Y — Z converges to 0
M«Y
Output: M

problem in (4.8) is equivalent to maximising (T, Y) — \|| Z]|1 — Is, (V) subject to Y = Z, where I,

is the function that is 0 on &1 and oo on SY. Its augmented Lagrangian is given by
1
LY, Z,R) = (T,Y) = LIs,(Y) = M Z|h = (R,Y = Z) = S|IY = 2|3,

with the Lagrange multiplier R being the dual variable. Each iteration of the main loop in Algo-
rithm 4.1 first performs a primal update by maximising L(Y, Z, R) marginally with respect to Y’
and Z, then followed by a dual gradient update of R with constant step size. The function Ilg, (+)
in Algorithm 4.1 denotes projection onto the convex set S; with respect to the Frobenius norm
distance. If A = UDV'T is the singular value decomposition of A € RP*("~1) with rank(A) = r,
where D is a diagonal matrix with diagonal entries dy, ..., d,, then Ils, (4) = UbVT, where D is

a diagonal matrix with entries di,... , d, such that (Jl, ...,d,)T is the Euclidean projection of the
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vector (dy,...,d,)T onto the standard (r — 1)-simplex

ATl = {(:El,...,acr)—r eR": er =1 and z, > 0 for all 8}.
(=1

For an efficient algorithm for such simplicial projection, see Chen and Ye (2011). The soft func-
tion in Algorithm 4.1 denotes an entrywise soft-thresholding operator defined by (soft(4, \))
sgn(A;j) max{|A;;| — A, 0} for any XA > 0 and matrix A = (4;;).

We remark that one may be interested to further relax (4.8) by replacing S; with the larger set
Sy = {M € RP*(»=1 || M|, < 1}. We see from Lemma 4.10 in Section 4.7 that the smoothness

of Sy results in a simple dual formulation, which implies that

ij

~ soft(T, \)
= —————"— = argmax{ (T, M) — \[|M|| 4.9

Tsofe(T )~ ea UM = MMl )
is the unique optimiser of the primal problem. The soft-thresholding operation is significantly faster
than the ADMM algorithm in Algorithm 4.1. Hence by enlarging S1 to Sa, we can significantly
speed up the running time of the algorithm in exchange for some loss in statistical efficiency caused
by the further relaxation of the constraint set. See Section 4.5 for further discussion.

Let ¥ be the leading left singular vector of

M € argmax{(T, M) — \[|M||: }, (4.10)
MeS
for either § = &1 or § = S;. In Proposition 4.1 below, we provide an error bound on ¢ as an
estimator of the oracle projection direction v. It relies on a generalisation of the curvature lemma
in Vu et al. (2013, Lemma 3.1), presented as Lemma 4.4 in Section 4.7.
Proposition 4.1. Suppose that M satisfies (4.10) for either S = Sy or & = S3. Let b €
argmaxg;cgp—1 ||MT17||2 be the leading left singular vector of M. If n > 6 and if we choose

A > 20+/log(plogn), then

< P (S. L(0,v) > 32\ )< 4
up p|sin Z(v,v < )
PEP(n,p,k,1,9,7,02) T/ n (plogn)i/2

As an illustration, consider A = 20+/log(plogn) and the asymptotic regime where logp =
O(logn), ¥ x n~% and 7 < n~? for some a € R and b > 0. Then Proposition 4.1 implies that as
long as a + b < 1/2, we have Z(,v) 2 0.

Algorithm 4.2: Pseudo-code for a single high-dimensional changepoint estimation algorithm.

Input: X € RP*™ X\ > 0.

Step 1: Perform the CUSUM transformation 7' < T (X)

Step 2: Use Algorithm 4.1 or (4.9) (with inputs 7', A in either case) to solve for an
optimiser M of (4.10) for S = S; or Sy

Step 3: Find & € argmax;cgo—1 || M 0[]

Step 4: Let 2 € argmax;«;,,_, |0' Ti|, where T} is the tth column of T', and set
Tmax < |@TT5‘

Output: 2, Tyax

After obtaining a good estimator ¢ of the oracle projection direction, the natural next step
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is to project the data matrix X along the direction o, and apply an existing one-dimensional
changepoint localisation method on the projected data. In this work, we apply a one-dimensional
CUSUM transformation to the projected time series and estimate the changepoint by the location
of the maximum of the CUSUM vector. Our overall procedure for locating a single changepoint
in a high-dimensional time series is given in Algorithm 4.2. In our description of this algorithm,
the noise level o is assumed to be known. If ¢ is unknown, we can estimate it robustly using,
e.g., the median absolute deviation of the marginal one-dimensional time series (Hampel, 1974).
Note that for the convenience of later reference, we have required Algorithm 4.2 to output both
the estimated changepoint location Z and the associated maximum absolute post-projection one-
dimensional CUSUM statistic Trax.

From a theoretical point of view, the fact that ¥ is estimated using the entire dataset X makes
it difficult to analyse the post-projection noise structure. For this reason, in the analysis below,
we work with a slight variant of Algorithm 4.2. We assume for convenience that n = 2n; is even,
and define X1, X(2) ¢ Rpxm1 by

XJ(-’lt) = Xj2—1 and Xj(i) =X o for1<j<p1<t<ng. (4.11)

We then use XV to estimate the oracle projection direction and use X to estimate the change-
point location after projection (see Algorithm 4.3). However, in our experience, ¢ is almost in-
dependent of T and we recommend using Algorithm 4.2 without sample splitting in practice to

exploit the full signal strength in the data.

Algorithm 4.3: Pseudo-code for a sample-splitting variant of Algorithm 4.2.
Input: X € RP*™ X\ > 0.
Step 1: Perform the CUSUM transformation T « 7(X®M) and T?) + T(X®).
Step 2: Use Algorithm 4.1 or (4.9) (with inputs T, X in either case) to solve for
MW € argmax ;s {(TW, M) — N[ M|, } with § = {M € RP*(m =1 || M|, <1}
or {M € RP*(m=1) .|| M|, < 1}.
Step 3: Find (V) € argmax;go—1 ||(MD)To],.
(@(1))TTt(2) |, where Tt(Q) is the tth column of T, and

Step 4: Let 2z € 2argmax; <<, 4
. 2
(@O TT)-

set Tmax —

Output: 2, Trmax

We summarise the overall estimation performance of Algorithm 4.3 in the following theorem.

Theorem 4.2. Suppose o > 0 is known. Let % be the output of Algorithm 4.3 with input X and

A= 20+/log(plogn). If n > 6 is even and

o [log(plogn) /3
== < 4.12
9T n - 128’ (4.12)

P (1|A > 320 logn> 4 +2
sup pl —|2—2 < z
PEP(npkld70%) AT Wkr V. n {plog(n/2)}'/2 " n

Again, to illustrate, suppose we are in the asymptotic regime where logp = O(logn), 9 < n™9,
7= n"%and k < n° for some a € R and b € [0,1] and ¢ > 0. If a + b < 1/2, then Theorem 4.2

implies that the output 2 of Algorithm 4.3 is a consistent estimator of the true changepoint z with

then
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—2a—b+c
rate of convergence p,, = o(n_1 et +9) for any & > 0.

4.4 Estimating multiple changepoints

Our algorithm for a single changepoint can be combined with the wild binary segmentation scheme
of Fryzlewicz (2014) to sequentially locate multiple changepoints in high-dimensional time series.
The principal idea behind a wild binary segmentation procedure is as follows. We first randomly
sample a large number of pairs, (s1,e1),...,(sQ,eq) uniformly from the set {(¢,r) € Z* : 0 <
¢ < r < n}, and then apply our single changepoint algorithm to Xl for 1 < ¢q < Q, where
X9 is defined to be the submatrix of X obtained by extracting columns {sq+1,...,eq} of X.
For each 1 < ¢ < @, the single changepoint algorithm (Algorithm 4.2 or 4.3) will estimate an
optimal sparse projection direction 9%, compute a candidate changepoint location Sq+ 214l within
the time window [s, + 1,¢,4] and return a maximum absolute CUSUM statistic Tlﬂx along the
projection direction. We aggregate the ¢ candidate changepoint locations by choosing one that
maximises the largest projected CUSUM statistic, T} Iﬂx, as our best candidate. If Tr[r?;x is above
a certain threshold value £, we admit the best candidate to the set Z of estimated changepoint
locations and repeat the above procedure recursively on the sub-segments to the left and right of
the estimated changepoint. Note that while recursing on a sub-segment, we only consider those
time windows that are completely contained in the sub-segment. The precise algorithm is detailed
in Algorithm 4.4.

Algorithm 4.4 requires three tuning parameters: a regularisation parameter A, a Monte Carlo
parameter () for the number of random time windows and a thresholding parameter £ that deter-
mines termination of recursive segmentation. Theorem 4.3 below provides choices for A\, @ and &

that yield theoretical guarantees for consistent estimation of all changepoints as defined in (4.2).

Algorithm 4.4: Pseudo-code for multiple changepoint algorithm based on sparse singular
vector projection and wild binary segmentation.
Input: X e RP*" A >0,£>0,8>0,Q €N.
Step 1: Set Z < 0. Draw Q pairs of integers (s1,€e1),...,(sQ,eq) uniformly at random
from the set {(¢,r) € Z>: 0 < ¢ <r <n}.
Step 2: Run wbs (0, n) where wbs is defined below.
Step 3: Let 7 < |Z| and sort elements of Z in increasing order to yield 2; < -+ < .

Output: z1,...,2
Function wbs (s, €)
Set Qs e+ {q:s+n8<s;,<e, <e—nf}
for g € 9, do
‘ Run Algorithm 4.2 with X[, X as input, and let é[qLTrﬂx be the output.
end
Find ¢ € argmax,co, . T,L‘fix and set b < 54, + 3l4o]
if 7%) > ¢ then
Z «— ZU{b}
wbs (s, b)

wbs (b, €)
end

end

We remark that if we apply Algorithm 4.2 or 4.3 on the entire dataset X instead of random time
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windows of X, and then iterate after segmentation, we arrive at a multiple changepoint algorithm
based on the classical binary segmentation scheme. The main disadvantage of this classical binary
segmentation procedure is its sensitivity to model misspecification. Algorithms 4.2 and 4.3 are de-
signed to optimise the detection of a single changepoint. When we apply them in conjunction with
classical binary segmentation to a time series containing more than one changepoint, the signals
from multiple changepoints may cancel each other out in two different ways that will lead to a loss of
power. First, as Fryzlewicz (2014) points out in the one-dimensional setting, multiple changepoints
may offset each other in CUSUM computation, resulting in a smaller peak of the CUSUM statistic
that is more easily contaminated by the noise. Moreover, in a high-dimensional setting, different
changepoints can undergo changes in different sets of (sparse) coordinates. This also attenuates
the signal strength in the sense that the estimated oracle projection direction from Algorithm 4.1
is aligned to some linear combination of 81, ... 8() but not necessarily well-aligned to any one
particular 6(V. The wild binary segmentation scheme addresses the model misspecification issue
by examining sub-intervals of the entire time length. When the number of time windows @ is suf-
ficiently large and 7 is not too small, with high probability we have reasonably long time windows
that contain each individual changepoint. Hence the single changepoint algorithm will perform
well on these segments.

Just as in the case of single changepoint detection, it is easier to analyse the theoretical per-
formance of a sample-splitting version of Algorithm 4.4. However, to avoid notational clutter, we
will prove a theoretical result without sample splitting, but with the assumption that whenever
Algorithm 4.2 is used within Algorithm 4.4, its second and third steps (i.e. the steps for estimating
the oracle projection direction) are carried out on an independent copy X' of X. We refer to
such a variant of the algorithm with an access to an independent sample X’ as Algorithm 4.4’
Theorem 4.3 below, which proves theoretical guarantees of Algorithm 4.4’) can then be readily
adapted to work for a sample-splitting version of Algorithm 4.4, where we replace n by n/2 where

necessary.

Theorem 4.3. Suppose o > 0 is known and X, X’ Kpe P(n,p, k,v,0,7,02). Let 21 < --- < 2
be the output of Algorithm 4.4 with input X, X', X := 30+/log(np), £ := X\, B8 and Q. Define

p=pni= 19\2/%. Ifnt > 14, 2p < B < %7’ and pvVkr <1, then

Pp{l? =vand |z —z| <np foralll <i< 1/} >1-— rle TR/ _ 2n_3/2p_5/2.

To illustrate the conditions and conclusion of Theorem 4.3, we again consider the asymptotic
setting where ¥ < n™% 7 < n~% k < n¢ and logp = O(logn). In this case, the conditions of
Theorem 4.3 hold for sufficiently large n if a+b < 1/2 and 2a + 50 — ¢ < 1. When these conditions
are satisfied, Theorem 4.3 implies that Algorithm 4.4’ consistently estimates all changepoints with

1—2a—3b+c
rate of convergence p, = o(n~ 7 19) for any § > 0.

4.5 Numerical studies

In this section, we examine the empirical performance of the inspect algorithm in a range of
settings, and compare it with a variety of other recently-proposed methods. In both single- and
multiple-changepoint scenarios, the implementation of inspect requires the choice of a regularisa-

tion parameter A > 0 to be used in Algorithm 4.1 (which is called in Algorithms 4.2 and 4.4). In our



72 CHAPTER 4. HIGH-DIMENSIONAL CHANGEPOINT ESTIMATION

experience, the theoretical choices A = 0y/2log(plogn) and A = 30+/log(np) used in Theorems 4.2
and 4.3 produce consistent estimators as predicted by the theory, but are slightly conservative, and

in practice we recommend the choice A = U\/W in both cases. The noise level o is
estimated by concatenating the individual time series into a vector of length np and then comput-
ing the median absolute deviation using the scaling constant of 1.48 for the normal distribution
(Hampel, 1974).

In Step 2 of Algorithm 4.2, we also have a choice between using & = §; and S;. The following
numerical experiment demonstrates the difference in performance of the algorithm for these two
choices. We took n = 200, p = 100, k = 10, with a single changepoint located at z = 100. Table 4.1
shows the angles between the oracle projection direction and estimated projection directions using
both &1 and S, as the signal level ¢ varies from 0.1 to 1. It can be seen that further relaxation from
S1 to Sy incurs a relatively low cost in terms of the estimation quality of the projection direction,
but it offers great improvement in running time due to the closed-form solution (cf. Lemma 4.10).
Thus, even though the use of S; remains a viable practical choice for offline data sets of moderate

size, we use § = Sy in the simulations that follow.

Y 01 02 03 04 05 06 07 08 09 1
Z(ts,,v) | 80.3 63.1 51.6 394 286 258 21.7 19.0 16.7 144
L(vs,,v) | 79.5 63.9 529 40.6 30.2 273 234 204 18.0 15.6

Table 4.1: Angles (in degrees) between oracle projection direction v and estimated projection

directions 95, (using S1) and ¥s, (using Ss), for different choices of ¥. Each reported value is

averaged over 100 repetitions. Other simulation parameters: n = 200, p = 100, k£ = 10, z = 100,
2

o°=1.

We compare the performance of the inspect algorithm with sparsified binary segmentation
(sbs) (Cho and Fryzlewicz, 2015), the double CUSUM algorithm (dc) (Cho, 2016) and a scan
statistic-based algorithm (scan) derived from the work of Enikeeva and Harchaoui (2014). The
latter statistic, rewritten in our notation, is

Zlﬁjgfc(T(Zj)é -1

Liscan = 1<ien 1?13;7 nlog{(g)np/a} ’ (4.13)

where T(Qj)i is the jth largest entry in absolute value in the Zth column of 7' := T(X), and o = 2
according to the choice in their paper. We remark that Enikeeva and Harchaoui (2014) primarily
concerns the use of Lg.an to test for the existence of a changepoint. However, the scan statistic
can be naturally modified into a changepoint location estimator by modifying the outermost max
function in (4.13) to an argmax. It can then be extended a multiple changepoint estimation
algorithm via a wild binary segmentation scheme in a similar way to our algorithm. Whenever
tuning parameters are required in running these algorithms, we adopt the choices suggested by
their authors in the relevant papers. In our simulations, all algorithms were run on the same data

matrices, and the estimated changepoints over 100 repetitions were then aggregated and compared.

4.5.1 Single changepoint estimation

All four algorithms in our simulation study are top-down algorithms in the sense that their mul-

tiple changepoint procedure is built upon a single changepoint estimation submodule, which is
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n P k z 9 inspect dc sbs scan
1000 200 10 400 0.18 32.3 82.2 99.6 46.2
1000 200 14 400 0.11 97.2 2745 2157 218.1
1000 200 200 400 0.04 65.5 262.3 180.1 156.4
1000 500 10 400 0.18 48.2 125.7 181.4 106.1
1000 500 22 400 0.11 86.9 240.5 235.5 190.3
1000 500 500 400 0.04 24.5 106.4 96.8 22.5
1000 1000 10 400 0.18 48.6 118.6 1854 1494
1000 1000 32 400 0.11 58.7 143.9 1714 151.3
1000 1000 1000 400 0.04 10.1 28.1 42.7 15.1
2000 200 10 800 0.11 126.3 3275 2939 221.1
2000 200 14 800 0.11 88.1 213.7 155.2 121.0
2000 200 200 800 0.04 57.6 221.3 155.1 60.9
2000 500 10 800 0.11 169.9 348.1 456.0 305.5
2000 500 22 800 0.07 195.2 0784 511.8 535.9
2000 500 500 800 0.04 21.3 45.0 62.4 27.0
2000 1000 10 800 0.11 131.5 416.4 460.5 397.7
2000 1000 32 800 0.07 138.4 441.0 448.6 401.6
2000 1000 1000 800 0.04 6.7 30.8 33.7 13.8
1000 200 10 400 04 4.1 8.4 16.9 5.1
1000 200 14 400 0.25 7.4 16.7  31.6 9.4
1000 200 200 400 0.11 4.4 15.8 12.7 6.2
1000 500 10 400 04 2.9 8.9 27.5 4.5
1000 500 22 400 0.25 4.7 13.0 20.0 7.2
1000 500 500 400 0.07 3.7 13.0 22.0 8.4
1000 1000 10 400 04 3.1 10.8 30.0 6.1
1000 1000 32 400 0.25 3.0 12.0 20.3 6.8
1000 1000 1000 400 0.07 1.9 10.1 12.0 4.1
2000 200 10 800 0.25 7.8 23.9 45.2 11.6
2000 200 14 800 0.18 12.1 44.2 47.7  20.5
2000 200 200 800 0.07 7.6 41.6 33.1 17.7
2000 500 10 800 0.25 14.3 28.6 544 14.1
2000 500 22 800 0.18 14.5 33.7 354 15.8
2000 500 500 800 0.07 4.8 16.2 17.6 9.2
2000 1000 10 800 0.25 10.5 29.7  68.3 16.1
2000 1000 32 800 0.18 6.8 19.3 39.8 12.6
2000 1000 1000 800 0.07 1.4 7.7 13.1 4.5

73

Table 4.2: Root mean squared error for inspect, dc, sbs and scan in single changepoint estimation.
The smallest root mean squared error is given in bold.
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used to locate recursively all changepoints via a (wild) binary segmentation scheme. It is therefore
instructive first to compare their performance in the single changepoint estimation task. Our sim-
ulations were run for n € {1000,2000}, p € {200,500,1000}, k € {10, [p'/?],p}, z = 0.4n, 0? =1
and ¥ € {1,0.6,0.4,0.25,0.18,0.11,0.07,0.04}, with § = (1,2=%/2, ... k=1/2,0,...,0)T € RP. For
definiteness, we let the n columns of X be independent, with the leftmost z columns drawn from
N,(0,02I,) and the remaining columns drawn from N,(6,021,). To avoid the influence of differ-
ent threshold levels on the performance of the algorithms and to focus solely on their estimation
precision, we assume that the existence of a single changepoint is known a priori and make all
algorithms output their estimate of its location; estimation of the number of changepoints in a
multiple-changepoint setting is studied in Section 4.5.2 below. In the interests of brevity, in Ta-
ble 4.2, we report the root mean squared estimation error for only two values of 9, chosen to repre-
sent low and high signal-to-noise settings respectively. More precisely, for each choice of (n,p, k),
the reported values of ¥ are the largest values in the set {1,0.6,0.4,0.25,0.18,0.11,0.07,0.04} such
that the root mean squared error of at least one algorithm is less than 0.1n and 0.01n respectively.
The omitted results are qualitatively similar. We also remark that the three choices for the param-
eter k correspond to constant/logarithmic sparsity, polynomial sparsity and non-sparse settings
respectively. As a graphical illustration, Figure 4.2 displays density estimates of the estimated
changepoint location by the different algorithms in two different settings taken from Table 4.2.
One difficulty in presenting such estimates with kernel density estimators is the fact that differ-
ent algorithms would require different choices of bandwidth, and these would need to be locally
adaptive, due to the relatively sharp peaks. In order to avoid the choice of bandwidth skewing the
visual representation, we therefore use the log-concave maximum likelihood estimators for each
method (e.g. Diimbgen and Rufibach, 2009; Cule, Samworth and Stewart, 2010), which is both

locally adaptive and tuning-parameter free.
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Figure 4.2: Estimated densities of location of changepoint estimates by inspect, dc, sbs and
scan. Left panel: (n,p,k,z,9,0%) = (2000, 1000, 32,800, 0.07, 1); right panel: (n,p,k,z,9,02) =
(2000, 1000, 32, 800,0.18, 1).

It can be seen from Table 4.2 and Figure 4.2 that inspect has extremely competitive perfor-
mance for the single changepoint estimation task, in both low and high signal-to-noise settings.
In particular, despite the fact that it is designed for estimation of sparse changepoints, inspect
performs relatively well even when k& = p (i.e. when the signal is highly non-sparse), especially
when the signal strength is relatively large.

We now extend these ideas by investigating empirical performance under several other types

of model misspecification. Recall that the noise matrix is W = (W;,) := X — p and we define
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Wi, ..., Wy to be the column vectors of W. In models Mypnir and Meyp,, we replace Gaussian noise
by Wi+ id Unif[—v/30, v/30] and Wit id Exp(o) — o respectively. In model Mg 10c(p), we allow
the noise to have a short-range cross-sectional dependence by sampling Wy,... , W, id N,(0,%)
for ¥ := (p‘j_jq)j,j/. In model Mg(p), we extend this to global cross-sectional dependence by
sampling Wy, ..., W, - N,(0,%) for ¥ := (1—p)Ip,+ glpxp, where 1,4, is a p X p all-one matrix.
In model Memp (p), we consider an auto-regressive AR(1) temporal dependence in the noise by first
sampling W7, % N(0,02) and then setting W, := W/ and Wjy = p'/2 W1 + (1 — p)t/2 W],
for 2 <t < n. We report the performance of the different algorithms in the parameter setting
n = 2000, p = 1000, k = 32, z = 800, ¥ = 0.25, 0> = 1 in Table 4.3. It can be seen that inspect

is robust to both temporal and spatial dependence structures, as well as noise misspecification.

Model n D k z 9 inspect dc sbs scan
Munif 2000 1000 32 800 0.25 3.0 13.8 176 3.8
Mexp 2000 1000 32 800 0.25 2.8 11.9 477 5.5
Mes10c(0.2) 2000 1000 32 800 0.25 3.4 84 175 6.8
Mes 10c(0.5) 2000 1000 32 800 0.25 5.6 10.8 23.7 84
Mg(0.5) 2000 1000 32 800 0.25 1.5 75 142 35
Mc(0.9) 2000 1000 32 800 0.25 2.5 6.5 102 29
Mtemp(0.1) 2000 1000 32 800 0.25 4.0 16.9 96.2 10.1
Miemp(0.3) 2000 1000 32 800 0.25 14.5 24.9 226.4 14.7

Table 4.3: Root mean squared error for inspect, dc, sbs and scan in single changepoint estimation,
under different forms of model misspecification.

4.5.2 Multiple changepoint estimation

The use of the ‘burn-off’ parameter § in Algorithm 4.4 was mainly to facilitate our theoretical
analysis. In our simulations, we found that taking § = 0 rarely resulted in the changepoint being
estimated more than once, and we therefore recommend setting f = 0 in practice, unless prior
knowledge of the distribution of the changepoints suggests otherwise. To choose £ in the multiple
changepoint estimation simulation studies, for each (n,p), we first applied inspect to 1000 data
sets drawn from the null model with no changepoint, and took & to be the largest value of Tpax
from Algorithm 4.2. We also set Q = 1000.

We consider the simulation setting where n = 2000, p = 200, k = 40, 02> = 1 and z =
(500, 1000, 1500). Define 9 := |0 ||5/[0) ||(1]/2 to be the signal strength at the ith changepoint.
We set (9D, 93 9)) = 9(1,1.5,2) and let ¥ vary to see the performance of the algorithms at
different signal strengths. We also considered different levels of overlap between the coordinates
in which the three changes in mean structure occur: in the complete overlap case, changes occur
in the same k coordinates at each changepoint; in the half overlap case, the changes occur in
coordinates %k +1,..., %k for i = 1,2, 3; in the no overlap case, the changes occur in disjoint
sets of coordinates. Table 4.4 summarises the results. We report both the frequency counts of
the number of changepoints detected over 100 runs and two quality measures of the location
of changepoints. In particular, since changepoint estimation can be viewed as a special case of
classification, the quality of the estimated changepoints can be measured by the Adjusted Rand
Index (ARI) of the estimated segmentation against the truth (Rand, 1971; Hubert and Arabie,
1985). We report both the ARI and the percentage of runs for which a particular method attains
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the largest ARI among the four. Figure 4.3 gives a pictorial representation of the results for one
particular collection of parameter settings. Again, we find that the performance of inspect is very

encouraging on all performance measures.

1%

(1) 9(2) 93)
(W) 92) 93y | method 0 1 92 3 4 5 ARI % best
inspect 0 0 8 65 27 0 0.90 41
dc 0O 0 37 61 2 0 084 19
(0.10,0.15,0.20) sbs 0 O 3 62 30 5 0.88 18
scan 0O 0 63 3 2 0 0.80 22
inspect 0 0O 39 50 11 0 0.78 41
dc 0O 1 74 24 1 0 0.73 25
(0.08,0.12,0.16) sbs 0 0 34 48 15 3 0.75 18
scan 0 1 95 4 0 0 0.70 18
inspect 0 6 61 28 5 0 0.66 40
dc 0 26 72 2 0 0 0.56 18
(0.06,0.09.012) | 50 5 9 65 27 4 0 063 25
scan 0 11 88 1 0 0 0.68 19
inspect 0 0 10 73 14 3 091 46
dc 0 0 23 63 13 1 0.86 14
(0.10,0.15,0.20) sbs 0 O 6 69 22 3 0.85 24
scan 0O 0 65 33 2 0 0.79 16
inspect 0 0 23 50 22 5 0.82 52
dc 0 0 47 40 12 1 0.76 22
(0.08,0.12,0.16) sbs 0 0 30 48 14 8 0.77 20
scan 0O 0 94 © 0 0 071 7
inspect 0 0 48 42 10 0 0.77 55
dc 0 7 66 23 4 0 0.69 18
(0.06,0.09,0.12) sbs 0 0 58 36 6 0 0.70 14
scan 0 11 88 1 0 0 0.68 26
inspect 0 0 10 74 15 1 0.92 56
dc 0 0 37 57 6 0 0.81 12
(0.10,0.15,0.20) sbs 0 O 2 68 28 2 0.86 18
scan 0O 0 63 35 2 0 0.78 17
inspect 0 0 38 54 &8 0 0.81 54
dc 0O 0 73 26 1 0 0.69 12
(0.08,0.12,0.16) sbs 0O 0 26 60 14 0 0.76 26
scan 0O 1 8 10 0 0 0.70 9
inspect 0 1 66 31 2 0 0.71 52
dc 0 12 78 10 0 O 0.62 17
(0.06,0.09,0.12) sbs 0 1 60 30 &8 1 0.66 24
scan 0 21 77 2 0 0 0.61 14

Table 4.4: Multiple changepoint simulation results. The top, middle and bottom blocks refer to
the complete, half and no overlap settings respectively. Other simulation parameters: n = 2000,
p = 200, k = 40, z = (500, 1000, 1500) and o2 = 1.

4.6 Appendix: Proofs of the main results

Proof of Proposition 4.1. We note that the matrix A as defined in Section 4.3 has rank 1, and

its only non-zero singular value is ||0||2]|y||2- By Proposition 4.6 in Section 4.7, on the event
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Figure 4.3: Histograms of estimated changepoint locations by inspect (top-left), dc (top-right),
sbs (bottom-left) and scan (bottom-right) in the half overlap case. Parameter settings: n = 2000,
p = 200, k = 40, z = (500, 1000, 1500), (91,9 9G)) = (0.10,0.15,0.20), 02 = 1.

Q= {||E||ec < A}, we have
SAWEk
sin Z(0,v) < SAVER
[161]2 [l

By definition, [|f]|> > v/k9, and by Lemma 4.8 in Section 4.7, we have ||y|2 > inr. Thus,

sin Z(0,v) < 19?;2\% on Q. It remains to verify that P(Q§) < 4(plogn)~'/? for n > 6. By

Lemma 4.5,

2 1 _2
> < — [
P(| Bl > 20 1og(p10gn>>z\/; pllogn] 1og<plogn>{1+bg(plogn)}(plogn)

< 6(plogn)~ty/log(plogn) < 4(plogn) /2, (4.14)

as desired. O

Proof of Theorem 4.2. Recall the definition of X(®) in (4.11) and the definition 7(?) := 7(X®),
Define similarly p(? = (/19), . .,,ugi)) € RP*™ and a random matrix W2 = (W1(2), cey W,S?))
taking values in RP*™ by u'® := p,, and Wt@) = Way; now let A® = T(u®) and E® :=
T(W®). Furthermore, we write X := (0)TX® G = () Tp® W = 60)TWER T .=
O@NTT® A= (W) TAR) and E := (0™W)TE® for the one-dimensional projected images (as
row vectors) of the corresponding p-dimensional quantities. We note that T = T(X), A = T (j1)
and E = T(W).

Now, conditional on 91), the random variables X7, ... , Xp, are independent, with

Xt | o) ~ N(ﬂtvaz)’
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(2

and the row vector fi undergoes a single change at z(?) := z/2 with magnitude of change

0= fi,e 11 — i = (61)) 7.

Finally, let 2(?) ¢ argmax; <,<,,, 1 |13], so we may assume the first component of the output of the
algorithm is 2 = 22(2). Consider the set Y := {# € SP~! : /(¥,v) < 7/3}. By condition (4.12) in

the statement of the theorem and Proposition 4.1,
P(6™M € 1) > 1 —4(plogn,)~ /2. (4.15)

Note that ¥ and W) are independent, so W has independent N(0,0?%) entries. Hence, by

Lemma 4.5 in Section 4.7,

_ 2 1
P(|E|loc > 20+/logny) < \/7ﬂog N | (2 logni + 1)7112 <nyth (4.16)
™ ogny

Since T = A + E, and since (A;); and (T}); are respectively maximised at t = z(?) and t = 2(2),
we have on the event Qg := {81 € T,||E|| < 20+/Iogn;} that

Aoy — Az = (Ao — Tow) + (To) — To») + (To) — Asn))
< |AZ(2) — TZ(2)| + |T2(2) - Aé(z)‘ < 4o+/logn;.

The row vector A has the following explicit form

i Vi (m =28, i< 2@
t = _
\/%2(2)97 ift > 2,

Hence, by Lemma 4.11, on the event €,

2@ e [z - 2423 23 4 2A(ny - 23)],
where A := 40671,/ %. Since 2 = 22(®) and z = 22(® | we have that on Qy,

820 | nlogn < 160 [logn

1
15— <2A < 2V - . 417
n|z = -0 z(n—2) — 0T n (4.17)
On the event €y, we have § > vk9/2. We deduce from (4.15), (4.16) and (4.17) that
1 320 [logn n\ V2 2
Pl 25—z > 222 <4dplog( 2 d
N AR ARG Ol
as desired. O

Proof of Theorem 4.3. For i € {0,1,...,v}, we define J; := [z + [ZH5—1], 241 — [2#5—]] and

v Q
Q) = ﬂ U{Sq S Ji_1,€q S Jl}

i=1qg=1
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By a union bound, we have

(2 — zi-1 = 2[#=2=2)) (2is — 2 —2[“*2,“1>>Q

P(Sh) < V<1 B n(n+1)/2

. o\ @

<vl1- (Zz Zz—l)(zl"rl zz) < 7__1(1 _ T2/9)Q < T_le_TzQ/97
9n?

where the second inequality uses the fact that nT > 14. For any matrix M € RP*™ and 1 < £ <

r < n, we write M for the submatrix obtained by extracting columns {6, +1,...,r} of M.

Also define p/ := EX’ = p and W’ := X’ — /. Let 9/*"! be a leading left singular vector of a

maximiser of
M — (T(X'1) M) — M| M|,

for M € S, where S = &1 or Sy. For definiteness, we assume both the maximiser and its leading
left singular vector are chosen to be the lexicographically smallest possibilities. For ¢ = 1,...,Q,

we also write M1 for Mlsat1led and 314 for plsatleal. Define events

Q= () {ITWED)e <AL

1<é<r<n

N UEE)TTWED) e < A

1<t<r<n

Qg:

By Lemma 4.5,

s < () \/ Zplogm e me 31;@)) (np)9/2 < n=/2p=5/2,

Also, since 01" and X are independent, (5!“"1)T7 (W) has the same distribution as 7(G), where
G is a row vector of length r — £ + 1 with independent N(0,0?) entries. So by Lemma 4.5 again,

for sufficiently large n,
n
P(05) < () BUIT(@ll > A} < 09272

We claim that the desired event Q* := {0 = v and |Z; — z;| < np for all 1 < i < v} occurs if the

following two statements hold every time the function wbs is called in Algorithm 4.4’:

(i) There exist unique i,i3 € {0,1,...,v+ 1} such that |s — z;, | < np and |e — z;,| < np, where
(s,e) is the pair of arguments of the wbs function call.

(i) Tio) > ¢ if and only if 45 — 41 > 2, where 41 and iy are the indices defined in (i).

To see this, observe that the set of all arguments used in the calls of the function wbs is ZU {0,n},
so (i) ensures that
max min |2 — zi| < np.
2e20{0,n} 1€{0,1,...,v+1}

If |2 — 2] < mnp, we say % is ‘identified’ to z;. Moreover, each candidate changepoint b identified by
the function call wbs(s, ) in Algorithm 4.4’ satisfies min{b — s,e — b} > nf > 2np. It follows that
different elements of Z U {0,n} cannot be identified to the same z;, so no element of Z is identified
to zg or z,41, and the second part of the event 2* holds. It remains to show that each element of

{z1,...,2,} is identified by some element of Z. To see this, note that if z; is not identified, we can
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let (s*,e*) be the shortest interval such that s* + 1 < z; < e* and such that (s*,e*) are a pair of
arguments called by the wbs function in Algorithm 4.4’. By (i), the two endpoints s* and e* are
identified to z;, and z;, respectively, say, for some i; < i—1 and i3 > i+ 1. But then by (ii) a new
point b will be added to Z and the recursion continues on the pairs (s*,b) and (b, e*), contradicting

the minimality of the pair (s*,e*).

We now prove by induction on the depth of the recursion that on ; N Qs N Qs3, statements (i)
and (ii) hold every time wbs is called in Algorithm 4.4’. The first time wbs is called, s = 0 and
e =n, so (i) is satisfied with the unique choice i; = 0 and is = v + 1. This proves the base case.
Now suppose wbs is called with the pair (s, e) satisfying (i), yielding indices 41,42 € {0,1,...,v+1}
with |s — z;, | < np, |e — zi,| < np. To complete the inductive step, we need to show that (ii) also
holds, and if a new changepoint b is detected, then (i) holds for the pairs of arguments (s, b) and

(b, e). We have two cases.

Case 1: iy —i; = 1. In this case, (s +nf, e — nf] contains no changepoint. Since £ = A, on 3
we always have

Tl = max [|(81) TT (X)) <,
q€Qs e

so (ii) is satisfied with no additional changepoint detected.

Case 2: ia—i1 > 2. On the event Qq, for any i* € {i;+1,...,ia—1}, there exists ¢* € {1,...,Q}
such that s« € J;«_1 and e4« € J;«. Moreover, since min{s,- —s,e—eq+} > [n7/3]—np > nf by the
condition on f in the theorem, we have ¢* € Q; .. Since there is precisely one changepoint within
the segment (s,+, €], the matrix 7 (/l']) has rank 1; cf. (4.4). On Qq, we have | T(W'l'])| o < \.
Thus, by Proposition 4.6 and Lemma 4.8 in Section 4.7,

8Av/k(egr — 8g+
2) < (eq Sq ) < 96\ %p\/ﬁ< E

in Z (597 @) 119G : =
sinZ (091,01 /| = 0@ lanr/12 — drn 200 25

under the conditions of the theorem. Therefore, recalling the definition of gy in Algorithm 4.4’

and on the event (3,

Tk = T, = 101 ) TT (X oo 2 (|01 TT (1Tl — 1211 TT (W) o

\/(zz-* —sq)(eq —20)
€qr — Sg*

. . 1.
> /1 —(12/25)2]|007) ||, /% —A>0.358v/n7 )00 ) || — A > (7;)6 - 1>/\ > ¢ (4.18)
T

> |(al]) Tt

Thus (ii) is satisfied with a new changepoint b := s,, + 2% detected. It remains to check
that (i) holds for the pairs of arguments (s,b) and (b,e), for which it suffices to show that

minyi<;<, |b — z;| < np. To this end, we study the behaviour of univariate CUSUM statis-

tics of the projected series (9[%])T X[l To simplify notation, we define X := (ple0])T Xlao],
fi i= (0loh)T ylaol W .= (plaoly Ty laol T .= T(X), A := T(r) and E := T(W). The row vector
fi € R%0™%0 is piecewise constant with changepoints at z;, 41 — Sqy, ..., 2i,—1 — Sq¢,- Recall that

slaol ¢ ArgMmax| <ice, o, 1 |T;|. We may assume that T > 0 (the case Tiny < 0 can be
handled similarly). On Qs,

_ _ 71.6
Agtag) = Tatag) — Esag) > TI90L — X > <p - 2>A >0, (4.19)
T
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and in particular, there is at least one changepoint in (sg,,€eq,]. We may assume that zlaol is not
equal to z; — s¢, for any 41 +1 < i <y — 1, since otherwise minj<i<, |b — 2;| = 0 and we are done.
By Lemma 4.12 and after possibly reflecting the time direction, we may also assume that there is
at least one changepoint to the left of 29!, and that if z;, — 54, is the changepoint immediately left
of 219l then the series {Ay : 2z — Sq0 St < 73[‘70]} is positive and strictly decreasing. It therefore
follows by (4.19), and (4.18) with iy in place of i*, that on 3,

71.4A 4>\

A > At > Tl — X > 0.358y/n7)|00) || — 2\ > (0 358 — ) V][00 ||y >

Zip —Sqq max
(4 20)
where we use 9p < 7 < 1/2 in the final inequality. On the other hand, on the event Q3, by the

maximality of T4, we have that

_ _ _ _ pT _

Ag[Qo] > Tg[qo] - A > Tzio—sqo - > Aziofsqo —2A > <1 - 37>Az —Sq0° (421)
Our strategy here is to characterise the rate of decay of the series {4; : Zig — 8¢ <t < 2[‘10}}
from its left endpoint, so that we can conclude from (4.21) that zlao] is close to Zi, — S8q,- This is
achieved by considering the following three cases: (a) there is no changepoint to the right of 3lao]

Le. Zigp1 = €qy; (b) zigr1 <egy —land A, > A, 5 (c) zigy1 <eg, —land A, < A

Zig41*

In case (a), we apply Lemma 4.11 with ey, — sq, and z;, — 4, taking the roles of n and z in

the lemma respectively, while noting that

€qo —t

(eqo — Sqo0 )t

— Sq0

(@[QO])TQ(%) ’71[125 —

(Zio - 5‘10) v Zig — Sqo <t< €q0 ~ Sqo

takes the same form as the function f in the corresponding range in Lemma 4.11. Thus, we
conclude from (4.21) and Lemma 4.11 that

. pT

glool (Zio - SQO) < 2(6110 - Zio)ﬁ < np,
as desired.

For case (b), define
€ap ~Sag
fi= Z it
€q0 — Sqo
to be the overall average of the [ series, and let
Zig —Sqq 1 €q9 ~Sqq
fir, = Z fie — i, fin = flzyy 11-s,, — B and fig = ———— Y [ —]i
€qo — Zip+1

t:ZiO+1—SqO+1

be the centred averages of the fi series on the segments (0, z;, — Sqo], (2ig — Sqo» Zig+1 — Sqo) and

(Zig+1 — Sqo» €qo — Sqo] Tespectively. Using (4.3), we have that for z;, — sqy <t < 2Zjp41 — Sgo»
- _ €qo — S _ _
Ay = 1T = | 0 { (i = s00) () + (= 2+ 50) (=) } o (4.22)
t(eqo —Sq0 — t)

We claim that z;, —sq, > n7/15. For, if not, then in particular, z;,—1 < sq, and fir, = Pz —sqq — B
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By (4.22) and the fact that A > 0, we have fi, < 0. It follows from (4.20) that

Zip ~Sqp
0.357v/n7(fim — fir) < (0 358 — 1) Vir|(@leh) Tt < A,

_ \/(er - Sqo)(zio - sqo) (*ﬂL)

€qo — Zig

nt + zm 4v/nT,

<y — 8go(—fiL)

which can be rearranged to give —fin > 0.25(—fir,). Consequently,

Zig+1 — SQO eqa zloJrl
e
> q
(Zio+1 - Sqo €q0 Zlo-‘rl

(€qo — Sqo) (Zio+1 — 5q0) ;- i Zigt+l — 8 i
> (.25, [ Lo “d0/ %0 DO (—fin) > 0254, g, 4| —L > A, s,
€q0 — Zi0+1 Zio — Sqo

contradicting the assumption of case (b). Hence we have established the claim. We can then apply

Azio+1_SqU = \/( 0 = { )(Zig = Sg0) + (—n) (2ig+1 — Zio)}
GG

) (Zio = 40) + 025(~ i) (2ig 11 — 2i0) }

Lemma 4.13 with Ay, e, — Sq0» Zio — Sqo» Zio+1 — Sqos —fiL, —fim and 7/15 taking the roles of g(t),

n, z, ', po, p1 and 7 in the lemma respectively. By (4.21) and this lemma, we conclude that

/35.7
—ir/15

#ig ~Sag

A
é[qO] - (Zio - Sqo) < -

= 0524 = np.

Zig —sq0

For case (c), by Lemma 4.12, the series (4; : — 8g9 < t < Zjg41 — Sq,) must be strictly

Zig
decreasing, then strictly increasing, while staying positive throughout. Define ¢ := max{t €

[Zio = Squ» Ziot1 — Sqo) * At < Az, —s,, — 2}, Using a very similar argument to that in case (b),

we find that ey, — z;,+1 > n7/15, and therefore by Lemma 4.13 again, z;y4+1 — Sq, — (( + 1) < np.
> Ay > A — 2\ > A¢ and ¢ — (2iy — Sqo) > nT —np — 1.

So we can apply the same argument as in case (b) with ¢ taking the role of z;,11 and 7 — p—1/n

Now on 23, we have A%,sq0 Zig 41— 540

in place of 7, and obtain that

pTA

2150y /357 _ 15/0.52

£10) — (24, — 5,) < nI(r —p—1/m)/15 = 35701~ 1/9— 1/14)

= 0.524,, np = np,

0 —Sao

as desired. 0

4.7 Appendix: Ancillary results

The following result is a generalisation of the curvature lemma of Vu et al. (2013, Lemma 3.1).

Lemma 4.4. Let v € SP~! and u € S"~! be the leading left and right singular vectors of A € RPX"
respectively. Suppose that the first and second largest singular values of A are separated by § > 0.
Let M € RP*™_ [f either of the following two conditions holds,

(a) rank(A) =1 and ||M]|2 <1,
(b) IM]l. <1,
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then 5
o™ ~ MIB < (4, 0T — M),

Remark: We note that if v € SP~! and u € S"~! are the leading left and right singular vectors
respectively of A € RP*™_ then since the matrix operator norm and the nuclear norm are dual norms
with respect to the trace inner product, we have that (4,vu’) = v’ Au = || Allop = supyes, (A, M).
Thus, Lemma 4.4 provides a lower bound on the curvature of the function M — (A, M) as M

moves away from the maximiser of the function in S;.

Proof. Let A=V DUT be the singular value decomposition of A, where V € RP*P and U € R**"
are orthogonal matrices with column vectors v; = v, v2,...,v, and u; = u, us, ..., u, respectively,
and D € RP*" is a rectangular diagonal matrix with nonnegative entries along its main diagonal.
The diagonal entries o; := D;; are the singular values of A, and we may assume without loss of
generality that o1 > -+ > o, > 0 are all the positive singular values, for some r < min{n, p}.

Let M := VT MU and denote e[ld] := (1,0,...,0)T € R?. Then by unitary invariance of the

Frobenius norm, we have
lovu] — M3 = (el (™) = N1[3 = (|13 + 1 — 205 (4.23)

On the other hand,

<A,’U1U;r - M> = <D,€[1p](€[1n])T — M> =01 — ZO’Z‘M“' Z 0'1(1 — Mll) — 09 Z ‘Mu| (424)

i=1 =2

If condition (a) holds, then oo = 0 and 6 = 01, so by (4.23) and (4.24), we have

loruf = M]3 < 2(1 = Mu) = S(4,01u] — M),

(SN )

as desired.
On the other hand, if condition (b) holds, then by the characterisation of the nuclear norm in

Lemma 4.7 as well as its unitary invariance, we have

S Wl = s (U < ML = M, < L (4.25)
i=1 U € RP*™ diagonal
Ui, e{£1} Vi

On the other hand, if || M|, <1, then o; < 1 for all 7, so
r 1/2 r 1/2
[ M|z = (Zof) < (Zo) <1 (4.26)
i=1 i=1
Using (4.23), (4.24), (4.25) and (4.26), we therefore have
(A,vpuf{ — M) >o1(1— M) — o2 Z |Mjs| > (01 — 02)(1 — M1y)

=2

~ ~ )
> S(INTI3 + 1 - 2001, = Sfloru] — M]3,

N

as desired. O
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Lemma 4.5. Let W € RP*" have independent N(0,02) entries and let E := T(W). Then for

u > 0, we have

P(HE”OO > ’LLO') < \/zpﬂogn‘l (u+ 2/’(1,)6_“2/2.

Proof. Let B be a standard Brownian bridge on [0,1]. Then for every j € {1,...,p},

(Ejs s By o) = (C;(Ji(i)t))t—

1 n—1
n’ o n

Thus,
_ B }
Pi|Elle > oup < p]P’{ sup >
{” || } te[l/n,1—1/n] \/T 1 72&
Let t = t(s) := e2*/(e?*+1) and define the process X by X (s) := {t(s)(1—t(s))}~/2B(t(s)). Recall
that the Ornstein—-Uhlenbeck process is the centred continuous Gaussian process {U(s) : s € R}

having covariance function Cov(U(s;),U(s2)) = e~ 1*17%2l. We compute that

B 6251 291 1 B 259 292 1
COV(X(Sl)aX(SQ)) = COV( \/(6231/(6231 _—:1)2)’ \/(6252//( 255 j_— )2>>

-1 :
s1 So 2min(sy,S2
_ e e e (s1,82) 1 _ omlsimsa

e2s1 + 1 e252 + 1 e2min(s1,s2) + 1 e2 max(s1,S2) +1 :

Thus, X is the Ornstein—Uhlenbeck process and we have
B(t)
P sup ——t—|>u, =P sup | X (s)] > up < [logn|P< sup |X(s)] >up,
te[l/n,1—1/n] )

t(1—t s€[0,log(n—1)] s€[0,1]
where the inequality follows from the stationarity of the Ornstein—Uhlenbeck process and a union

bound. Let Y = {Y(¢) : t € R} be a centred continuous Gaussian process with covariance function
Cov(Y (s),Y (t)) = max(1 —|s —t],0). Since EX(t)> = EY (¢)? = 1 for all ¢ and Cov (X (s), X(t)) >
Cov(Y (s),Y(t)), by Slepian’s inequality (Slepian, 1962), sup,c(o 1) [Y (s)| stochastically dominates
Supgepo,1] | X (s)|. Hence it suffices to establish the required bound with Y in place of X. The process
Y, known as the Slepian process, has excursion probabilities given by closed-form expressions
(Slepian, 1961; Shepp, 1971): for z < u,

¢ (u)

Y (0) = :c} =1-®(u)+ —=b(x),

]P’{ sup Y(s) > u ()

s€[0,1]

where ¢ and ® are respectively the density and distribution functions of the standard normal

distribution. Hence for u > 0 we can write

P sw ol zuf = [ sw vz

s€0,1] —o0 s€0,1]

Y (0) = x}¢(x) dz

<P(IY(0)] > u) + 2/“ ]P’{ sup Y(s) > wu

—u s€[0,1]

Y (0) :x}(b(x) dz
:2@(—u)+2[u{¢() (—u) + ¢(u }da:

= 2ug(u) + 40 (~u){1 - B(~u)} < 2(u+2u")o(u),

as desired. O
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Proposition 4.6. Suppose the first and second largest singular values of A € RP*™ are separated
by § > 0. Let unit vectors v € SP~1(k) and u € S"~1({) be left and right leading singular vectors
of A respectively. Let T € RP*™ satisfy ||T — Alloo < A for some A > 0, and let S be a subset of

p x n real matrices containing vu' . Suppose one of the following two conditions holds:

(a) rank(A) =1 and S C{M € RP*™: ||M|]» < 1}
(b)) S C{M e RP*"™: |M||. < 1}.

Then for any
M e argmax{ (T, M) — | M||: },
MeS

we have

AINEL
5

low™ — M|z <

Furthermore, if U and 4 are leading left and right singular vectors of M respectively, then

max{sin Z(v,v),sin Z(4,u)} < 8)\;/@. (4.27)
Proof. Using Lemma 4.4, we have
- 2 - 2 . .
|lou" — M3 < (4, vul — M) = g(<T, vu' — M)+ (A—T,ou’ — M)). (4.28)

Since M is a maximiser of the objective function M s (T, M) — X||M||; over the set S, and since

vu' € S, we have the basic inequality
(T, ou” — M) < A(J|va [l = [|M]). (4.29)

Denote S, :={j : 1 < j <p,v; #0} and S, :={t : 1 <t < n,u; # 0}. From (4.28) and (4.29)
and the fact that [|T — Al < A, we have

2\ « .
= 7(””5““;‘”1 — |Ms,s, |1 + llvs,ug, — Ms,s,|l1)

4\ . AINEL
< —llvs,ug, — Ms,s, |l < 5

A 2 ~ ~
lou’ = M5 < < (Nlou" [ =AMl + Ajou” = M)

|ow™ — M|

Dividing through by |[vu” — M|z, we have the first desired result.
Now, by definition of the operator norm, we have

JouT - N3 = 1+ |[87]3 - 20" ATu
> 14+ T3 — 208 fop = 1+ I3 — 207 M = [loa™ — 87|

Thus,

lou™ —0a 7|2 < [lou” — M|z +[[oa" — M]|2 < 2ou’ — M|z <

8A;/’“7. (4.30)

We claim that

max{sin® Z(a, u),sin® Z(d,v)} < ou” — o3 (4.31)
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Let vg := (v +0)/2 and A := v — vg. Then

lou” = 0@ "3 = l[(vo + A)uT — (v — A)a" |13 = [lvo(u — @) "3 + | A(u+a) " |3
= Jlwoll3lu —all3 + | All3]lu + a3
> ([[ool3 + 1A[13) min(|lu — all3, u +al/3)
> {1— (a"u)?} = sin® Z(a, u),
where the penultimate step uses the fact that |vg||3 + [|Al|3 = 1. A similar inequality holds for

sin? Z(©,v), which establishes the desired claim (4.31). Inequality (4.27) now follows from (4.30)
and (4.31). O

The lemma below gives a characterisation of the nuclear norm of a real matrix.

Lemma 4.7. Forn,p > 1, letV,, and V, be respectively the sets of n x min(n, p) and p x min(n, p)

real matrices having orthonormal columns. Let A € RP*™. Then

|A]l. = sup (VUT,A>
VeV, ,UeV,

Proof. Suppose we have the singular value decomposition A = VDUT where V € Vp, UeV, and
where D = (D;;) € Rmin(n.p)xmin(n.p) s 5 diagonal matrix with decreasing non-negative diagonal

entries. Write V; for the jth column of V' and similarly U; for the jth column of U. Then

sup (VUT, A= sup (VUT,VDU")= sup (VU',D)
VeV, Uev, Vev,,Uev, Vev,,Uev,
min(n,p) min(n,p)
= sup D;;V.'U; = Dy = ||All.,
as desired. O

Lemma 4.8. Let v € R"™! be defined as in (4.5) for somen > 6 and 2 < z < n — 2. Let

Z :=min(z,n — z). Then
1. ~
1% < Ihll2 < Vlog(en/2) 2
1
svnz <l < 2.1Vnz.

Proof. Since the norms of v are invariant under substitution z — n — z, we may assume without

loss of generality that z < n — z. Hence Z = z. We have that

=y teal, 5 ot

t=1 t=z+1
_ ol Wm0 —z/n)? 1 s (Lt/n)(z/n)® 1
N {t=21 (1—t/n) n+t;1 t/n n}’

where the expression inside the bracket can be interpreted as a Riemann sum approximation to an
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integral. We therefore find that
1- 1-—
n2{11 (Z/”)(n Z/”)} < ||'y||§ < n2{11 (z/n)(n z/n) }’

where

L 1—p

z/n
L ::(1—z/n)/0 17 dr + (z/n)? //n "
= (1—2/n)*{-log(l — z/n) — z/n} + (z/n)*{—log(z/n) — (1 — z/n)}.

dr

Since —log(1 — x) > z + 22/2 for 0 < z < 1, we have I; > (2/n)?(1 — z/n)%2. When n > 6 and
2 <z <n/2, we find GMU=2 < 37, /4. Hence,
1 1
Illz 2 5nz/n)(1 = 2/n) = 7.

On the other hand, under the assumption that z < n/2, we have —log(1 — z/n) — z/n < (z/n)?.

Hence
73 < n*{(1 = 2/n)*(2/n)* + (2/n)* log(n/2)} < z*log(en/2),

as required.

For the ¢; norm, we similarly write ||7y[/; as a Riemann sum:

b= {3 e+ 5 ()

t=z+1

= ng/z{z 1 i/:fl/n (1—2/n)- % +t;11t/7;/n(z/n) : 711}

So

)

n3/2{12 - —Z/"(il_ Z/n)} <l < n3/2{12 + \/W}

where

I = (1 2/n) /0 B \/f ar + (/) /i

where function g(a) := [i' v/r/(1 —r) dr = arcsin(y/a) — y/a(l — a). We can check that g(a)/a®/?

has positive first derlvatlve throughout (0,1), and g(a)/a®? N\, 2/3 as a \, 0. This implies that
2a%/?/3 < g(a) < ma®/? /2. Consequently,

(- DO D)

Also, forn > 6 and 2 < z < n/2,

T D)

Ddr = (1 - z/n)g(z/n) + (z/n)g(1 — z/n),
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Therefore,

7l < (/2 +V3/(4+2vV2)vnz sup (1 —y)(Vy+/1-y)<21Vnz,

0<y<1/2

and

Il > (1-V3/(4+2v2)Vaz _inf (1-y)(y5+/1-y) > %\/g%

0<y<1/2

O

Proposition 4.9. Let X ~ P € P(n,p,k,1,9,7,02), with the single changepoint located at z,
say (so we may take 7 = n~'min{z,n — z}). Define A,E and T as in Section 4.3. Let v €
argmax;egp—1 |AT 92 and © € argmaxscgp—1 (k) |TT%|2. If n > 6, then with probability at least
1—4(plogn)~'/2,

< 16120 [log(plogn)

sin Z(9,v) < 3 -
pu

Proof. From the definition in Section 4.3, A = 6T, for some 6 € RP satisfying ||f]|o < k and
013 > k9% and ~ defined by (4.5). Then we have v = 6/||f]]2. Define also u := v/||v||2 and

@ :=TT"0/||T70|2. Then by definition of 9, we have
@, Ty = T o)l > v Tu= (vu',T). (4.32)

By Lemma 4.4 and (4.32), we obtain

2
Jlou" —oa")3 < ————(A,ou’ —oa")
27 [16ll2l 1l
2 2
<—— (A-Tou" —90") < ——— || E|oo|jvu’ — 90" ||;. (4.33)
[01121lv[l2 1011211V [l2

Note that in fact v € SP~1(k), by definition of the matrix A. Moreover, © € SP~1(k) too, so the

T

matrix vu' — 04" has at most 2k non-zero rows. Thus, by the Cauchy-Schwarz inequality,

lou" —oa"|y < V2kn|ou" — o0 ..

By (4.31) in the proof of Proposition 4.6, and (4.33), we find that

23| Ell ooV _ 8V Bl
Bl = orm

where we have used Lemma 4.8 in the final inequality. The desired result follows from bounding
| E|ls with high probability as in (4.14). O

sin Z(0,v) < ||UUT - @ﬁTH2 <

Lemma 4.10. Let T € RP*("=1 gnd X > 0. Then the following optimisation problem
T, M) — \|M
max {(T, M) = \|[M|:}

has a unique solution given by
~ soft(T, \)
M=—""— 4.34
I soft (T, \)]|2 ( )
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Proof. Define ¢(M,R) := (T — R, M) and R := {R € RP*(»=1 : | R||,. < A}. Then the objective

function in the lemma is given by

f(M)—Iglel%cb(M R).

We also define
9(R) := max ¢(M, R) = |T — R||2.

Since Sy and R are compact, convex subsets of RP*("~1) endowed with the trace inner product,
and since ¢ is affine and continuous in both M and R, we can use the minimax equality theorem
Fan (1953, Theorem 1) to obtain

M) = M,R) = M,R) =
e TV = Jpag i oV R) = iy tregg 0OV F) = i o ()

We note that the dual function ¢ has a unique minimum over R at R¥, say, where R;:it) =
sgn(T;,) min(A, |Tj,.]). Let

M@ e argmax ¢(M, RY), M®) ¢ argmax f(M) and R® € argminp(M®, R).
MeS, MeSs RER

Then

T — RD @Dy > (7 _ R @) ® @)y —
min g(R) = (T - B9, M'?) 2 (T - B, M'?) > (T — R, M'V) = max f(M).

Since the two extreme ends of the chain of inequalities are equal, we necessarily have

R ¢ argmin(T — R, M(p)>7
RER

and consequently,

M® ¢ argmax(T — RD, M).
MEeSs

The objective M + (T —R@ M) = (soft(T, \), M) has a unique maximiser at M defined in (4.34).

Thus, M®) is unique and has the form given in the lemma. O

The following lemma is used to control the rate of decay of the univariate CUSUM statistic

from its peak in the single changepoint setting.

Lemma 4.11. Forn € N and z € {0,1,...,n}, define f : [0,n] = R by

flt) = \/%(n*'z)a ift <z

n-t, ift > z.

nt

Then for A <1,
{t:ft) > f(2)1—A)} C[z—22A,2+2(n — 2)A].

Proof. We note first that f(¢) is maximised at t = z. If t < z and f(¢) > f(2)(1 — A), then

t
>
n—t n—=z

(1—A)>
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Equivalently,
nz(l — A)?

t>
“n-—z+z(1-A)2

> 2(1 - A)? > 2 — 22A. (4.35)

By symmetry, for ¢t > z with f(¢) > f(2)(1 — A), we have that
n—t>mn-2(1-A2%>n—2-2(n-2A. (4.36)

Combining (4.35) and (4.36), we have the desired result. O

Lemma 4.12. Suppose that 0 = 29 < 21 < -+ < 2z, < Zy41 = n are integers and that p € R™
satisfies py = py for all z; <t <t' < z;41, 0 < i < v. Define A :=T(u) € R"™L, where we treat
W as a row vector. If the series (Ay @ z; +1 < t < z;41) 1s not constantly zero, then one of the

following is true:

(a) i =0 and (As : z; + 1 <t < z;41) does not change sign and has strictly increasing absolute
values,

(b) i=v and (Ay: z; +1 <t < z;41) does not change sign and has strictly decreasing absolute
values,

(c) 1<i<v—1and (A;:2;+1<t<z.1) is strictly monotonic,

(d) 1<i<v—1and (A;:z;+1 <t < z1) does not change sign and its absolute values are

strictly decreasing then strictly increasing.

Proof. This follows from the proof of Venkatraman (1992, Lemma 2.2). O

The following lemma is used to control the rate of decay of the univariate CUSUM statistic of

the mean series away from its maximum absolute value in the case of two changepoints.

Lemma 4.13. Let 1 < z < 2 <n—1 be integers and pg, 11 € R. Define g : [z,2'] = R by

9(y) = ){zuo +(y—2)u1}

n
y(n—y
Suppose that min{z, 2z’ — z} > nt and

G = max |g(y)| = g(2). (4.37)

y€(z,2']

Then

sup ¢ (y) < —0.52Gn" 7.
y€[z,2+0.2n7]

Proof. Define r := z/n, r’ := 2'/n, B :=r(ug — 1) and f(x) := n~2g(nzx) for x € [r,r']. Then

B4z i (m+2B)x—B
= aas YT e
Condition (4.37) is equivalent to
Gn~V? = max |f(z)] = f(r) = —— B> (4.38)
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The desired result of the lemma is equivalent to

sup  f'(x) < —0.52Gn" %7,
z€[r,r40.27]
We may assume without loss of generality that it is not the case that ug = p3 = 0, because
otherwise f is the zero function and G = 0, so the result holds. In that case, G > 0, so ug > 0,
and we prove the above inequality by considering the following three cases.

Case 1: B < 0. Then pu; > pp and in fact p; + 2B < 0, because otherwise f’ is non-negative
on [r,7'], and if f/(r) = 0 (which is the only remaining possibility from (4.38)) then B = 0 and
p1 =0, so o = 0, a contradiction. Moreover, since sgn(f’(z)) = sgn((u1 +2B)z — B), we deduce
that - +23 < r < 1. In particular, g3 < —B = r(u1 — po) < p1 — po and hence po < 0, again a
contradiction.

Case 2: B > 0 and p; +2B < 0. By (4.38) and the fact that p; < 0, so that B > rug, we have
for x € [r,r 4 7] that

—B
/
< - =
P < ooy
-B {r(1—n)}'”2 =y rt/? 1
<————+ inf ———F—F+ <-2G f — < —V2Gn 12
- 2{'1"(1 — 7’)}1/2 z€ rr+7'] {LL’( )}3/2 - " me[lrnr+7'] 1‘1/2 - f "

Here, we used the fact that min{r,r — r} > 7 in the final bound.
Case 3: B > 0 and gy + 2B > 0, so that o > p1. In this case, considering sgn(f’(x)) again

yields r < We claim that

+2B

By the fundamental theorem of calculus,

B
B m+28 B — (1 4+ 2B)x
— ) = — " d
1) (,,Ll n 2B> / el —a)p32
B 2ot U
= 2B)| —— — d 4.40
w205 7)) syt 40
where we have used the substitution z = z(u) := mf2B — (uﬁ% — r)u in the second step.
Similarly,
B "7 B — (w1 +2B)7
Y R DR T A s
fr+7) f<ﬂ1+23> / _ 2{z(1 — &)}3/2 T
B >t U
= 2B - d 4.41
v 28)(r 7= 05 [ st e (440
using the substitution & = Z(u) := m% +(r+7-— M%)u. For every u € [0,1], we have
z(u) < Z(u) < (14 w)z(u). It follows that

fol u{@(u)(1 = &(u))} %2 du > fol uz(u) (1 +u) =% du 1 { (u1+2B)1/2 +rl/? }

fol u{z(u)(1 —2(u)}=3/2du fol uz(u)=3/2 du T 212 (u1+2B)1/2 +rl/2
1 (r+7)V/2 4,122
B 2/{ 22+ rrf = (4.42)
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Therefore, using (4.40), (4.41) and (4.42), together with the fact that f(r) > f(r + 1), we deduce
that

.
A
i +2B T 1404512 i

Hence (4.39) holds. For x € [r,r + 0.27], we have

—(p + 23)(2(#1{?.23) - %) < —0.471(p1 + 2B)

Fe) s =i —ep2 = Jiaraon (4.43)
If pg > 0, then r < M% <1/2 and
p1+2B = 2rpg + (1 —2r)py > 2rpg. (4.44)
If 4y <0 and r > 1/2, then
1+ 2B =2rug+ (2r — 1)(—p1) > 2ruo. (4.45)

Finally, if g1 < 0 and 7 < 1/2, then, writing a := 1 — 27 and b := u12+B23 — 1, we have from (4.39)
that a + b > 0.87 and

(1-a*B
(ILLl + QB) (lMB — 7") = T(l - 2T)NO - 27‘(1 - T)Ml = arfo + W
> (a + 1a2)7’,u0 > 0.577rpg. (4.46)
= 1+ (0.87 —a)-1 =

It follows from (4.43), (4.44), (4.45), (4.46) and (4.38) that for x € [r,r + 0.27],

—0.57T7r W0
V312r(l—7)

as desired. O

f(z) < < —0.52Gn~ Y27,
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