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Abstract

Spectral methods have become increasingly popular in designing fast algorithms for modern high-

dimensional datasets. This thesis looks at several problems in which spectral methods play a central

role. In some cases, we also show that such procedures have essentially the best performance among

all randomised polynomial time algorithms by exhibiting statistical and computational trade-offs

in those problems.

In the first chapter, we prove a useful variant of the well-known Davis–Kahan theorem, which is a

spectral perturbation result that allows us to bound of the distance between population eigenspaces

and their sample versions.

We then propose a semi-definite programming algorithm for the sparse principal component

analysis (PCA) problem, and analyse its theoretical performance using the perturbation bounds

we derived earlier. It turns out that the parameter regime in which our estimator is consistent is

strictly smaller than the consistency regime of a minimax optimal (yet computationally intractable)

estimator. We show through reduction from a well-known hard problem in computational complex-

ity theory that the difference in consistency regimes is unavoidable for any randomised polynomial

time estimator, hence revealing subtle statistical and computational trade-offs in this problem.

Such computational trade-offs also exist in the problem of restricted isometry certification.

Certifiers for restricted isometry properties can be used to construct design matrices for sparse

linear regression problems. Similar to the sparse PCA problem, we show that there is also an

intrinsic gap between the class of matrices certifiable using unrestricted algorithms and using

polynomial time algorithms.

Finally, we consider the problem of high-dimensional changepoint estimation, where we estimate

the time of change in the mean of a high-dimensional time series with piecewise constant mean

structure. Motivated by real world applications, we assume that changes only occur in a sparse

subset of all coordinates. We apply a variant of the semi-definite programming algorithm in

sparse PCA to aggregate the signals across different coordinates in a near optimal way so as

to estimate the changepoint location as accurately as possible. Our statistical procedure shows

superior performance compared to existing methods in this problem.
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Chapter 1

A useful variant of the

Davis–Kahan theorem for

statisticians

1.1 Introduction

Many statistical procedures rely on the eigendecomposition of a matrix. Examples include prin-

cipal components analysis and its cousin sparse principal components analysis (Zou, Hastie and

Tibshirani, 2006), factor analysis, high-dimensional covariance matrix estimation (Fan, Liao and

Mincheva, 2013) and spectral clustering for community detection with network data (Donath and

Hoffman, 1973). In these and most other related statistical applications, the matrix involved is

real and symmetric, e.g. a covariance or correlation matrix, or a graph Laplacian or adjacency

matrix in the case of spectral clustering.

In the theoretical analysis of such methods, it is frequently desirable to be able to argue that

if a sample version of this matrix is close to its population counterpart, and provided certain

relevant eigenvalues are well-separated in a sense to be made precise below, then a population

eigenvector should be well approximated by a corresponding sample eigenvector. A quantitative

version of such a result is provided by the Davis–Kahan sin θ theorem (Davis and Kahan, 1970).

This is a deep theorem from operator theory, involving operators acting on Hilbert spaces, though

as remarked by Stewart and Sun (1990), its ‘content more than justifies its impenetrability’. In

statistical applications, we typically do not require this full generality; in Theorem 1.1 below,

we state a version in a form typically used in the statistical literature (e.g. von Luxburg, 2007;

Rohe, Chatterjee and Yu, 2011). Since the theorem allows for the possibility that more than one

eigenvector is of interest, we need to define a notion of distance between subspaces spanned by

two sets of vectors. This can be done through the idea of principal angles: if V, V̂ ∈ Rp×d both

have orthonormal columns, then the vector of d principal angles between their column spaces is

(cos−1 σ1, . . . , cos−1 σd)
>, where σ1 ≥ · · · ≥ σd are the singular values of V̂ >V . Thus, principal

angles between subspaces can be considered as a natural generalisation of the acute angle between

two vectors. We let Θ(V̂ , V ) denote the d × d diagonal matrix whose jth diagonal entry is the

jth principal angle, and let sin Θ(V̂ , V ) be defined entrywise. A convenient way to measure the

1



2 CHAPTER 1. A VARIANT OF THE DAVIS–KAHAN THEOREM

distance between the column spaces of V and V̂ is via ‖ sin Θ(V̂ , V )‖F, where ‖ · ‖F denotes the

Frobenius norm of a matrix.

Theorem 1.1 (Davis–Kahan sin θ theorem). Let Σ, Σ̂ ∈ Rp×p be symmetric, with eigenvalues

λ1 ≥ · · · ≥ λp and λ̂1 ≥ · · · ≥ λ̂p respectively. Fix 1 ≤ r ≤ s ≤ p, let d := s − r + 1, and

let V = (vr, vr+1, . . . , vs) ∈ Rp×d and V̂ = (v̂r, v̂r+1, . . . , v̂s) ∈ Rp×d have orthonormal columns

satisfying Σvj = λjvj and Σ̂v̂j = λ̂j v̂j for j = r, r+1, . . . , s. Write δ = inf{|λ̂−λ| : λ ∈ [λs, λr], λ̂ ∈
(−∞, λ̂s+1]∪ [λ̂r−1,∞)}, where we define λ̂0 :=∞ and λ̂p+1 := −∞, and assume that δ > 0. Then

‖ sin Θ(V̂ , V )‖F ≤
‖Σ̂− Σ‖F

δ
. (1.1)

Theorem 1.1 is an immediate consequence of Theorem V.3.6 of Stewart and Sun (1990). Despite

the attractions of this bound, an obvious difficulty for statisticians is that we may have δ = 0 for a

particular realisation of Σ̂, even when the population eigenvalues are well-separated. As a toy exam-

ple to illustrate this point, suppose that Σ = diag(50, 40, 30, 20, 10) and Σ̂ = diag(54, 37, 32, 23, 21).

If we are interested in the eigenspaces spanned by the eigenvectors corresponding to the second,

third and fourth largest eigenvalues, so r = 2 and s = 4, then Theorem 1.1 above cannot be

applied, because δ = 0.

Ignoring this issue for the moment, we remark that both occurrences of the Frobenius norm

in (1.1) can be replaced with the operator norm ‖ · ‖op, or any other orthogonally invariant norm.

Frequently in applications, we have r = s = j, say, in which case we can conclude that

sin Θ(v̂j , vj) ≤
‖Σ̂− Σ‖op

min(|λ̂j−1 − λj |, |λ̂j+1 − λj |)
.

Since we may reverse the sign of v̂j if necessary, there is a choice of orientation of v̂j for which

v̂>j vj ≥ 0. For this choice, we can also deduce that ‖v̂j−vj‖ ≤ 21/2 sin Θ(v̂j , vj), where ‖·‖ denotes

the Euclidean norm.

Theorem 1.1 is typically used to show that v̂j is close to vj as follows: first, we argue that Σ̂ is

close to Σ. This is often straightforward; for instance, when Σ is a population covariance matrix,

it may be that Σ̂ is just an empirical average of independent and identically distributed random

matrices; cf. Section 1.3. Then we argue, e.g. using Weyl’s inequality (Weyl, 1912; Stewart and

Sun, 1990), that with high probability, |λ̂j−1−λj | ≥ (λj−1−λj)/2 and |λ̂j+1−λj | ≥ (λj−λj+1)/2,

so on these events ‖v̂j−vj‖ is small provided we are also willing to assume an eigenvalue separation,

or eigen-gap, condition on the population eigenvalues.

The main purpose of our work in this chapter, in Theorem 1.2 in Section 1.2 below, is to

give a variant of the Davis–Kahan sin θ theorem that has two advantages for statisticians. First,

the only eigen-gap condition is on the population eigenvalues, in contrast to the definition of δ

in Theorem 1.1 above. Similarly, only population eigenvalues appear in the denominator of the

bounds. This means there is no need for the statistician to worry about the event where |λ̂j−1−λj |
or |λ̂j+1−λj | is small. Second, we show that the expression ‖Σ̂−Σ‖F appearing in the numerator

of the bound in (1.1) can be replaced with min(d1/2‖Σ̂−Σ‖op, ‖Σ̂−Σ‖F). In Section 1.3, we give

applications where our result could be used to allow authors to assume more natural conditions or

to simplify proofs, and also give a detailed example to illustrate the potential improvements of our

bounds. Our result is also used to provide theoretical control for the spectral methods proposed

in Chapter 2 and Chapter 4. The recent result of Vu et al. (2013, Corollary 3.1) has some overlap
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with our Theorem 1.2. We discuss the differences between our work and theirs shortly after the

statement of Theorem 1.2.

Singular value decomposition, which may be regarded as a generalisation of eigendecomposition,

but which exists even when a matrix is not square, also plays an important role in many modern

algorithms in statistics and machine learning. Examples include matrix completion (Candès and

Recht, 2009), robust principal components analysis (Candès et al., 2009) and motion analysis

(Kukush, Markovsky and Van Huffel, 2002), among many others. Wedin (1972) provided the

analogue of the Davis–Kahan sin θ theorem for such general real matrices, working with singular

vectors rather than eigenvectors, but with conditions and bounds that mix sample and population

singular values. In Section 1.4, we extend the results of Section 1.2 to such settings; again our

results depend only on a condition on the population singular values. Proofs are deferred to

Section 1.5.

1.2 Main results

Theorem 1.2. Let Σ, Σ̂ ∈ Rp×p be symmetric, with eigenvalues λ1 ≥ · · · ≥ λp and λ̂1 ≥ · · · ≥ λ̂p

respectively. Fix 1 ≤ r ≤ s ≤ p and assume that min(λr−1 − λr, λs − λs+1) > 0, where we define

λ0 := ∞ and λp+1 := −∞. Let d := s − r + 1, and let V = (vr, vr+1, . . . , vs) ∈ Rp×d and

V̂ = (v̂r, v̂r+1, . . . , v̂s) ∈ Rp×d have orthonormal columns satisfying Σvj = λjvj and Σ̂v̂j = λ̂j v̂j

for j = r, r + 1, . . . , s. Then

‖ sin Θ(V̂ , V )‖F ≤
2 min(d1/2‖Σ̂− Σ‖op, ‖Σ̂− Σ‖F)

min(λr−1 − λr, λs − λs+1)
. (1.2)

Moreover, there exists an orthogonal matrix Ô ∈ Rd×d such that

‖V̂ Ô − V ‖F ≤
23/2 min(d1/2‖Σ̂− Σ‖op, ‖Σ̂− Σ‖F)

min(λr−1 − λr, λs − λs+1)
. (1.3)

We remark that even though we have stated Theorem 1.2 for V and V̂ being matrices of

eigenvectors corresponding to blocks of consecutive eigenvalues, which is the most interesting case

in statistical applications, the same result holds if we let V and V̂ be eigenvectors corresponding

to an arbitrary subset of the spectra of Σ and Σ̂ respectively. More precisely, let J ⊆ {1, . . . , p},
define λJ := {λj : j ∈ J}, λ̂J := {λ̂j : j ∈ J}, and let V, V̂ ∈ Rp×d have orthonormal columns that

are respectively eigenvectors corresponding to λJ and λ̂J . Then we have

‖ sin Θ(V̂ , V )‖F ≤
2 min(d1/2‖Σ̂− Σ‖op, ‖Σ̂− Σ‖F)

min{|λj − λj′ | : j ∈ J, j′ 6∈ J}
,

the proof which is almost exactly the same as the proof of Theorem 1.2 after changing min(λr−1−
λr, λs − λs+1) to min{|λj − λj′ | : j ∈ J, j′ 6∈ J} when necessary.

As mentioned briefly in the introduction, apart from the fact that we only impose a population

eigen-gap condition, the main difference between this result and that given in Theorem 1.1 is

in the min(d1/2‖Σ̂ − Σ‖op, ‖Σ̂ − Σ‖F) term in the numerator of the bounds. In fact, the original

statement of the Davis–Kahan sin θ theorem has a numerator of ‖V Λ−Σ̂V ‖F in our notation, where

Λ = diag(λr, λr+1, . . . , λs). However, in order to apply that theorem in practice, statisticians have

bounded this expression by ‖Σ̂−Σ‖F, yielding the bound in Theorem 1.1. When p is large, though,
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one would often anticipate that ‖Σ̂ − Σ‖op, which is the `∞ norm of the vector of eigenvalues of

Σ̂−Σ, may well be much smaller than ‖Σ̂−Σ‖F, which is the `2 norm of this vector of eigenvalues.

Thus when d � p, as will often be the case in practice, the minimum in the numerator may

well be attained by the first term. It is immediately apparent from (1.8) and (1.9) in our proof

that the smaller numerator ‖V̂ Λ − ΣV̂ ‖F could also be used in our bound for ‖ sin Θ(V̂ , V )‖F in

Theorem 1.2, while 21/2‖V̂ Λ − ΣV̂ ‖F could be used in our bound for ‖V̂ Ô − V ‖F. Our reason

for presenting the weaker bound in Theorem 1.2 is to aid direct applicability; see Section 1.3 for

examples.

As mentioned in the introduction, Vu et al. (2013, Corollary 3.1) is similar in spirit to Theo-

rem 1.2 above, and only involves a population eigen-gap condition, but there are some important

differences. First, their result focuses on the eigenvectors corresponding to the top d eigenvalues,

whereas ours applies to any set of d eigenvectors corresponding to a block of d consecutive eigen-

values, as in the original Davis–Kahan theorem. Their proof, which uses quite different techniques

from ours, does not appear to generalise immediately to this setting. Second, Corollary 3.1 of Vu

et al. (2013) does not include the d1/2‖Σ̂−Σ‖op term in the numerator of the bound. As discussed

in the previous paragraph, it is this term that would typically be expected to attain the minimum

in (1.2), especially in high-dimensional contexts. We also provide Theorem 1.4 to generalise the

result to asymmetric or non-square matrices.

The constants presented in Theorem 1.2 are sharp, as the following example illustrates. Fix

d ∈ {1, . . . , bp/2c} and let Σ = diag(λ1, . . . , λp), where λ1 = · · · = λp−2d = 5, λp−2d+1 = · · · =

λp−d = 3 and λp−d+1 = · · · = λp = 1. Suppose that Σ̂ is also diagonal, with first p− 2d diagonal

entries equal to 5, next d diagonal entries equal to 2, and last d diagonal entries equal to 2 + ε,

for some ε ∈ (0, 3). If we are interested in the middle block of eigenvectors corresponding to those

with corresponding eigenvalue 3 in Σ, then for every orthogonal matrix Ô ∈ Rd×d,

‖V̂ Ô − V ‖F = 21/2‖ sin Θ(V̂ , V )‖F = (2d)1/2 ≤ (2d)1/2(1 + ε) =
23/2d1/2‖Σ̂− Σ‖op

δ
,

where δ := min(λp−2d − λp−2d+1, λp−d − λp−d+1). In this example, the column spaces of V and

V̂ were orthogonal. However, even when these column spaces are close, our bound (1.2) is tight

up to a factor of 2, while our bound (1.3) is tight up to a factor of 23/2. To see this, suppose that

Σ = diag(3, 1) while Σ̂ = V̂ diag(3, 1)V̂ >, where

V̂ =

(
(1− ε2)1/2 −ε

ε (1− ε2)1/2

)

for some ε > 0. If v = (1, 0)> and v̂ =
(
(1 − ε2)1/2,−ε

)>
denote the top eigenvectors of Σ and Σ̂

respectively, then sin Θ(v̂, v) = ε, ‖v̂ − v‖2 = 2− 2(1− ε2)1/2 and 2‖Σ̂− Σ‖op/(3− 1) = 2ε.

It is also worth mentioning that there is another theorem in the Davis and Kahan (1970)

paper, the so-called sin 2θ theorem, which provides a bound for ‖ sin 2Θ(V̂ , V )‖F assuming only a

population eigen-gap condition. In the case d = 1, this quantity can be related to the square of

the length of the difference between the sample and population eigenvectors v̂ and v as follows:

sin2 2Θ(v̂, v) = (2v̂>v)2{1− (v̂>v)2} =
1

4
‖v̂ − v‖2(2− ‖v̂ − v‖2)(4− ‖v̂ − v‖2). (1.4)

Equation (1.4) reveals, however, that ‖ sin 2Θ(V̂ , V )‖F is unlikely to be of immediate interest to
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statisticians, and in fact, we are not aware of applications of the Davis–Kahan sin 2θ theorem in

statistics. No general bound for ‖ sin Θ(V̂ , V )‖F or ‖V̂ Ô − V ‖F can be derived from the Davis–

Kahan sin 2θ theorem since we would require further information such as v̂>v ≥ 1/21/2 when d = 1,

and such information would typically be unavailable. The utility of our bound comes from the fact

that it provides direct control of the main quantities of interest to statisticians.

Many if not most applications of this result will only need s = r, i.e. d = 1. In that case, the

statement simplifies a little; for ease of reference, we state it as a corollary:

Corollary 1.3. Let Σ, Σ̂ ∈ Rp×p be symmetric, with eigenvalues λ1 ≥ · · · ≥ λp and λ̂1 ≥ · · · ≥ λ̂p
respectively. Fix j ∈ {1, . . . , p}, and assume that min(λj−1 − λj , λj − λj+1) > 0, where we define

λ0 :=∞ and λp+1 := −∞. If v, v̂ ∈ Rp satisfy Σv = λjv and Σ̂v̂ = λ̂j v̂, then

sin Θ(v̂, v) ≤ 2‖Σ̂− Σ‖op

min(λj−1 − λj , λj − λj+1)
.

Moreover, if v̂>v ≥ 0, then

‖v̂ − v‖ ≤ 23/2‖Σ̂− Σ‖op

min(λj−1 − λj , λj − λj+1)
.

1.3 Applications in statistical contexts

In the introduction, we explained how the fact that our variant of the Davis–Kahan sin θ theorem

only relies on a population eigen-gap condition can be used to simplify many arguments in the

statistical literature. These include the work of Fan, Liao and Mincheva (2013) on large covariance

matrix estimation problems, Cai, Ma and Wu (2013) on sparse principal component estimation, and

Fan and Han (2013) on estimating the false discovery proportion in large-scale multiple testing

with highly correlated test statistics. Although our notation suggests that we have covariance

matrix estimation in mind, we emphasise that the real, symmetric matrices in Theorem 1.2 are

arbitrary, and could be for example inverse covariance matrices, or graph Laplacians as in the work

of von Luxburg (2007) and Rohe, Chatterjee and Yu (2011) on spectral clustering in community

detection with network data.

We now give some simple examples to illustrate the improvements afforded by our bound in

Theorem 1.2. Consider the spiked covariance model in which X1, . . . , Xn are independent random

vectors having the Np(0,Σ) distribution, where Σ = (Σjk) is a diagonal matrix with Σjj = 1 + θ

for some θ > 0 for 1 ≤ j ≤ d and Σjj = 1 for d + 1 ≤ j ≤ p. Let Σ̂ := n−1
∑n
i=1XiX

>
i

denote the sample covariance matrix, and let V and V̂ denote the matrices whose columns are

unit-length eigenvectors corresponding to the d largest eigenvalues of Σ and Σ̂ respectively. Fixing

n = 1000, p = 200, d = 10 and θ = 1, we found that our bound (1.2) from Theorem 1.2 was

an improvement over that from (1.1) in Theorem 1.1 in every one of 100 independent data sets

drawn from this model. In fact, no bound could be obtained from Theorem 1 for 25 realisations

because δ defined in that result was zero. The median value of ‖ sin Θ(V̂ , V )‖F was 1.80, while the

median values of the right-hand sides of (1.2) in Theorem 1.2 and (1.1) in Theorem 1.1 were 7.30

and 376 respectively. Some insight into the reasons for this marked improvement can be gained by

considering an asymptotic regime in which p/n→ γ ∈ (0, 1) as n→∞ and d and θ are considered

fixed. Then, in the notation of Theorem 1.1, δ = max(λd − λ̂d+1, 0) → max(θ − 2γ1/2 − γ, 0),

almost surely, where the limit follows from Baik and Silverstein (2006, Theorem 1.1). On the other
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hand, the denominator of the right-hand side of (1.2) in Theorem 1.2 is θ, which may be much

larger than max(θ − 2γ1/2 − γ, 0). For the numerator, in this example, it can be shown that

E(‖Σ̂− Σ‖2F) =
p(p+ 2)

n
+

2d(p+ 2)

n
θ +

d(d+ 2)

n
θ2 ≥ p2

n
.

Moreover, by Theorem 1.1(b) of Baik, Ben Arous and Péché (2005) and a uniform integrability

argument,

E(‖Σ̂− Σ‖2op) ≤ E{(λ̂1 − 1)2} →
{
θ +

(1 + θ)γ

θ

}2

.

We therefore expect the minimum in the numerator of (1.2) to be attained by the term d1/2‖Σ̂−
Σ‖op in this example.

To illustrate our bound in a high-dimensional context, consider the same data generating mecha-

nism as in our previous example. Given an even integer k ∈ {1, . . . , p}, let Σ̂ = Σ̂k be the tapering

estimator for high-dimensional sparse covariance matrices introduced by Cai, Zhang and Zhou

(2010). In other words, Σ̂ is the Hadamard product of the sample covariance matrix and a weight

matrix W = (wij) ∈ Rp×p, where wij = 1 if |i− j| ≤ k/2, wij = 2− 2|i−j|
k if k/2 < |i− j| < k and

wij = 0 otherwise. To compare the bounds provided by Theorems 1.1 and 1.2, we drew 100 data

sets from this model for each of the settings n ∈ {1000, 2000}, p ∈ {2000, 4000}, d = 10, θ = 1

and k = 20. The bound (1.2) improved on that in (1.1) for every realisation in each setting; the

medians of these bounds are presented in Table 1.3.

n p RHS1 RHS2 n p RHS1 RHS2
1000 2000 12.1 2.65 1000 4000 17.3 2.69
2000 2000 7.20 1.92 2000 4000 10.2 1.90

Table 1.1: Median values of RHS1 and RHS2, the bounds obtained from (1.1) and (1.2) respectively.

1.4 Extension to general real matrices

We now describe how the results of Section 1.2 can be extended to situations where the matrices

under study may not be symmetric and may not even be square, and where interest is in controlling

the principal angles between corresponding singular vectors.

Theorem 1.4. Suppose that A, Â ∈ Rp×q have singular values σ1 ≥ · · · ≥ σmin(p,q) ≥ 0 and

σ̂1 ≥ · · · ≥ σ̂min(p,q) respectively. Fix 1 ≤ r ≤ s ≤ rank(A) and assume that min(σr−1 − σr, σs −
σs+1) > 0, where we define σ0 := ∞ and σrank(A)+1 := −∞. Let d := s − r + 1, and let V =

(vr, vr+1, . . . , vs) ∈ Rq×d and V̂ = (v̂r, v̂r+1, . . . , v̂s) ∈ Rq×d have orthonormal columns satisfying

A>Avj = σ2
j vj and Â>Âv̂j = σ̂2

j v̂j for j = r, r + 1, . . . , s. Then

‖ sin Θ(V̂ , V )‖F ≤
4 min(d1/2‖Â−A‖op, 2

1/2‖Â−A‖F)

min(σr−1 − σr, σs − σs+1)
. (1.5)

Moreover, there exists an orthogonal matrix Ô ∈ Rd×d such that

‖V̂ Ô − V ‖F ≤
25/2 min(d1/2‖Â−A‖op, 2

1/2‖Â−A‖F)

min(σr−1 − σr, σs − σs+1)
.
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Theorem 1.4 gives bounds on the proximity of the right singular vectors of A and Â. Identical

bounds also hold if V and V̂ are replaced with the matrices of left singular vectors U and Û , where

U = (ur, ur+1, . . . , us) ∈ Rp×d and Û = (ûr, ûr+1, . . . , ûs) ∈ Rp×d have orthonormal columns

satisfying AA>uj = σ2
juj and ÂÂ>ûj = σ̂2

j ûj for j = r, r + 1, . . . , s.

As mentioned in the introduction, Theorem 1.4 can be viewed as a variant of the generalised

sin θ theorem of Wedin (1972). Similar to the situation for symmetric matrices, there are many

places in the statistical literature where Wedin’s result has been used, but where we argue that

Theorem 1.4 above would be a more natural result to which to appeal. Examples include the papers

of Van Huffel and Vandewalle (1989) on the accuracy of least squares techniques, Anandkumar

et al. (2014) on tensor decompositions for learning latent variable models, Shabalin and Nobel

(2013) on recovering a low-rank matrix from a noisy version and Sun and Zhang (2012) on matrix

completion.

1.5 Appendix

We first state an elementary lemma that will be useful in several places.

Lemma 1.5. Let A ∈ Rm×n, and let U ∈ Rm×p and W ∈ Rn×q both have orthonormal rows.

Then ‖U>AW‖F = ‖A‖F. If instead U ∈ Rm×p and W ∈ Rn×q both have orthonormal columns,

then ‖U>AW‖F ≤ ‖A‖F.

Proof. For the first claim,

‖U>AW‖2F = tr(U>AWW>A>U) = tr(AA>UU>) = tr(AA>) = ‖A‖2F.

For the second part, find a matrix U1 ∈ Rm×(m−p) such that
(
U U1

)
is orthogonal, and a matrix

W1 ∈ Rn×(n−q) such that
(
W W1

)
is orthogonal. Then

‖A‖F =

∥∥∥∥∥
(
U>

U>1

)
A
(
W W1

)∥∥∥∥∥
F

≥

∥∥∥∥∥
(
U>

U>1

)
AW

∥∥∥∥∥
F

≥ ‖U>AW‖F.

as desired.

Proof of Theorem 1.2. Define matrices Λ := diag(λr, λr+1, . . . , λs) and Λ̂ := diag(λ̂r, . . . , λ̂s).

Then

0 = Σ̂V̂ − V̂ Λ̂ = ΣV̂ − V̂ Λ + (Σ̂− Σ)V̂ − V̂ (Λ̂− Λ).

Hence

‖V̂ Λ− ΣV̂ ‖F ≤ ‖(Σ̂− Σ)V̂ ‖F + ‖V̂ (Λ̂− Λ)‖F
≤ d1/2‖Σ̂− Σ‖op + ‖Λ̂− Λ‖F ≤ 2d1/2‖Σ̂− Σ‖op, (1.6)

where we have used Lemma 1.5 in the second inequality and Weyl’s inequality (e.g. Stewart and

Sun, 1990, Corollary IV.4.9) for the final bound. Alternatively, we can argue that

‖V̂ Λ− ΣV̂ ‖F ≤ ‖(Σ̂− Σ)V̂ ‖F + ‖V̂ (Λ̂− Λ)‖F
≤ ‖Σ̂− Σ‖F + ‖Λ̂− Λ‖F ≤ 2‖Σ̂− Σ‖F, (1.7)
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where the second inequality follows from two applications of Lemma 1.5, and the final inequality

follows from the Wielandt–Hoffman theorem (e.g. Wilkinson, 1965, pp. 104–108).

Let Λ1 = diag(λ1, . . . , λr−1, λs+1, . . . , λp), and let V1 be a p × (p − d) matrix such that P =(
V V1

)
is orthogonal and such that

P>ΣP =

(
Λ 0

0 Λ1

)
.

Then

‖V̂ Λ− ΣV̂ ‖F = ‖V V >V̂ Λ + V1V
>
1 V̂ Λ− V ΛV >V̂ − V1Λ1V

>
1 V̂ ‖F

≥ ‖V1V
>
1 V̂ Λ− V1Λ1V

>
1 V̂ ‖F ≥ ‖V >1 V̂ Λ− Λ1V

>
1 V̂ ‖F, (1.8)

where the first inequality follows because V >V1 = 0, and the second from another application of

Lemma 1.5. For real matrices A and B, we write A⊗B for their Kronecker product (e.g. Stewart

and Sun, 1990, p. 30) and vec(A) for the vectorisation of A, i.e. the vector formed by stacking its

columns. We recall the standard identity vec(ABC) = (C>⊗A)vec(B), which holds whenever the

dimensions of the matrices are such that the matrix multiplication is well-defined. We also write

Im for the m-dimensional identity matrix. Then

‖V >1 V̂ Λ− Λ1V
>
1 V̂ ‖F = ‖(Λ⊗ Ip−d − Id ⊗ Λ1)vec(V >1 V̂ )‖

≥ min(λr−1 − λr, λs − λs+1)‖vec(V >1 V̂ )‖

= min(λr−1 − λr, λs − λs+1)‖ sin Θ(V̂ , V )‖F, (1.9)

where the final step follows from

‖vec(V >1 V̂ )‖2 = tr(V̂ >V1V
>
1 V̂ ) = tr

(
(Ip − V V >)V̂ V̂ >

)
= d− ‖V̂ >V ‖2F
= ‖ sin Θ(V̂ , V )‖2F.

Now (1.2) follows from (1.9), (1.8), (1.7) and (1.6).

For the second conclusion, by a singular value decomposition, we can find orthogonal matrices

Ô1, Ô2 ∈ Rd×d such that

Ô>1 V̂
>V Ô2 = diag(cos θ1, . . . , cos θd),

where θ1, . . . , θd are the principal angles between the column spaces of V and V̂ . Setting Ô =

Ô1Ô
>
2 , we have

‖V̂ Ô − V ‖2F = tr
(
(V̂ Ô − V )>(V̂ Ô − V )

)
= 2d− 2tr(Ô2Ô

>
1 V̂
>V )

= 2d− 2

d∑
j=1

cos θj ≤ 2d− 2

d∑
j=1

cos2 θj = 2‖ sin Θ(V̂ , V )‖2F.

The result now follows from our first conclusion.

Proof of Theorem 1.4. Let u1, . . . , umin(p,q) ∈ Rp and v1, . . . , vmin(p,q) ∈ Rq be the two sets of

orthonormal vectors that are left and right singular vectors of A corresponding to the singular

values σ1, . . . , σmin(p,q). In other words, we have Avj = σjuj and A>uj = σjvj . Define similarly
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û1, . . . , ûmin(p,q) and v̂1, . . . , v̂min(p,q) to be left and right singular vectors of Â corresponding to

singular values σ̂1 ≥ · · · ≥ σ̂min(p,q) ≥ 0. We symmetrise A and Â by defining

B =

(
0 A>

A 0

)
and B̂ =

(
0 Â>

Â 0

)
.

We can check that B is symmetric with eigenvalues ±σ1, . . . ,±σmin(p,q), 0, . . . , 0 and if we define

wj := 2−1/2(v>j , u
>
j )>, then w1, . . . , wmin(p,q) are orthonormal and satisfy Bwj = σjwj . Similarly,

if we define ŵj := 2−1/2(v̂>j , û
>
j )>, then ŵ1, . . . , ŵmin(p,q) are orthonormal and B̂ŵj = σ̂jŵj .

Let W = (wr, . . . , ws) ∈ R(q+p)×d and Ŵ = (ŵr, . . . , ŵs) ∈ R(q+p)×d. Then by Theorem 1.2,

we have

‖ sin Θ(Ŵ ,W )‖F ≤
2 min(d1/2‖B̂ −B‖op, ‖B̂ −B‖F)

min(σr−1 − σr, σs − σs+1)
. (1.10)

On the other hand, we can bound

‖ sin Θ(Ŵ ,W )‖2F = d− ‖Ŵ>W‖2F = d− 1

4
‖V̂ >V + Û>U‖2F

≥
(
d

2
− ‖V̂

>V ‖2F
2

)
+

(
d

2
− ‖Û

>U‖2F
2

)
=

1

2

(
‖ sin Θ(V̂ , V )‖2F + ‖ sin Θ(Û , U)‖2F

)
. (1.11)

The bound in (1.5) then follows from (1.10), (1.11) and the facts that ‖B̂−B‖op = ‖Â−A‖op and

‖B̂ −B‖F = 21/2‖Â− A‖F. Finally, the bound for ‖V̂ Ô − V ‖F follows immediately from (1.5) as

in the proof of Theorem 1.2.
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Chapter 2

Statistical and computational

trade-offs in estimation of sparse

principal components

2.1 Introduction

Principal Component Analysis (PCA), which involves projecting a sample of multivariate data onto

the space spanned by the leading eigenvectors of the sample covariance matrix, is one of the oldest

and most widely-used dimension reduction devices in Statistics. It has proved to be particularly

effective when the dimension of the data is relatively small by comparison with the sample size.

However, the work of Johnstone and Lu (2009) and Paul (2007) shows that PCA breaks down in

the high-dimensional settings that are frequently encountered in many diverse modern application

areas. For instance, consider the spiked covariance model where X1, . . . , Xn are independent

Np(0,Σ) random vectors, with Σ = Ip + θv1v
>
1 for some θ > 0 and an arbitrary unit vector

v1 ∈ Rp. In this case, v1 is the leading eigenvector (principal component) of Σ, and the classical

PCA estimate would be v̂1, a unit-length leading eigenvector of the sample covariance matrix

Σ̂ := n−1
∑n
i=1XiX

>
i . In the high-dimensional setting where p = pn is such that p/n→ c ∈ (0, 1),

Paul (2007) showed that

|v̂>1 v1|
a.s.→


√

1−c/θ2
1+c/θ if θ >

√
c

0 if θ ≤
√
c.

In other words, v̂1 is inconsistent as an estimator of v1 in this asymptotic regime. This phenomenon

is related to the so-called ‘BBP’ transition in random matrix theory (Baik, Ben Arous and Péché,

2005).

Sparse Principal Component Analysis was designed to remedy this inconsistency and to give

additional interpretability to the projected data. In the simplest case, it is assumed that the leading

eigenvector v1 of the population covariance matrix Σ belongs to the k-sparse unit Euclidean sphere

in Rp, given by

Sp−1(k) :=

{
u = (u1, . . . , up)

> ∈ Rp :

p∑
j=1

1{uj 6=0} ≤ k, ‖u‖2 = 1

}
. (2.1)

11
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A remarkable number of recent papers have proposed estimators of v1 in this setting, including

Jolliffe, Trendafilov and Uddin (2003), Zou, Hastie and Tibshirani (2006), d’Aspremont et al.

(2007), Johnstone and Lu (2009), Witten, Tibshirani and Hastie (2009), Journée et al. (2010),

Birnbaum et al. (2013), Cai, Ma and Wu (2013), Ma (2013), Shen, Shen and Marron (2013) and

Vu and Lei (2013).

Sparse PCA methods have gained high popularity in many diverse applied fields where high-

dimensional datasets are routinely handled. These include computer vision for online visual track-

ing (Wang, Lu and Yang, 2013) and pattern recognition (Naikal, Yang and Sastry, 2011), signal

processing for image compression (Majumdar, 2009) and Electrocardiography feature extraction

(Johnstone and Lu, 2009), and biomedical research for gene expression analysis (Zou, Hastie and

Tibshirani, 2006; Chun and Sündüz, 2009; Parkhomenko, Tritchler and Beyene, 2009; Chan and

Hall, 2010), RNA-seq classification (Tan, Petersen and Witten, 2014) and metabolomics studies

(Genevera and Maletić-Savatić, 2011). In these applications, Sparse PCA is employed to identify

a small number of interpretable directions that represent the data succinctly, typically as the first

stage of a more involved procedure such as classification, clustering or regression.

The success of the ultimate inferential methods in the types of application described above

depends critically on how well the particular Sparse PCA technique involved identifies the relevant

meaningful directions in the underlying population. It therefore becomes important to understand

the ways in which our ability to estimate these directions from data depends on the characteristics

of the problem, including the sample size, dimensionality, sparsity level and signal-to-noise ratio.

Such results form a key component of any theoretical analysis of an inference problem in which

Sparse PCA is employed as a first step.

In terms of the theoretical properties of existing methods for Sparse PCA, Ma (2013) was able

to show that his estimator attains the minimax rate of convergence over a certain Gaussian class of

distributions, provided that k is treated as a fixed constant. Both Cai, Ma and Wu (2013) and Vu

and Lei (2013) also study minimax properties, but treat k as a parameter of the problem that may

vary with the sample size n. In particular, for a certain class Pp(n, k) of subgaussian distributions

and in a particular asymptotic regime, Vu and Lei (2013) show1 that

inf
v̂

sup
P∈Pp(n,k)

EP {1− (v>1 v̂)2} � k log p

n
,

where the infimum is taken over all estimators v̂; see also Birnbaum et al. (2013). Moreover, they

show that the minimax rate is attained by a leading k-sparse eigenvector of Σ̂, given by

v̂kmax ∈ argmax
u∈Sp−1(k)

u>Σ̂u. (2.2)

The papers cited above would appear to settle the question of sparse principal component

estimation (at least in a subgaussian setting) from the perspective of statistical theory. However,

there remains an unsettling feature, namely that neither the estimator of Cai, Ma and Wu (2013),

nor that of Vu and Lei (2013), is computable in polynomial time2. For instance, computing the

estimator (2.2) is an NP-hard problem, and the naive algorithm that searches through all
(
p
k

)
of

the k× k principal submatrices of Σ̂ quickly becomes infeasible for even moderately large p and k.

Given that Sparse PCA is typically applied to massive high-dimensional datasets, it is crucial

1Here and below, an � bn means 0 < lim infn→∞ |an/bn| ≤ lim supn→∞ |an/bn| <∞.
2To keep the thesis as self-contained as possible, a brief introduction to this topic is provided in Section 2.8.
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to understand the rates that can be achieved using only computationally efficient procedures.

Specifically, in this chapter, we address the question of whether it is possible to find an estimator

of v1 that is computable in (randomised) polynomial time, and that attains the minimax optimal

rate of convergence when the sparsity of v1 is allowed to vary with the sample size. Some progress

in a related direction was made by Berthet and Rigollet (2013a,b), who considered the problem

of testing the null hypothesis H0 : Σ = Ip against the alternative H1 : v>Σv ≥ 1 + θ for some

v ∈ Sp−1(k) and θ > 0. Of interest here is the minimal level θ = θn,p,k that ensures small

asymptotic testing error. Under a hypothesis on the computational intractability of a certain

well-known problem from theoretical computer science (the ‘Planted Clique’ detection problem),

Berthet and Rigollet showed that for certain classes of distributions, there is a gap between the

minimal θ-level permitting successful detection with a randomised polynomial time test, and the

corresponding θ-level when arbitrary tests are allowed.

The particular classes of distributions considered in Berthet and Rigollet (2013a,b) were highly

tailored to the testing problem, and do not provide sufficient structure to study principal component

estimation. The thesis of the current chapter, however, is that from the point of view of both theory

and applications, it is the estimation of sparse principal components, rather than testing for the

existence of a distinguished direction, that is the more natural and fundamental (as well as more

challenging) problem. Indeed, we observe subtle phase transition phenomena that are absent from

the hypothesis testing problem; see Section 2.4.4 for further details. It is worth noting that different

results for statistical and computational trade-offs for estimation and testing were also observed in

the context of k-SAT formulas in Feldman, Perkins and Vempala (2015) and Berthet (2015).

Our first contribution, in Section 2.2, is to introduce a new Restricted Covariance Concentration

(RCC) condition that underpins the classes of distributions Pp(n, k, θ) over which we perform the

statistical and computational analyses (see (2.4) for a precise definition). The RCC condition is

satisfied by subgaussian distributions, and moreover has the advantage of being more robust to

certain mixture contaminations that turn out to be of key importance in the statistical analysis

under the computational constraint. We show that subject to mild restrictions on the parameter

values,

inf
v̂

sup
P∈Pp(n,k,θ)

EPL(v̂, v1) �
√
k log p

nθ2
,

where L(u, v) := {1− (u>v)2}1/2, and where no restrictions are placed on the class of estimators v̂.

By contrast, in Section 2.3, we show that a variant v̂SDP of the semidefinite relaxation estimator of

d’Aspremont et al. (2007) and Bach, Ahipaşaoǧlu and d’Aspremont (2010), which is computable

in polynomial time, satisfies

sup
P∈Pp(n,k,θ)

EPL(v̂SDP, v1) ≤ (16
√

2 + 2)

√
k2 log p

nθ2
.

Our main result, in Section 2.4, is that, under a much weaker Planted Clique hypothesis than

that in Berthet and Rigollet (2013a,b), for any α ∈ (0, 1), there exists a moderate effective sample

size asymptotic regime in which every sequence (v̂(n)) of randomised polynomial time estimators

satisfies √
nθ2

k1+α log p
sup

P∈Pp(n,k,θ)

EPL(v̂(n), v1)→∞.

This result shows that there is a fundamental trade-off between statistical and computational
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efficiency in the estimation of sparse principal components, and that there is in general no consistent

sequence of randomised polynomial time estimators in this regime. Interestingly, in a high effective

sample size regime, where even randomised polynomial time estimators can be consistent, we are

able to show in Theorem 2.7 that under additional distributional assumptions, a modified (but still

polynomial time) version of v̂SDP attains the minimax optimal rate. Thus, the trade-off disappears

for a sufficiently high effective sample size, at least over a subset of the parameter space.

Statistical and computational trade-offs have also recently been studied in the context of convex

relaxation algorithms (Chandrasekaran and Jordan, 2013), submatrix signal detection (Ma and

Wu, 2015; Chen and Xu, 2016), sparse linear regression (Zhang, Wainwright and Jordan, 2014),

community detection (Hajek, Wu and Xu, 2015) and Sparse Canonical Correlation Analysis (Gao,

Ma and Zhou, 2014). Given the importance of computationally feasible algorithms with good

statistical performance in today’s era of Big Data, it seems clear that understanding the extent of

this phenomenon in different settings will represent a key challenge for theoreticians in the coming

years.

Proofs of our main results are given in Section 2.6, while several ancillary results are deferred to

Section 2.7. We end this section by introducing some notation used throughout this chapter. We

write Sp−1 for the unit sphere in Rp. For a vector u = (u1, . . . , uM )> ∈ RM , a matrix A = (Aij) ∈
RM×N and for q ∈ [1,∞), we write ‖u‖q :=

(∑M
i=1 |ui|q

)1/q
and ‖A‖q :=

(∑M
i=1

∑N
j=1 |Aij |q

)1/q
for their (entrywise) `q-norms. We also write ‖u‖0 :=

∑M
i=1 1{ui 6=0}, supp(u) := {i : ui 6= 0},

‖A‖0 :=
∑M
i=1

∑N
j=1 1{Aij 6=0} and supp(A) := {(i, j) : Aij 6= 0}. For S ⊆ {1, . . . ,M} and T ⊆

{1, . . . , N}, we write uS := (ui : i ∈ S)> and write MS,T for the |S|× |T | submatrix of M obtained

by extracting the rows and columns with indices in S and T respectively. For positive sequences

(an) and (bn), we write an � bn to mean an/bn → 0.

2.2 Restricted Covariance Concentration and minimax rate

of estimation

Let p ≥ 2 and let P denote the class of probability distributions P on Rp with
∫
Rp x dP (x) = 0

and such that the entries of Σ(P ) :=
∫
Rp xx

> dP (x) are finite. For P ∈ P, write λ1(P ), . . . , λp(P )

for the eigenvalues of Σ(P ), arranged in decreasing order. When λ1(P ) − λ2(P ) > 0, the first

principal component v1(P ), i.e. a unit-length eigenvector of Σ corresponding to the eigenvalue

λ1(P ), is well-defined up to sign. In some places below, and where it is clear from the context,

we suppress the dependence of these quantities on P , or write the eigenvalues and eigenvectors as

λ1(Σ), . . . , λp(Σ) and v1(Σ), . . . , vp(Σ) respectively. Let X1, . . . , Xn be independent and identically

distributed random vectors with distribution P , and form the n × p matrix X := (X1, . . . , Xn)>.

An estimator of v1 is a measurable function from Rn×p to Rp, and we write Vn,p for the class of

all such estimators.

Given unit vectors u, v ∈ Rp, let Θ(u, v) := cos−1(|u>v|) denote the acute angle between u and

v, and define the loss function

L(u, v) := sin Θ(u, v) = {1− (u>v)2}1/2 =
1√
2
‖uu> − vv>‖2.

Note that L(·, ·) is invariant to sign changes of either of its arguments. The directional variance of

P along a unit vector u ∈ Rp is defined to be V (u) := E{(u>X1)2} = u>Σu. Its empirical version
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is V̂ (u) := n−1
∑n
i=1(u>Xi)

2 = u>Σ̂u, where Σ̂ := n−1
∑n
i=1XiX

>
i denotes the sample covariance

matrix.

Recall the definition of the k-sparse unit ball Sp−1(k) from (2.1). Given ` ∈ {1, . . . , p} and C ∈
(0,∞), we say P satisfies a Restricted Covariance Concentration (RCC) condition with parameters

p, n, ` and C, and write P ∈ RCCp(n, `, C), if

P
{

sup
u∈Sp−1(`)

|V̂ (u)− V (u)| ≥ C max

(√
` log(p/δ)

n
,
` log(p/δ)

n

)}
≤ δ (2.3)

for all δ > 0. It is also convenient to define

RCCp(`, C) :=

∞⋂
n=1

RCCp(n, `, C) and RCCp(C) :=

p⋂
`=1

RCCp(`, C).

The RCC conditions amount to uniform Bernstein-type concentration properties of the directional

variance around its expectation along all sparse directions. This condition turns out to be partic-

ularly convenient in the study of convergence rates in Sparse PCA, and moreover, as we show in

Proposition 2.1 below, subgaussian distributions satisfy an RCC condition for all sample sizes n

and all sparsity levels `. Recall that a mean-zero distribution Q on Rp is subgaussian with parame-

ter3 σ2 ∈ (0,∞), written Q ∈ subgaussianp(σ
2), if whenever Y ∼ Q, we have E(eu

>Y ) ≤ eσ2‖u‖2/2

for all u ∈ Rp.

Proposition 2.1. (i) For every σ > 0, we have subgaussianp(σ
2) ⊆ RCCp

(
16σ2(1 + 9/ log p)

)
.

(ii) In the special case where P = Np(0,Σ), we have P ∈ RCCp
(
8λ1(P )(1 + 9

log p )
)
.

Our convergence rate results for sparse principal component estimation will be proved over the

following classes of distributions. For θ > 0, let

Pp(n, k, θ) :=
{
P ∈ RCCp(n, 2, 1)∩RCCp(n, 2k, 1) : v1(P ) ∈ Sp−1(k), λ1(P )− λ2(P ) ≥ θ

}
. (2.4)

Observe that RCC classes have the scaling property that if the distribution of a random vector Y

belongs to RCCp(n, `, C) and if r > 0, then the distribution of rY belongs to RCCp(n, `, r
2C). It

is therefore convenient to fix C = 1 in both RCC classes in (2.4), so that θ becomes a measure of

the signal-to-noise level.

For a symmetric A ∈ Rp×p, define v̂kmax(A) := sargmaxu∈Sp−1(k) u
>Au to be the k-sparse

maximum eigenvector of A, where sargmax denotes the smallest element of the argmax in the lexi-

cographic ordering. (This choice ensures that v̂kmax(A) is a measurable function of A.) Theorem 2.2

below gives a finite-sample minimax upper bound for estimating v1(P ) over Pp(n, k, θ). For similar

bounds over Gaussian or subgaussian classes, see Cai, Ma and Wu (2013) and Vu and Lei (2013),

who consider the more general problem of principal subspace estimation. As well as working with

a larger class of distributions, our different proof techniques facilitate an explicit constant.

Theorem 2.2. For 2k log p ≤ n, the k-sparse empirical maximum eigenvector, v̂kmax(Σ̂), satisfies

sup
P∈Pp(n,k,θ)

EPL
(
v̂kmax(Σ̂), v1(P )

)
≤ 2
√

2

(
1 +

1

log p

)√
k log p

nθ2
≤ 7

√
k log p

nθ2
.

3Note that some authors say that distributions satisfying this condition are subgaussian with parameter σ, rather
than σ2.
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A matching minimax lower bound of the same order in all parameters k, p, n and θ is given

below. The proof techniques are adapted from Vu and Lei (2013).

Theorem 2.3. Suppose that 7 ≤ k ≤ p1/2 and 0 < θ ≤ 1
16(1+ 9

log p )
. Then

inf
v̂∈Vn,p

sup
P∈Pp(n,k,θ)

EPL
(
v̂, v1(P )

)
≥ min

{
1

1660

√
k log p

nθ2
,

5

18
√

3

}
.

We remark that the conditions in the statement of Theorem 2.3 can be strengthened or weak-

ened, with a corresponding weakening or strengthening of the constants in the bound. For in-

stance, a bound of the same order in k, p, n and θ could be obtained assuming only that k ≤ p1−δ

for some δ > 0. The upper bound on θ is also not particularly restrictive. For example, if

P = Np(0, σ
2Ip + θe1e

>
1 ), where e1 is the first standard basis vector in Rp, then it can be shown

that the condition P ∈ Pp(n, k, θ) requires that θ ≤ 1− σ2.

2.3 Computationally efficient estimation

As was mentioned in the introduction, the trouble with the estimator v̂kmax(Σ̂) of Section 2.2, as well

as the estimator of Cai, Ma and Wu (2013), is that there are no known polynomial time algorithms

for their computation. In this section, we therefore study the (polynomial time) semidefinite

relaxation estimator v̂SDP defined by the Algorithm 2.1 below. This estimator is a variant of

one proposed by d’Aspremont et al. (2007), whose support recovery properties were studied for

a particular class of Gaussian distributions and a known sparsity level by Amini and Wainwright

(2009).

To motivate the main step (Step 2) of Algorithm 2.1, it is convenient to letM denote the class

of p×p non-negative definite real, symmetric matrices, and letM1 := {M ∈M : tr(M) = 1}. Let

M1,1(k2) := {M ∈M1 : rank(M) = 1, ‖M‖0 = k2} and observe that

max
u∈Sp−1(k)

u>Σ̂u = max
u∈Sp−1(k)

tr(Σ̂uu>) = max
M∈M1,1(k2)

tr(Σ̂M).

In the final expression, the rank and sparsity constraints are non-convex. We therefore adopt

the standard semidefinite relaxation approach of dropping the rank constraint and replacing the

sparsity (`0) constraint with an `1 penalty to obtain the convex optimisation problem

max
M∈M1

{
tr(Σ̂M)− λ‖M‖1

}
(2.5)

Algorithm 2.1: Pseudo-code for computing the semidefinite relaxation estimator v̂SDP

Input: X = (X1, . . . , Xn)> ∈ Rn×p, λ > 0, ε > 0
begin

Step 1: Set Σ̂← n−1X>X.

Step 2: For f(M) := tr(Σ̂M)− λ‖M‖1, let M̂ ε be an ε-maximiser of f in M1. In other
words, M̂ ε satisfies f(M̂ ε) ≥ maxM∈M1

f(M)− ε.
Step 3: Let v̂SDP := v̂SDP

λ,ε ∈ argmaxu:‖u‖2=1 u
>M̂ εu.

end

Output: v̂SDP
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We now discuss the complexity of computing v̂SDP in detail. One possible way of implementing

Step 2 is to use a generic interior-point method. However, as shown in Nesterov (2005), Nemirovski

(2004) and Bach, Ahipaşaoǧlu and d’Aspremont (2010), certain first-order algorithms (i.e. methods

requiring O(1/ε) steps to find a feasible point achieving an ε-approximation of the optimal objective

function value) can significantly outperform such generic interior-point solvers. The key idea in

both Nesterov (2005) and Nemirovski (2004) is that the optimisation problem in Step 2 can be

rewritten in a saddlepoint formulation:

max
M∈M1

tr(Σ̂M)− λ‖M‖1 = max
M∈M1

min
U∈U

tr
(
(Σ̂ + U)M

)
,

where U := {U ∈ Rp×p : U> = U, ‖U‖∞ ≤ λ}. The fact that tr
(
(Σ̂ + U)M

)
is linear in

both M and U makes the problem amenable to proximal methods. In Algorithm 2.2 below,

we state a possible implementation of Step 2 of Algorithm 2.1, derived from the ‘basic im-

plementation’ in Nemirovski (2004). In the algorithm, the ‖ · ‖2-norm projection ΠU (A) of a

symmetric matrix A = (Aij) ∈ Rp×p onto U is given by
(
ΠU (A)

)
ij

:= sign(Aij) min(|Aij |, λ).

For the projection ΠM1(A), first decompose A =: PDP> for some orthogonal P and diagonal

D = diag(d), where d = (d1, . . . , dp)
> ∈ Rp. Now let ΠW(d) be the projection image of d on the

unit (p−1)-simplexW := {(w1, . . . , wp) : wj ≥ 0,
∑p
j=1 wj = 1}. Finally, transform back to obtain

ΠM1(A) := Pdiag
(
ΠW(d)

)
P>. The fact that Algorithm 2.2 outputs an ε-maximiser of the opti-

misation problem in Step 2 of Algorithm 2.1 is a consequence of Nemirovski (2004, Theorem 3.2),

which implies in our particular case that after N iterations,

max
M∈M1

min
U∈U

tr
(
(Σ̂ + U)M

)
− min
U∈U

tr
(
(Σ̂ + U)M̂ ε

)
≤ λ2p2 + 1√

2N
.

In Algorithm 2.1, Step 1 takes O(np2) floating point operations; Step 3 takes O(p3) operations in

the worst case, though other methods such as the Lanczos method (Lanczos, 1950; Golub and Van

Loan, 1996) require only O(p2) operations under certain conditions. Our particular implementation

(Algorithm 2.2) for Step 2 requires O(λ
2p2+1
ε ) iterations in the worst case, though this number

may often be considerably reduced by terminating the for loop if the primal-dual gap

λ1(Ût + Σ̂)− {tr(M̂tΣ̂)− λ‖M̂t‖1}

falls below ε, where Ût := t−1
∑t
s=1 U

′
s and M̂t := t−1

∑t
s=1M

′
s. The most costly step within

the for loop is the eigendecomposition used to compute the projection ΠM1
, which takes O(p3)

operations. Taking λ := 4
√

log p
n and ε := log p

4n as in Theorem 2.5 below, we find an overall

complexity for the algorithm of O
(
max(p5, np

3

log p )
)

operations in the worst case.

We now turn to the theoretical properties of the estimator v̂SDP computed using Algorithm 2.1.

Lemma 2.4 below is stated in a general, deterministic fashion, but will be used in Theorem 2.5

below to bound the loss incurred by the estimator on the event that the sample and population

covariance matrices are close in `∞-norm. See also Vu et al. (2013, Theorem 3.1) for a closely

related result in the context of a projection matrix estimation problem. Recall that M denotes

the class of p× p non-negative definite real, symmetric matrices.

Lemma 2.4. Let Σ ∈M be such that θ := λ1(Σ)−λ2(Σ) > 0. Let X ∈ Rn×p and Σ̂ := n−1X>X.

For arbitrary λ > 0 and ε > 0, if ‖Σ̂− Σ‖∞ ≤ λ, then the semidefinite relaxation estimator v̂SDP
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Algorithm 2.2: A possible implementation of Step 2 of Algorithm 2.1

Input: Σ̂ ∈M, λ > 0, ε > 0.
begin

Set M0 ← Ip/p, U0 ← 0 ∈ Rp×p and N ←
⌈
λ2p2+1√

2ε

⌉
.

for t← 1 to N do

U ′t ← ΠU
(
Ut−1 − 1√

2
Mt−1

)
, M ′t ← ΠM1

(
Mt−1 + 1√

2
Σ̂ + 1√

2
Ut−1

)
.

Ut ← ΠU
(
Ut−1 − 1√

2
M ′t
)
, Mt ← ΠM1

(
Mt−1 + 1√

2
Σ̂ + 1√

2
U ′t
)
.

end

Set M̂ ε ← 1
N

∑N
t=1M

′
t .

end

Output: M̂ ε

in Algorithm 2.1 with inputs X, λ, ε satisfies

L
(
v̂SDP, v1(Σ)

)
≤ 4
√

2λk

θ
+ 2

√
ε

θ
.

Theorem 2.5 below describes the statistical properties of the estimator v̂SDP over the classes

Pp(n, k, θ). It reveals in particular that we incur a loss of statistical efficiency of a factor of
√
k

compared with the minimax upper bound in Theorem 2.2 in Section 2.2 above. As well as applying

Lemma 2.4 on the event {‖Σ̂ − Σ‖∞ ≤ λ}, the proof relies on Lemma 2.12 in Section 2.7, which

relates the event {‖Σ̂ − Σ‖∞ > λ} to the RCCp(n, 2, 1) condition. Indeed, this explains why we

incorporated this condition into the definition of the Pp(n, k, θ) classes.

Theorem 2.5. For an arbitrary P ∈ Pp(n, k, θ) and X1, . . . , Xn
iid∼ P , we write v̂SDP(X) for

the output of Algorithm 2.1 with input X := (X1, . . . , Xn)>, λ := 4
√

log p
n and ε := log p

4n . If

4 log p ≤ n ≤ k2p2θ−2 log p and θ ∈ (0, k], then

sup
P∈Pp(n,k,θ)

EPL
(
v̂SDP(X), v1(P )

)
≤ min

{
(16
√

2 + 2)

√
k2 log p

nθ2
, 1

}
. (2.6)

We remark that v̂SDP has the attractive property of being fully adaptive in the sense that it can

be computed without knowledge of the sparsity level k. On the other hand, v̂SDP is not necessarily

k-sparse. If a specific sparsity level is desired in a particular application, Algorithm 2.1 can be

modified to obtain a (non-adaptive) k-sparse estimator having similar estimation risk. Specifically,

we can find

v̂SDP
0 ∈ argmin

u∈Sp−1(k)

L(v̂SDP, u).

Since L(v̂SDP, u)2 = 1−
(
u>v̂SDP

)2
, we can compute v̂SDP

0 by setting all but the top k coordinates

of v̂SDP in absolute value to zero and renormalising the vector. In particular, v̂SDP
0 is computable

in polynomial time. We deduce that under the same conditions as in Theorem 2.5, for any P ∈
Pp(n, k, θ),

EL
(
v̂SDP

0 , v1

)
≤ E

[{
L
(
v̂SDP

0 , v̂SDP
)

+ L
(
v̂SDP, v1

)}
1{‖Σ̂−Σ‖∞≤λ}

]
+ P

(
‖Σ̂− Σ‖∞ > λ

)
≤ 2E

{
L
(
v̂SDP

0 , v1

)
1{‖Σ̂−Σ‖∞≤λ}

}
+ P

(
‖Σ̂− Σ‖∞ > λ

)
≤ (32

√
2 + 3)

√
k2 log p

nθ2
,
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where the final inequality follows from the proof of Theorem 2.5.

2.4 Computational lower bounds

Theorems 2.5 and 2.2 reveal a gap between the provable performance of our semidefinite relaxation

estimator v̂SDP and the minimax optimal rate. It is natural to ask whether there exists a compu-

tationally efficient algorithm that achieves the statistically optimal rate of convergence. In fact, as

we will see in Theorem 2.6 below, the effective sample size region over which v̂SDP is consistent is

essentially tight among the class of all randomised polynomial time algorithms4. Indeed, any ran-

domised polynomial time algorithm with a faster rate of convergence could otherwise be adapted

to solve instances of the Planted Clique problem that are believed to be hard; see Section 2.4.1

below for formal definitions and discussion. In this sense, the extra factor of
√
k is an intrinsic

price in statistical efficiency that we have to pay for computational efficiency, and the estimator

v̂SDP studied in Section 2.3 has essentially the best possible rate of convergence among computable

estimators.

2.4.1 The Planted Clique problem

A graph G := (V (G), E(G)) is an ordered pair in which V (G) is a countable set, and E(G) is a

subset of
{
{x, y} : x, y ∈ V (G), x 6= y

}
. For x, y ∈ V (G), we say x and y are adjacent, and write

x ∼ y, if {x, y} ∈ E(G). A clique C is a subset of V (G) such that {x, y} ∈ E(G) for all distinct

x, y ∈ C. The problem of finding a clique of maximum size in a given graph G is known to be

NP-complete (Karp, 1972). It is therefore natural to consider randomly generated input graphs

with a clique ‘planted’ in, where the signal is much less confounded by the noise. Such problems

were first suggested by Jerrum (1992) and Kučera (1995) as a potentially easier variant of the

classical Clique problem.

Let Gm denote the collection of all graphs with m vertices. Define Gm to be the distribution

on Gm associated with the standard Erdős–Rényi random graph. In other words, under Gm, each

pair of vertices is adjacent independently with probability 1/2. For any κ ∈ {1, . . . ,m}, let Gm,κ
be a distribution on Gm constructed by first picking κ distinct vertices uniformly at random and

connecting all edges (the ‘planted clique’), then joining each remaining pair of distinct vertices

by an edge independently with probability 1/2. The Planted Clique problem has input graphs

randomly sampled from the distribution Gm,κ. Due to the random nature of the problem, the

goal of the Planted Clique problem is to find (possibly randomised) algorithms that can locate a

maximum clique Km with high probability.

It is well known that, for a standard Erdős–Rényi graph, |Km|
2 log2m

a.s.→ 1 (e.g. Grimmett and

McDiarmid, 1975). In fact, if κ = κm is such that lim infm→∞
κ

2 log2m
> 1, it can be shown

that the planted clique is asymptotically almost surely also the unique maximum clique in the

input graph. As observed in Kučera (1995), there exists C > 0 such that, if κ > C
√
m logm,

then asymptotically almost surely, vertices in the planted clique have larger degrees than all other

vertices, in which case they can be located in O(m2) operations. Alon, Krivelevich and Sudakov

(1998) improved the above result by exhibiting a spectral method that, given any c > 0, identifies

planted cliques of size κ ≥ c
√
m asymptotically almost surely.

4In this section, terms from computational complexity theory defined Section 2.8 are written in italics at their
first occurrence.
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Although several other polynomial time algorithms have subsequently been discovered for the

κ ≥ c
√
m case (e.g. Feige and Krauthgamer, 2000; Feige and Ron, 2010; Ames and Vavasis, 2011),

there is no known randomised polynomial time algorithm that can detect below this threshold.

Jerrum (1992) hinted at the hardness of this problem by showing that a specific Markov chain ap-

proach fails to work when κ = O(m1/2−δ) for some δ > 0. Feige and Krauthgamer (2003) showed

that Lovàcz–Schrijiver semidefinite programming relaxation methods also fail in this regime. Feld-

man et al. (2013) recently presented further evidence of the hardness of this problem by showing

that a broad class of algorithms, which they refer to as ‘statistical algorithms’, cannot solve the

Planted Clique problem with κ = O(m1/2−δ) in randomised polynomial time, for any δ > 0. It is

now widely accepted in theoretical computer science that the Planted Clique problem is hard, in

the sense that the following assumption holds with τ = 0:

(A1)(τ) For any sequence κ = κm such that κ ≤ mβ for some 0 < β < 1/2 − τ , there is no

randomised polynomial time algorithm that can correctly identify the planted clique with

probability tending to 1 as m→∞.

We state the assumption in terms of a general parameter τ ∈ [0, 1/2), because it will turn out

below that even if only (A1)(τ) holds for some τ ∈ (0, 1/6), there are still regimes of (n, p, k, θ) in

which no randomised polynomial time algorithm can attain the minimax optimal rate.

Researchers have used the hardness of the planted clique problem as an assumption to prove

various impossibility results in other problems. Examples include cryptographic applications (Juels

and Peinado, 2000; Applebaum, Barak and Wigderson, 2010), testing k-wise independence (Alon

et al., 2007) and approximating Nash equilibria (Hazan and Krauthgamer, 2011). Recent works

by Berthet and Rigollet (2013a,b) and Ma and Wu (2015) used a stronger hypothesis on the

hardness of detecting the presence of a planted clique to establish computational lower bounds

in sparse principal component detection and sparse submatrix detection problems respectively.

Our Assumption (A1)(0) assumes only the computational intractability of identifying the entire

planted clique, so in particular, is implied by Hypothesis APC of Berthet and Rigollet (2013b) and

Hypothesis 1 of Ma and Wu (2015).

2.4.2 Main theorem

In this section, we use a reduction argument to show that, under Assumption (A1)(τ), it is im-

possible to achieve the statistically optimal rate of sparse principal component estimation using

randomised polynomial time algorithms. For ρ ∈ N, and for x ∈ R, we let [x]ρ denote x in its

binary representation, rounded to ρ significant figures. Let [R]ρ := {[x]ρ : x ∈ R}. We say (v̂(n)) is

a sequence of randomised polynomial time estimators of v1 ∈ Rpn if v̂(n) is a measurable function

from Rn×pn to Rpn and if, for every ρ ∈ N, there exists a randomised polynomial time algorithm

Mpr such that for any x ∈ ([R]ρ)
n×pn we have [v̂(n)(x)]ρ = [Mpr(x)]ρ. The sequence of semidefinite

programming estimators (v̂SDP) defined in Section 2.3 is an example of a sequence of randomised

polynomial time estimators of v1(P ).

Theorem 2.6. Fix τ ∈ [0, 1/6), assume (A1)(τ), and let α ∈ (0, 1−6τ
1−2τ ). For any n ∈ N, let

(p, k, θ) = (pn, kn, θn) be parameters indexed by n such that k = O(p1/2−τ−δ) for some δ ∈ (0, 1/2−
τ), n = o(p log p) and θ ≤ k2/(1000p). Suppose further that

k1+α log p

nθ2
→ 0
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as n → ∞. Let X be an n × p matrix with independent rows, each having distribution P . Then

every sequence (v̂(n)) of randomised polynomial time estimators of v1(P ) satisfies√
nθ2

k1+α log p
sup

P∈Pp(n,k,θ)

EPL
(
v̂(n)(X), v1(P )

)
→∞

as n→∞.

We note that the choices of parameters in the theorem imply that

lim inf
n→∞

k2 log p

nθ2
≥ lim inf

n→∞

p

k2
=∞. (2.7)

As remarked in Section 2.4.1 above, the main interest in this theorem comes from the case τ = 0.

Here, our result reveals not only that no randomised polynomial time algorithm can attain the

minimax optimal rate, but also that in the effective sample size regime described by (2.7), and

provided the other side conditions of Theorem 2.6 hold, there is in general no consistent se-

quence of randomised polynomial time estimators. This is in contrast to Theorem 2.2, where

we saw that consistent estimation with a computationally inefficient procedure is possible in

the asymptotic regime (2.7). A further consequence of Theorem 2.6 is that, since any sequence

(p, k, θ) = (pn, kn, θn) satisfying the conditions of Theorem 2.6 also satisfies the conditions of The-

orem 2.5 for large n, the conclusion of Theorem 2.5 cannot be improved in terms of the exponent of

k (at least, not uniformly over the parameter range given there). As mentioned in the introduction,

for a sufficiently large effective sample size, where even randomised polynomial time estimators can

be consistent, the statistical and computational trade-off revealed by Theorems 2.2 and 2.6 may

disappear. See Section 2.4.4 below for further details, and Gao, Ma and Zhou (2014) for recent

extensions of these results to different classes of distributions.

Even though Assumption (A1)(0) is widely believed, we also present results under the weaker

family of conditions (A1)(τ) for τ ∈ (0, 1/6) to show that a statistical and computational trade-

off still remains for certain parameter regimes even in these settings. The reason for assuming

τ < 1/6 is to guarantee that there is a regime of parameters (n, p, k, θ) satisfying the conditions of

the theorem. Indeed, if τ ∈ [0, 1/6) and α ∈ (0, 1−6τ
1−2τ ), we can set p = n, k = n1/2−τ−δ for some

δ ∈
(
0, 1

2 − τ −
1

3−α
)
, θ = k2/(1000n), and in that case,

k1+α log p

nθ2
=

106n log n

k3−α → 0,

as required.

2.4.3 Sketch of the proof of the main theorem

The proof of Theorem 2.6 relies on a randomised polynomial time reduction from the Planted Clique

problem to the sparse principal component estimation problem. The reduction is adapted from

the ‘bottom-left transformation’ of Berthet and Rigollet (2013b), and requires a rather different

and delicate analysis.

In greater detail, suppose for a contradiction that we were given a randomised polynomial time

algorithm v̂ for the Sparse PCA problem with a rate supP∈Pp(n,k,θ) EPL(v̂, v1) ≤
√

k1+α log p
nθ2 for

some α < 1. Set m ≈ p log p and κ ≈ k log p, so we are in the regime where (A1)(τ) holds. Given
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any graph G ∼ Gm,κ with planted clique K ⊆ V (G), we draw n+ p vertices u1, . . . , un, w1, . . . , wp

uniformly at random without replacement from V (G). On average there are about κ/ log κ clique

vertices in {w1, . . . , wp}, and our initial aim is to identify a large fraction of these vertices. To do

this, we form an n × p matrix A := (1ui∼wj )i,j , which is an off-diagonal block of the adjacency

matrix of G. We then replace each 0 in A with −1 and flip the signs of each row independently with

probability 1/2 to obtain a new matrix X. Each component of the ith row of X has a marginal

Rademacher distribution, but if ui is a clique vertex, then the components {j : wj ∈ K} are

perfectly correlated. Writing γ′ := (1{wj∈K})j=1,...,p, the leading eigenvector of E{X>X/n|γ′} is

proportional to γ′, which suggests that a spectral method might be able to find {w1, . . . , wp} ∩K
with high probability. Unfortunately, the joint distribution of the rows of X is difficult to deal with

directly, but since n and p are small relative to m, we can approximate γ′ by a random vector γ

having independent Bern(κ/m) components. We can then approximate X by a matrix Y, whose

rows are independent conditional on γ and have the same marginal distribution conditional on

γ = g as the rows of X conditional on γ′ = g.

It turns out that the distribution of an appropriately scaled version of an arbitrary row of Y,

conditional on γ = g, belongs to Pp(n, k, θ) for g belonging to a set of high probability. We could

therefore apply our hypothetical randomised polynomial time Sparse PCA algorithm to the scaled

version of the matrix Y to find a good estimate of γ, and since γ is close to γ′, this accomplishes

our initial goal. With high probability, the remaining vertices in the planted clique are those

having high connectivity to the identified clique vertices in {w1, . . . , wp}, which contradicts the

hypothesis (A1)(τ).

2.4.4 Computationally efficient optimal estimation on a subparameter

space in the high effective sample size regime

Theorems 2.2, 2.3, 2.5 and 2.6 enable us to summarise, in Table 2.1 below, our knowledge of the best

possible rate of estimation in different asymptotic regimes, both for arbitrary statistical procedures

and for those that are computable in randomised polynomial time. (For ease of exposition, we omit

here the additional, relatively mild, side constraints required for the above theorems to hold.) The

fact that Theorem 2.6 is primarily concerned with the setting in which k2 log p
nθ2 → ∞ raises the

question of whether computationally efficient procedures could attain a faster rate of convergence

in the high effective sample size regime where n� k2 log p
θ2 .

The purpose of this section is to extend the ideas of Amini and Wainwright (2009) to show that,

indeed, a variant of the estimator v̂SDP introduced in Section 2.3 attains the minimax optimal rate

of convergence in this asymptotic regime, at least over a subclass of the distributions in Pp(n, k, θ).
Ma (2013) and Yuan and Zhang (2013) show similar results for an iterative thresholding algorithm

for other subclasses of Pp(n, k, θ) under an extra upper bound condition on λ2(P )/λ1(P ); see also

Wang, Lu and Liu (2014) and Deshpande and Montanari (2014).

Let T denote the set of non-negative definite matrices Σ ∈ Rp×p of the form

Σ = θv1v
>
1 +

(
Ik 0

0 Γp−k

)
,

where v1 ∈ Rp is a unit vector such that S := supp(v1) has cardinality k and where Γp−k ∈
R(p−k)×(p−k) is non-negative definite and satisfies λ1(Γp−k) ≤ 1. (Here, and in the proof of
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Table 2.1: Rates of convergence of in different asymptotic regimes

n� k log p

θ2

k log p

θ2
� n� k2 log p

θ2
n� k2 log p

θ2

all estimators � 1 �
√
k log p

nθ2
�
√
k log p

nθ2

poly-time estimators � 1 � 1 .

√
k2 log p

nθ2

Theorem 2.7 below, the block matrix notation refers to the (S, S), (S, Sc), (Sc, S) and (Sc, Sc)

blocks.) We now define a subclass of distributions

P̃p(n, k, θ) :=

{
P ∈ Pp(n, k, θ) : Σ(P ) ∈ T ,min

j∈S
|v1,j | ≥ 16

√
k log p

nθ2

}
.

We remark that P̃p(n, k, θ) is non-empty only if
√

k2 log p
nθ2 ≤ 1

16 , since

1 = ‖v1,S‖2 ≥ k1/2 min
j∈S
|v1,j | ≥ 16

√
k2 log p

nθ2
.

This is one reason that the theorem below only holds in the high effective sample size regime.

Our variant of v̂SDP is described in Algorithm 2.3 below. We remark that v̂MSDP, like v̂SDP, is

computable in polynomial time.

Algorithm 2.3: Pseudo-code for computing the modified semidefinite relaxation estimator
v̂MSDP

Input: X = (X1, . . . , Xn)> ∈ Rn×p, λ > 0, ε > 0, τ > 0.
begin

Step 1: Set Σ̂← n−1X>X.

Step 2: For f(M) := tr(Σ̂M)− λ‖M‖1, let M̂ ε be an ε-maximiser of f in M1. Step 3:
Let Ŝ ←

{
j ∈ {1, . . . , p} : M̂ ε

jj ≥ τ
}

and v̂MSDP ∈ Rp by v̂MSDP
Ŝc

← 0 and

v̂MSDP
Ŝ

∈ argmaxu∈R|Ŝ| u
>Σ̂ŜŜu.

end

Output: v̂MSDP

Theorem 2.7. Assume that X1, . . . , Xn
iid∼ P for some P ∈ P̃p(n, k, θ).

(a) Let λ := 4
√

log p
n . The function f in Step 2 of Algorithm 2.3 has a maximiser M̂ ∈M1,1(k2)

satisfying sgn(M̂) = sgn(v1v
>
1 ).

(b) Assume that log p ≤ n, θ2 ≤ Bk1/2 for some B ≥ 1 and p ≥ θ(n/k)1/2. We write v̂MSDP for

the output of Algorithm 2.3 with input parameters X := (X1, . . . , Xn)> ∈ Rn×p, λ := 4
√

log p
n ,

ε := ( log p
Bn )5/2 and τ := ( log p

Bn )2. Then

sup
P∈P̃p(n,k,θ)

EP
{
L(v̂MSDP, v1)

}
≤ 6

√
k log p

nθ2
.
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Theorem 2.7 generalises Theorem 2 of Amini and Wainwright (2009) in two ways: first, we relax

a gaussianity assumption to an RCC condition; second, the leading eigenvector of the population

covariance matrix is not required to have non-zero entries equal to ±k−1/2.

2.5 Numerical experiments

In this section we present the results of numerical experiments to illustrate the results of Theo-

rems 2.5, 2.6 and 2.7. We generate v1 ∈ Rp by setting v1,j := k−1/2 for j = 1, . . . , k, and v1,j := 0

for j = k + 1, . . . , p. We then draw X1, . . . , Xn
iid∼ Np(0,Σ), where Σ := Ip + θv1v

>
1 and θ = 1.

We apply Algorithm 2.1 to the data matrix X := (X1, . . . , Xn)> and report the average loss of

the estimator v̂SDP over Nrep := 100 repetitions. For p ∈ {50, 100, 150, 200} and k = bp1/2c, we

repeat the experiment for several choices of n to explore the three parameter regimes described

in Table 2.1. Since the boundaries of these regimes are n � k log p
θ2 and n � k2 log p

θ2 , we plot the

average loss of the experiments against effective samples sizes

νlin :=
nθ2

k log p
, and νquad :=

nθ2

k2 log p
.

The results are shown in Figure 2.1. The top left panel of Figure 2.1 shows a sharp phase transition

for the average loss, as predicted by Theorems 2.5 and 2.6. The right panels of Figure 2.1 suggest

that in the high effective sample size regime, v̂SDP converges at rate
√

k log p
nθ2 in this setting.

This is the same rate as was proved for the modified semidefinite relaxation estimator v̂MSDP in

Theorem 2.7.

It is worth noting that it is relatively time-consuming to carry out the simulations for the

settings in the right-hand tails of the plots in Figure 2.1. These extreme settings were chosen,

however, to illustrate that the linear scaling is the correct one in this tail. For example, when

νquad = 200 and p = 200, we require n = 207694, and the pre-processing of the data matrix to

obtain the sample covariance matrix is the time-limiting step. In general, in our experience, the

semi-definite programming algorithm is certainly not as fast as simpler methods such as diagonal

thresholding, but is not prohibitively slow.

2.6 Appendix: Proofs of the main results

Proof of Proposition 2.1. (i) If X1, . . . , Xn
iid∼ P for P ∈ subgaussianp(σ

2), then, for any u ∈
Sp−1(`) and t ≥ 0, we have a tail probability bound P(u>X1 ≥ t) ≤ e−t

2/σ2E(etu
>X1/σ

2

) ≤
e−t

2/(2σ2). Similarly, P(−u>X1 ≥ t) ≤ e−t
2/(2σ2). Write µu := E{(u>X1)2}; since

1 +
1

2
µut

2 + o(t2) = E(etu
>X1) ≤ et

2σ2/2 = 1 +
1

2
σ2t2 + o(t2),

as t→ 0, we deduce that µu ≤ σ2. Now, for any integer m ≥ 2,

E
(∣∣(u>X1)2 − µu

∣∣m) ≤ ∫ ∞
0

P
{

(u>X1)2 − µu ≥ t1/m
}
dt+ µmu

≤ 2

∫ ∞
0

e−
t1/m+µu

2σ2 dt+ µmu = m!(2σ2)m
{

2e−µu/(2σ
2) +

1

m!

( µu
2σ2

)m}
≤ 2m!(2σ2)m,
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Figure 2.1: Average loss of the estimator v̂SDP over Nrep = 100 repetitions against effective sample
sizes νquad (top left) and νlin (top right). The tail behaviour under both scalings is examined under
logarithmic scales in the bottom left and bottom right panels.
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where the final inequality follows because the function x 7→ 2e−x+xm/m! is decreasing on [0, 1/2].

This calculation allows us to apply Bernstein’s inequality (e.g. van de Geer, 2000, Lemma 5.7,

taking K = 2σ2, R = 4σ2 in her notation), to deduce that for any s ≥ 0,

P(|V̂ (u)− V (u)| ≥ s) ≤ 2 exp

(
− ns2

4σ2s+ 32σ4

)
.

It follows by Lemma 2.9 in Section 2.7, taking ε = 1/4 in that result, that if η > 0 is such that

` log(p/η) ≤ n, then for C := 8σ2, we have

P
(

sup
u∈Sp−1(`)

|V̂ (u)− V (u)| ≥ 2C

√
` log(p/η)

n

)
≤ 2π`1/2

(
p

`

)( 128√
255

)`−1

exp

(
− C2` log(p/η)

4Cσ2

√
` log(p/η)

n + 32σ4

)

≤ 2π`1/2
(e
`

)`( 128√
255

)`−1

η` ≤ e9η,

Similarly, if ` log(p/η) > n, then

P
(

sup
u∈Sp−1(`)

|V̂ (u)− V (u)| ≥ 2C
` log(p/η)

n

)
≤ 2π`1/2

(
p

`

)( 128√
255

)`−1

η`
2

≤ e9η.

Setting δ := e9η, we find (noting that we only need to consider the case δ ∈ (0, 1]) that

P
{

sup
u∈Sp−1(`)

|V̂ (u)−V (u)| ≥ 16σ2
(

1+
9

log p

)
max

(√
` log(p/δ)

n
,
` log(p/δ)

n

)}

≤ P
{

sup
u∈Sp−1(`)

|V̂ (u)−V (u)| ≥ 16σ2max

(√
` log(e9p/δ)

n
,
` log(e9p/δ)

n

)}
≤ δ.

(ii) By Lemma 1 of Laurent and Massart (2000), if Y1, . . . , Yn are independent χ2
1 random

variables, then for all a > 0,

P
(

1

n

∣∣∣∣ n∑
i=1

Yi − n
∣∣∣∣ ≥ a) ≤ 2e−

n
2 (1+a−

√
1+2a) ≤ 2e−nmin( a4 ,

a2

16 ).

Setting η := e−nmin( a4 ,
a2

16 ), we deduce that

P
{

1

n

∣∣∣∣ n∑
i=1

Yi − n
∣∣∣∣ ≥ 4 max

(√
log(1/η)

n
,

log(1/η)

n

)}
≤ 2η.

Hence, using Lemma 2.9 again, and by a similar calculation to Part (i),

P
{

sup
u∈Sp−1(`)

|V̂ (u)− V (u)| ≥ 8λ1(P ) max

(√
log(1/η)

n
,

log(1/η)

n

)}
≤ e9p`η.

The result follows on setting δ := e9p`η.

Proof of Theorem 2.2. Fix an arbitrary P ∈ Pp(n, k, θ). For notational simplicity, we write v :=

v1(P ) and v̂ := v̂kmax(Σ̂) in this proof. We now exploit the Curvature Lemma of Vu et al. (2013,
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Lemma 3.1), which is closely related to the Davis–Kahan sin θ theorem (cf. Davis and Kahan (1970)

and Chapter 1. This lemma gives that

‖v̂v̂> − vv>‖22 ≤
2

θ
tr
(
Σ(vv> − v̂v̂>)

)
≤ 2

θ
tr
(
(Σ− Σ̂)(vv> − v̂v̂>)

)
.

When v̂v̂> 6= vv>, we have that vv>−v̂v̂>
‖vv>−v̂v̂>‖2 has rank 2, trace 0 and has non-zero entries in at most

2k rows and 2k columns. It follows that its non-zero eigenvalues are ±1/
√

2, so it can be written

as (xx> − yy>)/
√

2 for some x, y ∈ Sp−1(2k). Thus

EL(v̂, v) = E
1√
2
‖v̂v̂> − vv>‖2 ≤

1

θ
Etr
(
(Σ− Σ̂)(xx> − yy>)

)
≤ 2

θ
E sup
u∈Sp−1(2k)

|V̂ (u)− V (u)| ≤ 2
√

2

(
1 +

1

log p

)√
k log p

nθ2
,

where we have used Proposition 2.8 in Section 2.7 to obtain the final inequality.

Proof of Theorem 2.3. Set σ2 := 1
8(1+ 9

log p )
− θ. By Proposition 2.1(ii), we have that Np(0, σ

2Ip +

θv1v
>
1 ) belongs to Pp(n, k, θ) for any unit vector v1 ∈ Sp−1(k). Define k0 := k− 1 and p0 := p− 1.

Applying the variant of the Gilbert–Varshamov lemma given as Lemma 2.10 in Section 2.7 with

α := 1/2 and β := 1/4, we can construct a set N0 of k0-sparse vectors in {0, 1}p0 with cardinality

at least (p0/k0)k0/8, such that the Hamming distance between every pair of distinct points in N0

is at least k0. For ε ∈ (0, 1] to be chosen later, define a set of k-sparse vectors in Rp by

N :=

{(√
1− ε2

k
−1/2
0 εu0

)
: u0 ∈ N0

}
.

Observe that if u, v are distinct elements of N , then

L(u, v) = {1− (u>v)2}1/2 ≥ {1− (1− ε2/2)2}1/2 ≥
√

3ε/2,

and similarly L(u, v) ≤ ε. For u ∈ N , let Pu denote the multivariate normal distribution

Np(0, σ
2Ip + θuu>). For any estimator v̂ ∈ Vn,p, we define ψ̂v̂ := sargminu∈N L(v̂, u), where

sargmin denotes the smallest element of the argmin in the lexicographic ordering. Note that

{ψ̂v̂ 6= u} ⊆ {L(v̂, u) ≥
√

3ε/4}. We now apply the generalised version of Fano’s lemma given

as Lemma 2.11 in Section 2.7. Writing D(P‖Q) for the Kullback–Leibler divergence between two

probability measures defined on the same space, we have

inf
v̂∈Vn,p

sup
P∈Pp(n,k,θ)

EPL
(
v̂, v1(P )

)
≥ inf
v̂∈Vn,p

max
u∈N

EPuL(v̂, u)

≥
√

3ε

4
inf

v̂∈Vn,p
max
u∈N

P⊗nu (ψ̂v̂ 6= u) ≥
√

3ε

4

(
1− maxu,v∈N ,u 6=vD(P⊗nv ‖P⊗nu ) + log 2

(k0/8) log(p0/k0)

)
. (2.8)

We can compute, for distinct points u, v ∈ N ,

D(P⊗nv ‖P⊗nu ) = nD(Pv‖Pu) =
n

2
tr
(
(σ2Ip + θuu>)−1(σ2Ip + θvv>)− Ip

)
=
n

2
tr
(
(σ2Ip + θuu>)−1θ(vv> − uu>)

)
=
nθ2L2(u, v)

2σ2(σ2 + θ)
≤ nθ2ε2

2σ2(σ2 + θ)
. (2.9)
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Let ε := min{
√
a/(3b), 1}, where a := 1− 8 log 2

k0 log(p0/k0) and b := 4nθ2

σ2(σ2+θ)k0 log(p0/k0) . Then from (2.8)

and (2.9), we find that

inf
v̂∈Vn,p

sup
P∈Pp(n,k,θ)

EPL
(
v̂, v1(P )

)
≥ min

{
1

1660

√
k log p

nθ2
,

5

18
√

3

}
,

as required.

Proof of Lemma 2.4. For convenience, we write v := v1(Σ), v̂ := v̂SDP and M̂ := M̂ ε in this proof.

We first study vv>−M̂ , where M̂ ∈M1 is computed in Step 2 of Algorithm 2.1. By the Curvature

Lemma of Vu et al. (2013, Lemma 3.1),

‖vv> − M̂‖22 ≤
2

θ
tr
(
Σ(vv> − M̂)

)
.

Moreover, since vv> ∈M1, we have the basic inequality

tr(Σ̂M̂)− λ‖M̂‖1 ≥ tr(Σ̂vv>)− λ‖vv>‖1 − ε.

Let S denote the set of indices corresponding to the non-zero components of v, and recall that

|S| ≤ k. Since by hypothesis ‖Σ̂− Σ‖∞ ≤ λ, we have

‖vv> − M̂‖22 ≤
2

θ

{
tr
(
Σ̂(vv> − M̂)

)
+ tr

(
(Σ− Σ̂)(vv> − M̂)

)}
≤ 2

θ

(
λ‖vv>‖1 − λ‖M̂‖1 + ε+ ‖Σ̂− Σ‖∞‖vv> − M̂‖1

)
≤ 2λ

θ

(
‖vSv>S ‖1 − ‖M̂S,S‖1 + ‖vSv>S − M̂S,S‖1

)
+

2ε

θ

≤ 4λ

θ
‖vSv>S − M̂S,S‖1 +

2ε

θ
≤ 4λk

θ
‖vv> − M̂‖2 +

2ε

θ
.

We deduce that

‖vv> − M̂‖2 ≤
4λk

θ
+

√
2ε

θ
.

On the other hand,

‖vv> − M̂‖22 = tr
(
(vv> − M̂)2

)
= 1− 2v>M̂v + tr(M̂2)

≥ 1− 2v̂>M̂v̂ + tr(M̂2) = ‖v̂v̂> − M̂‖22.

We conclude that

L(v̂, v) =
1√
2
‖v̂v̂>−vv>‖2 ≤

1√
2

(‖v̂v̂>−M̂‖2 +‖vv>−M̂‖2) ≤
√

2‖vv>−M̂‖2 ≤
4
√

2λk

θ
+2

√
ε

θ
,

as required.

Proof of Theorem 2.5. Fix P ∈ Pp(n, k, θ). By Lemma 2.4, and by Lemma 2.12 in Section 2.7,

EL
(
v̂SDP, v1(P )

)
= E

{
L
(
v̂SDP, v1(P )

)
1{‖Σ̂−Σ‖∞≤λ}

}
+ E

{
L
(
v̂SDP, v1(P )

)
1{‖Σ̂−Σ‖∞>λ}

}
≤ 4
√

2λk

θ
+ 2

√
ε

θ
+ P

(
sup

u∈Sp−1(2)

∣∣V̂ (u)− V (u)
∣∣ > 2

√
log p

n

)
(2.10)
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Since P ∈ RCCp(n, 2, 1), we have for each δ > 0 that

P
{

sup
u∈Sp−1(2)

∣∣V̂ (u)− V (u)
∣∣ > max

(√
2 log(p/δ)

n
,

2 log(p/δ)

n

)}
≤ δ.

Set δ :=
√

k2 log p
nθ2 . Since 4 log p ≤ n, which in particular implies n ≥ 3, we have

2 log(p/δ)

n
≤ 1

2
+

1

n
log
( nθ2

k2 log p

)
≤ 1

2
+

log n

n
− 1

n
log log 2 ≤ 1.

Moreover, since n ≤ k2p2θ−2 log p,

2 log(p/δ) = 2 log p+ log
( nθ2

k2 log p

)
≤ 4 log p.

We deduce that

P
(

sup
u∈Sp−1(2)

∣∣V̂ (u)− V (u)
∣∣ > 2

√
log p

n

)
≤
√
k2 log p

nθ2
. (2.11)

The desired risk bound follows from (2.10), the fact that θ ≤ k, and (2.11).

Proof of Theorem 2.6. Suppose, for a contradiction, that there exist an infinite subset N of N,

K0 ∈ [0,∞) and a sequence (v̂(n)) of randomised polynomial time estimators of v1(P ) satisfying

sup
P∈Pp(n,k,θ)

EPL
(
v̂(n)(X), v1(P )

)
≤ K0

√
k1+α log p

nθ2

for all n ∈ N . Let L := dlog pne, let m = mn := d10Lpn/9e and let κ = κn := Lkn. We claim

that Algorithm 2.4 below is a randomised polynomial time algorithm that correctly identifies the

Planted Clique problem on mn vertices and a planted clique of size κn with probability tending to

1 as n→∞. Since κn = O(m
1/2−τ−δ
n logmn), this contradicts Assumption (A1)(τ). We prove the

claim below.

Let G ∼ Gm,κ, and let K ⊆ V (G) denote the planted clique. Note that the matrix A defined

in Step 1 of Algorithm 2.4 is the off-diagonal block of the adjacency matrix of G associated

with the bipartite graph induced by the two parts {ui : i = 1, . . . , n} and {wj : j = 1, . . . , p}.
Let ε′ = (ε′1, . . . , ε

′
n)> and γ′ = (γ′1, . . . , γ

′
p)
>, where ε′i := 1{ui∈K}, γ

′
j := 1{wj∈K}, and set

S′ := {j : γ′j = 1}.
It is convenient at this point to introduce the notion of a Graph Vector distribution. We say

Y has a p-variate Graph Vector distribution with parameters g = (g1, . . . , gp)
> ∈ {0, 1}p and

π0 ∈ [0, 1], and write Y ∼ GVg
p(π0), if we can write

Y = ξ
{

(1− ε)R+ ε(g + R̃)
}
,

where ξ, ε and R are independent, where ξ is a Rademacher random variable, where ε ∼ Bern(π0),

where R = (R1, . . . , Rp)
> ∈ Rp has independent Rademacher components, and where R̃ =

(R̃1, . . . , R̃p)
> with R̃j := (1− gj)Rj .

Let (ε,γ)> = (ε1, . . . , εn, γ1, . . . , γp)
> be n+ p independent Bern(κ/m) random variables. For

i = 1, . . . , n, let Yi := ξi
{

(1 − εi)Ri + εi(γ + R̃i)
}

so that, conditional on γ, the random vectors

Y1, . . . , Yn are independent, each distributed as GVγ
p (κ/m). As shorthand, we denote this condi-
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Algorithm 2.4: Pseudo-code for a planted clique algorithm based on a hypothetical ran-
domised polynomial time sparse principal component estimation algorithm.

Input: m ∈ N, κ ∈ {1, . . . ,m}, G ∈ Gm, L ∈ N
begin

Step 1: Let n← b9m/(10L)c, p← pn, k ← bκ/Lc. Draw u1, . . . , un, w1, . . . , wp
uniformly at random without replacement from V (G). Form
A = (Aij)← (1{ui∼wj}) ∈ Rn×p and X← diag(ξ1, . . . , ξn)(2A− 1n×p), where ξ1, . . . , ξn
are independent Rademacher random variables (independent of u1, . . . , un, w1, . . . , wp),
and where every entry of 1n×p ∈ Rn×p is 1.

Step 2: Use the randomised estimator v̂(n) to compute v̂ = v̂(n)(X/
√

750).

Step 3: Let Ŝ = Ŝ(v̂) be the lexicographically smallest k-subset of {1, . . . , p} such that
(v̂j : j ∈ Ŝ) contains the k largest coordinates of v̂ in absolute value.
Step 4: For u ∈ V (G) and W ⊆ V (G), let nb(u,W ) := 1{u∈W} +

∑
w∈W 1{u∼w}. Set

K̂ :=
{
u ∈ V (G) : nb(u, {wj : j ∈ Ŝ}) ≥ 3k/4

}
.

end

Output: K̂

tional distribution as Qγ , and write S := {j : γj = 1}. Note that by Lemma 2.13 in Section 2.7,

Qγ ∈ ∩b20p/(9k)c
`=1 RCCp(`, 750).

Let Y := (Y1, . . . , Yn)>. Recall that if P and Q are probability measures on a measurable space

(X ,B), the total variation distance between P and Q is defined by

dTV(P,Q) := sup
B∈B
|P (B)−Q(B)|.

Writing L(Z) for the distribution (or law) of a generic random element Z, and using elementary

properties of the total variation distance given in Lemma 2.16 in Section 2.7, we have

dTV

(
L(X),L(Y )

)
≤ dTV

(
L
(
ε′,γ′, (Rij), (ξi)

)
,L
(
ε,γ, (Rij), (ξi)

))
= dTV

(
L(ε′,γ′),L(ε,γ)

)
≤ 2(n+ p)

m
≤ 9(n+ p)

5p log p
. (2.12)

Here, the penultimate inequality follows from Diaconis and Freedman (1980, Theorem 4). In view

of (2.12), we initially analyse Steps 2, 3 and 4 in Algorithm 2.4 with X replaced by Y . Observe

that E(Yi|γ) = 0 and, writing ∆ := diag(γ) ∈ Rp×p, we have

Σγ := Cov(Yi|γ) = E
{

(1− εi)RiR>i + εi(γ + R̃i)(γ + R̃i)
>∣∣γ}

= Ip +
κ

m
(γγ> −∆).

Writing Nγ :=
∑p
j=1 γj , it follows that the largest eigenvalue of Σγ is 1 + κ

m (Nγ − 1), with

corresponding eigenvector γ/N
1/2
γ ∈ Sp−1(Nγ). The other eigenvalues are 1, with multiplicity

p−Nγ , and 1− κ
m , with multiplicity Nγ − 1. Hence λ1(Σγ)− λ2(Σγ) = κ

m (Nγ − 1). Define

Γ0 :=

{
g ∈ {0, 1}p :

∣∣∣∣Ng − pκ

m

∣∣∣∣ ≤ k

20

}
,

where Ng :=
∑p
j=1 gj . We note that by Bernstein’s inequality (e.g. Shorack and Wellner, 1986,

p. 855) that

P(γ ∈ Γ0) ≥ 1− 2e−k/800. (2.13)
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If g ∈ Γ0, the conditional distribution of Y1/
√

750 given γ = g belongs to classes Pp(n, k, θ) for

θ ≤ κ
750m (Ng − 1) and all n ∈ N sufficiently large. By hypothesis, it follows that for g ∈ Γ0,

E
{
L
(
v̂(n)(Y /

√
750), v1(Qγ)

) ∣∣∣ γ = g
}
≤ K0

√
k1+α log p

nθ2

for all large n ∈ N . Then by Lemma 2.14 in Section 2.7, for Ŝ(·) defined in Step 3 of Algorithm 2.4,

for g ∈ Γ0, and large n ∈ N ,

E
{∣∣S \ Ŝ(v̂(n)(Y /

√
750)

)∣∣ ∣∣∣ γ = g
}
≤ 2NgE

{
L
(
v̂(n)(Y /

√
750), v1(Qγ)

)2 ∣∣∣ γ = g
}

≤ 2NgK0

√
k1+α log p

nθ2

We deduce by Markov’s inequality that for g ∈ Γ0, and large n ∈ N ,

P
{∣∣S ∩ Ŝ(v̂(n)(Y /

√
750)

)∣∣ ≤ 16Nγ/17
∣∣∣ γ = g

}
≤ 34K0

√
k1+α log p

nθ2
(2.14)

Let

Ω0,n := {γ ∈ Γ0} ∩
{∣∣S ∩ Ŝ(v̂(n)(Y /

√
750)

)∣∣ > 16Nγ/17
}

Ω′0,n := {γ′ ∈ Γ0} ∩
{∣∣S ∩ Ŝ(v̂(n)(X/

√
750)

)∣∣ > 16Nγ′/17
}

=: Ω′1,n ∩ Ω′2,n,

say, where Nγ′ :=
∑p
j=1 γ

′
j . When n ∈ N is sufficiently large, we have on the event Ω′0,n that

∣∣{j ∈ Ŝ(v̂(n)(X/
√

750)
)

: wj ∈ K
}∣∣ > 3k/4. (2.15)

Now set

Ω′3,n :=
{

nb(u, {wj : j ∈ S′}) ≤ k/2 for all u ∈ V (G) \K
}
.

Recall the definition of K̂ from Step 4 of Algorithm 2.4. We claim that for sufficiently large n ∈ N ,

Ω′0,n∩Ω′3,n ⊆ {K̂ = K}. To see this, note that for n ∈ N sufficiently large, on Ω′0,n we have K ⊆ K̂
by (2.15). For the reverse inclusion, note that if u ∈ V (G) \K, then on Ω′0,n ∩ Ω′3,n, we have for

sufficiently large n ∈ N that

nb
(
u,
{
wj : j ∈ Ŝ

(
v̂(n)(X/

√
750)

)})
≤
∣∣{wj : j ∈ Ŝ} \K

∣∣+ nb
(
u, {wj : j ∈ Ŝ} ∩K

)
≤
∣∣{wj : j ∈ Ŝ} \K

∣∣+ nb
(
u, {wj : j ∈ S′}

)
<
k

4
+
k

2
=

3k

4
.

This establishes our claim. We conclude that for sufficiently large n ∈ N ,

P(K̂ 6= K) ≤ P
(
(Ω′0,n ∩ Ω′3,n)c

)
≤ P

(
(Ω′0,n)c

)
+ P

(
Ω′1,n ∩ (Ω′3,n)c

)
. (2.16)

Now, by Lemma 2.16, we have

|P(Ω′0,n)− P(Ω0,n)| ≤ dTV

(
L(X,γ′),L(Y,γ)

)
≤ 9(n+ p)

5p log p
. (2.17)
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Moreover, by a union bound and Hoeffding’s inequality, for large n ∈ N ,

P
(
Ω′1,n ∩ (Ω′3,n)c

)
≤
∑
g∈Γ0

P
(
(Ω′3,n)c|γ = g

)
P(γ = g) ≤ me−k/800. (2.18)

We conclude by (2.16), (2.17), (2.13), (2.14) and (2.18) that for large n ∈ N ,

P(K̂ 6= K) ≤ 9(n+ p)

5p log p
+ 2e−k/800 + 34K0

√
k1+α log p

nθ2
+me−k/800 → 0

as n→∞. This contradicts Assumption (A1)(τ), and therefore completes the proof.

Proof of Theorem 2.7. Setting δ := p−1 in (2.3), there exist events Ω1 and Ω2, each with probability

at least 1− p−1, such that on Ω1 and Ω2, we respectively have

sup
u∈Sp−1(2k)

|V̂ (u)− V (u)| ≤ 2

√
k log p

n
and sup

u∈Sp−1(2)

|V̂ (u)− V (u)| ≤ 2

√
log p

n
. (2.19)

Let Ω0 := Ω1 ∩Ω2. We work on Ω0 henceforth. The main ingredient for proving both parts of the

theorem is the following weak-duality inequality:

max
M∈M1

tr(Σ̂M)− λ‖M‖1 = max
M∈M1

min
U∈U

tr
(
(Σ̂− U)M

)
≤ min
U∈U

max
M∈M1

tr
(
(Σ̂− U)M

)
= min
U∈U

λ1(Σ̂− U). (2.20)

It is convenient to denote γ :=
√

k2 log p
nθ2 , and note that

γ ≤
√
k

16
min
j∈S
|v1,j | ≤

1

16
‖v1,S‖2 =

1

16
.

Proof of (a). From (2.20), it suffices to exhibit a primal-dual pair (M̂, Û) ∈M1 × U , such that

(C1) M̂ = v̂v̂> with sgn(v̂) = sgn(v1).

(C2) tr(Σ̂M̂)− λ‖M̂‖1 = λ1(Σ̂− Û).

We construct the primal-dual pair as follows. Define

Û :=

(
λ sgn(v1,S)sgn(v1,S)> Σ̂SSc − ΣSSc

Σ̂ScS − ΣScS Σ̂ScSc − ΣScSc

)
.

By (2.19) and Lemma 2.12, we have that ‖Σ̂ − Σ‖∞ ≤ 4
√

log p
n ≤ λ, so U ∈ U . Let w =

(w1, . . . , wk) be a unit-length leading eigenvector of ΣSS − ÛSS such that w>v1,S ≥ 0. Then,

define v̂ componentwise by

v̂S ∈ argmax
u∈Rk,‖u‖2=1

u>w≥0

u>
(

Σ̂SS − ÛSS
)
u, v̂Sc = 0,

and set M̂ := v̂v̂>. Note that our choices above ensure that M̂ ∈ M1. To verify (C1), we now

show that sgn(v̂S) = sgn(w) = sgn(v1,S). By a variant of the Davis–Kahan theorem (Yu, Wang
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and Samworth, 2015, Theorem 2),

‖w − v̂S‖∞ ≤ ‖w − v̂S‖2 ≤
√

2L(v̂S , w) ≤ 2
√

2‖Σ̂SS − ΣSS‖op

θ

≤ 2
√

2

θ
sup

u∈Sp−1(2k)

|V̂ (u)− V (u)| ≤ 4
√

2γk−1/2, (2.21)

where the final inequality uses (2.19). But w is also a leading eigenvector of

1

θ
(ΣSS − ÛSS − Ik) = v1,Sv

>
1,S − 4γss>,

where s :=
sgn(v1,S)
‖sgn(v1,S)‖ . Write s = αv1,S + βv⊥ for some α, β ∈ R with α2 + β2 = 1, and a unit

vector v⊥ ∈ Rk orthogonal to v1,S . Then

v1,Sv
>
1,S − 4γss> =

(
v1,S v⊥

)(1− 4γα2 −4γαβ

−4γαβ −4γβ2

)(
v>1,S
v>⊥

)

=
(
v1,S v⊥

)(a1 b1

a2 b2

)(
d1 0

0 d2

)(
a1 a2

b1 b2

)(
v>1,S
v>⊥

)
,

where d1 ≥ d2 and
(
a1 a2

)>
,
(
b1 b2

)>
are eigenvalues and corresponding unit-length eigenvec-

tors of the middle matrix on the right-hand side of the first line. Direct computation yields that

d1 ≥ 1/2 > 0 ≥ d2 and(
a1

a2

)
∝

(
1− 4γα2 + 4γβ2 +

√
16γβ2 + (1− 4γ)2

−8γαβ

)
.

Consequently, w is a scalar multiple of

a1v1,S + a2v⊥ =
{

1 + 4γ +
√

16γβ2 + (1− 4γ)2
}
v1,S − 8γαs. (2.22)

Since {
1 + 4γ +

√
16γβ2 + (1− 4γ)2

}
min
j∈S
|v1,j | ≥ 2 min

j∈S
|v1,j | ≥ 32γk−1/2 > 8γα‖s‖∞,

we have sgn(w) = sgn(v1,S). Hence by (2.22),

min
j=1,...,k

|wj | ≥

{
1 + 4γ +

√
16γβ2 + (1− 4γ)2

}
minj∈S |v1,j | − 8γα‖s‖∞

‖a1v1,S + a2v⊥‖2

≥ (32− 8α)γk−1/2

1 + 4γ +
√

16γβ2 + (1− 4γ)2
≥ 12γk−1/2

1 + 4γ
≥ 48

5
γk−1/2, (2.23)

By (2.21) and (2.23), we have minj |wj | > ‖w− v̂S‖∞. So sgn(v̂S) = sgn(w) = sgn(v1,S) as desired.

It remains to check condition (C2). Since sgn(v̂S) = sgn(v1,S), we have

tr(Σ̂M̂)− λ‖M̂‖1 = tr(Σ̂SS v̂S v̂
>
S )− tr(ÛSS v̂S v̂

>
S )

= v̂>S (Σ̂SS − ÛSS)v̂S = λ1(Σ̂SS − ÛSS).
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Moreover, Σ̂ − Û is block diagonal with blocks Σ̂SS − ÛSS and Γp−k. As λ1(Γp−k) ≤ 1 by

assumption, it suffices to show that λ1(Σ̂SS − ÛSS) ≥ 1. By Weyl’s inequality (see e.g. Horn and

Johnson (2012, Theorem 4.3.1))

λ1(Σ̂SS − ÛSS) ≥ λ1(ΣSS − ÛSS)− ‖Σ̂SS − ΣSS‖op

≥ 1 + θλ1(v1,Sv
>
1,S − 4γss>)− 2

√
k log p

n
≥ 1 +

3θ

8
> 1. (2.24)

Proof of (b). We claim first that Ŝ = S. Let φ∗ := f(M̂) be the optimal value of the semidefinite

programme (2.5). From (2.24), we have φ∗ ≥ 1 + 3θ/8. The proof strategy here is to use dual

matrices Û defined in part (a) and Û ′ to be defined below to respectively bound tr(M̂ ε
ScSc) from

above and bound M̂ ε
rr from below for each r ∈ S. We then check that for the choice of ε we have

in the theorem, the diagonal entries of M̂ ε are above the threshold log p/(6n) precisely when they

belong to the (S, S)-block of the matrix.

From (2.20) and the fact that tr(AB) ≤ tr(A)λ1(B) for symmetric matrices A and B, we have

tr(Σ̂M̂ ε)− λ‖M̂ ε‖1 ≤ tr
(
(Σ̂− Û)M̂ ε

)
= tr

(
(Σ̂SS − ÛSS)M̂ ε

SS

)
+ tr

(
ΣScScM̂

ε
ScSc

)
≤ tr(M̂ ε

SS)φ∗ + tr(M̂ ε
ScSc)λ1(Γp−k)

= φ∗ − tr(M̂ ε
ScSc)(φ

∗ − 1) ≤ φ∗ − 3θ tr(M̂ ε
ScSc)/8.

On the other hand, tr(Σ̂M̂ ε)− λ‖M̂ ε‖1 ≥ φ∗ − ε. It follows that

tr(M̂ ε
ScSc) ≤

8ε

3θ
≤ 1

6

(
log p

Bn

)2

< τ. (2.25)

Next, fix an arbitrary r ∈ S and define S0 := S \ {r}. Define Û ′ by

Û ′ij :=

λ sgn(M̂ij) if i, j ∈ S0

Σ̂ij − Σij otherwise.

We note that on Ω0, we have Û ′ ∈ U . Again by (2.20),

tr(Σ̂M̂ ε)− λ‖M̂ ε‖1 ≤ tr
(
(Σ̂− Û ′)M̂ ε

)
= tr

(
(Σ̂S0S0 − ÛS0S0)M̂ ε

S0S0

)
+

∑
(i,j)∈S×S
i=r or j=r

ΣijM̂
ε
ji + tr

(
ΣScScM̂

ε
ScSc

)
≤ tr(M̂ ε

S0S0
)λ1

(
Σ̂S0S0

− ÛS0S0

)
+
∑

(i,j)∈S×S
i=r or j=r

ΣijM̂
ε
ji + tr(M̂ ε

ScSc)λ1(Γp−k). (2.26)

We bound the three terms of (2.26) separately. By Lemma 2.15 in Section 2.7,

λ1(Σ̂S0S0
− ÛS0S0

)≤λ1(Σ̂SS − ÛSS)−
{
λ1(Σ̂SS − ÛSS)− λ2(Σ̂SS − ÛSS)

}
min
j∈S

v̂2
j .

From (2.21) and (2.23),

min
j
|v̂j | ≥ min

j
|wj | − ‖w − v̂S‖∞ ≥ 3.9γk−1/2.
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Also, by Weyl’s inequality,

λ1(Σ̂SS − ÛSS)− λ2(Σ̂SS − ÛSS) ≥ λ1(ΣSS − ÛSS)− λ2(ΣSS − ÛSS)− 2‖Σ̂SS − ΣSS‖op

≥ θ
{
λ1(v1,Sv

>
1,S − 4γss>)− λ2(v1,Sv

>
1,S − 4γss>)

}
− 4

√
k log p

n

≥ θ(1/2− 4γk−1/2) ≥ θ/4.

It follows that

λ1(Σ̂S0S0 − ÛS0S0) ≤ φ∗ − 3.8γ2k−1θ. (2.27)

For the second term in (2.26), observe that∑
(i,j)∈S×S
i=r or j=r

ΣijM̂
ε
ij ≤ (1 + θv2

1,r)M̂
ε
rr + 2

∑
i∈S,i 6=r

θv1,iv1,rM̂
ε
i,r

≤ M̂ ε
rr + 2θ|v1,r| · ‖v1‖1

√
M̂ ε
rr ≤ M̂ ε

rr + 2θ
√
k

√
M̂ ε
rr, (2.28)

where the penultimate inequality uses the fact that M̂ ε
ir ≤

√
M̂ ε
iiM̂

ε
rr ≤

√
M̂ ε
rr for a non-negative

definite matrix M̂ ε. Substituting (2.27) and (2.28) into (2.26),

tr(Σ̂M̂ ε)− λ‖M̂ ε‖1 ≤ tr(M̂ ε
S0S0

)
(
φ∗− 3.8γ2θ

k

)
+ M̂ ε

rr + 2θ

√
kM̂ ε

rr + tr(M̂ ε
ScSc)

≤ φ∗ − 3.8γ2k−1θ tr(M̂ ε
S0S0

) + 2θ

√
kM̂ ε

rr

≤ φ∗ − 3.8γ2k−1θ
{

1− tr(M̂ ε
ScSc)

}
+ 2θ(

√
k + 1.9γ2)

√
M̂ ε
rr.

By definition, tr(Σ̂M̂ ε)− λ‖M̂ ε‖1 ≥ φ∗ − ε, so together with (2.25), we have

√
M̂ ε
rr ≥

3.8γ2k−1θ(1− 8ε
3θ )− ε

2θ(
√
k + 1.9γ2)

≥
1.9γ2k−1(1− 8ε

3θ )

(
√
k + 1.9

256 )
− ε

2θ

≥ 1.8γ2k−3/2
(

1− 8ε

3θ

)
− ε

2θ

≥ 1.8k1/2 log p

nθ2

{
1− 1

6

(
log p

Bn

)2}
− 1

32

(
log p

Bn

)2

≥ 1.4 log p

Bn
> τ1/2. (2.29)

From (2.25) and (2.29) we conclude that Ŝ = S, as claimed.

To conclude, by Yu, Wang and Samworth (2015, Theorem 2), on Ω0,

L(v̂MSDP, v1) = L(v̂MSDP
S , v1,S) ≤ 2‖Σ̂SS − ΣSS‖op

λ1(ΣSS)− λ2(ΣSS)
≤ 4

√
k log p

nθ2
,

where we used (2.19) and Lemma 2.12 in the final bound.

For the final part of the theorem, when p ≥ θ
√
n/k,

sup
P∈P̃p(n,k,θ)

EP
{
L(v̂MSDP, v1)

}
≤ 4

√
k log p

nθ2
+ P(Ωc0) ≤ 4

√
k log p

nθ2
+ 2p−1 ≤ 6

√
k log p

nθ2
,

as desired.
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2.7 Appendix: Ancillary results

We collect here various results used in the proofs in Appendix 2.6.

Proposition 2.8. Let P ∈ RCCp(n, `, C) and suppose that ` log p ≤ n. Then

E sup
u∈Sp−1(`)

|V̂ (u)− V (u)| ≤
(

1 +
1

log p

)
C

√
` log p

n
.

Proof. By setting δ = p1−t in the RCC condition, we find that

P
(

sup
u∈Sp−1(`)

|V̂ (u)− V (u)| ≥ C max

{√
t` log p

n
,
t` log p

n

})
≤ min(1, p1−t)

for all t ≥ 0. It follows that

E sup
u∈Sp−1(`)

|V̂ (u)− V (u)| =
∫ ∞

0

P
(

sup
u∈Sp−1(`)

|V̂ (u)− V (u)| ≥ s
)
ds

≤ C
√
` log p

n
+ C

√
` log p

n

∫ n
` log p

1

1

2
p1−tt−1/2 dt+ C

` log p

n

∫ ∞
n

` log p

p1−t dt

≤ C
√
` log p

n

{
1 +

∫ ∞
1

p1−t dt

}
=

(
1 +

1

log p

)
C

√
` log p

n
,

as required.

Lemma 2.9. Let ε ∈ (0, 1/2), let ` ∈ {1, . . . , p} and let A ∈ Rp×p be a symmetric matrix. Then

there exists Nε ⊆ Sp−1(`) with cardinality at most
(
p
`

)
π`1/2(1− ε2/16)−(`−1)/2(2/ε)`−1 such that

sup
u∈Sp−1(`)

|u>Au| ≤ (1− 2ε)−1 max
u∈Nε

|u>Au|.

Proof. Let I` :=
{
I ⊆ {1, . . . , p} : |I| = `

}
, and for I ∈ I`, let BI := {u ∈ Sp−1(`) : uIc = 0}.

Thus

Sp−1(`) =
⋃
I∈I`

BI .

For each I ∈ I`, by Lemma 10 of Kim and Samworth (2016), there exists NI,ε ⊆ BI such that

|NI,ε| ≤ π`1/2(1− ε2/16)−(`−1)/2(2/ε)`−1 and such that for any x ∈ BI , there exists x′ ∈ NI,ε with

‖x− x′‖ ≤ ε. Let uI ∈ argmaxu∈BI |u
>Au| and find vI ∈ NI,ε such that ‖uI − vI‖ ≤ ε. Then

|u>I AuI | ≤ |v>I AvI |+ |(uI − vI)>AvI |+ |u>I A(uI − vI)|

≤ max
u∈NI,ε

|u>Au|+ 2ε|u>I AuI |.

Writing Nε := ∪I∈I`NI,ε, we note that Nε has cardinality smaller than or equal to
(
p
`

)
π`1/2(1 −

ε2/16)−(`−1)/2(2/ε)`−1 and that

sup
u∈Sp−1(`)

|u>Au| = max
I∈I`

sup
u∈BI

|u>Au| ≤ (1− 2ε)−1 max
I∈I`

max
u∈NI,ε

|u>Au|

= (1− 2ε)−1 max
u∈Nε

|u>Au|,
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as required.

Lemma 2.10 (Variant of the Gilbert–Varshamov Lemma). Let α, β ∈ (0, 1) and k, p ∈ N be such

that k ≤ αβp. Writing S :=
{
x = (x1, . . . , xp)

> ∈ {0, 1}p :
∑p
j=1 xj = k

}
, there exists a subset S0

of S such that for all distinct x = (x1, . . . , xp)
>, y = (y1, . . . , yp)

> ∈ S0, we have
∑p
j=1 1{xj 6=yj} ≥

2(1− α)k and such that log |S0| ≥ ρk log(p/k), where ρ := α
− log(αβ) (− log β + β − 1).

Proof. See Massart (2007, Lemma 4.10).

Let P and Q be two probability measures on a measurable space (X ,B). Recall that if P is

absolutely continuous with respect to Q, then the Kullback–Leibler divergence between P and Q

is D(P‖Q) :=
∫
X log(dP/dQ) dP , where dP/dQ denotes the Radon–Nikodym derivative of P with

respect to Q. If P is not absolutely continuous with respect to Q, we set D(P‖Q) :=∞.

Lemma 2.11 (Generalised Fano’s Lemma). Let P1, . . . , PM be probability distributions on a mea-

surable space (X ,B), and assume that D(Pi‖Pj) ≤ β for all i 6= j. Then any measurable function

ψ̂ : X → {1, . . . ,M} satisfies

max
1≤i≤M

Pi(ψ̂ 6= i) ≥ 1− β + log 2

logM
.

Proof. See Yu (1997, Lemma 3).

Lemma 2.12. Suppose that P ∈ P and that X1, . . . , Xn
iid∼ P . Let Σ :=

∫
Rp xx

> dP (x) and

Σ̂ := n−1
∑n
i=1XiX

>
i . If V (u) := E{(u>X1)2} and V̂ (u) := n−1

∑n
i=1(u>Xi)

2 for u ∈ Sp−1(2),

then

‖Σ̂− Σ‖∞ ≤ 2 sup
u∈Sp−1(2)

∣∣V̂ (u)− V (u)
∣∣.

Proof. Let er denote the rth standard basis vector in Rp and write Xi = (Xi,1, . . . , Xi,p)
>. Then

‖Σ̂− Σ‖∞ = max
r,s∈{1,...,p}

∣∣∣ 1
n

n∑
i=1

(Xi,rXi,s)− E(X1,rX1,s)
∣∣∣

≤ max
r,s∈{1,...,p}

∣∣∣∣ 1n
n∑
i=1

{(1

2
er +

1

2
es

)>
Xi

}2

− E
[{(1

2
er +

1

2
es

)>
X1

}2]∣∣∣∣
+ max
r,s∈{1,...,p}

∣∣∣∣ 1n
n∑
i=1

{(1

2
er −

1

2
es

)>
Xi

}2

− E
[{(1

2
er −

1

2
es

)>
X1

}2]∣∣∣∣
≤ 2 sup

u∈Sp−1(2)

∣∣V̂ (u)− V (u)
∣∣,

as required.

Recall the definition of the Graph Vector distribution GVg
p(π0) from the proof of Theorem 2.6.

Lemma 2.13. Let g = (g1, . . . , gp)
> ∈ {0, 1}p, and let Y1, . . . , Yn be independent random vectors,

each distributed as GVg
p(π0) for some π0 ∈ (0, 1/2]. For any u ∈ Sp−1(`), let V (u) := E{(u>Y1)2}

and V̂ (u) := n−1
∑n
i=1(u>Yi)

2. Then for every 1 ≤ ` ≤ 2/π0, every n ∈ N and every δ > 0,

P
[

sup
u∈Sp−1(`)

|V̂ (u)− V (u)| ≥ 750 max

{√
` log(p/δ)

n
,
` log(p/δ)

n

}]
≤ δ.

In other words, GVg
p(π0) ∈ RCCp(`, 750) for all π0 ∈ (0, 1/2] and ` ≤ 2/π0.
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Proof. We can write

Yi = ξi
{

(1− εi)Ri + εi(g + R̃i)
}
,

where ξi, εi and Ri are independent, where ξi is a Rademacher random variable, where εi ∼
Bern(π0), where Ri = (ri1, . . . , rip)

> has independent Rademacher coordinates, and where R̃i =

(r̃i1, . . . , r̃ip)
> with r̃ij := (1− gj)rij . Thus, for any u ∈ Sp−1(`), we have

(u>Yi)
2 = (1− εi)(u>Ri)2 + εi(u

>g)2 + εi(u
>R̃i)

2 + 2εi(u
>R̃i)(u

>g).

Hence, writing S := {j : gj = 1}, and using the definition of V̂ (u), we have

|V̂ (u)− V (u)| ≤
∣∣∣∣ 1n

n∑
i=1

(1− εi)
{

(u>Ri)
2 − 1

}∣∣∣∣+
1 + (u>g)2 + ‖uSc‖22

n

∣∣∣∣ n∑
i=1

(εi − π0)

∣∣∣∣
+

∣∣∣∣ 1n
n∑
i=1

εi
{

(u>R̃i)
2 − ‖uSc‖22

}∣∣∣∣+

∣∣∣∣2u>gn
n∑
i=1

εi(u
>R̃i)

∣∣∣∣. (2.30)

We now control the four terms on the right-hand side of (2.30) separately. For the first term, note

that the distribution of Ri is subgaussian with parameter 1. Writing Nε :=
∑n
i=1 εi, it follows by

the same argument as in the proof of Proposition 2.1(i) that for any s > 0,

P
(

sup
u∈Sp−1(`)

∣∣∣∣ 1n
n∑
i=1

(1− εi)
{

(u>Ri)
2 − 1

}∣∣∣∣ ≥ 2s

)
= E

{
P
(

sup
u∈Sp−1(`)

∣∣∣∣ 1

n−Nε

∑
i:εi=0

{
(u>Ri)

2 − 1
}∣∣∣∣ ≥ 2ns

n−Nε

∣∣∣∣ Nε

)}

≤ e9p`E
[
exp

{
−

n( ns
n−Nε

)2

4( ns
n−Nε

) + 32

}]
≤ e9p` exp

(
− ns2

4s+ 32

)
.

We deduce that for any δ > 0,

P
(

sup
u∈Sp−1(`)

∣∣∣∣ 1n
n∑
i=1

(1− εi)
{

(u>Ri)
2 − 1

}∣∣∣∣ ≥ 16 max

{√
` log(p/δ)

n
,
` log(p/δ)

n

})
≤ e9δ. (2.31)

For the second term on the right-hand side of (2.30), note first that for any u ∈ Sp−1(`), we have

by Cauchy–Schwarz that

(u>g)2 ≤ ‖uS‖0‖uS‖22 ≤ ‖uS‖0 ≤ `.

We deduce using Bernstein’s inequality for Binomial random variables (e.g. Shorack and Wellner,

1986, p. 855) that for any s > 0,

P
{

sup
u∈Sp−1(`)

1 + (u>g)2 + ‖uSc‖22
n

∣∣∣∣ n∑
i=1

(εi − π0)

∣∣∣∣ ≥ s} ≤ P
{

1

n

∣∣∣∣ n∑
i=1

(εi − π0)

∣∣∣∣ ≥ s

3`

}
≤ 2 exp

(
− ns2

18`2π0 + 2s`

)
≤ 2 max

{
exp

(
− ns2

(19 +
√

37)`2π0

)
, exp

(
− ns

(1 +
√

37)`

)}
.
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By assumption, `π0 ≤ 2. Hence, for any δ > 0,

P
{

sup
u∈Sp−1(`)

1 + (u>g)2 + ‖uSc‖22
n

∣∣∣∣ n∑
i=1

(εi− π0)

∣∣∣∣ ≥ (1 +
√

37) max

(√
` log(1/δ)

n
,
` log(1/δ)

n

)}
≤ 2δ.

(2.32)

The third term on the right-hand side of (2.30) can be handled in a very similar way to the first.

We find that for every δ > 0,

P
(

sup
u∈Sp−1(`)

∣∣∣∣ 1n
n∑
i=1

εi
{

(u>R̃i)
2 − ‖uSc‖22

}∣∣∣∣ ≥ 16 max

{√
` log(p/δ)

n
,
` log(p/δ)

n

})
≤ e9δ. (2.33)

For the final term, by definition of R̃i, we have for any u ∈ Sp−1(`) that∣∣∣∣2u>gn
n∑
i=1

εi(u
>R̃i)

∣∣∣∣ ≤ 2`1/2

n

∣∣∣∣ ∑
j:gj=0

uj
∑
i:εi=1

rij

∣∣∣∣ ≤ 2`

n
max
j:gj=0

∣∣∣∣ ∑
i:εi=1

rij

∣∣∣∣.
Hence by Hoeffding’s inequality, for any s > 0,

P
{

sup
u∈Sp−1(`)

∣∣∣∣2u>gn
n∑
i=1

εi(u
>R̃i)

∣∣∣∣ ≥ s} ≤ E
{
P
(

max
1≤j≤p

∣∣∣ ∑
i:εi=1

rij

∣∣∣ ≥ ns

2`

∣∣∣∣ Nε

)}

≤ 2pE
{

exp

(
− n2s2

8`2Nε

)}
≤ 2p inf

t>0

{
exp

(
−n

2s2

8`2t

)
+ P(Nε > t)

}
≤ 2p inf

t>0

{
exp

(
−n

2s2

8`2t

)
+ exp

(
−t log

t

nπ0
+ t− nπ0

)}
,

where the final line follows by Bennett’s inequality (e.g. Shorack and Wellner, 1986, p. 440).

Choosing t = max
(
e2nπ0,

ns
23/2`

)
, we find

P
{

sup
u∈Sp−1(`)

∣∣∣∣2u>gn
n∑
i=1

εi(u
>R̃i)

∣∣∣∣ ≥ s}
≤ 2pmax

{
exp

(
− ns2

8e2`2π0

)
+ exp

(
− ns

23/2`

)
, 2 exp

(
− ns

23/2`

)}
≤ 4pmax

{
exp

(
− ns2

16e2`

)
, exp

(
− ns

23/2`

)}
.

We deduce that for any δ > 0,

P
[

sup
u∈Sp−1(`)

∣∣∣∣2u>gn
n∑
i=1

εi(u
>R̃i)

∣∣∣∣ ≥ 4emax

{√
` log(p/δ)

n
,
` log(p/δ)

n

}]
≤ 4δ. (2.34)

We conclude from (2.30), (2.31), (2.32), (2.33) and (2.34) that for any δ > 0,

P
[

sup
u∈Sp−1(`)

|V̂ (u)− V (u)| ≥ 750 max

{√
` log(p/δ)

n
,
` log(p/δ)

n

}]
≤ δ,

as required.

Lemma 2.14. Let v = (v1, . . . , vp)
> ∈ Sp−1(k) and let v̂ = (v̂1, . . . , v̂p)

> ∈ Rp be a unit vector.
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Let S := {j ∈ {1, . . . , p} : vj 6= 0}. Then for any Ŝ ∈ argmax1≤j1<...<jk≤p
∑k
r=1 |v̂jr |, we have

L(v̂, v)2 ≥ 1

2

∑
j∈S\Ŝ

v2
j .

Proof. By the Cauchy–Schwarz inequality, and then by definition of Ŝ,

1− L(v̂, v)2 =

( ∑
j∈S\Ŝ

v̂jvj +
∑

j∈S∩Ŝ

v̂jvj

)2

≤
(

2
∑
j∈S\Ŝ

v̂2
j +

∑
j∈S∩Ŝ

v̂2
j

)(
1

2

∑
j∈S\Ŝ

v2
j +

∑
j∈S∩Ŝ

v2
j

)

≤
( ∑
j∈Ŝ\S

v̂2
j +

∑
j∈S\Ŝ

v̂2
j +

∑
j∈S∩Ŝ

v̂2
j

)(
1− 1

2

∑
j∈S\Ŝ

v2
j

)
≤ 1− 1

2

∑
j∈S\Ŝ

v2
j ,

as required.

Lemma 2.15. Let A ∈ Rd×d be a symmetric matrix. Let A(r) be the principal submatrix of A

obtained by deleting the rth row and rth column of A. If A has a unique (up to sign) leading

eigenvector v, then

λ2(A) ≤ λ1(A(r)) ≤ λ1(A)− v2
1,r(λ1(A)− λ2(A))

Proof. The first inequality in the lemma is implied by Cauchy’s Interlacing Theorem (see, e.g. Horn

and Johnson (2012, Theorem 4.3.17)). It remains to show the second inequality. Let λ1 > λ2 ≥
· · · ≥ λd be eigenvalues of A (counting multiplicities), and v1, . . . , vd be unit-length eigenvectors of

A such that Avi = λivi and v>i vj = 0 for all i 6= j. We have

λ1(A(r)) = max
‖u‖2=1
ur=0

u>Au = max
‖u‖2=1
ur=0

u>
( d∑
i=1

λiviv
>
i

)
u

≤ max
‖u‖2=1
ur=0

{
(λ1 − λ2)u>v1v

>
1 u+ λ2u

>
( d∑
i=1

viv
>
i

)
u
}

≤ max
‖u‖2=1
ur=0

(λ1 − λ2)|u>v1|2 + λ2 ≤ (λ1 − λ2)(1− v2
1,r) + λ2 = λ1 − v2

1,r(λ1 − λ2),

where we used Cauchy–Schwarz inequality in the penultimate line.

Recall the definition of the total variation distance dTV given in the proof of Theorem 2.6.

Lemma 2.16. Let X and Y be random elements taking values in a measurable space (F,F), and

let (G,G) be another measurable space.

(a) If φ : F → G is measurable, then dTV

(
L(φ(X)),L(φ(Y ))

)
≤ dTV

(
L(X),L(Y )

)
.

(b) Let Z be a random element taking values in (G,G), and suppose that Z is independent of

(X,Y ). Then dTV

(
L(X,Z),L(Y, Z)

)
= dTV

(
L(X),L(Y )

)
.

Proof. (a) For any A ∈ G, we have

|P{φ(X) ∈ A} − P{φ(Y ) ∈ A}| = |P{X ∈ φ−1(A)} − P{Y ∈ φ−1(A)}| ≤ dTV

(
L(X),L(Y )

)
.

Since A ∈ G was arbitrary, the result follows.
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(b) Define φ : F ×G→ F by φ(w, z) := w. Then φ is measurable. By part (a), we have

dTV

(
L(X),L(Y )

)
= dTV

(
L(φ(X,Z)),L(φ(Y,Z))

)
≤ dTV

(
L(X,Z),L(Y,Z)

)
.

For the other inequality, let A denote the set of subsets A of F ⊗ G with the property that given

ε > 0, there exist sets B1,F , . . . , Bn,F ∈ F and disjoint sets B1,G, . . . , Bn,G ∈ G such that, writing

B := ∪ni=1(Bi,F × Bi,G), we have P
(
(X,Z) ∈ A4B

)
< ε and P

(
(Y, Z) ∈ A4B

)
< ε. Here, the

binary operator4 denotes the symmetric difference of two sets, so that A4B := (A∩Bc)∪(Ac∩B).

Note that F×G ⊆ A. Now suppose A ∈ A so that, given ε > 0, we can find sets B1,F , . . . , Bn,F ∈ F
and disjoint sets B1,G, . . . , Bn,G ∈ G with the properties above. Observe that we can write

Bc =
⋃

I⊆{1,...,n}

(⋂
i∈I

Bci,F ×
⋂
i∈I

Bi,G ∩
⋂
i∈Ic

Bci,G

)
.

For each I ⊆ {1, . . . , n}, the sets ∩i∈IBci,F belong to F , and
{
∩i∈IBi,G∩∩i∈IcBci,G : I ⊆ {1, . . . , n}

}
is a family of disjoint sets in G. Moreover,

P
(
(X,Z) ∈ Ac4Bc

)
= P

(
(X,Z) ∈ A4B

)
< ε,

and similarly P
(
(Y,Z) ∈ Ac4Bc

)
< ε. We deduce that Ac ∈ A. Finally, if (An) is a disjoint

sequence in A, then let A := ∪∞n=1An, and given ε > 0, find m ∈ N such that P
(
(X,Z) ∈

A \ ∪mi=1Ai
)
< ε/2 and P

(
(Y, Z) ∈ A \ ∪mi=1Ai

)
< ε/2. Now, for each i = 1, . . . ,m, find sets

Bi1,F , . . . , Bini,F ∈ F and disjoint sets Bi1,G, . . . , Bini,G ∈ G such that, writing Bi := ∪nij=1(Bij,F ×
Bij,G), we have P

(
(X,Z) ∈ Ai4Bi

)
< ε/(2m) and P

(
(Y,Z) ∈ Ai4Bi

)
< ε/(2m). It is convenient

to relabel the sets {(Bij,F , Bij,G) : i = 1, . . . ,m, j = 1, . . . , ni} as {(C1,F , C1,G), . . . , (CN,F , CN,G)},
where N :=

∑m
i=1 ni. This means that we can write

m⋃
i=1

Bi =

N⋃
k=1

(Ck,F × Ck,G) =
⋃

K⊆{1,...,N},K 6=∅

( ⋃
k∈K

Ck,F ×
⋂
k∈K

Ck,G ∩
⋂
k∈Kc

Cck,G

)
.

Now, for each non-empty subset K of {1, . . . , N}, the set ∪k∈KCk,F belongs to F , and
{
∩k∈KCk,G∩

∩k∈KcCck,G : K ⊆ {1, . . . , N},K 6= ∅
}

is a family of disjoint sets in G. Moreover,

P
(
(X,Z) ∈ A4∪mi=1 Bi

)
≤

m∑
i=1

P
(
(X,Z) ∈ Ai4Bi

)
+
ε

2
< ε,

and similarly, P
(
(Y, Z) ∈ A4∪mi=1 Bi

)
< ε. We deduce that A ∈ A, so A is a σ-algebra containing

F × G, so A contains F ⊗ G.

Now suppose that A ∈ F ⊗ G. By the argument above, given ε > 0, there exist sets

B1,F , . . . , Bn,F ∈ F and disjoint sets B1,G, . . . , Bn,G ∈ G such that P
(
(X,Z) ∈ A4 ∪mi=1 (Bi,F ×

Bi,G)
)
< ε/2 and P

(
(Y, Z) ∈ A4∪mi=1 (Bi,F ×Bi,G)

)
< ε/2. It follows that

∣∣P((X,Z) ∈ A
)
−P
(
(Y, Z) ∈ A

)∣∣ ≤ m∑
i=1

∣∣P(X ∈ Bi,F , Z ∈ Bi,G)− P
(
Y ∈ Bi,F , Z ∈ Bi,G

)∣∣+ ε

=

m∑
i=1

P(Z ∈ Bi,G)
∣∣P(X ∈ Bi,F )−P(Y ∈ Bi,F )

∣∣+ε ≤ dTV

(
L(X),L(Y )

)
+ ε.
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Since A ∈ A and ε > 0 were arbitrary, we conclude that

dTV

(
L(X,Z),L(Y, Z)

)
≤ dTV

(
L(X),L(Y )

)
,

as required.

2.8 Appendix: A brief introduction to computational com-

plexity theory

The following is intended to give a short introduction to notions in computational complexity

theory. A good reference for further information is Arora and Barak (2009), from which much of

the following is inspired.

A computational problem is the task of generating a desired output based on a given input.

Formally, defining {0, 1}∗ := ∪∞k=1{0, 1}k to be the set of all finite strings of zeros and ones, we

can view a computational problem as a function F : {0, 1}∗ → P
(
{0, 1}∗

)
, where P(A) denotes

the power set of a set A. The interpretation is that F (s) describes the set of acceptable output

strings (solutions) for a particular input string s.

Loosely speaking, an algorithm is a collection of instructions for performing a task. Despite the

widespread use of algorithms in mathematics throughout history, it was not until 1936 that Alonzo

Church and Alan Turing formalised the notion by defining notational systems called the λ-calculus

and Turing machines respectively (Church, 1936; Turing, 1936). Here we define an algorithm to

be a Turing machine:

Definition 2.1. A Turing machine M is a pair (Q, δ), where

• Q is a finite set of states, among which are two distinguished states qstart and qhalt.

• δ is a ‘transition’ function from Q× {0, 1, } to Q× {0, 1, } × {L,R}.

A Turing Machine can be thought of as having a reading head that can access a tape consisting

of a countably infinite number of squares, labelled 0, 1, 2, . . .. When the Turing machine is given

an input s ∈ {0, 1}∗, the tape is initialised with the components of s in its first |s| tape squares

(where | · | denotes the length of a string in {0, 1}∗) and with ‘blank symbols’ in its remaining

squares. The Turing machine starts in the state qstart ∈ Q with its head on the 0th square and

operates according to its transition function δ. When the machine is in state q ∈ Q with its head

over the ith tape square that contains the symbol a ∈ {0, 1, }, and if δ(q, a) = (q′, a′,L), the

machine overwrites a with a′, updates its state to q′, and moves to square i− 1 (or to square i+ 1

if the third component of the transition function is R instead of L). The Turing machine stops

if it reaches state qhalt ∈ Q and outputs the vector of symbols on the tape before the first blank

symbol. If the Turing machine M terminates (in finitely many steps) with input s, we write M(s)

for its output.

We say an algorithm (Turing machine) M solves a computational problem F if M terminates

for every input s ∈ {0, 1}∗, and M(s) ∈ F (s). A computational problem is solvable if there exists a

Turing machine that solves it. It turns out that other notions of an algorithm (including Church’s

λ-calculus and modern computer programming languages) are equivalent in the sense that the set

of solvable problems is the same.
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A polynomial time algorithm is a Turing machine M for which there exist a, b > 0 such that

for all input strings s ∈ {0, 1}∗, M terminates after at most a|s|b transitions. We say a problem F

is polynomial time solvable, written F ∈ P, if there exists a polynomial time algorithm that solves

it5.

A nondeterministic Turing machine has the same definition as that for a Turing machine except

that the transition function δ becomes a set-valued function δ : Q× {0, 1, } → P
(
Q× {0, 1, } ×

{L,R}
)
. The idea is that, while in state q with its head over symbol a, a nondeterministic Turing

machine replicates |δ(q, a)| copies of itself (and its tape) in the current configuration, each exploring

a different possible future configuration in the set δ(q, a). Each replicate branches to further

replicates in the next step. The process continues until one of its replicates reaches the state

qhalt. At that point, the Turing machine replicate that has halted outputs its tape content and all

replicates stop computation. A nondeterministic polynomial time algorithm is a nondeterministic

Turing machine Mnd for which there exist a, b > 0 such that for all input strings s ∈ {0, 1}∗, Mnd

terminates after at most a|s|b steps. (We count all replicates of Mnd making one parallel transition

as one step.) We say a computational problem F is nondeterministically polynomial time solvable,

written F ∈ NP, if there exists a nondeterministic polynomial time algorithm that solves it6.

Clearly P ⊆ NP, but it is not currently known if these classes are equal. It is widely believed

that P 6= NP, and many computational lower bounds for particular computational problems have

been proved conditional under this assumption. Working under this hypothesis, a common strat-

egy is to relate the algorithmic complexity of one computational problem to another. We say a

computational problem F is polynomial time reducible to another problem G, written as F ≤P G,

if there exist polynomial time algorithms Min and Mout such that Mout ◦ G ◦Min(s) ⊆ F (s). In

other words, F ≤P G if we can convert an input of F to an input of G through Min, and translate

every solution of G back to a solution for F through Mout.

Definition 2.2. A computational problem G is NP-hard if F ≤P G for all F ∈ NP. It is NP-

complete if it is in NP and is NP-hard.

Karp (1972) showed that a large number of natural computational problems are NP-complete,

including the Clique problem mentioned in Section 2.4. The Turing machines and nondeterministic

Turing machines introduced above are both non-random. In some situations (e.g. statistical

problems), it is useful to consider random procedures:

Definition 2.3. A probabilistic Turing machine Mpr is a triple (Q, δ,X), where

• Q is a finite set of states, among which are two distinguished states qstart and qhalt.

• δ is a transition function from Q× {0, 1, } × {0, 1} to Q× {0, 1, } × {L,R}.

• X = (X1, X2, . . .) is an infinite sequence of independent Bern(1/2) random variables.

In its tth step, if a probabilistic Turing machine Mpr is in state q with its reading head over

symbol a, and δ(q, a,Xt) = (q′, a′, L), then Mpr overwrites a with a′, updates its state to q′

and moves its reading head to the left (or to the right if δ(q, a,Xt) = (q′, a′, R)). A randomised

polynomial time algorithm is a probabilistic Turing machine Mpr for which there exist a, b > 0 such

5In fact, some authors write FP (short for ‘Functional Polynomial Time’) for the class we have denoted as P here.
The notation P is then reserved for the subset of computational problems consisting of so-called decision problems
F , where F (s) ∈

{
{0}, {1}

}
for all s ∈ {0, 1}∗.

6Again, some authors write FNP for the class we have denoted as NP here.
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that for any s ∈ {0, 1}∗, Mpr terminates in at most a|s|b steps. We say a computational problem

F is solvable in randomised polynomial time, written as F ∈ BPP, if, given ε > 0, there exists a

randomised polynomial time algorithm Mpr,ε such that P
(
Mpr,ε(s) ∈ F (s)

)
≥ 1− ε.

In the above discussion, the classes P, NP, BPP are all defined through worst-case performance

of an algorithm, since we require the time bound to hold for every input string s. However, in

many statistical applications, the input string s is drawn from some distribution D on {0, 1}∗,
and it is the average performance of the algorithm, rather than the worst case scenario, that is

of more interest. We say such a random problem is solvable in randomised polynomial time if,

given ε > 0, there exists a randomised polynomial time algorithm Mpr,ε such that, when s ∼ D,

independent of X, we have P
(
Mpr(s) ∈ F (s)

)
≥ 1− ε. Note that the probability here is taken over

both the randomness in s and the randomness in X. Similar to the non-random cases, we can talk

about randomised polynomial time reduction. If MF is a randomised polynomial time algorithm

for a computational problem F , then Mout ◦MF ◦Min is a potential randomised polynomial time

algorithm for another problem G for suitably constructed randomised polynomial time algorithms

Min and Mout. One such construction is the key to the proof of Theorem 2.6.



Chapter 3

Average-case hardness of

restricted isometry certification

3.1 Introduction

In many areas of data science, high-dimensional signals contain rich structure. It is of great

interest to leverage this structure to improve our ability to describe characteristics of the signal

and to make future predictions. Sparsity is a structure of wide applicability (see, e.g. Mallat, 1999;

Rauhut and Foucart, 2013; Eldar and Kutyniok, 2012), with a broad literature dedicated to its

study in various scientific fields.

The sparse linear model takes the form y = Xβ + ε, where y ∈ Rn is a vector of observations,

X ∈ Rn×p is a design matrix, ε ∈ Rn is noise and the vector β ∈ Rp is assumed to have a

small number k of non-zero entries. Estimating β or the mean response, Xβ, are among the

most widely studied problems in signal processing, as well as in statistical learning. In high-

dimensional problems, one would wish to recover β with as few observations as possible. For

an incoherent design matrix, it is known that an order of k2 observations suffice (Donoho and

Elad, 2003; Donoho, Elad and Temlyakov, 2006). However, this appears to require a number of

observations far exceeding the information content of β, which has only k variables, albeit with

unknown locations.

This dependence in k can be greatly improved by using design matrices that are almost isome-

tries on some low dimensional subspaces, i.e., matrices that satisfy the restricted isometry property

with parameters k and θ, or RIPn,p(k, θ) (see Definition 3.1). It is a highly robust property, and in

fact implies that many different polynomial time algorithms, such as greedy methods (Blumensath

and Davies, 2009; Dai and Milenkovic, 2009; Needell and Tropp, 2009) and convex optimisation

(Candès and Tao, 2005; Candès, Romberg and Tao, 2006b; Candès and Tao, 2006; Candès, 2008),

are stable in recovering β. Random matrices are known to satisfy the RIP when the number n

of observation is of higher order than k log(p)/θ2. These results were developed in the field of

compressed sensing (Candès, Romberg and Tao, 2006a; Candès and Tao, 2006; Rauhut and Fou-

cart, 2013; Donoho, 2006; Eldar and Kutyniok, 2012), where the use of randomness is pivotal for

near-optimal results. While the assumption of randomness allows great theoretical leaps, it leaves

open questions for practitioners.

Scientists working on data closely following this model cannot always choose their design matrix
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X, or at least choose one that is completely random. Moreover, it is in general practically impossible

to check that a given matrix satisfies these desired properties, as RIP certification is NP-hard

(Bandeira et al., 2012). Having access to a function, or a statistic, of X that could be easily

computed, which determines how well β may be estimated, would therefore be of great help.

The search for such statistics has been of great importance for over a decade now, and several

have been proposed (d’Aspremont, Bach and El Ghaoui, 2008; Lee and Bresler, 2008; d’Aspremont

and El Ghaoui, 2011; Juditsky and Nemirovski, 2011). Perhaps the simplest and most popular is the

incoherence parameter, which measures the maximum inner product between distinct, normalised,

columns of X. However, all of these are known to necessarily fail to guarantee good recovery when

p ≥ 2n unless n is of order k2 (d’Aspremont and El Ghaoui, 2011). Given a specific problem

instance, the strong recovery guarantees of compressed sensing cannot be verified based on these

statistics.

In this chapter, we study the problem of average-case certification of the Restricted Isometry

Property (RIP). A certifier takes as input a design matrix X, always outputs ‘false’ when X does

not satisfy the property, and outputs ‘true’ for a large proportion of matrices (see Definition 3.4).

Indeed, worst-case hardness does not preclude a problem from being solvable for most instances.

The link between restricted isometry and incoherence implies that polynomial time certifiers exists

in a regime where n is of order k2 log(p)/θ2. It is natural to ask whether the RIP can be certified

for sample size n� k log(p)/θ2, where most matrices (with respect to, say, the Gaussian measure)

are RIP. If it does, it would also provide a Las Vegas algorithm to construct RIP design matrices of

optimal sizes. This should be compared with the currently existing limitations for the deterministic

construction of RIP matrices.

Our main result is that certification in this average sense is computationally hard even in a

near-optimal parameter regime, assuming a new, weaker assumption on detecting dense subgraphs,

related to the Planted Clique hypothesis.

Theorem (Informal). There is no computationally efficient, average-case certifier for the class

RIPn,p(k, θ) uniformly over an asymptotic regime where n� k1+α/θ2, for any α < 1.

This suggests that even in the average case, RIP certification requires almost k2 log(p)/θ2

observations. This contrasts highly with the fact that a random matrix satisfies RIP with high

probability when n exceeds about k log(p)/θ2. Thus, there appears to be a large gap between

what a practitioner may be able to certify given a specific problem instance, and what holds for

a random matrix. On the other hand, if a certifier is found which fills this gap, the result would

not only have huge practical implications in compressed sensing and statistical learning, but would

also disprove a long-standing conjecture from computational complexity theory.

Our result shares many characteristics with a hypothesis by Feige (2002) on the hardness

of refuting random satisfiability formulas. Indeed, our statement is also about the hardness of

verifying that a property holds for a particular instance (RIP for design matrices, instead of

unsatisfiability for boolean formulas). It concerns a regime where such a property should hold

with high probability (n of order k1+α/θ2, linear regime for satisfiability), cautiously allowing

only one type of errors, false negatives, for a problem that is hard in the worst case. In these

two examples, such certifiers exist in a sub-optimal regime. Our problem is conceptually different

from results regarding the worst-case hardness of certifying this property (see, e.g. Bandeira et al.,

2012; Koiran and Zouzias, 2012; Tillmann and Pfetsch, 2014). It is closer to another line of work

concerned with computational lower bounds for statistical learning problems based on average-case
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assumptions. The planted clique assumption has been used to prove computational hardness results

for statistical problems such as estimation and testing of sparse principal components (Berthet and

Rigollet (2013a,b), see also Chapter 2), testing and localisation of submatrix signals (Ma and Wu,

2015; Chen and Xu, 2016), community detection (Hajek, Wu and Xu, 2015) and sparse canonical

correlation analysis (Gao, Ma and Zhou, 2014). The intractability of noisy parity recovery problem

(Blum, Kalai and Wasserman, 2003) has also been used recently as an average-case assumption to

deduce computational hardness of detection of satisfiability formulas with lightly planted solutions

(Berthet and Ellenberg, 2015). Additionally, several unconditional computational hardness results

are shown for statistical problems under constraints of learning models (Feldman et al., 2013;

Feldman, Perkins and Vempala, 2015). The present work has two main differences compared to

previous computational lower bound results. First, in a detection setting, these lower bounds

concern two specific distributions (for the null and alternative hypothesis), while ours is valid for

all sub-Gaussian distributions, and there is no alternative distribution. Secondly, our result is

not based on the usual assumption for the Planted Clique problem. Instead, we use a weaker

assumption on a problem of detecting planted dense graphs. This does not mean that the planted

graph is a random graph with edge probability q > 1/2 as considered in (Arias-Castro and Verzelen,

2013; Bhaskara et al., 2010; Awasthi et al., 2015), but that it can be any graph with an unexpectedly

high number of edges (see section 3.4.1). This choice is made to strengthen our result: it would

‘survive’ the discovery of an algorithm that would use very specific properties of cliques (or even

of random dense graphs) to detect their presence. As a consequence, the analysis of our reduction

is more technically complicated.

This chapter is organised in the following manner. We recall in Section 3.2 the definition of the

restricted isometry property, and some of its known properties. In Section 3.3, we define the notion

of certifier, and prove the existence of a computationally efficient certifier in a sub-optimal regime.

Our main result is developed in Section 3.4, focused on the hardness of average-case certification.

The proofs of the main results are in Appendix 3.5 and those of auxiliary results in Appendix 3.6.

3.2 Restricted isometry property

3.2.1 Formulation

We use the definition of Candès and Tao (2005), who introduced the notion of restricted isometry.

Below, for a vector u ∈ Rp, we define ‖u‖0 to be the number of its non-zero entries.

Definition 3.1 (RIP). A matrix X ∈ Rn×p satisfies the restricted isometry property with sparsity

k ∈ {1, . . . , p} and distortion θ ∈ (0, 1), denoted by X ∈ RIPn,p(k, θ), if it holds that

1− θ ≤ ‖Xu‖22 ≤ 1 + θ,

for every u ∈ Sp−1(k) := {u ∈ Rp : ‖u‖2 = 1, ‖u‖0 ≤ k}.

This can be equivalently defined by a property on submatrices of the design matrix: X is in

RIPn,p(k, θ) if and only if for any set S of k columns of X, the submatrix, X∗S , formed by taking

any these columns is almost an isometry, i.e. if the spectrum of its Gram matrix is contained in

the interval [1− θ, 1 + θ]:

‖X>∗SX∗S − Ik‖op ≤ θ .
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Denote by ‖ · ‖op,k the k-sparse operator norm, defined for a matrix A as

‖A‖op,k := sup
x∈Sp−1(k)

‖Ax‖2.

This yields another equivalent formulation of the RIP property: X ∈ RIPn,p(k, θ) if and only if

‖X>X − Ip‖op,k ≤ θ .

We assume in the following discussion that the distortion parameter θ is upper-bounded by 1.

For v ∈ Rp and T ⊆ {1, . . . , p}, we write vT for the #T -dimensional vector obtained by restricting

v to coordinates indexed by T . Similarly, for an n × p matrix A and subsets S ⊆ {1, . . . , n} and

T ⊆ {1, . . . , p}, we write AS∗ for the submatrix obtained by restricting A to rows indexed by S,

A∗T for the submatrix obtained by restricting A to columns indexed by T .

3.2.2 Generation via random design

Matrices that satisfy the restricted isometry property have many interesting applications in high-

dimensional statistics and compressed sensing. However, there is no known way to generate them

deterministically in general. It is even NP-hard to check whether a given matrix X belongs to

RIPn,p(k, θ) (see, e.g Bandeira et al., 2012). Several deterministic constructions of RIP matrices

exist for sparsity level k . θ
√
n. For example, using equi-triangular tight frames and Gershgorin’s

circle theorem, one can construct RIP matrices with sparsity k ≤
√
n and distortion θ bounded

away from 0 (see, e.g. Bandeira et al., 2012). The limitation k ≤ θ
√
n is known as the ‘square root

bottleneck’. To date, the only constructions that break the ‘square root bottleneck’ are due to

Bourgain et al. (2011) and Bandeira, Mixon and Moreira (2014), both of which give RIP guarantee

for k of order n1/2+ε for some small ε > 0 and fixed θ (the latter construction is conditional on a

number-theoretic conjecture being true).

Interestingly, though, it is easy to generate large matrices satisfying the restricted isometry

property through random design, and compared to the fixed design matrices mentioned in the

previous paragraph, these random design constructions are much less restrictive on the sparsity

level, typically allowing k up to the order n/ log p (assuming θ is bounded away from zero). They

can be constructed easily from any centred sub-Gaussian distribution. We recall that a distri-

bution Q (and its associated random variable) is said to be sub-Gaussian with parameter σ if∫
R e

λx dQ(x) ≤ eλ2σ2/2 for all λ ∈ R.

Definition 3.2. Define Q = Qσ to be the set of sub-Gaussian distributions Q over R with zero

mean, unit variance, and sub-Gaussian parameter at most σ.

The most common choice for a Q ∈ Q is the standard normal distribution N(0, 1). Note that

by Taylor expansion, for any Q ∈ Q, we necessarily have σ2 ≥
∫
R x

2 dQ(x) = 1. In the rest of the

chapter, we treat σ as fixed. Define the normalised distribution Q̃ to be the distribution of Z/
√
n

for Z ∼ Q. The following well-known result states that by the concentration of measure, random

matrices generated with distribution Q̃⊗(n×p) satisfy restricted isometries (see, e.g. Candès and

Tao (2005) and Baraniuk et al. (2008)). For completeness, we include a proof that establishes

these particular constants stated here. All proofs are deferred to Appendix 3.5 and Appendix 3.6.
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Proposition 3.1. Suppose X is a random matrix with distribution Q̃⊗(n×p), where Q ∈ Q. It

holds that

P
(
X ∈ RIPn,p(k, θ)

)
≥ 1− 2 exp

{
k log

(
9ep

k

)
− nθ2

256σ4

}
. (3.1)

In order to clarify the notion of asymptotic regimes discussed in this chapter, we introduce the

following definition.

Definition 3.3. For 0 ≤ α ≤ 1, define the asymptotic regime

Rα :=

{
(pn, kn, θn)n : p, k →∞ and n� k1+α

n log pn
θ2
n

}
.

We note that in this notation, Proposition 3.1 implies that for (p, k, θ)n = (pn, kn, θn)n ∈ R0

we have limn→∞ Q̃⊗(n×p)(X ∈ RIPn,p(k, θ)) = 1, and this convergence is uniform over Q ∈ Q.

3.3 Certification of restricted isometry

3.3.1 Objectives and definition

In practice, it is useful to know with certainty whether a particular realisation of a random design

matrix satisfies the RIP condition. It is known that the problem of deciding if a given matrix is

RIP is NP-hard (Bandeira et al., 2012). However, NP-hardness is only a statement about worst-

case instances. It would still be of great use to have an algorithm that can correctly decide RIP

property for an average instance of a design matrix, with some accuracy. Such an algorithm should

identify a high proportion of RIP matrices generated through random design and make no false

positive claims. We call such an algorithm an average-case certifier, or a certifier for short.

Definition 3.4 (Certifier). Given a parameter sequence (p, k, θ) = (pn, kn, θn), we define a certifier

for Q̃⊗(n×p)-random matrices to be a sequence (ψn)n of measurable functions ψn : Rn×p → {0, 1},
such that

ψ−1
n (1) ⊆ RIPn,p(k, θ) and lim sup

n→∞
Q̃⊗(n×p)(ψ−1

n (0)
)
≤ 1/3. (3.2)

Note the definition of a certifier depends on both the asymptotic parameter sequence (pn, kn, θn)

and the sub-Gaussian distribution Q. However, when it is clear from the context, we will suppress

the dependence and refer to certifiers for RIPn,p(k, θ) properties of Q̃⊗(n×p)-random matrices

simply as ‘certifiers’.

The two defining properties in (3.2) can be understood as follows. The first condition means

that if a certifier outputs 1, we know with certainty that the matrix is RIP. The second condition

means that the certifier is not overly conservative; it is allowed to output 0 for at most one third

(with respect to Q̃⊗(n×p) measure) of the matrices. The choice of 1/3 in the definition of a certifier

is made to simplify proofs. However, all subsequent results will still hold if we replace 1/3 by any

constant in (0, 1). In view of Proposition 3.1, the second condition in (3.2) can be equivalently

stated as

lim
n→∞

Q̃⊗(n×p){ψn(X) = 1
∣∣ X ∈ RIPn,p(k, θ)

}
≥ 2/3.

With such a certifier, given an arbitrary problem fitting the sparse linear model, the matrix

X could be tested for the restricted isometry property, with some expectation of a positive result.
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This would be particularly interesting given a certifier in the parameter regime n� θ2
nk

2
n, in which

presently known polynomial-time certifiers cannot give positive results.

Even though it is not the main focus of the discussion in this chapter, we also note that a certifier

ψ with the above properties for some distribution Q ∈ Q would form a certifier/distribution couple

(ψ,Q), that yields in the usual manner a Las Vegas algorithm to generate RIP matrices. The

(random) algorithm keeps generating random matrices X ∼ Q̃⊗(n×p) until ψn(X) = 1. The

number of times that the certifier is invoked has a geometric distribution with success probability

Q̃⊗(n×p)(ψ−1
n (1)

)
. Hence, the Las Vegas algorithm runs in randomised polynomial time if and only

if ψn runs in randomised polynomial time.

3.3.2 Certifier properties

Although our focus is on algorithmically efficient certifiers, we establish first the properties of a

certifier that is computationally intractable. This certifier serves as a benchmark for the perfor-

mance of other candidates. Indeed, we exhibit in the following proposition a certifier, based on

the k-sparse operator norm, that works uniformly well in the same asymptotic parameter regime

R0, where Q̃⊗(n×p)-random matrices are RIP with asymptotic probability 1. For clarity, we stress

that our criterion when judging a certifier will always be its uniform performance over asymptotic

regimes Rα for some α ∈ [0, 1].

Proposition 3.2. Suppose (p, k, θ) = (pn, kn, θn) ∈ R0. Furthermore, if Q ∈ Q and X ∼ Q̃⊗(n×p).

Then the sequence of tests (ψop,k)n based on sparse operator norms, defined by

ψop,k(X) := 1

{
‖X>X − Ip‖op,k ≤ θ

}
.

is a certifier for Q̃⊗(n×p)-random matrices.

By a direct reduction from the clique problem, one can show that it is NP-hard to compute the k-

sparse operator norm of a matrix. Hence the certifier ψop,k is computationally intractable. The next

proposition concerns the certifier property of a test based on the maximum incoherence between

columns of the design matrix. It follows directly from a well-known result on the incoherence

parameter of a random matrix (see, e.g. Rauhut and Foucart (2013, Proposition 6.2)) and allows the

construction of a polynomial-time certifier that works uniformly well in the asymptotic parameter

regime R1.

Proposition 3.3. Suppose (p, k, θ) = (pn, kn, θn) satisfies n ≥ 196σ4k2 log(p)/θ2. Let Q ∈ Q and

X ∼ Q̃⊗(n×p), then the tests ψ∞ defined by ψ∞(X) := 1

{
‖X>X − Ip‖∞ ≤ 14σ2

√
log p
n

}
is a

certifier for Q̃⊗(n×p)-random matrices.

Proposition 3.3 shows that, when the sample size n is above k2 log(p)/θ2 in magnitude (in

particular, this is satisfied asymptotically when (p, k, θ) = (pn, kn, θn) ∈ R1), there is a polynomial

time certifier. In other words, in this high-signal regime, the average-case decision problem for

RIP property is much more tractable than indicated by the worst-case result. On the other hand,

the certifier in Proposition 3.3 works in a much smaller parameter range when compared to ψop,k

in Proposition 3.2. Combining Proposition 3.2 and 3.3, we have the following schematic diagram

(Figure 3.3.2). When the sample size is lower than specified in R0, the property does not hold, with
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Figure 3.1: Schematic diagram for the existence of certifiers in different asymptotic regimes.

high probability, and no certifier exists. A computationally intractable certifier works uniformly

over R0. On the other end of the spectrum, when the sample size is large enough to be in R1,

a simple certifier based on the maximum incoherence of the design matrix is known to work in

polynomial time. This leaves open the question of whether (randomised) polynomial time certifiers

can work uniformly well in R0, or Rα for any α ∈ [0, 1). We will see in the next section that,

assuming a weaker variant of the Planted Clique hypothesis from computational complexity theory,

R1 is essentially the largest asymptotic regime where a randomised polynomial time certifier can

exist.

3.4 Hardness of certification

3.4.1 Planted dense subgraph assumptions

We show in this section that certification of RIP property is an average-case hard problem in the

parameter regime Rα for any α < 1. This is precisely the regime not covered by Proposition 3.3.

The average-case hardness result is proved via reduction to the planted dense subgraph assumption.

For any integer m ≥ 0, denote Gm the collection of all graphs on m vertices. We write V (G)

and E(G) for the set of vertices and edges of a graph G. For H ∈ Gκ where κ ∈ {0, . . . ,m},
let G(m, 1/2, H) be the random graph model that generates a random graph G on m vertices as

follows. It first picks κ random vertices K ⊆ V (G) and plants an isomorphic copy of H on these

κ vertices, then every pair of vertices not in K ×K is connected by an edge independently with

probability 1/2. We write PH for the probability measure on Gm associated with G(m, 1/2, H).

Note that if H is the empty graph, then G(m, 1/2, ∅) describes the Erdős–Rényi random graph.

With a slight abuse of notation, we write P0 in place of P∅. On the other hand, for ε ∈ (0, 1/2], if

H belongs to the set

H = Hκ,ε :=

{
H ∈ Gκ : #E(H) ≥ (1/2 + ε)

κ(κ− 1)

2

}
,

then G(m, 1/2, H) generates random graphs that contain elevated local edge density. The planted

dense graph problem concerns testing apart the following two hypotheses:

H0 : G ∼ G(m, 1/2, ∅) and H1 : G ∼ G(m, 1/2, H) for some H ∈ Hκ,ε. (3.3)

It is widely believed that for κ = O(m1/2−δ), there does not exist randomised polynomial time

tests to distinguish between H0 and H1 (see, e.g. Jerrum (1992); Feige and Krauthgamer (2003);
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Feldman et al. (2013)). More precisely, we have the following assumption.

Assumption (A1). Fix ε ∈ (0, 1/2] and δ ∈ (0, 1/2). let (κm)m be any sequence of integers

such that κm →∞ and κm = O
(
m1/2−δ). For any sequence of randomised polynomial time tests

(φm : Gm → {0, 1})m, we have

lim inf
m

{
P0

(
φ(G) = 1

)
+ max
H∈Hκ,ε

PH

(
φ(G) = 0)

)}
> 1/3 .

We remark that if ε = 1/2, then Hκ,ε contains only the κ-complete graph and the testing

problem becomes the well-known planted clique problem (cf. Jerrum (1992) and references in

Berthet and Rigollet (2013a,b)).

The difficulty of this problem has been used as a primitive for the hardness of other tasks, such

as cryptographic applications, in Juels and Peinado (2000), testing for k-wise dependence in Alon

et al. (2007), approximating Nash equilibria in Hazan and Krauthgamer (2011). In this case, As-

sumption (A1) is a version of the planted clique hypothesis (see, e.g. Berthet and Rigollet (2013b,

Assumption APC) and Assumption (A1)(τ) in Chapter 2). We emphasise that Assumption (A1)

is significantly milder than the planted clique hypothesis (since it allows any ε ∈ (0, 1/2]), or that

a hypothesis on planted random graphs. We also note that when κ ≥ Cε
√
m, spectral methods

can be used to detect such graphs with high probability.

The following theorem relates the hardness of the planted dense subgraph testing problem to

the hardness of certifying restricted isometry of random matrices. We recall that the distribution

of X is that of an n × p random matrix with entries independently and identically sampled from

Q̃
d
= Q/

√
n, for some Q ∈ Q. We also write Ψrp for the class of randomised polynomial time

certifiers.

Theorem 3.4. Assume (A1) and fix any α ∈ [0, 1). Then there exists a sequence (p, k, θ) =

(pn, kn, θn) ∈ Rα, such that there is no certifier/distribution couple (ψ,Q) ∈ Ψrp ×Q with respect

to this sequence of parameters.

Our proof of Theorem 3.4 relies on the following ideas: Given a graph G, an instance of the

planted clique problem in the assumed hard regime, we construct n random vectors based on

the adjacency matrix of a bipartite subgraph of G, between two random sets of vertices. Each

coefficient of these vectors is then randomly drawn from one of two carefully chosen distributions,

conditionally on the presence or absence of a particular edge. This construction ensures that if the

graph is an Erdős–Rényi random graph (i.e. with no planted graph), the vectors are independent

with independent coefficients, with distribution Q̃. Otherwise, we show that with high probability,

the presence of an unusually dense subgraph will make it very likely that the matrix does not

satisfy the restricted isometry property, for a set of parameters in Rα. As a consequence, if there

existed a certifier/distribution couple (ψ,Q) ∈ Ψrp × Q in this range of parameters, it could be

used - by using as input in the certifier the newly constructed matrix - to determine with high

probability the distribution of G, violating our assumption (A1).

We remark that this result holds for any distribution in Q, in contrast to computational lower

bounds in statistical learning problems, that apply to a specific distribution. For the sake of

simplicity, we have kept the coefficients of X identically distributed, but our analysis is not depen-

dent on that fact, and our result can be directly extended to the case where the coefficients are

independent, with different distributions in Q.
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Theorem 3.4 may be viewed as providing an asymptotic lower bound of the sample size n for

the existence of a computationally feasible certifier. It establishes this computational lower bound

by exhibiting some specific ‘hard’ sequences of parameters inside Rα and shows via a reduction to

the planted dense subgraph problem. All hardness results, whether in a worst-case (NP-hardness,

or other) or the average-case (by reduction from a hard problem), are by nature statements on

the impossibility of accomplishing a task in a computationally efficient manner, uniformly over a

range of parameters. They are therefore always based on the construction of a ‘hard’ sequence of

parameters used in the reduction, for which a contradiction is shown. Here, the ‘hard’ sequence

is explicitly constructed in the proof to be some (p, k, θ) = (pn, kn, θn) satisfying p ≥ n and

n1/(3−α−4β) � k � n1/(2−β)−δ, for β ∈ [0, (1− α)/3) and any small δ > 0. The tuning parameter

β is to allow additional flexibility in choosing these ‘hard’ sequences. More precisely, using an

averaging trick first seen in Ma and Wu (2015), we are able to show that the existence of such

‘hard’ sequences is not confined only in the sparsity regime k � n1/2 . We note that in all our

‘hard’ sequences, θn must depend on n. An interesting extension is to see if similar computational

lower bounds hold when restricted to a subset of Rα where θ is constant.

3.5 Appendix: Proofs of the main results

Proof of Theorem 3.4. We prove by contradiction. Assume the contrary, that (ψn)n is a polynomial

time computable certifier for Q̃⊗(n×p)-random matrices. Let ξ denote the median of Q̃. By the

definition of the median, there exists a unique decomposition of the probability measure Q̃ as

Q̃ = 1
2 Q̃

+ + 1
2 Q̃
−, where Q̃+ and Q̃− are probability measures supported on (−∞, ξ] and [ξ,∞)

respectively.

For α < 1 and 0 ≤ β < 1
3 (1 − α), let (p, k, θ) = (pn, kn, θn) ∈ Rα be a sequence satisfying

p ≥ n, n
1

3−α−4β � k � n
1

2−β−δ for some δ > 0. Let L := 10 and ` := bkβc. Define m := L`n

and κ := Lk. We check that κ2 � k2−βkβ � n1−δ` ≈ m1−δ′ for some positive δ′ that depends

on δ only. We prove below that Algorithm 3.1, which runs in randomised polynomial time, can

distinguish between P0 and PH with zero asymptotic error for any choice of H ∈ Hκ,ε.

Algorithm 3.1: Pseudo-code for an algorithm to distinguish between P0 and PH .

Input: m ∈ N, κ ∈ {1, . . . ,m}, G ∈ Gm, L ∈ N
begin

Step 1: Let N ← bm/Lc, `← bkβc, n← bN/`c, p← pn, k ← bκ/Lc. Draw
u1, . . . , uN , w1, . . . , wN uniformly at random without replacement from V (G). Form
A = (Aij) ∈ RN×N where Aij = 2 · 1{ui∼wj} − 1.

Step 2: Let Y + = (Y +
ij ) and Y − = (Y −ij ) be N ×N random matrices independent from

all other random variables and from each other, and such that Y +
ij

i.i.d.∼ Q̃+ and

Y −ij
i.i.d.∼ Q̃−. Define Z = (Zij) by Zij ← 1{Aij = 1}Y +

ij + 1{Aij = −1}Y −ij .

Step 3: For 0 ≤ a, b ≤ `− 1, define Z(a,b) ∈ Rn×n by Z
(a,b)
i,j ← Zan+i,bn+j . Define

X̃ ← `−1
∑

0≤a,b<` Z
(a,b). Finally, let X ←

(
X̃ X̃ ′

)
where X̃ ′ ∈ Rn×(p−n) has entries

independently drawn from the distribution Q̃.
Step 4: Let φ(G)← 1− ψn(X).

end

Output: φ(G)
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First, we assume that G ∼ P0. Then matrix A from Step 1 of Algorithm 3.1 have independent

Rademacher entries, which implies that X ∼ Q̃⊗(n×p). Therefore, by (3.2) in Section 3.3 we must

have lim sup P0(φ(G) = 1) = lim sup Q̃⊗(n×p)(ψ−1
n (0)) < 1/3 as desired.

Next, suppose G is generated with probability measure PH for some H ∈ Hκ,ε. We claim

that X̃ /∈ RIPn,n

(
k, ck

2

n`2

)
for some absolute positive constant c. By conditions of the theorem,

k2

n`2 �
√

k1+α

n � θ. Hence if the claim is true, then for large n, X̃ /∈ RIPn,n(k, θ), which implies

that X is not an RIPn,p(k, θ) matrix and lim infm maxH∈Hκ,ε PH

(
φ(G) = 0)

)
< 1/3, contradicting

Assumption (A1).

It remains to verify the claim. Let K ⊆ V (G) be the κ-subset of vertices on which the subgraph

H is supported. We write U = {u1, . . . , uN} and W = {w1, . . . , wN} for the two random subsets

of vertices. Let NU,W ;K be the random variable counting the number of edges in G with two

endpoints in U ∩K and W ∩K respectively. Then

NU,W ;K = #
{
{u,w} ∈ E(G) : u ∈ U ∩K,w ∈W ∩K

}
=
∑
u∈K

∑
w∈K

1{u ∈ U}1{w ∈W}1{u ∼ w}.

Define

Ω1 :=

{
NU,W ;K ≥

(
1

2
+
ε

4

)
k2

}
∩
{∣∣#U ∩K − k∣∣ ≤ ε

8
k

}
∩
{∣∣#W ∩K − k∣∣ ≤ ε

8
k

}
.

Lemma 3.5 below shows that Ω1 has asymptotic probability 1. Note Ω1 is in the σ-algebra of

(U,W ). Let U = U0 and W = W0 be any realisation satisfying Ω1. We write PU0,W0 and EU0,W0

as shorthand for the probability and expectation conditional on U = U0 and W = W0.

For each j ∈ {1, . . . , n}, define sj :=
∑
ui∈U∩K Ai,j . We write k1 := (1 − ε/8)k and k2 :=

(1+ε/8)k. Let S := {i : ui ∈ U∩K}, and let T be a subset of k1 indices in {1, . . . , n} corresponding

to the k1 largest values of sj (breaking ties arbitrarily). Note that S and T are functions of U and

V . On the event U = U0 and W = W0, both #S = #U ∩ K and #W ∩ K are bounded in the

interval [k1, k2]. In particular, k1 ≤ #W ∩K. Therefore, we have∑
wj∈W∩K

sj = 2NU,W ;K −#(U ∩K)×#(W ∩K) ≥
{

(1 + ε/2)− (1 + ε/8)2
}
k2 ≥ ε

5
k2.

As T indexes columns of A corresponding to largest values of sjs, on the event {U = U0,W = W0},

∑
j∈T

sj ≥
#T

#W ∩K
ε

5
k2 ≥ ε

5

k2k1

k2
≥ ε

6
kk1. (3.4)

Define the unit vector v ∈ Rn by vT := k
−1/2
1 1k1 and vT c := 0. Note that v is k1-sparse and hence

k-sparse. Conditional on U = U0 and W = W0, we have Zij = Y +
ij if Aij = 1 and Zij = Y −ij if

Aij = −1. By the definitions of Q̃+ and Q̃−, and the fact that Q̃ is not a point mass, we have

EY +
ij = −EY −ij = c1/

√
n for some absolute constant c1 > 0. By (3.4), the sum

∑
i∈S,j∈T Zij can

be bounded below in conditional expectation by

EU0,W0

∑
i∈S,j∈T

Zij ≥ EU0,W0

( ∑
i∈S,j∈T

(1{Aij = 1}Y +
ij + 1{Aij = −1}Y −ij )

)
≥ c1√

n

ε

6
kk1 .
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Lemma 3.7 tells us that both Y +
ij −EY +

ij and Y −ij −EY −ij are sub-Gaussian with parameters at most

c2σ/
√
n for some absolute constant c2 > 0. By Hoeffding’s inequality for sums of sub-Gaussian

random variables (see e.g. Vershynin (2012, Proposition 5.10)), we have that

PU0,W0

( ∑
i∈S,j∈T

Zij >
c1ε

12
√
n
kk1

)
≥ 1− 2 exp

{
−

( c1ε
12
√
n
kk1)2

2c22σ
2k1k2/n

}
→ 1. (3.5)

Combining (3.5) with the fact that P(Ω1) → 1, we deduce that the event Ω2 :=
{∑

i∈S,j∈T Zij ≥
c1εkk1/(12n1/2)

}
has asymptotic probability 1.

Now define S̃ := {i ∈ {1, . . . , n} : uan+i ∈ U ∩K for some 0 ≤ a ≤ `− 1} and T̃ := {j ∈
{1, . . . , n} : wbn+j ∈W ∩K for some 0 ≤ b ≤ `− 1}. Also, let v(b) := (vbn+1, . . . , vbn+n)> for

0 ≤ b ≤ ` − 1, ṽsum =
∑

0≤b≤`−1 v
(b) and ṽ := ṽsum/‖ṽsum‖2. By Lemma 3.10, we have that

‖ṽsum‖∞ ≤ c2k
−1/2
1 with asymptotic probability 1, for some c2 depending on β only. Hence

‖ṽsum‖2 ≤ c2. Thus, by Cauchy–Schwarz inequality, we have that with asymptotic probability 1,

‖X̃S̃∗ṽ‖2 ≥ ‖ṽsum‖−1
2 (#S̃)−1/2‖X̃S̃∗ṽsum‖1 ≥ ‖ṽ‖−1

2 (#S̃)−1/2 1

`
√
k1

∑
i∈S,j∈T

Zij ≥
c3εk

`
√
n
.

On the other hand, the submatrix X̃S̃c∗ has independent and identically distributed entries.

By Vershynin (2012, Lemma 5.9), for i ∈ S̃c and 1 ≤ j ≤ n, X̃ij = `−1
∑`−1
a,b=0 Z

(a,b)
an+i,bn+j is a

centred sub-Gaussian random variable with sub-Gaussian parameter σ/
√
n and variance 1/n. Let

X̃i denote the ith row vector of the matrix X̃, then X̃>i ṽ is also a centred sub-Gaussian random

variable with parameter σ/
√
n and variance 1/n. Using Lemma 3.9, we derive that

P
(
‖X̃Sc∗ṽ‖22 −

n−#S̃

n
≤ −

√
log n

n−#S̃

)
≤ exp

{
− log n

64σ4

}
→ 0.

Since #S̃ ≤ k2 with asymptotic probability 1, the event Ω3 :=
{
‖X̃S̃c∗ṽ‖22 ≥ 1 − k2

n −
√

2 logn
n

}
has asymptotic probability 1. Finally, since X̃ṽ = (X̃S̃∗ṽ, X̃S̃c∗v)>, on Ω2 ∩ Ω3,

‖X̃ṽ‖22 = ‖X̃S̃∗ṽ‖
2
2 + ‖X̃S̃c∗v‖

2
2 ≥ 1 +

c23ε
2k2

`2n
− k2

n
−
√

2 log n

n
.

The right hand side is at least 1 + ck2/(n`2) for some absolute positive constant c for all large

values of n. This verifies the claim and concludes the proof of the theorem.

Lemma 3.5. Let G be a graph on m vertices and K a κ-subset of V (G), such that the edge density

of G restricted to K is at least 1/2 + ε. Let n, p be integers less than m/2. Choose u1, . . . , un and

w1, . . . , wp independently at random without replacement from V (G). Denote U = {u1, . . . , un}
and W = {w1, . . . , wp}. Define NU,W ;K to be the number of edges with two endpoints in U and W

respectively. Then for m,n, p, κ sufficiently large, we have

P
{∣∣∣∣#U ∩K − nκ

m

∣∣∣∣ ≥ ε

8

nκ

m

}
≤ 64m

ε2nk
P
{∣∣∣∣#W ∩K − pκ

m

∣∣∣∣ ≥ ε

8

pκ

m

}
≤ 64m

ε2pk
,

and

P
{
NU,W ;K ≤

(
1

2
+
ε

4

)
npκ2

m2

}
≤ 16m(pκ+ nκ+m)

ε2npκ2
.
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Proof. The cardinality of U ∩K has HyperGeom(m,κ, n) distribution. Hence

E(#U ∩K) =
nκ

m
and var(#U ∩K) = n

κ

m

m− κ
m

m− n
m− 1

≤ nκ

m
.

The first inequality in the lemma now follows from an application of Chebyshev’s inequality. A

similar argument establishes the second inequality. For the final inequality in the lemma, we have

that for κ sufficiently large,

E(NU,W ;K) =
∑
u∈K

∑
w∈K

P(u ∈ U,w ∈W )1{v ∼ w}

=
np

m(m− 1)

∑
u∈K

∑
w∈K

1{u ∼ w} ≥
(1

2
+ ε
)npκ(κ− 1)

m(m− 1)
≥
(1

2
+
ε

2

)npκ2

m2
..

We then compute the variance of NU,W ;K by

var(NU,W ;K) = cov

(∑
u∈K

∑
w∈K

1{u ∈ U,w ∈W,u ∼ w},
∑
u′∈K

∑
w′∈K

1{u′ ∈ U,w′ ∈W,u′ ∼ w′}
)

=
∑

u,w,u′,w′∈K
cov
(
1{u ∈ U,w ∈W,u ∼ w},1{u′ ∈ U,w′ ∈W,u′ ∼ w′}

)
.

We break up the final sum into four terms I, II, III and IV handling sums over subsets of indices

{(u,w, u′, w′) ∈ K4 : u 6= u′, w 6= w′}, {(u,w, u′, w′) ∈ K4 : u = u′, w 6= w′}, {(u,w, u′, w′) ∈ K4 :

u 6= u′, w = w′} and {(u,w, u′, w′) ∈ K4 : u = u′, w = w′} respectively. We bound the four terms

separately. For the first term, we have

I =
∑

u,u′,w,w′ distinct

{
P(u, u′ ∈ U,w,w′ ∈W )− P(u ∈ U,w ∈W )P(u′ ∈ U,w′ ∈W )

}
× 1{v ∼ w}1{u′ ∼ w′}

=
∑

u,u′,w,w′ distinct

{
n(n− 1)p(p− 1)

m(m− 1)(m− 2)(m− 3)
−
(

np

m(m− 1)

)2}
1{u ∼ w}1{u′ ∼ w′}.

When m > max(2n, 2p), the term in bracket above is non-positive, hence I ≤ 0. For the second

term, we get that

II =
∑

u,w,w′ distinct

{
P(u ∈ U,w,w′ ∈W )− P(u ∈ U,w ∈W )P(u ∈ U,w′ ∈W )

}
× 1{u ∼ w}1{u′ ∼ w′}

=
∑

u,w,w′ distinct

{
np(p− 1)

m(m− 1)(m− 2)
−
(

np

m(m− 1)

)2}
1{u ∼ w}1{u ∼ w′}

≤ np(p− 1)

m(m− 1)(m− 2)

∑
u,w,w′ distinct

1{u ∼ w}1{u ∼ w′} ≤ np2κ3

m3
.

Similarly,

III ≤ n(n− 1)pκ(κ− 1)(κ− 2)

m(m− 1)(m− 2)
≤ n2pκ3

m3
.

And finally we bound the last term by

IV =
∑

u,w distinct

{
P(u ∈ U,w ∈W )− P(u ∈ U,w ∈W )2

}
1{u ∼ w} ≤ npκ(κ− 1)

m(m− 1)
≤ npκ2

m2
.
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Sum up the four terms, we get that

var(NU,W ;K) ≤ npκ2

m2

(
pκ

m
+
nκ

m
+ 1

)
.

An application of Chebyshev’s inequality gives that

P
{
NU,W ;K ≤

(
1

2
+
ε

4

)
npκ2

m2

}
≤ 4

ε

√
m(pκ+ nκ+m)

npκ2
,

as desired.

3.6 Appendix: Ancillary results

Proof of Proposition 3.1. Let Xi denote the ith row vector of X. Then for any fixed u ∈ Sp−1(k),

Eeλ(X>i u) =
∏

1≤j≤p

EeλXijuj ≤
∏
j

eλ
2u2
j/(2σ

2n) = eλ
2/(2σ2n).

Applying Lemma 3.9 to ‖Xu‖22 − 1 = n−1
∑n
i=1

{
(
√
nX>i u)2 − E(

√
nX>i u)2

}
, and using the fact

that θ/(8σ2) ≤ 1, we have that

P
(
1− θ ≤ ‖Xu‖22 ≤ 1 + θ

)
≥ 1− 2e−nθ

2/(64σ4).

We claim that there is a set N of cardinality at most
(
p
k

)
9k such that

sup
u∈Sp−1(k)

∣∣‖Xu‖22 − 1
∣∣ ≤ 2 sup

u∈N

∣∣‖Xu‖22 − 1
∣∣ (3.6)

For any cardinality k subset J ⊆ {1, . . . , p}, let BJ = {u ∈ Sp−1(k) : uJc = 0}. Each BJ contains

a 1/4-net, NJ , of cardinality at most 9k (Vershynin, 2012, Lemma 5.2). Then N := ∪JNJ form

a 1/4-net for Sp−1(k). Define uJ ∈ argmaxu∈BJ‖Xu‖
2 and let vJ be an element in NJ closest in

Euclidean distance to uJ . Define A := X>X − Ip. We have that

|u>J AuJ | ≤ |v>J AvJ |+ |(uJ − vJ)>AvJ |+ |u>J A(uJ − vJ)| ≤ max
u∈NI

|u>Au|2 +
1

2
|u>J AuJ |.

Hence

sup
u∈Sp−1(k)

|u>Au| ≤ 2 max
u∈N
|u>Au|,

which verifies the claim in (3.6). By a union bound, we obtain that

P(X ∈ RIP(k, θ)) = P
(

sup
u∈Sp−1(k)

∣∣‖Xu‖22 − 1
∣∣ ≤ θ) ≥ P

(
sup
u∈N

∣∣‖Xu‖22 − 1
∣∣ ≤ θ/2)

≥ 1− 2

(
p

k

)
9ke−nθ

2/(256σ4) ≥ 1− 2 exp

{
k log

(
9ep

k

)
− nθ2

256σ4

}
,

as desired.

Proof of Proposition 3.2. By definition, ‖X>X − Ip‖op,k ≤ θ if and only if X ∈ RIPn,p(k, θ).

Moreover, by Proposition 3.1, Q̃⊗(n×p){X ∈ RIPn,p(k, θ)
}
→ 1. The proposed test hence satisfies
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the two defining properties of a certifier.

Proof of Proposition 3.3. The proposed test is clearly polynomial time computable (it has time

complexity O(n2p)). To verify that it is a certifier, we check that (i) ψ−1
n (1) ⊆ RIPn,p(k, θ) and

(ii) limn→∞ Q̃⊗(n×p)(ψ−1
n (1)) > 2/3.

For (i), on the event ‖X>X−Ip‖∞ ≤ 14σ2
√

log p
n , for any index set T ∈ {1, . . . , p} of cardinality

k, we have that ‖X>∗TX∗T − Ik‖∞ ≤ 14σ2
√

log p
n , which implies that

‖X>∗TX∗T − Ik‖op ≤ 14σ2k

√
log p

n
≤ θ

as desired. For (ii), we first note that for a general A ∈ Rp×p

‖A‖∞ = sup
S⊆{1,...,p},#S=2

‖ASS‖∞ ≤ sup
S⊆{1,...,p},#S=2

‖ASS‖op = ‖A‖op,2. (3.7)

Using Lemma 3.9 and (3.7), we can derive that

P
{
‖X>X − Ip‖∞ ≤ 14σ2

√
log p

n

}
≥ P

{
sup

u∈Sp−1(2)

∣∣‖Xu‖22 − 1
∣∣ ≤ 14σ2

√
log p

n

}
≥ 1− 2

(
p

2

)
92 exp

{
− n

64σ4

196σ4 log p

n

}
≥ 1− 81p2 exp{−3 log p} → 1.

as desired.

Lemma 3.6. Let Z be a non-negative random variable and r ≥ 2, then E(Zr) ≥ E(|Z−EZ|r). In

other words, centring a nonnegative random variable shrinks its second or higher absolute moments.

Proof. Let µ := E(Z) and define Y := Z−µ. Let P denote the probability measure on R associated

with the random variable Y . Hence
∫

[−µ,∞)
y dP (y) = 0. Without loss of generality, we may assume

that Z is not a point mass. Then
∫

[−µ,0]
(−y) dP (y) =

∫
(0,∞)

y dP (y) = A for some A > 0. For any

measurable function f : R→ [0,∞), we may write

A

∫
[−µ,∞)

f(y) dP (y) =

∫
[−µ,0]

(−v) dP (v)

∫
(0,∞)

f(u) dP (u) +

∫
(0,∞)

u dP (u)

∫
[−µ,0]

f(v)dP (v)

=

∫
u∈(0,∞)

∫
v∈[−µ,0]

(
u

u− v
f(v)− v

u− v
f(u)

)
(u− v) dP (v) dP (u). (3.8)

Let (U, V ) be a bivariate random vector having probability measure

1

A
(u− v)1(0,∞)(u)1[−µ,0](v) dP (u) dP (v)

on R2 (that this is a probability measure follows from substituting f(y) ≡ 1 in (3.8)). Then (3.8)

can be rewritten as

E
{
f(Y )

}
= E

{
U

U − V
f(V )− V

U − V
f(U)

}
.

Now consider choosing f to be f1(y) = |y|r and f2(y) = (y+µ)r respectively in the above equation.

Note that for u ∈ (0,∞) and v ∈ [−µ, 0] and r ≥ 2, we always have

uf2(v)− vf2(u) ≥ −vf2(u) ≥ −v(u− v)r ≥ (−v)ru+ (−v)ur ≥ uf1(v)− vf1(u).
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Therefore,

E(|Y |m) = E
{

U

U − V
f1(V )− V

U − V
f1(U)

}
≤ E

{
U

U − V
f2(V )− V

U − V
f2(U)

}
= E(|Y + b|m),

as desired.

Lemma 3.7. Suppose X is a sub-Gaussian random variable with parameter σ and median ξ. Let

X+ := X | X ≥ ξ and X− := X | X < ξ. Then X+−EX+ and X−−EX− are both sub-Gaussian

with parameters are most cσ for some absolute constant c.

Proof. By Vershynin (2012, Lemma 5.5), X is sub-Gaussian with parameter σ, which implies that

(E|X|p)1/p ≤ c1σ
√
p for some absolute constant c1. Hence by Lemma 3.6, we have

E
(∣∣X+ − EX+

∣∣p)1/p ≤ (E∣∣X+
∣∣p)1/p = 2

(
E
∣∣X1{X ≥ ξ}∣∣p)1/p ≤ 2c1σ

√
p.

Using Vershynin (2012, Lemma 5.5) again, we have that X+−EX+ is sub-Gaussian with parameter

at most cσ for some absolute constant c. A similar argument holds for X− − EX−.

Lemma 3.8. Suppose X is a random variable satisfying EeλX ≤ eσ
2λ2/2 for all λ ∈ R. Define

Y := X2 − EX2. Then EeλY ≤ e16σ4λ2

for all |λ| ≤ 1
4σ2 .

Proof. By Markov’s inequality,

P(|X| ≥ t) = P(X ≥ t) + P(−X ≥ t) = e−t
2/σ2

E
(
etX/σ

2)
+ e−t

2/σ2

E
(
e−tX/σ

2)
≤ 2e−t

2/(2σ2).

From Lemma 3.6, for r ≥ 2

E(|Y |r) ≤ E(|X|2r) =

∫ ∞
0

P(|X| ≥ t)(2r)t2r−1 dt ≤
∫ ∞

0

4rt2r−1e−t
2/(2σ2) dt = 2(2σ2)rΓ(r + 1).

Consequently, if |2σ2λ| ≤ 1/2, then

EeλY =

∞∑
r=0

λrEY r

r!
≤ 1 + 2

∞∑
r=2

(2σ2λ)r ≤ 1 + 16σ4λ2 ≤ e16σ4λ2

,

as desired.

Lemma 3.9. Let X1, X2, . . . , Xn be independent sub-Gaussian random variables with sub-Gaussian

parameters at most σ. Let Yi := X2
i − EX2

i . Then

P
( n∑
i=1

Yi ≥ θ
)
≤ exp

{
−
(

θ2

64nσ4
∧ θ

8σ2

)}
and P

( n∑
i=1

Yi ≤ −θ
)
≤ exp

{
− θ2

64nσ4

}

Proof. Using Markov’s inequality, we have

P
( n∑
i=1

Yi ≥ θ
)

= P
(
eλ

∑
i Yi ≥ eλθ

)
≤ e−λθ

∏
i

EeλYi .
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Set λ = θ
32nσ4 ∧ 1

4σ2 . By Lemma 3.8, we have

P
( n∑
i=1

Yi ≥ θ
)
≤ e−λθ+16λ2nσ4

≤ e−λθ/2,

which establishes the first desired inequality. Applying the same argument with −Yi in place of Yi

we get

P
( n∑
i=1

Yi ≤ −θ
)
≤ exp

{
−
(

θ2

64nσ4
∧ θ

8σ2

)}
. (3.9)

Taylor expand the moment generating function of Xi around 0, we have EX2
i ≤ σ2. Hence we

may assume θ ≤ nσ2. Then we have θ2

64nσ4 <
θ

8σ2 , which together with (3.9) implies the desired

result.

Lemma 3.10. Suppose n` balls are arranged in an array of n rows and ` columns and k balls

(k < n) are chosen uniformly at random. Let Vi be the number of chosen balls in row i and

V = (V1, . . . , Vn)>. Then

P
(
‖V ‖0 ≤ k −

k2

2n
−
√
k log k

)
≤ 1

k2
.

Moreover, if k ≤ nγ for some γ < 1, then

P
(
‖V ‖∞ ≥ a

)
≤ n1−a(1−γ)

(
1− n−(1−γ)

)
.

Proof. Let Ui be the number of balls chosen in row i when balls are drawn with replacement from

the array and U = (U1, . . . , Un)>. Then ‖V ‖0 is stochastically larger than ‖U‖0 and ‖V ‖∞ is

stochastically smaller than ‖U‖0. So it suffices to show the desired inequalities with U replacing

V . In the following argument, we consider only drawing with replacement.

Let X = {e1, . . . , en} where ei denotes the ith standard basis vector in Rn. For 1 ≤ r ≤ k, let

Xr be uniformly distributed in X . Then U
d
=
∑k
r=1Xr. We note that changing the value of any

one Xr affects the value of ‖U‖0 by at most 1. By McDiarmid’s inequality (McDiarmid, 1989), we

have that for any t > 0,

P
(
‖U‖0 − E‖U‖0 ≤ −t

)
≤ e− 2t2

k . (3.10)

For 1 ≤ i ≤ n. Define Ji = 1{no ball is chosen in row i}, then

E‖U‖0 = n−
n∑
i=1

EJi = n− n(1− 1/n)k ≥ k
(

1− k

2n

)
.

Thus, together with (3.10), we have

P
(
‖U‖0 ≤ k −

k2

2n
−
√
k log k

)
≤ P

(
‖U‖0 − E‖U‖0 ≤ −

√
k log k

)
≤ e−2 log k = k−2,

as desired. For the second inequality, we have by a union bound that

P(‖U‖∞ ≥ a) ≤ n
k∑
s=a

(
k

s

)
n−s ≤ n

∞∑
s=a

(k/n)s = n
(k/n)a

1− k/n
≤ n1−a(1−γ)(1− n−(1−γ)),

as desired.



Chapter 4

High-dimensional changepoint

estimation via sparse projection

4.1 Introduction

One of the most commonly-encountered issues with Big Data is heterogeneity. When collecting

vast quantities of data, it is usually unrealistic to expect that stylised, traditional statistical models

of independent and identically distributed observations can adequately capture the complexity of

the underlying data generating mechanism. Departures from such models may take many forms,

including missing data, correlated errors and data combined from multiple sources, to mention just

a few.

When data are collected over time, heterogeneity often manifests itself through non-stationarity,

where the data generating mechanism varies with time. Perhaps the simplest form of non-

stationarity assumes that population changes occur at a relatively small number of discrete time

points. If correctly estimated, these ‘changepoints’ can be used to partition the original data set

into shorter segments, which can then be analysed using methods designed for stationary time se-

ries. Moreover, the locations of these changepoints are often themselves of great practical interest.

In this chapter, we study high-dimensional time series that may have changepoints; moreover,

we consider in particular settings where at a changepoint, the mean structure changes in a sparse

subset of the coordinates. Despite their simplicity, such models are of great interest in a wide

variety of applications. For instance, in the case of stock price data, it may well be the case that

stocks in related industry sectors experience virtually simultaneous ‘shocks’ (Chen and Gupta,

1997). In internet security monitoring, a sudden change in traffic at multiple routers may be

an indication of a distributed denial of service attack (Peng, Leckie and Ramamohanarao, 2004).

In functional Magnetic Resonance Imaging (fMRI) studies, a rapid change in blood oxygen level

dependent (BOLD) contrast in a subset of voxels may suggest neurological activity of interest

(Aston and Kirch, 2012).

Our main contribution is to propose a new method for estimating the number and locations of

the changepoints in such high-dimensional time series, a challenging task in the absence of knowl-

edge of the coordinates that undergo a change. In brief, we first seek a good projection direction,

which should ideally be closely aligned with the vector of mean changes. We can then apply an

existing univariate changepoint estimation algorithm to the projected series. For this reason, we

61
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call our algorithm inspect, short for informative sparse projection for estimation of changepoints.

Software implementing the methodology is available in the R package InspectChangepoint (Wang

and Samworth, 2016b).

In more detail, in the single changepoint case, our first observation is that at the population

level, the vector of mean changes is the leading left singular vector of the matrix obtained as the

cumulative sum (CUSUM) transformation of the mean matrix of the time series. This motivates

us to begin by applying the CUSUM transformation to the time series. Unfortunately, computing

the k-sparse leading left singular vector of a matrix is a combinatorial optimisation problem, but

nevertheless, we are able to formulate an appropriate convex relaxation of the problem, similar to

the semidefinite relaxation (2.5) constructed in Chapter 2. We then derive our projection direction

from the optimiser of this convex problem. At the second stage of our algorithm, we compute

the vector of CUSUM statistics for the projected series, identifying a changepoint if the maximum

absolute value of this vector is sufficiently large. For the case of multiple changepoints, we combine

our single changepoint algorithm with the method of Wild Binary Segmentation (Fryzlewicz, 2014)

to identify changepoints recursively.
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Figure 4.1: An example of inspect algorithm in action. Top-left: visualisation of the data matrix.
Top-right: its CUSUM transformation. Bottom-left: overlay of the projected CUSUM statistics for
the three changepoints detected. Bottom-right: visualisation of thresholding; the three detected
changepoints are above the threshold (dotted red line) whereas the remaining numbers are the
test statistics obtained if we run the wild binary segmentation to completion without applying a
termination criterion.

A brief illustration of the inspect algorithm in action is given in Figure 4.1. Here, we simulated

a 2000× 1000 data matrix having independent normal columns with identity covariance and with

three changepoints in the mean structure at locations 500, 1000 and 1500. Changes occur in 40

coordinates, where consecutive changepoints overlap in half of their coordinates, and the squared

`2 norms of the vectors of mean changes were 0.4, 0.9 and 1.6 respectively. The top-left panel shows

the original data matrix and the top-right shows its CUSUM transformation, while the bottom-left

panel shows overlays for the three detected changepoints of the univariate CUSUM statistics after
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projection. Finally, the bottom-right panel displays the largest absolute values of the projected

CUSUM statistics obtained by running the wild binary segmentation algorithm to completion (in

practice, we would apply a termination criterion instead, but this is still helpful for illustrative

purposes). We see that the three detected changepoints are very close to their true locations, and

it is only for these three locations that we obtain a sufficiently large CUSUM statistic to declare a

changepoint.

Our theoretical development proceeds first by controlling the angle between the estimated

projection direction and the optimal direction, which is given by the normalised vector of mean

changes. Under appropriate conditions, this enables us to provide finite-sample bounds which

guarantee that with high probability we both recover the correct number of changepoints, and

estimate their locations to within a specified accuracy. Our extensive numerical studies indicate

that the algorithm performs extremely well in a wide variety of settings.

The study of changepoint problems dates at least back to Page (1955), and has since found ap-

plications in many different areas, including genetics (Olshen et al., 2004), disease outbreak watch

(Sparks, Keighley and Muscatello, 2010) and aerospace engineering (Henry, Simani and Patton,

2010), in addition to those already mentioned. There is a vast and rapidly growing literature on

different methods for changepoint detection and localisation, especially in the univariate problem.

Surveys of various methods can be found in Csörgö and Horváth (1997) and Horváth and Rice

(2014). In the case of univariate changepoint estimation, state-of-the-art methods include Pruned

Exact Linear Time method (PELT) (Killick, Fearnhead and Eckley, 2012), Wild Binary Segmen-

tation (WBS) (Fryzlewicz, 2014) and Simultaneous Multiscale Changepoint Estimator (SMUCE)

(Frick, Munk and Sieling, 2014).

Some of the univariate changepoint methodologies have been extended to multivariate settings.

Examples include Horváth, Kokoszka and Steinebach (1999), Ombao, Von Sachs and Guo (2005),

Aue et al. (2009) and Kirch, Mushal and Ombao (2014). However, there are fewer available tools for

high-dimensional changepoint problems, where both the dimension p and the length n of the data

stream may be large, and where we may allow a sparsity assumption on the coordinates of change.

Bai (2010) investigates the performance of the least squares estimator of a single changepoint in

the high-dimensional setting. Zhang et al. (2010), Horváth and Hušková (2012) and Enikeeva

and Harchaoui (2014) consider estimators based on `2 aggregations of CUSUM statistics in all

coordinates, but without using any sparsity assumptions. Enikeeva and Harchaoui (2014) also

consider a scan statistic that takes sparsity into account. Jirak (2015) considers an `∞ aggregation

of the CUSUM statistics that works well for sparse changepoints. Cho and Fryzlewicz (2015)

propose Sparse Binary Segmentation, which also takes sparsity into account and can be viewed as

a hard-thresholding of the CUSUM matrix followed by an `1 aggregation. Cho (2016) proposes a

double-CUSUM algorithm that performs a CUSUM transformation along the location axis on the

columwise-sorted CUSUM matrix. In a slightly different setting, Lavielle and Teyssiere (2006), Aue

et al. (2009), Bücher et al. (2014), Preuß et al. (2015) and Cribben and Yu (2016) deal with changes

in cross-covariance. Aston and Kirch (2014) considered the asymptotic efficiency of detecting a

single changepoint in a high-dimensional setting, and the oracle projection-based estimator under

cross-sectional dependence structure.

The outline of the rest of the paper is as follows. In Section 4.2, we give a formal description

of the problem and the class of data generating mechanisms under which our theoretical results

hold. Our methodological development in the single changepoint setting is presented in Section 4.3,
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and includes theoretical guarantees on both the projection direction and location of the estimated

changepoint. Section 4.4 extends these ideas to the case of multiple changepoints with the aid of

Wild Binary Segmentation, and our numerical studies are given in Section 4.5.

We conclude this section by introducing some notation used throughout this chapter. For a

vector u = (u1, . . . , uM )> ∈ RM , a matrix A = (Aij) ∈ RM×N and for q ∈ [1,∞), we write

‖u‖q :=
(∑M

i=1 |ui|q
)1/q

and ‖A‖q :=
(∑M

i=1

∑N
j=1 |Aij |q

)1/q
for their (entrywise) `q-norms, as

well as ‖u‖∞ := maxi=1,...,M |ui| and ‖A‖∞ := maxi=1,...,M,j=1,...,N |Aij |. We write ‖A‖∗ :=∑min(M,N)
i=1 σi(A) and ‖A‖op := maxi σi(A) respectively for the nuclear norm and operator norm

of matrix A, where σ1(A), . . . , σmin(M,N)(A) are its singular values. We also write ‖u‖0 :=∑M
i=1 1{ui 6=0}. For S ⊆ {1, . . . ,M} and T ⊆ {1, . . . , N}, we write uS := (ui : i ∈ S)> and

write MS,T for the |S| × |T | submatrix of A obtained by extracting the rows and columns with in-

dices in S and T respectively. For two matrices A,B ∈ RM×N , we denote their trace inner product

as 〈A,B〉 = tr(A>B). For two non-zero vectors u, v ∈ Rp, we write ∠(u, v) := cos−1( 〈u,v〉
‖u‖2‖v‖2 ) for

the acute angle bounded between them. We let Sp−1 := {x ∈ Rp : ‖x‖2 = 1} be the unit Euclidean

sphere in Rp, and let Sp−1(k) := {x ∈ Sp−1 : ‖x‖0 ≤ k}.

4.2 Problem description

Let X1, . . . , Xn be independent p-dimensional random vectors sampled from

Xt ∼ Np(µt, σ2Ip), 1 ≤ t ≤ n, (4.1)

and combine the observations into a matrix X = (X1, . . . , Xn) ∈ Rp×n. We assume that the mean

vectors follow a piecewise-constant structure with at most ν + 1 segments. In other words, there

exist ν changepoints

1 ≤ z1 < z2 < · · · < zν ≤ n− 1

such that

µzi+1 = · · · = µzi+1 =: µ(i), ∀ 0 ≤ i ≤ ν,

where we adopt the convention that z0 := 0 and zν+1 := n. For i = 1, . . . , ν, write

θ(i) := µ(i) − µ(i−1)

for the difference in means between consecutive stationary segments. We assume that the changes

in mean are sparse in the sense that there exists k ∈ {1, . . . , p} (typically k is much smaller than

p) such that ‖θ(i)‖0 ≤ k for each i = 1, . . . , ν.

Our goal is to estimate the set of changepoints {z1, . . . , zν} in the high-dimensional regime,

where p may be comparable to, or even larger than, the length n of the series. The signal strength

of the estimation problem is determined by the magnitude of mean changes {θ(i) : 1 ≤ i ≤ ν} and

the run lengths of stationary segments {zi+1 − zi : 0 ≤ i ≤ ν}, whereas the noise is related to

the variance σ2 and the dimensionality p of the observed data points. We let P(n, p, k, ν, ϑ, τ, σ2)

denote the class of distributions of X = (X1, . . . , Xn) ∈ Rp×n with independent columns drawn

from (4.1), where the changepoint locations satisfy

n−1 min{zi+1 − zi : 0 ≤ i ≤ ν} ≥ τ,
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and the magnitudes of mean changes are such that

‖θ(i)‖22 ≥ kϑ2, ∀ 1 ≤ i ≤ ν.

Suppose that an estimation procedure outputs ν̂ changepoints located at 1 ≤ ẑ1 < · · · < ẑν̂ ≤
n − 1. Our finite-sample bounds will imply a rate of convergence for inspect in an asymptotic

setting where (p, k, ν, ϑ, τ, σ2) = (pn, kn, νn, ϑn, τn, σ
2
n). In this context, we follow the convention

in the literature (e.g. Venkatraman, 1992) and say that the procedure is consistent with rate of

convergence ρn if

sup
P∈P(n,p,k,ν,ϑ,τ,σ2)

PP
{
ν̂ = ν and |ẑi − zi| ≤ nρn for all 1 ≤ i ≤ ν

}
→ 1 (4.2)

as n → ∞. We remark that consistency as defined above is a rather strong notion, in the sense

that it implies convergence in several other natural metrics. For example, if we let

dH(A,B) := max
{

sup
a∈A

inf
b∈B
|a− b|, sup

b∈B
inf
a∈A
|a− b|

}
denote the Hausdorff distance between non-empty sets A and B on R, then (4.2) implies that with

probability tending to 1,

1

n
dH

(
{ẑi : 1 ≤ i ≤ ν̂}, {zi : 1 ≤ i ≤ ν}

)
≤ ρn.

Similarly, denote the L1-Wasserstein distance between probability measures P and Q on R by

dW(P,Q) := inf
(U,V )∼(P,Q)

E|U − V |

where the infimum is taken over all pairs of random variables U and V defined on the same

probability space with U ∼ P and V ∼ Q. Then (4.2) also implies that with probability tending

to 1,

1

n
dW

(
1

ν̂

ν̂∑
i=1

δẑi ,
1

ν

ν∑
i=1

δzi

)
≤ ρn,

where δa denotes a Dirac point mass at a.

4.3 Sparse projection estimator for a single changepoint

We first consider the problem of estimating a single changepoint (i.e. ν = 1) in a high-dimensional

time series dataset X ∈ Rp×n. For simplicity, write z := z1, θ = (θ1, . . . , θp)
> := θ(1) and

τ := n−1 min{z, n − z}. We seek to aggregate the rows of the data matrix X in an almost

optimal way so as to maximise the signal-to-noise ratio, and then locate the changepoint using a

one-dimensional procedure. For any a ∈ Sp−1, a>X is a one-dimensional time series with

a>Xt ∼ N(a>µt, σ
2).

Hence, the choice a = θ/‖θ‖2 maximises the magnitude of the difference in means between the two

segments. However, θ is typically unknown in practice, so we should seek a projection direction
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that is close to the oracle projection direction v := θ/‖θ‖2. Our strategy is to perform sparse

singular value decomposition on the CUSUM transformation of X. The method and limit theory

of CUSUM statistics in the univariate case can be traced back to Darling and Erdős (1956). For

p ∈ N and n ≥ 2, we define the CUSUM transformation Tp,n : Rp×n → Rp×(n−1) by

[Tp,n(M)]j,t : =

√
t(n− t)

n

(
1

n− t

n∑
r=t+1

Mj,r −
1

t

t∑
r=1

Mj,r

)

=

√
n

t(n− t)

(
t

n

n∑
r=1

Mj,r −
t∑

r=1

Mj,r

)
. (4.3)

In fact, to simplify the notation, we will write T for Tp,n, since p and n can be inferred from the

dimensions of the argument of T . Note also that T reduces to computing the vector of classical

one-dimensional CUSUM statistics when p = 1. We write

X = µ+W,

where µ = (µ1, . . . , µn) ∈ Rp×n and W = (W1, . . . ,Wn) is a p×n random matrix with independent

Np(0, σ
2Ip) columns. Let T := T (X), A := T (µ) and E := T (W ), so by the linearity of the

CUSUM transformation we have the decomposition

T = A+ E.

In the single changepoint case, the entries of the matrix A can be computed explicitly:

Aj,t =


√

t
n(n−t) (n− z)θj , if t ≤ z√
n−t
nt zθj , if t > z.

Hence we can write

A = θγ>, (4.4)

where

γ :=
1√
n

(√
1

n− 1
(n− z),

√
2

n− 2
(n− z), . . . ,

√
z(n− z),

√
n− z − 1

z + 1
z, . . . ,

√
1

n− 1
z

)>
. (4.5)

In particular, this implies that the oracle projection direction is the leading left singular vector of

the rank 1 matrix A. In the ideal case where k is known, we could in principle let v̂max,k be a

k-sparse leading left singular vector of T , defined by

v̂max,k ∈ argmax
ṽ∈Sp−1(k)

‖T>ṽ‖2, (4.6)

and it can then be shown using a perturbation argument akin to the Davis–Kahan ‘sin θ’ theorem

(cf. Davis and Kahan (1970) and Chapter 1) that v̂max,k is a consistent estimator of the oracle

projection direction v under mild conditions (see Proposition 4.9 in Section 4.7). However, the

optimisation problem in (4.6) is non-convex and hard to implement. In fact, computing the k-

sparse leading left singular vector of a matrix is known to be NP-hard (e.g. Tillmann and Pfetsch

(2014)). The naive algorithm that scans through all possible k-subsets of the rows of T has running
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time exponential in k, which quickly becomes impractical to run for even moderate sizes of k.

A natural approach to remedy this computational issue is to work with a convex relaxation of

the optimisation problem (4.6) instead. In fact, we can write

max
u∈Sp−1(k)

‖u>T‖2 = max
u∈Sp−1(k),w∈Sn−2

u>Tw

= max
u∈Sp−1,w∈Sn−2,‖u‖0≤k

〈uw>, T 〉 = max
M∈M

〈M,T 〉, (4.7)

where M := {M ∈ Rp×(n−1) : ‖M‖∗ = 1, rank(M) = 1,M has at most k non-zero rows}. The

final expression in (4.7) has a convex (linear) objective function M 7→ 〈M,T 〉. The require-

ment rank(M) = 1 in the constraint set M is equivalent to ‖σ(M)‖0 = 1, where σ(M) :=

(σ1(M), . . . , σmin(p,n−1)(M))> is the vector of singular values of M . This motivates us to absorb

the rank constraint into the nuclear norm constraint, which we relax from an equality constraint

to an inequality constraint in order to make it convex. Furthermore, we can relax the row sparsity

constraint in the definition of M to an entrywise `1-norm penalty. The optimisation problem of

finding

M̂ ∈ argmax
M∈S1

{
〈T,M〉 − λ‖M‖1

}
, (4.8)

where S1 := {M ∈ Rp×(n−1) : ‖M‖∗ ≤ 1} and λ > 0 is a tuning parameter to be chosen later, is

therefore a convex relaxation of (4.6). The convex problem (4.8) may be solved using the alternating

direction method of multipliers algorithm (ADMM, see e.g. Gabay and Mercier (1976); Boyd et

al. (2011)) as in Algorithm 4.1. More specifically, by a variable-splitting trick, the optimisation

Algorithm 4.1: Pseudo-code for an ADMM algorithm that computes the solution to the
optimisation problem (4.8).

Input: T ∈ Rp×(n−1), λ > 0.

Set: Y = Z = R = 0 ∈ Rp×(n−1)

repeat
Y ← ΠS1(Z −R+ T )
Z ← soft(Y +R, λ)
R← R+ (Y − Z)

until Y − Z converges to 0

M̂ ← Y

Output: M̂

problem in (4.8) is equivalent to maximising 〈T, Y 〉−λ‖Z‖1− IS1(Y ) subject to Y = Z, where IS1
is the function that is 0 on S1 and ∞ on Sc1 . Its augmented Lagrangian is given by

L(Y, Z,R) := 〈T, Y 〉 − IS1(Y )− λ‖Z‖1 − 〈R, Y − Z〉 −
1

2
‖Y − Z‖22,

with the Lagrange multiplier R being the dual variable. Each iteration of the main loop in Algo-

rithm 4.1 first performs a primal update by maximising L(Y,Z,R) marginally with respect to Y

and Z, then followed by a dual gradient update of R with constant step size. The function ΠS1(·)
in Algorithm 4.1 denotes projection onto the convex set S1 with respect to the Frobenius norm

distance. If A = UDV > is the singular value decomposition of A ∈ Rp×(n−1) with rank(A) = r,

where D is a diagonal matrix with diagonal entries d1, . . . , dr, then ΠS1(A) = UD̃V >, where D̃ is

a diagonal matrix with entries d̃1, . . . , d̃r such that (d̃1, . . . , d̃r)
> is the Euclidean projection of the
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vector (d1, . . . , dr)
> onto the standard (r − 1)-simplex

∆r−1 :=

{
(x1, . . . , xr)

> ∈ Rr :

r∑
`=1

x` = 1 and x` ≥ 0 for all `

}
.

For an efficient algorithm for such simplicial projection, see Chen and Ye (2011). The soft func-

tion in Algorithm 4.1 denotes an entrywise soft-thresholding operator defined by
(
soft(A, λ)

)
ij

=

sgn(Aij) max{|Aij | − λ, 0} for any λ ≥ 0 and matrix A = (Aij).

We remark that one may be interested to further relax (4.8) by replacing S1 with the larger set

S2 := {M ∈ Rp×(n−1) : ‖M‖2 ≤ 1}. We see from Lemma 4.10 in Section 4.7 that the smoothness

of S2 results in a simple dual formulation, which implies that

M̃ :=
soft(T, λ)

‖ soft(T, λ)‖2
= argmax

M∈S2

{
〈T,M〉 − λ‖M‖1

}
(4.9)

is the unique optimiser of the primal problem. The soft-thresholding operation is significantly faster

than the ADMM algorithm in Algorithm 4.1. Hence by enlarging S1 to S2, we can significantly

speed up the running time of the algorithm in exchange for some loss in statistical efficiency caused

by the further relaxation of the constraint set. See Section 4.5 for further discussion.

Let v̂ be the leading left singular vector of

M̂ ∈ argmax
M∈S

{
〈T,M〉 − λ‖M‖1

}
, (4.10)

for either S = S1 or S = S2. In Proposition 4.1 below, we provide an error bound on v̂ as an

estimator of the oracle projection direction v. It relies on a generalisation of the curvature lemma

in Vu et al. (2013, Lemma 3.1), presented as Lemma 4.4 in Section 4.7.

Proposition 4.1. Suppose that M̂ satisfies (4.10) for either S = S1 or S = S2. Let v̂ ∈
argmaxṽ∈Sp−1 ‖M̂>ṽ‖2 be the leading left singular vector of M̂ . If n ≥ 6 and if we choose

λ ≥ 2σ
√

log(p log n), then

sup
P∈P(n,p,k,1,ϑ,τ,σ2)

PP
(

sin∠(v̂, v) >
32λ

τϑ
√
n

)
≤ 4

(p log n)1/2
.

As an illustration, consider λ = 2σ
√

log(p log n) and the asymptotic regime where log p =

O(log n), ϑ � n−a and τ � n−b for some a ∈ R and b ≥ 0. Then Proposition 4.1 implies that as

long as a+ b < 1/2, we have ∠(v̂, v)
p→ 0.

Algorithm 4.2: Pseudo-code for a single high-dimensional changepoint estimation algorithm.

Input: X ∈ Rp×n, λ > 0.

Step 1: Perform the CUSUM transformation T ← T (X)
Step 2: Use Algorithm 4.1 or (4.9) (with inputs T , λ in either case) to solve for an

optimiser M̂ of (4.10) for S = S1 or S2

Step 3: Find v̂ ∈ argmaxṽ∈Sp−1 ‖M̂>ṽ‖2.
Step 4: Let ẑ ∈ argmax1≤t≤n−1 |v̂>Tt|, where Tt is the tth column of T , and set

T̄max ← |v̂>Tẑ|
Output: ẑ, T̄max

After obtaining a good estimator v̂ of the oracle projection direction, the natural next step
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is to project the data matrix X along the direction v̂, and apply an existing one-dimensional

changepoint localisation method on the projected data. In this work, we apply a one-dimensional

CUSUM transformation to the projected time series and estimate the changepoint by the location

of the maximum of the CUSUM vector. Our overall procedure for locating a single changepoint

in a high-dimensional time series is given in Algorithm 4.2. In our description of this algorithm,

the noise level σ is assumed to be known. If σ is unknown, we can estimate it robustly using,

e.g., the median absolute deviation of the marginal one-dimensional time series (Hampel, 1974).

Note that for the convenience of later reference, we have required Algorithm 4.2 to output both

the estimated changepoint location ẑ and the associated maximum absolute post-projection one-

dimensional CUSUM statistic T̄max.

From a theoretical point of view, the fact that v̂ is estimated using the entire dataset X makes

it difficult to analyse the post-projection noise structure. For this reason, in the analysis below,

we work with a slight variant of Algorithm 4.2. We assume for convenience that n = 2n1 is even,

and define X(1), X(2) ∈ Rp×n1 by

X
(1)
j,t := Xj,2t−1 and X

(2)
j,t := Xj,2t for 1 ≤ j ≤ p, 1 ≤ t ≤ n1. (4.11)

We then use X(1) to estimate the oracle projection direction and use X(2) to estimate the change-

point location after projection (see Algorithm 4.3). However, in our experience, v̂ is almost in-

dependent of T and we recommend using Algorithm 4.2 without sample splitting in practice to

exploit the full signal strength in the data.

Algorithm 4.3: Pseudo-code for a sample-splitting variant of Algorithm 4.2.

Input: X ∈ Rp×n, λ > 0.

Step 1: Perform the CUSUM transformation T (1) ← T (X(1)) and T (2) ← T (X(2)).
Step 2: Use Algorithm 4.1 or (4.9) (with inputs T (1), λ in either case) to solve for

M̂ (1) ∈ argmaxM∈S
{
〈T (1),M〉 − λ‖M‖1

}
with S = {M ∈ Rp×(n1−1) : ‖M‖∗ ≤ 1}

or {M ∈ Rp×(n1−1) : ‖M‖2 ≤ 1}.
Step 3: Find v̂(1) ∈ argmaxṽ∈Sp−1 ‖(M̂ (1))>ṽ‖2.

Step 4: Let ẑ ∈ 2 argmax1≤t≤n1−1

∣∣(v̂(1))>T
(2)
t

∣∣, where T
(2)
t is the tth column of T (2), and

set T̄max ←
∣∣(v̂(1))>T

(2)
ẑ/2

∣∣.
Output: ẑ, T̄max

We summarise the overall estimation performance of Algorithm 4.3 in the following theorem.

Theorem 4.2. Suppose σ > 0 is known. Let ẑ be the output of Algorithm 4.3 with input X and

λ := 2σ
√

log(p log n). If n ≥ 6 is even and

σ

ϑτ

√
log(p log n)

n
≤
√

3

128
, (4.12)

then

sup
P∈P(n,p,k,1,ϑ,τ,σ2)

PP
(

1

n
|ẑ − z| > 32σ

ϑ
√
kτ

√
log n

n

)
≤ 4

{p log(n/2)}1/2
+

2

n
.

Again, to illustrate, suppose we are in the asymptotic regime where log p = O(log n), ϑ � n−a,

τ � n−b and k � nc for some a ∈ R and b ∈ [0, 1] and c ≥ 0. If a + b < 1/2, then Theorem 4.2

implies that the output ẑ of Algorithm 4.3 is a consistent estimator of the true changepoint z with
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rate of convergence ρn = o(n−
1−2a−b+c

2 +δ) for any δ > 0.

4.4 Estimating multiple changepoints

Our algorithm for a single changepoint can be combined with the wild binary segmentation scheme

of Fryzlewicz (2014) to sequentially locate multiple changepoints in high-dimensional time series.

The principal idea behind a wild binary segmentation procedure is as follows. We first randomly

sample a large number of pairs, (s1, e1), . . . , (sQ, eQ) uniformly from the set {(`, r) ∈ Z2 : 0 ≤
` < r ≤ n}, and then apply our single changepoint algorithm to X [q], for 1 ≤ q ≤ Q, where

X [q] is defined to be the submatrix of X obtained by extracting columns {sq + 1, . . . , eq} of X.

For each 1 ≤ q ≤ Q, the single changepoint algorithm (Algorithm 4.2 or 4.3) will estimate an

optimal sparse projection direction v̂[q], compute a candidate changepoint location sq + ẑ[q] within

the time window [sq + 1, eq] and return a maximum absolute CUSUM statistic T̄
[q]
max along the

projection direction. We aggregate the q candidate changepoint locations by choosing one that

maximises the largest projected CUSUM statistic, T
[q]
max, as our best candidate. If T

[q]
max is above

a certain threshold value ξ, we admit the best candidate to the set Ẑ of estimated changepoint

locations and repeat the above procedure recursively on the sub-segments to the left and right of

the estimated changepoint. Note that while recursing on a sub-segment, we only consider those

time windows that are completely contained in the sub-segment. The precise algorithm is detailed

in Algorithm 4.4.

Algorithm 4.4 requires three tuning parameters: a regularisation parameter λ, a Monte Carlo

parameter Q for the number of random time windows and a thresholding parameter ξ that deter-

mines termination of recursive segmentation. Theorem 4.3 below provides choices for λ, Q and ξ

that yield theoretical guarantees for consistent estimation of all changepoints as defined in (4.2).

Algorithm 4.4: Pseudo-code for multiple changepoint algorithm based on sparse singular
vector projection and wild binary segmentation.

Input: X ∈ Rp×n, λ > 0, ξ > 0, β > 0, Q ∈ N.

Step 1: Set Ẑ ← ∅. Draw Q pairs of integers (s1, e1), . . . , (sQ, eQ) uniformly at random
from the set {(`, r) ∈ Z2 : 0 ≤ ` < r ≤ n}.

Step 2: Run wbs(0, n) where wbs is defined below.
Step 3: Let ν̂ ← |Ẑ| and sort elements of Ẑ in increasing order to yield ẑ1 < · · · < ẑν̂ .

Output: ẑ1, . . . , ẑν̂

Function wbs(s, e)
Set Qs,e ← {q : s+ nβ ≤ sq < eq ≤ e− nβ}
for q ∈ Qs,e do

Run Algorithm 4.2 with X [q], λ as input, and let ẑ[q], T̄
[q]
max be the output.

end

Find q0 ∈ argmaxq∈Qs,e T̄
[q]
max and set b← sq0 + ẑ[q0]

if T̄
[q0]
max > ξ then

Ẑ ← Ẑ ∪ {b}
wbs(s, b)
wbs(b, e)

end

end

We remark that if we apply Algorithm 4.2 or 4.3 on the entire dataset X instead of random time
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windows of X, and then iterate after segmentation, we arrive at a multiple changepoint algorithm

based on the classical binary segmentation scheme. The main disadvantage of this classical binary

segmentation procedure is its sensitivity to model misspecification. Algorithms 4.2 and 4.3 are de-

signed to optimise the detection of a single changepoint. When we apply them in conjunction with

classical binary segmentation to a time series containing more than one changepoint, the signals

from multiple changepoints may cancel each other out in two different ways that will lead to a loss of

power. First, as Fryzlewicz (2014) points out in the one-dimensional setting, multiple changepoints

may offset each other in CUSUM computation, resulting in a smaller peak of the CUSUM statistic

that is more easily contaminated by the noise. Moreover, in a high-dimensional setting, different

changepoints can undergo changes in different sets of (sparse) coordinates. This also attenuates

the signal strength in the sense that the estimated oracle projection direction from Algorithm 4.1

is aligned to some linear combination of θ(1), . . . , θ(ν), but not necessarily well-aligned to any one

particular θ(i). The wild binary segmentation scheme addresses the model misspecification issue

by examining sub-intervals of the entire time length. When the number of time windows Q is suf-

ficiently large and τ is not too small, with high probability we have reasonably long time windows

that contain each individual changepoint. Hence the single changepoint algorithm will perform

well on these segments.

Just as in the case of single changepoint detection, it is easier to analyse the theoretical per-

formance of a sample-splitting version of Algorithm 4.4. However, to avoid notational clutter, we

will prove a theoretical result without sample splitting, but with the assumption that whenever

Algorithm 4.2 is used within Algorithm 4.4, its second and third steps (i.e. the steps for estimating

the oracle projection direction) are carried out on an independent copy X ′ of X. We refer to

such a variant of the algorithm with an access to an independent sample X ′ as Algorithm 4.4′.

Theorem 4.3 below, which proves theoretical guarantees of Algorithm 4.4′, can then be readily

adapted to work for a sample-splitting version of Algorithm 4.4, where we replace n by n/2 where

necessary.

Theorem 4.3. Suppose σ > 0 is known and X,X ′
iid∼ P ∈ P(n, p, k, ν, ϑ, τ, σ2). Let ẑ1 < · · · < ẑν̂

be the output of Algorithm 4.4′ with input X, X ′, λ := 3σ
√

log(np), ξ := λ, β and Q. Define

ρ = ρn := 200λ

ϑ
√
knτ3

. If nτ ≥ 14, 2ρ < β < 2
9τ and ρ

√
kτ ≤ 1, then

PP
{
ν̂ = ν and |ẑi − zi| ≤ nρ for all 1 ≤ i ≤ ν

}
≥ 1− τ−1e−τ

2Q/9 − 2n−3/2p−5/2.

To illustrate the conditions and conclusion of Theorem 4.3, we again consider the asymptotic

setting where ϑ � n−a, τ � n−b, k � nc and log p = O(log n). In this case, the conditions of

Theorem 4.3 hold for sufficiently large n if a+ b < 1/2 and 2a+ 5b− c < 1. When these conditions

are satisfied, Theorem 4.3 implies that Algorithm 4.4′ consistently estimates all changepoints with

rate of convergence ρn = o(n−
1−2a−3b+c

2 +δ) for any δ > 0.

4.5 Numerical studies

In this section, we examine the empirical performance of the inspect algorithm in a range of

settings, and compare it with a variety of other recently-proposed methods. In both single- and

multiple-changepoint scenarios, the implementation of inspect requires the choice of a regularisa-

tion parameter λ > 0 to be used in Algorithm 4.1 (which is called in Algorithms 4.2 and 4.4). In our
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experience, the theoretical choices λ = σ
√

2 log(p log n) and λ = 3σ
√

log(np) used in Theorems 4.2

and 4.3 produce consistent estimators as predicted by the theory, but are slightly conservative, and

in practice we recommend the choice λ = σ
√

2−1 log(p log n) in both cases. The noise level σ is

estimated by concatenating the individual time series into a vector of length np and then comput-

ing the median absolute deviation using the scaling constant of 1.48 for the normal distribution

(Hampel, 1974).

In Step 2 of Algorithm 4.2, we also have a choice between using S = S1 and S2. The following

numerical experiment demonstrates the difference in performance of the algorithm for these two

choices. We took n = 200, p = 100, k = 10, with a single changepoint located at z = 100. Table 4.1

shows the angles between the oracle projection direction and estimated projection directions using

both S1 and S2 as the signal level ϑ varies from 0.1 to 1. It can be seen that further relaxation from

S1 to S2 incurs a relatively low cost in terms of the estimation quality of the projection direction,

but it offers great improvement in running time due to the closed-form solution (cf. Lemma 4.10).

Thus, even though the use of S1 remains a viable practical choice for offline data sets of moderate

size, we use S = S2 in the simulations that follow.

ϑ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
∠(v̂S1 , v) 80.3 63.1 51.6 39.4 28.6 25.8 21.7 19.0 16.7 14.4
∠(v̂S2 , v) 79.5 63.9 52.9 40.6 30.2 27.3 23.4 20.4 18.0 15.6

Table 4.1: Angles (in degrees) between oracle projection direction v and estimated projection
directions v̂S1 (using S1) and v̂S2 (using S2), for different choices of ϑ. Each reported value is
averaged over 100 repetitions. Other simulation parameters: n = 200, p = 100, k = 10, z = 100,
σ2 = 1.

We compare the performance of the inspect algorithm with sparsified binary segmentation

(sbs) (Cho and Fryzlewicz, 2015), the double CUSUM algorithm (dc) (Cho, 2016) and a scan

statistic-based algorithm (scan) derived from the work of Enikeeva and Harchaoui (2014). The

latter statistic, rewritten in our notation, is

Lscan := max
1≤z̃≤n−1

max
1≤k̃≤p

∑
1≤j≤k̃(T 2

(j),z̃ − 1)

κ log
{(p
k̃

)
np/α

} , (4.13)

where T 2
(j),z̃ is the jth largest entry in absolute value in the z̃th column of T := T (X), and α = 2

according to the choice in their paper. We remark that Enikeeva and Harchaoui (2014) primarily

concerns the use of Lscan to test for the existence of a changepoint. However, the scan statistic

can be naturally modified into a changepoint location estimator by modifying the outermost max

function in (4.13) to an argmax. It can then be extended a multiple changepoint estimation

algorithm via a wild binary segmentation scheme in a similar way to our algorithm. Whenever

tuning parameters are required in running these algorithms, we adopt the choices suggested by

their authors in the relevant papers. In our simulations, all algorithms were run on the same data

matrices, and the estimated changepoints over 100 repetitions were then aggregated and compared.

4.5.1 Single changepoint estimation

All four algorithms in our simulation study are top-down algorithms in the sense that their mul-

tiple changepoint procedure is built upon a single changepoint estimation submodule, which is
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n p k z ϑ inspect dc sbs scan

1000 200 10 400 0.18 32.3 82.2 99.6 46.2
1000 200 14 400 0.11 97.2 274.5 215.7 218.1
1000 200 200 400 0.04 65.5 262.3 180.1 156.4
1000 500 10 400 0.18 48.2 125.7 181.4 106.1
1000 500 22 400 0.11 86.9 240.5 235.5 190.3
1000 500 500 400 0.04 24.5 106.4 96.8 22.5
1000 1000 10 400 0.18 48.6 118.6 185.4 149.4
1000 1000 32 400 0.11 58.7 143.9 171.4 151.3
1000 1000 1000 400 0.04 10.1 28.1 42.7 15.1
2000 200 10 800 0.11 126.3 327.5 293.9 221.1
2000 200 14 800 0.11 88.1 213.7 155.2 121.0
2000 200 200 800 0.04 57.6 221.3 155.1 60.9
2000 500 10 800 0.11 169.9 348.1 456.0 305.5
2000 500 22 800 0.07 195.2 578.4 511.8 535.9
2000 500 500 800 0.04 21.3 45.0 62.4 27.0
2000 1000 10 800 0.11 131.5 416.4 460.5 397.7
2000 1000 32 800 0.07 138.4 441.0 448.6 401.6
2000 1000 1000 800 0.04 6.7 30.8 33.7 13.8
1000 200 10 400 0.4 4.1 8.4 16.9 5.1
1000 200 14 400 0.25 7.4 16.7 31.6 9.4
1000 200 200 400 0.11 4.4 15.8 12.7 6.2
1000 500 10 400 0.4 2.9 8.9 27.5 4.5
1000 500 22 400 0.25 4.7 13.0 20.0 7.2
1000 500 500 400 0.07 3.7 13.0 22.0 8.4
1000 1000 10 400 0.4 3.1 10.8 30.0 6.1
1000 1000 32 400 0.25 3.0 12.0 20.3 6.8
1000 1000 1000 400 0.07 1.9 10.1 12.0 4.1
2000 200 10 800 0.25 7.8 23.9 45.2 11.6
2000 200 14 800 0.18 12.1 44.2 47.7 20.5
2000 200 200 800 0.07 7.6 41.6 33.1 17.7
2000 500 10 800 0.25 14.3 28.6 54.4 14.1
2000 500 22 800 0.18 14.5 33.7 35.4 15.8
2000 500 500 800 0.07 4.8 16.2 17.6 9.2
2000 1000 10 800 0.25 10.5 29.7 68.3 16.1
2000 1000 32 800 0.18 6.8 19.3 39.8 12.6
2000 1000 1000 800 0.07 1.4 7.7 13.1 4.5

Table 4.2: Root mean squared error for inspect, dc, sbs and scan in single changepoint estimation.
The smallest root mean squared error is given in bold.
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used to locate recursively all changepoints via a (wild) binary segmentation scheme. It is therefore

instructive first to compare their performance in the single changepoint estimation task. Our sim-

ulations were run for n ∈ {1000, 2000}, p ∈ {200, 500, 1000}, k ∈ {10, dp1/2e, p}, z = 0.4n, σ2 = 1

and ϑ ∈ {1, 0.6, 0.4, 0.25, 0.18, 0.11, 0.07, 0.04}, with θ = (1, 2−1/2, . . . , k−1/2, 0, . . . , 0)> ∈ Rp. For

definiteness, we let the n columns of X be independent, with the leftmost z columns drawn from

Np(0, σ
2Ip) and the remaining columns drawn from Np(θ, σ

2Ip). To avoid the influence of differ-

ent threshold levels on the performance of the algorithms and to focus solely on their estimation

precision, we assume that the existence of a single changepoint is known a priori and make all

algorithms output their estimate of its location; estimation of the number of changepoints in a

multiple-changepoint setting is studied in Section 4.5.2 below. In the interests of brevity, in Ta-

ble 4.2, we report the root mean squared estimation error for only two values of ϑ, chosen to repre-

sent low and high signal-to-noise settings respectively. More precisely, for each choice of (n, p, k),

the reported values of ϑ are the largest values in the set {1, 0.6, 0.4, 0.25, 0.18, 0.11, 0.07, 0.04} such

that the root mean squared error of at least one algorithm is less than 0.1n and 0.01n respectively.

The omitted results are qualitatively similar. We also remark that the three choices for the param-

eter k correspond to constant/logarithmic sparsity, polynomial sparsity and non-sparse settings

respectively. As a graphical illustration, Figure 4.2 displays density estimates of the estimated

changepoint location by the different algorithms in two different settings taken from Table 4.2.

One difficulty in presenting such estimates with kernel density estimators is the fact that differ-

ent algorithms would require different choices of bandwidth, and these would need to be locally

adaptive, due to the relatively sharp peaks. In order to avoid the choice of bandwidth skewing the

visual representation, we therefore use the log-concave maximum likelihood estimators for each

method (e.g. Dümbgen and Rufibach, 2009; Cule, Samworth and Stewart, 2010), which is both

locally adaptive and tuning-parameter free.
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Figure 4.2: Estimated densities of location of changepoint estimates by inspect, dc, sbs and
scan. Left panel: (n, p, k, z, ϑ, σ2) = (2000, 1000, 32, 800, 0.07, 1); right panel: (n, p, k, z, ϑ, σ2) =
(2000, 1000, 32, 800, 0.18, 1).

It can be seen from Table 4.2 and Figure 4.2 that inspect has extremely competitive perfor-

mance for the single changepoint estimation task, in both low and high signal-to-noise settings.

In particular, despite the fact that it is designed for estimation of sparse changepoints, inspect

performs relatively well even when k = p (i.e. when the signal is highly non-sparse), especially

when the signal strength is relatively large.

We now extend these ideas by investigating empirical performance under several other types

of model misspecification. Recall that the noise matrix is W = (Wj,t) := X − µ and we define
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W1, . . . ,Wn to be the column vectors of W . In models Munif and Mexp, we replace Gaussian noise

by Wj,t
iid∼ Unif[−

√
3σ,
√

3σ] and Wj,t
iid∼ Exp(σ) − σ respectively. In model Mcs,loc(ρ), we allow

the noise to have a short-range cross-sectional dependence by sampling W1, . . . ,Wn
iid∼ Np(0,Σ)

for Σ := (ρ|j−j
′|)j,j′ . In model Mcs(ρ), we extend this to global cross-sectional dependence by

sampling W1, . . . ,Wn
iid∼ Np(0,Σ) for Σ := (1− ρ)Ip + ρ

p1p×p, where 1p×p is a p× p all-one matrix.

In model Mtemp(ρ), we consider an auto-regressive AR(1) temporal dependence in the noise by first

sampling W ′j,t
iid∼ N(0, σ2) and then setting Wj,1 := W ′j,1 and Wj,t := ρ1/2Wj,t−1 + (1− ρ)1/2W ′j,t

for 2 ≤ t ≤ n. We report the performance of the different algorithms in the parameter setting

n = 2000, p = 1000, k = 32, z = 800, ϑ = 0.25, σ2 = 1 in Table 4.3. It can be seen that inspect

is robust to both temporal and spatial dependence structures, as well as noise misspecification.

Model n p k z ϑ inspect dc sbs scan

Munif 2000 1000 32 800 0.25 3.0 13.8 17.6 3.8
Mexp 2000 1000 32 800 0.25 2.8 11.9 47.7 5.5

Mcs,loc(0.2) 2000 1000 32 800 0.25 3.4 8.4 17.5 6.8
Mcs,loc(0.5) 2000 1000 32 800 0.25 5.6 10.8 23.7 8.4

Mcs(0.5) 2000 1000 32 800 0.25 1.5 7.5 14.2 3.5
Mcs(0.9) 2000 1000 32 800 0.25 2.5 6.5 10.2 2.9

Mtemp(0.1) 2000 1000 32 800 0.25 4.0 16.9 96.2 10.1
Mtemp(0.3) 2000 1000 32 800 0.25 14.5 24.9 226.4 14.7

Table 4.3: Root mean squared error for inspect, dc, sbs and scan in single changepoint estimation,
under different forms of model misspecification.

4.5.2 Multiple changepoint estimation

The use of the ‘burn-off’ parameter β in Algorithm 4.4 was mainly to facilitate our theoretical

analysis. In our simulations, we found that taking β = 0 rarely resulted in the changepoint being

estimated more than once, and we therefore recommend setting β = 0 in practice, unless prior

knowledge of the distribution of the changepoints suggests otherwise. To choose ξ in the multiple

changepoint estimation simulation studies, for each (n, p), we first applied inspect to 1000 data

sets drawn from the null model with no changepoint, and took ξ to be the largest value of T̄max

from Algorithm 4.2. We also set Q = 1000.

We consider the simulation setting where n = 2000, p = 200, k = 40, σ2 = 1 and z =

(500, 1000, 1500). Define ϑ(i) := ‖θ(i)‖2/‖θ(i)‖1/20 to be the signal strength at the ith changepoint.

We set (ϑ(1), ϑ(2), ϑ(3)) = ϑ(1, 1.5, 2) and let ϑ vary to see the performance of the algorithms at

different signal strengths. We also considered different levels of overlap between the coordinates

in which the three changes in mean structure occur: in the complete overlap case, changes occur

in the same k coordinates at each changepoint; in the half overlap case, the changes occur in

coordinates i−1
2 k + 1, . . . , i+1

2 k for i = 1, 2, 3; in the no overlap case, the changes occur in disjoint

sets of coordinates. Table 4.4 summarises the results. We report both the frequency counts of

the number of changepoints detected over 100 runs and two quality measures of the location

of changepoints. In particular, since changepoint estimation can be viewed as a special case of

classification, the quality of the estimated changepoints can be measured by the Adjusted Rand

Index (ARI) of the estimated segmentation against the truth (Rand, 1971; Hubert and Arabie,

1985). We report both the ARI and the percentage of runs for which a particular method attains
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the largest ARI among the four. Figure 4.3 gives a pictorial representation of the results for one

particular collection of parameter settings. Again, we find that the performance of inspect is very

encouraging on all performance measures.

(ϑ(1), ϑ(2), ϑ(3)) method
ν̂

ARI % best
0 1 2 3 4 5

(0.10, 0.15, 0.20)

inspect 0 0 8 65 27 0 0.90 41
dc 0 0 37 61 2 0 0.84 19
sbs 0 0 3 62 30 5 0.88 18
scan 0 0 63 35 2 0 0.80 22

(0.08, 0.12, 0.16)

inspect 0 0 39 50 11 0 0.78 41
dc 0 1 74 24 1 0 0.73 25
sbs 0 0 34 48 15 3 0.75 18
scan 0 1 95 4 0 0 0.70 18

(0.06, 0.09, 0.12)

inspect 0 6 61 28 5 0 0.66 40
dc 0 26 72 2 0 0 0.56 18
sbs 0 9 65 27 4 0 0.63 25
scan 0 11 88 1 0 0 0.68 19

(0.10, 0.15, 0.20)

inspect 0 0 10 73 14 3 0.91 46
dc 0 0 23 63 13 1 0.86 14
sbs 0 0 6 69 22 3 0.85 24
scan 0 0 65 33 2 0 0.79 16

(0.08, 0.12, 0.16)

inspect 0 0 23 50 22 5 0.82 52
dc 0 0 47 40 12 1 0.76 22
sbs 0 0 30 48 14 8 0.77 20
scan 0 0 94 6 0 0 0.71 7

(0.06, 0.09, 0.12)

inspect 0 0 48 42 10 0 0.77 55
dc 0 7 66 23 4 0 0.69 18
sbs 0 0 58 36 6 0 0.70 14
scan 0 11 88 1 0 0 0.68 26

(0.10, 0.15, 0.20)

inspect 0 0 10 74 15 1 0.92 56
dc 0 0 37 57 6 0 0.81 12
sbs 0 0 2 68 28 2 0.86 18
scan 0 0 63 35 2 0 0.78 17

(0.08, 0.12, 0.16)

inspect 0 0 38 54 8 0 0.81 54
dc 0 0 73 26 1 0 0.69 12
sbs 0 0 26 60 14 0 0.76 26
scan 0 1 89 10 0 0 0.70 9

(0.06, 0.09, 0.12)

inspect 0 1 66 31 2 0 0.71 52
dc 0 12 78 10 0 0 0.62 17
sbs 0 1 60 30 8 1 0.66 24
scan 0 21 77 2 0 0 0.61 14

Table 4.4: Multiple changepoint simulation results. The top, middle and bottom blocks refer to
the complete, half and no overlap settings respectively. Other simulation parameters: n = 2000,
p = 200, k = 40, z = (500, 1000, 1500) and σ2 = 1.

4.6 Appendix: Proofs of the main results

Proof of Proposition 4.1. We note that the matrix A as defined in Section 4.3 has rank 1, and

its only non-zero singular value is ‖θ‖2‖γ‖2. By Proposition 4.6 in Section 4.7, on the event
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Figure 4.3: Histograms of estimated changepoint locations by inspect (top-left), dc (top-right),
sbs (bottom-left) and scan (bottom-right) in the half overlap case. Parameter settings: n = 2000,
p = 200, k = 40, z = (500, 1000, 1500), (ϑ(1), ϑ(2), ϑ(3)) = (0.10, 0.15, 0.20), σ2 = 1.

Ω1 := {‖E‖∞ ≤ λ}, we have

sin∠(v̂, v) ≤ 8λ
√
kn

‖θ‖2‖γ‖2
.

By definition, ‖θ‖2 ≥
√
kϑ, and by Lemma 4.8 in Section 4.7, we have ‖γ‖2 ≥ 1

4nτ . Thus,

sin∠(v̂, v) ≤ 32λ
ϑτ
√
n

on Ω1. It remains to verify that P(Ωc1) ≤ 4(p log n)−1/2 for n ≥ 6. By

Lemma 4.5,

P
(
‖E‖∞ ≥ 2σ

√
log(p log n)

)
≤ 2

√
2

π
pdlog ne

√
log(p log n)

{
1 +

1

log(p log n)

}
(p log n)−2

≤ 6(p log n)−1
√

log(p log n) ≤ 4(p log n)−1/2, (4.14)

as desired.

Proof of Theorem 4.2. Recall the definition of X(2) in (4.11) and the definition T (2) := T (X(2)).

Define similarly µ(2) = (µ
(2)
1 , . . . , µ

(2)
n1 ) ∈ Rp×n1 and a random matrix W (2) = (W

(2)
1 , . . . ,W

(2)
n1 )

taking values in Rp×n1 by µ
(2)
t := µ2t and W

(2)
t = W2t; now let A(2) := T (µ(2)) and E(2) :=

T (W (2)). Furthermore, we write X̄ := (v̂(1))>X(2), µ̄ := (v̂(1))>µ(2), W̄ := (v̂(1))>W (2), T̄ :=

(v̂(1))>T (2), Ā := (v̂(1))>A(2) and Ē := (v̂(1))>E(2) for the one-dimensional projected images (as

row vectors) of the corresponding p-dimensional quantities. We note that T̄ = T (X̄), Ā = T (µ̄)

and Ē = T (W̄ ).

Now, conditional on v̂(1), the random variables X̄1, . . . , X̄n1 are independent, with

X̄t | v̂(1) ∼ N(µ̄t, σ
2),
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and the row vector µ̄ undergoes a single change at z(2) := z/2 with magnitude of change

θ̄ := µ̄z(2)+1 − µ̄z(2) = (v̂(1))>θ.

Finally, let ẑ(2) ∈ argmax1≤t≤n1−1 |T̄t|, so we may assume the first component of the output of the

algorithm is ẑ = 2ẑ(2). Consider the set Υ := {ṽ ∈ Sp−1 : ∠(ṽ, v) ≤ π/3}. By condition (4.12) in

the statement of the theorem and Proposition 4.1,

P(v̂(1) ∈ Υ) ≥ 1− 4(p log n1)−1/2. (4.15)

Note that v̂(1) and W (2) are independent, so W̄ has independent N(0, σ2) entries. Hence, by

Lemma 4.5 in Section 4.7,

P
(
‖Ē‖∞ ≥ 2σ

√
log n1

)
≤
√

2

π
dlog n1e

(
2
√

log n1 +
1√

log n1

)
n−2

1 ≤ n−1
1 . (4.16)

Since T̄ = Ā + Ē, and since (Āt)t and (T̄t)t are respectively maximised at t = z(2) and t = ẑ(2),

we have on the event Ω0 :=
{
v̂(1) ∈ Υ, ‖Ē‖∞ ≤ 2σ

√
log n1

}
that

Āz(2) − Āẑ(2) = (Āz(2) − T̄z(2)) + (T̄z(2) − T̄ẑ(2)) + (T̄ẑ(2) − Āẑ(2))

≤ |Āz(2) − T̄z(2) |+ |T̄ẑ(2) − Āẑ(2) | ≤ 4σ
√

log n1.

The row vector Ā has the following explicit form

Āt =


√

t
n1(n1−t) (n1 − z(2))θ̄, if t ≤ z(2)√
n1−t
n1t

z(2)θ̄, if t > z(2).

Hence, by Lemma 4.11, on the event Ω0,

ẑ(2) ∈
[
z(2) − 2∆z(2), z(2) + 2∆(n1 − z(2))

]
,

where ∆ := 4σθ̄−1
√

n1 logn1

z(2)(n1−z(2))
. Since ẑ = 2ẑ(2) and z = 2z(2), we have that on Ω0,

1

n
|ẑ − z| ≤ 2∆ ≤ 8

√
2σ

θ̄

√
n log n

z(n− z)
≤ 16σ

θ̄
√
τ

√
log n

n
. (4.17)

On the event Ω0, we have θ̄ ≥
√
kϑ/2. We deduce from (4.15), (4.16) and (4.17) that

P
{

1

n
|ẑ − z| > 32σ

ϑ
√
kτ

√
log n

n

}
≤ 4

{
p log

(
n

2

)}−1/2

+
2

n
,

as desired.

Proof of Theorem 4.3. For i ∈ {0, 1, . . . , ν}, we define Ji :=
[
zi + d zi+1−zi

3 e, zi+1 − d zi+1−zi
3 e] and

Ω1 :=

ν⋂
i=1

Q⋃
q=1

{sq ∈ Ji−1, eq ∈ Ji}.
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By a union bound, we have

P(Ωc1) ≤ ν
(

1−
(zi − zi−1 − 2d zi−zi−1

3 e)(zi+1 − zi − 2d zi+1−zi
3 e)

n(n+ 1)/2

)Q
≤ ν

(
1− (zi − zi−1)(zi+1 − zi)

9n2

)Q
≤ τ−1(1− τ2/9)Q ≤ τ−1e−τ

2Q/9,

where the second inequality uses the fact that nτ ≥ 14. For any matrix M ∈ Rp×n and 1 ≤ ` ≤
r ≤ n, we write M [`,r] for the submatrix obtained by extracting columns {`, ` + 1, . . . , r} of M .

Also define µ′ := EX ′ = µ and W ′ := X ′ − µ′. Let v̂[`,r] be a leading left singular vector of a

maximiser of

M 7→ 〈T (X ′[`,r]),M〉 − λ‖M‖1,

for M ∈ S, where S = S1 or S2. For definiteness, we assume both the maximiser and its leading

left singular vector are chosen to be the lexicographically smallest possibilities. For q = 1, . . . , Q,

we also write M [q] for M [sq+1,eq ] and v̂[q] for v̂[sq+1,eq ]. Define events

Ω2 :=
⋂

1≤`<r≤n

{‖T (W ′[`,r])‖∞ ≤ λ},

Ω3 :=
⋂

1≤`<r≤n

{‖(v̂[`,r])>T (W [`,r])‖∞ ≤ λ}.

By Lemma 4.5,

P(Ωc2) ≤
(
n

2

)√
2

π
pdlog ne

(
3
√

log(np) +
2

3
√

log(np)

)
(np)−9/2 ≤ n−3/2p−5/2.

Also, since v̂[`,r] and X are independent, (v̂[`,r])>T (W ) has the same distribution as T (G), where

G is a row vector of length r − `+ 1 with independent N(0, σ2) entries. So by Lemma 4.5 again,

for sufficiently large n,

P(Ωc3) ≤
(
n

2

)
P
{
‖T (G)‖∞ > λ

}
≤ n−3/2p−5/2.

We claim that the desired event Ω∗ := {ν̂ = ν and |ẑi − zi| ≤ nρ for all 1 ≤ i ≤ ν} occurs if the

following two statements hold every time the function wbs is called in Algorithm 4.4′:

(i) There exist unique i1, i2 ∈ {0, 1, . . . , ν + 1} such that |s− zi1 | ≤ nρ and |e− zi2 | ≤ nρ, where

(s, e) is the pair of arguments of the wbs function call.

(ii) T̄
[q0]
max > ξ if and only if i2 − i1 ≥ 2, where i1 and i2 are the indices defined in (i).

To see this, observe that the set of all arguments used in the calls of the function wbs is Ẑ ∪{0, n},
so (i) ensures that

max
ẑ∈Ẑ∪{0,n}

min
i∈{0,1,...,ν+1}

|ẑ − zi| ≤ nρ.

If |ẑ− zi| ≤ nρ, we say ẑ is ‘identified’ to zi. Moreover, each candidate changepoint b identified by

the function call wbs(s, e) in Algorithm 4.4′ satisfies min{b− s, e− b} ≥ nβ > 2nρ. It follows that

different elements of Ẑ ∪{0, n} cannot be identified to the same zi, so no element of Ẑ is identified

to z0 or zν+1, and the second part of the event Ω∗ holds. It remains to show that each element of

{z1, . . . , zν} is identified by some element of Ẑ. To see this, note that if zi is not identified, we can
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let (s∗, e∗) be the shortest interval such that s∗ + 1 ≤ zi ≤ e∗ and such that (s∗, e∗) are a pair of

arguments called by the wbs function in Algorithm 4.4′. By (i), the two endpoints s∗ and e∗ are

identified to zi1 and zi2 respectively, say, for some i1 ≤ i− 1 and i2 ≥ i+ 1. But then by (ii) a new

point b will be added to Ẑ and the recursion continues on the pairs (s∗, b) and (b, e∗), contradicting

the minimality of the pair (s∗, e∗).

We now prove by induction on the depth of the recursion that on Ω1 ∩Ω2 ∩Ω3, statements (i)

and (ii) hold every time wbs is called in Algorithm 4.4′. The first time wbs is called, s = 0 and

e = n, so (i) is satisfied with the unique choice i1 = 0 and i2 = ν + 1. This proves the base case.

Now suppose wbs is called with the pair (s, e) satisfying (i), yielding indices i1, i2 ∈ {0, 1, . . . , ν+1}
with |s− zi1 | ≤ nρ, |e− zi2 | ≤ nρ. To complete the inductive step, we need to show that (ii) also

holds, and if a new changepoint b is detected, then (i) holds for the pairs of arguments (s, b) and

(b, e). We have two cases.

Case 1 : i2 − i1 = 1. In this case, (s+ nβ, e− nβ] contains no changepoint. Since ξ = λ, on Ω3

we always have

T̄ [q0]
max = max

q∈Qs,e
‖(v̂[q])>T (X [q])‖∞ ≤ ξ,

so (ii) is satisfied with no additional changepoint detected.

Case 2 : i2−i1 ≥ 2. On the event Ω1, for any i∗ ∈ {i1+1, . . . , i2−1}, there exists q∗ ∈ {1, . . . , Q}
such that sq∗ ∈ Ji∗−1 and eq∗ ∈ Ji∗ . Moreover, since min{sq∗−s, e−eq∗} ≥ dnτ/3e−nρ > nβ by the

condition on β in the theorem, we have q∗ ∈ Qs,e. Since there is precisely one changepoint within

the segment (sq∗ , eq∗ ], the matrix T (µ′[q
∗]) has rank 1; cf. (4.4). On Ω2, we have ‖T (W ′[q

∗])‖∞ ≤ λ.

Thus, by Proposition 4.6 and Lemma 4.8 in Section 4.7,

sin∠
(
v̂[q∗], θ(i∗)/‖θ(i∗)‖2

)
≤

8λ
√
k(eq∗ − sq∗)

‖θ(i∗)‖2nτ/12
≤ 96λ

ϑτ
√
n

=
96

200
ρ
√
kτ ≤ 12

25

under the conditions of the theorem. Therefore, recalling the definition of q0 in Algorithm 4.4′,

and on the event Ω3,

T̄ [q0]
max ≥ T̄ [q∗]

max = ‖(v̂[q∗])>T (X [q∗])‖∞ ≥ ‖(v̂[q∗])>T (µ[q∗])‖∞ − ‖(v̂[q∗])>T (W [q∗])‖∞

≥
∣∣(v̂[q∗])>θ(i∗)

∣∣√ (zi∗ − sq∗)(eq∗ − zi∗)
eq∗ − sq∗

− λ

≥
√

1− (12/25)2‖θ(i∗)‖2
√
nτ

6
− λ > 0.358

√
nτ‖θ(i∗)‖2 − λ >

(
71.6

ρτ
− 1

)
λ > ξ. (4.18)

Thus (ii) is satisfied with a new changepoint b := sq0 + ẑ[q0] detected. It remains to check

that (i) holds for the pairs of arguments (s, b) and (b, e), for which it suffices to show that

min1≤i≤ν |b − zi| ≤ nρ. To this end, we study the behaviour of univariate CUSUM statis-

tics of the projected series (v̂[q0])>X [q0]. To simplify notation, we define X̄ := (v̂[q0])>X [q0],

µ̄ := (v̂[q0])>µ[q0], W̄ := (v̂[q0])>W [q0], T̄ := T (X̄), Ā := T (µ̄) and Ē := T (W̄ ). The row vector

µ̄ ∈ Req0−sq0 is piecewise constant with changepoints at zi1+1 − sq0 , . . . , zi2−1 − sq0 . Recall that

ẑ[q0] ∈ argmax1≤t≤eq0−sq0−1 |T̄t|. We may assume that T̄ẑ[q0] > 0 (the case T̄ẑ[q0] < 0 can be

handled similarly). On Ω3,

Āẑ[q0] = T̄ẑ[q0] − Ēẑ[q0] ≥ T̄ [q0]
max − λ ≥

(
71.6

ρτ
− 2

)
λ > 0, (4.19)
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and in particular, there is at least one changepoint in (sq0 , eq0 ]. We may assume that ẑ[q0] is not

equal to zi− sq0 for any i1 + 1 ≤ i ≤ i2− 1, since otherwise min1≤i≤ν |b− zi| = 0 and we are done.

By Lemma 4.12 and after possibly reflecting the time direction, we may also assume that there is

at least one changepoint to the left of ẑ[q0], and that if zi0−sq0 is the changepoint immediately left

of ẑ[q0], then the series {Āt : zi0 − sq0 ≤ t ≤ ẑ[q0]} is positive and strictly decreasing. It therefore

follows by (4.19), and (4.18) with i0 in place of i∗, that on Ω3,

Āzi0−sq0 ≥ Āẑ[q0] ≥ T̄ [q0]
max − λ ≥ 0.358

√
nτ‖θ(i0)‖2 − 2λ >

(
0.358− ρτ

100

)√
nτ‖θ(i0)‖2 >

71.4λ

ρτ
,

(4.20)

where we use 9ρ < τ ≤ 1/2 in the final inequality. On the other hand, on the event Ω3, by the

maximality of T̄ẑ[q0] , we have that

Āẑ[q0] ≥ T̄ẑ[q0] − λ ≥ T̄zi0−sq0 − λ ≥ Āzi0−sq0 − 2λ ≥
(

1− ρτ

35.7

)
Āzi0−sq0 . (4.21)

Our strategy here is to characterise the rate of decay of the series {Āt : zi0 − sq0 ≤ t ≤ ẑ[q0]}
from its left endpoint, so that we can conclude from (4.21) that ẑ[q0] is close to zi0 − sq0 . This is

achieved by considering the following three cases: (a) there is no changepoint to the right of ẑ[q0],

i.e. zi0+1 ≥ eq0 ; (b) zi0+1 ≤ eq0 − 1 and Āzi0 ≥ Āzi0+1 ; (c) zi0+1 ≤ eq0 − 1 and Āzi0 < Āzi0+1 .

In case (a), we apply Lemma 4.11 with eq0 − sq0 and zi0 − sq0 taking the roles of n and z in

the lemma respectively, while noting that

∣∣(v̂[q0])>θ(i0)
∣∣−1

Āt =

√
eq0 − sq0 − t
(eq0 − sq0)t

(zi0 − sq0) ∀ zi0 − sq0 ≤ t ≤ eq0 − sq0

takes the same form as the function f in the corresponding range in Lemma 4.11. Thus, we

conclude from (4.21) and Lemma 4.11 that

ẑ[q0] − (zi0 − sq0) ≤ 2(eq0 − zi0)
ρτ

35.7
≤ nρ,

as desired.

For case (b), define

µ̃ :=
1

eq0 − sq0

eq0−sq0∑
t=1

µ̄t

to be the overall average of the µ̄ series, and let

µ̃L :=
1

zi0 − sq0

zi0−sq0∑
t=1

µ̄t − µ̃, µ̃M := µ̄zi0+1−sq0 − µ̃ and µ̃R :=
1

eq0 − zi0+1

eq0−sq0∑
t=zi0+1−sq0+1

µ̄t − µ̃

be the centred averages of the µ̄ series on the segments (0, zi0 − sq0 ], (zi0 − sq0 , zi0+1 − sq0 ] and

(zi0+1 − sq0 , eq0 − sq0 ] respectively. Using (4.3), we have that for zi0 − sq0 ≤ t ≤ zi0+1 − sq0 ,

Āt = [T (µ̄)]t =

√
eq0 − sq0

t(eq0 − sq0 − t)

{
(zi0 − sq0)(−µ̃L) + (t− zi0 + sq0)(−µ̃M)

}}
. (4.22)

We claim that zi0−sq0 ≥ nτ/15. For, if not, then in particular, zi0−1 < sq0 and µ̃L = µ̄zi0−sq0 − µ̃.
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By (4.22) and the fact that Āzi0−sq0 > 0, we have µ̃L < 0. It follows from (4.20) that

0.357
√
nτ(µ̃M − µ̃L) ≤

(
0.358− ρτ

100

)√
nτ |(v̂[q0])>θ(i0)| ≤ Āzi0−sq0

=

√
(eq0 − sq0)(zi0 − sq0)

eq0 − zi0
(−µ̃L)

≤
√
nτ + zi0 − sq0

nτ

√
zi0 − sq0(−µ̃L) ≤ 4

√
nτ

15
(−µ̃L),

which can be rearranged to give −µ̃M > 0.25(−µ̃L). Consequently,

Āzi0+1−sq0 =

√
eq0 − sq0

(zi0+1 − sq0)(eq0 − zi0+1)

{
(−µ̃L)(zi0 − sq0) + (−µ̃M)(zi0+1 − zi0)

}
>

√
eq0 − sq0

(zi0+1 − sq0)(eq0 − zi0+1)

{
(−µ̃L)(zi0 − sq0) + 0.25(−µ̃L)(zi0+1 − zi0)

}
≥ 0.25

√
(eq0 − sq0)(zi0+1 − sq0)

eq0 − zi0+1
(−µ̃L) ≥ 0.25Āzi0−sq0

√
zi0+1 − sq0
zi0 − sq0

≥ Āzi0−sq0 ,

contradicting the assumption of case (b). Hence we have established the claim. We can then apply

Lemma 4.13 with Āt, eq0 − sq0 , zi0 − sq0 , zi0+1− sq0 , −µ̃L, −µ̃M and τ/15 taking the roles of g(t),

n, z, z′, µ0, µ1 and τ in the lemma respectively. By (4.21) and this lemma, we conclude that

ẑ[q0] − (zi0 − sq0) ≤
ρτĀzi0−sq0 /35.7

0.52Āzi0−sq0n
−1τ/15

≤ nρ.

For case (c), by Lemma 4.12, the series (Āt : zi0 − sq0 ≤ t ≤ zi0+1 − sq0) must be strictly

decreasing, then strictly increasing, while staying positive throughout. Define ζ := max{t ∈
[zi0 − sq0 , zi0+1 − sq0 ] : Āt ≤ Āzi0+1−sq0 − 2λ}. Using a very similar argument to that in case (b),

we find that eq0 − zi0+1 ≥ nτ/15, and therefore by Lemma 4.13 again, zi0+1 − sq0 − (ζ + 1) ≤ nρ.

Now on Ω3, we have Āzi0−sq0 > Āẑ[q0] > Āzi0+1−sq0 − 2λ ≥ Āζ and ζ − (zi0 − sq0) ≥ nτ − nρ− 1.

So we can apply the same argument as in case (b) with ζ taking the role of zi0+1 and τ − ρ− 1/n

in place of τ , and obtain that

ẑ[q0] − (zi0 − sq0) ≤
ρτĀzi0−sq0/35.7

0.52Āzi0−sq0n
−1(τ − ρ− 1/n)/15

≤ 15/0.52

35.7(1− 1/9− 1/14)
nρ ≤ nρ,

as desired.

4.7 Appendix: Ancillary results

The following result is a generalisation of the curvature lemma of Vu et al. (2013, Lemma 3.1).

Lemma 4.4. Let v ∈ Sp−1 and u ∈ Sn−1 be the leading left and right singular vectors of A ∈ Rp×n

respectively. Suppose that the first and second largest singular values of A are separated by δ > 0.

Let M ∈ Rp×n. If either of the following two conditions holds,

(a) rank(A) = 1 and ‖M‖2 ≤ 1,

(b) ‖M‖∗ ≤ 1,
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then

‖vu> −M‖22 ≤
2

δ
〈A, vu> −M〉.

Remark: We note that if v ∈ Sp−1 and u ∈ Sn−1 are the leading left and right singular vectors

respectively of A ∈ Rp×n, then since the matrix operator norm and the nuclear norm are dual norms

with respect to the trace inner product, we have that 〈A, vu>〉 = v>Au = ‖A‖op = supM∈S1〈A,M〉.
Thus, Lemma 4.4 provides a lower bound on the curvature of the function M 7→ 〈A,M〉 as M

moves away from the maximiser of the function in S1.

Proof. Let A = V DU> be the singular value decomposition of A, where V ∈ Rp×p and U ∈ Rn×n

are orthogonal matrices with column vectors v1 = v, v2, . . . , vp and u1 = u, u2, . . . , un respectively,

and D ∈ Rp×n is a rectangular diagonal matrix with nonnegative entries along its main diagonal.

The diagonal entries σi := Dii are the singular values of A, and we may assume without loss of

generality that σ1 ≥ · · · ≥ σr > 0 are all the positive singular values, for some r ≤ min{n, p}.
Let M̃ := V >MU and denote e

[d]
1 := (1, 0, . . . , 0)> ∈ Rd. Then by unitary invariance of the

Frobenius norm, we have

‖v1u
>
1 −M‖22 = ‖e[p]

1 (e
[n]
1 )> − M̃‖22 = ‖M̃‖22 + 1− 2M̃11. (4.23)

On the other hand,

〈A, v1u
>
1 −M〉 = 〈D, e[p]

1 (e
[n]
1 )> − M̃〉 = σ1 −

r∑
i=1

σiM̃ii ≥ σ1(1− M̃11)− σ2

r∑
i=2

|M̃ii|. (4.24)

If condition (a) holds, then σ2 = 0 and δ = σ1, so by (4.23) and (4.24), we have

‖v1u
>
1 −M‖22 ≤ 2(1− M̃11) =

2

δ
〈A, v1u

>
1 −M〉,

as desired.

On the other hand, if condition (b) holds, then by the characterisation of the nuclear norm in

Lemma 4.7 as well as its unitary invariance, we have

r∑
i=1

|M̃ii| = sup
U ∈ Rp×n diagonal

Uii∈{±1} ∀i

〈U, M̃〉 ≤ ‖M̃‖∗ = ‖M‖∗ ≤ 1. (4.25)

On the other hand, if ‖M‖∗ ≤ 1, then σi ≤ 1 for all i, so

‖M‖2 =

( r∑
i=1

σ2
i

)1/2

≤
( r∑
i=1

σi

)1/2

≤ 1. (4.26)

Using (4.23), (4.24), (4.25) and (4.26), we therefore have

〈A, v1u
>
1 −M〉 ≥ σ1(1− M̃11)− σ2

r∑
i=2

|M̃ii| ≥ (σ1 − σ2)(1− M̃11)

≥ δ

2
(‖M̃‖22 + 1− 2M̃11) =

δ

2
‖v1u

>
1 −M‖22,

as desired.



84 CHAPTER 4. HIGH-DIMENSIONAL CHANGEPOINT ESTIMATION

Lemma 4.5. Let W ∈ Rp×n have independent N(0, σ2) entries and let E := T (W ). Then for

u > 0, we have

P
(
‖E‖∞ ≥ uσ

)
≤
√

2

π
pdlog ne(u+ 2/u)e−u

2/2.

Proof. Let B be a standard Brownian bridge on [0, 1]. Then for every j ∈ {1, . . . , p},

(Ej,1, . . . , Ej,(n−1))
d
=

(
σB(t)√
t(1− t)

)
t= 1

n ,...,
n−1
n

.

Thus,

P
{
‖E‖∞ ≥ σu

}
≤ pP

{
sup

t∈[1/n,1−1/n]

B(t)√
t(1− t)

≥ u
}
.

Let t = t(s) := e2s/(e2s+1) and define the process X by X(s) := {t(s)(1−t(s))}−1/2B(t(s)). Recall

that the Ornstein–Uhlenbeck process is the centred continuous Gaussian process {U(s) : s ∈ R}
having covariance function Cov(U(s1), U(s2)) = e−|s1−s2|. We compute that

Cov
(
X(s1), X(s2)

)
= Cov

(
B
(
e2s1/(e2s1 + 1)

)√
e2s1/(e2s1 + 1)2

,
B
(
e2s2/(e2s2 + 1)

)√
e2s2/(e2s2 + 1)2

)
=

(
es1

e2s1 + 1

es2

e2s2 + 1

)−1
e2 min(s1,s2)

e2 min(s1,s2) + 1

1

e2 max(s1,s2) + 1
= e−|s1−s2|.

Thus, X is the Ornstein–Uhlenbeck process and we have

P
{

sup
t∈[1/n,1−1/n]

∣∣∣∣ B(t)√
t(1− t)

∣∣∣∣ ≥ u} = P
{

sup
s∈[0,log(n−1)]

|X(s)| ≥ u
}
≤ dlog neP

{
sup
s∈[0,1]

|X(s)| ≥ u
}
,

where the inequality follows from the stationarity of the Ornstein–Uhlenbeck process and a union

bound. Let Y = {Y (t) : t ∈ R} be a centred continuous Gaussian process with covariance function

Cov(Y (s), Y (t)) = max(1− |s− t|, 0). Since EX(t)2 = EY (t)2 = 1 for all t and Cov(X(s), X(t)) ≥
Cov(Y (s), Y (t)), by Slepian’s inequality (Slepian, 1962), sups∈[0,1] |Y (s)| stochastically dominates

sups∈[0,1] |X(s)|. Hence it suffices to establish the required bound with Y in place of X. The process

Y , known as the Slepian process, has excursion probabilities given by closed-form expressions

(Slepian, 1961; Shepp, 1971): for x < u,

P
{

sup
s∈[0,1]

Y (s) ≥ u
∣∣∣∣ Y (0) = x

}
= 1− Φ(u) +

φ(u)

φ(x)
Φ(x),

where φ and Φ are respectively the density and distribution functions of the standard normal

distribution. Hence for u > 0 we can write

P
{

sup
s∈[0,1]

|Y (s)| ≥ u
}

=

∫ ∞
−∞

P
{

sup
s∈[0,1]

|Y (s)| ≥ u
∣∣∣∣ Y (0) = x

}
φ(x) dx

≤ P(|Y (0)| ≥ u) + 2

∫ u

−u
P
{

sup
s∈[0,1]

Y (s) ≥ u
∣∣∣∣ Y (0) = x

}
φ(x) dx

= 2Φ(−u) + 2

∫ u

−u

{
φ(x)Φ(−u) + φ(u)Φ(x)

}
dx

= 2uφ(u) + 4Φ(−u){1− Φ(−u)} ≤ 2(u+ 2u−1)φ(u),

as desired.
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Proposition 4.6. Suppose the first and second largest singular values of A ∈ Rp×n are separated

by δ > 0. Let unit vectors v ∈ Sp−1(k) and u ∈ Sn−1(`) be left and right leading singular vectors

of A respectively. Let T ∈ Rp×n satisfy ‖T − A‖∞ ≤ λ for some λ > 0, and let S be a subset of

p× n real matrices containing vu>. Suppose one of the following two conditions holds:

(a) rank(A) = 1 and S ⊆ {M ∈ Rp×n : ‖M‖2 ≤ 1}
(b) S ⊆ {M ∈ Rp×n : ‖M‖∗ ≤ 1}.

Then for any

M̂ ∈ argmax
M∈S

{
〈T,M〉 − λ‖M‖1

}
,

we have

‖vu> − M̂‖2 ≤
4λ
√
k`

δ
.

Furthermore, if v̂ and û are leading left and right singular vectors of M̂ respectively, then

max{sin∠(v̂, v), sin∠(û, u)} ≤ 8λ
√
k`

δ
. (4.27)

Proof. Using Lemma 4.4, we have

‖vu> − M̂‖22 ≤
2

δ
〈A, vu> − M̂〉 =

2

δ

(
〈T, vu> − M̂〉+ 〈A− T, vu> − M̂〉

)
. (4.28)

Since M̂ is a maximiser of the objective function M 7→ 〈T,M〉 − λ‖M‖1 over the set S, and since

vu> ∈ S, we have the basic inequality

〈T, vu> − M̂〉 ≤ λ(‖vu>‖1 − ‖M̂‖1). (4.29)

Denote Sv := {j : 1 ≤ j ≤ p, vj 6= 0} and Su := {t : 1 ≤ t ≤ n, ut 6= 0}. From (4.28) and (4.29)

and the fact that ‖T −A‖∞ ≤ λ, we have

‖vu> − M̂‖22 ≤
2

δ

(
λ‖vu>‖1 − λ‖M̂‖1 + λ‖vu> − M̂‖1

)
=

2λ

δ

(
‖vSvu>Su‖1 − ‖M̂SvSu‖1 + ‖vSvu>Su − M̂SvSu‖1

)
≤ 4λ

δ
‖vSvu>Su − M̂SvSu‖1 ≤

4λ
√
k`

δ
‖vu> − M̂‖2.

Dividing through by ‖vu> − M̂‖2, we have the first desired result.

Now, by definition of the operator norm, we have

‖vu> − M̂‖22 = 1 + ‖M̂‖22 − 2v>M̂u

≥ 1 + ‖M̂‖22 − 2‖M̂‖op = 1 + ‖M̂‖22 − 2v̂>M̂û = ‖v̂û> − M̂‖22.

Thus,

‖vu> − v̂û>‖2 ≤ ‖vu> − M̂‖2 + ‖v̂û> − M̂‖2 ≤ 2‖vu> − M̂‖2 ≤
8λ
√
k`

δ
. (4.30)

We claim that

max
{

sin2 ∠(û, u), sin2 ∠(v̂, v)
}
≤ ‖vu> − v̂û>‖22. (4.31)
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Let v0 := (v + v̂)/2 and ∆ := v − v0. Then

‖vu> − v̂û>‖22 = ‖(v0 + ∆)u> − (v0 −∆)û>‖22 = ‖v0(u− û)>‖22 + ‖∆(u+ û)>‖22
= ‖v0‖22‖u− û‖22 + ‖∆‖22‖u+ û‖22
≥ (‖v0‖22 + ‖∆‖22) min(‖u− û‖22, ‖u+ û‖22)

≥
{

1− (û>u)2
}

= sin2 ∠(û, u),

where the penultimate step uses the fact that ‖v0‖22 + ‖∆‖22 = 1. A similar inequality holds for

sin2 ∠(v̂, v), which establishes the desired claim (4.31). Inequality (4.27) now follows from (4.30)

and (4.31).

The lemma below gives a characterisation of the nuclear norm of a real matrix.

Lemma 4.7. For n, p ≥ 1, let Vn and Vp be respectively the sets of n×min(n, p) and p×min(n, p)

real matrices having orthonormal columns. Let A ∈ Rp×n. Then

‖A‖∗ = sup
V ∈Vp,U∈Vn

〈V U>, A〉

Proof. Suppose we have the singular value decomposition A = Ṽ DŨ> where Ṽ ∈ Vp, Ũ ∈ Vn and

where D = (Dij) ∈ Rmin(n,p)×min(n,p) is a diagonal matrix with decreasing non-negative diagonal

entries. Write Vj for the jth column of V and similarly Uj for the jth column of U . Then

sup
V ∈Vp,U∈Vn

〈V U>, A〉 = sup
V ∈Vp,U∈Vn

〈V U>, Ṽ DŨ>〉 = sup
V ∈Vp,U∈Vn

〈V U>, D〉

= sup
V ∈Vp,U∈Vn

min(n,p)∑
j=1

DjjV
>
j Uj =

min(n,p)∑
j=1

Djj = ‖A‖∗,

as desired.

Lemma 4.8. Let γ ∈ Rn−1 be defined as in (4.5) for some n ≥ 6 and 2 ≤ z ≤ n − 2. Let

z̃ := min(z, n− z). Then

1

4
z̃ ≤ ‖γ‖2 ≤

√
log(en/2) z̃

1

2

√
nz̃ ≤ ‖γ‖1 ≤ 2.1

√
nz̃.

Proof. Since the norms of γ are invariant under substitution z 7→ n − z, we may assume without

loss of generality that z ≤ n− z. Hence z̃ = z. We have that

‖γ‖22 =
1

n

{ z∑
t=1

t(n− z)2

n− t
+

n−1∑
t=z+1

(n− t)z2

t

}

= n2

{ z∑
t=1

(t/n)(1− z/n)2

(1− t/n)
· 1

n
+

n−1∑
t=z+1

(1− t/n)(z/n)2

t/n
· 1

n

}
,

where the expression inside the bracket can be interpreted as a Riemann sum approximation to an
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integral. We therefore find that

n2

{
I1 −

(z/n)(1− z/n)

n

}
≤ ‖γ‖22 ≤ n2

{
I1 +

(z/n)(1− z/n)

n

}
,

where

I1 := (1− z/n)2

∫ z/n

0

r

1− r
dr + (z/n)2

∫ 1

z/n

1− r
r

dr

= (1− z/n)2
{
− log(1− z/n)− z/n

}
+ (z/n)2

{
− log(z/n)− (1− z/n)

}
.

Since − log(1 − x) ≥ x + x2/2 for 0 ≤ x < 1, we have I1 ≥ (z/n)2(1 − z/n)2. When n ≥ 6 and

2 ≤ z ≤ n/2, we find (z/n)(1−z/n)
n ≤ 3I1/4. Hence,

‖γ‖2 ≥
1

2
n(z/n)(1− z/n) ≥ 1

4
z.

On the other hand, under the assumption that z ≤ n/2, we have − log(1 − z/n) − z/n ≤ (z/n)2.

Hence

‖γ‖22 ≤ n2
{

(1− z/n)2(z/n)2 + (z/n)2 log(n/2)
}
≤ z2 log(en/2),

as required.

For the `1 norm, we similarly write ‖γ‖1 as a Riemann sum:

‖γ‖1 =
1√
n

{ z∑
t=1

√
t

n− t
(n− z) +

n−1∑
t=z+1

√
(n− t)
t

z

}

= n3/2

{ z∑
t=1

√
t/n

1− t/n
(1− z/n) · 1

n
+

n−1∑
t=z+1

1− t/n
t/n

(z/n) · 1

n

}
.

So

n3/2

{
I2 −

√
z/n(1− z/n)

n

}
≤ ‖γ‖1 ≤ n3/2

{
I2 +

√
z/n(1− z/n)

n

}
,

where

I2 := (1− z/n)

∫ z/n

0

√
r

1− r
dr + (z/n)

∫ 1

z/n

√
1− r
r

dr = (1− z/n)g(z/n) + (z/n)g(1− z/n),

where function g(a) :=
∫ a

0

√
r/(1− r) dr = arcsin(

√
a)−

√
a(1− a). We can check that g(a)/a3/2

has positive first derivative throughout (0, 1), and g(a)/a3/2 ↘ 2/3 as a ↘ 0. This implies that

2a3/2/3 ≤ g(a) ≤ πa3/2/2. Consequently,

2z

3n

(
1− z

n

)(√
z

n
+

√
1− z

n

)
≤ I2 ≤

π

2

z

n

(
1− z

n

)(√
z

n
+

√
1− z

n

)
Also, for n ≥ 6 and 2 ≤ z ≤ n/2,√

z/n(1− z/n)

n
≤

√
3

4 + 2
√

2

z

n

(
1− z

n

)(√
z

n
+

√
1− z

n

)
.
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Therefore,

‖γ‖1 ≤ (π/2 +
√

3/(4 + 2
√

2))
√
nz sup

0≤y≤1/2

(1− y)(
√
y +

√
1− y) ≤ 2.1

√
nz,

and

‖γ‖1 ≥ (1−
√

3/(4 + 2
√

2))
√
nz inf

0≤y≤1/2
(1− y)(

√
y +

√
1− y) ≥ 1

2

√
nz,

Proposition 4.9. Let X ∼ P ∈ P(n, p, k, 1, ϑ, τ, σ2), with the single changepoint located at z,

say (so we may take τ = n−1 min{z, n − z}). Define A,E and T as in Section 4.3. Let v ∈
argmaxṽ∈Sp−1 ‖A>ṽ‖2 and v̂ ∈ argmaxṽ∈Sp−1(k) ‖T>ṽ‖2. If n ≥ 6, then with probability at least

1− 4(p log n)−1/2,

sin∠(v̂, v) ≤ 16
√

2σ

τϑ

√
log(p log n)

n
.

Proof. From the definition in Section 4.3, A = θγ>, for some θ ∈ Rp satisfying ‖θ‖0 ≤ k and

‖θ‖22 ≥ kϑ2 and γ defined by (4.5). Then we have v = θ/‖θ‖2. Define also u := γ/‖γ‖2 and

û := T>v̂/‖T>v̂‖2. Then by definition of v̂, we have

〈v̂û>, T 〉 = ‖T>v̂‖2 ≥ v>Tu = 〈vu>, T 〉. (4.32)

By Lemma 4.4 and (4.32), we obtain

‖vu> − v̂û>‖22 ≤
2

‖θ‖2‖γ‖2
〈A, vu> − v̂û>〉

≤ 2

‖θ‖2‖γ‖2
〈A− T, vu> − v̂û>〉 ≤ 2

‖θ‖2‖γ‖2
‖E‖∞‖vu> − v̂û>‖1. (4.33)

Note that in fact v ∈ Sp−1(k), by definition of the matrix A. Moreover, v̂ ∈ Sp−1(k) too, so the

matrix vu> − v̂û> has at most 2k non-zero rows. Thus, by the Cauchy–Schwarz inequality,

‖vu> − v̂û>‖1 ≤
√

2kn‖vu> − v̂û>‖2.

By (4.31) in the proof of Proposition 4.6, and (4.33), we find that

sin∠(v̂, v) ≤ ‖vu> − v̂û>‖2 ≤
2
√

2‖E‖∞
√
kn

‖θ‖2‖γ‖2
≤ 8
√

2‖E‖∞
ϑτ
√
n

,

where we have used Lemma 4.8 in the final inequality. The desired result follows from bounding

‖E‖∞ with high probability as in (4.14).

Lemma 4.10. Let T ∈ Rp×(n−1) and λ > 0. Then the following optimisation problem

max
M∈S2

{
〈T,M〉 − λ‖M‖1

}
has a unique solution given by

M̃ =
soft(T, λ)

‖ soft(T, λ)‖2
. (4.34)
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Proof. Define φ(M,R) := 〈T −R,M〉 and R := {R ∈ Rp×(n−1) : ‖R‖∞ ≤ λ}. Then the objective

function in the lemma is given by

f(M) = min
R∈R

φ(M,R).

We also define

g(R) := max
M∈S2

φ(M,R) = ‖T −R‖2.

Since S2 and R are compact, convex subsets of Rp×(n−1) endowed with the trace inner product,

and since φ is affine and continuous in both M and R, we can use the minimax equality theorem

Fan (1953, Theorem 1) to obtain

max
M∈S2

f(M) = max
M∈S2

min
R∈R

φ(M,R) = min
R∈R

max
M∈S2

φ(M,R) = min
R∈R

g(R).

We note that the dual function g has a unique minimum over R at R(d), say, where R
(d)
j,t :=

sgn(Tj,t) min(λ, |Tj,t|). Let

M (d) ∈ argmax
M∈S2

φ(M,R(d)), M (p) ∈ argmax
M∈S2

f(M) and R(p) ∈ argmin
R∈R

φ(M (p), R).

Then

min
R∈R

g(R) = 〈T −R(d),M (d)〉 ≥ 〈T −R(d),M (p)〉 ≥ 〈T −R(p),M (p)〉 = max
M∈S2

f(M).

Since the two extreme ends of the chain of inequalities are equal, we necessarily have

R(d) ∈ argmin
R∈R

〈T −R,M (p)〉,

and consequently,

M (p) ∈ argmax
M∈S2

〈T −R(d),M〉.

The objective M 7→ 〈T−R(d),M〉 = 〈soft(T, λ),M〉 has a unique maximiser at M̃ defined in (4.34).

Thus, M (p) is unique and has the form given in the lemma.

The following lemma is used to control the rate of decay of the univariate CUSUM statistic

from its peak in the single changepoint setting.

Lemma 4.11. For n ∈ N and z ∈ {0, 1, . . . , n}, define f : [0, n]→ R by

f(t) :=


√

t
n(n−t) (n− z), if t ≤ z√
n−t
nt z, if t > z.

Then for ∆ ≤ 1,

{t : f(t) ≥ f(z)(1−∆)} ⊆ [z − 2z∆, z + 2(n− z)∆].

Proof. We note first that f(t) is maximised at t = z. If t ≤ z and f(t) ≥ f(z)(1−∆), then

t

n− t
≥ z

n− z
(1−∆)2.
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Equivalently,

t ≥ nz(1−∆)2

n− z + z(1−∆)2
≥ z(1−∆)2 ≥ z − 2z∆. (4.35)

By symmetry, for t > z with f(t) ≥ f(z)(1−∆), we have that

n− t ≥ (n− z)(1−∆)2 ≥ n− z − 2(n− z)∆. (4.36)

Combining (4.35) and (4.36), we have the desired result.

Lemma 4.12. Suppose that 0 = z0 < z1 < · · · < zν < zν+1 = n are integers and that µ ∈ Rn

satisfies µt = µt′ for all zi < t ≤ t′ ≤ zi+1, 0 ≤ i ≤ ν. Define A := T (µ) ∈ Rn−1, where we treat

µ as a row vector. If the series (At : zi + 1 ≤ t ≤ zi+1) is not constantly zero, then one of the

following is true:

(a) i = 0 and (At : zi + 1 ≤ t ≤ zi+1) does not change sign and has strictly increasing absolute

values,

(b) i = ν and (At : zi + 1 ≤ t ≤ zi+1) does not change sign and has strictly decreasing absolute

values,

(c) 1 ≤ i ≤ ν − 1 and (At : zi + 1 ≤ t ≤ zi+1) is strictly monotonic,

(d) 1 ≤ i ≤ ν − 1 and (At : zi + 1 ≤ t ≤ zi+1) does not change sign and its absolute values are

strictly decreasing then strictly increasing.

Proof. This follows from the proof of Venkatraman (1992, Lemma 2.2).

The following lemma is used to control the rate of decay of the univariate CUSUM statistic of

the mean series away from its maximum absolute value in the case of two changepoints.

Lemma 4.13. Let 1 ≤ z < z′ ≤ n− 1 be integers and µ0, µ1 ∈ R. Define g : [z, z′]→ R by

g(y) :=

√
n

y(n− y)
{zµ0 + (y − z)µ1}

Suppose that min{z, z′ − z} ≥ nτ and

G := max
y∈[z,z′]

|g(y)| = g(z). (4.37)

Then

sup
y∈[z,z+0.2nτ ]

g′(y) ≤ −0.52Gn−1τ.

Proof. Define r := z/n, r′ := z′/n, B := r(µ0 − µ1) and f(x) := n−1/2g(nx) for x ∈ [r, r′]. Then

f(x) =
B + µ1x√
x(1− x)

and f ′(x) =
(µ1 + 2B)x−B
2{x(1− x)}3/2

.

Condition (4.37) is equivalent to

Gn−1/2 = max
x∈[r,r′]

|f(x)| = f(r) =
rµ0√
r(1− r)

. (4.38)



4.7. APPENDIX: ANCILLARY RESULTS 91

The desired result of the lemma is equivalent to

sup
x∈[r,r+0.2τ ]

f ′(x) ≤ −0.52Gn−1/2τ.

We may assume without loss of generality that it is not the case that µ0 = µ1 = 0, because

otherwise f is the zero function and G = 0, so the result holds. In that case, G > 0, so µ0 > 0,

and we prove the above inequality by considering the following three cases.

Case 1 : B ≤ 0. Then µ1 ≥ µ0 and in fact µ1 + 2B < 0, because otherwise f ′ is non-negative

on [r, r′], and if f ′(r) = 0 (which is the only remaining possibility from (4.38)) then B = 0 and

µ1 = 0, so µ0 = 0, a contradiction. Moreover, since sgn(f ′(x)) = sgn
(
(µ1 + 2B)x−B

)
, we deduce

that B
µ1+2B ≤ r ≤ 1. In particular, µ1 ≤ −B = r(µ1 − µ0) ≤ µ1 − µ0 and hence µ0 ≤ 0, again a

contradiction.

Case 2 : B > 0 and µ1 + 2B ≤ 0. By (4.38) and the fact that µ1 < 0, so that B > rµ0, we have

for x ∈ [r, r + τ ] that

f ′(x) ≤ −B
2{x(1− x)}3/2

≤ −B
2{r(1− r)}1/2

inf
x∈[r,r+τ ]

{r(1− r)}1/2

{x(1− x)}3/2
≤ −2Gn−1/2 inf

x∈[r,r+τ ]

r1/2

x1/2
≤ −
√

2Gn−1/2.

Here, we used the fact that min{r, r′ − r} ≥ τ in the final bound.

Case 3 : B > 0 and µ1 + 2B > 0, so that µ0 > µ1. In this case, considering sgn(f ′(x)) again

yields r ≤ B
µ1+2B . We claim that

B

µ1 + 2B
≥ r + 0.4τ. (4.39)

By the fundamental theorem of calculus,

f(r)− f
( B

µ1 + 2B

)
=

∫ B
µ1+2B

r

B − (µ1 + 2B)x

2{x(1− x)}3/2
dx

= (µ1 + 2B)

(
B

µ1 + 2B
− r
)2 ∫ 1

0

u

2{x(u)(1− x(u))}3/2
du, (4.40)

where we have used the substitution x = x(u) := B
µ1+2B − ( B

µ1+2B − r)u in the second step.

Similarly,

f(r + τ)− f
( B

µ1 + 2B

)
=

∫ r+τ

B
µ1+2B

B − (µ1 + 2B)x̃

2{x̃(1− x̃)}3/2
dx̃

= (µ1 + 2B)

(
r + τ − B

µ1 + 2B

)2 ∫ 1

0

u

2{x̃(u)(1− x̃(u))}3/2
du, (4.41)

using the substitution x̃ = x̃(u) := B
µ1+2B + (r + τ − B

µ1+2B )u. For every u ∈ [0, 1], we have

x(u) ≤ x̃(u) ≤ (1 + u)x(u). It follows that∫ 1

0
u{x̃(u)(1− x̃(u))}−3/2 du∫ 1

0
u{x(u)(1− x(u))}−3/2 du

≥
∫ 1

0
ux(u)−3/2(1 + u)−3/2 du∫ 1

0
ux(u)−3/2 du

=
1

21/2

{
( B
µ1+2B )1/2 + r1/2

( 2B
µ1+2B )1/2 + r1/2

}2

≥ 1

21/2

{
(r + τ)1/2 + r1/2

21/2(r + τ) + r1/2

}2

≥ 0.45. (4.42)
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Therefore, using (4.40), (4.41) and (4.42), together with the fact that f(r) ≥ f(r + τ), we deduce

that
B

µ1 + 2B
− r ≥ τ

1 + 0.45−1/2
> 0.4τ.

Hence (4.39) holds. For x ∈ [r, r + 0.2τ ], we have

f ′(x) ≤
−(µ1 + 2B)

(
B

2(µ1+2B) −
r
2

)
2{x(1− x)}3/2

≤ −0.4τ(µ1 + 2B)√
1.2r(1− r)

. (4.43)

If µ1 ≥ 0, then r ≤ B
µ1+2B ≤ 1/2 and

µ1 + 2B = 2rµ0 + (1− 2r)µ1 ≥ 2rµ0. (4.44)

If µ1 < 0 and r ≥ 1/2, then

µ1 + 2B = 2rµ0 + (2r − 1)(−µ1) ≥ 2rµ0. (4.45)

Finally, if µ1 < 0 and r < 1/2, then, writing a := 1− 2r and b := 2B
µ1+2B − 1, we have from (4.39)

that a+ b ≥ 0.8τ and

(µ1 + 2B)

(
B

µ1 + 2B
− r
)

= r(1− 2r)µ0 − 2r(1− r)µ1 = arµ0 +
(1− a2)B

1 + b−1

≥
(
a+

1− a2

1 + (0.8τ − a)−1

)
rµ0 ≥ 0.57τrµ0. (4.46)

It follows from (4.43), (4.44), (4.45), (4.46) and (4.38) that for x ∈ [r, r + 0.2τ ],

f ′(x) ≤ −0.57τrµ0√
1.2r(1− r)

≤ −0.52Gn−1/2τ,

as desired.
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Bücher, A., Kojadinovic, I. Rohmer, T. and Seger, J. (2014) Detecting changes in cross-sectional

dependence in multivariate time series. J. Multivariate Anal., 132, 111–128.

Cai, T. T., Ma, Z. and Wu, Y. (2013) Sparse PCA: Optimal rates and adaptive estimation. Ann.

Statist., 41, 3074–3110.



BIBLIOGRAPHY 95

Cai, T. T., Zhang, C.-H. and Zhou, H. H. (2010) Optimal rates of convergence for covariance

matrix estimation. Ann. Statist., 38, 2118–2144.

Candès, E. J. (2008) The restricted isometry property and its implications for compressed sensing.

C. R. Math. Acad. Sci. Paris, 346, 589–592.

Candès, E. J., Li, X., Ma, Y. and Wright, J. (2009) Robust Principal Component Analysis? J.

ACM 58, 1–37.

Candès E. J. and Recht, B. (2009) Exact matrix completion via convex optimization. Found. of

Comput. Math., 9, 717–772.

Candès, E. J., Romberg, J. K. and Tao, T. (2006a) Robust uncertainty principles: Exact signal

reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory, 52,

489–509.

Candès, E. J., Romberg, J. K. and Tao, T. (2006b) Stable signal recovery from incomplete and

inaccurate measurements. Comm. Pure Appl. Math., 59, 2006.

Candès E. J. and Tao, T. (2005) Decoding by Linear Programming. IEEE Trans. Inform. Theory,

51, 4203–4215.

Candès E. J. and Tao, T. (2005) Near-optimal signal recovery from random projections: Universal

encoding strategies? IEEE Trans. Inform. Theory, 52, 489–509.

Chan, Y.-b. and Hall, P. (2010) Using evidence of mixed populations to select variables for clus-

tering very high-dimensional data. J. Amer. Statist. Assoc., 105, 798–809.

Chandrasekaran, V. and Jordan, M. I. (2013) Computational and statistical tradeoffs via convex

relaxation. Proc. Nat. Acad. Sci., 110, E1181–E1190.

Chen, J. and Gupta, A. K. (1997) Testing and locating variance changepoints with application to

stock prices. J. Amer. Statist. Assoc., 92, 739–747.

Chen, Y. and Xu, J. (2016) Statistical-computational tradeoffs in planted problems and submatrix

localization with a growing number of clusters and submatrices. J. Mach. Learn. Res., 17, 1–57.

Chen, Y. and Ye, X. (2011) Projection onto a simplex. arXiv preprint, arxiv:1101.6081.

Cho, H. (2016) Change-point detection in panel data via double CUSUM statistic. Electron. J.

Stat., to appear.

Cho, H. and Fryzlewicz, P. (2015) Multiple-change-point detection for high dimensional time series

via sparsified binary segmentation. J. Roy. Statist. Soc. Ser. B, 77, 475–507.
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