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Regression coefficient testing

▶ We revisit one of the oldest problem in statistics: coefficient testing in
linear model:

Y = Xβ + Zb+ ϵ

withX ∈ Rn×p and Z ∈ Rn having fixed design and ϵ random noise in Rn.

▶ We want to test
H0 : b = 0 versus H1 : b ̸= 0.

▶ Goal:
– develop test with non-asymptotic valid size
– understand difficulty of the problem in terms of the tail property of ϵ.

Tengyao Wang 3/21



Classically . . .

▶ Assuming ϵ has i.i.d. Gaussian entries, Fisher (1921) proposed the ANOVA
procedure

RSSX − RSSX,Z

RSSX,Z
∼ F1,n−p−1, under H0.

▶ The Gaussian error assumption can be relaxed to rotationally invariant or
symmetric around zero noise (Hartigan, 1970; Meinshausen, 2015).

▶ Asymptotically, when n → ∞ and p is fixed, the above test statistic is
asymptotically χ2

1.
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Size validity of ANOVA

▶ ANOVA can have poor finite-sample size control (nominal size = 0.01)
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t1 noise t1 noise t1 noise
empirical size 0.0181 empirical size 0.0243 empirical size 0.0141

▶ p-value distribution is far from uniform
▶ Large spike around 0, causing poor size control, especially for small

nominal size.
▶ Important to develop a distribution-free and finite-sample valid test!
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Other tests in the literature

▶ Permutation-based test can often achieve distribution-free size validity.
– Freedman and Lane (1983) introduced a test based on permuting the

regression residuals.
– DiCiccio and Romano (2017) considered a permutation test using

studentised partial correlations of Y and Z given X .
– Toulis (2019) studied a test based on permuting residuals of Y against

(Z,X).
▶ However, these tests only have asymptotic size controls.
▶ Cyclic permutation test of Lei and Bickel (2021) achieves finite-sample

validity, assuming n/p ≥ 1/α− 1.
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A warm-up 1-bit test

▶ We assume only that ϵ = (ϵ1, . . . , ϵn) has exchangeable components.
▶ Given permutation matrices P1, . . . , PK ∈ Rn×n

– Let Πk ∈ Rn×n be the projection onto the orthogonal complement of
the column span of (X,PkX) and write

⟨u, v⟩Πk
:= u⊤Πkv.

– Under H0, for a fixed k ∈ {1, . . . ,K},

⟨Z, Y ⟩Πk
= ⟨Z, ϵ⟩Πk

d
= ⟨Z,Pkϵ⟩Πk

= ⟨Z,PkY ⟩Πk

– Residuals of regression Y and PkY against (X,PkX) should have be
equally likely to correlate with Z under the null.

– Each Pk gives a 1-bit test of H0.
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Combining the 1-bit tests into a level-α test

▶ Recall that under H0, the 1-bit test compares the magnitude of

ak := ⟨Z, Y ⟩Πk
= ⟨Z, ϵ⟩Πk

and bk := ⟨Z,PkY ⟩Πk
= ⟨Z,Pkϵ⟩Πk

.

▶ To combine 1-bit tests from projections P0 = In, P1, . . . , PK , define

a∗ := min
ℓ∈{1,...,K}

aℓ and b∗k := min
ℓ∈{1,...,K}

⟨Z,Pkϵ⟩Πℓ
.

▶ If P0, . . . , PK form a group, then

ϕ∗ =
1

K + 1

(
1 +

K∑
k=1

1{a∗ ≤ b∗k}
)

is a valid (and almost exact) p-value at any size-α.
▶ Unfortunately, ϕ∗ is not computable from data: ⟨Z,Pkϵ⟩Πℓ

̸= ⟨Z,PkY ⟩Πℓ
.
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An admissible test with valid size control

▶ Instead of ϕ∗, we use

ϕ =
1

K + 1

(
1 +

K∑
k=1

1{a∗ ≤ bk}
)
,

which stochastically dominates ϕ∗.

▶ Computational complexity: same as runningK OLS regressions, so
O(Kp2n).

▶ In addition to using Euclidean inner products, we can also construct test
using any function T (ΠkZ,ΠkY ).
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Size control under the null

▶ ϕ has finite-sample size validity under weak assumptions.

Theorem. Assume Y = Xβ + Zb+ ϵ with ϵ having exchangeable components
and p < n/2. If {P0, P1, . . . , PK} forms a group, then ϕ defined above satisfies

P(ϕ ≤ α) ≤ ⌊α(K + 1)⌋
K + 1

≤ α,

for all α ∈ [0, 1].
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Sketch of proof for size control

▶ Since ϵ is exchangeable, it is invariant under group action of
P = {P1, . . . , PK}.

▶ The set {Π1, . . . ,ΠK} is also invariant under action of the group P .
▶ Hence the test statistics a∗, b∗1,. . . ,b

∗
K are invariant under group action of P ,

in particular, rank of a∗ is uniformly distributed in {1, . . . ,K}.
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Power analysis: additional assumptions

▶ To analyse the power of the test, we need more assumptions on the design.

▶ (Assumption A3) We assume that ϵ = (ϵ1, . . . , ϵn) have i.i.d. components
distributed from a centred distribution Pϵ, and that

Z = Xγ + e

with e = (e1, . . . , en)
⊤ independent from ϵ with i.i.d. components

distributed from a centred distribution Pe.
▶ (Assumption A4) Assume additionally that the permutation matrices

P1, . . . , PK satisfies tr(Pk) = 0 and |tr(Π0Pk)| ≤
√
2pK .
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Power analysis: discussion of assumptions

▶ Assumption (A4) is relatively mild. It can be shown that a group
P0, P1, . . . , PK satisfying (A4) always exists and we can find a random
algorithm that has a success probability of 1− 1/K in finding such a
permutation group in each iteration.

▶ Assumption (A3) appears more stringent. The nodewise regression
structural assumption of Z is similar to the assumption in debiased Lasso.

▶ We can relax the linear structural assumption on Z to allow for
nonlinearity.
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Power analysis: signal strength upper bound

▶ We are interested in how the minimal testable signal strength b is related to
the tail heaviness of e and ϵ.

Theorem. Suppose Y = Xβ +Zb+ ϵ where ϵ and Z satisfies Assumption (A3)
and

0 < E|e1|2 < ∞ and 0 < E|ϵ1|1+t < ∞

for some t ∈ [0, 1]. Assume P0, P1, . . . , PK satisfies Assumption (A4). In the
asymptotic regime where b and p vary with n in such a way that n > (3 +m)p
for some constantm > 0 and

|b| ≳ n−t/(1+t) if t < 1 or |b| ≫ n−1/2 if t = 1,

we have limn→∞ P
(
ϕ > 1

K+1

)
= 0.
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Sketch of proof for power analysis

▶ We need to show that

aℓ = ⟨Z, Y ⟩Πℓ
= ⟨e, be+ ϵ⟩Πℓ

dominates
bk = ⟨Z,PkY ⟩Πk

= ⟨e, bPke+ Pkϵ⟩Πk

for all ℓ, k ∈ [K].
▶ It suffices to show that for al k ∈ [K]

⟨e, ϵ⟩Πk
= op(bn)

⟨e, Pkϵ⟩Πk
= op(bn)

⟨e, e⟩Πk
= n− 2p+ op(n)

⟨e, Pke⟩Πk
≤ p+

√
2pK + op(n)

▶ The key step is to analyse the correlation of e and ϵ on the projection space
of Πk .
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Power analysis: signal strength lower bound

▶ Let Dt be the class of distributions with t-th order moment bounded
between [1, 2].

▶ If Pe ∈ D2 and Pϵ ∈ D1+t, then a signal strength of |b| ≳ n−t/(1+t) is
sufficient for RPT to be asymptotically powerful.

▶ The following result shows that this signal strength requirement is
essentially optimal.

Theorem. Fix t ∈ (0, 1]. Suppose Y = Xβ + Zb+ ϵ where ϵ and Z satisfies
Assumption (A3). For any η ∈ (0, 1), there exists cη > 0 depending only on η
such that for any fixed design X ,

inf
test φ

{
sup

Pϵ∈D1+t

Pe∈D1
β,γ∈Rp

P0(φ = 1) + sup
Pϵ∈D1+t

Pe∈D1
β,γ∈Rp

sup
b≥cηn−t/(1+t)

Pb(φ = 0)
}
≥ 1− η.
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Numerical simulations: size control

▶ Empirical size under the null for various design and noise distributions.
▶ We compare against DiCiccio and Romano (2017), Freedman and Lane (1983)

and CRT of Candès et al. (2018).
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Numerical simulations: power curves
▶ Empirical power curves against signal size b for various design and noise

distributions.
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Numerical simulations: misspecification

▶ Instead of a linear model of Z on X and ϵ ⊥⊥ e, we allow
– Z to depend nonlinearly on X : Zi = f(Xiγ) + ei, where

f : t 7→ 1/(1 + e−t) is the sigmoid function.
– e and ϵ to be dependent: e has independent t1 entries, and ϵ has either

t1 and 2t1 entries dependent on the sign of entries of e.
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Numerical simulations: misspecification
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Summary

▶ We propose a finite-sample valid permutation-based test for a single
regression coefficient in a high-dimensional setting

▶ Key idea: compute projected correlation on the subspace orthogonal to
both the original and permuted design matrix.

▶ Optimal power result showing minimal detectable signal b in terms of
tail-heaviness of the noise under suitable modelling assumption of design.

▶ R Package available on github.com/wangtengyao/ResPerm.

Main reference:
▶ Wen, K., Wang, T. and Wang, Y. (2022) Residual permutation test for

high-dimensional regression coefficient testing. Preprint, arxiv:2211.16182.
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Thank you!
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