Residual permutation test for high-dimensional regression coefficient testing

Tengyao Wang

London School of Economics

Workshop on Robustness Meets Causality

Jul 2024

Kaiyue Wen Tsinghua University

Yuhao Wang Tsinghua University

Regression coefficient testing

We revisit one of the oldest problem in statistics: coefficient testing in linear model:

$$Y = X\beta + Zb + \epsilon$$

with $X \in \mathbb{R}^{n \times p}$ and $Z \in \mathbb{R}^n$ having fixed design and ϵ random noise in \mathbb{R}^n .

We want to test

 $H_0: b = 0$ versus $H_1: b \neq 0$.

Goal:

- develop test with non-asymptotic valid size
- understand difficulty of the problem in terms of the tail property of ϵ .

Assuming ϵ has i.i.d. Gaussian entries, Fisher (1921) proposed the ANOVA procedure

$$\frac{\operatorname{RSS}_X - \operatorname{RSS}_{X,Z}}{\operatorname{RSS}_{X,Z}} \sim F_{1,n-p-1}, \quad \text{under } H_0.$$

- The Gaussian error assumption can be relaxed to rotationally invariant or symmetric around zero noise (Hartigan, 1970; Meinshausen, 2015).
- Asymptotically, when $n \to \infty$ and p is fixed, the above test statistic is asymptotically χ_1^2 .

Size validity of ANOVA

THE LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE

- *p*-value distribution is far from uniform
- Large spike around 0, causing poor size control, especially for small nominal size.
- Important to develop a distribution-free and finite-sample valid test!

- Permutation-based test can often achieve distribution-free size validity.
 - Freedman and Lane (1983) introduced a test based on permuting the regression residuals.
 - DiCiccio and Romano (2017) considered a permutation test using studentised partial correlations of Y and Z given X.
 - Toulis (2019) studied a test based on permuting residuals of Y against $({\cal Z}, {\cal X}).$
- However, these tests only have asymptotic size controls.
- ► Cyclic permutation test of Lei and Bickel (2021) achieves finite-sample validity, assuming $n/p \ge 1/\alpha 1$.

- We assume only that $\epsilon = (\epsilon_1, \dots, \epsilon_n)$ has **exchangeable** components.
- Given permutation matrices $P_1, \ldots, P_K \in \mathbb{R}^{n \times n}$
 - Let $\Pi_k \in \mathbb{R}^{n \times n}$ be the projection onto the orthogonal complement of the column span of $(X, P_k X)$ and write

$$\langle u, v \rangle_{\Pi_k} := u^\top \Pi_k v.$$

- Under
$$H_0$$
, for a fixed $k \in \{1, \ldots, K\}$,

$$\langle Z, Y \rangle_{\Pi_k} = \langle Z, \epsilon \rangle_{\Pi_k} \stackrel{\mathrm{d}}{=} \langle Z, P_k \epsilon \rangle_{\Pi_k} = \langle Z, P_k Y \rangle_{\Pi_k}$$

- Residuals of regression Y and $P_k Y$ against $(X, P_k X)$ should have be equally likely to correlate with Z under the null.
- Each P_k gives a 1-bit test of H_0 .

Combining the 1-bit tests into a level- α test

• Recall that under H_0 , the 1-bit test compares the magnitude of

$$a_k := \langle Z, Y \rangle_{\Pi_k} = \langle Z, \epsilon \rangle_{\Pi_k} \quad \text{and} \quad b_k := \langle Z, P_k Y \rangle_{\Pi_k} = \langle Z, P_k \epsilon \rangle_{\Pi_k}.$$

• To combine 1-bit tests from projections $P_0 = I_n, P_1, \ldots, P_K$, define

$$a^* := \min_{\ell \in \{1, \dots, K\}} a_\ell \quad \text{and} \quad b^*_k := \min_{\ell \in \{1, \dots, K\}} \langle Z, P_k \epsilon \rangle_{\Pi_\ell}.$$

- Recall that under H_0 , the 1-bit test compares the magnitude of
 - $a_k := \langle Z, Y \rangle_{\Pi_k} = \langle Z, \epsilon \rangle_{\Pi_k} \quad \text{and} \quad b_k := \langle Z, P_k Y \rangle_{\Pi_k} = \langle Z, P_k \epsilon \rangle_{\Pi_k}.$
- To combine 1-bit tests from projections $P_0 = I_n, P_1, \ldots, P_K$, define

$$a^*:=\min_{\ell\in\{1,\ldots,K\}}a_\ell\quad\text{and}\quad b^*_k:=\min_{\ell\in\{1,\ldots,K\}}\langle Z,P_k\epsilon\rangle_{\Pi_\ell}.$$

• If P_0, \ldots, P_K form a group, then

$$\phi^* = \frac{1}{K+1} \left(1 + \sum_{k=1}^K \mathbb{1}\{a^* \le b_k^*\} \right)$$

is a valid (and almost exact) *p*-value at any size- α .

- Recall that under H_0 , the 1-bit test compares the magnitude of
 - $a_k := \langle Z, Y \rangle_{\Pi_k} = \langle Z, \epsilon \rangle_{\Pi_k} \quad \text{and} \quad b_k := \langle Z, P_k Y \rangle_{\Pi_k} = \langle Z, P_k \epsilon \rangle_{\Pi_k}.$
- To combine 1-bit tests from projections $P_0 = I_n, P_1, \ldots, P_K$, define

$$a^*:=\min_{\ell\in\{1,\ldots,K\}}a_\ell\quad\text{and}\quad b^*_k:=\min_{\ell\in\{1,\ldots,K\}}\langle Z,P_k\epsilon\rangle_{\Pi_\ell}.$$

• If P_0, \ldots, P_K form a group, then

$$\phi^* = \frac{1}{K+1} \left(1 + \sum_{k=1}^K \mathbb{1}\{a^* \le b_k^*\} \right)$$

is a valid (and almost exact) *p*-value at any size- α .

• Unfortunately, ϕ^* is not computable from data: $\langle Z, P_k \epsilon \rangle_{\Pi_\ell} \neq \langle Z, P_k Y \rangle_{\Pi_\ell}$.

An admissible test with valid size control

▶ Instead of ϕ^* , we use

$$\phi = \frac{1}{K+1} \left(1 + \sum_{k=1}^{K} \mathbb{1} \{ a^* \le b_k \} \right),$$

which stochastically dominates ϕ^* .

▶ Instead of ϕ^* , we use

$$\phi = \frac{1}{K+1} \left(1 + \sum_{k=1}^{K} \mathbb{1}\{a^* \le b_k\} \right),$$

which stochastically dominates $\phi^{*}.$

- Computational complexity: same as running K OLS regressions, so $O(Kp^2n)$.
- ► In addition to using Euclidean inner products, we can also construct test using any function $T(\Pi_k Z, \Pi_k Y)$.

 $\blacktriangleright \phi$ has finite-sample size validity under weak assumptions.

Theorem. Assume $Y = X\beta + Zb + \epsilon$ with ϵ having exchangeable components and p < n/2. If $\{P_0, P_1, \dots, P_K\}$ forms a group, then ϕ defined above satisfies

$$\mathbb{P}(\phi \le \alpha) \le \frac{\lfloor \alpha(K+1) \rfloor}{K+1} \le \alpha,$$

for all $\alpha \in [0, 1]$.

- Since ϵ is exchangeable, it is invariant under group action of $\mathcal{P} = \{P_1, \dots, P_K\}.$
- The set $\{\Pi_1, \ldots, \Pi_K\}$ is also invariant under action of the group \mathcal{P} .
- Hence the test statistics a^*, b_1^*, \dots, b_K^* are invariant under group action of \mathcal{P} , in particular, rank of a^* is uniformly distributed in $\{1, \dots, K\}$.

▶ To analyse the power of the test, we need more assumptions on the design.

▶ To analyse the power of the test, we need more assumptions on the design.

(Assumption A3) We assume that ε = (ε₁,..., ε_n) have i.i.d. components distributed from a centred distribution P_ε, and that

$$Z = X\gamma + e$$

with $e = (e_1, \ldots, e_n)^{\top}$ independent from ϵ with i.i.d. components distributed from a centred distribution \mathbb{P}_e .

• (Assumption A4) Assume additionally that the permutation matrices P_1, \ldots, P_K satisfies $\operatorname{tr}(P_k) = 0$ and $|\operatorname{tr}(\Pi_0 P_k)| \leq \sqrt{2p}K$.

- Assumption (A4) is relatively mild. It can be shown that a group P_0, P_1, \ldots, P_K satisfying (A4) always exists and we can find a random algorithm that has a success probability of 1 1/K in finding such a permutation group in each iteration.
- Assumption (A3) appears more stringent. The nodewise regression structural assumption of Z is similar to the assumption in debiased Lasso.
- We can relax the linear structural assumption on Z to allow for nonlinearity.

• We are interested in how the minimal testable signal strength b is related to the tail heaviness of e and ϵ .

Theorem. Suppose $Y = X\beta + Zb + \epsilon$ where ϵ and Z satisfies Assumption (A3) and

 $0 < \mathbb{E} |e_1|^2 < \infty \quad \text{and} \quad 0 < \mathbb{E} |\epsilon_1|^{1+t} < \infty$

for some $t \in [0, 1]$. Assume P_0, P_1, \ldots, P_K satisfies Assumption (A4). In the asymptotic regime where b and p vary with n in such a way that n > (3 + m)p for some constant m > 0 and

$$|b| \gtrsim n^{-t/(1+t)}$$
 if $t < 1$ or $|b| \gg n^{-1/2}$ if $t = 1$,

we have $\lim_{n\to\infty} \mathbb{P}(\phi > \frac{1}{K+1}) = 0.$

Sketch of proof for power analysis

We need to show that

$$a_{\ell} = \langle Z, Y \rangle_{\Pi_{\ell}} = \langle e, be + \epsilon \rangle_{\Pi_{\ell}}$$

dominates

$$b_k = \langle Z, P_k Y \rangle_{\Pi_k} = \langle e, bP_k e + P_k \epsilon \rangle_{\Pi_k}$$

for all $\ell, k \in [K]$.

We need to show that

$$a_{\ell} = \langle Z, Y \rangle_{\Pi_{\ell}} = \langle e, be + \epsilon \rangle_{\Pi_{\ell}}$$

dominates

$$b_k = \langle Z, P_k Y \rangle_{\Pi_k} = \langle e, bP_k e + P_k \epsilon \rangle_{\Pi_k}$$

for all $\ell, k \in [K]$.

• It suffices to show that for al $k \in [K]$

$$\langle e, \epsilon \rangle_{\Pi_k} = o_p(bn) \langle e, P_k \epsilon \rangle_{\Pi_k} = o_p(bn) \langle e, e \rangle_{\Pi_k} = n - 2p + o_p(n) \langle e, P_k e \rangle_{\Pi_k} \le p + \sqrt{2p}K + o_p(n)$$

The key step is to analyse the correlation of e and ε on the projection space of Π_k.

- Let \mathcal{D}_t be the class of distributions with *t*-th order moment bounded between [1, 2].
- ▶ If $\mathbb{P}_e \in \mathcal{D}_2$ and $\mathbb{P}_\epsilon \in \mathcal{D}_{1+t}$, then a signal strength of $|b| \gtrsim n^{-t/(1+t)}$ is sufficient for RPT to be asymptotically powerful.
- The following result shows that this signal strength requirement is essentially optimal.

Theorem. Fix $t \in (0, 1]$. Suppose $Y = X\beta + Zb + \epsilon$ where ϵ and Z satisfies Assumption (A3). For any $\eta \in (0, 1)$, there exists $c_{\eta} > 0$ depending only on η such that for any fixed design X,

$$\inf_{\substack{\text{test }\varphi \\ \mathbb{P}_{e} \in \mathcal{D}_{1} \\ \mathbb{P}_{e} \in \mathcal{D}_{1} \\ \beta, \gamma \in \mathbb{R}^{p}}} \sup_{\mathbb{P}_{e} \in \mathcal{D}_{1} \\ \mathbb{P}_{e} \in \mathcal{D}_{1} \\ \beta, \gamma \in \mathbb{R}^{p}}} \sup_{\mathbb{P}_{e} \in \mathcal{D}_{1} \\ \beta, \gamma \in \mathbb{R}^{p}}} \sup_{\substack{b \ge c_{\eta} n^{-t/(1+t)} \\ \beta \in \mathcal{D}_{1} \\ \beta, \gamma \in \mathbb{R}^{p}}} \mathbb{P}_{b}(\varphi = 0) \Big\} \ge 1 - \eta.$$

Numerical simulations: size control

- Empirical size under the null for various design and noise distributions.
- We compare against DiCiccio and Romano (2017), Freedman and Lane (1983) and CRT of Candès et al. (2018).

				RP'	Гпи	R PT		DR		FI		CRT	
		v				101 0 501							
n	p	X	noise	1%	0.5%	1%	0.5%	1%	0.5%	1%	0.5%	1%	0.5%
300	100	\mathcal{G}	${\mathcal G}$	0	0	0	0	0.98	0.5	0.99	0.52	0	0
300	100	\mathcal{G}	t_1	0.51	0.12	0.24	0	0.88	0.43	1.28	0.81	1.89	1.66
300	100	\mathcal{G}	t_2	0.14	0.02	0.04	0	0.67	0.3	1.23	0.64	0.53	0.37
300	100	t_1	\mathcal{G}	0	0	0	0	3.33	2.22	1.01	0.51	0	0
300	100	t_1	t_1	0.01	0	0	0	1.28	0.66	1.21	0.72	0.33	0.29
300	100	t_1	t_2	0	0	0	0	2.54	1.49	1.09	0.55	0	0
600	100	$\bar{\mathcal{G}}$	$\bar{\mathcal{G}}$	0.21	0.07	0.01	0	0.95	0.5	0.95	0.47	0	0
600	100	\mathcal{G}	t_1	0.73	0.43	0.48	0.28	0.92	0.48	1.09	0.59	1.68	1.49
600	100	\mathcal{G}	t_2	0.61	0.33	0.20	0.12	0.68	0.33	1.09	0.58	0.61	0.45
600	100	t_1	$\overline{\mathcal{G}}$	0.23	0.07	0.01	0	3.95	2.65	0.93	0.47	0	0
600	100	t_1^-	t_1	0.13	0.03	0	0	1.37	0.72	1.04	0.54	0.25	0.22
600	100	t_1^-	t_2^-	0.10	0.03	0	0	3.33	2.04	1.05	0.52	0.01	0
600	200	Ĝ	$\bar{\mathcal{G}}$	0	0	0	0	1.04	0.53	1.02	0.53	0	0
600	200	\mathcal{G}	t_1	0.46	0.34	0.26	0.17	0.89	0.44	1.18	0.75	1.5	1.3
600	200	\mathcal{G}	t_2	0.12	0.10	0.04	0.03	0.68	0.33	1.2	0.67	0.49	0.34
600	200	t_1	$\bar{\mathcal{G}}$	0	0	0	0	3.45	2.28	0.98	0.49	0	0
600	200	t_1^-	t_1	0.01	0	0	0	1.25	0.63	1.13	0.63	0.27	0.23
600	200	t_1	t_2	0	0	0	0	2.71	1.64	1.01	0.51	0	0

Numerical simulations: power curves

Empirical power curves against signal size b for various design and noise distributions.

(a) Gaussian design, Gaussian noise

(c) t_1 design, Gaussian noise

(b) Gaussian design, t_1 noise

(d) t_1 design, t_1 noise

▶ Instead of a linear model of Z on X and $\epsilon \perp \!\!\!\perp e$, we allow

- Z to depend nonlinearly on $X: Z_i = f(X_i\gamma) + e_i$, where $f: t \mapsto 1/(1 + e^{-t})$ is the sigmoid function.
- e and ϵ to be dependent: e has independent t_1 entries, and ϵ has either t_1 and $2t_1$ entries dependent on the sign of entries of e.

Numerical simulations: misspecification

(a) independent noise, linear relation

(c) independent noise, nonlinear relation

(b) dependent noise, linear relation

(d) dependent noise, nonlinear relation

- We propose a finite-sample valid permutation-based test for a single regression coefficient in a high-dimensional setting
- Key idea: compute projected correlation on the subspace orthogonal to both the original and permuted design matrix.
- Optimal power result showing minimal detectable signal b in terms of tail-heaviness of the noise under suitable modelling assumption of design.
- R Package available on github.com/wangtengyao/ResPerm.

Main reference:

Wen, K., Wang, T. and Wang, Y. (2022) Residual permutation test for high-dimensional regression coefficient testing. *Preprint*, arxiv:2211.16182. Thank you!

References

- Candès, E., Fan, Y., Janson, L. and Lv, J. (2018). Panning for gold: 'model-X' knockoffs for high dimensional controlled variable selection. *J. Roy. Statist. Soc., Ser. B*, 80, 551–577.
- DiCiccio, C. J. and Romano, J. P. (2017). Robust permutation tests for correlation and regression coefficients. J. Amer. Statist. Assoc., 112, 1211–1220.
- Fisher, R. A. (1935). *The Design of Experiments*. Oliver and Boyd.
- Freedman, D. and Lane, D. (1983). A nonstochastic interpretation of reported significance levels. J. Bus. Econ. Statist., 1, 292--298.
- Hartigan, J. (1970). Exact confidence intervals in regression problems with independent symmetric errors. Ann. Math. Statist., 41, 1992–1998.
- Lei, L. and Bickel, P. J. (2021). An assumption-free exact test for fixed-design linear models with exchangeable errors. *Biometrika*, **108**, 397–412.
- Meinshausen, N. (2015). Group bound: confidence intervals for groups of variables in sparse high dimensional regression without assumptions on the design. J. Roy. Statist. Soc., Ser. B, 77, 923–945.
- Toulis, P. (2019). Invariant Inference via Residual Randomization. arXiv preprint, arXiv:1908.04218.