Coverage correlation coefficient

Tengyao Wang

London School of Economics

Statistics seminar, University of Oslo

Aug 2025

Collaborators

Xuzhi Yang LSE

Mona Azadkia LSE

Problem description

- ▶ **Setup**: $(X_1, Y_1), \dots, (X_n, Y_n) \stackrel{\text{iid}}{\sim} P^{(X,Y)}$ on $\mathbb{R}^{d_X + d_Y}$
- ► Goal: Find a correlation coefficient such that it
 - (i) has a simple and interpretable form
 - (ii) has distribution-free null asymptotics
 - (iii) converges to 0 $\iff X \perp\!\!\!\perp Y,$ converges to 1 $\iff P^{(X,Y)}$ is singular w.r.t. $P^X \otimes P^Y.$

What are correlations?

- A measure of statistical association that quantifies how two variables tend to vary together.
- Closely related to independence testing, but quantifies the extend of association between 0 (no association) and 1 (maximum association).

Correlation	Dist. free	Relationship
Pearson's r	×	linear
Spearman's $ ho$	\checkmark	monotone
Kendall's $ au$	\checkmark	monotone
distance correlation	×	isometric
Chatterjee's ξ	\checkmark	y = f(x)

Chatterjee's correlation

- Recent renewed interest in nonparametric correlation statistics (Dette et al., 2013; Chatterjee, 2021; Azadkia and Chatterjee, 2021; Deb et al., 2020; Wiesel, 2022; Azadkia and Roudaki, 2025)
- Among them, Chatterjee's correlation has seen rapid adoption in practice.
- ▶ **Definition:** Given $(X_i, Y_i)_{i \in [n]}$, rearrange as $(X_{(1)}, Y_{(1)}), \ldots, (X_{(n)}, Y_{(n)})$ s.t. $X_{(1)} \leq \cdots \leq X_{(n)}$, then

$$\xi_n^{X,Y} := 1 - \frac{\sum_{i=1}^{n-1} |r_{i+1} - r_i|}{(n^2 - 1)/3},$$

where r_i = "rank of $Y_{(i)}$ " = $\#\{j: Y_{(j)} \le Y_{(i)}\}$.

 $\triangleright \xi_n^{X,Y}$ can be viewed as a sample version of

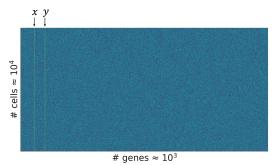
$$\xi^{X,Y} := \frac{\int_{\mathbb{R}} \operatorname{Var}(\mathbb{E}[\mathbb{1}\{Y \ge t\} \mid X]) \, dP^Y(t)}{\int_{\mathbb{R}} \operatorname{Var}(\mathbb{1}\{Y \ge t\}) \, dP^Y(t)}.$$

Why is it successful?

Can capture functional relationship of Y on X

- if
$$Y = f(X)$$
, then $\xi_n^{X,Y} \xrightarrow{p} \xi^{X,Y} = 1$

- Distribution free null CLT
 - if $X \perp \!\!\!\perp Y$, then $\sqrt{n}\xi_n^{X,Y} \stackrel{\mathrm{d}}{\longrightarrow} N(0, \text{variance})$
 - asymp valid p-values
- ▶ Fast to compute: $O(n \log n)$ time
- A use case: detecting gene relationship in single-cell RNA-seq experiment



Why is it successful?

- Can capture functional relationship of Y on X
 - if Y = f(X), then $\xi_n^{X,Y} \xrightarrow{p} \xi^{X,Y} = 1$
- Distribution free null CLT
 - if $X \perp \!\!\! \perp Y$, then $\sqrt{n}\xi_n^{X,Y} \stackrel{\mathrm{d}}{\longrightarrow} N(0, \text{variance})$
 - asymp valid p-values
- ▶ Fast to compute: $O(n \log n)$ time
- A use case: detecting gene relationship in single-cell RNA-seq experiment
 - heavy multiple testing burden
 - each test needs to be carried out quickly
 - resampling-based tests are computationally prohibitive
- ► Issues:
 - Asymmetry
 - Unable to capture implicit functional relationship

We have

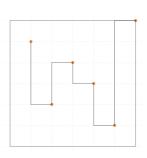
$$\xi_n^{X,Y} := 1 - \frac{\sum_{i=1}^{n-1} |r_{i+1} - r_i|}{(n^2 - 1)/3} \approx 1 - \frac{\sum_{i=1}^{n-1} \left| \frac{r_{i+1}}{n} - \frac{r_i}{n} \right| \cdot \frac{1}{n}}{1/3}.$$

Example:

We have

$$\xi_n^{X,Y} := 1 - \frac{\sum_{i=1}^{n-1} |r_{i+1} - r_i|}{(n^2 - 1)/3} \approx 1 - \frac{\sum_{i=1}^{n-1} \left| \frac{r_{i+1}}{n} - \frac{r_i}{n} \right| \cdot \frac{1}{n}}{1/3}.$$

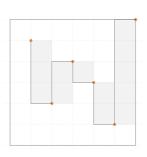
Example:



We have

$$\xi_n^{X,Y} := 1 - \frac{\sum_{i=1}^{n-1} |r_{i+1} - r_i|}{(n^2 - 1)/3} \approx 1 - \frac{\sum_{i=1}^{n-1} \left| \frac{r_{i+1}}{n} - \frac{r_i}{n} \right| \cdot \frac{1}{n}}{1/3}.$$

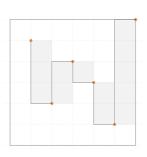
Example:



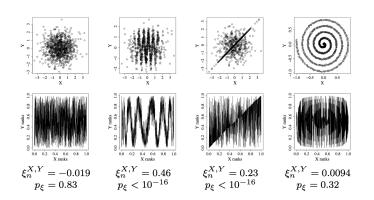
We have

$$\xi_n^{X,Y} := 1 - \frac{\sum_{i=1}^{n-1} |r_{i+1} - r_i|}{(n^2 - 1)/3} \approx 1 - \frac{\sum_{i=1}^{n-1} \left| \frac{r_{i+1}}{n} - \frac{r_i}{n} \right| \cdot \frac{1}{n}}{1/3}.$$

Example:



► Chatterjee's correlation is related to covered area in $[0,1]^2$ of a 'thickened' line plot of normalised x- and y-ranks.



Coverage correlation coefficient

Coverage correlation

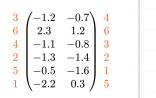
▶ Given $(X_i, Y_i)_{i \in [n]}$, let

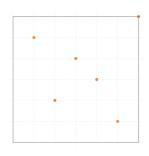
$$R_i^X := n^{-1}\{j: X_j \leq X_i\} \quad \text{and} \quad R_i^Y := n^{-1}\{j: Y_j \leq Y_i\}$$

be normalised x- and y-ranks.

- ▶ Draw squares of area 1/n centred at points (R_i^X, R_i^Y)
- ▶ The area in $[0,1]^2$ uncovered by the squares, V_n , is called the *vacancy*.

Example:





Coverage correlation

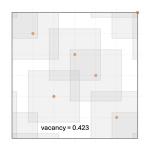
▶ Given $(X_i, Y_i)_{i \in [n]}$, let

$$R_i^X := n^{-1}\{j: X_j \leq X_i\} \quad \text{and} \quad R_i^Y := n^{-1}\{j: Y_j \leq Y_i\}$$

be normalised x- and y-ranks.

- ▶ Draw squares of area 1/n centred at points (R_i^X, R_i^Y)
- ▶ The area in $[0,1]^2$ uncovered by the squares, V_n , is called the *vacancy*.

Example:



Coverage correlation in general dimensions

Draw reference points:

$$U_1, \ldots, U_n \stackrel{\text{iid}}{\sim} \text{Unif}([0, 1]^{d_X}), \quad V_1, \ldots, V_n \stackrel{\text{iid}}{\sim} \text{Unif}([0, 1]^{d_Y}).$$

► Let

$$\pi^X := \underset{\pi \in \mathcal{S}_n}{\arg\min} \sum_{i=1}^n \|U_{\pi(i)} - X_i\|_2^2, \quad \pi^Y := \underset{\pi \in \mathcal{S}_n}{\arg\min} \sum_{i=1}^n \|V_{\pi(i)} - Y_i\|_2^2,$$

and write $R_i := (U_{\pi^X(i)}, V_{\pi^Y(i)})$ for the Monge-Kantorovich ranks (Chernozhukov et al., 2017; Hallin et al. 2021) in dimension $d := d_X + d_Y$.

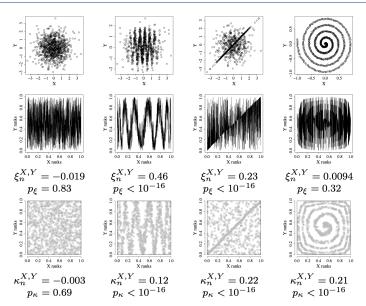
► We define the vacancy as

$$\mathcal{V}_n := 1 - \operatorname{vol}\left(\bigcup_{i=1}^n B_{\infty}\left(R_i, \frac{1}{2n^{1/d}}\right)\right).$$

▶ **Definition**: the coverage correlation coefficient is defined as the normalised excess vacancy

$$\kappa_n^{X,Y} := \frac{\mathcal{V}_n - e^{-1}}{1 - e^{-1}}.$$

Comparison to Chatterjee's correlation



Properties of the coverage correlation coefficient

Fast computation

- \blacktriangleright We need to evaluate volume of union of n axis-aligned hypercubes
- ► Special case of Klee's problem (Klee, 1977)
- When $d_X = d_Y = 1$, Bentley's algorithm solves this in $O(n \log n)$ time using a segment tree data structure (Ben-Or, 1983).
- ▶ In higher dimensions, the best algorithm runs in $O(n^{d/2})$ (Chan, 2013).
- ▶ But we can do better through geometric hashing, to get average run time of $O(n \log^{d-1} n)$.
- In multivariate settings, computing Monge–Kantorovich ranks becomes the rate limiting step. The Hungarian algorithm has $O(n^3)$ worst case complexity.

Timing comparison

- Average running time in seconds, for $n \in \{125, 250, \dots, 8000\}$ and $d_X = d_Y \in \{1, 2\}$
- ► Time larger than 1 minute is not shown

n	d_X	$\kappa_n^{X,Y}$	$\xi_n^{X,Y}$	dCor	HSIC	KMAc	USP
125	1	0.001	0.001	0.008	0.014	0.553	0.010
250	1	0.001	0.001	0.010	0.047	1.06	0.043
500	1	0.002	0.001	0.037	0.192	2.50	0.182
1000	1	0.003	0.001	0.130	1.01	7.35	0.781
2000	1	0.005	0.001	0.498	4.23	26.3	2.98
4000	1	0.010	0.002	2.01	21.6	-	10.8
8000	1	0.019	0.003	7.95	-	-	-
125	2	0.034	-	0.004	0.011	0.514	0.042
250	2	0.076	-	0.014	0.042	1.05	0.164
500	2	0.177	-	0.052	0.186	2.52	0.720
1000	2	0.567	-	0.176	0.975	7.50	3.17
2000	2	1.93	-	0.694	4.45	27.5	10.8
4000	2	6.16	-	2.77	21.5	-	43.9
8000	2	24.4	-	11.4	-	-	-

Interpretable population quantity

▶ **Definition**: $f: \mathbb{R} \to \mathbb{R}$ is convex with f(1) = 0. For any two p.m. μ , ν on space \mathcal{S} , let $\mathrm{d}\mu = h\mathrm{d}\nu + \mathrm{d}\nu^\perp$ be the Lebesgue–Radon–Nikodym decomposition. The f-divergence between μ and ν is

$$D_f(\mu \| \nu) := \int_{\mathcal{S}} f \circ h \, d\nu + \nu^{\perp}(\mathcal{S}) \lim_{t \to \infty} \frac{f(t)}{t}$$

Theorem. Let $P^{(X,Y)}$ be a Borel probability measure on \mathbb{R}^2 with marginals P^X and P^Y . Define $f: \mathbb{R} \to \mathbb{R}$ as $f(x) = (e^{-x} - e^{-1})/(1 - e^{-1})$. Given $(X_1, Y_1), \ldots, (X_n, Y_n) \stackrel{\text{iid}}{\sim} P^{(X,Y)}$, we have

$$\kappa_n^{X,Y} \xrightarrow{\mathrm{P}} \kappa^{X,Y} := D_f(P^{(X,Y)} \, \| \, P^X \otimes P^Y), \quad \text{as } n \to \infty.$$

Interpretable population quantity

► The *f*-divergence interpretation immediately implies the following desirable properties of the coverage correlation

```
\begin{array}{ll} -\ \kappa^{X,Y} = \kappa^{Y,X}. & [\text{symmetry}] \\ -\ \kappa^{X,Y} = 0 \ \text{iff} \ X \perp \!\!\! \perp Y. & [\text{zero-independence}] \\ -\ \kappa^{X,Y} = 1 \ \text{iff} \ P^{(X,Y)} \ \text{is singular w.r.t.} \ P^X \otimes P^Y. & [\text{max-functionality+}] \\ -\ \text{If} \ X \perp \!\!\!\! \perp Y \mid Z, \text{then} \ \kappa^{X,Z} \geq \kappa^{X,Y}. & [\text{information-monotonicity}] \\ -\ \text{If} \ P^{(X^{(n)},Y^{(n)})} \xrightarrow{d} P^{(X,Y)}, \text{then} \ \lim\inf_{n \to \infty} \kappa^{X^{(n)},Y^{(n)}} \geq \kappa^{X,Y}. \\ & [\text{lower-semicontinuity}] \\ (\text{Rényi, 1959; Móri and Székely, 2019; Borgonovo et al., 2025)} \end{array}
```

Proof sketch of the theorem

- ▶ We first reduce to the case where marginals are $\mathrm{Unif}[0,1]$, so $P^{(X,Y)}$ is simply the copula
- ▶ If $X \perp \!\!\! \perp Y$, the proof is easy: for an independent point $W \sim \mathrm{Unif}([0,1]^2)$ we have

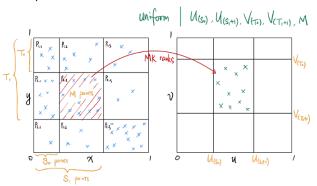
$$\mathbb{E}(\mathcal{V}_n) = \mathbb{E}\left[\mathbb{P}\left\{W \notin \bigcup_{i=1}^n B\left(R_i, \frac{1}{2\sqrt{n}}\right) \mid R_1, \dots, R_n\right\}\right]$$
$$= \mathbb{E}\left[\mathbb{P}\left\{R_i \notin B\left(W, \frac{1}{2\sqrt{n}}\right) \, \forall \, i \in [n] \mid W\right\}\right] = (1 - 1/n)^n \to e^{-1},$$

and similarly $Var(\mathcal{V}_n) \to 0$.

▶ In general this argument does not work since R_i 's are dependent.

Proof sketch

• We approximate the absolutely continuous part of $P^{(X,Y)}$ by blockwise constant density



- Use Poissonisation to show the approximation has negligible effect on vacancy
- ▶ Show the singular part of $P^{(X,Y)}$ has negligible contribution.

Distribution free null CLT

Theorem. We have

$$\sqrt{n}\kappa_n^{X,Y} \xrightarrow{\mathrm{d}} N(0,\sigma^2),$$

where

$$\sigma^2 := \frac{1}{(e-1)^2} \sum_{k=2}^{\infty} \frac{1}{k!} \left(\frac{2}{k+1}\right)^d.$$

- ► The statistic is distribution free under the null
- ▶ When $d_X = d_Y = 1$, $\sigma^2 = (e-1)^{-2}(4\text{Ei}(1) 4\gamma_0 5) = 0.091992...$
- ► We have an asymptotically valid p-value that can be used to test independence:

$$p_{\kappa} := 1 - \Phi(\sqrt{n}\kappa_n^{X,Y}/\sigma).$$

Proof uses ideas from the area of coverage processes (Hall, 1988)

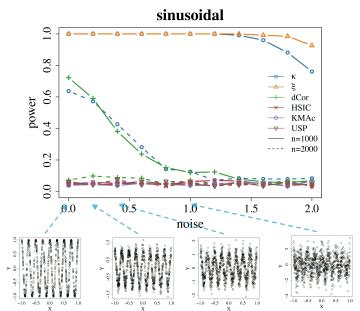
Numerical studies

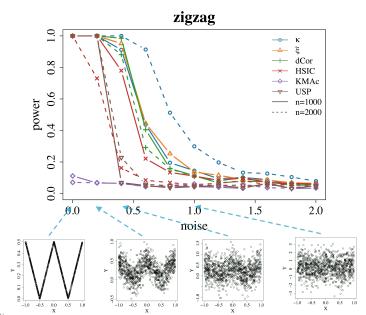
Size control

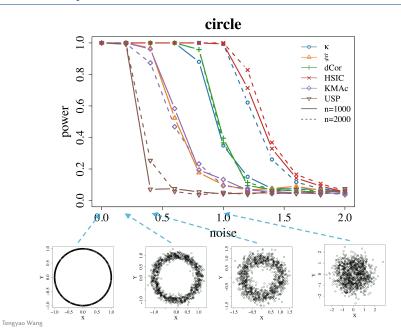
- ► Valid finite sample size control
- \triangleright Slightly conservative when n is small, but asymptotically well-calibrated

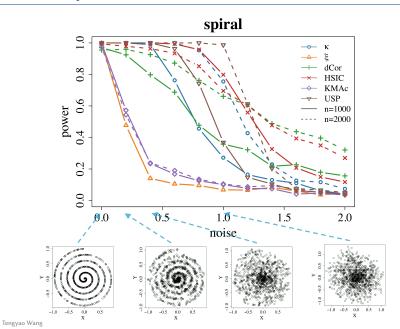
n	d_X	$\alpha = 1\%$	$\alpha=2.5\%$	$\alpha = 5\%$	$\alpha = 10\%$
10	1	$0.69_{(0.03)}$	$1.54_{(0.04)}$	$3.03_{(0.05)}$	$6.02_{(0.08)}$
100	1	$0.93_{(0.03)}$	$2.27_{(0.05)}$	$4.34_{(0.06)}$	$8.78_{(0.09)}$
1000	1	$0.96_{(0.03)}$	$2.34_{(0.05)}$	$4.76_{(0.07)}$	$9.50_{(0.09)}$
10	2	$0.55_{(0.02)}$	$1.18_{(0.03)}$	$2.10_{(0.05)}$	$4.08_{(0.06)}$
100	2	$0.94_{(0.03)}$	$2.11_{(0.05)}$	$4.12_{(0.06)}$	$8.03_{(0.09)}$
1000	2	$0.97_{(0.03)}$	$2.36_{(0.05)}$	$4.66_{(0.07)}$	$9.30_{(0.09)}$

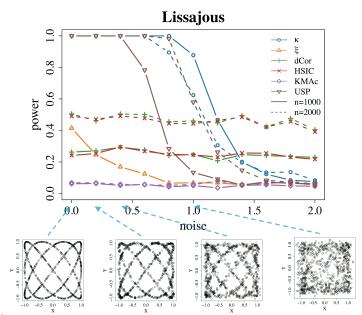
- We compare power of independent testing based on coverage correlation coefficient at 5% nominal level against competitors
- ▶ Competitors:
 - Chatterjee's correlation $(\xi_n^{X,Y})$ (Chatterjee, 2021)
 - distance correlation (dCor) (Székely et al., 2007)
 - Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al., 2008)
 - kernel measure of association (KMAc) (Deb et al., 2020)
 - U-statistics permutation test (USP) (Berrett et al., 2021)
- Five data generating mechanisms with $(n,d) \in \{(1000,1),(2000,2)\}$ at different noise levels γ .







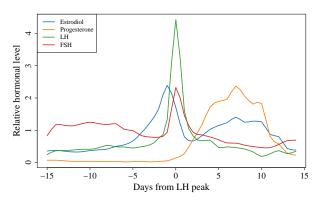




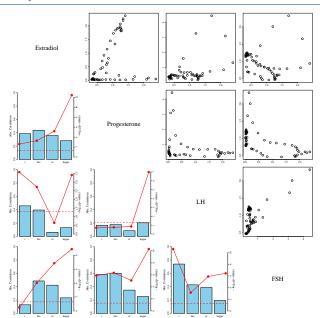
Real data

Menstrual cycle hormones

- ▶ Data digitised from Stricker et al. (2006).
- Estradiol and progesterone are key reproductive hormones, while LH and FSH regulate their production.
- ▶ They form a feedback-controlled system, driving the menstrual cycle.
- All four are correlated, though the dependence may be complex and implicit.

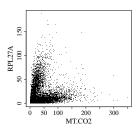


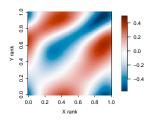
Menstrual cycle hormones



Gene covariation in CD8T cells

- Subset of single-cell RNA sequencing dataset from Suo et al. (2022)
- ▶ Gene expression levels of top p=1000 highly variable genes measured in $n=9369~{\rm CD8^+}$ T cells
- We compute all $\binom{p}{2}$ pairwise correlations using Pearson's correlation, Spearman's correlation, Chatterjee's correlation and the coverage correlation and adjust the corresponding p-values via Bonferroni correction.
- ▶ 54 gene pairs as significant by coverage correlation but not by any of the other methods





$$p_r = 0.11, \quad p_\rho = 0.10, \quad p_\xi = 0.002, \quad p_\kappa < 10^{-16}$$

Summary

- ► We develop a new correlation statistic that captures the extent to which the joint distribution is singular w.r.t. product of marginals.
- ▶ It is effective in detecting implicit functional dependence.
- ▶ Distribution-free null CLT helps generate asymptotically valid p-values.
- ► **R** package available on CRAN, and **Python** package on GitHub https://github.com/wangtengyao/covercorr.

Main reference

Yang, X., Azadkia, M. and Wang, T. (2025) Coverage correlation: detecting singular dependencies between random variables. *Preprint*. arxiv:2508.06402.

Thank you!

- Azadkia, M. and Chatterjee, S. (2021) A simple measure of conditional dependence. Ann. Statist., 49, 3070-3102.
- Azadkia, M. and Roudaki, P. (2025) A new measure of dependence: Integrated R^2 . *Preprint*, arxiv:2505.18146.
- ▶ Ben-Or, M. (1983) Lower bounds for algebraic computation trees. In *Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing*, 80–86.
- Berrett, T. B., Kontoyiannis, I. and Samworth, R. J. (2021) Optimal rates for independence testing via U-statistic permutation tests. *Ann. Statist.*, 49, 2457–2490.
- ▶ Borgonovo, E., Figalli, A., Ghosal, P., Plischke, E. and Savaré, G. (2025) Convexity and measures of statistical association. *J. Roy. Statist. Soc., Ser. B*, qkaf040.
- Chan, T. M. (2013) Klee's measure problem made easy. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, 410–419. IEEE.
- Chatterjee, S. (2021) A new coefficient of correlation. J. Amer. Statist. Assoc., 116, 2009–2022.
- Chernozhukov, V., Galichon, A., Hallin, M. and Henry, M. (2017) Monge-Kantorovich depth, quantiles, ranks and signs. Ann. Statist., 45, 223-256.
- ▶ Deb, N., Ghosal, P. and Sen, B. (2020) Measuring association on topological spaces using kernels and geometric graphs. *arXiv preprint*, arxiv:2010.01768.
- ▶ Dette, H., Siburg, K. F. and Stoimenov, P. A. (2013) A copula-based non-parametric measure of regression dependence. *Scand. J. Stat.*, **40**, 21–41.

- ► Gretton, A., Fukumizu, K., Teo, C. H., Song, L., Schölkopf, B. and Smola, A. J. (2008) A kernel statistical test of independence. In *Adv. Neur. Inf. Proc. Sys.*, 585–592.
- quantile functions, ranks and signs in dimension d: A measure transportation approach. Ann. Statist., 49, 1139–1165.

Hall, P. (1988) Introduction to the Theory of Coverage Processes. Wiley, New York.
 Hallin, M., Del Barrio, E., Cuesta-Albertos, J. and Matrán, C. (2021) Distribution and

- approach. *Ann. Statist.*, **49**, 1139–1165. Klee, V. (1977) Can the measure of $\bigcup_{i=1}^{n} [a_i, b_i]$ be computed in less than $O(n \log n)$ steps? *Amer. Math. Monthly*, **84**, 284–285.
- Móri, T. F. and Székely, G. J. (2019) Four simple axioms of dependence measures.
 Metrika, 82, 1–16.
- Rényi, A. (1959) On measures of dependence. Acta Math. Acad. Sci. Hungar., 10, 441–451
- ▶ Stricker, R., et al. (2006) Establishment of detailed reference values for luteinizing hormone, follicle stimulating hormone, estradiol, and progesterone during different
- phases of the menstrual cycle on the Abbott ARCHITECT® analyzer. *Clinical Chemistry and Laboratory Medicine*, **44**, 883–887.
- Suo, C., Dann, E., et al. (2022) Mapping the developing human immune system across organs. *Science*, **376**, eabo0510.
- Székely, G. J., Rizzo, M. L. and Bakirov, N. K. (2007) Measuring and testing dependence by correlation of distances. *Ann. Statist.*, 35, 2769–2794.
- ► Wiesel, J. C. (2022) Measuring association with Wasserstein distances. *Bernoulli*, **28**, 2816–2832.

4□ > 4♂ > 4 ≥ > 4 ≥ > ≥