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Problem description

▶ Setup: (X1, Y1), . . . , (Xn, Yn)
iid∼ P (X,Y ) on RdX+dY

▶ Goal: Find a correlation coefficient such that it
(i) has a simple and interpretable form
(ii) has distribution-free null asymptotics
(iii) converges to 0 ⇐⇒ X ⊥⊥ Y ,

converges to 1 ⇐⇒ P (X,Y ) is singular w.r.t. PX ⊗ PY .
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What are correlations?

▶ A measure of statistical association that quantifies how two variables tend
to vary together.

▶ Closely related to independence testing, but quantifies the extend of
association between 0 (no association) and 1 (maximum association).

Correlation Dist. free Relationship
Pearson’s r × linear
Spearman’s ρ ✓ monotone
Kendall’s τ ✓ monotone

distance correlation × isometric
Chatterjee’s ξ ✓ y = f(x)
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Chatterjee’s correlation

▶ Recent renewed interest in nonparametric correlation statistics (Dette et al.,
2013; Chatterjee, 2021; Azadkia and Chatterjee, 2021; Deb et al., 2020; Wiesel, 2022;
Azadkia and Roudaki, 2025)

▶ Among them, Chatterjee’s correlation has seen rapid adoption in practice.
▶ Definition: Given (Xi, Yi)i∈[n], rearrange as (X(1), Y(1)), . . . , (X(n), Y(n))

s.t. X(1) ≤ · · · ≤ X(n), then

ξX,Y
n := 1−

∑n−1
i=1 |ri+1 − ri|
(n2 − 1)/3

,

where ri = “rank of Y(i)” = #{j : Y(j) ≤ Y(i)}.
▶ ξX,Y

n can be viewed as a sample version of

ξX,Y :=

∫
R Var(E[1{Y ≥ t} | X]) dPY (t)∫

R Var(1{Y ≥ t}) dPY (t)
.
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Why is it successful?

▶ Can capture functional relationship of Y on X

– if Y = f(X), then ξX,Y
n

p−→ ξX,Y = 1

▶ Distribution free null CLT
– if X ⊥⊥ Y , then

√
nξX,Y

n
d−→ N(0, variance)

– asymp valid p-values
▶ Fast to compute: O(n log n) time
▶ A use case: detecting gene relationship in single-cell RNA-seq experiment
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– heavy multiple testing burden
– each test needs to be carried out quickly
– resampling-based tests are computationally prohibitive

▶ Issues:
– Asymmetry
– Unable to capture implicit functional relationship
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A geometric re-interpretation

▶ We have

ξX,Y
n := 1−

∑n−1
i=1 |ri+1 − ri|
(n2 − 1)/3

≈ 1−
∑n−1

i=1 | ri+1

n − ri
n | ·

1
n

1/3
.

Example:
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A geometric re-interpretation

▶ Chatterjee’s correlation is related to covered area in [0, 1]2 of a ‘thickened’
line plot of normalised x- and y-ranks.
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Coverage correlation

▶ Given (Xi, Yi)i∈[n], let

RX
i := n−1{j : Xj ≤ Xi} and RY

i := n−1{j : Yj ≤ Yi}

be normalised x- and y-ranks.
▶ Draw squares of area 1/n centred at points (RX

i , RY
i )

▶ The area in [0, 1]2 uncovered by the squares, Vn, is called the vacancy.

Example:
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Coverage correlation in general dimensions
▶ Draw reference points:

U1, . . . , Un
iid∼ Unif([0, 1]dX ), V1, . . . , Vn

iid∼ Unif([0, 1]dY ).

▶ Let

πX := argmin
π∈Sn

n∑
i=1

∥Uπ(i) −Xi∥22, πY := argmin
π∈Sn

n∑
i=1

∥Vπ(i) − Yi∥22,

and write Ri := (UπX(i), VπY (i)) for the Monge–Kantorovich ranks
(Chernozhukov et al., 2017; Hallin et al. 2021) in dimension d := dX + dY .

▶ We define the vacancy as

Vn := 1− vol

( n⋃
i=1

B∞

(
Ri,

1

2n1/d

))
.

▶ Definition: the coverage correlation coefficient is defined as the
normalised excess vacancy

κX,Y
n :=

Vn − e−1

1− e−1
.
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Comparison to Chatterjee’s correlation
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Properties of the coverage correlation coefficient



Fast computation

▶ We need to evaluate volume of union of n axis-aligned hypercubes
▶ Special case of Klee’s problem (Klee, 1977)

▶ When dX = dY = 1, Bentley’s algorithm solves this in O(n log n) time
using a segment tree data structure (Ben-Or, 1983).

▶ In higher dimensions, the best algorithm runs in O(nd/2) (Chan, 2013).
▶ But we can do better through geometric hashing, to get average run time of

O(n logd−1 n).
▶ In multivariate settings, computing Monge–Kantorovich ranks becomes the

rate limiting step. The Hungarian algorithm has O(n3) worst case
complexity.
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Timing comparison
▶ Average running time in seconds, for n ∈ {125, 250, . . . , 8000} and

dX = dY ∈ {1, 2}
▶ Time larger than 1 minute is not shown

n dX κX,Y
n ξX,Y

n dCor HSIC KMAc USP
125 1 0.001 0.001 0.008 0.014 0.553 0.010
250 1 0.001 0.001 0.010 0.047 1.06 0.043
500 1 0.002 0.001 0.037 0.192 2.50 0.182
1000 1 0.003 0.001 0.130 1.01 7.35 0.781
2000 1 0.005 0.001 0.498 4.23 26.3 2.98
4000 1 0.010 0.002 2.01 21.6 - 10.8
8000 1 0.019 0.003 7.95 - - -
125 2 0.034 - 0.004 0.011 0.514 0.042
250 2 0.076 - 0.014 0.042 1.05 0.164
500 2 0.177 - 0.052 0.186 2.52 0.720
1000 2 0.567 - 0.176 0.975 7.50 3.17
2000 2 1.93 - 0.694 4.45 27.5 10.8
4000 2 6.16 - 2.77 21.5 - 43.9
8000 2 24.4 - 11.4 - - -
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Interpretable population quantity

▶ Definition: f : R → R is convex with f(1) = 0. For any two p.m. µ, ν on
space S , let dµ = hdν + dν⊥ be the Lebesgue–Radon–Nikodym
decomposition. The f -divergence between µ and ν is

Df (µ ∥ ν) :=
∫
S
f ◦ hdν + ν⊥(S) lim

t→∞

f(t)

t

Theorem. Let P (X,Y ) be a Borel probability measure on R2 with marginals
PX and PY . Define f : R → R as f(x) = (e−x − e−1)/(1− e−1). Given

(X1, Y1), . . . , (Xn, Yn)
iid∼ P (X,Y ), we have

κX,Y
n

p−→ κX,Y := Df (P
(X,Y ) ∥PX ⊗ PY ), as n → ∞.
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Interpretable population quantity

▶ The f -divergence interpretation immediately implies the following
desirable properties of the coverage correlation

– κX,Y = κY,X . [symmetry]
– κX,Y = 0 iff X ⊥⊥ Y . [zero-independence]
– κX,Y = 1 iff P (X,Y ) is singular w.r.t. PX ⊗ PY . [max-functionality+]
– If X ⊥⊥ Y | Z , then κX,Z ≥ κX,Y . [information-monotonicity]

– If P (X(n),Y (n)) d−→ P (X,Y ), then lim infn→∞ κX(n),Y (n) ≥ κX,Y .
[lower-semicontinuity]

(Rényi, 1959; Móri and Székely, 2019; Borgonovo et al., 2025)
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Proof sketch of the theorem

▶ We first reduce to the case where marginals are Unif[0, 1], so P (X,Y ) is
simply the copula

▶ If X ⊥⊥ Y , the proof is easy: for an independent pointW ∼ Unif([0, 1]2)
we have

E(Vn) = E
[
P
{
W /∈

n⋃
i=1

B
(
Ri,

1

2
√
n

) ∣∣∣ R1, . . . , Rn

}]
= E

[
P
{
Ri /∈ B

(
W,

1

2
√
n

)
∀ i ∈ [n]

∣∣∣ W}]
= (1− 1/n)n → e−1,

and similarly Var(Vn) → 0.
▶ In general this argument does not work since Ri’s are dependent.
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Proof sketch

▶ We approximate the absolutely continuous part of P (X,Y ) by blockwise
constant density

▶ Use Poissonisation to show the approximation has negligible effect on
vacancy

▶ Show the singular part of P (X,Y ) has negligible contribution.
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Distribution free null CLT

Theorem. We have √
nκX,Y

n
d−→ N(0, σ2),

where

σ2 :=
1

(e− 1)2

∞∑
k=2

1

k!

(
2

k + 1

)d

.

▶ The statistic is distribution free under the null
▶ When dX = dY = 1, σ2 = (e− 1)−2(4Ei(1)− 4γ0 − 5) = 0.091992...

▶ We have an asymptotically valid p-value that can be used to test
independence:

pκ := 1− Φ(
√
nκX,Y

n /σ).

▶ Proof uses ideas from the area of coverage processes (Hall, 1988)
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Numerical studies



Size control

▶ Valid finite sample size control
▶ Slightly conservative when n is small, but asymptotically well-calibrated

n dX α = 1% α = 2.5% α = 5% α = 10%
10 1 0.69(0.03) 1.54(0.04) 3.03(0.05) 6.02(0.08)
100 1 0.93(0.03) 2.27(0.05) 4.34(0.06) 8.78(0.09)
1000 1 0.96(0.03) 2.34(0.05) 4.76(0.07) 9.50(0.09)
10 2 0.55(0.02) 1.18(0.03) 2.10(0.05) 4.08(0.06)
100 2 0.94(0.03) 2.11(0.05) 4.12(0.06) 8.03(0.09)
1000 2 0.97(0.03) 2.36(0.05) 4.66(0.07) 9.30(0.09)
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Power comparison

▶ We compare power of independent testing based on coverage correlation
coefficient at 5% nominal level against competitors

▶ Competitors:
– Chatterjee’s correlation (ξX,Y

n ) (Chatterjee, 2021)
– distance correlation (dCor) (Székely et al., 2007)
– Hilbert–Schmidt Independence Criterion (HSIC) (Gretton et al., 2008)
– kernel measure of association (KMAc) (Deb et al., 2020)
– U-statistics permutation test (USP) (Berrett et al., 2021)

▶ Five data generating mechanisms with (n, d) ∈ {(1000, 1), (2000, 2)} at
different noise levels γ.
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Power comparison

Tengyao Wang 21/25



Power comparison

Tengyao Wang 21/25



Power comparison

Tengyao Wang 21/25



Power comparison

Tengyao Wang 21/25



Power comparison

Tengyao Wang 21/25



Real data



Menstrual cycle hormones
▶ Data digitised from Stricker et al. (2006).
▶ Estradiol and progesterone are key reproductive hormones, while LH and

FSH regulate their production.
▶ They form a feedback-controlled system, driving the menstrual cycle.
▶ All four are correlated, though the dependence may be complex and

implicit.
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Menstrual cycle hormones
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Gene covariation in CD8T cells
▶ Subset of single-cell RNA sequencing dataset from Suo et al. (2022)

▶ Gene expression levels of top p = 1000 highly variable genes measured in
n = 9369 CD8+ T cells

▶ We compute all
(
p
2

)
pairwise correlations using Pearson’s correlation,

Spearman’s correlation, Chatterjee’s correlation and the coverage
correlation and adjust the corresponding p-values via Bonferroni correction.

▶ 54 gene pairs as significant by coverage correlation but not by any of the
other methods
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Summary

▶ We develop a new correlation statistic that captures the extent to which
the joint distribution is singular w.r.t. product of marginals.

▶ It is effective in detecting implicit functional dependence.
▶ Distribution-free null CLT helps generate asymptotically valid p-values.
▶ R package available on CRAN, and Python package on GitHub

https : //github.com/wangtengyao/covercorr.

Main reference
▶ Yang, X., Azadkia, M. and Wang, T. (2025) Coverage correlation: detecting

singular dependencies between random variables. Preprint.
arxiv:2508.06402.
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Thank you!



References

▶ Azadkia, M. and Chatterjee, S. (2021) A simple measure of conditional dependence.
Ann. Statist., 49, 3070–3102.

▶ Azadkia, M. and Roudaki, P. (2025) A new measure of dependence: Integrated R2.
Preprint, arxiv:2505.18146.

▶ Ben-Or, M. (1983) Lower bounds for algebraic computation trees. In Proceedings of
the Fifteenth Annual ACM Symposium on Theory of Computing, 80–86.

▶ Berrett, T. B., Kontoyiannis, I. and Samworth, R. J. (2021) Optimal rates for
independence testing via U-statistic permutation tests. Ann. Statist., 49, 2457–2490.

▶ Borgonovo, E., Figalli, A., Ghosal, P., Plischke, E. and Savaré, G. (2025) Convexity
and measures of statistical association. J. Roy. Statist. Soc., Ser. B, qkaf040.

▶ Chan, T. M. (2013) Klee’s measure problem made easy. In 2013 IEEE 54th Annual
Symposium on Foundations of Computer Science, 410–419. IEEE.

▶ Chatterjee, S. (2021) A new coefficient of correlation. J. Amer. Statist. Assoc., 116,
2009–2022.

▶ Chernozhukov, V., Galichon, A., Hallin, M. and Henry, M. (2017)
Monge–Kantorovich depth, quantiles, ranks and signs. Ann. Statist., 45, 223–256.

▶ Deb, N., Ghosal, P. and Sen, B. (2020) Measuring association on topological spaces
using kernels and geometric graphs. arXiv preprint, arxiv:2010.01768.

▶ Dette, H., Siburg, K. F. and Stoimenov, P. A. (2013) A copula-based non-parametric
measure of regression dependence. Scand. J. Stat., 40, 21–41.



References
▶ Gretton, A., Fukumizu, K., Teo, C. H., Song, L., Schölkopf, B. and Smola, A. J. (2008)

A kernel statistical test of independence. In Adv. Neur. Inf. Proc. Sys., 585–592.
▶ Hall, P. (1988) Introduction to the Theory of Coverage Processes. Wiley, New York.
▶ Hallin, M., Del Barrio, E., Cuesta-Albertos, J. and Matrán, C. (2021) Distribution and

quantile functions, ranks and signs in dimension d: A measure transportation
approach. Ann. Statist., 49, 1139–1165.

▶ Klee, V. (1977) Can the measure of ∪n
1 [ai, bi] be computed in less than O(n logn)

steps? Amer. Math. Monthly, 84, 284–285.
▶ Móri, T. F. and Székely, G. J. (2019) Four simple axioms of dependence measures.

Metrika, 82, 1–16.
▶ Rényi, A. (1959) On measures of dependence. Acta Math. Acad. Sci. Hungar., 10,

441–451.
▶ Stricker, R., et al. (2006) Establishment of detailed reference values for luteinizing

hormone, follicle stimulating hormone, estradiol, and progesterone during different
phases of the menstrual cycle on the Abbott ARCHITECT® analyzer. Clinical
Chemistry and Laboratory Medicine, 44, 883–887.

▶ Suo, C., Dann, E., et al. (2022) Mapping the developing human immune system
across organs. Science, 376, eabo0510.

▶ Székely, G. J., Rizzo, M. L. and Bakirov, N. K. (2007) Measuring and testing
dependence by correlation of distances. Ann. Statist., 35, 2769–2794.

▶ Wiesel, J. C. (2022) Measuring association with Wasserstein distances. Bernoulli, 28,
2816–2832.


