

Coverage correlation coefficient

Tengyao Wang

London School of Economics

Statistics seminar, University of Oslo

Aug 2025

Collaborators

Xuzhi Yang
LSE

Mona Azadkia
LSE

Problem description

- ▶ **Setup:** $(X_1, Y_1), \dots, (X_n, Y_n) \stackrel{\text{iid}}{\sim} P^{(X, Y)}$ on $\mathbb{R}^{d_X + d_Y}$
- ▶ **Goal:** Find a **correlation coefficient** such that it
 - (i) has a simple and interpretable form
 - (ii) has distribution-free null asymptotics
 - (iii) converges to 0 $\iff X \perp\!\!\!\perp Y$,
converges to 1 $\iff P^{(X, Y)}$ is singular w.r.t. $P^X \otimes P^Y$.

What are correlations?

- ▶ A measure of statistical association that quantifies how two variables tend to vary together.
- ▶ Closely related to independence testing, but quantifies the extend of association between 0 (no association) and 1 (maximum association).

Correlation	Dist. free	Relationship
Pearson's r	✗	linear
Spearman's ρ	✓	monotone
Kendall's τ	✓	monotone
distance correlation	✗	isometric
Chatterjee's ξ	✓	$y = f(x)$

Chatterjee's correlation

- ▶ Recent renewed interest in nonparametric correlation statistics (Dette et al., 2013; Chatterjee, 2021; Azadkia and Chatterjee, 2021; Deb et al., 2020; Wiesel, 2022; Azadkia and Roudaki, 2025)
- ▶ Among them, Chatterjee's correlation has seen rapid adoption in practice.
- ▶ **Definition:** Given $(X_i, Y_i)_{i \in [n]}$, rearrange as $(X_{(1)}, Y_{(1)}), \dots, (X_{(n)}, Y_{(n)})$ s.t. $X_{(1)} \leq \dots \leq X_{(n)}$, then

$$\xi_n^{X,Y} := 1 - \frac{\sum_{i=1}^{n-1} |r_{i+1} - r_i|}{(n^2 - 1)/3},$$

where r_i = “rank of $Y_{(i)}$ ” = $\#\{j : Y_{(j)} \leq Y_{(i)}\}$.

- ▶ $\xi_n^{X,Y}$ can be viewed as a sample version of

$$\xi^{X,Y} := \frac{\int_{\mathbb{R}} \text{Var}(\mathbb{E}[\mathbb{1}\{Y \geq t\} \mid X]) dP^Y(t)}{\int_{\mathbb{R}} \text{Var}(\mathbb{1}\{Y \geq t\}) dP^Y(t)}.$$

Why is it successful?

- ▶ Can capture **functional relationship** of Y on X
 - if $Y = f(X)$, then $\xi_n^{X,Y} \xrightarrow{P} \xi^{X,Y} = 1$
- ▶ Distribution free null CLT
 - if $X \perp\!\!\!\perp Y$, then $\sqrt{n}\xi_n^{X,Y} \xrightarrow{d} N(0, \text{variance})$
 - asymp valid p-values
- ▶ Fast to compute: $O(n \log n)$ time
- ▶ **A use case:** detecting gene relationship in single-cell RNA-seq experiment

Why is it successful?

- ▶ Can capture **functional relationship** of Y on X
 - if $Y = f(X)$, then $\xi_n^{X,Y} \xrightarrow{P} \xi^{X,Y} = 1$
- ▶ Distribution free null CLT
 - if $X \perp\!\!\!\perp Y$, then $\sqrt{n}\xi_n^{X,Y} \xrightarrow{d} N(0, \text{variance})$
 - asymp valid p-values
- ▶ Fast to compute: $O(n \log n)$ time
- ▶ **A use case:** detecting gene relationship in single-cell RNA-seq experiment
 - heavy multiple testing burden
 - each test needs to be carried out quickly
 - resampling-based tests are computationally prohibitive
- ▶ **Issues:**
 - Asymmetry
 - Unable to capture implicit functional relationship

A geometric re-interpretation

► We have

$$\xi_n^{X,Y} := 1 - \frac{\sum_{i=1}^{n-1} |r_{i+1} - r_i|}{(n^2 - 1)/3} \approx 1 - \frac{\sum_{i=1}^{n-1} \left| \frac{r_{i+1}}{n} - \frac{r_i}{n} \right| \cdot \frac{1}{n}}{1/3}.$$

Example:

$$\begin{array}{ccccc} 3 & \begin{pmatrix} -1.2 & -0.7 \\ 2.3 & 1.2 \\ -1.1 & -0.8 \\ -1.3 & -1.4 \\ -0.5 & -1.6 \\ -2.2 & 0.3 \end{pmatrix} & 4 \\ 6 & & 6 \\ 4 & & 3 \\ 2 & & 2 \\ 5 & & 1 \\ 1 & & 5 \end{array}$$

A geometric re-interpretation

► We have

$$\xi_n^{X,Y} := 1 - \frac{\sum_{i=1}^{n-1} |r_{i+1} - r_i|}{(n^2 - 1)/3} \approx 1 - \frac{\sum_{i=1}^{n-1} \left| \frac{r_{i+1}}{n} - \frac{r_i}{n} \right| \cdot \frac{1}{n}}{1/3}.$$

Example:

$$\begin{matrix} 3 \\ 6 \\ 4 \\ 2 \\ 5 \\ 1 \end{matrix} \begin{pmatrix} -1.2 & -0.7 \\ 2.3 & 1.2 \\ -1.1 & -0.8 \\ -1.3 & -1.4 \\ -0.5 & -1.6 \\ -2.2 & 0.3 \end{pmatrix} \begin{matrix} 4 \\ 6 \\ 3 \\ 2 \\ 1 \\ 5 \end{matrix}$$

A geometric re-interpretation

► We have

$$\xi_n^{X,Y} := 1 - \frac{\sum_{i=1}^{n-1} |r_{i+1} - r_i|}{(n^2 - 1)/3} \approx 1 - \frac{\sum_{i=1}^{n-1} \left| \frac{r_{i+1}}{n} - \frac{r_i}{n} \right| \cdot \frac{1}{n}}{1/3}.$$

Example:

$$\begin{matrix} 3 \\ 6 \\ 4 \\ 2 \\ 5 \\ 1 \end{matrix} \begin{pmatrix} -1.2 & -0.7 \\ 2.3 & 1.2 \\ -1.1 & -0.8 \\ -1.3 & -1.4 \\ -0.5 & -1.6 \\ -2.2 & 0.3 \end{pmatrix} \begin{matrix} 4 \\ 6 \\ 3 \\ 2 \\ 1 \\ 5 \end{matrix}$$

A geometric re-interpretation

► We have

$$\xi_n^{X,Y} := 1 - \frac{\sum_{i=1}^{n-1} |r_{i+1} - r_i|}{(n^2 - 1)/3} \approx 1 - \frac{\sum_{i=1}^{n-1} \left| \frac{r_{i+1}}{n} - \frac{r_i}{n} \right| \cdot \frac{1}{n}}{1/3}.$$

Example:

$$\begin{matrix} 3 \\ 6 \\ 4 \\ 2 \\ 5 \\ 1 \end{matrix} \begin{pmatrix} -1.2 & -0.7 \\ 2.3 & 1.2 \\ -1.1 & -0.8 \\ -1.3 & -1.4 \\ -0.5 & -1.6 \\ -2.2 & 0.3 \end{pmatrix} \begin{matrix} 4 \\ 6 \\ 3 \\ 2 \\ 1 \\ 5 \end{matrix}$$

A geometric re-interpretation

- ▶ Chatterjee's correlation is related to covered area in $[0, 1]^2$ of a ‘thickened’ line plot of scaled x - and y -ranks.

$$\xi_n^{X,Y} = -0.019$$
$$p_\xi = 0.83$$

$$\xi_n^{X,Y} = 0.46$$
$$p_\xi < 10^{-16}$$

$$\xi_n^{X,Y} = 0.23$$
$$p_\xi < 10^{-16}$$

$$\xi_n^{X,Y} = 0.0094$$
$$p_\xi = 0.32$$

Coverage correlation coefficient

Coverage correlation

- Given $(X_i, Y_i)_{i \in [n]}$, let

$$R_i^X := n^{-1} \{j : X_j \leq X_i\} \quad \text{and} \quad R_i^Y := n^{-1} \{j : Y_j \leq Y_i\}$$

be scaled x- and y-ranks.

- Draw squares of area $1/n$ centred at points (R_i^X, R_i^Y)
- The area in $[0, 1]^2$ uncovered by the squares, \mathcal{V}_n , is called the *vacancy*.

Example:

$$\begin{array}{ccccc} 3 & \begin{pmatrix} -1.2 & -0.7 \\ 2.3 & 1.2 \\ -1.1 & -0.8 \\ -1.3 & -1.4 \\ -0.5 & -1.6 \\ -2.2 & 0.3 \end{pmatrix} & 4 & \begin{array}{c} 6 \\ 3 \\ 2 \\ 1 \\ 5 \end{array} \\ 6 & & 6 & & \\ 4 & & 3 & & \\ 2 & & 2 & & \\ 5 & & 1 & & \\ 1 & & 5 & & \end{array}$$

Coverage correlation

- Given $(X_i, Y_i)_{i \in [n]}$, let

$$R_i^X := n^{-1}\{j : X_j \leq X_i\} \quad \text{and} \quad R_i^Y := n^{-1}\{j : Y_j \leq Y_i\}$$

be scaled x- and y-ranks.

- Draw squares of area $1/n$ centred at points (R_i^X, R_i^Y)
- The area in $[0, 1]^2$ uncovered by the squares, \mathcal{V}_n , is called the *vacancy*.

Example:

$$\begin{matrix} 3 & \begin{pmatrix} -1.2 & -0.7 \\ 2.3 & 1.2 \\ -1.1 & -0.8 \\ -1.3 & -1.4 \\ -0.5 & -1.6 \\ -2.2 & 0.3 \end{pmatrix} & 4 \\ 6 & & 6 \\ 4 & & 3 \\ 2 & & 2 \\ 5 & & 1 \\ 1 & & 5 \end{matrix}$$

Coverage correlation in general dimensions

- ▶ Draw reference points:

$$U_1, \dots, U_n \stackrel{\text{iid}}{\sim} \text{Unif}([0, 1]^{d_X}), \quad V_1, \dots, V_n \stackrel{\text{iid}}{\sim} \text{Unif}([0, 1]^{d_Y}).$$

- ▶ Let

$$\pi^X := \arg \min_{\pi \in \mathcal{S}_n} \sum_{i=1}^n \|U_{\pi(i)} - X_i\|_2^2, \quad \pi^Y := \arg \min_{\pi \in \mathcal{S}_n} \sum_{i=1}^n \|V_{\pi(i)} - Y_i\|_2^2,$$

and write $R_i := (U_{\pi^X(i)}, V_{\pi^Y(i)})$ for the **Monge–Kantorovich ranks** (Chernozhukov et al., 2017; Hallin et al. 2021) in dimension $d := d_X + d_Y$.

- ▶ We define the **vacancy** as

$$\mathcal{V}_n := 1 - \text{vol} \left(\bigcup_{i=1}^n B_\infty \left(R_i, \frac{1}{2n^{1/d}} \right) \right).$$

- ▶ **Definition:** the **coverage correlation coefficient** is defined as the normalised excess vacancy

$$\kappa_n^{X,Y} := \frac{\mathcal{V}_n - e^{-1}}{1 - e^{-1}}.$$

Comparison to Chatterjee's correlation

$$\xi_n^{X,Y} = -0.019$$
$$p_\xi = 0.83$$

$$\kappa_n^{X,Y} = -0.003$$
$$p_\kappa = 0.69$$

$$\xi_n^{X,Y} = 0.46$$
$$p_\xi < 10^{-16}$$

$$\kappa_n^{X,Y} = 0.12$$
$$p_\kappa < 10^{-16}$$

$$\xi_n^{X,Y} = 0.23$$
$$p_\xi < 10^{-16}$$

$$\kappa_n^{X,Y} = 0.22$$
$$p_\kappa < 10^{-16}$$

$$\xi_n^{X,Y} = 0.0094$$
$$p_\xi = 0.32$$

$$\kappa_n^{X,Y} = 0.21$$
$$p_\kappa < 10^{-16}$$

Properties of the coverage correlation coefficient

Fast computation

- ▶ We need to evaluate volume of union of n axis-aligned hypercubes
- ▶ Special case of Klee's problem (Klee, 1977)
- ▶ When $d_X = d_Y = 1$, Bentley's algorithm solves this in $O(n \log n)$ time using a **segment tree** data structure (Ben-Or, 1983).
- ▶ In higher dimensions, the best algorithm runs in $O(n^{d/2})$ (Chan, 2013).
- ▶ But we can do better through **geometric hashing**, to get average run time of $O(n \log^{d-1} n)$.
- ▶ In multivariate settings, computing Monge–Kantorovich ranks becomes the rate limiting step. The Hungarian algorithm has $O(n^3)$ worst case complexity.

Timing comparison

- ▶ Average running time in seconds, for $n \in \{125, 250, \dots, 8000\}$ and $d_X = d_Y \in \{1, 2\}$
- ▶ Time larger than 1 minute is not shown

n	d_X	$\kappa_n^{X,Y}$	$\xi_n^{X,Y}$	dCor	HSIC	KMAc	USP
125	1	0.001	0.001	0.008	0.014	0.553	0.010
250	1	0.001	0.001	0.010	0.047	1.06	0.043
500	1	0.002	0.001	0.037	0.192	2.50	0.182
1000	1	0.003	0.001	0.130	1.01	7.35	0.781
2000	1	0.005	0.001	0.498	4.23	26.3	2.98
4000	1	0.010	0.002	2.01	21.6	-	10.8
8000	1	0.019	0.003	7.95	-	-	-
125	2	0.034	-	0.004	0.011	0.514	0.042
250	2	0.076	-	0.014	0.042	1.05	0.164
500	2	0.177	-	0.052	0.186	2.52	0.720
1000	2	0.567	-	0.176	0.975	7.50	3.17
2000	2	1.93	-	0.694	4.45	27.5	10.8
4000	2	6.16	-	2.77	21.5	-	43.9
8000	2	24.4	-	11.4	-	-	-

Interpretable population quantity

► **Definition:** $f : \mathbb{R} \rightarrow \mathbb{R}$ is convex with $f(1) = 0$. For any two p.m. μ, ν on space \mathcal{S} , let $d\mu = h d\nu + d\nu^\perp$ be the Lebesgue–Radon–Nikodym decomposition. The f -divergence between μ and ν is

$$D_f(\mu \| \nu) := \int_{\mathcal{S}} f \circ h \, d\nu + \nu^\perp(\mathcal{S}) \lim_{t \rightarrow \infty} \frac{f(t)}{t}$$

Theorem. Let $P^{(X,Y)}$ be a Borel probability measure on \mathbb{R}^2 with marginals P^X and P^Y . Define $f : \mathbb{R} \rightarrow \mathbb{R}$ as $f(x) = (e^{-x} - e^{-1})/(1 - e^{-1})$. Given $(X_1, Y_1), \dots, (X_n, Y_n) \stackrel{\text{iid}}{\sim} P^{(X,Y)}$, we have

$$\kappa_n^{X,Y} \xrightarrow{P} \kappa^{X,Y} := D_f(P^{(X,Y)} \| P^X \otimes P^Y), \quad \text{as } n \rightarrow \infty.$$

Interpretable population quantity

- The f -divergence interpretation immediately implies the following desirable properties of the coverage correlation

- $\kappa^{X,Y} = \kappa^{Y,X}$. [symmetry]
- $\kappa^{X,Y} = 0$ iff $X \perp\!\!\!\perp Y$. [zero-independence]
- $\kappa^{X,Y} = 1$ iff $P^{(X,Y)}$ is singular w.r.t. $P^X \otimes P^Y$. [max-functionality+]
- If $X \perp\!\!\!\perp Y | Z$, then $\kappa^{X,Z} \geq \kappa^{X,Y}$. [information-monotonicity]
- If $P^{(X^{(n)},Y^{(n)})} \xrightarrow{d} P^{(X,Y)}$, then $\liminf_{n \rightarrow \infty} \kappa^{X^{(n)},Y^{(n)}} \geq \kappa^{X,Y}$. [lower-semicontinuity]

(Rényi, 1959; Móri and Székely, 2019; Borgonovo et al., 2025)

Proof sketch of the theorem

- We first reduce to the case where marginals are $\text{Unif}[0, 1]$, so $P^{(X, Y)}$ is simply the copula
- If $X \perp\!\!\!\perp Y$, the proof is easy: for an independent point $W \sim \text{Unif}([0, 1]^2)$ we have

$$\begin{aligned}\mathbb{E}(\mathcal{V}_n) &= \mathbb{E}\left[\mathbb{P}\left\{W \notin \bigcup_{i=1}^n B\left(R_i, \frac{1}{2\sqrt{n}}\right) \mid R_1, \dots, R_n\right\}\right] \\ &= \mathbb{E}\left[\mathbb{P}\left\{R_i \notin B\left(W, \frac{1}{2\sqrt{n}}\right) \forall i \in [n] \mid W\right\}\right] = (1 - 1/n)^n \rightarrow e^{-1},\end{aligned}$$

and similarly $\text{Var}(\mathcal{V}_n) \rightarrow 0$.

- In general this argument does not work since R_i 's are dependent.

Proof sketch

- We approximate the absolutely continuous part of $P^{(X,Y)}$ by blockwise constant density

- Use Poissonisation to show the approximation has negligible effect on vacancy
- Show the singular part of $P^{(X,Y)}$ has negligible contribution.

Distribution free null CLT

Theorem. We have

$$\sqrt{n}\kappa_n^{X,Y} \xrightarrow{d} N(0, \sigma^2),$$

where

$$\sigma^2 := \frac{1}{(e-1)^2} \sum_{k=2}^{\infty} \frac{1}{k!} \left(\frac{2}{k+1} \right)^d.$$

- ▶ The statistic is distribution free under the null
- ▶ When $d_X = d_Y = 1$, $\sigma^2 = (e-1)^{-2}(4\text{Ei}(1) - 4\gamma_0 - 5) = 0.091992\dots$
- ▶ We have an asymptotically valid p-value that can be used to test independence:

$$p_{\kappa} := 1 - \Phi(\sqrt{n}\kappa_n^{X,Y} / \sigma).$$

- ▶ Proof uses ideas from the area of [coverage processes](#) (Hall, 1988)

Numerical studies

Size control

- ▶ Valid finite sample size control
- ▶ Slightly conservative when n is small, but asymptotically well-calibrated

n	d_X	$\alpha = 1\%$	$\alpha = 2.5\%$	$\alpha = 5\%$	$\alpha = 10\%$
10	1	0.69 _(0.03)	1.54 _(0.04)	3.03 _(0.05)	6.02 _(0.08)
100	1	0.93 _(0.03)	2.27 _(0.05)	4.34 _(0.06)	8.78 _(0.09)
1000	1	0.96 _(0.03)	2.34 _(0.05)	4.76 _(0.07)	9.50 _(0.09)
10	2	0.55 _(0.02)	1.18 _(0.03)	2.10 _(0.05)	4.08 _(0.06)
100	2	0.94 _(0.03)	2.11 _(0.05)	4.12 _(0.06)	8.03 _(0.09)
1000	2	0.97 _(0.03)	2.36 _(0.05)	4.66 _(0.07)	9.30 _(0.09)

Power comparison

- ▶ We compare power of independent testing based on coverage correlation coefficient at 5% nominal level against competitors
- ▶ Competitors:
 - Chatterjee's correlation ($\xi_n^{X,Y}$) (Chatterjee, 2021)
 - distance correlation (dCor) (Székely et al., 2007)
 - Hilbert–Schmidt Independence Criterion (HSIC) (Gretton et al., 2008)
 - kernel measure of association (KMAc) (Deb et al., 2020)
 - U-statistics permutation test (USP) (Berrett et al., 2021)
- ▶ Five data generating mechanisms with $(n, d) \in \{(1000, 1), (2000, 2)\}$ at different noise levels γ .

Power comparison

Power comparison

zigzag

Power comparison

circle

Power comparison

Power comparison

Lissajous

Real data

Menstrual cycle hormones

- ▶ Data digitised from Stricker et al. (2006).
- ▶ Estradiol and progesterone are key reproductive hormones, while LH and FSH regulate their production.
- ▶ They form a feedback-controlled system, driving the menstrual cycle.
- ▶ All four are correlated, though the dependence may be complex and implicit.

Menstrual cycle hormones

Gene covariation in CD8T cells

- ▶ Subset of single-cell RNA sequencing dataset from [Suo et al. \(2022\)](#)
- ▶ Gene expression levels of top $p = 1000$ highly variable genes measured in $n = 9369$ CD8 $^{+}$ T cells
- ▶ We compute all $\binom{p}{2}$ pairwise correlations using Pearson's correlation, Spearman's correlation, Chatterjee's correlation and the coverage correlation and adjust the corresponding p-values via Bonferroni correction.
- ▶ 54 gene pairs as significant by coverage correlation but not by any of the other methods

$$p_r = 0.11, \quad p_\rho = 0.10, \quad p_\xi = 0.002, \quad p_\kappa < 10^{-16}$$

Summary

- ▶ We develop a new correlation statistic that captures the extent to which the joint distribution is singular w.r.t. product of marginals.
- ▶ It is effective in detecting implicit functional dependence.
- ▶ Distribution-free null CLT helps generate asymptotically valid p-values.
- ▶ **R** package available on CRAN, and **Python** package on GitHub
<https://github.com/wangtengyao/covercorr>.

Main reference

- ▶ Yang, X., Azadkia, M. and Wang, T. (2025) Coverage correlation: detecting singular dependencies between random variables. *Preprint*. arxiv:2508.06402.

Thank you!

- ▶ Azadkia, M. and Chatterjee, S. (2021) A simple measure of conditional dependence. *Ann. Statist.*, **49**, 3070–3102.
- ▶ Azadkia, M. and Roudaki, P. (2025) A new measure of dependence: Integrated R^2 . *Preprint*, arxiv:2505.18146.
- ▶ Ben-Or, M. (1983) Lower bounds for algebraic computation trees. In *Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing*, 80–86.
- ▶ Berrett, T. B., Kontoyiannis, I. and Samworth, R. J. (2021) Optimal rates for independence testing via U-statistic permutation tests. *Ann. Statist.*, **49**, 2457–2490.
- ▶ Borgonovo, E., Figalli, A., Ghosal, P., Plischke, E. and Savaré, G. (2025) Convexity and measures of statistical association. *J. Roy. Statist. Soc., Ser. B*, qkaf040.
- ▶ Chan, T. M. (2013) Klee’s measure problem made easy. In *2013 IEEE 54th Annual Symposium on Foundations of Computer Science*, 410–419. IEEE.
- ▶ Chatterjee, S. (2021) A new coefficient of correlation. *J. Amer. Statist. Assoc.*, **116**, 2009–2022.
- ▶ Chernozhukov, V., Galichon, A., Hallin, M. and Henry, M. (2017) Monge–Kantorovich depth, quantiles, ranks and signs. *Ann. Statist.*, **45**, 223–256.
- ▶ Deb, N., Ghosal, P. and Sen, B. (2020) Measuring association on topological spaces using kernels and geometric graphs. *arXiv preprint*, arxiv:2010.01768.
- ▶ Dette, H., Siburg, K. F. and Stoimenov, P. A. (2013) A copula-based non-parametric measure of regression dependence. *Scand. J. Stat.*, **40**, 21–41.

- ▶ Gretton, A., Fukumizu, K., Teo, C. H., Song, L., Schölkopf, B. and Smola, A. J. (2008) A kernel statistical test of independence. In *Adv. Neur. Inf. Proc. Sys.*, 585–592.
- ▶ Hall, P. (1988) *Introduction to the Theory of Coverage Processes*. Wiley, New York.
- ▶ Hallin, M., Del Barrio, E., Cuesta-Albertos, J. and Matrán, C. (2021) Distribution and quantile functions, ranks and signs in dimension d : A measure transportation approach. *Ann. Statist.*, **49**, 1139–1165.
- ▶ Klee, V. (1977) Can the measure of $\cup_1^n [a_i, b_i]$ be computed in less than $O(n \log n)$ steps? *Amer. Math. Monthly*, **84**, 284–285.
- ▶ Móri, T. F. and Székely, G. J. (2019) Four simple axioms of dependence measures. *Metrika*, **82**, 1–16.
- ▶ Rényi, A. (1959) On measures of dependence. *Acta Math. Acad. Sci. Hungar.*, **10**, 441–451.
- ▶ Stricker, R., et al. (2006) Establishment of detailed reference values for luteinizing hormone, follicle stimulating hormone, estradiol, and progesterone during different phases of the menstrual cycle on the Abbott ARCHITECT® analyzer. *Clinical Chemistry and Laboratory Medicine*, **44**, 883–887.
- ▶ Suo, C., Dann, E., et al. (2022) Mapping the developing human immune system across organs. *Science*, **376**, eab0510.
- ▶ Székely, G. J., Rizzo, M. L. and Bakirov, N. K. (2007) Measuring and testing dependence by correlation of distances. *Ann. Statist.*, **35**, 2769–2794.
- ▶ Wiesel, J. C. (2022) Measuring association with Wasserstein distances. *Bernoulli*, **28**, 2816–2832.