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High-dimensional changepoint models

» The evolution of technology enables the collection of vast amounts of
time-ordered data:
- Healthcare devices
— Covid case numbers

- Network traffic data
- Trading data of financial instruments

» Changes in the dynamics of the data streams are frequently of interest,
leading to a renaissance of research on changepoint analysis.
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» When data consist of covariate-response pairs, we are often interested in
changes in the regression function.

» Observations (X;,Y;) € R? x Rfort =1,...,n generated from
}/;ﬁ = Xt—rﬁt + €ty

where ¢, N(0,02).

» Coefficients 1, ..., By piecewise constant with changepoints at z1,..., 2,
B :,B(T) forzy_1 <t<z,1<r<v+1

(Convention: zg = 0, 2,41 = n)

» Goal: estimate the changepoint locations 21, ..., z,.
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» When p < n, least squares estimators work well (Bai, 1997; Bai and Perron
1998, Julious, 2001)

» For a fixed v, find the optimal partition of {1,...,n} into v 4+ 1 segments
such that the sum of RSS of least squares fit within each segment is
minimised:

v+1 Zr

(%21,...,2,) = argmin Zmin Z (v, — X, B)2.

21<Z<<Z, 1 B i 1

» If v is unknown, compare goodness-of-fit from different choices of v, e.g.
using BIC.

Tengyao Wang
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» When p < n, the above least squares approach no longer works.

» Several approaches were proposed to analyse changepoints in
high-dimensional regression problems (Lee et al., 2016; Kaul et al., 2019; Rinaldo
et al., 2021; Wang et al., 2021).
— These works impose the additional assumption that all regression
coefficients S, ..., S#*D) are sparse.
— This allows reasonable estimation of 5(7’), 1<r<wv+1givena
candidate set of changepoints
- Choose the best candidate set using goodness-of-fit statistics

» In contrast, we will only assume that the changes are sparse:

B+ — B g < k.

Tengyao Wang
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» Differential networks: find changepoints in the dynamics of Gaussian
graphical models over time.
- Brain connectivity network
- Gene-gene interaction network
- Financial network model between countries

> Central players in the network may have dense connection to other nodes,
but their changes may still be sparse.

Bansal et al. (Sci. Adv. 2019) Chen et al. (PLOS ONE, 2015)
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» We focus first on the single changepoint problem, i.e. v = 1, we write
z = Z1.
» Observations (X;,Y;) € R? x Rfort =1,...,n generated from

Yo = X (BV 1<y + 891 psy) + e,

where ¢, % N(0,0?).

» Assume || — (|| < kand p < n.

8/30
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» This problem is an example of high-dimensional inference in the presence
of dense nuisance parameters.

» True parameter of interest is 3(2) — 3(1), which is sparse. The dense
nuisance parameter 3(1) + 3(2) interferes with the inference.

» Relation to the literature

— The Neyman-Scott paradox (Neyman and Scott, 1948)

- High-dimensional change-point problems (e.g. Cho and Fryzlewicz, 2015;
Jirak, 2015; W. and Samworth, 2018; Enikeeva and Harchaoui, 2019)

- Matched-pair survival analysis (Battey and Cox, 2020)

Tengyao Wang 9/30
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» Definem:=n—p, X := (X{,...,X,] )" and write X(s,e] for the
submatrix of X using rows s+ 1,... €.
» Procedure: Given data X € R"*P and Y € R”,
1. Construct A € R™*™ such that A has orthonormal columns
orthogonal to the column space of X. 2 m
2. Foreacht € {1,...,n— 1}, compute

X m
=0 i) () e, |

Y
o T T (0,t] m
Z = (A(O,t] A(t"}) ( d n]) c R™.

n—t Xitn)

» Similar to orthogonal sketching, but sketches the covariate matrix and the
response vector in opposite ways in the second block.

12/30
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» Why does complementary sketching work?
> Write 0 := () — (@) /2 and ¢ := (B + p2))/2.

Z= AEELZ]Y(O%] + Az—z,n]y(z,n]
- AEB»Z] (X(Ovz]ﬂ(l) +€0,) + AE—Z,n} (X(z,n]ﬂ(z) + €(z,n))

T T T T
= A0, X(0,20 + A 4%0,21C — A Xl + Al X EnC
_|_
= W.0+¢,

» We have eliminated the contribution of the nuisance parameter ¢ in Z.

» This idea of complementary sketching was first used in a two-sample
testing problem (Gao and W. 2022).

» The changepoint problem is reduced to finding ¢ such that W; forms a ‘best
sparse linear approximation’ to Z.

Tengyao Wang
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» Several different approaches are possible once we have eliminated the
nuisrance parameter, which we collectively call the charcoal (changepoint
in regression via a complementary-sketching algorithm) methdology.

» charcoalcorn: Q; := {diag(W,"W;)} /2w, Z,

scorr

29T = argmax ||soft(Qy, \)||3.
¢

Algorithm 1: Pseudocode for change-point estimation

Input: X € R Y € R" satisfyingn > p, A >0, a >0
1 Set m < n —p;
2 Form A € Q™™ with columns orthogonal to the column space of X;
3 Compute Z + ATY;
4 Set Wy = 05p:
5 for1 <t<n-1do
6
7
8

Compute W; « W;_; + 2at;1:;r;
Compute Q, = {diag(W,” W,)} 2w, Z;
Compute Hy < ||soft(Qq, \)]|2;

Output: 2 := argmax,,«ic(1—ayn H-

Tengyao Wang 14/30
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The charcoal algorithms

» Several different approaches are possible once we have eliminated the
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» Several different approaches are possible once we have eliminated the
nuisrance parameter, which we collectively call the charcoal (changepoint
in regression via a complementary-sketching algorithm) methdology.

» charcoalcorn: Q; := {diag(W,"W;)} /2w, Z,
20— argmax |[soft(Qy, \)||3.
t
» charcoaly,,: let 0 be the leading left singular vector of soft(Q, \), estimate

2Pro) = argmax (0 ' Q).
t
» charcoaljasso: simply run Lasso on (W, Z) to find the best fit

~ . 1
0t(>\t) = arg;nm{zm|Z — Wt9||§ + At|9||1}

slasso . _ arg{njn ||Z — Wtét()\t)H%,
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» The charcoal algorithms can be combined with any of the top-down
methods to recursively identify multilple changepoints.

» We use the narrowest-over-threshold method (Baranowski et al., 2019)

Tengyao Wang

Algorithm 4: Pseudocode for multiple changepoint estimation

1

2

3

4
5
6

Input: X € R™*?,Y € R” satisfying n — p > 0, a soft threshold level A > 0,
burn-in parameter a > 0, number of intervals M, testing threshold 7> 0
Set Z < () and generate M pairs of integers (s1,€1), .. ., (Sum, €y) uniformly from
{(a,b] : a,b € NU{0},b—a > p}.
Run NOT(0,n) where NOT is defined below.
Let 0« |Z\ and sort elements of Z in increasing order to yield 2, < --- < 2.
Output: 2,...,2%;

Function NOT (s, )
Set M  {m : (Sm,em) C (s,€]}
for m € M, do
Run Algorithm 2 with input X(s,, ..}, Y(smen]» A and @, and let 20™ and
Hr(;;)){ be the output.
end
M, {me M, : HI > T}
if M, # 0 then
o < argmin,,c ve(€m — Sm)
b By + 5m0)
7+ Zu{b}
NOT(s, b)
NOT (b, e)
end
end

15/30
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» The charcoal algorithms can be combined with any of the top-down
methods to recursively identify multilple changepoints.

» We use the narrowest-over-threshold method (Baranowski et al., 2019)
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» Test statistics are formed from
Qq = {diag(W, W)} =2 (W, W.0 + W,"¢)
> Key step: show that W," W, is close to 4t(n — z)(n — p)n~=2I, in
k-operator norm uniformly over ¢.

» Difficult to control {diag(W," W;)}~'/2 uniformly over t. For theoretical
analysis, we look at a slight variant where

n

T T
m(Wt er + Wt f)

16/30
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» Test statistics are formed from

Q, = ﬁ (W, W6+ W, ¢)

> Key step: show that W," W, is close to 4t(n — z)(n — p)n =21, in
k-operator norm uniformly over ¢ for ¢t < z.

Tengyao Wang 17/30
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» Test statistics are formed from

Qi = \/E (W, W.0+ W, ¢)

> Key step: show that W," W, is close to 4t(n — z)(n — p)n =21, in
k-operator norm uniformly over ¢ for ¢t < z.

> Hence H, := ||soft(Q;, \)]|2 is close to H; := ﬁH(Wt—Fer)SHQ
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» Test statistics are formed from

Q= (W, W.0+ W, ¢)

t(n—t)

> Key step: show that W," W, is close to 4t(n — z)(n — p)n =21, in
k-operator norm uniformly over ¢ for ¢t < z.

> Hence H, := ||soft(Q;, \)]|2 is close to H; := D |(W,"W.0)s]|

» This is in turn approximately

4(n —p)|0]]2 t
hy == - n(n = t)( 2) <z + i Z]]-{t>z}

Tengyao Wang 17/30
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» Graphical illustration of the proof sketch:
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Theoretical analysis of the variant

» Graphical illustration of the proof sketch:
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» Graphical illustration of the proof sketch:

statistics

T T T T T T
0 100 200 300 400 500 600
time

» To prove estimation accuracy:
1. Understand the sharpness of peak of (h; : 1 <t <n—1)
— this turns out to be thei same as the univariate CUSUM curve
2. Control |Hy — Hy| and |Hy — hy| uniformly over ¢.

Tengyao Wang 18/30
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Assumptions
(A1) Random design: z; ~ N, (0, I,) independently fort =1,...,n

(A2) Asymptotic regime: n, z, p satisfies p < nand z/n — 7 € (0,1) and
(n—p)/n—mne(0,1)asn — oo.

Theorem. Assume Conditions (A1) and (A2). Suppose that [|0]|2 < 1, k < p/2.
There exists ¢, C' > 0, depending only on 7,7, such that if A\ > co log p, then
asymptotically with probability 1, for all but finitely many n’s, we have

corr —Z| - C)\\/E
no = Vnlfz

|2

Tengyao Wang 19/30
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Theorem. Under the same condition as above, There exists ¢, C > 0,
depending only on 7,7, such that if A\ > co log p, then asymptotically with
probability 1, for all but finitely many n’s, we have

- C\Wk
~ Vol

sin Z(0P™, 0)

Hence, 2P satisfies .
Pl — 2 CA%Vklogp
= 2
n valr

Tengyao Wang 20/30
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Theorem. Under the same condition as above, There exists ¢, C > 0,
depending only on 7,7, such that if A\ > co log p, then asymptotically with
probability 1, for all but finitely many n’s, we have

- C\Wk
~ Vol

Hence, a sample-splitting variant of 2P™J satisfies

sin Z(0P™, 0)

|zProi — 2| CAVElogp
<
n V0]l
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» Consistent estimation is possible when [|0]|2/0 > 1/ W

» This is essentially the SNR required to test for a change even if the
location of changepoint z is known. Let Pngu) 52 be the distribution of Y’

conditional on X, changepoint z and parameters 3(1) and 5(?). We test
Hy:0=0 vs Hy:0€0,,(p):=1{0:]0l2/0>p, |00 <k}

» Define the minimax risk of testing

My (k p) = inf{ sup PX; (6 #0)+  sup  PX, 5 (0 # 1)},
¥ ‘peRre B1,B2ERP
(B1—PB2)/2€0, 1 (p)

Theorem. Assume (A1), (A2), and k < p® for some o < 1/2. There exists a

c(1—2a)klog
n

universal constant ¢ > 0 such that if p < L then

MX(kap) & L.

21/30
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» Gaussian Orthogonal Ensemble design matrices with a single changepoint
at z = 0.3n

» 0 sampled as a Gaussian vector, #2) — §(1) randomly generated k-sparse
vector with 5 norm p.

» charcoal,,, and charcoal,,,, uses a burn-in parameter of 0.1.

n P k p corr corr’ proj proj’ lasso
600 200 3 1 7.16 8.67 717 11.05  12.95
2 204 3.22 1.95 2.81 3.04

4 093 2.35 1.24 2.16 1.47

14 1 16.75 18.14 19.69 34.44 82.36

2 3.22 3.76 3.19 4.03 6.94

4 1.62 2.29 2.20 2.65 2.00

1200 400 3 1 6.61 7.13 6.20 7.63 12.14
2 1.64 1.86 1.96 2.40 3.39

4 1.11 2.06 0.94 2.06 1.43
20 1 16.70 19.51 11.01 14.94 101.81

2 290 2.98 3.92 4.11 10.12

4 1.86 2.50 1.64 1.91 3.20

Table: E|Z — z| estimated over 100 Monte Carlo repetitions.

Tengyao Wang 23/30
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> Existing methods in literature require sparsity of (") for all 7.

» We compare with
- The VPBS algorithm of Rinaldo et al., 2021
— Atwo-sided Lasso-based approach of Lee et al. (2016) (LSS) and Leonardi
and Biihlmann (2016) (LB)
- atwo-stage refinement approach of Kaul et al. (2019) (KJF)

» We compare the performance of various methods in a single changepoint
estimation task with n = 1200, z = 360.

Tengyao Wang 24/30
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P k p charcoal,,; charcoal,se VPBS LB KJF LSS
400 31 7.2 13.2 4524 556.1 238.8 4722
2 2.2 3.5 4763 569.2 239.3 364.1

4 1.1 1.5 4342 5328 239.1 272.1

8 0.7 0.8 3263 496.8 239.1 310.8

20 1 12.4 85.4 422.7 528.8 238.9 479.5

2 3.0 9.2 4949 546.8 238.9 2845

4 2.0 2.6 4319 553.1 239.1 268.5

8 1.9 0.8 3562 513.3 239.3 261.5

400 1 162.2 344.2 4778 569.8 238.8 429.9

2 46.3 3384 504.0 5832 238.8 252.4

4 25.3 13.3 446.3 554.1 2389 285.6

8 20.7 3.0 355.6 487.6 239.1 250.1

1000 31 60.7 113.3 2416 429.5 2372 2273
2 8.3 11.8 2434 4414 239.0 2282

4 2.9 4.0 2395 366.9 243.9 230.6

8 24 1.4 2351 245.1 262.2 230.7

31 1 300.3 364.9 2334 440.1 238.8 2274

2 71.7 140.9 2425 469.5 2389 2283

4 16.0 12.5 251.3 358.4 238.9 2245

8 13.7 4.6 2445 2490 2382 230.1

1000 1 275.5 359.8 232.6 483.0 239.3 231.8

2 256.9 320.8 2384 4474 2389 229.2

4 224.1 91.0 2427 3782 239.1 228.0

8 194.5 39.6 2464 2535 2424 226.7

25/30
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» We focused on GOE design and Gaussian noise to facilitate theoretical
analysis

» Our methodology can be applied in more general settings

> We vary design to have i) N, (0, %) rows with & = (0.71"771), <, j<,,, or ii)
Rademacher entries

» We vary noise distribution to t4, t, centred Exp(1) or Rademacher
distributions.

1\

—— N(0.1)
V2

- 2

/
—— Exp(1) - 1
—— Rademacher

02 05 1

Figure: Robustness to varying design matrices and noise distributions.
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» We use charcoal in conjunction with NOT (Baranowski et al. (2019) for
multiple changepoint estimation.

» We consider two simulation settings
(M1) n = 1200, p = 200, v = 3,
(21, 22, 23)/n = (0.2,0.55,0.75),
(HQ(”IIz 102,164 )—pmm x (1,1.5,2),
160 = 16®]lo = [16®jo = k-
(M2) n =2400,p =400,v =4
(21, 22, 23, 24) /1 = (0.3,0.55,0.75,0.9),

(10D |2, 102, 10D |2, 0@ [|2) = prmin x (1,1.15,1.45,2.18),
10D ]lo = 160 = 16®)]l0 = 16l = &.

Tengyao Wang 27/30
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n P kK Pmin D — v value Haus ARI
-3 -2 -1 0 1

1200 200 3 08 0 0 96 4 0 2928 0.742

1.2 0 0 22 78 0 754 0.918

1.6 0 0 0 98 2 8.8 0.978

10 08 O 2 97 1 0 3049 0.71

1.2 0 0 42 55 3 141.1 0.856

1.6 0 0 1 9 3 18 0.96

100 0.8 3 67 30 0 0 591.7 0.303

1.2 0 4 88 8 0 319.3 0.611

1.6 0 0 52 46 2 2171 0.759

2400 400 3 08 0 0 25 75 0 1553 0.881

1.2 0 0 0 100 O 14.3 0.975

1.6 0 0 0 100 O 10.1 0.983

10 08 0 15 53 32 0 3769 0.72

1.2 0 0 2 98 0 37.3 0.945

1.6 0 0 1 99 0 21 097

100 0.8 42 57 1 0 0 11549 0.184

1.2 0 32 54 14 0 647 0.457

1.6 0 0 14 84 2 3769 0.658

Tengyao Wang
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Figure: Histogram of estimated changepoint locations in four settings.
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» It is possible to estimate sparse changes in high-dimensional regression
coefficients, even if the coefficients themselves are dense.

» Use complementary sketching to eliminate nuisance parameter.

» Implementation available in github.com/gaofengnan/charcoal/
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» It is possible to estimate sparse changes in high-dimensional regression
coefficients, even if the coefficients themselves are dense.

» Use complementary sketching to eliminate nuisance parameter.

» Implementation available in github.com/gaofengnan/charcoal/

> Main references:

Gao, F. and Wang, T. (2022) Two-sample testing of high-dimensional linear
regression coefficients via complementary sketching. Ann. Statist., 50,
2950-2972.
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