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High-dimensional changepoint models

I The evolution of technology enables the collection of vast amounts of
time-ordered data:

– Healthcare devices
– Covid case numbers
– Network tra�ic data
– Trading data of financial instruments

I Changes in the dynamics of the data streams are frequently of interest,
leading to a renaissance of research on changepoint analysis.
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Missingness in Big Data

I One of the ironies of Big Data is that missingness plays an even more
prominent role.

I Consider running complete-case analysis with an n× d matrix, where each
entry is missing independently with 1% probability.

– When d = 5, around 95% of observations are retained.
– When d = 300, only around 5% of observations are retained.

I In high-dimensional time series models, missingness can also arise due to
asynchronous measurements.
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High-dimensional change with missing data

I Our goal is to estimate the time of a high-dimensional, sparse change in
mean, but where our data are corrupted by missingness.
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13C/12C in ocean cores 0–23 Ma

I Develop a robust methodology
I �antify problem di�iculty through interaction of signal and missingness
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Problem setup

I Observed data (X ◦ Ω,Ω)

– Full data matrix X = (Xj,t) ∈ Rp×n
– Revelation matrix Ω = (ωj,t) ∈ {0, 1}p×n: ωj,t = 1 if Xj,t is observed

and 0 otherwise.
I Data distribution:

– Assume Xt = (X1,t, . . . , Xp,t)
> ∼ Np(µt, σ2Ip) independently with

µ1 = · · · = µz = µ(1) and µz+1 = · · · = µn = µ(2).

– Vector of change θ := µ(2) − µ(1) is sparse in the sense that
‖θ‖0 ≤ k � p.

I Missingness mechanism:
– ωj,t ∼ Bern(qj) independently, and independent of X .

I Goal: estimate the changepoint location z.
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The MissInspectmethodology



Motivation of methodology

I The inspect algorithm (W. and Samworth, 2018) works in the fully observed
case:

– Aggregate component series by finding a projection direction
well-aligned with the vector of change.

– Project data along this direction into a univariate series.
– Estimate changepoint by the location of the maximum of the CUSUM

transform of the projected series.
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Recap of the inspectmethodology

µ + W = X

For a ∈ Sp−1,
a>Xt ∼ N(a>µ, σ2).

Optimal projection direction is θ/‖θ‖2.
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Recap of the inspectmethodology

Use CUSUM transformation T : Rp×n → Rp×(n−1):

[T (M)]j,t :=

√
t(n− t)

n

(
1

n− t

n∑
r=t+1

Mj,r −
1

t

t∑
r=1

Mj,r

)
.

µ + W = X
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Recap of the inspectmethodology

Use CUSUM transformation T : Rp×n → Rp×(n−1):

[T (M)]j,t :=

√
t(n− t)

n

(
1

n− t

n∑
r=t+1

Mj,r −
1

t

t∑
r=1

Mj,r

)
.

A + E = T

Define A := T (µ), E := T (W ) and T := T (X).
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Recap of the inspectmethodology

I For a single changepoint, A = θγ> for some γ ∈ Rn−1.
I Oracle projection direction θ/‖θ‖2 is the leading le� singular vector of A.
I We could therefore estimate v by

v̂max,k ∈ argmax
u∈Sp−1(k)

‖u>T‖2.

However, computing v̂max,k is NP-hard.
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Recap of the inspectmethodology

I We obtain a computationally e�icient projection direction via convex
relaxation.

max
u∈Sp−1(k)

‖u>T‖2 = max
u∈Sp−1(k),w∈Sn−2

u>Tw

= max
u∈Sp−1,w∈Sn−2,‖u‖0≤k

〈uw>, T 〉 = max
M∈M

〈M,T 〉,

whereM := {M : ‖M‖∗ = 1, rk(M) = 1,nnzr(M) ≤ k}.

I Therefore, a convex relaxation of the above optimisation problem is to
compute

M̂ ∈ argmax
M∈S1

{
〈M,T 〉 − λ‖M‖1

}
,

where S1 := {M ∈ Rp×(n−1) : ‖M‖∗ ≤ 1}.
I Estimate θ/‖θ‖2 by the leading le� singular vector of M̂ .
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Motivation of methodology

I The inspect method (W. and Samworth, 2018) works in the fully observed
case:

– Aggregate component series by finding a projection direction
well-aligned with the vector of change.

– Project data along this direction into a univariate series.
– Estimate changepoint by the location of the maximum of the CUSUM

transform of the projected series.
I In the presence of missingness:

– Projection of data with missingness does not make sense.
– But the notion of CUSUM transformation can be extended to the

missing data se�ing.
– Project the CUSUM transformation instead.
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MissCUSUM transform

I Writing

Lj,t :=

t∑
r=1

ωj,t, Rj,n−t :=

n∑
j=n−t+1

ωj,t, Nj := Lj,n +Rj,n.

I The MissCUSUM transformation T Miss : Rp×n ×{0, 1}p×n → Rp×(n−1) is
defined such that TΩ := T Miss(X ◦ Ω,Ω) satisfies

(TΩ)j,t :=

√
Lj,tRj,n−t

Nj

(
1

Rj,n−t

n∑
r=t+1

(X ◦ Ω)j,r −
1

Lj,t

t∑
r=1

(X ◦ Ω)j,r

)
,

when min{Lj,t, Rj,t} > 0 and 0 otherwise.
I When the data are fully-observed, i.e. Ω is an all-one matrix, T Miss reduces

to the standard CUSUM transformation.

T Wang 14/29



How to aggregate signal

I Given the MissCUSUM transformed matrix TΩ = T Miss(X ◦ Ω,Ω), we
want to find a good projection direction to aggregate signal across
coordinates.

I TΩ can be viewed as a perturbation of AΩ, the MissCUSUM transformation
of
(
E(X) ◦ Ω,Ω

)
.

I AΩ can in turn be viewed as a perturbation of a rank one matrix with a
leading le� singular vector θ ◦ √q, where

√
q := (

√
q1, . . . ,

√
qp)
>.

I This suggests an ‘oracle projection direction’ of θ ◦ √q/‖θ ◦ √q‖.
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Estimating the oracle projection direction

I We can estimate θ ◦ √q/‖θ ◦ √q‖ by looking at ‘sparse leading le�
singular vector’ of TΩ

max
(v,w)∈Bp×Bn−1

v>TΩw subject to ‖v‖0 ≤ k.

I Problem non-convex and requires knowledge of k.
I W. and Samworth (2018) adopts a semidefinite relaxation approach to

convexify the problem. But this the fact that AΩ is not rank one means the
semi-definite relaxation is too coarse in this case.

I We instead relax it into a bi-convex problem

(v̂, ŵ) ∈ argmax
(v,w)∈Bp×Bn−1

{
v>TΩw − λ‖v‖1

}
I Additional benefit: directly exploits the row sparsity pa�ern.
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The MissInspect algorithm
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Illustration of the algorithm in action
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Parameters: p = 100, n = 250, z = 100, k = 10, ‖θ‖2 = 2, qj = 0.2 ∀ j
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Theoretical guarantees



Projection direction estimation

I Let τ := n−1 min{z, n− z}. Define the ‘observation rate-weighted signal
`2 norm’:

‖θ‖2,q :=

( p∑
j=1

θ2
j qj

)1/2

Proposition. Let (v̂, ŵ) be the optimiser in Step 2 of Algorithm 1, applied with
λ = 2σ

√
n log(pn). Then with probability at least 1− 6/(kn), we have

sin∠(v̂, θ ◦ √q) ≤ 64σ

τ‖θ‖2,q

√
k log(pn)

n
+

112‖θ‖2
τ‖θ‖2,q

√
6 log(kn)

n
.

I First term represents estimation error caused by noise in data: ‖θ‖2,q/σ is
the signal-to-noise ratio

I Second term reflects error due to incomplete observation: ‖θ‖22,q/‖θ‖22 may
be regarded as ‘signal-weighted observation probability’.
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Rate of location estimation

I With a good projection direction estimator, MissInspect algorithm
produces good changepoint location estimator.

I We analyse a sample-spli�ing variant of Algorithm 1
– Odd time points for projection direction estimation
– Even time points for changepoint estimation a�er projection

I Two di�erent rates of convergence of the location estimator depending on
how much we are willing to assume on q:

– slow rate: algorithm works well even if some coordinates are almost
completely missing.

– fast rate: when at least a logarithmic number of observations are seen
in each coordinate.
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Slow and fast rates

Theorem. Set tuning parameter λ = 2σ
√
n log(pn). There exists universal

constants c, C such that if

1

τ

√
log(pn)

n

(
σ
√
k

‖θ‖2,q
+
‖θ‖2
‖θ‖2,q

)
≤ c,

then with probability at least 1− 22/n, we have

|ẑ − z|
nτ

≤ C
√

log(kn)

nτ

(
σ

‖θ‖2,q
+
‖θ‖2
‖θ‖2,q

)
.
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|ẑ − z|
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≤ C
√

log(kn)
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(
σ

‖θ‖2,q
+
‖θ‖2
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)
.

Theorem. Under the same assumption as the above theorem, assume in
addition that nτ2 minj qj ≥ C1k log(pn) for C1 > 0, then with probability at
least 1− 23/n, we have for some C2 > 0 that

|ẑ − z|
nτ

≤ C2 log(pn)

nτ

(
σ2

‖θ‖22,q
+
‖θ‖2∞
‖θ‖22,q

)
.
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Lower bound

I Let Pn,p,z,θ,σ,q denote our row-homogeneous missingness model, with
changepoint at z.

I Let Ẑ be the set of all estimators of z.

Theorem. Let M ≥ 1 satisfy ‖θ‖∞ ≤M minj∈[p]:θj 6=0 |θj |. If
max{σ2, ‖θ‖2∞/(2M2)} ≥ ‖θ‖22,q , then there exists c > 0, depending only on
M , such that for n ≥ 3,

inf
z̃∈Ẑ

max
z∈[n−1]

EPn,p,z,θ,σ,q
|z̃(X ◦ Ω,Ω)− z|

n
≥ c

n
min

{
σ2

‖θ‖22,q
+
‖θ‖2∞
‖θ‖22,q

, n

}
.
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Numerical studies



Choice of the tuning parameter

I The tuning parameter λ = 2σ
√
n log(pn) is convenient for theoretical

analysis but o�en a bit conservative in practice.
I Examine the performance of the projection direction estimator for
λ = aσ

√
n log(pn) by varying a.

I Best choice around a = 1/2.
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Validation of theory

I We show via simulation that the quantity ‖θ‖2,q indeed captures the
appropriate interaction between signal and missingness in this problem.
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Comparison with competitors

I ImputeInspect algorithm
– First impute missing data using the softImpute matrix completion

algorithm (since the mean matrix of X ◦ Ω is low-rank), then run the
inspect procedure on the imputed data.

I IteratedMeanImputation algorithm
– Iterate between imputing missing value using segment means and

estimate of the changepoint using inspect on the imputed data.
I GeneralisedLikelihoodRatio algorithm

– At each timepoint, compute the generalised likelihood ratio statistic
for testing equality in mean for data on the le� and right of that point.
Estimate change by maximising the test statistics.
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Comparison with competitors

Parameters: n = 1200, p = 2000, z = 400, q1, . . . , qp
iid∼ Beta

(
10ν, 10(1− ν)

)
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Real data analysis

I Oceanographic dataset covering the Neogene geological period (Samworth
and Poore, 2005; Poore et al., 2006).

I Cores were extracted from North Atlantic, Pacific and Southern Oceans
measuring ratio of abundance of 13C to 12C isotope ratio in microfossils at
di�erent depths (proxy for geological age).

I 7369 observations at 6295 distinct time points.
I Due to physical constraints and heterogeneity in the analysis carried out in

di�erent cores, appropriate to treat the series as data with missingness.
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Real data analysis
I The most prominent change at 6.13Ma was previously identified as a time

of rapid change in oceanographic current flows (Poore et al., 2006).
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Summary

I We propose a new method for high-dimensional changepoint estimation in
the presence of missing data.

I A good projection direction for aggregation is estimated a�er applying a
MissCUSUM transformation to the data.

I Theory reveals interesting interaction between signal and missingness in
this problem.

I Algorithm implemented in the InspectChangepoint R package on CRAN.

Main reference
I Follain, B., Wang, T. and Samworth, R. J. (2022) High-dimensional

changepoint estimation with heterogeneous missingness. J. Roy. Statist.
Soc., Ser. B, to appear.
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