High-dimensional, multiscale online changepoint detection

Tengyao Wang

University College London

Joint Statistics Seminar, Fudan University

18 June 2020

Yudong Chen

Richard Samworth

Changepoint problems

Modern technology has facilitated the real-time monitoring of many types of evolving processes.

Changepoint problems

Modern technology has facilitated the real-time monitoring of many types of evolving processes.

Very often, a key feature of interest for data streams is a changepoint.

The vast majority of the literature concerns the offline problem (Killick et al., 2012; W. and Samworth, 2018; Wang et al., 2018; Baranowski et al., 2019; Liu et al., 2019).

 Univariate online changepoints have been studied within the well-established field of *statistical process control* (Duncan, 1952; Page, 1954; Barnard, 1959; Fearnhead and Liu, 2007; Oakland, 2007).

 Much less work on multivariate, online changepoint problems (Tartakovsky et al., 2006; Mei, 2010; Zou et al., 2015).
 Several methods involve scanning a moving window of fixed size (Xie and Siegmund, 2013; Soh and Chandrasekaran, 2017; Chan, 2017). Key definition of an **online algorithm** for a data stream:

Definition. An algorithm is online if both its storage requirements and the computational complexity for processing a new observation depend only on **the number of bits needed to represent the new data**.

Key definition of an **online algorithm** for a data stream:

Definition. An algorithm is online if both its storage requirements and the computational complexity for processing a new observation depend only on **the number of bits needed to represent the new data**.

- For the purposes of this definition, all real numbers are considered as floating point numbers.
- Importantly, we can only track a finite amount of summary statistics and are not allowed to store all historical data.

We consider a high-dimensional online changepoint detection problem:

Data: for some unknown, deterministic time $z \in \mathbb{N} \cup \{0\}$, we have

 $X_1,\ldots,X_z \sim N_p(0,I_p) \quad \text{and} \quad X_{z+1},X_{z+2},\ldots \sim N_p(\theta,I_p).$

• $\theta = 0$: data generated **under the null**, i.e. no change.

- ▶ $\theta \neq 0$: data generated **under the alternative**, i.e. there exists a change.
- Assume $\vartheta := \|\theta\|_2$ is at least a known lower bound $\beta > 0$.

[±]UCL

A sequential changepoint procedure is an extended stopping time N (w.r.t. the natural filtration) taking values in $\mathbb{N} \cup \{\infty\}$.

- **>** patience: $\mathbb{E}_0(N)$;
- Two types of response delays:
 - Average case response delay

$$\bar{\mathbb{E}}_{\theta}(N) := \sup_{z \in \mathbb{N}} \mathbb{E}_{z,\theta} \{ (N-z) \lor 0 \};$$

- Worst case response delay

$$\bar{\mathbb{E}}^{\mathrm{wc}}_{\theta}(N) := \sup_{z \in \mathbb{N}} \operatorname{ess\,sup} \mathbb{E}_{z,\theta} \{ (N-z) \lor 0 \mid X_1, \dots, X_z \}.$$

A warm-up: univariate online changepoint detection

Example of an online algorithm

UCL

Let p = 1 and assume $\theta > 0$. Page's procedure (Page, 1954):

$$R_n := \max_{0 \le h \le n} \sum_{i=n-h+1}^n \beta(X_i - \beta/2) = \max\{R_{n-1} + \beta(X_n - \beta/2), 0\}.$$

Threshold $T \equiv T_{\beta}$ for changepoint declaration.

Example of an online algorithm

UCL

Let p = 1 and assume $\theta > 0$. Page's procedure (Page, 1954):

$$R_n := \max_{0 \le h \le n} \sum_{i=n-h+1}^n \beta(X_i - \beta/2) = \max\{R_{n-1} + \beta(X_n - \beta/2), 0\}.$$

Threshold $T \equiv T_{\beta}$ for changepoint declaration.

Example of an online algorithm

[±]UCL

Let p = 1 and assume $\theta > 0$. Page's procedure (Page, 1954):

$$R_n := \max_{0 \le h \le n} \sum_{i=n-h+1}^n \beta(X_i - \beta/2) = \max\{R_{n-1} + \beta(X_n - \beta/2), 0\}.$$

Threshold $T \equiv T_{\beta}$ for changepoint declaration.

Page's procedure has asymptotically optimal worst case response delay under a patience constraint (Lorden, 1971).

Online changepoint detection

Example of an online algorithm?

UCL

Let p=1 and assume $\theta>0.$ Scanning window-based method with window width w>0:

$$W_n := \sum_{i=n-w+1}^n \beta(X_i - \beta/2).$$

- Window size w needs to increase when β decreases.
- Storage requirement depends on β .

Let p = 1 and assume $\theta > 0$. Shiryaev–Roberts procedure (Shiryaev, 1963; Roberts, 1966):

$$SR_n := \sum_{i=1}^n \prod_{h=i}^n e^{b(X_h - b/2)}.$$

- The statistics cannot be defined recursively
- A sequential but not online algorithm

A high-dimensional, multiscale online algorithm: ocd

Curse of dimensionality

- Page's procedure in 1-d relies on the well-ordering of \mathbb{R} .
- Generalising to high dimensions:

Curse of dimensionality

- Page's procedure in 1-d relies on the well-ordering of \mathbb{R} .
- Generalising to high dimensions:

- If we know the direction of θ , Page's procedure can still be used.
- Infeasible to examine all possible directions for a change for large p.

Diagonal statistics

▶ Write $X_i = (X_i^1, ..., X_i^p)^\top \in \mathbb{R}^p$. Fix $n \in \mathbb{N}$ and $b \in \mathbb{R} \setminus \{0\}$. For each $j \in [p]$, define (we have suppressed n and b dependence)

For each j, compute normalised tail partial sums of length t^j in all coordinates $j' \in [p]$:

For each j, compute normalised tail partial sums of length t^j in all coordinates $j' \in [p]$:

For each j, compute normalised tail partial sums of length t^j in all coordinates $j' \in [p]$:

For each j, compute normalised tail partial sums of length t^j in all coordinates $j' \in [p]$:

For each j, compute normalised tail partial sums of length t^j in all coordinates $j' \in [p]$:

We aggregate to form an off-diagonal statistic anchored at coordinate j:

$$Q^j := \sum_{j': j' \neq j} \left(A^{j', j} \right)^2 \sim_{\operatorname{null}} \chi^2_{p-1}.$$

For each j, compute normalised tail partial sums of length t^j in all coordinates $j' \in [p]$:

• We aggregate to form an **off-diagonal statistic** anchored at coordinate *j*:

$$Q^j:=\sum_{j':j'\neq j} \left(A^{j',j}\mathbbm{1}_{\{|A^{j',j}|\geq a\}}\right)^2 \quad \text{for some } a>0.$$

Vary the scale parameter b over a (signed) dyadic grid

$$\mathcal{B} := \bigg\{ \pm \frac{\beta}{\sqrt{2^{\ell} \log_2(2p)}} : \ell = 0, \dots, \lfloor \log_2(2p) \rfloor \bigg\}.$$

Aggregate diagonal and off-diagonal statistics from different coordinates and at different scales (recall R^j and Q^j both have n and b dependence):

$$S_n^{\text{diag}} := \max_{\substack{(j,b) \in [p] \times \mathcal{B}}} R_{n,b}^j,$$
$$S_n^{\text{off}} := \max_{\substack{(j,b) \in [p] \times \mathcal{B}}} Q_{n,b}^j.$$

• Declare change when either S_n^{diag} or S_n^{off} is large.

Pseudocode

Algorithm 1: Pseudo-code of the ocd algorithm

Input:
$$X_1, X_2... \in \mathbb{R}^p$$
 observed sequentially, $\beta > 0$, $a \ge 0$, $T^{\text{diag}} > 0$ and $T^{\text{off}} > 0$
Set: $\mathcal{B} = \left\{ \pm \frac{\beta}{\sqrt{2^{\ell \log_2(2p)}}} : \ell = 0, ..., \lfloor \log_2 p \rfloor \right\}$, $\mathcal{B}_0 = \left\{ \pm \frac{\beta}{\sqrt{2^{\lfloor \log_2 p \rfloor + 1} \log_2(2p)}} \right\}$, $n = 0$,
 $A_b = \mathbf{0} \in \mathbb{R}^{p \times p}$ and $t_b = 0 \in \mathbb{R}^p$ for all $b \in \mathcal{B} \cup \mathcal{B}_0$

repeat

$$\begin{array}{c} n \leftarrow n+1 \\ \text{observe new data vector } X_n \\ \text{for } (j,b) \in [p] \times (\mathcal{B} \cup \mathcal{B}_0) \text{ do} \\ \\ \left| \begin{array}{c} t_b^i \leftarrow t_b^j + 1 \\ A_b^{i,j} \leftarrow A_b^{i,j} + X_n \\ \text{ if } bA_b^{j,j} - b^2 t_b^j / 2 \leq 0 \text{ then} \\ \\ \\ \left| \begin{array}{c} t_b^j \leftarrow 0 \text{ and } A_b^{\cdot,j} \leftarrow 0 \\ \\ \text{ compute } Q_b^j \leftarrow \sum_{j' \in [p]: j' \neq j} \frac{(A_b^{j',j})^2}{t_b^{i/1}} \mathbbm{1}_{\left\{|A_b^{j',j}| \geq a \sqrt{t_b^j}\right\}} \\ \\ S^{\text{diag}} \leftarrow \max_{(j,b) \in [p] \times \mathcal{B}} Q_b^j \\ \\ \text{ soff } \leftarrow \max_{(j,b) \in [p] \times \mathcal{B}} Q_b^j \\ \\ \text{ until } S^{\text{diag}} \geq T^{\text{diag}} \text{ or } S^{\text{off}} \geq T^{\text{off}}; \\ \end{array} \right.$$

Pseudocode

[±]UCL

Algorithm 1: Pseudo-code of the ocd algorithm **Input:** $X_1, X_2 \ldots \in \mathbb{R}^p$ observed sequentially, $\beta > 0$, $a \ge 0$, $T^{\text{diag}} > 0$ and $T^{\text{off}} > 0$ Set: $\mathcal{B} = \left\{ \pm \frac{\beta}{\sqrt{2^{\lfloor \log_2(2n) \rfloor}}} : \ell = 0, \dots, \lfloor \log_2 p \rfloor \right\}, \mathcal{B}_0 = \left\{ \pm \frac{\beta}{\sqrt{2^{\lfloor \log_2 p \rfloor + 1} \log_2(2n)}} \right\}, n = 0,$ $A_b = \mathbf{0} \in \mathbb{R}^{p \times p}$ and $t_b = 0 \in \mathbb{R}^p$ for all $b \in \mathcal{B} \cup \mathcal{B}_0$ Summary statistics stored repeat $n \leftarrow n+1$ observe new data vector X_n for $(j, b) \in [p] \times (\mathcal{B} \cup \mathcal{B}_0)$ do $t_h^j \leftarrow t_h^j + 1$ $A_{h}^{\cdot,j} \leftarrow A_{h}^{\cdot,j} + X_{n}$ if $bA_{b}^{j,j} - b^{2}t_{b}^{j}/2 \leq 0$ then $t_{b}^{j} \leftarrow 0 \text{ and } A_{b}^{j} \leftarrow 0$ $\text{compute } Q_b^j \leftarrow \sum_{j' \in [p]: j' \neq j} \frac{(A_b^{j',j})^2}{t_b^j \vee 1} \mathbbm{1}_{\left\{|A_b^{j',j}| \geq a \sqrt{t_b^j}\right\}}$ $S^{\text{diag}} \leftarrow \max_{(i,b) \in [p] \times (\mathcal{B} \cup \mathcal{B}_0)} (bA_b^{j,j} - b^2 t_b^j/2)$ $S^{\text{off}} \leftarrow \max_{(j,b) \in [p] \times \mathcal{B}} Q_b^j$ Complexity $O(p^2 \log_2(2p))$ until $S^{\text{diag}} > T^{\text{diag}}$ or $S^{\text{off}} > T^{\text{off}}$: **Output:** N = n

- Choose a = 0 to detect a **dense** change.
- Choose $a = \sqrt{8 \log p}$ to detect a **sparse** change.
- ► The adaptive version runs two ocd algorithms with a = 0 and a = √8 log p in parallel and declares when either detects a change:

$$N := \inf \bigg\{ n : \frac{S_n^{\text{diag}}}{T^{\text{diag}}} \vee \frac{S_n^{\text{off,d}}}{T^{\text{off,d}}} \vee \frac{S_n^{\text{off,s}}}{T^{\text{off,s}}} \ge 1 \bigg\}.$$

Setting: $p = 100, z = 900, \vartheta = \beta = 1$ and $\gamma = 5000$

$$s = 3$$
 $s = 100$

Theoretical analysis

Why does ocd work?

Patience: guaranteed by choosing thresholds appropriately.

Response delay:

- S^{diag} detect changes that are concentrated in a single coordinate.
- S^{off} aggregates signal across many coordinates.
- If the tail partial sum consists of post-change data only, then

$$Q^{j} := \sum_{j': j' \neq j} \left(A^{j', j} \right)^{2} \sim_{\text{altern.}} \chi^{2}_{p-1}(t^{j} \| \theta^{-j} \|_{2}^{2}).$$

≜UC

Halving the tail length

• What if The last t^j points contain some pre-change data?

Halving the tail length

• What if The last t^j points contain some pre-change data?

• We would like to aggregate over $\approx t^j/2$ points, so that Q^j is eventually formed using post-change data only.

≜UC

Halving the tail length

• What if The last t^j points contain some pre-change data?

• We would like to aggregate over $\approx t^j/2$ points, so that Q^j is eventually formed using post-change data only.

How can we achieve this in an **online** manner?

≜UC

Given $X_1, X_2, \ldots \in \mathbb{R}$, how can we keep track of the sum of the final $\tau \approx t/2$ observations at time t in an online way?

Given $X_1, X_2, \ldots \in \mathbb{R}$, how can we keep track of the sum of the final $\tau \approx t/2$ observations at time *t* in an online way?

t	1	2	3	4	5	6	7	8	
τ	1	1	2	2	3	4	5	4	
Λ	X_1	X_2	$X_2 + X_3$	$X_3 + X_4$	$X_3 + X_4 + X_5$	$X_3 + \dots + X_6$	$X_3 + \cdots + X_7$	$X_5 + \dots + X_8$	
Ã	0	0	X_3	0	X_5	$X_{5} + X_{6}$	$X_5 + X_6 + X_7$	0	

 $t/2 \leq \tau < 3t/4 \text{ for } t \geq 2.$

Part of the modified algorithm, ocd', using 'halved' tail lengths:

$$\begin{split} & \text{for } (j,b) \in [p] \times (\mathcal{B} \cup \mathcal{B}_0) \text{ do} \\ & t_b^j \leftarrow t_b^j + 1 \text{ and } A_b^{,j} \leftarrow A_b^{,j} + X_n \\ & \text{set } \delta = 0 \text{ if } t_b^j \text{ is a power of } 2 \text{ and } \delta = 1 \text{ otherwise.} \\ & \tau_b^j \leftarrow \tau_b^j \delta + \tilde{\tau}_b^j (1-\delta) + 1 \text{ and } \Lambda_b^{,j} \leftarrow \Lambda_b^{,j} \delta + \tilde{\Lambda}_b^{,j} (1-\delta) + X_n \\ & \tilde{\tau}_b^j \leftarrow (\tilde{\tau}_b^j + 1)\delta \text{ and } \tilde{\Lambda}_b^{,j} \leftarrow (\tilde{\Lambda}_b^{,j} + X_n)\delta. \\ & \text{if } bA_b^{j,j} - b^2 t_b^j / 2 \leq 0 \text{ then } \\ & t_b^{i,j} \leftarrow \tau_b^j \leftarrow \tilde{\tau}_b^j \leftarrow 0 \\ & L A_b^{,j} \leftarrow \Lambda_b^{,j} \leftarrow \tilde{\Lambda}_b^{,j} \leftarrow 0 \\ & \text{ compute } Q_b^j \leftarrow \sum_{j' \in [p]: j' \neq j} \frac{(\Lambda_b^{j',j})^2}{\tau_b^j \vee 1} \mathbbm{1} \Big\{ \begin{array}{c} \text{use } \Lambda \text{ to compute off-diag stats} \\ |\Lambda_b^{j',j}| \geq a \sqrt{\tau_b^j} \Big\} \end{split}$$

Choose thresholds

$$\begin{split} T^{\text{diag}} &= \log\{24p\gamma\log_2(4p)\}\\ T^{\text{off,d}} &= \psi\left(2\log\{24p\gamma\log_2(2p)\}\right)\\ T^{\text{off,s}} &= 8\log\{24p\gamma\log_2(2p)\} \end{split}$$

where $\psi(x) = p - 1 + x + \sqrt{2(p-1)x}$ and $\gamma \ge 1$ is a user-specified **desired** patience level.

Theorem. Assume there is no change. Then, the adaptive version of ocd' with the above choice of thresholds satisfies $\mathbb{E}_0(N) \ge \gamma$.

Theoretical guarantees: response delay

The **effective sparsity** of $\theta \in \mathbb{R}^p$ is

$$s \equiv s(\theta) := \left| \left\{ j \in [p] : |\theta^j| \ge \frac{\|\theta\|_2}{\sqrt{s(\theta) \log_2(2p)}} \right\} \right|$$

Theorem. Assume that the post-change signal θ satisfies $\|\theta\|_2 = \vartheta \ge \beta > 0$ with effective sparsity *s*. Then, the adaptive version of ocd' with the same choice of thresholds satisfies:

(a) (Worst case response delay)

$$\bar{\mathbb{E}}_{\theta}^{\mathrm{wc}}(N) \lesssim \frac{s \log(ep\gamma) \log(ep)}{\beta^2} \vee 1;$$

(b) (Average case response delay)

$$\bar{\mathbb{E}}_{\theta}(N) \lesssim \left(\frac{\sqrt{p}\log(ep\gamma)}{\vartheta^2} \vee \frac{\sqrt{s}\log(ep/\beta)\log(ep)}{\beta^2}\right) \wedge \frac{s\log(ep\gamma)\log(ep)}{\beta^2},$$

for all sufficiently small $\beta < \beta_0(s)$.

Response delays vs. sparsity

Assume that $\vartheta \asymp \beta \lesssim 1$ and $\log(\gamma/\beta) \lesssim \log p$. Then

Response delay

We compare ocd with other recently proposed methods:

- Mei: ℓ_1 and ℓ_∞ aggregation of likelihood ratio tests in each coordinate. (Mei, 2010)
- XS: Use window-based method to aggregate statistics for testing the null against a normal mixture in each coordinate. (Xie and Siegmund, 2013)
- Chan: Similar to XS, but with an improved choice of tuning parameters. (Chan, 2017)

Simulation settings: $p \in \{100, 2000\}, s \in \{5, \lfloor \sqrt{p} \rfloor, p\}, \vartheta \in \{1, 0.5, 0.25\}$ and θ is generated as ϑU , where U is uniformly distributed on the union of all s sparse unit spheres in \mathbb{R}^p .

All thresholds are determined using Monte Carlo simulation.

Comparison with other methods

p	s	θ	ocd	Mei	XS	Chan
100	5	1	46.9	125.9	47.3	42.0
100	5	0.5	174.8	383.1	194.3	163.7
100	5	0.25	583.5	970.4	2147	1888.8
100	10	1	53.8	150.1	52.9	51.5
100	10	0.5	194.4	458.2	255.8	245.6
100	10	0.25	629.7	1171.3	2730.7	2484.9
100	100	1	74.4	268.3	89.6	102.1
100	100	0.5	287.9	834.9	526.8	756.0
100	100	0.25	1005.8	1912.9	3598.3	3406.6
2000	5	1	67.3	316.7	79.5	59.5
2000	5	0.5	247.3	680.2	607.7	285.0
2000	5	0.25	851.3	1384.8	4459.2	3856.9
2000	44	1	136.0	596.1	149.1	145.0
2000	44	0.5	479.1	1270.8	2945.5	2751.4
2000	44	0.25	1584.2	2428.8	4457.8	5049.7
2000	2000	1	360.7	2126.5	1020.0	2074.7
2000	2000	0.5	1296.0	3428.1	4669.3	4672.7
2000	2000	0.25	3436.7	4140.4	5063.7	5233.5

Table: Estimated response delay for ocd, Mei, XS and Chan over 200 repetitions, with z=0 and $\gamma=5000.$

- We propose a new, multiscale method for high-dimensional online changepoint detection.
- We perform likelihood ratio tests against simple alternatives of different scales in each coordinate, and aggregate these statistics.
- **R** package **ocd** is available on CRAN.

Main reference

Chen, Y., Wang, T. and Samworth, R. J. (2020) High-dimensional, multiscale online changepoint detection. *Preprint*, arxiv:2003.03668.

References

- Barnard, G. A. (1959) Control charts and stochastic processes. J. Roy. Statist. Soc., Ser. B, 21, 239–271.
- Baranowski, R., Chen, Y. and Fryzlewicz, P. (2019) Narrowest-Over-Threshold detection of multiple change points and change-point-like Features. J. Roy. Statist. Soc., Ser. B, 81, 649–672.
- Chan, H. P. (2017) Optimal sequential detection in multi-stream data. Ann. Statist., 45, 2736-2763.
- Duncan, A. J. (1952) Quality Control and Industrial Statistics, Richard D. Irwin Professional Publishing Inc., Chicago.
- Fearnhead, P. and Liu, Z. (2007) On-line inference for multiple changepoint problems. J. Roy. Statist. Soc., Ser. B, 69, 589–605.
- Killick, R., Fearnhead, P. and Eckley, I. A. (2012) Optimal detection of changepoints with a linear computational cost. J. Amer. Stat. Assoc., 107, 1590–1598.
- Mei, Y. (2010) Efficient scalable schemes for monitoring a large number of data streams. *Biometrika*, 97, 419–433.
- Liu, H., Gao, C. and Samworth, R. J. (2019) Minimax rates in sparse, high-dimensional changepoint detection. *Preprint*, arxiv:1907.10012.
- Lorden, G. (1971) Procedures for reacting to a change in distribution. Ann. Math. Statist., 42, 1897–1908.

References

- ▶ Oakland, J. S. (2007) Statistical Process Control (6th ed.). Routledge, London.
- Page, E. S. (1954) Continuous inspection schemes. Biometrika, 41, 100–115.
- Roberts, S. W. (1966) A comparison of some control chart procedures. *Technometrics*, 8, 411–430.
- Shiryaev, A. N. (1963) On optimum methods in quickest detection problems. *Theory Probab. Appl.*, 8, 22–46.
- Soh, Y. S. and Chandrasekaran, V. (2017) High-dimensional change-point estimation: Combining filtering with convex optimization. *Appl. Comp. Harm. Anal.*, 43, 122–147.
- Tartakovsky, A., Nikiforov, I. and Basseville, M. (2014) Sequential Analysis: Hypothesis testing and Changepoint Detection. Chapman and Hall, London.
- Wang, T. and Samworth, R. J. (2018) High dimensional change point estimation via sparse projection. J. Roy. Statist. Soc., Ser. B, 80, 57–83.
- Wang, D., Yu, Y. and Rinaldo, A. (2018) Univariate mean change point detection: penalization, CUSUM and optimality. *Preprint*, arxiv:1810.09498v4.
- Xie, Y. and Siegmund, D. (2013) Sequential multi-sensor change-point detection. Ann. Statist., 41, 670–692.
- Zou, C., Wang, Z., Zi, X. and Jiang, W. (2015) An efficient online monitoring method for high-dimensional data streams. *Technometrics*, 57, 374–387.

Thank you!