Robust mean change point testing in high-dimensional data with heavy tails

Tengyao Wang

London School of Economics

LSE Statistics Research Showcase 2023

Aug 2025

Collaborators

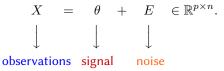
Mengchu Li

Yudong Chen

Yi Yu

Change point detection

Consider the model



Entries of E are independent random variables with mean 0, variance 1 and distribution P_e .

Change point detection

Consider the model

Entries of E are independent random variables with mean 0, variance 1 and distribution P_e .

Task: mean change point testing

 H_0 : no change in the columns of heta

vs.

 $H_1:\exists$ a change in the columns of heta

Change point detection - testing problem

Model: $X = \theta + E \in \mathbb{R}^{p \times n}$

► Null hypothesis H_0 (no change)

$$H_0: \theta \in \Theta_0(p,n) := \{\theta: \theta_1 = \theta_2 = \ldots = \theta_n = \mu \in \mathbb{R}^p \text{ for some } \mu\}.$$

Change point detection – testing problem

Model: $X = \theta + E \in \mathbb{R}^{p \times n}$

Null hypothesis H_0 (no change)

$$H_0: \theta \in \Theta_0(p,n) := \{\theta: \theta_1 = \theta_2 = \ldots = \theta_n = \mu \in \mathbb{R}^p \text{ for some } \mu\}.$$

▶ Alternative hypothesis H_1 (\exists change)

$$H_1: \theta \in \Theta(p, n, s, \rho) := \bigcup_{t_0=1}^{n-1} \Theta^{(t_0)}(p, n, s, \rho)$$

where

$$\begin{split} \Theta^{(t_0)}(p,n,s,\rho) := \Big\{\theta: & \theta_t = \mu_1 \text{ for } 1 \leq t \leq t_0, \ \theta_t = \mu_2 \text{ for } t_0 + 1 \leq t \leq n, \\ \underbrace{\|\mu_1 - \mu_2\|_0}_{\text{sparsity level}} \leq s, \underbrace{\frac{t_0(n-t_0)}{n} \|\mu_1 - \mu_2\|_2^2}_{\text{normalised signal strength}} \geq \rho^2 \Big\}. \end{split}$$

Minimax testing rate

Definition. Let Φ be the set of all test functions $\phi: \mathbb{R}^{p \times n} \to \{0,1\}$. Denote the minimax testing error

$$\begin{split} \mathcal{R}_{\mathcal{Q}}(\rho) &:= \inf_{\phi \in \Phi} \mathcal{R}_{\mathcal{Q}}(\rho, \phi) \\ &:= \inf_{\phi \in \Phi} \bigg\{ \underbrace{\sup_{P_e \in \mathcal{Q}} \sup_{\theta \in \Theta_0(p, n)} \mathbb{E}_{\phi}}_{\text{Type I error}} + \underbrace{\sup_{P_e \in \mathcal{Q}} \sup_{\theta \in \Theta(p, n, s, \rho)} \mathbb{E}(1 - \phi)}_{\text{Type II error}} \bigg\}. \end{split}$$

 $v_{\mathcal{Q}}^*(p,n,s)$ is the **minimax testing rate** if

- 1. \exists test ϕ , s.t. $\mathcal{R}_{\mathcal{Q}}(\rho, \phi) \leq 1/2$ when $\rho^2 \gtrsim v_{\mathcal{Q}}^*(p, n, s)$,
- 2. \forall test ϕ , have $\mathcal{R}_{\mathcal{Q}}(\rho,\phi) > 1/2$ when $\rho^2 \lesssim v_{\mathcal{Q}}^*(p,n,s)$.

Minimax testing rate

Definition. Let Φ be the set of all test functions $\phi: \mathbb{R}^{p \times n} \to \{0,1\}$. Denote the minimax testing error

$$\begin{split} \mathcal{R}_{\mathcal{Q}}(\rho) &:= \inf_{\phi \in \Phi} \mathcal{R}_{\mathcal{Q}}(\rho, \phi) \\ &:= \inf_{\phi \in \Phi} \bigg\{ \underbrace{\sup_{P_e \in \mathcal{Q}} \sup_{\theta \in \Theta_0(p, n)} \mathbb{E}_{\phi}}_{\text{Type l error}} + \underbrace{\sup_{P_e \in \mathcal{Q}} \sup_{\theta \in \Theta(p, n, s, \rho)} \mathbb{E}(1 - \phi)}_{\text{Type ll error}} \bigg\}. \end{split}$$

 $v_{\mathcal{Q}}^*(p,n,s)$ is the **minimax testing rate** if

- 1. \exists test ϕ , s.t. $\mathcal{R}_{\mathcal{Q}}(\rho, \phi) \leq 1/2$ when $\rho^2 \gtrsim v_{\mathcal{Q}}^*(p, n, s)$,
- 2. \forall test ϕ , have $\mathcal{R}_{\mathcal{Q}}(\rho,\phi) > 1/2$ when $\rho^2 \lesssim v_{\mathcal{Q}}^*(p,n,s)$.

▶ The distribution of each entry in E belongs to some class Q.

Minimax testing rate

Definition. Let Φ be the set of all test functions $\phi: \mathbb{R}^{p \times n} \to \{0,1\}$. Denote the minimax testing error

$$\begin{split} \mathcal{R}_{\mathcal{Q}}(\rho) &:= \inf_{\phi \in \Phi} \mathcal{R}_{\mathcal{Q}}(\rho, \phi) \\ &:= \inf_{\phi \in \Phi} \bigg\{ \underbrace{\sup_{P_e \in \mathcal{Q}} \sup_{\theta \in \Theta_0(p, n)} \mathbb{E}_\phi}_{\text{Type I error}} + \underbrace{\sup_{P_e \in \mathcal{Q}} \sup_{\theta \in \Theta(p, n, s, \rho)} \mathbb{E}(1 - \phi)}_{\text{Type II error}} \bigg\}. \end{split}$$

 $v_{\mathcal{Q}}^{*}(p,n,s)$ is the **minimax testing rate** if

- 1. \exists test ϕ , s.t. $\mathcal{R}_{\mathcal{Q}}(\rho, \phi) \leq 1/2$ when $\rho^2 \gtrsim v_{\mathcal{Q}}^*(p, n, s)$,
- 2. \forall test ϕ , have $\mathcal{R}_{\mathcal{Q}}(\rho, \phi) > 1/2$ when $\rho^2 \lesssim v_{\mathcal{Q}}^*(p, n, s)$.
- ▶ The distribution of each entry in E belongs to some class Q.
- ▶ Liu et al. (2021) derived the minimax testing rate for $Q = \{N(0,1)\}$.

► Heavy-tailed distributions in *Q*?

Heavy-tailed distributions

Two types of heavy-tailedness:

Definition (
$$\mathcal{G}_{\alpha,K}$$
 class). For any $P \in \mathcal{G}_{\alpha,K}$ and r.v. $W \sim P$,

$$\mathbb{E} W = 0, \quad \mathbb{E} W^2 = 1 \quad \text{and} \quad \mathbb{E} \exp \big\{ |W/K|^\alpha \big\} \leq 2.$$

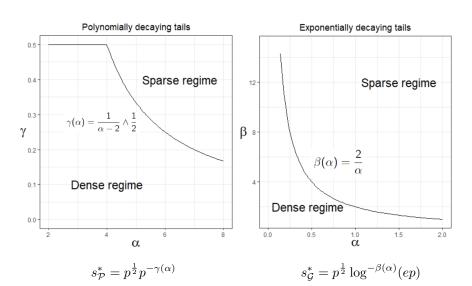
Sub-Weibull distributions of order α ; possessing exponentially-decaying tails

Definition (
$$\mathcal{P}_{\alpha,K}$$
 class). For any $P \in \mathcal{P}_{\alpha,K}$ and r.v. $W \sim P$,

$$\mathbb{E} W = 0, \quad \mathbb{E} W^2 = 1 \quad \text{and} \quad \mathbb{E} |W/K|^\alpha \leq 1.$$

Distributions with **finite** α **-th moment**; possessing polynomially-decaying tails

Main results - transition boundary



- Minimax rate upper bound v^{U} : construct a test procedure ϕ , such that $\mathcal{R}_{\mathcal{Q}}(\rho,\phi) \leq 1/2$ when $\rho^2 \geq v^{\mathrm{U}}$.
- lacktriangle Minimax rate lower bound v^{L} : usually via Le Cam's two point method.

		Upper bound	Lower bound
$\mathcal{G}_{lpha,K}^{\otimes}$	Dense	(i) $\sqrt{p \log \log(8n)} + \log \log(8n)$	(ii) $\sqrt{p(\log\log(8n))^{\omega_1}} + \log\log(8n)$
	Sparse	(iii) $s \log^{2/\alpha}(ep/s) + \log \log(8n)$	(iv) $s \log^{2/\alpha}(ep/s) + \log \log(8n)$
$\mathcal{P}_{lpha,K}^{\otimes}$	Dense	(v) $p^{(2/\alpha)\vee(1/2)}\log\log(8n)$	(vi) $p^{(2/\alpha)\vee(1/2)}\sqrt{(\log\log(8n))^{\omega_2}} + \log\log(8n)$
	Sparse	(vii) $s(p/s)^{2/\alpha} + \log \log(8n)$	(viii) $s(p/s)^{2/\alpha} + \log \log(8n)$

Note:
$$\omega_1 = \mathbbm{1}_{\left\{s > \sqrt{p \log \log(8n)}\right\}}$$
 and $\omega_2 = \mathbbm{1}_{\left\{s > \sqrt{p \log \log(8n)} \text{ and } \alpha \geq 4\right\}}$.

- Minimax rate upper bound v^{U} : construct a test procedure ϕ , such that $\mathcal{R}_{\mathcal{Q}}(\rho,\phi) \leq 1/2$ when $\rho^2 \geq v^{\mathrm{U}}$.
- ightharpoonup Minimax rate lower bound $v^{\rm L}$: usually via Le Cam's two point method.

		Upper bound	Lower bound
$\mathcal{G}_{lpha,K}^{\otimes}$	Dense	(i) $\sqrt{p \log \log(8n)} + \log \log(8n)$	(ii) $\sqrt{p(\log\log(8n))^{\omega_1}} + \log\log(8n)$
	Sparse	(iii) $s \log^{2/\alpha}(ep/s) + \log \log(8n)$	(iv) $s \log^{2/\alpha}(ep/s) + \log \log(8n)$
$\mathcal{P}_{lpha,K}^{\otimes}$	Dense	(v) $p^{(2/\alpha)\vee(1/2)}\log\log(8n)$	(vi) $p^{(2/\alpha)\vee(1/2)}\sqrt{(\log\log(8n))^{\omega_2}} + \log\log(8n)$
	Sparse	(vii) $s(p/s)^{2/\alpha} + \log \log(8n)$	(viii) $s(p/s)^{2/\alpha} + \log \log(8n)$

 $\text{Note: } \omega_1 = \mathbb{1}_{\left\{s > \sqrt{p \log \log(8n)}\right\}} \text{ and } \omega_2 = \mathbb{1}_{\left\{s > \sqrt{p \log \log(8n)} \text{ and } \alpha \geq 4\right\}}.$

Matching rates!

- Minimax rate upper bound v^{U} : construct a test procedure ϕ , such that $\mathcal{R}_{\mathcal{Q}}(\rho,\phi) \leq 1/2$ when $\rho^2 \geq v^{\mathrm{U}}$.
- lacktriangle Minimax rate lower bound $v^{\rm L}$: usually via Le Cam's two point method.

		Upper bound	Lower bound
$\mathcal{G}_{lpha,K}^{\otimes}$	Dense	(i) $\sqrt{p \log \log(8n)} + \log \log(8n)$	(ii) $\sqrt{p(\log\log(8n))^{\omega_1}} + \log\log(8n)$
	Sparse	(iii) $s \log^{2/\alpha}(ep/s) + \log \log(8n)$	(iv) $s \log^{2/\alpha}(ep/s) + \log \log(8n)$
$\mathcal{P}_{lpha,K}^{\otimes}$	Dense	(v) $p^{(2/\alpha)\vee(1/2)}\log\log(8n)$	(vi) $p^{(2/\alpha)\vee(1/2)}\sqrt{(\log\log(8n))^{\omega_2}} + \log\log(8n)$
	Sparse	(vii) $s(p/s)^{2/\alpha} + \log \log(8n)$	(viii) $s(p/s)^{2/\alpha} + \log \log(8n)$

$$\text{Note: } \omega_1 = \mathbb{1}_{\left\{s > \sqrt{p \log \log(8n)}\right\}} \text{ and } \omega_2 = \mathbb{1}_{\left\{s > \sqrt{p \log \log(8n)} \text{ and } \alpha \geq 4\right\}}.$$

A minimax gap of $\sqrt{\log \log n}$

- Minimax rate upper bound v^{U} : construct a test procedure ϕ , such that $\mathcal{R}_{\mathcal{Q}}(\rho,\phi) \leq 1/2$ when $\rho^2 \geq v^{\mathrm{U}}$.
- lacktriangle Minimax rate lower bound $v^{\rm L}$: usually via Le Cam's two point method.

		Upper bound	Lower bound
$\mathcal{G}_{lpha,K}^{\otimes}$	Dense	(i) $\sqrt{p \log \log(8n)} + \log \log(8n)$	(ii) $\sqrt{p(\log\log(8n))^{\omega_1}} + \log\log(8n)$
	Sparse	(iii) $s \log^{2/\alpha}(ep/s) + \log \log(8n)$	(iv) $s \log^{2/\alpha}(ep/s) + \log \log(8n)$
$\mathcal{P}_{lpha,K}^{\otimes}$	Dense	(v) $p^{(2/\alpha)\vee(1/2)}\log\log(8n)$	(vi) $p^{(2/\alpha)\vee(1/2)}\sqrt{(\log\log(8n))^{\omega_2}} + \log\log(8n)$
	Sparse	(vii) $s(p/s)^{2/\alpha} + \log \log(8n)$	(viii) $s(p/s)^{2/\alpha} + \log\log(8n)$

$$\text{Note: } \omega_1 = \mathbb{1}_{\left\{s > \sqrt{p \log \log(8n)}\right\}} \text{ and } \omega_2 = \mathbb{1}_{\left\{s > \sqrt{p \log \log(8n)} \text{ and } \alpha \geq 4\right\}}.$$

A minimax gap of $\log \log n$

- Minimax rate upper bound v^{U} : construct a test procedure ϕ , such that $\mathcal{R}_{\mathcal{Q}}(\rho,\phi) \leq 1/2$ when $\rho^2 \geq v^{\mathrm{U}}$.
- lacktriangle Minimax rate lower bound v^{L} : usually via Le Cam's two point method.

		Upper bound	Lower bound
$\mathcal{G}_{lpha,K}^{\otimes}$	Dense	(i) $\sqrt{p \log \log(8n)} + \log \log(8n)$	(ii) $\sqrt{p(\log\log(8n))^{\omega_1}} + \log\log(8n)$
	Sparse	(iii) $s \log^{2/\alpha}(ep/s) + \log \log(8n)$	(iv) $s \log^{2/\alpha}(ep/s) + \log \log(8n)$
$\mathcal{P}_{lpha,K}^{\otimes}$	Dense	(v) $p^{(2/\alpha)\vee(1/2)}\log\log(8n)$	(vi) $p^{(2/\alpha)\vee(1/2)}\sqrt{(\log\log(8n))^{\omega_2}} + \log\log(8n)$
	Sparse	(vii) $s(p/s)^{2/\alpha} + \log \log(8n)$	(viii) $s(p/s)^{2/\alpha} + \log \log(8n)$

$$\text{Note: } \omega_1 = \mathbb{1}_{\left\{s > \sqrt{p \log \log(8n)}\right\}} \text{ and } \omega_2 = \mathbb{1}_{\left\{s > \sqrt{p \log \log(8n)} \text{ and } \alpha \geq 4\right\}}.$$

▶ Consider a dyadic grid $\mathcal{T} := \{1, 2, 4, \dots, 2^{\lfloor \log_2(n/2) \rfloor}\}$ and CUSUM-type statistics

$$Y_t := \frac{\sum_{i=1}^t X_i - \sum_{i=1}^t X_{n+1-i}}{\sqrt{2t}} \in \mathbb{R}^p.$$

Aggregation across coordinates:

$$A_t := \sum_{j=1}^{p} (Y_t^2(j) - 1).$$

► Test:

$$\phi_{\mathcal{G}, \text{dense}} := \mathbb{1}_{\{\max_{t \in \mathcal{T}} A_t > r\}}.$$

▶ Consider a dyadic grid $\mathcal{T} := \{1, 2, 4, \dots, 2^{\lfloor \log_2(n/2) \rfloor}\}$ and CUSUM-type statistics

$$Y_t := \frac{\sum_{i=1}^t X_i - \sum_{i=1}^t X_{n+1-i}}{\sqrt{2t}} \in \mathbb{R}^p.$$

Aggregation across coordinates:

$$A_t := \sum_{j=1}^{p} (Y_t^2(j) - 1).$$

► Test:

$$\phi_{\mathcal{G}, \text{dense}} := \mathbb{1}_{\{\max_{t \in \mathcal{T}} A_t > r\}}.$$

 $\qquad \qquad \mathcal{R}_{\mathcal{G}}(\rho,\phi_{\mathcal{G},\mathrm{dense}}) \leq 1/2 \text{ as long as } \rho^2 \gtrsim \sqrt{p \log \log(8n)} + \log \log(8n).$

▶ Recall that for $t \in \mathcal{T}$, we compute

$$Y_t := \frac{\sum_{i=1}^t X_i - \sum_{i=1}^t X_{n+1-i}}{\sqrt{2t}} \in \mathbb{R}^p.$$

and

$$A_t := \sum_{j=1}^{p} (Y_t^2(j) - 1).$$

▶ Recall that for $t \in \mathcal{T}$, we compute

$$Y_t := \frac{\sum_{i=1}^t X_i - \sum_{i=1}^t X_{n+1-i}}{\sqrt{2t}} \in \mathbb{R}^p.$$

and

$$A_{t,a} := \sum_{j=1}^{p} (Y_t^2(j) - 1) \mathbb{1}_{\{|Y_t(j)| \ge a\}}.$$

Thresholding step

▶ Recall that for $t \in \mathcal{T}$, we compute

$$Y_t := \frac{\sum_{i=1}^t X_i - \sum_{i=1}^t X_{n+1-i}}{\sqrt{2t}} \in \mathbb{R}^p.$$

and

$$A_{t,a} := \sum_{j=1}^{p} (Y_{t,1}^{2}(j) - 1) \mathbb{1}_{\{|Y_{t,2}(j)| \ge a\}}.$$

Thresholding step + sample splitting

▶ Recall that for $t \in \mathcal{T}$, we compute

$$Y_t := \frac{\sum_{i=1}^t X_i - \sum_{i=1}^t X_{n+1-i}}{\sqrt{2t}} \in \mathbb{R}^p.$$

and

$$A_{t,a} := \sum_{j=1}^{p} (Y_{t,1}^{2}(j) - 1) \mathbb{1}_{\{|Y_{t,2}(j)| \ge a\}}.$$

Thresholding step + sample splitting

► Test:

$$\phi_{\mathcal{G}, \text{sparse}} := \mathbb{1}_{\{\max_{t \in \mathcal{T}} A_{t,a} > r\}}.$$

 $ightharpoonup \mathcal{R}_{\mathcal{G}}(\rho, \phi_{\mathcal{G}, \mathrm{sparse}}) \leq 1/2 \text{ as long as } \rho^2 \gtrsim s \log^{2/\alpha}(ep/s) + \log \log(8n).$

- Minimax rate upper bound v^{U} : construct a test procedure ϕ , such that $\mathcal{R}_{\mathcal{Q}}(\rho,\phi) \leq 1/2$ when $\rho^2 \geq v^{\mathrm{U}}$.
- lacktriangle Minimax rate lower bound $v^{\rm L}$: usually via Le Cam's two point method.

		Upper bound	Lower bound
$\mathcal{G}_{lpha,K}^{\otimes}$	Dense	(i) $\sqrt{p \log \log(8n)} + \log \log(8n)$	(ii) $\sqrt{p(\log\log(8n))^{\omega_1}} + \log\log(8n)$
	Sparse	(iii) $s \log^{2/\alpha}(ep/s) + \log \log(8n)$	(iv) $s \log^{2/\alpha}(ep/s) + \log \log(8n)$
$\mathcal{P}_{lpha,K}^{\otimes}$	Dense	(v) $p^{(2/\alpha)\vee(1/2)}\log\log(8n)$	(vi) $p^{(2/\alpha)\vee(1/2)}\sqrt{(\log\log(8n))^{\omega_2}} + \log\log(8n)$
	Sparse	(vii) $s(p/s)^{2/\alpha} + \log \log(8n)$	(viii) $s(p/s)^{2/\alpha} + \log\log(8n)$

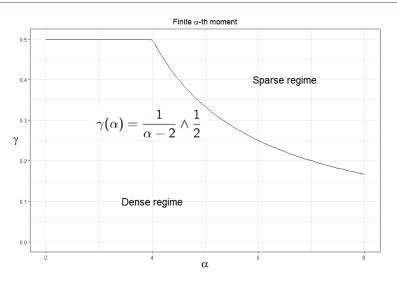
$$\text{Note: } \omega_1 = \mathbb{1}_{\left\{s > \sqrt{p \log \log(8n)}\right\}} \text{ and } \omega_2 = \mathbb{1}_{\left\{s > \sqrt{p \log \log(8n)} \text{ and } \alpha \geq 4\right\}}.$$

Three messages

In $\mathcal{P}_{\alpha,K}$, each entry of the noise matrix E has finite α -th moment. For high-dimensional mean change point testing problem:

- 1. When $\alpha \leq 4$, the sparse regime disappears.
- 2. Median-of-means-type statistics are effective in handling heavy-tailed data.
- 3. When $\alpha \ge 4$, in the sparse regime, we propose a computationally efficient test that achieves minimax optimality.

Transition boundary under $\mathcal{P}_{\alpha,K}$



$$s_{\mathcal{P}}^* = p^{\frac{1}{2}} p^{-\gamma(\alpha)}$$

Finite moment $\mathcal{P}_{\alpha,K}$ – dense lower bound

Consider the dense regime

$$s \ge p^{\frac{1}{2} - \left(\frac{1}{\alpha - 2} \wedge \frac{1}{2}\right)}.$$

For $\alpha \geq 2$, we show that $\mathcal{R}_{\mathcal{P}}(\rho) \geq 1/2$ whenever

$$\rho^2 \lesssim p^{(2/\alpha)\vee(1/2)} (\log\log(8n))^{\omega/2} + \log\log(8n),$$

with
$$\omega = \mathbb{1}_{\left\{s > \sqrt{p \log \log(8n)}\right\} \cap \{\alpha \ge 4\}}$$
.

▶ When $\alpha \le 4$, the dense regime becomes $s \gtrsim 1$, i.e. no sparse regime.

Detour: Median-of-means (MoM)

Let $X_1, \ldots, X_n \in \mathbb{R}$ be i.i.d random variables with mean μ and variance σ^2 and consider the following **median-of-means estimator**

$$\hat{\mu}_{\text{MoM}} = \text{median}\left(\frac{1}{m}\sum_{i=1}^m X_i, \dots, \frac{1}{m}\sum_{i=(k-1)m+1}^{km} X_i\right).$$

Let $\delta \in (0,1), k = \lceil 8 \log(1/\delta) \rceil$ and m = n/k. Then w.p. at least $1 - \delta$,

$$|\hat{\mu}_{\text{MoM}} - \mu| \le \sigma \sqrt{\frac{32 \log(1/\delta)}{n}}.$$

Detour: Median-of-means (MoM)

Let $X_1, \ldots, X_n \in \mathbb{R}$ be i.i.d random variables with mean μ and variance σ^2 and consider the following **median-of-means estimator**

$$\hat{\mu}_{\text{MoM}} = \text{median}\left(\frac{1}{m}\sum_{i=1}^{m}X_i, \dots, \frac{1}{m}\sum_{i=(k-1)m+1}^{km}X_i\right).$$

Let $\delta \in (0,1), k = \lceil 8 \log(1/\delta) \rceil$ and m = n/k. Then w.p. at least $1 - \delta$,

$$|\hat{\mu}_{\text{MoM}} - \mu| \le \sigma \sqrt{\frac{32 \log(1/\delta)}{n}}.$$

- 'sub-Gaussian' property.
- \blacktriangleright δ is an input to the estimator, through k (number of groups).

Detour: Median-of-means (MoM)

Let $X_1, \ldots, X_n \in \mathbb{R}$ be i.i.d random variables with mean μ and variance σ^2 and consider the following **median-of-means estimator**

$$\hat{\mu}_{\text{MoM}} = \operatorname{median}\left(\frac{1}{m}\sum_{i=1}^{m}X_i, \dots, \frac{1}{m}\sum_{i=(k-1)m+1}^{km}X_i\right).$$

Let $\delta \in (0,1), k = \lceil 8 \log(1/\delta) \rceil$ and m = n/k. Then w.p. at least $1 - \delta$,

$$|\hat{\mu}_{\text{MoM}} - \mu| \le \sigma \sqrt{\frac{32 \log(1/\delta)}{n}}.$$

- 'sub-Gaussian' property.
- lacksquare δ is an input to the estimator, through k (number of groups).
- ▶ For a given δ , the result is only possible when n is at least $8 \log(1/\delta)$.

Equivalently, for n fixed, δ needs to be larger than $\exp(-n/8)$.

▶ (In sub-Weibull dense...) For $t \in \mathcal{T}$, we compute

$$Y_t := \frac{\sum_{i=1}^t X_i - \sum_{i=1}^t X_{n+1-i}}{\sqrt{2t}} \in \mathbb{R}^p.$$

and

$$A_t := \sum_{j=1}^{p} (Y_t^2(j) - 1).$$

For $i \leq n/2$, denote

$$Z_i := (X_i - X_{n-i+1})/\sqrt{2}.$$

▶ For $t \in \mathcal{T}$, split $\{Z_1, \ldots, Z_t\}$ into G_t groups of equal size

$$\mathcal{Z}_{t,1}, \mathcal{Z}_{t,2}, \dots, \mathcal{Z}_{t,G_t}.$$

Each group contains t/G_t elements.

For $i \leq n/2$, denote

$$Z_i := (X_i - X_{n-i+1})/\sqrt{2}.$$

▶ For $t \in \mathcal{T}$, split $\{Z_1, \ldots, Z_t\}$ into G_t groups of equal size

$$\mathcal{Z}_{t,1}, \mathcal{Z}_{t,2}, \dots, \mathcal{Z}_{t,G_t}.$$

Each group contains t/G_t elements.

▶ Set $V_{t,q} \in \mathbb{R}^p$ with

$$V_{t,g}(j) := \overline{Z}_{t,g}^2(j) - \frac{G_t}{t},$$

where $\overline{Z}_{t,g}$ is the sample mean of the g-th group $\mathcal{Z}_{t,g}$.

► Median-of-means type statistic:

$$A_t^{\text{MoM}} := t \cdot \text{median} \left(\sum_{j=1}^p V_{t,1}(j), \sum_{j=1}^p V_{t,2}(j), \dots, \sum_{j=1}^p V_{t,G_t}(j) \right).$$

Test:

$$\phi_{\mathcal{P},\text{dense}} := \mathbb{1}_{\left\{\max_{t \in \mathcal{T}} A_t^{\text{MoM}}/r_t > 1\right\}}.$$

Theorem. Assume $\alpha \geq 2$. Choose $G_t = \min\{t, \Delta\}$ and $r_t = Cp^{(2/\alpha)\vee(1/2)}G_t$, with $\Delta = 8\log\log(8n)$. Then $\mathcal{R}_{\mathcal{P}}(\rho, \phi_{\mathcal{P}, \mathrm{dense}}) \leq 1/2$ as long as

$$\rho^2 \gtrsim p^{(2/\alpha)\vee(1/2)}\log\log(8n).$$

- ▶ When $t \in \mathcal{T} \cap \{t \leq \Delta\}$, MoM simply becomes median.
- ▶ When $t \in \mathcal{T} \cap \{t > \Delta\}$, number of groups G_t is at most $\log \log(8n)$.

In the sparse regime, using the MoM approach with thresholding and sample splitting yields slightly sub-optimal rate.

- In the sparse regime, using the MoM approach with thresholding and sample splitting yields slightly sub-optimal rate.
- Alternative strategy: for each $t \in \mathcal{T} \cap \{t > \tilde{\Delta}\}$, directly apply a robust sparse mean estimator $\hat{\mu}(\cdot)$ to

$$\{Z_i = (X_i - X_{n+1-i})/\sqrt{2}, \quad i = 1, \dots, t\}$$

and use $A_t^{\text{RSM}} := t \|\hat{\mu}\|_2^2$ as the test statistic.

▶ One example of such estimator $\hat{\mu}(\cdot)$ is given in Prasad et al. (2019):

$$\inf_{\mu \in \mathbb{R}^p: \|\mu\|_0 \leq s} \sup_{u \in \mathcal{N}_{2s}^{1/2}(\mathcal{S}^{p-1})} \left| u^\top \mu - \text{1DRobust}(\{u^\top W_i\}_{i=1}^n, \eta/(6ep/s)^s) \right|,$$

- In the sparse regime, using the MoM approach with thresholding and sample splitting yields slightly sub-optimal rate.
- ▶ Alternative strategy: for each $t \in \mathcal{T} \cap \{t > \tilde{\Delta}\}$, directly apply a robust sparse mean estimator $\hat{\mu}(\cdot)$ to

$$\{Z_i = (X_i - X_{n+1-i})/\sqrt{2}, \quad i = 1, \dots, t\}$$

and use $A_t^{\text{RSM}} := t \|\hat{\mu}\|_2^2$ as the test statistic.

▶ One example of such estimator $\hat{\mu}(\cdot)$ is given in Prasad et al. (2019):

$$\inf_{\mu \in \mathbb{R}^p: \|\mu\|_0 \le s} \sup_{u \in \mathcal{N}_2^{1/2}(\mathcal{S}^{p-1})} \left| u^\top \mu - \mathbf{1DRobust}(\{u^\top W_i\}_{i=1}^n, \eta/(6ep/s)^s) \right|,$$

- 1DRobust: a univariate robust mean est. (e.g. MoM, trimmed mean).
- High computational complexity: $|\mathcal{N}_{2s}^{1/2}(\mathcal{S}^{p-1})| \leq (6ep/s)^s$.

▶ We can construct a test $\phi_{\mathcal{P}, \mathrm{sparse}}^{\mathrm{RSM}}$ (non-robust when $t \in \mathcal{T} \cap \{t \leq \tilde{\Delta}\}$) that satisfies $\mathcal{R}_{\mathcal{P}}(\rho, \phi_{\mathcal{P}, \mathrm{sparse}}^{\mathrm{RSM}}) \leq 1/2$ as long as

$$\rho^2 \gtrsim s(p/s)^{2/\alpha} + \log\log(8n).$$

Minimax optimal!

▶ We can construct a test $\phi_{\mathcal{P}, \mathrm{sparse}}^{\mathrm{RSM}}$ (non-robust when $t \in \mathcal{T} \cap \{t \leq \tilde{\Delta}\}$) that satisfies $\mathcal{R}_{\mathcal{P}}(\rho, \phi_{\mathcal{P}, \mathrm{sparse}}^{\mathrm{RSM}}) \leq 1/2$ as long as

$$\rho^2 \gtrsim s(p/s)^{2/\alpha} + \log\log(8n).$$

Minimax optimal!

▶ To overcome the computation issue, we only use this test when $p \leq \log^{\alpha-2}(\log(8n))$, and use MoM + thresholding + sample splitting otherwise. Best of both worlds!

Summary

Quantify the costs of heavy-tailedness on the fundamental difficulty of change point testing problems for high-dimensional data.

Summary

- Quantify the costs of heavy-tailedness on the fundamental difficulty of change point testing problems for high-dimensional data.
- ▶ Under $\mathcal{G}_{\alpha,K}$, a CUSUM-type test achieves minimax testing rate up to $\sqrt{\log \log(8n)}$.

Summary

- Quantify the costs of heavy-tailedness on the fundamental difficulty of change point testing problems for high-dimensional data.
- ▶ Under $\mathcal{G}_{\alpha,K}$, a CUSUM-type test achieves minimax testing rate up to $\sqrt{\log \log(8n)}$.
- ▶ Under $\mathcal{P}_{\alpha,K}$, a median-of-means-type test achieves near-optimal testing rate in both dense and sparse regimes.
- ► In the sparse regime, a computationally efficient procedure can achieve exact optimality.
- ▶ Phase transition at $\alpha = 4$ for $\mathcal{P}_{\alpha,K}$ no sparse regime when $2 \leq \alpha \leq 4$.

Reference

Li, M.*, Chen, Y.*, Wang, T. and Yu, Y. (2023) Robust mean change point testing in high-dimensional data with heavy tails. *arXiv preprint*, arXiv: 2305.18987.

Thank you!