Sparse PCA – theory and practice

Tengyao Wang

University College London

SUSTech Stats-DS Talk

4 Nov 2020

5900

Quentin Berthet Google Brain (Pairs)

Milana Gataric EBI (Cambridge)

Richard Samworth University of Cambridge

 $X_1, \ldots, X_n \in \mathbb{R}^p$ independent centred Gaussians with an unknown covariance matrix Σ .

 Σ has spectral gap $\theta>0$ and a k-sparse leading eigenvector

$$v \in B_0(k) = \{u : ||u||_2 = 1, ||u||_0 \le k\}.$$

Estimation problem: estimate v using X_1, \ldots, X_n . Loss function: $L(\hat{v}, v) = \sin \Theta(\hat{v}, v)$ Many different estimators have been proposed:

- SCoTLASS estimator (Jolliffe, Trendafilov and Uddin, 2003)
- Sparse linear regression based estimator (Zou, Hastie and Tibshirani, 2006)
- Semidefinite relaxation estimator (d'Aspremont et al. 2007)
- Diagonal thresholding estimator (Johnstone and Lu, 2009)
- Iterative thresholding estimator (Ma, 2013)

Applications in high-dimensional data sets:

- Signal processing (Majumdar, 2009)
- Computer vision (Wang, Lu and Yang, 2013; Naikal, Yang and Sastry, 2011)
- Biomedical research (Chun and Sündüz, 2009; Tan, Petersen and Witten, 2014)

▶ ...

► ...

Motivation for introducing sparsity

Why sparse PCA?

- Applications: enhanced interpretability of the principal components
- Theory: classical PCA is inconsistent in high dimensional settings.

$$\begin{split} \Sigma &= I_p + \theta v v^\top, \qquad p/n \to c \\ \text{Spectrum of } \hat{\Sigma} &= n^{-1} \sum_{i=1}^n X_i X_i^\top \\ & & & \\ \theta &\leq \sqrt{c} : L(\hat{v}_{\max}, v) \to 1 \qquad \theta > \sqrt{c} : L(\hat{v}_{\max}, v) \to \frac{c + c/\theta}{c + \theta} \end{split}$$

Sparse leading eigenvector estimator

Maximum likelihood estimator

$$\hat{v} = \hat{v}_{\max}^k(\hat{\Sigma}) = \underset{u \in B_0(k)}{\operatorname{arg\,max}} u^{\top} \hat{\Sigma} u.$$

By a curvature lemma from Vu and Lei (2013),

$$L(\hat{v},v)^{2} = \|\hat{v}\hat{v}^{\mathsf{T}} - vv^{\mathsf{T}}\|_{\mathsf{F}}^{2} \leq \frac{2}{\theta} \operatorname{tr} \left((\hat{\Sigma} - \Sigma) (\hat{v}\hat{v}^{\mathsf{T}} - vv^{\mathsf{T}}) \right).$$

Upper bound the loss using empirical process theory

$$\mathbb{E}L(\hat{v}, v) \le \frac{4}{\theta} \mathbb{E} \sup_{u \in B_0(2k)} \left| u^{\mathsf{T}} (\hat{\Sigma} - \Sigma) u \right| \le C \sqrt{\frac{k \log p}{n \theta^2}}.$$

Key step: controlling the empirical process $u^{\top}(\hat{\Sigma} - \Sigma)u$ over $B_0(2k)$.

Restricted Covariance Concentration: $\mathbf{P} \in \mathrm{RCC}_p(n, \ell, A)$ if for all $\delta > 0$,

$$\mathbf{P}\bigg\{\sup_{u\in B_0(\ell)} \left| u^{\mathsf{T}}(\hat{\Sigma}-\Sigma)u \right| \geq A \max\left(\sqrt{\frac{\ell\log(p/\delta)}{n}}, \frac{\ell\log(p/\delta)}{n}\right)\bigg\} \leq \delta.$$

Satisfied by subgaussian distributions.

 $\mathbf{P} \in \mathcal{P}_p(n, k, \theta)$: distributions in $\operatorname{RCC}_p(n, 2k, 1)$ and $\operatorname{RCC}_p(n, 2, 1)$ with k-sparse leading eigenvector, spectral gap $\geq \theta$.

General upper bound: for $n \ge 2k \log p$,

$$\sup_{\mathbf{P}\in\mathcal{P}_p(n,k,\theta)} \mathbb{E}_{\mathbf{P}} L(\hat{v}_{\max}^k, v) \leq C \sqrt{\frac{k\log p}{n\theta^2}}.$$

The estimator \hat{v}_{\max}^k is minimax optimal: for $k \leq \sqrt{p}, \theta$ bounded,

$$\inf_{\hat{v}} \sup_{\mathbf{P} \in \mathcal{P}_p(n,k,\theta)} \mathbb{E}_{\mathbf{P}} L(\hat{v},v) \ge c \min\left(\sqrt{\frac{k\log p}{n\theta^2}},1\right).$$

Minimax optimal rate of estimation
$$\asymp \sqrt{rac{k\log p}{n heta^2}}.$$

One problem remains: it is NP-hard to calculate \hat{v}_{\max}^k .

Especially problematic since sparse PCA is typically used on large datasets.

Semidefinite relaxation estimator: first studied by d'Aspremont et al. (2007), a polynomial time estimator.

Analogous to the ℓ_1 relaxation used in sparse linear regression.

Original problem:

$$\hat{v}_{\max}^k = \underset{u}{\operatorname{arg\,max}} u^{\top} \hat{\Sigma} u$$

subject to $u^{\top} u = 1, ||u||_0 \leq k.$

Non-convex problem.

Semidefinite relaxation estimator: first studied by d'Aspremont et al. (2007), a polynomial time estimator.

Analogous to the ℓ_1 relaxation used in sparse linear regression.

Original problem:

$$\hat{v}_{\max}^k = \underset{u}{\operatorname{arg\,max}} \operatorname{tr}\left(uu^{\top}\hat{\Sigma}\right)$$

subject to $\operatorname{tr}\left(uu^{\top}\right) = 1, ||uu^{\top}||_0 \le k^2.$

Non-convex problem.

Semidefinite relaxation estimator: first studied by d'Aspremont et al. (2007), a polynomial time estimator. Analogous to the ℓ_1 relaxation used in sparse linear regression.

Matrix form:

$$\begin{split} \hat{M} &= \underset{M}{\operatorname{arg\,max}} \quad \operatorname{tr}(\hat{\Sigma}M) \\ &\text{subject to} \quad \operatorname{rk}(M) = 1, \operatorname{tr}(M) = 1, \|M\|_0 \leq k^2, M \succeq 0. \end{split}$$

Two sources of non-convexity: rank constraint and ℓ_0 constraint.

Semidefinite relaxation estimator: first studied by d'Aspremont et al. (2007), a polynomial time estimator. Analogous to the ℓ_1 relaxation used in sparse linear regression.

Matrix form (relaxed):

$$\hat{M} = \underset{M}{\operatorname{arg\,max}} \operatorname{tr}(\hat{\Sigma}M)$$

subject to
$$\operatorname{tr}(M) = 1, ||M||_{1} \leq k, M \succeq 0.$$

Convex problem.

Semidefinite programming estimator

Penalised version of the SDP estimator

$$\begin{split} \hat{M} &= \underset{M}{\mathrm{arg\,max}} \quad \mathbf{tr}(\hat{\Sigma}M) - \lambda \|M\|_{1} \\ &\text{subject to} \quad \mathbf{tr}(M) = 1, M \succeq 0. \end{split}$$
$$\hat{v}^{\mathrm{SDP}} &= \text{ leading eigenvector of } \hat{M}. \end{split}$$

Solve the SDP (up to statistical precision) by first-order proximal methods, e.g. Nemirovski (2004), Nesterov (2005).

Overall complexity $O(p^5 \vee np^3)$.

 $\mathbf{P} \in \mathcal{P}_p(n,k,\theta)$

Choosing
$$\lambda = 4\sqrt{\frac{\log p}{n}}$$
 and $\epsilon = \frac{\log p}{4n}$, if $4\log p \le n \le k^2 p^2 \log p$ and $\theta \le 1$,
then
$$\sup_{\mathbf{P} \in \mathcal{P}, (n,k,\theta)} \mathbb{E}_{\mathbf{P}} L(\hat{v}^{\text{SDP}}, v) \le C\sqrt{\frac{k^2 \log p}{n\theta^2}}.$$

Computationally efficient, but statistically suboptimal.

Can any (randomised) polynomial algorithm achieve the minimax rate? or a rate of the order $O\left(\sqrt{\frac{k^{1+\alpha}\log p}{n\theta^2}}\right)$ for any $0 < \alpha < 1$.

Planted Clique Problem: given m vertices, select κ of them to form a clique, then independently draw remaining edges with probability 1/2. How to find the planted clique?

Planted Clique Problem: given m vertices, select κ of them to form a clique, then independently draw remaining edges with probability 1/2. How to find the planted clique?

Planted Clique Problem: given m vertices, select κ of them to form a clique, then independently draw remaining edges with probability 1/2. How to find the planted clique?

- $\kappa \ge (2+\delta)\log_2 m$: max clique
- $\kappa \ge c\sqrt{m}$: spectral methods
- $\kappa = O(m^{1/2-\delta})$: no known randomised polynomial time algorithms. Jerrum (1992), Feige and Krauthgamer (2003) and Feldman et al. (2013) show that some large subclasses of polynomial time algorithms will fail.

Planted Clique Hypothesis: For any sequence of $\kappa = \kappa_m$ such that $\kappa \leq m^{1/2-\delta}$, there is no randomised polynomial time algorithm that can identify the planted clique with asymptotic probability 1.

A reduction argument

We use the hardness of the planted clique problem to derive a computational lower bound for the sparse PCA estimation problem.

 $\mathbb{E}L(\hat{v},v) \leq \sqrt{\frac{k^{1+\alpha}\log p}{n\theta^2}} \text{ will imply asymptotic probability 1 identification} \\ \text{ of the planted clique for } \kappa \asymp m^{1/2-\delta} \text{ for some } \delta > 0 \text{ depending on } \alpha.$

 $\blacktriangleright \ n = p \approx m/\log m, k \approx \kappa/\log m.$

- ► Take a random n × p submatrix A of Adj(G) and change all 0 to -1. Then independently flip signs of each row with probability 1/2 to get matrix X.
- X does not have independent rows, but a similar construction by 'sampling with replacement' gives Y that has independent rows.
- A lemma by Diaconis and Freedman (1980) show X and Y are close in total variation distance, hence $\hat{v}(X)$ and $\hat{v}(Y)$ are close.
- Reconstruct the entire clique from this vertex set of high clique density.

Theorem. Assume the Planted Clique Hypothesis, fix some $\alpha \in (0, 1)$. If $k = O(p^{1/2-\delta}), n = o(p \log p), \theta \le k^2/(1000p)$ and $\frac{k^{(1+\alpha)} \log p}{n \theta^2} \to 0$, then any sequence of randomised polynomial time estimators $(\hat{v}^{(n)})$ satisfies

$$\sqrt{\frac{n\theta^2}{k^{1+\alpha}\log p}}\sup_{\mathbf{P}\in\mathcal{P}_p(n,k,\theta)}\mathbb{E}_{\mathbf{P}}L(\hat{v}^{(n)},v)\to\infty.$$

Take home message: the $O\left(\sqrt{\frac{k^2 \log p}{n\theta^2}}\right)$ rate achieved by \hat{v}^{SDP} is the best uniform rate that we can hope for.

no estimator is consistent	\hat{v}_{\max}^k is consistent but intractable	\hat{v}^{SDP} is consistent and polynomial time
$n \ll \frac{k \log p}{\theta^2}$	$\frac{k\log p}{\theta^2} \ll n \ll \frac{k^2\log p}{\theta^2}$	$n \gg \frac{k^2 \log p}{\theta^2}$

High effective sample size regime

For a subclass $\tilde{\mathcal{P}}_p(n, k, \theta) \subset \mathcal{P}_p(n, k, \theta)$, a variant of \hat{v}^{SDP} can achieve the minimax rate in the high effective sample size regime. \hat{v}^{MSDP} : obtain $\hat{M} = \arg \max_{M \succeq 0, \operatorname{tr}(M) = 1} \operatorname{tr}(\hat{\Sigma}M) - \lambda \|M\|_1$, let $S = \{j : \hat{M}_j j > \tau\},$ $\hat{v}_{S^c}^{\text{MSDP}} = 0, \qquad \hat{v}_S^{\text{MSDP}} = \text{leading eigenvector of } \hat{\Sigma}_{SS}.$

Performance of \hat{v}^{MSDP} in the high effective sample size regime: assume $\log p \leq n, \theta^2 \leq B\sqrt{k}, p \geq \theta\sqrt{n/k}$, set $\lambda = 4\sqrt{\frac{\log p}{n}}, \tau = \left(\frac{\log p}{Bn}\right)^2$,

$$\sup_{\mathbf{P}\in\tilde{\mathcal{P}}_p(n,k,\theta)} \mathbb{E}_{\mathbf{P}} L(\hat{v}^{\mathrm{MSDP}}, v) \le C\sqrt{\frac{k\log p}{n\theta^2}}.$$

Numerical experiments

 $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} N_p(0, I_p + \theta v v^{\top}), v = (\frac{1}{\sqrt{k}}, \ldots, \frac{1}{\sqrt{k}}, 0, \ldots, 0)^{\top}.$ Plot the average loss of \hat{v}^{SDP} against $\nu_{\text{quad}} = \frac{n\theta^2}{k^2 \log p}$ or $\nu_{\text{lin}} = \frac{n\theta^2}{k \log p}$

Numerical experiments

$$X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} N_p(0, I_p + \theta v v^{\top}), v = (\frac{1}{\sqrt{k}}, \ldots, \frac{1}{\sqrt{k}}, 0, \ldots, 0)^{\top}.$$

Plot the average loss of \hat{v}^{SDP} against $\nu_{\text{quad}} = \frac{n\theta^2}{k^2 \log p}$ or $\nu_{\text{lin}} = \frac{n\theta^2}{k \log p}$

Our story so far: the SDP estimator is essentially the best polynomial-time estimator for sparse PCA.

In practice, almost no one uses the SDP estimator:

- Computationally expensive $O(p^5 \lor np^3)$.
- Poor finite sample performance.

Other options are available, but most are iterative in nature and depend on initialisers.

Comparison of different sparse PCA methods

- Given a sample covariance matrix $\hat{\Sigma}$
- ▶ Randomly select $S \subseteq [p]$ coordinates and consider the leading eigenvector/eigenvalue of $\hat{\Sigma}_{S,S}$ (which we call an axis-aligned random projection)
- Repeat the above for $A \times B$ random projections
- Choose A best projections according to the leading eigenvalue of the corresponding submatrices of Σ̂.
- Aggregate the eigenvectors of these A best projections to identify signal coordinates.
- Use the estimate signal coordinates to estimate the sparse PC.

Pseudocode of SPCAvRP

Given $S \subseteq [p]$, let $P_S \in \mathbb{R}^{p \times p}$ be diagonal with *j*th diagonal entry $\mathbb{1}_{\{j \in S\}}$. Input: $x_1, \ldots, x_n \in \mathbb{R}^p$, $A, B \in \mathbb{N}$, $d, \ell \in [p]$. Generate $\{P_{a,b} : a \in [A], b \in [B]\}$ independently and uniformly from \mathcal{P}_d . Compute $\{P_{a,b}\hat{\Sigma}P_{a,b} : a \in [A], b \in [B]\}$, where $\hat{\Sigma} := n^{-1}\sum_{i=1}^n x_i x_i^\top$. For $a = 1, \ldots, A$ For $b = 1, \ldots, B$ Compute $\hat{\lambda}_{a,b} := \lambda_1(P_{a,b}\hat{\Sigma}P_{a,b})$ and $\hat{v}_{a,b} \in v_1(P_{a,b}\hat{\Sigma}P_{a,b})$. Compute $b^*(a) := \arg \max_{b \in [B]} \hat{\lambda}_{a,b}$. Compute $\hat{w} = (\hat{w}^{(1)}, \ldots, \hat{w}^{(p)})^\top$, where

$$\hat{w}^{(j)} := \frac{1}{A} \sum_{a=1}^{A} |\hat{v}_{a,b^*(a)}^{(j)}|,$$

and let $\hat{S}_1 \subseteq [p]$ be the index set of the ℓ largest components of \hat{w} . **Output**: $\hat{v}_1 := \arg \max_{v \in S^{p-1}} v^\top P_{\hat{S}_1} \hat{\Sigma} P_{\hat{S}_1} v$.

Theoretical guarantees

Computational complexity: $O(\min\{np^2 + ABd^3 + \ell^3, ABnd^2 + p + \ell^3\}).$

Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N_p(0, I_p + \theta_1 v_1 v_1^{\top})$, where $v_1 = k^{-1/2} (\mathbf{1}_k^{\top}, \mathbf{0}_{p-k}^{\top})^{\top}$. Let \hat{v}_1 be from SPCAvRP using $X_1, \ldots, X_n, A, B, d$ and ℓ . Assume $p \ge \max(4, 2k)$, $n \ge 4 \max(d, \ell) \log p$, and that there exists $t \in \{1, \ldots, k\}$ such that

$$\{1 - F_{\rm HG}(t-1;d,k,p)\}B \ge 3\log p \tag{1}$$

and

$$2400\sqrt{\frac{k^2 d\log p}{t^2 n \theta_1^2}} \le \min\{1, (p-k)d^{-1/2}k^{-1}\}.$$
(2)

Then with probability at least $1-p^{-3}-pe^{-A/(32k^2)}$ we have for $\theta_1\leq 1$ that

$$L(\hat{v}_1, v_1) \le 240\sqrt{\frac{\ell \log p}{n\theta_1^2}} \max\left(1, \frac{k}{\ell}\right) + \sqrt{\max\left(1 - \frac{\ell}{k}, 0\right)}.$$

Discussion

When $k \leq \ell \leq k$, the loss is bounded w.h.p. by a constant multiple of $\sqrt{k \log p/(n\theta_1^2)}$, which is the minimax optimal rate. When $\ell < k$, we incur an additional loss of order $\sqrt{1-\ell/k}$.

As t increases, (1) is strengthened and (2) is weakened. When t = 1,

$$F_{\rm HG}(0; d, k, p) = \frac{\binom{p-k}{d}}{\binom{p}{d}} \le 1 - k/p,$$

so $B \ge 3k^{-1}p \log p$ suffices for (1). But from (2), for the minimax rate when $\theta_1 \le 1$, we need $n \ge k^2 d\theta_1^{-2} \log p$, the high effective sample size regime.

When $t \simeq k$, we only need $n \gtrsim d\theta_1^{-2} \log p$, so include medium and high effective sample size regimes, but then need B to be exponentially large.

Example with microarray data

Colon data set: p = 2000, n = 62 (42 tumor and 20 healthy)

Below, we project onto the first PC (in SPCAvRP, we choose $\ell = 20$)

Summary

- We formulated computational lower bounds for sparse PCA by linking Sparse PCA with the Planted Clique problem.
- Rate obtained by SDP methods cannot be improved, but SDP works poorly in practice.
- Random projections offer a very general methodology for handling high-dimensional data.
- They are particularly effective in Sparse PCA because we can identify good projections and aggregate.

Main references:

- Wang, T., Berthet, Q. and Samworth, R. J. (2016) Statistical and computational trade-offs in estimation of sparse principal components. *Ann. Statist.*, 44, 1896–1930.
- Gataric, M., Wang, T. and Samworth, R. J. (2018) Sparse principal component analysis via random projections. J. Roy. Statist. Soc., Ser. B, 82, 329–359.
- R package SPCAvRP on CRAN.

References

- Cai, T. T., Ma, Z. and Wu, Y. (2013) Sparse PCA: Optimal rates and adaptive estimation. Ann. Statist., 41, 3074–3110.
- Chandrasekaran, V. and Jordan, M. I. (2013) Computational and statistical tradeoffs via convex relaxation. *Proc. Nat. Acad. Sci.*, **110**, E1181–E1190.
- Chen, Y. and Xu, J. (2014) Statistical-computational tradeoffs in planted problems and submatrix localization with a growing number of clusters and submatrices. Available on arxiv.
- Chun, H. and Sündüz, K. (2009) Expression quantitative trait loci mapping with multivariate sparse partial least squares regression. *Genetics*, 182, 79–90.
- d'Aspremont, A. El Ghaoui, L., Jordan, M. I. and Lanckriet, G. R. G. (2007) A direct formulation for sparse PCA using semidefinite programming. *SIAM Rev.*, 49, 434–448.
- Diaconis, P. and Freedman D. (1980) Finite exchangeable sequences. Ann. Probab., 8, 745-764.
- ▶ Feige, U. and Krauthgamer, R. (2003) The probable value of the Lovàsz-Schrijver relaxations for a maximum independent set. *SIAM J. Comput.*, **32**, 345–370.
- Feldman, V., Perkins, W. and Vempala, S. (2015) On the Complexity of Random Satisfiability Problems with Planted Solutions. *Proceedings of the forty-seventh annual ACM Symposium on Theory of Computing*, to appear.

References

- Gao, C., Ma, Z. and Zhou, H. H. (2014) Sparse CCA: Adaptive estimation and computational barriers. Available on arxiv.
- Hajek, B., Wu, Y. and Xu, J. (2014) Computational lower bounds for community detection on random graphs. Available on arxiv.
- Jerrum, M. (1992) Large cliques elude the Metropolis process. Random Structures Algorithms, 3, 347–359.
- Johnstone, I. M. and Lu, A. Y. (2009) On consistency and sparsity for principal components analysis in high dimensions. J. Amer. Statist. Assoc., 104, 682–693.
- Jolliffe, I. T., Trendafilov, N. T. and Uddin, M. (2003) A modified principal component technique based on the LASSO, *J. Comput. Graph. Statist.*, **12**, 531–547.
- Ma, Z. (2013) Sparse principal component analysis and iterative thresholding. Ann. Statist., 41, 772-801.
- Ma, Z. and Wu, Y. (2015) Computational barriers in minimax submatrix detection. Ann. Statist., to appear.
- Majumdar, A. (2009) Image compression by sparse PCA coding in curvelet domain. Signal, image and video processing, 3, 27–34.

References

- Naikal, N., Yang A. Y. and Sastry S. S. (2011) Informative feature selection for object recognition via sparse PCA. Computer Vision (ICCV), 2011 IEEE International Conference, 818–825.
- Nemirovski, A. (2004) Prox-method with rate of convergence O(1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM J. Optim. 15, 229–251.
- Nesterov, Yu. (2005) Smooth minimization of nonsmooth functions. *Math. Program., Ser. A*, 103, 127–152.
- Tan, K. M., Petersen, A. and Witten, D. (2014) Classification of RNA-seq Data. In S. Datta and D. Nettleton (Eds.) Statistical Analysis of Next Generation Sequencing Data, 219–246. Springer, New York.
- Vu, V. Q. and Lei, J. (2013) Minimax sparse principal subspace estimation in high dimensions. Ann. Statist., 41, 2905-2947.
- Wang, D., Lu, H.-C. and Yang, M.-H. (2013) Online object tracking with sparse prototypes. *IEEE transactions on image processing*, 22, 314–325.
- Wang, T., Berthet, Q. and Samworth, R. J. (2015) Statistical and computational trade-offs in estimation of sparse principal components. *Ann. Statist.*, to appear.
- Zou, H., Hastie, T. and Tibshirani, R. (2006) Sparse principal components analysis. J. Comput. Graph. Statist., 15, 265–86.