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Sparse PCA

Xq,..., X, € RP independent centred Gaussians with an unknown
covariance matrix 3.

X ~ N,(0,%)
3 has spectral gap 8 > 0 and a k-sparse leading eigenvector

v € Bo(k) = {u: [Julla = 1, [lullo <k}

Estimation problem: estimate v using X1, ..., X,,.

Loss function: L(0,v) = sin ©(0, v)
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Sparse PCA

Many different estimators have been proposed:

» SCoTLASS estimator (Jolliffe, Trendafilov and Uddin, 2003)
> Sparse linear regression based estimator (Zou, Hastie and Tibshirani,
2006)

» Semidefinite relaxation estimator (d’Aspremont et al. 2007)

» Diagonal thresholding estimator (Johnstone and Lu, 2009)

> lterative thresholding estimator (Ma, 2013)

> .

Applications in high-dimensional data sets:

» Signal processing (Majumdar, 2009)

» Computer vision (Wang, Lu and Yang, 2013; Naikal, Yang and Sastry,
2011)

» Biomedical research (Chun and Siindiiz, 2009; Tan, Petersen and
Witten, 2014)
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Motivation for introducing sparsity

Why sparse PCA?

» Applications: enhanced interpretability of the principal components
» Theory: classical PCA is inconsistent in high dimensional settings.

E:Ip+9UUT, p/n—c

Spectrumof X =n~1 3" | X, X,

\ [

c+c/b

0 < Ve L(tmax,v) — 1 0 > e : L(dmax,v) — oy
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Sparse leading eigenvector estimator

Maximum likelihood estimator

o=0", (3) =argmaxu' Su.
w€E By (k)

By a curvature lemma from Vu and Lei (2013),

o0 —ov! |2 < %tr((i—z)(ﬁ(' —ov')).

Upper bound the loss using empirical process theory

4 A k1
EL(0,v) < -E sup ‘uT(Z - Y| < Cy/ ong.
0 weBo(2k) no

Key step: controlling the empirical process u (3 — X)u over By(2k).
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Family of distributions

Restricted Covariance Concentration: P € RCC,(n, ¢, A) if for all § > 0,

P{ sup |uT(5 - )l >Amax( elog(p/5)7e1og(p/5)>} <.

u€ By (£) n n

Satisfied by subgaussian distributions.

P € P,(n, k,0): distributions in RCC,(n, 2k, 1) and RCC,(n, 2, 1) with
k-sparse leading eigenvector, spectral gap > 6.

General upper bound: for n > 2klogp,

klogp
sup EpL(vF, v < C4/ .
PEP, (n,k,0) (Oma: ) n6?
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Minimax lower bound

The estimator ¢, is minimax optimal: for k < ,/p, 6 bounded,

k1
inf  sup EpL(0,v) > cmin( izp’ 1>.
O PEP,(n,k,0) nt
k1
Minimax optimal rate of estimation < Oegzp.
n

One problem remains: it is NP-hard to calculate ©F

max*

Especially problematic since sparse PCA is typically used on large datasets.
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Semidefinite programming

Semidefinite relaxation estimator: first studied by d’Aspremont et al.
(2007), a polynomial time estimator.

Analogous to the /; relaxation used in sparse linear regression.

Original problem:

~k _ T
Umax = argmax u Xu
u

subjectto u'u =1, |ullo < k.

Non-convex problem.
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Semidefinite programming

Semidefinite relaxation estimator: first studied by d’Aspremont et al.
(2007), a polynomial time estimator.

Analogous to the /7 relaxation used in sparse linear regression.

Matrix form:

M = argmax tr(3XM)
M
subject to k(M) = 1,tr(M) = 1,||M||o < k*, M = 0.

Two sources of non-convexity: rank constraint and ¢y constraint.
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Semidefinite programming

Semidefinite relaxation estimator: first studied by d’Aspremont et al.
(2007), a polynomial time estimator.

Analogous to the /; relaxation used in sparse linear regression.

Matrix form (relaxed):

M = argmax tr(XM)
M

subjectto  tr(M) =1,

M|y < kM = 0.

Convex problem.
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Semidefinite programming estimator

Penalised version of the SDP estimator

M = argmax tr(SM)-)\|M],
M
subjectto tr(M)=1,M > 0.

o°PP = leading eigenvector of M.

Solve the SDP (up to statistical precision) by first-order proximal methods,
e.g. Nemirovski (2004), Nesterov (2005).

Overall complexity O(p® V np3).

13/34



Statistical properties of the SDP estimator

Choosing A = 4 10% and e = liip, if4dlogp <n < k?p?logpand 6 < 1,
then

k21
sup  EpL (3PP v) < Cy/ ogp.
PEP, (n,k.0) nt

Computationally efficient, but statistically suboptimal.

Can any (randomised) polynomial algorithm achieve the minimax rate? or

a rate of the order O /221982 for any 0 < o < 1.
no Y
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A complexity theoretic problem

Planted Clique Problem: given m vertices, select s of them to form a clique,
then independently draw remaining edges with probability 1/2. How to
find the planted clique?

G~ Gpow Adj(G) E{Adj(G)}

)
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A complexity theoretic problem

Planted Clique Problem: given m vertices, select s of them to form a clique,
then independently draw remaining edges with probability 1/2. How to
find the planted clique?
> k> (24 6)logy m: maxclique
» k> cy/m: spectral methods
> k= O(m'?7%): no known randomised polynomial time algorithms.
Jerrum (1992), Feige and Krauthgamer (2003) and Feldman et al. (2013)
show that some large subclasses of polynomial time algorithms will
fail.

Planted Clique Hypothesis: For any sequence of k = k,;, such that
x < m'/279 there is no randomised polynomial time algorithm that can
identify the planted clique with asymptotic probability 1.
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A reduction argument

We use the hardness of the planted clique problem to derive a
computational lower bound for the sparse PCA estimation problem.

m =
- |
B n
X

Y ~PePy(n,k,0)

G ~ G

)

EL(9,v) < \/% will imply asymptotic probability 1 identification
of the planted clique for x < m!/2=9 for some § > 0 depending on cv.
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Details of the reduction

> n=p=~x~m/logm, k= k/logm.
» Take a random n x p submatrix A of Adj(G) and change all 0 to —1. Then
independently flip signs of each row with probability 1/2 to get matrix X.

» X does not have independent rows, but a similar construction by ‘sampling
with replacement’ gives Y that has independent rows.

» A lemma by Diaconis and Freedman (1980) show X and Y are close in total
variation distance, hence 9(X) and 6(Y") are close.

» Columns of Y correspond to vertices of G. The k columns that give rise to
the largest coordiantes of ¢(Y) in absolute value correspond to a set of
vertices in G with high clique density.

» Reconstruct the entire clique from this vertex set of high clique density.
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Computational lower bound for sparse PCA

Theorem. Assume the Planted Clique Hypothesis, fix some « € (0, 1). If
k= 0?7 %),n=o(plogp), d < k?/(1000p) and L)logp — 0, then
any sequence of randomised polynomial time estimators ( (")) satisfies

_nb® sup  EpL(5™,v) — o0
k't log p pep, (n,k,0) P ’ .

Take home message: the O( ’“i}ggp) rate achieved by 75PF is the best

uniform rate that we can hope for.

no estimator ﬁk 4 1S consistent 55DP is consistent
is consistent but intractable and polynomial time
L L -
n < klogp klogp k2 log p ) >>k:210gp
92 792 n K 792 n 792
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High effective sample size regime

For a subclass P, (n, k, 0) C Py(n, k, ), a variant of 9P can achieve the
minimax rate in the high effective sample size regime.

HMSDP; obtain M = arg MaX 70 tr(M)=1 tr(SM) — \| M|, let
S=1{j:Mj>r}

AMSDP 0’ 73KI%’/[SDP

Uge = leading eigenvector of Tss.

MSDP ;

Performance of © in the high effective sample size regime: assume

logp <n, 0> < BVEk,p>60yn/k, set \=4 losp,r = (1%%)2,

klogp
no2

sup  EpL(sMSPF v) < C
PEP, (n,k,0)
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Numerical experiments
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Numerical experiments

Xi,...

Plot the average loss of

log mean loss

X, N,

(0,1, + 6vv ), v

Tengyao Wang

log Vquad

against Vquad =

log mean loss
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Sparse PCA in practice

Our story so far: the SDP estimator is essentially the best polynomial-time
estimator for sparse PCA.

In practice, almost no one uses the SDP estimator:
> Computationally expensive O(p® V np?).
» Poor finite sample performance.

Other options are available, but most are iterative in nature and depend on
initialisers.
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Comparison of different sparse PCA methods

Define, for J; := 1q1;r/q e R7*q,

2J10 10J10

Yo = J10 +100, X2y = 9.9.J30 +0.011500.
0
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Sparse PCA via random projection

» Given a sample covariance matrix X

> Randomly select S C [p] coordinates and consider the leading
eigenvector/eigenvalue of ¥ g g (which we call an axis-aligned random
projection)

> Repeat the above for A x B random projections

> Choose A best projections according to the leading eigenvalue of the
corresponding submatrices of X.

> Aggregate the eigenvectors of these A best projections to identify signal
coordinates.

» Use the estimate signal coordinates to estimate the sparse PC.
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Pseudocode of SPCAVRP

Given S C [p], let Ps € RP*? be diagonal with jth diagonal entry 1;¢g3.

Input: z1,...,z, € RP, A B e N, d, ¢ € [p].
Generate { P, : a € [A],b € [B]} independently and uniformly from P,.
Compute {P, ,X P, : a € [A],b € [B]}, where 3 := n~! S i
Fora=1,...,A
Forb=1,...,B
Compute S\Q,b = Al(Pa’bEA]Pa)b) and 0g,p € v1 (PaJ,EAZPa,b).

Compute b*(a) := arg max,¢ | Aab-

Compute w0 = (M, .. ., w®P)T, where
LN 50
@0 = 2> 00 0]
a=1

and let S; C [p] be the index set of the  largest components of .
Output: 97 := argmax,cgp—1 UTPs.lEPglv.
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Theoretical guarantees

Computational complexity: O(min{np* + ABd® + (3, ABnd? + p + ¢3}).

Let X1,..., X, N,(0, I, + 010107 ), where vy = k=Y/2(1], Og_k)T. Let 04

be from SPCAVRP using X1, ..., X, 4, B, d and £. Assume p > max(4, 2k),
n > 4max(d, £) logp, and that there exists t € {1,...,k} such that

{1— Fuc(t—1;d,k,p)} B > 3logp (1)

[k2d1
2400 T‘ﬁp < min{1, (p — k)d~ 2k} @)
noy

Then with probability at least 1 — p~3 — pe‘A/(SQkQ) we have for #; < 1 that

. llogp k /
L(01,v1) < 240 pY max(l,z) —l—“max(l—E,O).
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Discussion

When k < ¢ < k, the loss is bounded w.h.p. by a constant multiple of
\/klogp/(nb?), which is the minimax optimal rate. When ¢ < k, we incur an

additional loss of order /1 — £/k.

As t increases, (1) is strengthened and (2) is weakened. When t = 1,

@)
FHG(O7dakap): 4

(%)
so B > 3k~ !plogp suffices for (1). But from (2), for the minimax rate when
61 <1,weneedn 2> k2d91_2 log p, the high effective sample size regime.

When t < k, we only need n 2, dﬁfz log p, so include medium and high
effective sample size regimes, but then need B to be exponentially large.
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Example with microarray data

» Colon data set: p = 2000, n = 62 (42 tumor and 20 healthy)
» Below, we project onto the first PC (in SPCAVRP, we choose ¢ = 20)

PCA Zou et al. SPCAVRP
Wa000 = 5.68 Wao = 2.92 Wao = 6.54
e = 0.0416 Pt = 0.0435 e = 0.0028
30 . E -0 ° o —10 R
& -0 S N ?.’ S 20 g
S Ty L) o A
P s 2 [ < Y *
- s ®e .:l - -
—60 t - .?. . 3
n t n t n t

class
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Summary

» We formulated computational lower bounds for sparse PCA by linking
Sparse PCA with the Planted Clique problem.

» Rate obtained by SDP methods cannot be improved, but SDP works poorly
in practice.

» Random projections offer a very general methodology for handling
high-dimensional data.

» They are particularly effective in Sparse PCA because we can identify good
projections and aggregate.

Main references:

» Wang, T., Berthet, Q. and Samworth, R. J. (2016) Statistical and
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