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I:  Proofs that the Randomization P-values of (4) and (5) are Exact. 

In this section I present proofs that the randomization p-values of (4) and (5) in the text 

are exact for any arbitrary size α in [0,1].  Equation (4) is the case where the test statistic values 

for the entire universe of potential experimental realizations Ti in Ω are known; (5) is the case 

where the p-value is evaluated by drawing N additional random treatments from Ω.  The proof of 

(4) is trivial.  The proof of (5) is an extension of Jockel’s (1986) result that the p-value is exact 

for size α which is an integer multiple of 1/(N+1) to general α, accomplished by treating the 

experimental test statistic as part of the distributional sample and, consequently, as an observed 

tie with itself.  To ease presentation and avoid confusion in discussing cumulative distribution 

functions, I define rejection probabilities based upon the number of potential outcomes with test 

statistics less than or equal to that of the experimental draw, rather than greater than or equal, as 

expressed in (4) and (5).  The two approaches are interchangeable, as with a simple sign change 

of the test statistic one can be substituted for the other.  In working through the following proof, 

the reader will find it helpful to regularly refer to equations (4) and (5) in the paper to confirm 

what the p-value will be under various circumstances. 

Beginning with (4), index the N equally probable
1
 elements Ti of Ω so that f(T1) ≤ ... ≤ 

f(TN) represent the ordered potential values of the test statistic f(Ti) and let Ei represent the 

number of outcomes whose test statistic ties with f(Ti) and Li the number whose test statistic is 

less than f(Ti).  Then, the p-value associated with a random draw TE from the universe Ω is given 

by LE/N + U*EE/N.  Let α be a number between 0 and 1, inclusive, and let [αN] denote the largest 

integer less than or equal to αN.  Whenever f(TE) < f(T[αN]), the p-value is strictly less than α.  

There are L[αN] such events.  Whenever f(TE) = f(T[αN]) the p-value is less than or equal to α if the 

random draw U is less than or equal to (αN-L[αN])/E[αN].  There are E[αN] such events.  Whenever 

f(TE) > f(T[αN]) the p-value is strictly greater than α.  Consequently, the probability the p-value is 

less than or equal to α is given by: 

                                                 
1
As noted in the paper, if outcomes are not equally likely simply duplicate them in Ω according to their 

relative frequency.  More generally, one can define a probability density across outcomes and use it in the proof, but 

this introduces additional notation. 
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which establishes that the p-value is uniformly distributed and exact. 

 Turning to (5), we begin by deriving a useful result by assuming, for now, that Ω is such 

that f(Ti) is continuously distributed.  Let F(f(Tx)), or Fx for short, denote the cumulative 

distribution function of f(Tx), i.e. the probability f(Ti) is less than or equal to f(Tx) for given Tx.  

Obviously, Fx is uniformly distributed.  Let TE denote the draw associated with experimental 

treatment, integer N the additional N draws used to evaluate its p-value using (5) in the paper, and 

again the notation [α(N+1)] indicate the largest integer less than or equal to α(N+1).  Since f(Ti) 

is continuously distributed, in making N additional draws from the randomization distribution 

there will be no ties, so the only tie in the calculation of (5) is the tie of the experimental test 

statistic f(TE) with itself.  Consequently, for a given treatment f(TE) and associated FE, the 

probability the p-value in (5) will be less than or equal to α is given by the probability [α(N+1)]-1 

draws or less have a test statistic less than f(TE) plus, given that f(TE) provides a tie with itself, 

the probability exactly [α(N+1)] draws have a test statistic less than f(TE) times the probability 

the uniformly distributed variable U in (5) is less than or equal to α(N+1) - [α(N+1)], or: 
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where I have assumed (for the moment) that 1 ≤ [α(N+1)] ≤ N.  Since FE is distributed uniformly, 

the unconditional probability the experimental test statistic will be less than or equal to α is in 

these circumstances given by: 
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Provided α < 1, the condition [α(N+1)] ≤ N holds.  Since the p-value in (5) is always less 

than or equal to 1, if α = 1 the rejection probability is 1, as specified.  If [α(N+1)] < 1, the p-value 

(5) rejects at level α if none of the N draws has a test statistic less than f(TE) and U in (5) is less 

than α(N+1), that is with probability: 

)1()1()4a( +− NF
N

E α  

Integrating across the distribution of FE 

αα =+−∫ i

1

0
dF )1()1()5a( NF

N

i
 

Together, these results establish that when f(Ti) is continuously distributed the probability the p-

value is less than or equal to α actually equals α for all α in [0,1], i.e. the test is exact. 

 I now turn to the case where f(Ti) is not continuously distributed and in particular takes on 

discrete values.  As before, let Fx denote the probability f(Ti) is less than or equal to f(Tx) and 

define px as the probability f(Ti) exactly equals f(Tx), where Tx is an element in Ω.  Define the 

new “test statistic” g(Ti) = Fi - ui*pi, where ui is a draw, for each outcome Ti, from the uniform 

distribution on [0,1].  By construction, g(Ti) is continuously and uniformly distributed on [0,1] 

and consequently, by the results above, is exact if evaluated using (5).  I will now show that, 

conditional on TE and the realized draws T1, T2, ... TN from Ω, the p-value calculated using g(TE) 

has the same probability of rejecting at level α as the p-value calculated using f(TE).  From this it 

follows that even though g(TE) is never observed, the p-value calculated using f(TE) is uniformly 

distributed, so the test using f(TE) is exact. 

 I begin by noting that f(Ti) < f(Tj) implies g(Ti) < g(Tj), as then Fj ≥ Fi + pj, which lets us 

see that with probability one Fj – uj*pj > Fj – pj ≥ Fi > Fi – ui*pi, as the probability uj = 1 and ui = 

0 is zero.  Let the draw T1, T2, ... TN from Ω contain L draws with values of f() strictly less than 

TE and E draws with values of f() equal to TE.  Select an α.  If L ≥ [α(N+1)]+1 the p-value 

calculated using (5) for both f() and g() is greater than α, i.e. neither test rejects.  If L + E + 1 < 

α(N+1) the p-value calculated using (5) for both f() and g() is less than α, i.e. both tests reject.  

Consequently, we need only concern ourselves with the case where L ≤ [α(N+1)] and L + E + 1 ≥ 

α(N+1).  In these circumstances, the p-value calculated using (5) for f() is given by: 
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where, as usual, I use the fact that TE ties with itself.  As U is uniformly distributed, this rejects 

(i.e. is less than α) with probability (α(N+1)-L)/(E+1), which is between 0 and 1 by the conditions 

stated above.  In contrast, the p-value calculated using (5) for g() is given by  

1

1
*

11
)7a(
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+
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+ N
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N

E

N

L L  

where EL ≤ E denotes the number of draws Ti with f(Ti) = f(TE) which end up with g(Ti) < g(TE) 

after the realization of the draws ui which determine g(Ti).  Given the uE which determined g(TE) 

= f(TE) - uE*pE, the probability a given element of the set of draws that have f(Ti) = f(TE) ends up 

with g(Ti) < g(TE) is 1-uE.  Say L = [α(N+1)].  For given uE, the probability (a7) is less than or 

equal to α equals the probability EL = 0 times the probability U in (a7) is less than α(N+1)-L, or:
2
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Integrating across the uniform distribution of uE yields: 
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which is the same probability as the test statistic using f().  If  L ≤ [α(N+1)] – 1, for given uE the 

probability (a7) is less than or equal to α is given by the probability EL ≤ [α(N+1)] – L-1 plus the 

probability EL =[α(N+1)] – L times the probability U in (a7) is less than or equal to α(N+1)-

[α(N+1)], or: 

)])1([)1(()1(
!)]1([!)]1([

!

)1(
!!

!
)01a(

)]1([)]1([

1)]1([

0

+−+−
++−−+

+

−
−

++−−+

−−+

=

−∑

NNuu
LNELN

E

uu
xEx

E

LNE

E

LN

E

LN

x

xE

E

x

E

αα
αα

αα

α

 

Again, integrating across the uniform distribution of uE 

                                                 
2
As a reminder, subscript E in uE in the formula (and elsewhere) refers to the ui associated with the 

calculation of g(TE).  Superscript E in uE
E
 and E in the factorials refers to the number of Ti draws with f(Ti) = f(TE). 
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which again is the same as in the case of the f() statistic.  Since these examples cover all possible 

cases, we see that for any possible set of realized draws T1, T2, ... TN from Ω, the p-value 

calculated using f(TE) has the exact same probability of rejecting at level α as the p-value 

calculated using g(TE).  Consequently, the test statistic based on f(TE) in (5) is also exact. 
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II:  Further Details on Randomization, Bootstrap and Jackknife Methods  

This appendix provides further details on how I executed randomization, bootstrap and 

jackknife inference for my sample.  First, in each case the regression specification I analyse is the 

regression specification that reproduces the coefficients and standard errors reported in published 

tables.  This is often different from what is described in the paper or given in do-file code.  

Published results, however, can almost always be closely approximated through an investigation 

of the public use data file.  Second, in calculating the coefficient covariance matrix for each 

randomization or bootstrap draw, I defer to the decisions made by authors and use their 

covariance estimation methods.  Third, in producing the randomization distribution I apply the 

randomized experimental treatment draw TS to the entire experimental dataset, recalculate all 

variables that are contingent upon that realization, e.g. participant characteristics interacted with 

treatment outcomes, and also reproduce all coding errors in the original do-files that affect 

treatment measures, e.g. a line of code that unintentionally drops half the sample.  All of this 

follows the Fisherian null:  all procedures and outcomes in the experiment are invariant with 

respect to who received what treatment.  In executing the bootstrap, I also draw entire 

experimental samples (drawing clusters if the authors cluster their regressions), so as to parallel 

the randomization methods and be able to calculate the joint distribution of coefficients for multi-

equation joint testing procedures.   

Fourth, in executing randomization or bootstrap iterations I accept an iteration as long as 

Stata produces a coefficient estimate and standard error for the treatment variable.  Some of the 

procedures authors use do not converge and in some cases Stata warns users that the covariance 

matrix is highly singular.  Coefficients and standard errors produced by these methods are 

accepted and reported in journal tables.  In order to be able to execute the analysis, and following 

the spirit of the Fisherian null, I duplicate authors’ methods and accept results if Stata is able to 

deliver them, no matter how badly conditioned the covariance matrix is.   In all cases I reproduce, 

as closely as possible, the data manipulation, equation specification and practical estimation that 

produced the results reported in published tables.  I state all of this to forestall criticism that I 

have analysed inappropriate specifications and results.  I reproduce and follow the coding and 

estimation methods that generate the results published in journals.  
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 Fifth, in making randomization draws from the universe of potential treatments Ω I 

restrict my draws to the subset Ω that has the same treatment balance as TE, the experimental 

draw.  This subtle distinction, irrelevant from the point of view of the exactness of the 

randomization test statistic, avoids my making unnecessary and potentially inaccurate inferences 

about the alternative balance of treatments that might have arisen.  For example, a number of 

experiments applied treatment by taking random draws from a distribution (e.g. drawing a chit 

from a bag).  Rather than trying to replicate the underlying distribution, I take the realized 

outcomes and randomly reallocate them across participants.  I adopted this procedure after 

observing that the distribution of outcomes often does not follow the description of the 

underlying process given in the paper.  A few papers note problems in implementation, and some 

authors, in correspondence, noted that even after they selected a particular randomized allocation 

of treatment, field agents did not always implement it accurately.  I follow the papers in taking all 

of these errors in implementation as part of the random allocation of treatment.  Under the 

randomization hypothesis, strongly maintained in every paper, treatment quantities, even if not in 

the proportions intended by the authors, could in principle have been applied to any participant.  

Thus, subject only to the stratification scheme, clarified by detailed examination of the data and 

helpful correspondence with the authors, I shuffle realized treatment outcomes across 

participants.  This shuffling amounts to drawing the treatment vectors TS in Ω that share the same 

treatment balance as TE.3 

 Finally, I should note that I test instrumental variables regressions using the implied intent 

to treat regressions.  In these regressions treatment variables are used as instruments, most of the 

time representing an opportunity that is offered to a participant that is then taken up or not.  The 

null here cannot be that the treatment instrument has no effect on the instrumented variable, as 

this is obviously false (e.g. one can only take up an opportunity if one is offered the chance to do 

so).  However, a reasonable null, and the relationship being tested in the second-stage regression, 

                                                 

3
All of this is done, of course, in units of treatment, e.g. field villages or lab sessions.  To keep the 

presentation familiar, here and in the paper I have described randomization tests as sampling from a population of 

potential outcomes. A more general presentation (e.g. Joseph P. Romano, 1989, "Bootstrap and Randomization Tests 

of Some Nonparametric Hypotheses," The Annals of Statistics 17 (1):  141-159) argues that under the null outcomes 

are invariant with respect to all transformations G that map from Ω to Ω.  The shuffling or rearranging of outcomes 

across participants is precisely such a mapping. 
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is that the instrumented variable has no effect on final outcomes of interest.  Combined with the 

exogeneity assumption used to identify the regression, in an iv setting this implies that there 

exists no linear relationship between the outcome variable and the treatment variables themselves, 

i.e. no significant relation in the intent to treat regression.  Consequently, I test the significance of 

instrumental variables regressions by running the implied intention to treat regression for the 

experiment and then comparing its coefficients and p-values to those produced through the 

randomization distribution under the null that final outcomes are invariant with respect to the 

actual realization of treatment.
4
 

In the case of the jackknife, I calculate the covariance matrix using the formula: 

∑ ′−−−
i

ii ββββ )ˆˆ)(ˆˆ(
1

)21a( ~~
N

N
 

where 
iβ~

ˆ denotes the vector of coefficients with the cluster group of observations i (or individual 

observation i if the paper does not cluster) deleted, and N represents the number of distinct 

coefficient vectors so estimated.  I use this particular formula for the jackknife because, putting 

aside the standard (N-1)/N jackknife correction, it equals the hc3 adjustment of clustered/robust 

covariance matrices in the case of OLS regressions.  As is customary, jackknife results are 

evaluated using the t and F distributions with N-1 degrees of freedom. 

                                                 
4
In using the bootstrap, the jackknife, and reporting original authors’ results, I continue to use the iv 

regression itself.  To keep the number of iv and intent to treat coefficients equal across methods, I only examine 

exactly identified iv regressions (i.e. exclude a small number of overidentified two stage least squares).  I should also 

note that many of the intent to treat regressions implied by iv regressions duplicate regressions found elsewhere in 

the paper.  I drop these duplicates from the analysis.  Sometimes authors present first-stage regressions along with iv 

results.  I skip these if they involve a dependent variable that is never used as a treatment outcome elsewhere in the 

paper.  In total, this leads me to drop 14 first stage regressions in three papers, which are all of form described above, 

where the dependent variable is trivially determined by treatment.  On the other hand, I retain first stage regressions 

where the authors, having used the dependent variable as a treatment outcome elsewhere in the paper, now use it as 

an instrumented variable in determining some other treatment outcome. 
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III:  Results for Bootstrap/Randomization -c and all Treatment Effects 

 The bootstrap and randomization results reported in the paper are based upon -t methods, 

as these are asymptotically superior in the case of the bootstrap and less sensitive to deviations 

away from the sharp null in the case of randomization inference, and are restricted to treatment 

effects reported by authors.  This appendix presents expanded tables which include -c results and 

tests of all treatment effects, reported and unreported.   

In Appendix Tables V, VI and VII below, results reported in Tables V, VI or VII of the 

paper are highlighted in bold, while additional results are reported in regular typeface.  Bootstrap-

c results consistently show higher rejection rates than the bootstrap-t, while randomization-c 

results vary around those of the randomization-t, with higher or lower rejection rates depending 

upon the test and level.  Results for all treatment effects in regressions with reported treatment 

coefficients are very similar to those found in testing reported treatment effects alone in terms of 

rejection rates of alternative methods relative to conventional tests and the concentration of 

differences in high leverage papers, other tables than the first, and regressions with covariate 

interactions.  Absolute rejection rates, for both conventional inference and alternative methods, 

are generally slightly higher when tests are expanded to include all treatment effects, as 

emphasized in the paper.  
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Appendix Table V:  Statistical Significance of Individual Treatment Effects 

 .01 .05 .01 .05 .01 .05 .01 .05 

 
all papers 

(53 papers) 

low leverage 

(18 papers) 

medium leverage 

(17 papers) 

high leverage 

(18 papers) 

based on 4044 reported treatment coefficients 

authors’ p-value 

randomization-t 

bootstrap-t 

jackknife 

randomization-c 

bootstrap-c 

.216 

.78 

.79 

.78 

.75 

.88 

.354 

.87 

.84 

.83 

.85 

.93 

.199 

.96 

.99 

.95 

.93 

.96 

.310 

.98 

.98 

.89 

.93 

.96 

.164 

.79 

.87 

.87 

.79 

.92 

.313 

.96 

.89 

.91 

.96 

.95 

.283 

.65 

.60 

.61 

.60 

.79 

.437 

.74 

.70 

.73 

.73 

.91 

based on all 5740 treatment coefficients in regressions with reported treatment coefficients 

authors’ p-value 

randomization-t 

bootstrap-t 

jackknife 

randomization-c 

bootstrap-c 

.213 

.78 

.78 

.78 

.75 

.87 

.345 

.87 

.84 

.83 

.85 

.93 

.195 

.97 

.99 

.95 

.94 

.97 

.306 

.98 

.98 

.89 

.93 

.95 

.159 

.79 

.87 

.86 

.81 

.91 

.301 

.95 

.89 

.91 

.96 

.95 

.283 

.64 

.60 

.61 

.59 

.79 

.425 

.73 

.70 

.73 

.73 

.91 

 
first table 

(45 papers) 

other tables 

(45 papers) 

interactions 

(29 papers) 

no interactions 

(29 papers) 

based on 4044 reported treatment coefficients 

authors’ p-value 

randomization-t 

bootstrap-t 

jackknife 

randomization-c 

bootstrap-c 

.303 

.82 

.85 

.91 

.79 

.96 

.446 

.97 

.91 

.94 

.94 

.97 

.188 

.81 

.90 

.81 

.84 

.90 

.338 

.84 

.80 

.79 

.83 

.89 

.148 

.76 

.86 

.80 

.76 

.90 

.292 

.82 

.80 

.83 

.83 

.89 

.310 

.87 

.87 

.93 

.87 

.92 

.450 

.97 

.88 

.89 

.96 

.93 

based on all 5740 treatment coefficients in regressions with reported treatment coefficients 

authors’ p-value 

randomization-t 

bootstrap-t 

jackknife 

randomization-c 

bootstrap-c 

.306 

.82 

.85 

.91 

.79 

.96 

.448 

.98 

.91 

.94 

.94 

.98 

.188 

.82 

.89 

.80 

.85 

.90 

.329 

.84 

.80 

.79 

.83 

.89 

.147 

.76 

.87 

.81 

.76 

.90 

.293 

.82 

.81 

.83 

.82 

.88 

.314 

.88 

.86 

.90 

.88 

.90 

.438 

.97 

.90 

.90 

.97 

.94 

   Notes:  As in Table V in the paper. 
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Appendix  Table VIa:  Joint Statistical Significance of Treatment Effects (Regression Level)  

(joint tests based on F and Wald statistics) 

 
all papers 

(47 papers) 

low leverage 

(16 papers) 

medium leverage 

(16 papers) 

high leverage 

(15 papers) 

first table 

(29 papers) 

other tables 

(29 papers) 

 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 

significant coef. (reported) .431 .643 .353 .596 .450 .607 .495 .731 .469 .620 .413 .584 

significant coef. (all) .461 .682 .407 .655 .473 .665 .505 .730 .510 .643 .443 .610 

reported treatment effects (922 regressions with > 1 reported treatment effect) 

authors' method .438 .546 .435 .508 .392 .539 .490 .595 .383 .528 .400 .473 

randomization-t 

bootstrap-t 

jackknife 

randomization-c 

bootstrap-c 

.76 

.72 

.90 

.84 

.94 

.83 

.81 

.88 

.88 

.95 

1.01 

.96 

.98 

.99 

.95 

1.00 

.96 

.96 

1.00 

.98 

.90 

.84 

.97 

.87 

1.00 

.94 

.91 

.91 

.95 

.93 

.42 

.39 

.76 

.66 

.87 

.58 

.57 

.79 

.70 

.95 

.84 

.93 

.98 

.96 

1.01 

.92 

.84 

.96 

.91 

1.01 

.84 

.74 

.90 

.90 

.89 

.86 

.81 

.92 

.93 

.96 

all treatment effects (990 regressions with > 1 treatment effect) 

authors' method .457 .574 .473 .561 .408 .555 .494 .607 .410 .567 .431 .506 

randomization-t 

bootstrap-t 

jackknife 

randomization-c 

bootstrap-c 

.76 

.74 

.91 

.84 

.95 

.82 

.82 

.88 

.88 

.95 

.99 

1.00 

.98 

.99 

.97 

.99 

.99 

.96 

1.01 

.98 

.90 

.82 

.97 

.89 

1.01 

.93 

.90 

.93 

.98 

.95 

.41 

.39 

.77 

.65 

.86 

.55 

.55 

.76 

.67 

.91 

.85 

.96 

.98 

.95 

1.02 

.87 

.87 

.90 

.90 

.95 

.83 

.77 

.88 

.90 

.85 

.86 

.83 

.90 

.93 

.93 

   Notes:  As in Table VI in the paper. 
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Appendix Table VIb:  Joint Statistical Significance of Treatment Effects (Regression Level)  

(presence of at least one significant effect in multiple testing using Bonferroni (B) and Westfall-Young (WY) methods) 

 
all papers 

(47 papers) 

low leverage 

(16 papers) 

medium leverage 

(16 papers) 

high leverage 

(15 papers) 

first table 

(29 papers) 

other tables 

(29 papers) 

 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 

significant coef. (reported) .431 .643 .353 .596 .450 .607 .495 .731 .469 .620 .413 .584 

significant coef. (all) .461 .682 .407 .655 .473 .665 .505 .730 .510 .643 .443 .610 

reported treatment effects (922 regressions with > 1 reported treatment effect) 

authors’ p-value (B) .335 .494 .274 .426 .322 .526 .415 .533 .340 .501 .306 .442 

randomization-t (B) 

bootstrap-t (B) 

jackknife (B) 

randomization-c (B) 

bootstrap-c (B) 

.73 

.76 

.80 

.74 

.82 

.85 

.88 

.85 

.79 

.92 

.99 

1.06 

1.03 

1.02 

.91 

1.02 

1.03 

.93 

1.02 

.94 

.59 

.80 

.78 

.76 

.84 

.88 

.87 

.94 

.79 

.88 

.66 

.51 

.64 

.52 

.75 

.67 

.76 

.68 

.59 

.93 

.81 

1.01 

.98 

.87 

1.11 

.96 

.90 

.97 

1.00 

1.01 

.78 

.86 

.85 

.85 

.81 

.82 

.85 

.84 

.89 

.90 

randomization-t (WY) 

bootstrap-t (WY) 
randomization-c (WY) 

bootstrap-c (WY) 

.76 

.77 

.75 

.86 

.89 

.92 

.81 

.96 

1.00 

1.07 
1.06 

.93 

1.08 

1.03 
1.03 

.99 

.68 

.80 

.76 

.86 

.92 

.93 

.81 

.91 

.66 

.52 

.53 

.82 

.70 

.81 

.61 

.97 

.78 

1.01 
.87 

1.11 

.96 

.94 
1.03 

1.01 

.85 

.87 

.88 

.85 

.89 

.87 

.92 

.93 

all treatment effects (990 regressions with > 1 treatment effect) 

authors’ p-value (B) .352 .512 .320 .465 .330 .534 .411 .537 .386 .534 .322 .456 

randomization-t (B) 

bootstrap-t (B) 

jackknife (B) 

randomization-c (B) 

bootstrap-c (B) 

.74 

.78 

.81 

.75 

.84 

.86 

.89 

.86 

.80 

.93 

.97 

1.05 

1.01 

.99 

.92 

1.03 

1.03 

.94 

1.02 

.95 

.61 

.83 

.80 

.80 

.87 

.90 

.91 

.96 

.83 

.92 

.67 

.52 

.65 

.52 

.75 

.66 

.75 

.67 

.57 

.92 

.82 

1.01 

.97 

.86 

1.08 

.98 

.92 

.98 

1.01 

1.02 

.80 

.86 

.84 

.88 

.80 

.84 

.84 

.83 

.90 

.89 

randomization-t (WY) 

bootstrap-t (WY) 

randomization-c (WY) 

bootstrap-c (WY) 

.77 

.79 

.77 

.88 

.90 

.93 

.82 

.97 

.98 

1.06 

1.04 

.94 

1.08 

1.03 

1.03 

1.00 

.68 

.83 

.81 

.88 

.93 

.97 

.85 

.95 

.66 

.53 

.52 

.83 

.69 

.79 

.59 

.96 

.80 

1.01 

.86 

1.09 

.98 

.96 

1.03 

1.02 

.87 

.87 

.92 

.84 

.90 

.86 

.92 

.91 

   Notes:  As in Table VI in the paper. 
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Appendix Table VIIa:  Joint Statistical Significance of Treatment Effects (Table Level)  

(joint tests based on Wald statistics) 

 
all papers 

(53 papers) 

low leverage 

(18 papers) 

medium leverage 

(17 papers) 

high leverage 

(18 papers) 

first table 

(45 papers) 

other tables 

(45 papers) 

 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 

significant coef. (reported) .662 .818 .617 .788 .602 .753 .764 .908 .711 .889 .630 .786 

significant coef. (all) .680 .836 .658 .816 .613 .780 .764 .908 .733 .889 .650 .813 

reported treatment effects (198 tables) 

conventional .493 .622 .337 .487 .431 .522 .706 .850 .422 .556 .483 .606 

randomization-t 

bootstrap-t 

jackknife 
randomization-c 

bootstrap-c 

.51 

.21 

.77 

.62 

.62 

.67 

.33 

.84 

.70 

.68 

.92 

.33 

.92 

.99 

.68 

1.00 

.51 

.86 

.90 

.58 

.40 

.18 

.76 

.64 

.57 

.74 

.41 

.91 

.77 

.72 

.38 

.18 

.71 

.46 

.62 

.45 

.19 

.78 

.55 

.73 

.79 

.38 

.89 

.78 

.79 

.80 

.45 

.84 

.79 

.64 

.62 

.23 

.81 

.66 

.65 

.78 

.40 

.84 

.71 

.67 

all treatment effects (198 tables) 

conventional .545 .654 .448 .571 .469 .534 .714 .850 .444 .533 .564 .676 

randomization-t 

bootstrap-t 

jackknife 

randomization-c 

bootstrap-c 

.52 

.21 

.78 

.62 

.58 

.67 

.33 

.86 

.70 

.67 

.85 

.32 

.91 

.86 

.63 

.95 

.49 

.90 

.87 

.59 

.43 

.17 

.72 

.66 

.48 

.75 

.40 

.92 

.78 

.68 

.36 

.17 

.75 

.45 

.61 

.44 

.19 

.80 

.54 

.73 

.80 

.41 

.90 

.79 

.80 

.88 

.52 

.92 

.83 

.71 

.60 

.21 

.80 

.61 

.57 

.74 

.36 

.84 

.68 

.62 

   Notes:  As in Table VII in the paper.   
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Appendix Table VIIb:  Joint Statistical Significance of Treatment Effects (Table Level) 

(presence of at least one significant effect in multiple testing using Bonferroni (B) and Westfall-Young (WY) methods) 

 
all papers 

(53 papers) 

low leverage 

(18 papers) 

medium leverage 

(17 papers) 

high leverage 

(18 papers) 

first table 

(45 papers) 

other tables 

(45 papers) 

 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 

significant coef. (reported) .662 .818 .617 .788 .602 .753 .764 .908 .711 .889 .630 .786 

significant coef. (all) .680 .836 .658 .816 .613 .780 .764 .908 .733 .889 .650 .813 

reported treatment effects (198 tables) 

authors’ p-value (B) .377 .542 .329 .489 .275 .475 .521 .659 .400 .556 .349 .491 

randomization-t (B) 

bootstrap-t (B) 

jackknife (B) 
randomization-c (B) 

bootstrap-c (B) 

.61 

.69 

.71 

.67 

.96 

.81 

.78 

.85 

.79 

.90 

.88 

1.00 

1.00 
1.02 

1.00 

.98 

1.06 

.97 
1.01 

1.01 

.63 

.62 

.66 

.73 

.94 

.75 

.73 

.87 

.89 

.77 

.43 

.54 

.56 

.41 

.94 

.72 

.62 

.73 

.55 

.91 

.78 

.78 

.89 

.94 

1.06 

1.00 

.92 

1.00 
1.00 

1.08 

.69 

.79 

.74 

.64 

.82 

.84 

.82 

.84 

.79 

.91 

randomization-t (WY) 

bootstrap-t (WY) 

randomization-c (WY) 

bootstrap-c (WY) 

.77 

.79 

.75 

1.04 

.91 

.87 

.89 

1.01 

1.18 

1.20 

1.06 

1.13 

1.06 

1.09 

1.09 

1.03 

.67 

.73 

.88 

1.11 

.96 

.91 

.97 

1.02 

.55 

.55 

.48 

.94 

.77 

.68 

.70 

.99 

1.00 

.89 

1.00 

1.17 

1.12 

1.00 

1.16 

1.12 

.79 

.89 

.74 

.90 

.92 

.95 

.92 

1.02 

all treatment effects (198 tables) 

authors’ p-value (B) .406 .553 .398 .545 .290 .463 .521 .645 .422 .578 .386 .500 

randomization-t (B) 

bootstrap-t (B) 

jackknife (B) 

randomization-c (B) 

bootstrap-c (B) 

.64 

.72 

.73 

.71 

.98 

.83 

.81 

.87 

.83 

.92 

.94 

1.03 

.97 

1.05 

1.03 

.98 

1.03 

.97 

1.03 

1.01 

.60 

.63 

.71 

.79 

.97 

.77 

.81 

.92 

.98 

.82 

.43 

.54 

.56 

.41 

.94 

.74 

.63 

.75 

.55 

.91 

.74 

.79 

.89 

.95 

1.05 

1.00 

.92 

1.00 

.96 

1.04 

.74 

.82 

.76 

.72 

.86 

.87 

.86 

.88 

.87 

.95 

randomization-t (WY) 

bootstrap-t (WY) 

randomization-c (WY) 

bootstrap-c (WY) 

.79 

.80 

.78 

1.04 

.92 

.89 

.92 

1.02 

1.19 

1.17 

1.09 

1.14 

1.06 

1.05 

1.08 

1.03 

.69 

.74 

.94 

1.08 

.96 

.99 

1.03 

1.07 

.54 

.55 

.47 

.94 

.78 

.69 

.71 

.97 

1.00 

.89 

1.00 

1.11 

1.12 

1.00 

1.12 

1.12 

.82 

.90 

.79 

.94 

.94 

.99 

.97 

1.04 

   Notes:  As in Table VII in the paper. 
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Table A1:  Clustering at Authors’ Level vs Clustering at Treatment Level 

(significance rates in tests of individual treatment effects) 

 
impact on 12 papers consistently 

clustering below treatment level 

impact on 53 paper  

average results 

analysis at: authors’ level treatment level authors’ level treatment level 

 .01 .05 .01 .05 .01 .05 .01 .05 

authors’ level 

treatment level 

.205 

 

.323 

 

 

.220 

 

.359 
.216 

 
.354 

 

 

.221 

 

.364 

randomization-t 

bootstrap-t 

jackknife 

randomization-c 

bootstrap-c 

.97 

.90 

.92 

.92 

.91 

.95 

.91 

.86 

.90 

.89 

.37 

.32 

.44 

.26 

.91 

.64 

.59 

.62 

.60 

.87 

.78 

.79 

.78 

.75 

.88 

.87 

.84 

.83 

.85 

.93 

.65 

.66 

.68 

.60 

.88 

.80 

.77 

.78 

.78 

.93 

   Notes:  Numbers in bold are those reported in Table V of the paper; top row reports average across 12 or 

53 papers of the within paper fraction of significant results evaluated using authors’ methods (clustering at 

authors' level or treatment level); values in lower rows are average fraction of significant results evaluated 

using indicated method divided by the top row.  Bootstrap and randomization inference calculated using 

10000 samples, with standard errors calculated using authors’ methods in the case of -t results. 

 

IV:  Impact of Alternative Methods on Summary Results 

 In this appendix I report the impact on summary results of three deviations from the 

methods described above and in the paper: (1) clustering at treatment level rather than authors’ 

level; (2) bootstrapping each equation individually, restricting the bootstrap sample to the 

observations used in the estimating equation alone (rather than bootstrap sampling the entire 

experimental sample); (3) calculating conditional randomization p-values where possible, so that 

the p-value of each individual coefficient does not depend upon the null for other treatment 

coefficients. 

As noted in Section II of the paper, in the 12 papers where authors systematically cluster 

below treatment level (or do not cluster at all) I defer to their decision and re-randomize, 

bootstrap sample and jackknife at their clustering level, acting as if the treatment units (e.g. 

sessions or geographical units) are merely nominal.  Table A1 examines the impact of clustering 

the conventional p-value at treatment level and randomizing and bootstrap sampling at the 

treatment level as well.   As usual, the top line of the table reports the average across papers of 

the fraction of treatment effects that are conventionally significant (to three decimal places), 

while lower rows report the average across papers of the fraction of effects that are found to be 
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significant using randomization, bootstrap and jackknife methods divided by the top row (and 

reported with two decimal places for contrast).  Clustering at treatment level raises slightly the 

fraction of reported treatment effects that are .01 and .05 conventionally significant, but results in 

a substantial reduction in the relative fraction of significant results found using alternative 

methods.  The alternative methods produce significant coefficients at a rate of around .9 of 

authors’ methods when sampling at the level specified by authors, but (with the exception of the 

bootstrap-c) yield only .3 to .6 as many significant results when sampling at the treatment level.  

The right-hand panel of the table shows that these changes would have a large effect on the 

summary results reported in the paper.  While Table V of the paper reports that randomization-t 

methods on average produce .78 and .87 as many significant results as authors’ methods at the .01 

and .05 levels, respectively, if treatment level clustering had been imposed on the 12 papers that 

did not do so, the relative number of significant randomization results in the 53 paper sample 

would have fallen to .65 and .80 at the two levels.  

To keep bootstrap methods similar to those used in my baseline randomization analysis 

(where I re-randomize treatment across the entire experimental sample to simulate the potential 

distribution of outcomes), in the results reported in the paper I bootstrap by re-sampling the entire 

experimental sample.  This also facilitates the calculation of the joint distribution of coefficients 

across equations.  However, the bootstrap is usually implemented by only resampling the 

observations in the estimating equation itself.  This may differ from the total experimental sample 

because of missing data for individual observations or because the regression itself is explicitly 

restricted to a sub-sample of the experiment based upon conditionals (e.g. covariate values).  

Table A2 below compares bootstrap coefficient rejection rates found when resampling the entire 

experimental sample with those found when restricting the resampling to the observations/ 

clusters present in each individual equation.  As shown, bootstrapping at the equation level 

generally results in slightly lower relative rejection rates, particularly in the case of the bootstrap-t 

(the results of which are reported in the paper’s tables).  Since coefficient estimates are not 

affected by deleting observations that are not in the regression sample, it makes no difference 

whether I implement the jackknife using the entire sample or the regression sample alone.   
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Table A2:  Relative Coefficient Rejection Rates Found 

Using Alternative Forms of Bootstrap Resampling 

 
resampling the 

entire experiment 

resampling regression 

specific observations 

 
reported 

coefficients 

all 

coefficients 

reported 

coefficients 

all 

coefficients 

 .01 .05 .01 .05 .01 .05 .01 .05 

authors’ p-value 

bootstrap-t 

bootstrap-c 

.216 

.79 

.88 

.354 

.84 

.93 

.213 

.78 

.87 

.345 

.84 

.93 

.216 

.78 

.90 

.354 

.83 

.91 

.213 

.78 

.89 

.345 

.83 

.91 

   Notes:  As in Table A1.  

 

As noted in the paper, randomization p-values for individual treatment effects in equations 

with multiple treatment variables in general depend upon the null assumed for the effects of other 

treatment measures, as these effects are accounted for in the adjustments to the dependent 

variable following each re-randomization draw TS from Ω.  However, as also noted, it is possible 

to calculate “conditional” p-values in some cases, where one can consider the universe of 

potential reallocations of a given treatment measure conditional on holding constant the 

allocations of other treatment measures.  This can, for example, be implemented in cases where 

there are multiple treatment regimes and no interactions of these regimes with non-treatment 

covariates.  In implementing this procedure, I fully condition, restricting the re-randomization 

process to the observations in the estimating equation alone, so as to produce results that are as 

close as possible in spirit to conventional p-values.  Thus, the thought experiment for the re-

randomization is: “for the participant observations that ended up in this estimating equation, what 

potential reallocations of treatment variable x, holding constant other treatments, might have 

occurred given the method in which treatment was allocated (e.g. strata).”   

I am able to calculate conditional p-values of this sort for 1294 of the 3254 reported 

treatment effects in equations with more than one treatment variable and 2235 of the 4950 total 

treatment effects (including unreported) in equations with more than one treatment variable.  

However, in some cases the condition that the allocation of other treatment variables be kept 

constant restricts the number of potential outcomes so much that there are a large number of 

“ties”, generating unusually large p-values when a random number allocates the ties, as in 

equation (5) in the paper.  To avoid this, I drop all cases where the ties account for more than .01  
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Table A3:  Rejection Rates for Individual Treatment Effects Found 

Using Alternative Forms of Randomization Inference 

(average rejection rates in multi-treatment equations in 25 papers) 

 unconditional joint 0 null conditional individual 0 nulls 

 
reported 

coefficients 

all 

coefficients 

reported 

coefficients 

all 

coefficients 

 .01 .05 .01 .05 .01 .05 .01 .05 

authors’ p-value 

randomization-t 

randomization-c 

.273 

.90 

.79 

.384 

.96 

.96 

.270 

.90 

.81 

.372 

.97 

.97 

.273 

.83 

.90 

.384 

.95 

.95 

.270 

.83 

.92 

.372 

.97 

.98 

   Notes:  As in Table A1.   

 

of total randomization draws.  This leaves me with 1023 conditional p-values on reported 

treatment effects and 1849 on all treatment effects in regressions from 25 papers.  As shown in 

Table A3, average relative rejection rates in individual tests at the .05 level are almost identical 

for conditional p-values for individual nulls as they are for unconditional individual p-values 

based upon joint nulls.  At the .01 level, conditional results produce lower rejection rates in the 

randomization-t and higher rejection rates in the randomization-c.  Since the paper itself reports -t 

results, use of conditional p-values would make reported results in the paper somewhat less 

favourable to authors’ results. 

 As noted in the paper, use of alternative randomization inference schemes has a very 

substantial effect on the change in p-values when conventionally significant results are found to 

be insignificant.  Table A4 below reproduces Table VIII’s analysis in the paper of the distribution 

of randomization p-values for reported results that are found to be significant using authors’ 

methods.  As reported in the paper, when an individual treatment effect is statistically significant 

at the .01 level using authors’ methods, only .019 of randomization-t p-values are above .10.  The 

randomization-c finds greater differences, with .073 of randomization-c p-values lying above .10.  

In the 12 papers where authors systematically clustered below treatment level, when a .01 

conventionally significant result is found, the randomization-t p-value is never above .05.  

However, when both the conventional and randomization test are based upon clustering at 

treatment level, in the average paper the corresponding randomization-t p-value is greater than 

.10 almost one-fifth of the time.  Turning to the treatment effects in 25 papers where I was able to 

calculate conditional randomization p-values that do not depend upon the nulls for other  
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Table A4:  Distribution of Randomization P-Values for Individual Treatment Effects 

that are Conventionally Significant using Alternative Forms of Randomization Inference 

 all 53 papers 12 papers 25 papers 

 rand-t rand-c 
authors’ 

clustering 

treatment 

clustering 

unconditional 

p-value 

conditional  

p-value 

 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 

< .01 

.01 - .05 

.05 - .10 

.10 - .20 

> .20 

.752 

.160 

.068 

.014 

.005 

↓ 

.853 

.101 

.029 

.017 

.701 

.191 

.034 

.027 

.046 

↓ 

.804 

.101 

.038 

.057 

.805 

.195 

.000 

.000 

.000 

↓ 

.927 

.018 

.054 

.000 

.322 

.433 

.058 

.135 

.051 

↓ 

.648 

.134 

.114 

.104 

.881 

.111 

.003 

.005 

.000 

↓ 

.970 

.020 

.004 

.006 

.797 

.140 

.015 

.026 

.021 

↓ 

.915 

.027 

.027 

.031 

   Notes:  Reported figures are the average across papers of the within paper distribution of randomization p-values 

when a coefficient is significant at the level specified using authors’ methods; (↓) included in the category below; 

numbers in bold are those reported in Table VIII of the paper; distributions for comparison of authors’ vs. 

treatment clustering and conditional vs. unconditional nulls are based on the randomization-t. 

 

treatment variables in multi-treatment equations, when a conventionally significant result is found 

the randomization-t based upon the full randomization distribution and assuming a null of zero 

for all treatment effects finds p-values greater than .10 on average only .005 of the time.  In 

contrast, the conditional randomization p-value that only rerandomizes the treatment associated 

with a given coefficient, and hence does not depend upon the nulls for other treatment effects, 

finds a p-value greater than .10 on average .047 of the time.  In sum, the results presented in the 

paper are for those randomization methods which yield the smallest average differences between 

randomization and conventional rejection rates and the smallest difference between 

randomization and conventional p-values when a conventional result is statistically significant. 
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V:  Relative Power of Randomization-t and Conventional Robust Methods 

 This appendix reports the relative power of randomization-t and conventional robust 

inference in Monte Carlos.  I use the data generating processes of the upper panel of Table III in 

the paper, with observation specific treatment effects which are either fixed (i.e. the same for all 

participants) or distributed as standard normal or chi
2
 variables.  I vary the mean of these effects 

by adding a constant to their distribution and continue to test the null that the mean effect is zero.  

As in Table III, I conduct 10000 Monte Carlos for each of the three data generating processes for 

each of three sample sizes (N = 20, 200 and 2000).  The results are reported in Table A5 below.  

The table begins by reporting relative randomization-t to robust inference size and the absolute 

level of randomization-t size, so as to allow the reader to recall when the tests have correct 

nominal size and when they have positive size distortions.  In the lower panels, I then vary the 

mean of the data generating process to generate power (i.e. rejection rates) of .10, .25, .50, .75, 

and .90 in the conventional test of the (false) zero null at the .05 level.  The relative power of the 

randomization-t to that of the conventional test using the robust covariance estimate is reported, 

as well as the ratio of randomization-t power to size to that found using the conventional test.  As 

was reported in the paper, when both tests have size near nominal value, i.e. in balanced 

regression designs or large samples, there relative power is identical.  In small samples with 

unbalanced regression design, the power of randomization inference falls below that of the 

conventional test (which has large size distortions in these cases), but the ratio of power to size is 

found to be greater (and often much greater) using randomization inference. 
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Table A5:  Relative Power and Size of Randomization-t and Robust Inference 

 balanced design unbalanced design balanced design unbalanced design 

 fixed normal chi2 fixed normal chi2 fixed normal chi2 fixed normal chi2 

 relative randomization-t/robust size randomization-t size 

20 

200 

2000 

1.01 

1.00 

1.01 

.99 

.99 

.98 

1.03 

1.01 

1.00 

.19 

.76 

.97 

.31 

.80 

1.00 

.31 

.79 

.97 

.048 

.048 

.049 

.052 

.052 

.048 

.062 

.055 

.045 

.046 

.051 

.052 

.089 

.051 

.052 

.091 

.065 

.052 

relative randomization-t/robust power relative randomization-t/robust power/size 

when conventional test has power = .10 at .05 level 

20 

200 

2000 

1.00 

.99 

1.01 

1.00 

1.01 

1.00 

1.12 

1.00 

1.01 

NA 

.82 

.99 

NA 

.81 

.99 

NA 

.78 

.97 

.99 

.99 

1.00 

1.00 

1.01 

1.02 

1.09 

.99 

1.00 

NA 

1.07 

1.02 

NA 

1.01 

.99 

NA 

.99 

1.00 

when conventional test has power = .25 at .05 level 

20 

200 

2000 

.99 

1.01 

1.00 

.99 

1.00 

1.00 

1.07 

1.01 

.99 

.20 

.86 

.99 

NA 

.84 

.98 

NA 

.81 

.98 

.98 

1.00 

.99 

1.00 

1.01 

1.02 

1.04 

1.00 

.99 

1.07 

1.13 

1.02 

NA 

1.06 

.98 

NA 

1.03 

1.00 

when conventional test has power = .50 at .05 level 

20 

200 

2000 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.05 

1.00 

1.00 

.39 

.90 

.99 

.46 

.91 

.98 

.44 

.88 

.99 

.98 

.99 

.99 

1.00 

1.01 

1.02 

1.02 

.99 

1.00 

2.09 

1.18 

1.02 

1.48 

1.14 

.98 

1.40 

1.12 

1.02 

when conventional test has power = .75 at .05 level 

20 

200 

2000 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.03 

1.00 

1.00 

.54 

.94 

1.00 

.62 

.95 

.99 

.57 

.94 

.99 

.99 

.99 

.99 

1.00 

1.00 

1.01 

1.00 

.99 

1.00 

2.87 

1.23 

1.03 

1.99 

1.19 

.99 

1.82 

1.19 

1.02 

when conventional test has power = .90 at .05 level 

20 

200 

2000 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.01 

1.00 

1.00 

.69 

.97 

1.00 

.77 

.97 

1.00 

.72 

.97 

1.00 

.98 

1.00 

.99 

1.01 

1.01 

1.02 

.99 

.99 

1.00 

3.62 

1.27 

1.03 

2.46 

1.22 

.99 

2.31 

1.23 

1.02 

  Notes:  NA – not applicable, there is no null for which power of robust inference equals the indicated level, 

because size already exceeds this value.  Reported figures are based upon 10000 Monte Carlo simulations using 

the data generating processes described in the upper panel of Table III of the paper. 
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VI:  Determinants of Disagreement between Authors' Results and those of the 

Randomization-t 

 Tables A6 and A7 analyze the determinants of disagreement between authors’ and 

randomization-t results in the tests of individual treatment effects reported in Section V of the 

paper.  The dependent variable is a 0/1 indicator for disagreement in statistical significance when 

a treatment effect is significant at the .01 or .05 level using authors' methods (1 = disagreement, 

randomization-t not significant at that level).  The right hand side variables are the maximum 

cluster or observation leverage, the number of clusters or observations, indicators for a first table 

or a regression with covariate interactions with treatment, and paper fixed effects.  In columns (1) 

and (5) each cell represents a different regression, with one right hand side variable entered at a 

time (plus, in the right hand panel, paper fixed effects).  Each subsequent column refers to an 

individual regression, with maximum leverage entered alongside the other variable with reported 

results (with and without paper fixed effects).  The sample in Table A6 is restricted to 

conventionally significant reported treatment effects, while Table A7 expands the sample to 

include conventionally significant unreported treatment effects.  Standard errors are clustered at 

the paper level. 

 Two patterns are apparent in the tables.  First, in most specifications maximal 

cluster/observation leverage is statistically significant, while the coefficients for other right hand 

side variables generally become insignificant once maximum cluster/observation leverage is 

included in the regression.  Second, the coefficients on other right hand side variables are moved 

toward zero by the inclusion of maximal leverage in the regression, to the degree that, in one 

specification or another, they are shrunken by at least 50 percent.  In contrast, the coefficients on 

maximal leverage are hardly changed by the inclusion of the number of observations or dummies 

for first tables or interactions in the regression.  Given the small number of papers in the sample, 

the statistical significance of maximal leverage should not be taken too seriously.  Nevertheless, 

the two patterns are strongly suggestive that the number of observations and indicators for first 

tables and covariate interactions, insofar as they explain differences between authors’ and 

randomization-t results, probably do so because of their association with regression design. 
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Table A6:  Determinants of Differences Between Conventional and Randomization-t 

Significance in Tests of Individual Treatment Effects 

(reported treatment effects) 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 without paper fixed effects with paper fixed effects 

indicator for disagreement when conventional results are .01 significant (N =  672) 

maximal cl/obs leverage 
2.09

*
 

(.495) 

2.05
*
 

(.500) 

2.09
*
 

(.503) 

1.98
*
 

(.490) 

1.67
**

 

(.701) 

1.67
**

 

(.701) 

1.62
**

 

(.714) 

1.50
**

 

(.660) 

# of cl/observations 
-6.0e

-6*
 

(1.7e
-6

) 

-2.7e
-6

 

(1.5e
-6

) 
  

-2.9e
-6

 

(3.7e
-6

) 

-2.5e
-6

 

(3.4e
-6

) 
  

first table 
-.065 

(.059) 
 

-.070 

(.048) 
 

-.058 

(.056) 
 

-.032 

(.055) 
 

covariate interactions 
.146 

(.093) 
  

.091 

(.081) 

.167
**

 

(.066) 
  

.144
**

 

(.069) 

indicator for disagreement when conventional results are .05 significant (N = 1234) 

maximal cl/obs leverage 
1.66

*
 

(.372) 

1.65
*
 

(.374) 

1.63
*
 

(.361) 

1.66
*
 

(.391) 

1.55
*
 

(.302) 

1.55
*
 

(.301) 

1.53
*
 

(.307) 

1.47
*
 

(.299) 

# of cl/observations 
-3.6e

-6**
 

(1.4e
-6

) 

-9.4e
-7

 

(1.4e
-6

) 
  

2.4e
-6

 

(2.8e
-6

) 

2.8e
-6

 

(2.9e
-6

) 
  

first table 
-.084

**
 

(.036) 
 

-.065 

(.034) 
 

-.044 

(.030) 
 

-.014 

(.030) 
 

covariate interactions 
.040 

(.062) 
  

-.003 

(.055) 

.091
*
 

(.031) 
  

.063 

(.034) 

  Notes:  N = number of observations; cl/obs = cluster or observation; e
-x

 = times 10
-x

; *, ** = .01 or .05 

significant, respectively; standard errors clustered at the paper level.  In columns (1) and (5) each regressor 

is entered individually (i.e. each cell represents a separate regression); other columns report individual 

regressions with all variables with reported results entered simultaneously. 
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Table A7:  Determinants of Differences Between Conventional and Randomization-t 

Significance in Tests of Individual Treatment Effects 

(reported & unreported treatment effects) 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 without paper fixed effects with paper fixed effects 

indicator for disagreement when conventional results are .01 significant (N =  773) 

maximal cl/obs leverage 
1.48

**
 

(.632) 

1.44
**

 

(.632) 

1.48
**

 

(.642) 

1.34
**

 

(.633) 

.644 

(.712) 

.643 

(.712) 

.617 

(.723) 

.556 

(.666) 

# of cl/observations 
-6.8e-6** 

(2.6e
-6

) 

-4.1e-6** 

(2.0e
-6

) 
  

-3.0e-6 

(3.8e
-6

) 

-2.8e-6 

(3.6e
-6

) 
  

first table 
-.050 

(.055) 
 

-.050 

(.045) 
 

-.044 

(.048) 
 

-.033 

(.050) 
 

covariate interactions 
.167 

(.086) 
  

.110 

(.078) 

.154
*
 

(.056) 
  

.143
**

 

(.060) 

indicator for disagreement when conventional results are .05 significant (N = 1457) 

maximal cl/obs leverage 
1.39

*
 

(.373) 

1.38
*
 

(.374) 

1.38
*
 

(.370) 

1.37
*
 

(.391) 

.951
**

 

(.380) 

.953
**

 

(.381) 

.926
**

 

(.381) 

.895
**

 

(.359) 

# of cl/observations 
-4.1e

-6**
 

(1.8e
-6

) 

-1.6e
-6

 

(1.4e
-6

) 
  

2.3e
-6

 

(2.7e
-6

) 

2.6e
-6

 

(2.8e
-6

) 
  

first table 
-.069

**
 

(.031) 
 

-.056 

(.029) 
 

-.045 

(.026) 
 

-.027 

(.028) 
 

covariate interactions 
.062 

(.056) 
  

.016 

(.050) 

.091
*
 

(.027) 
  

.074
**

 

(.029) 

  Notes:  as in Table A6. 
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VII:  Papers in the Experimental Sample 
 

The following are the papers in the experimental sample.  The acronym at the beginning 

of each reference is the code used to identify the paper in the public use do-files. 
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