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Abstract 

 Analyzing the distributions of the pairs and wild bootstraps as those of permutation 

statistics provides a different approach to proving consistency, allowing the derivation of new 

results.  For the case of independently but not-necessarily identically distributed (inid) data, this 

approach reveals moment conditions for consistency which cover more general regression models 

than earlier inid results and are often less demanding than previous results for independently and 

identically distributed data. 
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I.  Introduction 

 This paper marries results on the asymptotic distribution of permutation statistics (Wald 

& Wolfowitz 1944, Noether 1949 and Hoeffding 1951) to White's (1980) proof of the 

consistency of the heteroskedasticity robust ordinary least squares (OLS) covariance estimate to 

extend results concerning the consistency of the pairs and wild OLS bootstraps, which have 

mostly been derived for independently and identically distributed (iid) data, to general regression 

frameworks with independently but not-necessarily identically distributed (inid) data.  Instead of 

considering the sampling distribution of the bootstraps, the usual approach, one can instead note 

that any permutation of the pairs bootstrap vector of sampling frequencies or the realization of the 

external variable used by the wild bootstrap to transform residuals is equally likely.  These 

equally likely permutations can be used to characterize the bootstrap distributions conditional on 

the data as normal given restrictions on sample moments of the data.  White's (1980) conditions 

for the asymptotic normality of OLS coefficients guarantee these restrictions almost surely, 

ensuring that the asymptotic distribution of pairs and wild bootstrapped coefficients and Wald 

statistics conditional on the data matches the unconditional distribution of the original OLS 

estimates. 

 This paper broadens earlier results on the consistency of the OLS bootstrap.  For OLS 

models with iid data and potentially heteroskedastic errors, Freedman (1981) showed bounded  

fourth moments of both regressors and errors are sufficient for consistency of the pairs bootstrap 

coefficient distribution1, and that of the Wald statistic based upon the (potentially incorrect) 

assumption of homoskedastic errors.  Stute (1990) showed that for consistency of the coefficient 

distribution alone in the heteroskedastic iid model it is sufficient for both the squared regressors 

and the product of the squared regressors with the squared errors to have finite expectation.  For 

similarly iid data, Mammen (1993) proved consistency of the wild OLS bootstrap coefficient and 

                                                 
1With independent homoskedastic errors, the bootstrap resampling of estimated residuals (rather than the data 

itself) always yields consistent estimates of the coefficient distribution for a fixed number of OLS regressors (Bickel 
and Freedman 1983). 
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homoskedasticity-based Wald test distributions with bounded expectations of the product of the 

fourth power of the regressors with the squared errors and an additional Lindeberg condition.  

This paper finds consistency of both the coefficient and heteroskedasticity robust Wald statistic 

distribution in a broader inid environment for both the pairs and wild bootstraps with finite 

expectations of only slightly more than second powers of the regressors and of the product of the 

second powers of the regressors with the second power of the errors.  These are much less 

demanding assumptions than those used by Freedman and Mannon, requiring only slightly higher 

moments than used by Stute for the proof of only the pairs bootstrap coefficient distribution in a 

narrower iid environment.  These results are useful because when data are drawn, for example, 

from distinct populations, geographic regions or time periods, the iid assumption is less likely to 

hold.2  Moreover, the distribution of the homoskedasticity-based Wald test is not pivotal in a 

heteroskedastic iid or inid environment, as recognized by Freedman (1981) and Mammen (1993), 

whereas that of the heteroskedasticity robust Wald test is.  Bootstrapped pivotal test statistics 

asymptotically provide higher order accuracy and faster convergence of rejection probabilities to 

nominal value (Singh 1981, Hall 1992). 

 For OLS models with inid data, the salient contribution is Liu (1988), who showed that 

the wild bootstrap provides consistent estimates of the second central moment of a linear 

combination of coefficients in an OLS regression model with bounded regressors provided the 

first and second moments of the wild bootstrap external variable are 0 and 1, respectively.  Liu's 

result regarding the second central moment is easily extended to the case of the multivariate 

second central moments of coefficients for unbounded inid regressors without any additional 

restrictions on the moments of the external variable, as shown below.  Our interest here, however, 

is in the full distribution of wild bootstrap coefficient and Wald statistic estimates, where our 

proof requires the existence of higher moments of the wild bootstrap external variable to ensure 

                                                 
2As examples:  (i) Thornton (2008) used a randomized experiment to investigate the demand for and effects of 

learning HIV status across north, central and south Malawi, which differ systematically in their ethnicity and 
religion.  (ii) Cai et al (2009) investigated saliency by randomly assigning restaurant arrivals in China to tables with 
different menu setups; not surprisingly, the total bill paid varies systematically with the time of day. 
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convergence of higher moments to the normal.  As the external variable is selected by the 

practitioner, and not an exogenous characteristic of the data, these additional moment conditions 

pose no obstacle.  The two point distribution proposed by Mammen (1993) and the Rademacher 

distribution, both often used in practical application (e.g. Davidson & Flachaire 2008), have 

moments of all order. 

 Liu's consideration of inid data has largely not been extended, as the OLS bootstrap 

literature since has focused on time series dependent data, where the absence of random sampling 

of independent observations raises different statistical issues and the use of different bootstrap 

methods (see the review in Hardle et al 2003).  Djogbenou et al (2019), who prove consistency of 

the wild bootstrap t-statistic distribution for independently distributed cluster groupings of data, 

are a notable exception.  With the moment assumptions used here plus the additional requirement 

of bounded slightly higher than fourth moments of the regressors, their proof allows for 

heterogeneity in the distribution of data across clusters.  However, they limit that heterogeneity in 

requiring that the cross product of the regressors and the covariance matrix of coefficient 

estimates converge to matrices of constants, a condition that in other papers is typically 

motivated by an iid assumption.3  The data generating process examined in this paper is more 

fully inid in that there is no restriction that such matrices converge to anything, and the moment 

assumptions are also less demanding.  While the results in this paper are not revolutionary, the 

use of the permutation distribution allows a common proof of the consistency of the pairs and 

wild bootstrap distributions of both coefficients and Wald statistics in a fully inid framework with 

unbounded regressors and by and large less demanding moment conditions than used earlier. 

 The paper proceeds as follows:  Section II reviews the OLS model, White's assumptions 

and results regarding OLS with inid data, and pairs and wild bootstrap methods for 

heteroskedastic data.  Section III presents the foundational theorems regarding the asymptotic 

                                                 
3Canay et al (2021) who examine wild bootstrap consistency when the number of independent cluster 

groupings is fixed, similarly allow for heterogeneity across clusters while assuming convergence of the full sample 
cross-product and covariance matrices to matrices of constants and, additionally, convergence of the projection of 
regressors on each other within each cluster to a common matrix. 
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normality of permutation distributions that motivate the results.  Section IV then combines these 

with White's (1980) result to derive sufficient conditions for pairs and wild OLS bootstrap 

consistency with inid data, concluding with remarks that more fully contrast the assumptions and 

results with those used in the papers cited above.  The appendix and on-line appendix provide 

details of the proofs. 

II. Framework and Notation 

 Our interest is in inference for the linear model iiiy  βx , i = 1... N, or in matrix form 

,)1( εXβy    

where y represents the N x 1 matrix of observations on the dependent (outcome) variable, X the N 

x K matrix of observations of independent variables, β the K x 1 vector of unobserved parameters 

of interest , and ε the N x 1 matrix of unobserved disturbances.  The ordinary least squares 

estimates Nβ̂ of β minimize the sum of squared estimated residuals NNεε ˆˆ , where ,ˆˆ NN βXyε   

producing the estimates 

,)(ˆ)2( 1 yXXXβ  
N  

where for the purpose of describing limits below we use the subscript N to emphasize that the 

estimated coefficients and residuals are functions of N realized observations.  If the disturbances 

εi are homoskedastic with common variance 22  i , one can use the homoskedastic variance 

estimate of Nβ̂ , )/(ˆˆ)( 1 KNNN   εεXX , but we focus on more general inference using White's 

(1980) heteroskedasticity robust covariance estimate, 

,)(}ˆ}{ˆ{)()ˆ(ˆ)3( 11   XXXεεXXXβV NNN  

where here and frequently later we use the notation {z} to denote a diagonal matrix with diagonal 

entries given by the vector z.   

 White (1980) provided conditions for valid inference in this model when the row vector 

of random variables associated with each observation i, ),( ii x , are independently but not 

necessarily identically distributed (inid):   

Theorem I (following White 1980):  If there exist strictly positive finite constants γ, Δ and 

η such that the following conditions hold 
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(Ia) ),( ii x is a sequence of independent but not necessarily identically distributed random 

vectors such that KiiE 0x )(  , 

(Ib) (i) For all i ΔxxE ikij  )|(| 1   for all j, k = 1...K; (ii)  
 

N

i iiN EN
1

1 )( xxM is non-

singular with determinant(MN) > η for all N sufficiently large, 

(Ic) (i) For all i, ΔxxE ikiji  )|(| 12   for all j, k = 1...K; (ii)  
 

N

i iiiN EN
1

21 )( xxV  is non-

singular with determinant(VN) > η for all N sufficiently large, 

then 

,)-ˆ()ˆ(ˆ)-ˆ(v)(&)ˆ(ˆiv)(

large,ly sufficient  allfor  boundeduniformly  are inverses their and ,)iii(

,)ˆ()ii(,ˆ)i(

2
),(

1
),(

11

),(
½

),(

K

d

NNNKxK

as

NNNN

NN

K

d

NNN

as

N

N

N

N


εXεX

εXεX

βββVββ0MVMβV

VM

nββMVββ









 

 

where
),( εXas

 and 
),( εXd

 denote convergence almost surely and in distribution across (X,ε), 

respectively, A½ the "square root" of symmetric positive definite matrix A,4 nK the K 

dimensional standard normal and 2
K the central chi-squared with K degrees of freedom, 

and 0K and 0KxK vectors and matrices of zeros of the indicated dimensions. 

White (1980) used (Ia) - (Ic) to prove (i), (ii) and parts of (iii) and added the assumption 

ΔxxxE ilikij  )|(| 12   to prove (iv), (v) and other results.  However, (Ia) - (Ic) suffice to prove (i) - 

(5), as shown in the appendix below.5  White's covariance estimate often motivates inference with 

heteroskedasticity in an otherwise iid setting, such as when the variance of εi is a function of xi, 

but ),( ii x are otherwise iid draws from a fixed distribution.  However, )ˆ(ˆ
NβV  allows for 

asymptotically accurate inference in the much more general inid setting given above.  Given the 

inid data MN, VN and )ˆ(ˆ
NN βV do not necessarily converge to matrices of constants.  

 In this paper we examine two bootstrap techniques commonly used for OLS inference 

with heteroskedastic disturbances and prove the asymptotic consistency of their distributions for 

general inid data.  Wu's (1986) external bootstrap, now commonly known as the wild bootstrap, 

                                                 
4With E equal to the matrix of eigenvectors and Λ the diagonal matrix of eigenvalues of A, A½ = EΛ½E', 

where Λ½ is the diagonal matrix with entries equal to the square root of those of Λ. 
5White (1980) also assumed that ΔE i  )|(| 12  , but this is only used with (Ib) to prove ΔxE iij  )|(| 1  , 

which is actually implied by (Ic). The assumption ΔE i  )|(| 12   is dropped in White (1984), c.f. exercise 5.12. 
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holds the design matrix X constant and generates new realizations of the outcome vector y by 

multiplying the estimated residuals by a vector of independently and identically distributed 

external random variables w
i , so that w

iiNi
w
iy ̂ˆ  βx , or in matrix form w

NN
w δεβXy }ˆ{ˆ  .  

Selecting w
Nβ̂ so as to minimize the sum of squared residuals for this new data,  w

N
w

N εε ˆˆ  

)ˆ()ˆ( w
N

ww
N

w βXyβXy  , yields coefficient and covariance estimates 

.)(}}ˆ{)ˆˆ(}{}ˆ{)ˆˆ({)(

)(}ˆ}{ˆ{)()ˆ(ˆand

}ˆ{)(ˆ)(ˆ)4(

11

11

11













XXXδεββXδεββXXXX

XXXεεXXXβV

δεXXXβyXXXβ

w
N

w
NN

w
N

w
NN

w
N

w
N

w
N

w
NN

ww
N

 

Repeated draws of the N dimensional iid vector δw are made and the percentiles of the 

distribution of the deviation of the wild bootstrap coefficients from the mean of its data 

generating process, N
w
N ββ ˆˆ  , or Wald statistics for the same, )ˆˆ()ˆ(ˆ)ˆˆ( 1

N
w
N

w
NN

w
N βββVββ   , are 

used to evaluate the statistical significance of corresponding measures for tests of the null 

hypothesis β = β0 for the original sample, i.e. 0
ˆ ββ N  and )ˆ()ˆ(ˆ)ˆ( 0

1
0 βββVββ  

NNN .  All 

permutations of any given outcome vector δw are equally likely, a fact that plays a prominent role 

in the results of this paper.   

 The pairs bootstrap samples N observational pairs (yi,xi) from the rows of the original data 

(y,X) with replacement, producing the data set ),(),( ΔXΔyXy pp , where Δ is an N x N matrix 

of 0s with a single 1 in each row.6  Selecting p
Nβ̂ so as to minimize the sum of squared residuals 

for this new data, )ˆ()ˆ(ˆˆ p
N

ppp
N

ppp
N

p
N βXyβXyεε  , yields coefficient and covariance estimates  

,)(}ˆ}{ˆ{)()ˆ(ˆand

ˆ)(ˆ)(ˆ)5(

11

11









ΔXΔXΔXεεΔXΔXΔXβV

εΔΔXΔXΔXβΔyΔXΔXΔXβ

p
N

p
N

p
N

NN
p
N

 

where we use the fact that as NN εβXy ˆˆ  , so NN εΔβΔXΔy ˆˆ  .  Again, repeated samples are 

made and the resulting distribution of coefficients , N
p
N ββ ˆˆ  , and Wald statistics. 

)ˆˆ()ˆ(ˆ)ˆˆ( 1
N

p
N

p
NN

p
N βββVββ   , used to evaluate the statistical significance of corresponding 

measures for the original sample.   

                                                 
6The on-line appendix proves consistency for sub-sampling, with and without replacement, M < N 

observations.  
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 With some matrix algebra the equations for the pairs bootstrap can be transformed into a 

form that highlights their similarity with the wild bootstrap.  If we use the notation Djk to 

represent the jkth element of matrix D, D•j the jth column, and z some vector, then using the fact 

that Δ is a matrix of zeros with a single 1 in each row and the only potentially non-zero element 

of any {h}•k is hk 

.}{}){(

 0 ) (if  

)   if()()6(

2

1

11

2

1

jkjjkji

N

i
kikjkjjk

N

i
ij

N

i
ij

N

i
ikijkjjk

zzz

kj

kj

ΔΔΔΔΔzΔΔzΔ

ΔΔΔΔΔΔΔΔ

















 

Consequently, if we define  


N

i ij
p
j 1

Δ , then }{ pδΔΔ   is a diagonal matrix with elements 

equal to the number of times each row is sampled, while ΔzΔzΔ  }{}{ .  Using this, we re-

express (5) above as:  

.)}{(}ˆ)ˆˆ(}{}{ˆ)ˆˆ({)}{()ˆ(ˆ

}ˆ{)}{(ˆˆ}{)}{(ˆˆ)7(

11

11









XδXXεββXδεββXXXδXβV

δεXXδXβεδXXδXββ

p
N

p
NN

p
N

p
NN

pp
N

p
N

p
NN

pp
N

p
N

 

As in the case of the wild bootstrap, conditional on the original data the estimated coefficients 

and covariance matrix are only a function of the realization of the Nx1 vector δp.  All 

permutations of any given sampling frequency vector δp are equally likely, a fact that plays a 

prominent role in the results of this paper.  Consequently, we use the common notation δ, 

distinguished by superscripted p or w, for seemingly dissimilar objects because these operate 

identically in the theorems and proofs below. 

 Our interest is in deriving sufficient conditions for the conditional consistency of the 

bootstrap distributions in an inid framework.  Specifically, we show that White's (1980) 

assumptions are sufficient to ensure that for the bootstrapped coefficient and heteroskedasticity 

robust covariance estimates, with b denoting p (pairs) or w (wild)  

,)ˆˆ()]ˆ(ˆ[)ˆˆ(  & 

 )ˆˆ(
}ˆ}{ˆ{

)8(

2
),(|)(

1-

),(|)(½

K

asd

N
b
N

b
NN

b
N

K

asd

N
b
N

NN

b

b

NNN

N
NN


εXδ

εXδ

βββVββ

nββ
XXXεεX









 







  
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where 
),(|)( εXδ asd

 denotes convergence in distribution across δ almost surely across realizations of 

(X,ε).  These results show that the asymptotic conditional distribution given the data (X,ε) of the 

bootstrap equals the asymptotic distribution of the OLS estimates across (X,ε), allowing for valid 

inference using the percentiles of bootstrapped coefficient estimates or Wald statistics.7 

 The key characteristic exploited in proofs below is that any of the row permutations of the 

vectors δ are equally likely.  Consequently, the distribution of the bootstraps can be thought of as 

the distribution across permutations of δ integrated across the ordered realizations of δ.  

Permutation theorems characterize this permutation distribution as asymptotically normal with 

covariance matrix )ˆ(ˆ
NN βV provided (X,ε) and δ have certain moment properties.  White's (1980) 

assumptions ensure that these properties hold almost surely for (X,ε), while the properties of the 

multinomial sampling frequencies δp and moment assumptions on the iid elements of δw ensure 

the requisite conditions on δ also hold almost surely.  Consequently, almost surely conditional on 

the data (X,ε) the distributions of the bootstraps across the draws δ that determine their 

coefficient estimates and Wald statistics converge to the distribution of their OLS counterparts 

for the original sample (X,ε) across its data generating process. 
 

III. Foundational Permutation Theorems 

 The proofs in this paper rely on a theorem first proven by Wald & Wolfowitz (1944) and 

later refined by Noether (1949) and Hoeffding (1951) concerning the asymptotic distribution of 

root-N times the correlation of a permuted sequence with another sequence: 

Theorem II: Let z' = (z1, ... , zN) and δ' = (d1, ... , dN) denote sequences of real numbers, not 

all equal, and d' = (d1, ... , dN) any of the N! equally likely permutations of δ.  Then as N 

→ ∞ the distribution across the realizations of d of the random variable 

,
)]([

)(  &  )(  ,or  for  where

,
)()(

)]()][([
)IIa(

1

2
2

1

1
½















N

i

ii
i

N

i

i
i

N

i ii

iiii
N

N

hmh
hs

N

h
hmdzh

Ndszs

dmdzmz
v

 

                                                 
7Although, as noted by Cavaliere and Georgiev (2020), even when conditional consistency does not hold valid 

inference using the bootstrap is still possible if the unconditional limit distribution of the sample test statistic equals 
the average of the random limit distribution of the bootstrap given the data. 
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converges to that of the standard normal if for all integer τ > 2 

.0

)]([)]([

)]([)]([
lim)IIb(

2

1

2

2

1

2

11

1
2


































 








N

i
ii

N

i
ii

N

i
ii

N

i
ii

N

mzmz

mzmzN
 

The proof is based upon showing that the moments of vN converge to those of the standard  

normal.  A simple multivariate extension, proven in the on-line appendix, is that if 

),...,( 1 NzzZ  is a sequence of K x 1 vectors and  /NNNNxN 11IΟ  the centering matrix,8 then 

NNNN

)(
)IIc(

½
ΟdZΟddΟZZ

v








 




 

is asymptotically distributed multivariate iid standard normal if (IIb) holds for each element in 

the vector sequence zi and for all N sufficiently large δOδ   is non-zero and the correlation 

matrix ½½ )diag()diag(   OZZOZZOZZ , where )diag( OZZ is the diagonal matrix with entries 

equal to the diagonal of OZZ , is non-singular with determinant > Δ (a positive constant). 

 Theorem II is easily extended to a probabilistic environment by noting the following 

result due to Ghosh (1950) that translates the almost sure or in probability characteristics of an 

infinite number of moment conditions into similar statements regarding a distribution:  

Theorem III: If all the moments of the cumulative distribution function FN(x) converge 

almost surely (in probability) to those of F(x) which possesses a density function and for 

which, with 1k denoting the absolute moment of order k+1, 

, of egiven valuany for   0
!2

lim)IIIa( 1
2









 k
k

k

k
 

then FN(x) converges almost surely (in probability) to F(x). 

Condition (IIIa) is of course true for the normal distribution.  Hoeffding (1952) generalized the 

result by showing that condition (IIIa) is not even needed for convergence in probability at all 

points of continuity of any F(x) that is uniquely determined by its moments.  By virtue of the 

Cramér-Wold device, Theorem III covers the multivariate case given in (IIc) above, as for all λ 

such that 1λλ , all moments of Nvλ converge to those of the standard normal.  In light of 

                                                 
8Where 1N denotes an N vector of ones and INxN the NxN identity matrix. 
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Theorem III, in applying Theorem II below we use the notation 
),,(|)( εXδd asd

 and 
),,(|)( εXδd asd

 , i.e. 

almost surely across the realizations of (δ,X,ε) the distribution of vN across permutations d of δ 

converges to the multivariate standard normal.  Theorems II and III are used to characterize the 

asymptotic distribution of NN /}ˆ{ δεX , which appears in the expressions for the bootstrapped 

coefficient estimates in (4) and (7) above. 

 A less demanding form of Theorem II, proven in the appendix below, provides a weaker 

condition under which the mean of products converges in probability across permutations to the 

product of means: 

Theorem IV: Let z' = (z1, ... , zN) and δ' = (d1, ... , dN) denote sequences of real numbers, 

possibly all equal, and d' = (d1, ... , dN) any of the N! equally likely permutations of δ.  

Then as N → ∞, across permutations d of δ  

,0)()()()IVa(
111

pN

i

i
N

i

i
N

i

ii
iiii N

d

N

z

N

dz
dmzmdzm  



 

if 

.0

)]([)]([

lim)IVb( 1

2

1

2



 


 N
N

m

N

zmz N

i

ii
N

i

ii

N



 

Theorem IV is used in proofs to make statements regarding the convergence in probability of 

terms such as N/}{ ZδZ , for some matrix Z made up of X and Nε̂ , which appear in (4) and (7) 

above.  As satisfaction of (IVb) depends on the realized sample moments of (X,ε) and δ, we use 

the notation 
),,(|)( εXδd asp

 , i.e. almost surely across the realizations of (δ,X,ε) m(zidi) converges in 

probability across the permutations d of δ to m(zi)m(di). 

IV. Bootstrap Consistency with INID Data 

 The following result is proven in the appendix further below:   

Theorem V:  Assume that for the wild bootstrap 0][ w
iE  , 1])[( 2 w

iE  and 

ΔδE w
i  ])[( )1(2 1  for some finite Δ  and θ1 > 1/γ, with γ as given in Theorem I earlier.  

White's assumptions (Ia) - (Ic) given in Theorem I in combination with the properties of δ 

are sufficient to ensure that across the permutations d of δb, for b = p (pairs) or w (wild) 



11 

.)ˆ(ˆ)ˆ(ˆ (Vb)
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


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





 

 

Bounded higher moments of w
i  are needed to ensure that conditions (IIb) and (IVb) in Theorems 

II and IV are satisfied. 

 Let δ* denote the ordered values of δ.  Across permutations d of δ* (Va) and (Vb) hold.  

These permutations, integrated across the distribution of δ*, characterize the entire distribution of 

δ.  Adding the result9 

1   and   1  (9)
)()( wp aswwppp

N

'

N

' δδ OδδOδδ
 , 

implies that 

,)ˆ(ˆ)ˆ(ˆ  (10b)

)ˆˆ(
}ˆ}{ˆ{

  (10a)

),(|)(

),(|)(-½

KxK

asp

N
b
N

K

asd

N
b
N

NN

b

b

NN

N
NN

0βVβV

nββ
XXXεεX

εXδ

εXδ









 







 

 

where the convergence in distribution in this case is across the bootstrap realizations of δb that 

determine the bootstrap coefficient and covariance estimates, as in (4) and (7) earlier above. 

When combined with White's (1980) result in Theorem I regarding the asymptotic distribution of 

OLS coefficient estimates, this establishes that almost surely the conditional (on the data) 

distributions of the bootstrapped coefficients and Wald statistics converge to the unconditional 

distributions of their OLS regression counterparts. 

Remark 1: assumptions on regressors and errors 

 For an OLS model with iid data and potentially heteroskedastic residuals, Mammen 

(1993) showed that for a fixed number of regressors the wild bootstrap distributions of linear 

combinations of the coefficients and Wald statistics based upon the homoskedastic covariance 

estimate are in probability consistent given )]1()[(sup 24
1 iiE 
 xcc  < ∞ and the Lindeberg type 

                                                 
9For the wild bootstrap, (9) follows immediately from the assumptions on moments.  The proof for the pairs 

bootstrap is lengthy and is given in the on-line appendix.  
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condition 0])[()[( 2222  NIE iiii  xcxc  for every fixed γ > 0.  For the same model, Freedman 

(1981) proved almost sure consistency of pairs bootstrap coefficients and homoskedastic-based 

Wald tests if the row vectors ),( ii yx are independently and identically distributed and 

])),)(,[(( 2 iiii yyE xx  < ∞.  Stute (1990) tightened part of the result showing that almost sure 

convergence of the pairs bootstrap coefficients alone for iid data only requires )( ikij xxE and 

)( 2
iikij xxE  to be finite.  By adopting a permutation approach, this paper proves almost sure 

consistency of both coefficients and Wald statistics based upon the heteroskedasticity robust 

covariance estimate with inid data for both the pairs and wild bootstrap with the existence of only 

slightly higher moments than required by Stute (1990), i.e. 1|| ikij xxE  and  12 || iikij xxE  

for some γ > 0.  It should be noted, however, that Mammen's result was part of a broader 

framework that allowed for a growing number of regressors, while Freedman and Stute allowed 

for sub-sampling M < N observations .  As shown in the on-line appendix, at the expense of 

complicating the proofs the permutation based pairs bootstrap consistency results can be 

extended to sub-sampling, with and without replacement, if M/N → 0 and for some γ* >  (1+ γ)-1, 

M is such that liminf M/Nγ* > 0.10  

 For inid data, Liu (1988) proved consistency in probability of the second central moment 

of the wild OLS bootstrap coefficient distribution with bounded regressors and finite second 

moments of εi.  This paper proves almost sure consistency of the wild bootstrap distribution for 

unbounded regressors given the moment conditions described above.  Djogbenou et al (2019) 

prove consistency in probability of the distribution of the wild bootstrap t-statistic for within 

cluster correlated but cross-cluster independent but not identically distributed data.  In the case 

where clusters are composed of single observations, their assumptions on the existence of 

moments are those used in this paper plus the addition of the fourth moment restriction 

14 || ijxE  for some γ > 0.  They also impose asymptotic homogeneity of the data generating 

process in the form of assuming that N/XX  converges to a matrix of constants, while for any 

                                                 
10The requirement that M not fall too rapidly relative to N is needed to ensure the existence and convergence 

of higher moments to the normal, as the proof of Theorem II is based upon the method of moments. 
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vector α such that 1αα  there exists a finite scalar vα > 0 and non-random sequence μN → ∞ 

such that  ααXXXεεXXXα vN   11 )(}}{{)( .  Thus, while papers usually use the iid assumption 

to motivate convergence of key matrices to matrices of constants, Djogbenou et al (2019) avoid 

the iid assumption but assume the data nevertheless converge to such matrices.  This paper, using 

White's (1980) assumptions, requires no such convergence of the asymptotic regressor cross 

product and covariance matrix of coefficient estimates and as such covers more fundamentally 

inid data using more demanding moment assumptions.  However, Djobgenou et al's analysis goes 

beyond this paper's in allowing for cluster correlated groupings of observations and dealing with 

issues concerning the asymptotic maximum size of any such grouping. 

Remark 2: type of consistency proven 

 Aside from consistency of the coefficient distribution, Freedman (1981) and Mammen 

(1993) prove consistency of the Wald statistic based upon the covariance estimate with 

homoskedastic errors, while recognizing that with heteroskedastic errors its distribution is not 

pivotal.  This paper focuses on the Wald statistic using the heteroskedasticity robust covariance 

estimate which is also asymptotically accurate with homoskedastic errors.  This test statistic is 

asymptotically pivotal and hence provides higher order asymptotic bootstrap accuracy (Singh 

1981, Hall 1992).  Djogbenou et al (2019) prove consistency for t-statistics in a broader 

framework with clustered-robust covariance estimates, which allow for arbitrary correlations and 

heteroskedasticity within defined groups of observations and, when clusters are defined as single 

observations, encompass the heteroskedasticity-robust framework of this paper. 

 Liu (1988) proves consistency of the wild bootstrap second central moment with bounded 

regressors.  Proving such consistency with the unbounded regressors of this paper is trivial.  If we 

assume, as did Liu (1988), that N
wE 0δ ][  and NxN

wwE Iδδ  ][  (the identity matrix), then taking 

the expectation with respect to this variable for a given realization of X and ε, we have  
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βδεXXXβεXβ













 

Thus, for any sample size the variance of wild bootstrap coefficient estimates equals White's 

heteroskedasticity robust covariance estimate.  Since under White's conditions )ˆ(ˆ
NN βV  is a 

consistent estimator of the asymptotic variance of )ˆ( ββ NN , it follows that for such general 

inid data the wild bootstrap coefficient variance is a consistent estimator as well, reproducing 

Liu's result in a more general framework.   

 A similar result for the pairs bootstrap is more problematic.  The first two moments of the 

multinomial sampling frequencies ( pδ ) for N draws with replacement from N observations are 

N
pE 1δ ][ (a vector of ones) and .][ 1

NNNxN
pp NE 11Iδδ    Examining the moments of the 

latter half of p
N

p
N

p
N δεXXδXββ }ˆ{)}{(ˆˆ 1   , we see: 

),)(ˆ()(}ˆ}{ˆ{ˆˆ}ˆ}{ˆ{

}ˆ]{[}ˆ{],|)}ˆ{)(}ˆ{[(&

,ˆ}ˆ{][}ˆ{],|}ˆ{[)12(

1 XXβVXXXεεXXεεXXεεX

XεδδεXεXδεXδεX

0εX1εXδεXεXδεX








NNNNNNN

N
pp

N
p

N
p

N

KNNN
p

N
p

N

N

EE

EE

 

where we make use of the fact that KN 0εX ˆ as the OLS estimates Nβ̂ in (2) above minimize 

NNεε ˆˆ .  Were p
N δεX }ˆ{ multiplied by 1)( XX , this would prove consistency of the second central 

moment of pairs bootstrap coefficients, but unfortunately it is multiplied by 
1)}{(  XδX p
.  

However, it is easy to show that
1)}{(  XδX p
 converges in probability to

1)( XX  (see the 

appendix below).  Using this fact, Tu and Shao (1995) prove consistency of the second central 

moment using the artifice of assuming that when the minimum eigenvalue of 
1)}{(  XδX p
 is less 

than ½ of the minimum eigenvalue of 1)( XX , an event whose probability converges to zero, 

p
Nβ̂ is set equal to Nβ̂ .  

 This paper, and most papers which prove consistency of bootstrap distributions, implicitly 

prove convergence in the sense of the Kolmogorov sup-norm since, by Polya's Theorem, if a 

distribution function FN converges to F which is continuous, as is the normal distribution, then 

the convergence is uniform, i.e. limN→∞supx | FN(x) - F(x) | = 0.  The notable exception is 
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Freedman (1981), who proves convergence of the distribution of the pairs bootstrap in the sense 

of the Mallows (1972) metric, namely dk(F,G)k = infΓ(x,y) yx  k, where  denotes the 

Euclidean norm and Γ(x,y) the collection of all possible joint distributions of the vectors (x,y) 

whose marginal distributions are F and G, respectively.  Freedman proves convergence in the d1 

metric of Np /}{ XδX to N/XX and in the d2 metric of Np
N /}ˆ{ δεX to N/εX .  

Convergence in the dk metric is equivalent to convergence in distribution plus convergence of the 

1st through kth absolute moments (Bickel and Freedman 1981), so in this respect Freedman's 

results for the pairs bootstrap with iid data go beyond those presented in this and other papers.  

They do not, however, constitute a proof of convergence of the second moments of pairs 

bootstrap coefficients, as these involve the expectation of the product of 
1)}{(  XδX p
 with 

p
N δεX }ˆ{ , as was noted above. 

 It is well known that convergence in distribution does not imply convergence of moments, 

but the fact that the proof of Theorem II regarding the asymptotic permutation distribution of 

root-N correlation coefficients is based upon the method of moments (see Hoeffding 1951 and the 

on-line appendix of this paper) might lead to the erroneous conclusion that the results here imply 

consistency of all moments.  They do not, most fundamentally because the proof of convergence 

in distribution of )ˆ( ββ NN to the multivariate normal does not necessarily imply the existence 

of all higher moments for the original coefficients themselves.  With regards to the bootstraps, in 

the appendix below Theorem II is used to prove that across the equally likely permutations d of a 

given δb, for b = p (pairs) or w (wild) 

,
}ˆ{}ˆ}{ˆ{

)13(
),,(|)(

-½½

K

asdbb b

NNN
n

dεXOδδXεεX εXδd











 






  

 

signifying, by the method of proof, that the moments across permutations d of δ of the left hand 

side converge to those of the multivariate standard normal.  Since this is true for all δ such that 

0 bbOδδ , which almost surely holds (see (L2) in the appendix), we can equally say that across 

the distribution of δ the moments of (13) converge to those of the multivariate standard normal.  

For the wild bootstrap )ˆˆ( N
w
NN ββ   consists of (13) multiplied by 
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½½1 )/}ˆ}{ˆ{()/()/( NNN bb XεεXOδδXX   , and as 1/
)( was

ww N
δ

Oδδ  we can say that all the 

moments of )ˆˆ( N
w
NN ββ   converge to those of the mulitvariate normal with covariance matrix 

)ˆ(ˆ
NN βV , although these need not be the asymptotic moments of )ˆ( ββ NN . In the case of the 

pairs bootstrap, )ˆˆ( N
p
NN ββ   equals (13) multiplied by 

½½1 )/}ˆ}{ˆ{()/()/}{( NNN ppp XεεXOδδXδX    and as both Np /}{ XδX  and Npp /Oδδ are 

only shown to converge in probability, nothing can be said about the asymptotic moments of 

)ˆˆ( N
p
NN ββ   without the use of an artifice such as that of Shao and Tu (1995) mentioned above. 

Remark 3: assumptions on the wild bootstrap external variable 

 Liu (1988) proves consistency of the second central moment of the wild bootstrap 

coefficients assuming that the first and second moments of the wild bootstrap external variable 

w
i are 0 and 1, respectively.11  This paper extends the proof to consistency in distribution by 

additionally requiring that  ])[( )1(2 1w
iδE  for θ1 > 1/γ where γ > 0 is such that 1|| ikij xxE  

and  12 || iikij xxE .  As the proof of Theorem II is based on the method of moments, depending 

upon the existence of higher moments for the regressors higher moments on w
i are needed to 

ensure that all moments of (13) above exist and converge to the normal.  Proofs of the 

consistency of wild bootstrap distributions typically assume that the external variable w
i comes 

from a particular distribution, such as the Rademacher, with moments of all order (e.g. Mammen 

1993, Canay et al 2021).  A notable exception is Djogbenou et al (2019), where the proof of 

convergence in distribution merely requires that  2|| w
i  for some λ > 0.  As that paper uses 

the central limit theorem rather than the method of moments, it can avail itself of tighter 

assumptions on w
i .  The wild bootstrap external variable, however, is under the control of the 

practitioner (i.e. not a characteristic of the given data) and at this time there appear to be no 

known advantages to using an external variable without higher moments. 

 

                                                 
11Liu (1988) also advocated selecting E(δi

w3) = 1 so as to correct for skewness in the Edgeworth expansion. 
However, Monte Carlos find that forms of δi

w that make this assumption perform less well than those that do not 
(Davidson & Flachaire 2008, MacKinnon 2015) 
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Appendix 

A.  Proof of Theorem I 

 The following corollaries to Markov's Law of Large Numbers and the Continuous 

Mapping Theorem given in White (1984) will be useful: 

Corollary to Markov's Law:  Let zi be a sequence of independent random variables such 

that  ΔzE i )|(| 1  for some γ > 0 and all i.  Then 

.0))(()(
..sa

ii zEmzm   



19 

Corollary to Continuous Mapping Theorem:  Let g: ℝk→ ℝl be continuous on a compact set 

Cℝk .  Suppose that bN(ω) and cN are kx1 vectors such that bN(ω) - cN 

as

  0, and for all N 

sufficiently large, cN is interior to C, uniformly in N.  Then g(bN(ω)) - g(cN) 
as

  0. 

as will the following Borel-Cantelli type corollary by Galambos (1987): 

Borel-Cantelli Corollary:  Let x1, x2, ... be an infinite sequence of random variables, Fj(x) be 

the cumulative distribution function of xj (i.e. Prob(xj < x)), and uN be a nondecreasing 

sequence of real numbers such that for all j Prob(xj < supN uN) = 1.  Then  

.0)often infinitely max(Prob)](1[
1







 Ni

Ni
j

jj uxuF  

 Turning to Theorem I, as noted earlier White (1980) showed that (Ia) - (Ic) are sufficient 

for (i) ββ
εX ),(

ˆ
as

N  and (ii) K

d

NNN N nββMV
εX ),(

½ )ˆ(  .  For (iii), from (Ib), (Ic) and Jensen's 

Inequality we have )1/(1|)(|  ΔxxE ikij and )1/(12 |)(|   ΔxxE ikiji , so MN and VN are uniformly 

bounded and, with determinants >  η > 0, invertible for all N sufficiently large.  As the sum of the 

eigenvalues of a matrix equal its trace and the product its determinant, their maximum 

eigenvalues are less than )1/(1 KΔ  and their minimum eigenvalues greater than 1)1/(1 )/(  KKΔ  for 

all N sufficiently large.  The minimum and maximum eigenvalues of their inverses are the 

inverses of these.  Consequently, for all N sufficiently large the determinants of their inverses are 

greater than 0)( )1/(1  KKΔ   and, by the spectral decomposition of a real symmetric matrix, the 

absolute value of their elements bounded by  /)( 1)1/(1  KKΔ .12  This establishes (iii) in Theorem I. 

  ΔxxE ikij  )|(| 1   in Theorem (Ib) and the Markov Corollary ensure that NN MXX  /  

KxK

as

0
X)(

  and, by the Continuous Mapping Theorem Corollary, that N/XX  is invertible for all N 

sufficiently large with KxK

as

NN 0MXX
X)(

11)/(   .  The jkth element of N/}ˆ}{ˆ{ XεεX equals: 
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12Let E, λ and λmax denote the eigenvectors, eigenvalues and maximum eigenvalue of symmetric positive 

definite matrix A, aij the ijth element and αi a vector of 0s with a 1 in the ith position.  By the Cauchy-Schwarz 
Inequality and properties of the Rayleigh quotient, .)}{)(}{()}{( 2

max
22  jjiijiija αEλEααEλEααEλEα  
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The Markov Corollary and ΔxxE ikiji  )|(| 12  in Theorem (Ic) ensure that the first summation 

almost surely converges to  

N

i ikiji NxxE
1

2 /)( , which is the ijth element of VN.  From the Cauchy-

Schwarz Inequality we have 
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Using Markov's Inequality and ΔxE ij  )|(| 12   in Theorem (Ib), we can state that for any δ > 

1/(1+γ) but < 1  
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So, by the Borel-Cantelli Corollary, 2max ijNi x  is asymptotically almost surely less than N and 
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Together with the fact that  

N

i ij Nx
1

2 / almost surely converges to the bounded jth diagonal term 

of MN, this establishes that both left hand side terms in (A2) almost surely converge to 0.  
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which is less than N 
-1-δ for all N sufficiently large.  So  
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and by the Borel-Cantelli Lemma .0/)ˆ(
),( εXas

pNp NN     Putting all of the above together, 

we see that KxK
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NN 0VXεεX
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in Theorem I, while (v) follows from (i) - (iv). 

B.  Proof of Theorem IV 

 If either the zi or δi are all identical (zi = z or δi = δ), Theorem IV follows immediately. 
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Assuming this is not the case, we first use the symmetry and equal likelihood of permutations to 

calculate the expectation of di and products of di across the row permutations d of δ: 
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We then calculate the mean and variance of m(zidi) - m(zi)m(di) across the realizations of d:  
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where subscripted i,j denotes the summation across the two indices excluding ties between them.  

The last line shows that if (IVb) holds, then across the permutations d of δ m(zidi) - m(zi)m(di) 

converges in mean square and hence in probability to 0, as stated in Theorem IV. 

C.  Proof of Theorem V 

 We begin by noting the following Lemma, proven in Appendix D further below 

Lemma:  Let 
)(δas

 or 
)(δp

  denote convergence almost surely or in probability across the 

distribution of δ, τ any integer greater than 2, b = p (pairs) or w (wild), γ > 0 be as given in 

Theorem I, θ1 > 0 as in Theorem V, and η1 some constant > 0 .  For all θ such that γ/(1+γ) 

> θ > 0 (pairs) or γ/(1+γ) > θ > 1/(1+θ1) (wild): 
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 For a permutation d of δw or δp, the coefficient estimates of the pairs and wild bootstrap 

are, following (4) and (7) in the text, given by aCββ 1)ˆˆ(  N
p
NN  and  )ˆˆ( N

w
NN ββ  

aXX 1)/(  N ,  where N/}{ XdXC  , N/}ˆ{ dεXa   and we simplify notation here and later 

by dropping the subscript N on ε̂ .  Regarding the jkth element of C, given by Ndxx
N

i iikij /
1  , we 

can apply Theorem IV with ikiji xxz  . Condition IVb in this case requires that: 
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which is guaranteed by (L1p), (L4) and (L6) above.  So,  
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By the corollary to the Continuous Mapping Theorem given above, 1)/}{(  NXdX  converges in 

probability to bounded positive definite 1)/(  NXX  (as in L4). 
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 Noting that the kth element of a equals Ndx
N

i iiik /ˆ
1 

 , we apply the multivariate 

extension of Theorem II in the text with iikik xz ̂ , or XεZ }ˆ{ .  Since  XεXε1 ˆ}ˆ{N   

K0XyXyXβXy  )ˆ( , the mean of zik is zero and so we have XεεXΟZZ }ˆ}{ˆ{  and 

dεXΟdZ }ˆ{ .  From (L2) we know that almost surely bbΟδδΟdd  is non-zero, while (L4) 

ensures that -½-½ )}ˆ}{ˆ{diag()}ˆ}{ˆ{()}ˆ}{ˆ{diag( XεεXXεεXXεεX   is almost surely non-singular with 

determinant greater than some δ > 0.13  Hence, following Theorems II and III, the distribution 
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converges almost surely (across δb,X,ε) to that of the iid multivariate standard normal as by (L3) 

and (L5) for all integer τ greater than 2  
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Using (L4) and the fact that NNbb // ΟddΟδδ  is a scalar, we then have: 
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thereby establishing the claim in (Va). 

 Regarding the wild bootstrap heteroskedasticity robust covariance estimates, we have 

                                                 
13By (L4) N/}ˆ}{ˆ{ XεεX  is bounded with determinant > η1 > 0.  Let u denote the upper bound on the diagonal 

elements.  By the trace property of eigenvalues, we know that the largest eigenvalue is less than Ku, and hence the 
smallest must be greater than η1/(Ku)K-1.  The smallest eigenvalue of diag( N/}ˆ}{ˆ{ XεεX )-½ is greater than u-½.  As 
the smallest eigenvalue of AB is greater than or equal to the product of their smallest eigenvalues, we have that the 
smallest eigenvalue of diag( N/}ˆ}{ˆ{ XεεX )-½ )/}ˆ}{ˆ{( NXεεX diag( N/}ˆ}{ˆ{ XεεX )-½ is greater than η1/K

K-1uK, and 
hence the determinant greater than (η1/K

K-1uK)K. 
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For "a", we note that 2
id is the permutation of 2w

i and apply Theorem IV with 2
îikiji xxz  .   
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where the last is guaranteed by (L4) and (L5) as 
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we see that condition (IVb) is met and by Theorem IV we then have 
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 From the above, we see that the p̂  in (C7) are multiplied by 1/ N' ww Oδδ   which 

from (L1w) converges almost surely (across δw) to 0, "c" terms which almost surely (across X,ε) 

converge to 0,  and "b" terms which also almost surely (across δw,X,ε) converge in probability 

across permutations d to zero.  As the p̂ , from (L4) and (C5) almost surely (across δw,X,ε) 

converge in distribution across permutations d of δw to normal variables with bounded variance, 

it follows that when so multiplied they converge in probability across permutations d to zero.  
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which establishes (Vb) for the wild bootstrap. 

 For the pairs bootstrap heteroskedasticity robust covariance estimates, from (7) we have 
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The jkth element of B is given by  
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For "d", we apply Theorem IV with 2
îikiji xxz   and, as by (L1p), (L4) and (C9) 
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Similar to the case of the wild bootstrap, the p̂  in (C19), which from (L4) and (C5) almost 

surely (across δp,X,ε) converge in distribution across permutations d of δp to normal variables 

with bounded variance, are multiplied by 1/ N' pp Oδδ   which from (L1p) converges almost 

surely (across δp) to 0 and "e" and "f" terms which almost surely (across δp,X,ε) converge in 
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probability across permutations d to zero, and hence when so multiplied converge in probability 

across permutations d to zero.  This leaves only the "d" term and so, using (C2) earlier 
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which establishes (Vb) for the pairs bootstrap. 

D.  Proof of Lemma in Appendix B 

 (L1), (L2), (L3):  We prove these for the wild bootstrap, placing the more involved proofs 

for the pairs in the on-line appendix.  From the assumptions 0][ w
iδE  & 1])[( 2 w

iδE  (Theorem 

V) and the Strong Law of Large Numbers we know that 0)(
)( was

w
im

δ

  and 1))((
)(

2
was

w
im

δ

 .  

Markov's Inequality, ΔδE w
i  ])[( )1(2 1  (Theorem V) and )1/(1 1   (Lemma) imply there 

exists a v in (1/(1+θ1),θ) such that 

,
)|(|

)(Prob)D1(
1

)1(
1

)1(

12

1

2

11

1

 












 N
v

N
v

N

N
N N

Δ

N

E
N 


   

and thus by the Borel-Cantelli Corollary given above 0/max
)(

2
was

w
iNi N

δ


  and so 

0. )(max
)(

)D2(
)(

2
2

1
1

44 was
w

i

w
i

Ni

N

i

w
i

w
i m

NNN

m δ




 


 

This establishes (L1w).  As 1/
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Oδδ  , for all N sufficiently large Nww /Oδδ is almost 

surely greater than some κ  such that 1 > κ > 0, as stated in (L2).  Regarding (L3), we have 
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From the above, we know the denominator of the last almost surely converges to 1, while as for 

the numerator, using (D2) 
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Consequently, (D3) almost surely converges to 0 for )1/(1 1  , proving (L3). 

 (L4):  In the proof of Theorem I we saw that KxK
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 (L5), (L6) & L(7):  Following the same logic used in (D3), we note that: 
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So, to prove (L5) - (L7) it is sufficient to show that the right hand sides of the inequalities above 

converge to zero.  In Appendix A we already showed that almost surely 
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ikx /N1-θ converges to 0, which establishes this for (D5b). 

 Turning to (D5a), as shown in Appendix A  
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diagonal element of VN in Theorem (Ic), whose smallest eigenvalue is greater than 

1)1/(1 )/(  KKΔ  for all N sufficiently large.  From the Schur-Horn Theorem, we know that the 

smallest diagonal element of VN is greater than or equal to its smallest eigenvalue, and hence the 



29 

term  

N

i iik Nx
1

22 /̂  in the denominator of (D5a) is almost surely greater than 1)1/(1 )/(  KKΔ  > 0 

for all N sufficiently large.  Regarding the max term in the numerator, we have 
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So, as it was shown in Appendix A that 0/)ˆ(
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prove that  
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122 /ˆmax Nx iikNi converges almost surely to zero it is sufficient to show that 
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

122 /max Nx iikNi  converges almost surely to zero.  However, ΔxxE ikiji  )|(| 12   in Theorem (Ic), 

by the same argument used in (A3) above, ensures that this is the case for 0 < θ < γ/(1+γ).  In 

sum, White's assumptions ensure that (D5a) - (D5b) converge to 0 for all θ in (0,γ/(1+ γ)), 

proving (L5) - (L7).  As θ1 > 1/γ in Theorem V, the condition )1/(1 1  for the wild bootstrap 

in the Lemma and the proof of (L3) above can also be met without contradiction. 


