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Abstract
Analyzing the distributions of the pairs and wild bootstraps as those of permutation
statistics provides a different approach to proving consistency, allowing the derivation of new
results. For the case of independently but not-necessarily identically distributed (inid) data, this
approach reveals moment conditions for consistency which cover more general regression models
than earlier inid results and are often less demanding than previous results for independently and

identically distributed data.
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I. Introduction

This paper marries results on the asymptotic distribution of permutation statistics (Wald
& Wolfowitz 1944, Noether 1949 and Hoeffding 1951) to White's (1980) proof of the
consistency of the heteroskedasticity robust ordinary least squares (OLS) covariance estimate to
extend results concerning the consistency of the pairs and wild OLS bootstraps, which have
mostly been derived for independently and identically distributed (iid) data, to general regression
frameworks with independently but not-necessarily identically distributed (inid) data. Instead of
considering the sampling distribution of the bootstraps, the usual approach, one can instead note
that any permutation of the pairs bootstrap vector of sampling frequencies or the realization of the
external variable used by the wild bootstrap to transform residuals is equally likely. These
equally likely permutations can be used to characterize the bootstrap distributions conditional on
the data as normal given restrictions on sample moments of the data. White's (1980) conditions
for the asymptotic normality of OLS coefficients guarantee these restrictions almost surely,
ensuring that the asymptotic distribution of pairs and wild bootstrapped coefficients and Wald
statistics conditional on the data matches the unconditional distribution of the original OLS
estimates.

This paper broadens earlier results on the consistency of the OLS bootstrap. For OLS
models with iid data and potentially heteroskedastic errors, Freedman (1981) showed bounded
fourth moments of both regressors and errors are sufficient for consistency of the pairs bootstrap
coefficient distribution', and that of the Wald statistic based upon the (potentially incorrect)
assumption of homoskedastic errors. Stute (1990) showed that for consistency of the coefficient
distribution alone in the heteroskedastic iid model it is sufficient for both the squared regressors
and the product of the squared regressors with the squared errors to have finite expectation. For

similarly iid data, Mammen (1993) proved consistency of the wild OLS bootstrap coefficient and

'With independent homoskedastic errors, the bootstrap resampling of estimated residuals (rather than the data
itself) always yields consistent estimates of the coefficient distribution for a fixed number of OLS regressors (Bickel
and Freedman 1983).



homoskedasticity-based Wald test distributions with bounded expectations of the product of the
fourth power of the regressors with the squared errors and an additional Lindeberg condition.
This paper finds consistency of both the coefficient and heteroskedasticity robust Wald statistic
distribution in a broader inid environment for both the pairs and wild bootstraps with finite
expectations of only slightly more than second powers of the regressors and of the product of the
second powers of the regressors with the second power of the errors. These are much less
demanding assumptions than those used by Freedman and Mannon, requiring only slightly higher
moments than used by Stute for the proof of only the pairs bootstrap coefficient distribution in a
narrower iid environment. These results are useful because when data are drawn, for example,
from distinct populations, geographic regions or time periods, the iid assumption is less likely to
hold.> Moreover, the distribution of the homoskedasticity-based Wald test is not pivotal in a
heteroskedastic iid or inid environment, as recognized by Freedman (1981) and Mammen (1993),
whereas that of the heteroskedasticity robust Wald test is. Bootstrapped pivotal test statistics
asymptotically provide higher order accuracy and faster convergence of rejection probabilities to
nominal value (Singh 1981, Hall 1992).

For OLS models with inid data, the salient contribution is Liu (1988), who showed that
the wild bootstrap provides consistent estimates of the second central moment of a linear
combination of coefficients in an OLS regression model with bounded regressors provided the
first and second moments of the wild bootstrap external variable are 0 and 1, respectively. Liu's
result regarding the second central moment is easily extended to the case of the multivariate
second central moments of coefficients for unbounded inid regressors without any additional
restrictions on the moments of the external variable, as shown below. Our interest here, however,
is in the full distribution of wild bootstrap coefficient and Wald statistic estimates, where our

proof requires the existence of higher moments of the wild bootstrap external variable to ensure

?As examples: (i) Thornton (2008) used a randomized experiment to investigate the demand for and effects of
learning HIV status across north, central and south Malawi, which differ systematically in their ethnicity and
religion. (ii) Cai et al (2009) investigated saliency by randomly assigning restaurant arrivals in China to tables with
different menu setups; not surprisingly, the total bill paid varies systematically with the time of day.



convergence of higher moments to the normal. As the external variable is selected by the
practitioner, and not an exogenous characteristic of the data, these additional moment conditions
pose no obstacle. The two point distribution proposed by Mammen (1993) and the Rademacher
distribution, both often used in practical application (e.g. Davidson & Flachaire 2008), have
moments of all order.

Liu's consideration of inid data has largely not been extended, as the OLS bootstrap
literature since has focused on time series dependent data, where the absence of random sampling
of independent observations raises different statistical issues and the use of different bootstrap
methods (see the review in Hardle et al 2003). Djogbenou et al (2019), who prove consistency of
the wild bootstrap t-statistic distribution for independently distributed cluster groupings of data,
are a notable exception. With the moment assumptions used here plus the additional requirement
of bounded slightly higher than fourth moments of the regressors, their proof allows for
heterogeneity in the distribution of data across clusters. However, they limit that heterogeneity in
requiring that the cross product of the regressors and the covariance matrix of coefficient
estimates converge to matrices of constants, a condition that in other papers is typically
motivated by an iid assumption.” The data generating process examined in this paper is more
fully inid in that there is no restriction that such matrices converge to anything, and the moment
assumptions are also less demanding. While the results in this paper are not revolutionary, the
use of the permutation distribution allows a common proof of the consistency of the pairs and
wild bootstrap distributions of both coefficients and Wald statistics in a fully inid framework with
unbounded regressors and by and large less demanding moment conditions than used earlier.

The paper proceeds as follows: Section II reviews the OLS model, White's assumptions
and results regarding OLS with inid data, and pairs and wild bootstrap methods for

heteroskedastic data. Section III presents the foundational theorems regarding the asymptotic

3Canay et al (2021) who examine wild bootstrap consistency when the number of independent cluster
groupings is fixed, similarly allow for heterogeneity across clusters while assuming convergence of the full sample
cross-product and covariance matrices to matrices of constants and, additionally, convergence of the projection of
regressors on each other within each cluster to a common matrix.



normality of permutation distributions that motivate the results. Section IV then combines these
with White's (1980) result to derive sufficient conditions for pairs and wild OLS bootstrap
consistency with inid data, concluding with remarks that more fully contrast the assumptions and
results with those used in the papers cited above. The appendix and on-line appendix provide
details of the proofs.
II. Framework and Notation

Our interest is in inference for the linear model y, =x;p+¢,, i = 1... N, or in matrix form

(M) y=Xp+e,
where y represents the N x 1 matrix of observations on the dependent (outcome) variable, X the N
x K matrix of observations of independent variables, P the K x 1 vector of unobserved parameters
of interest , and € the N x 1 matrix of unobserved disturbances. The ordinary least squares
estimates B v of p minimize the sum of squared estimated residuals &€, , where &, =y — Xﬁ Vo
producing the estimates
(2) By =(X'X)"' XYy,
where for the purpose of describing limits below we use the subscript N to emphasize that the
estimated coefficients and residuals are functions of N realized observations. If the disturbances
¢; are homoskedastic with common variance 0'1.2 = o?, one can use the homoskedastic variance
estimate of ﬁ v (X'X) "848, /(N -K), but we focus on more general inference using White's
(1980) heteroskedasticity robust covariance estimate,
(3) V(By) = (XX) X', {8, ) X(XX)

where here and frequently later we use the notation {z} to denote a diagonal matrix with diagonal
entries given by the vector z.

White (1980) provided conditions for valid inference in this model when the row vector
of random variables associated with each observation 7, (x/,¢&;), are independently but not

necessarily identically distributed (inid):

Theorem I (following White 1980): If there exist strictly positive finite constants y, 4 and

n such that the following conditions hold



(Ta) (x),¢,)is a sequence of independent but not necessarily identically distributed random

vectors such that £(x,s,) =0,

(Ib) (i) For all i E(|x,x, |*")<4 forallj, k=1..K; (i) M, = N'IZX1 E(xx))is non-
singular with determinant(My) > # for all N sufficiently large,

(Ic) (i) For all i, E(|&’x,x, ["7)< 4 forall j, k=1..K; (ii) Vy = N_IZZIE(SfX,-X;)is non-

i VijTvik

singular with determinant(Vy) > # for all N sufficiently large,

then
~  as(X,e) d(X,e)

By = B () V"M INB~B) - n,,
(iii) M, V,, and their inverses are uniformly bounded for all NV sufficiently large,

as(X,g) d(X.e)

(iv) NVVB,)-MIV, My = 0. & (V) By-BYVB,) ' By-B) — 71,

as(X,g) d(X,g)
where — and — denote convergence almost surely and in distribution across (X.,¢g),

respectively, A” the "square root" of symmetric positive definite matrix A,* ng the K
dimensional standard normal and y the central chi-squared with K degrees of freedom,

and Ox and Oxyx vectors and matrices of zeros of the indicated dimensions.
White (1980) used (Ia) - (Ic) to prove (i), (i1) and parts of (iii) and added the assumption
E(| x;x,.kxﬂ 7)< 4 to prove (iv), (v) and other results. However, (Ia) - (Ic) suffice to prove (i) -
(5), as shown in the appendix below.” White's covariance estimate often motivates inference with
heteroskedasticity in an otherwise iid setting, such as when the variance of ¢; is a function of x;,
but (x),¢,) are otherwise iid draws from a fixed distribution. However, V(ﬁ v) allows for
asymptotically accurate inference in the much more general inid setting given above. Given the
inid data My, Vy and NV (B ) do not necessarily converge to matrices of constants.

In this paper we examine two bootstrap techniques commonly used for OLS inference

with heteroskedastic disturbances and prove the asymptotic consistency of their distributions for

general inid data. Wu's (1986) external bootstrap, now commonly known as the wild bootstrap,

*With E equal to the matrix of eigenvectors and A the diagonal matrix of eigenvalues of A, A” = EA”E’,
where A” is the diagonal matrix with entries equal to the square root of those of A.

*White (1980) also assumed that £(| & |*7) < 4, but this is only used with (Ib) to prove E(|x,¢, ") < 4,
which is actually implied by (Ic). The assumption E(| &’ ") < 4 is dropped in White (1984), c.f. exercise 5.12.



holds the design matrix X constant and generates new realizations of the outcome vector y by
multiplying the estimated residuals by a vector of independently and identically distributed
external random variables ", so that y" = x:ﬁ v +&0", or in matrix form y" = Xp vT{Ey10”.
Selecting % so as to minimize the sum of squared residuals for this new data, &'&" =
y" - Xﬁ]”\”,)’(y Y- Xﬁ]”\’,) , yields coefficient and covariance estimates
@By =(XX)'Xy" =By +(XK) X' E}8”
and V(By) = (XX) " X&)} £ X(X'X)”
= (XX) " XUX(By —By) + 18,1873 (X(By — B3+ (8,187 X(XX) .

Repeated draws of the N dimensional iid vector 8" are made and the percentiles of the
distribution of the deviation of the wild bootstrap coefficients from the mean of its data
generating process, ﬁ]”v - ﬁ v » or Wald statistics for the same, ([Ai;”, - ﬁ N )’V([Ai;”, ) (fi;”, - fi v), are
used to evaluate the statistical significance of corresponding measures for tests of the null
hypothesis p = By for the original sample, i.e. ﬁN —B, and (ﬁN —BO)'V(IASN)”([A%N -B,). All
permutations of any given outcome vector 8" are equally likely, a fact that plays a prominent role
in the results of this paper.

The pairs bootstrap samples N observational pairs ();,X;) from the rows of the original data
(y,X) with replacement, producing the data set(y”,X”) = (Ay,AX), where Ais an N x N matrix
of 0s with a single 1 in each row.® Selecting ﬁf; so as to minimize the sum of squared residuals
for this new data, &'Ve} =(y” - X” ﬁf,)’(y” -X7 ﬁﬁ) , yields coefficient and covariance estimates

(5) B2 = (X'A'AX) "' X'A'Ay = B, +(X'A'AX) ' X'A'AE,,
and V(B2)=(X'A'AX)" X'A'{#2} {2 JAX(X'A'AX) ™,

where we use the fact that as y = Xp v +&y,S0Ay = AXB v +AE€, . Again, repeated samples are
made and the resulting distribution of coefficients , ﬁi - ﬁ v » and Wald statistics.
([Aij'(, —ﬁ N)’V(ﬁf,)_l(ﬁf, - ﬁ v), used to evaluate the statistical significance of corresponding

measures for the original sample.

5The on-line appendix proves consistency for sub-sampling, with and without replacement, M < N
observations.



With some matrix algebra the equations for the pairs bootstrap can be transformed into a
form that highlights their similarity with the wild bootstrap. If we use the notation Dy to
represent the jkth element of matrix D, D.; the jth column, and z some vector, then using the fact
that A is a matrix of zeros with a single 1 in each row and the only potentially non-zero element
of any {h}. is A

N . N 5 N
(6) (AA), =AL A, =D A A, =(f j=k)) A>=D"A,
i=1 i=1 i=1
=(f j#k)0

N
(N'{Az}), = AL {AZ}, = A, D Az, = Az, = Az,
i=1

k< j Gt

Consequently, if we define J; = Zj\; A, ,then A'A ={8"} is a diagonal matrix with elements

i
equal to the number of times each row is sampled, while A'{Az} = {z}A". Using this, we re-
express (5) above as:
(N BL =By +(X'BIX)'XB ey =By +(X81X) X' (£, 18"

V(B = (X8 1X) 7 XAX(By —Bh) +E} 871 XBy —BF) +, 1X(X'B71X).
As in the case of the wild bootstrap, conditional on the original data the estimated coefficients
and covariance matrix are only a function of the realization of the Nx1 vector &. All
permutations of any given sampling frequency vector & are equally likely, a fact that plays a
prominent role in the results of this paper. Consequently, we use the common notation 9,
distinguished by superscripted p or w, for seemingly dissimilar objects because these operate
identically in the theorems and proofs below.

Our interest is in deriving sufficient conditions for the conditional consistency of the

bootstrap distributions in an inid framework. Specifically, we show that White's (1980)

assumptions are sufficient to ensure that for the bootstrapped coefficient and heteroskedasticity

robust covariance estimates, with » denoting p (pairs) or w (wild)

(8) (X’{QN}{(%N}XJ_ [X,Xj\/ﬁ(ﬁ};v_ﬁN)d(ﬁ])_a;(x’s)nK

N N

d(8)as(X,e)

& IN@, B INVEDT' B -BOVN > 42,



d(®)as(X.) e o
where _y  denotes convergence in distribution across d almost surely across realizations of

(X,g). These results show that the asymptotic conditional distribution given the data (X,€) of the
bootstrap equals the asymptotic distribution of the OLS estimates across (X,€), allowing for valid
inference using the percentiles of bootstrapped coefficient estimates or Wald statistics.’

The key characteristic exploited in proofs below is that any of the row permutations of the
vectors o are equally likely. Consequently, the distribution of the bootstraps can be thought of as
the distribution across permutations of 9 integrated across the ordered realizations of 6.
Permutation theorems characterize this permutation distribution as asymptotically normal with
covariance matrix NV (ﬁ v) provided (X,¢) and 8 have certain moment properties. White's (1980)
assumptions ensure that these properties hold almost surely for (X,g), while the properties of the
multinomial sampling frequencies 8 and moment assumptions on the iid elements of 8" ensure
the requisite conditions on 9 also hold almost surely. Consequently, almost surely conditional on
the data (X,¢€) the distributions of the bootstraps across the draws 8 that determine their
coefficient estimates and Wald statistics converge to the distribution of their OLS counterparts
for the original sample (X,€) across its data generating process.

I11. Foundational Permutation Theorems

The proofs in this paper rely on a theorem first proven by Wald & Wolfowitz (1944) and
later refined by Noether (1949) and Hoeffding (1951) concerning the asymptotic distribution of
root-N times the correlation of a permuted sequence with another sequence:

Theorem II: Let z' = (zy, ..., zy) and 8’ = (d|, ..., dy) denote sequences of real numbers, not
all equal, and d' = (d, ... , dy) any of the N! equally likely permutations of 8. Then as N

— oo the distribution across the realizations of d of the random variable

(Ila) v, = 3 =G, = m(d,)]

i1 s(z,)s(d,)N” ’
N N _ 2
where for h=zord, m(h)= Z% & s(h)y' =Y (7, ’]”V(hi)] ’
i=1 i=1

’Although, as noted by Cavaliere and Georgiev (2020), even when conditional consistency does not hold valid
inference using the bootstrap is still possible if the unconditional limit distribution of the sample test statistic equals
the average of the random limit distribution of the bootstrap given the data.



converges to that of the standard normal if for all integer 7 > 2

N2 Y[z = m(z)T YIS, —m(S))
(IIb) lim = = = 0.

Now /[ N 7/2 N 7/2
S| [$10 o |

i=l1 i=l1

The proof is based upon showing that the moments of vy converge to those of the standard
normal. A simple multivariate extension, proven in the on-line appendix, is that if

Z' =(z,...,z,)is a sequence of K x 1 vectors and O =1, —1,1},/N the centering matrix,® then

7'0Z d'Odj_% (Z'0d)

N N JN

is asymptotically distributed multivariate iid standard normal if (IIb) holds for each element in

(Ile) v, = (

the vector sequence z; and for all N sufficiently large 8’08’ is non-zero and the correlation
matrix diag(Z'0OZ) " Z'0Z diag(Z'OZ)™* , where diag(Z'OZ) s the diagonal matrix with entries
equal to the diagonal of Z'OZ, is non-singular with determinant > 4 (a positive constant).
Theorem II is easily extended to a probabilistic environment by noting the following
result due to Ghosh (1950) that translates the almost sure or in probability characteristics of an
infinite number of moment conditions into similar statements regarding a distribution:
Theorem III: If all the moments of the cumulative distribution function Fj(x) converge

almost surely (in probability) to those of F(x) which possesses a density function and for

which, with v,  denoting the absolute moment of order i+1,
k+2

(IlIa) lim & Vin g for any given value of «,
ko fr 4 2|

then Fy(x) converges almost surely (in probability) to F(x).
Condition (I1Ia) is of course true for the normal distribution. Hoeffding (1952) generalized the
result by showing that condition (IIla) is not even needed for convergence in probability at all
points of continuity of any F(x) that is uniquely determined by its moments. By virtue of the
Cramér-Wold device, Theorem III covers the multivariate case given in (Ilc) above, as for all A

such that A'A =1, all moments of A'v, converge to those of the standard normal. In light of

$Where 1, denotes an N vector of ones and I,y the NxN identity matrix.



d(d)|as(,X,g) d(d)|as(8,X,g)
Theorem III, in applying Theorem II below we use the notation @~ — and — ,i.e.

almost surely across the realizations of (8,X,¢) the distribution of vy across permutations d of 6
converges to the multivariate standard normal. Theorems II and III are used to characterize the
asymptotic distribution of X'{&, }0/ JN , which appears in the expressions for the bootstrapped
coefficient estimates in (4) and (7) above.

A less demanding form of Theorem II, proven in the appendix below, provides a weaker
condition under which the mean of products converges in probability across permutations to the

product of means:

Theorem IV: Letz'=(zy, ..., zy) and 8'= (d|, ... , dy) denote sequences of real numbers,
possibly all equal, and d'= (d, ... , dy) any of the N! equally likely permutations of o.
Then as N — oo, across permutations d of ¢
Yz X d
(IVa) m(z,d.)—m(z,)m(d,) = Z 2—12—1 0,
i=1 i=1 N i=1 N
if

i [Zi - m(zi)]2 i [51 - m(5l)]2

(Vo) fim2— NV =5 N
N—>o N

=0.

Theorem IV is used in proofs to make statements regarding the convergence in probability of

terms such as Z'{8}Z/ N , for some matrix Z made up of X and £, , which appear in (4) and (7)

above. As satisfaction of (IVb) depends on the realized sample moments of (X,¢) and 9, we use
P(d)]as(,X.¢)

the notation — , 1.e. almost surely across the realizations of (8,X,€) m(zd;) converges in

probability across the permutations d of & to m(z;)m(d;).

IV. Bootstrap Consistency with INID Data

The following result is proven in the appendix further below:
Theorem V: Assume that for the wild bootstrap E[5"]=0, E[(5")*]=1and
E[(6")*""" 1< 4 for some finite 4 and 6; > 1/y, with y as given in Theorem I earlier.

White's assumptions (Ia) - (Ic) given in Theorem I in combination with the properties of

are sufficient to ensure that across the permutations d of 8’, for b= p (pairs) or w (wild)

10



rca a e ’ b b\ b
X'{e e X X'X Y 8”08 R R d(d)|as(8®,X,¢)
<Va>[ i J [Nj( > ] IN@ B >,

p(d)as(3” . X,¢)

(VONVED)-NVB) = 0y
Bounded higher moments of ;" are needed to ensure that conditions (IIb) and (IVb) in Theorems
IT and IV are satisfied.
Let & denote the ordered values of 8. Across permutations d of 8" (Va) and (VD) hold.
These permutations, integrated across the distribution of &', characterize the entire distribution of
5. Adding the result’

8”'08” ") 808" =6")

) — 1 and -1,
N N

implies that

1o [X’{éva{éN}XJ_ (EX WA -5, o

p(®")las(X.2)

(10b) NV -NVB) = 0y,
where the convergence in distribution in this case is across the bootstrap realizations of 8” that
determine the bootstrap coefficient and covariance estimates, as in (4) and (7) earlier above.
When combined with White's (1980) result in Theorem I regarding the asymptotic distribution of
OLS coefficient estimates, this establishes that almost surely the conditional (on the data)
distributions of the bootstrapped coefficients and Wald statistics converge to the unconditional
distributions of their OLS regression counterparts.
Remark 1: assumptions on regressors and errors

For an OLS model with iid data and potentially heteroskedastic residuals, Mammen
(1993) showed that for a fixed number of regressors the wild bootstrap distributions of linear

combinations of the coefficients and Wald statistics based upon the homoskedastic covariance

estimate are in probability consistent given supy,_, £ [(¢’x,)*(1+&])] < o and the Lindeberg type

’For the wild bootstrap, (9) follows immediately from the assumptions on moments. The proof for the pairs
bootstrap is lengthy and is given in the on-line appendix.

11



condition E[(c'x,)* &}

I[(¢'x,)* &} = yN]— 0 for every fixed y > 0. For the same model, Freedman
(1981) proved almost sure consistency of pairs bootstrap coefficients and homoskedastic-based
Wald tests if the row vectors (x;, v,) are independently and identically distributed and
E[((x},y,)(X,,,))?] <oo. Stute (1990) tightened part of the result showing that almost sure
convergence of the pairs bootstrap coefficients alone for iid data only requires E(x,x;)and
E (x,.jx,.ks,.z) to be finite. By adopting a permutation approach, this paper proves almost sure
consistency of both coefficients and Wald statistics based upon the heteroskedasticity robust
covariance estimate with inid data for both the pairs and wild bootstrap with the existence of only
slightly higher moments than required by Stute (1990), i.e. E|x,x, |/ < and E|x;x,& |7<o0
for some y > 0. It should be noted, however, that Mammen's result was part of a broader
framework that allowed for a growing number of regressors, while Freedman and Stute allowed
for sub-sampling M < N observations . As shown in the on-line appendix, at the expense of
complicating the proofs the permutation based pairs bootstrap consistency results can be
extended to sub-sampling, with and without replacement, if M/N — ( and for some y > (1+ ),
M is such that limi,e MIN' > 0."°

For inid data, Liu (1988) proved consistency in probability of the second central moment
of the wild OLS bootstrap coefficient distribution with bounded regressors and finite second
moments of ¢;. This paper proves almost sure consistency of the wild bootstrap distribution for
unbounded regressors given the moment conditions described above. Djogbenou et al (2019)
prove consistency in probability of the distribution of the wild bootstrap t-statistic for within
cluster correlated but cross-cluster independent but not identically distributed data. In the case
where clusters are composed of single observations, their assumptions on the existence of
moments are those used in this paper plus the addition of the fourth moment restriction
E| x; |"7< o0 for some y > 0. They also impose asymptotic homogeneity of the data generating

process in the form of assuming that X'X/N converges to a matrix of constants, while for any

'"The requirement that M not fall too rapidly relative to N is needed to ensure the existence and convergence
of higher moments to the normal, as the proof of Theorem II is based upon the method of moments.

12



vector @ such that @'a =1 there exists a finite scalar v, > 0 and non-random sequence py —
such that ,a'(X'X)™"'X'{e} {e!X(X'X) '@ —v,. Thus, while papers usually use the iid assumption
to motivate convergence of key matrices to matrices of constants, Djogbenou et al (2019) avoid
the iid assumption but assume the data nevertheless converge to such matrices. This paper, using
White's (1980) assumptions, requires no such convergence of the asymptotic regressor cross
product and covariance matrix of coefficient estimates and as such covers more fundamentally
inid data using more demanding moment assumptions. However, Djobgenou et al's analysis goes
beyond this paper's in allowing for cluster correlated groupings of observations and dealing with
issues concerning the asymptotic maximum size of any such grouping.
Remark 2: type of consistency proven

Aside from consistency of the coefficient distribution, Freedman (1981) and Mammen
(1993) prove consistency of the Wald statistic based upon the covariance estimate with
homoskedastic errors, while recognizing that with heteroskedastic errors its distribution is not
pivotal. This paper focuses on the Wald statistic using the heteroskedasticity robust covariance
estimate which is also asymptotically accurate with homoskedastic errors. This test statistic is
asymptotically pivotal and hence provides higher order asymptotic bootstrap accuracy (Singh
1981, Hall 1992). Djogbenou et al (2019) prove consistency for t-statistics in a broader
framework with clustered-robust covariance estimates, which allow for arbitrary correlations and
heteroskedasticity within defined groups of observations and, when clusters are defined as single
observations, encompass the heteroskedasticity-robust framework of this paper.

Liu (1988) proves consistency of the wild bootstrap second central moment with bounded
regressors. Proving such consistency with the unbounded regressors of this paper is trivial. If we
assume, as did Liu (1988), that E£[6"]=0, and E[6"0'"]=1,,, (the identity matrix), then taking

the expectation with respect to this variable for a given realization of X and g, we have

13



(1) B[ By | X,e] =+ (XX) X8, 1 B3] =B
E[(B5, — EIB3 DBy — EIBy D' X.e]= (XX) ' X (&, }E[3"8" ] £, X(X'X)”
=(X'X)" X', } {8, ) X(XX) " = V().
Thus, for any sample size the variance of wild bootstrap coefficient estimates equals White's
heteroskedasticity robust covariance estimate. Since under White's conditions NV (ﬁ y) 1sa
consistent estimator of the asymptotic variance of JN (ﬁ v —PB) , it follows that for such general
inid data the wild bootstrap coefficient variance is a consistent estimator as well, reproducing
Liu's result in a more general framework.

A similar result for the pairs bootstrap is more problematic. The first two moments of the
multinomial sampling frequencies (6 ) for N draws with replacement from N observations are
E[8”]=1, (a vector of ones) and E[678'"]=1,, , — N '1,1),. Examining the moments of the
latter half of B2 —B, = (X'{6”}X)'X'{£, 187, we see:

(12) B[ X'8,}8” | X,&]= X'{£, }E[6"]= X'{£,}1, = X'E, =0,
& E[(X'{Ey}0")(X'{Ey10") | X,e] = X'{E, }E[670"" ]{E }X
= X&) {8, )X - NXEE X=X (E, ) 8, )X = (XX)V(B)(XX),
where we make use of the fact that X'¢, =0, as the OLS estimates B v In (2) above minimize
& 2&,. Were X'{£,8” multiplied by (X'X)™', this would prove consistency of the second central
moment of pairs bootstrap coefficients, but unfortunately it is multiplied by (X'{8”}X)™".
However, it is easy to show that (X'{8”}X)™" converges in probability to (X'X)™" (see the
appendix below). Using this fact, Tu and Shao (1995) prove consistency of the second central
moment using the artifice of assuming that when the minimum eigenvalue of (X'{8”}X)™" is less
than ¥ of the minimum eigenvalue of (X'X)', an event whose probability converges to zero,
IASfQ is set equal to |§N .

This paper, and most papers which prove consistency of bootstrap distributions, implicitly
prove convergence in the sense of the Kolmogorov sup-norm since, by Polya's Theorem, if a
distribution function Fy converges to F which is continuous, as is the normal distribution, then

the convergence is uniform, i.e. limy_,supy | Fa(x) - F(x) | = 0. The notable exception is
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Freedman (1981), who proves convergence of the distribution of the pairs bootstrap in the sense

of the Mallows (1972) metric, namely dy(F’ ,G)k = infrxy) ||X -y

k, where || || denotes the
Euclidean norm and 71(x,y) the collection of all possible joint distributions of the vectors (X,y)
whose marginal distributions are F and G, respectively. Freedman proves convergence in the d;
metric of X'{8”}X/Nto X'X/N and in the d> metric of X'{£,}8” /N to X'e//N .
Convergence in the d; metric is equivalent to convergence in distribution plus convergence of the
1* through K™ absolute moments (Bickel and Freedman 1981), so in this respect Freedman's
results for the pairs bootstrap with iid data go beyond those presented in this and other papers.
They do not, however, constitute a proof of convergence of the second moments of pairs
bootstrap coefficients, as these involve the expectation of the product of (X'{8”}X)™" with

X'{¢, }6”, as was noted above.

It is well known that convergence in distribution does not imply convergence of moments,
but the fact that the proof of Theorem II regarding the asymptotic permutation distribution of
root-N correlation coefficients is based upon the method of moments (see Hoeffding 1951 and the
on-line appendix of this paper) might lead to the erroneous conclusion that the results here imply
consistency of all moments. They do not, most fundamentally because the proof of convergence
in distribution of VN (ﬁ v —B) to the multivariate normal does not necessarily imply the existence
of all higher moments for the original coefficients themselves. With regards to the bootstraps, in
the appendix below Theorem II is used to prove that across the equally likely permutations d of a

given &°, for b = p (pairs) or w (wild)

o A0 abeyad N7 ot sav d(das6’ X.e)
13) (X{s} {s}Xj 8708" | X'igid g
N N \/N

signifying, by the method of proof, that the moments across permutations d of § of the left hand

n,,

side converge to those of the multivariate standard normal. Since this is true for all & such that
8’08 > 0, which almost surely holds (see (L2) in the appendix), we can equally say that across
the distribution of & the moments of (13) converge to those of the multivariate standard normal.

For the wild bootstrap JN ([ASX, —B v) consists of (13) multiplied by
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as(8")

(X’X/N) (808" / N)*(X'{&} {1 X/N)” and as §"08" /N — 1we can say that all the
moments of /N ([Ai,”\, — ﬁ v) converge to those of the mulitvariate normal with covariance matrix
NV (ﬁ v) » although these need not be the asymptotic moments of JN (ﬁ v —B) . In the case of the
pairs bootstrap, JN ([Aif(, - ﬁ v) equals (13) multiplied by
(X'{87}X/N)(8'708” / N)*(X'{} {£}X/N)” and as both X'{8”}X/N and 8'”08” /N are
only shown to converge in probability, nothing can be said about the asymptotic moments of
JN (ﬁf, - ﬁ v) without the use of an artifice such as that of Shao and Tu (1995) mentioned above.
Remark 3: assumptions on the wild bootstrap external variable

Liu (1988) proves consistency of the second central moment of the wild bootstrap
coefficients assuming that the first and second moments of the wild bootstrap external variable
0 are 0 and 1, respectively.!! This paper extends the proof to consistency in distribution by

MW ] < oo for ) > 1/y where y > 0 is such that E | x,x, |7 <o

additionally requiring that E[(J,")
and E|x,x,& |""<oo. As the proof of Theorem II is based on the method of moments, depending
upon the existence of higher moments for the regressors higher moments on J," are needed to
ensure that all moments of (13) above exist and converge to the normal. Proofs of the
consistency of wild bootstrap distributions typically assume that the external variable J,” comes
from a particular distribution, such as the Rademacher, with moments of all order (e.g. Mammen
1993, Canay et al 2021). A notable exception is Djogbenou et al (2019), where the proof of

|***< oo for some A > 0. As that paper uses

convergence in distribution merely requires that | 5"
the central limit theorem rather than the method of moments, it can avail itself of tighter
assumptions on J,". The wild bootstrap external variable, however, is under the control of the

practitioner (i.e. not a characteristic of the given data) and at this time there appear to be no

known advantages to using an external variable without higher moments.

"Liu (1988) also advocated selecting £(d;"*) = 1 so as to correct for skewness in the Edgeworth expansion.
However, Monte Carlos find that forms of §;" that make this assumption perform less well than those that do not
(Davidson & Flachaire 2008, MacKinnon 2015)
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Appendix
A. Proof of Theorem I
The following corollaries to Markov's Law of Large Numbers and the Continuous

Mapping Theorem given in White (1984) will be useful:

Corollary to Markov's Law: Let z; be a sequence of independent random variables such

that E£(|z,|'""") < 4 <o for some y > 0 and all i. Then

m(z,) - m(E(z,)) —0.
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Corollary to Continuous Mapping Theorem: Let g: R*— R’ be continuous on a compact set

CcR*. Suppose that by(w) and cy are kx1 vectors such that by(w) - cy — 0. and for all N

sufficiently large, cy is interior to C, uniformly in N. Then g(bx(w)) - g(cn) — 0.

as will the following Borel-Cantelli type corollary by Galambos (1987):

Borel-Cantelli Corollary: Let xi, x», ... be an infinite sequence of random variables, Fj(x) be
the cumulative distribution function of x; (i.e. Prob(x; < x)), and uy be a nondecreasing

sequence of real numbers such that for all j Prob(x; < supyuy) = 1. Then

Z[l —F;(u;)] < % = Prob(max.x, > u, infinitely often) = 0.

Turning to Theorem I, as noted earlier White (1980) showed that (Ia) - (Ic) are sufficient
~  as(X.g) A d(X,e)
for (i) p, — Pand (ii) V"M NP, —B) — n,. For (iii), from (Ib), (Ic) and Jensen's

Inequality we have E(|x,x, ) <4""and E(|&x,x, ) <4""*", so My and Vy are uniformly

i XXk |
bounded and, with determinants > # > 0, invertible for all N sufficiently large. As the sum of the
eigenvalues of a matrix equal its trace and the product its determinant, their maximum
eigenvalues are less than K4""*” and their minimum eigenvalues greater than 7 /(K4""*")*" for
all N sufficiently large. The minimum and maximum eigenvalues of their inverses are the
inverses of these. Consequently, for all N sufficiently large the determinants of their inverses are
greater than (K4""*)™® >0 and, by the spectral decomposition of a real symmetric matrix, the
absolute value of their elements bounded by (KA""™*")* /5 '? This establishes (iii) in Theorem I.
E(|x,x, |"")< 4 in Theorem (Ib) and the Markov Corollary ensure that X'X/N-M,
as(X)

— 0., and, by the Continuous Mapping Theorem Corollary, that X'’X/N is invertible for all N

as(X)
sufficiently large with (X'X/N)" =My — 0,,. The jkth element of X'{€} {£€}X/ N equals:

(Al)ny x, &2/ N = lejxlk(g +Z(ﬁ ~B)x,) IN

=§:xl/'xlkg Z ﬂpN)Z ij z lp z+i§: ﬂpN)(ﬂ ﬂqN)Z ij 1
N N(:9 1)/2 N1+(1 0)/2 N(:9 1)/2 N(:9 1)/2 N2 0

i=1 p=1 p=1 g=1 i=1

Xiq

Let E, A and A, denote the eigenvectors, eigenvalues and maximum eigenvalue of symmetric positive
definite matrix A, a;; the ij'h element and a; a vector of Os with a 1 in the /™ position. By the Cauchy-Schwarz
Inequality and properties of the Rayleigh quotient, ¢; = (@E{AE'a)’ < (aE{ME'a,)(@ EMEa )<, .

19



The Markov Corollary and E(| &x

7% "7y < 4in Theorem (Ic) ensure that the first summation

almost surely converges to ZH E(g!x,x,)/ N, which is the ii™ element of Vy. From the Cauchy-

Schwarz Inequality we have

XX, X E.

ik ip©i
(Az) z ]\j]H(l 491;/2

N 2 N 2 N N
xljxlk xlp ; x; X i
z 2-0 Z max ——= z Z
N isN N7 =N 4 N

i=1

le/xlkx X,
2-0
N

i=1

&

2 2 2 2 2
u z/ Xig o X )C xl] le & xii < xi‘]
= Z 2-0 Z g </ max— 5 max :
= N N isN NTTisN NTUOEON T

Using Markov's Inequality and E(| x; 7)< 4 in Theorem (Ib), we can state that for any J >

1/(1+y) but <1

(A3) ZProb(xN >Ny (|fo|+7)<§ 4

LNt S Lty <7
So, by the Borel-Cantelli Corollary, max, ., xj is asymptotically almost surely less than N’ and
hence max;<y X; /N' almost surely converges to zero for 1> 1- 0> 1/(1+y), i.e. 0 < 6 < y/(1+y).
Together with the fact that Z X; >/ N almost surely converges to the bounded /™ diagonal term
of My, this establishes that both left hand side terms in (A2) almost surely converge to 0.
Theorem I (i), (ii) and (iii) show that JN B, - ﬁpN) is asymptotically normally distributed with
mean zero and bounded variance less than some 6°> 0. Hence, asymptotically the probability

INN(B, - [}pN) |> N’ for any & such that @ > 6 > 0 can be bounded by

x? xz 2¢ 1 —N%
A4 = e dx < — dx=————exp| —— |,

which is less than N~ for all N sufficiently large. So

(A5) S Prob(|VN(B, - )| 2 N%) <o0

and by the Borel-Cantelli Lemma JN N(B, ﬂpN)/ N’ m(—x;)O Putting all of the above together,
we see that X'{&} {€}X/N -V, asgS) 0, and NV ([5 V)-MUV, MY aS(—X;) 0, . , establishing (iv)
in Theorem I, while (v) follows from (i) - (iv).

B. Proof of Theorem IV

If either the z; or 0; are all identical (z; = z or J;, = d), Theorem IV follows immediately.
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Assuming this is not the case, we first use the symmetry and equal likelihood of permutations to

calculate the expectation of d; and products of d; across the row permutations d of &:

N N

(Bl) E,(d)= Z%—m(é‘) E,(d}) =Z m(57)

i=1

55, _m@)’N m(3})

We then calculate the mean and variance of m(z;d;) - m(z;)m(d;) across the realizations of d:

(B2) Ey(m(z,d,)~m(z)m(3,)) = ﬁl%(d")—m(zi)m =0,
Eadd;) & 2
Ey(m(z,d)—m(zpm(&)) = 3 27 < L3 E(d)

i,j=1 i=1

0,)"N 0, NI, z;z, NZiz zNZiz 2 2
(SRl e ‘ZFJ+M(5" 2 m)

- i=1 j=1 i=1

=[m(@>21v_m<@2>}[m(zi)z_%Zﬁjm(@)’"(; Lz ms)

—m(z,)*m(5,)’

N-1 N-1

_[m(z)=m(z)*1[m(5;)-m(5,)’ ]
N-1

where subscripted i,j denotes the summation across the two indices excluding ties between them.
The last line shows that if (IVb) holds, then across the permutations d of 6 m(z,d;) - m(z;)m(d;)
converges in mean square and hence in probability to 0, as stated in Theorem IV.

C. Proof of Theorem V

We begin by noting the following Lemma, proven in Appendix D further below

as(®  p(d
Lemma: Let _y or _> denote convergence almost surely or in probability across the

distribution of 8, 7 any integer greater than 2, b = p (pairs) or w (wild), y > 0 be as given in
Theorem I, ; > 0 as in Theorem V, and #; some constant > 0 . For all 8 such that y/(1+y)
> 0> 0 (pairs) or y/(1+y) > 0> 1/(1+6,) (wild):
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as(8")

(L1w) m(5") "o, (")) & N ‘m((5")) — 0;

p(d”) as(8”)
(Llp) m(57) =1, m((6])*) = 2, & N'm((5]')*) — 0;
, & [6) —m(S))T
(L2) for some constant x > 0 almost surely for all N sufficiently large Z; > K;

p N

(1 9)( jz[é.b —m(5b)] ')
(L) ——= 500,

7/2
(Z[@b —m(5; )]ZJ

(L4) almost surely for all NV sufficiently large XNX , X {sjv{a}X ,

and their inverses are bounded and positive definite with determinant > 7, > 0;

RS
lek ’ as(X,g)

(L5) Y ké&z: - 0

2 2 as(X,g) N as(Xs)

(L6)ij2”’k 0; (L7) VY j,k Z’;;@

i=l1

For a permutation d of 8" or &”, the coefficient estimates of the pairs and wild bootstrap
are, following (4) and (7) in the text, given by \/ﬁ(ﬁﬁ —ﬁN) =C'a and \/N(IA}]”V —ﬁN) =
(X’X/N)'a, where C=X'{d}X/N,a= X’{é}d/\/_ and we simplify notation here and later
by dropping the subscript N on . Regarding the jk” element of C, given by Z XX d /N | we

can apply Theorem IV with z, = x,x, . Condition IVb in this case requires that:

m(xz/ lk) m(x xlk) m((é‘ip)2)_m(5ip)2 as(8”,X,2)
N16 Na - 0,

(CD {

which is guaranteed by (L1p), (L4) and (L6) above. So,

X' X X’X p(@)as(d” X.¢)
(C2) 252 {d} m(Ss?) N 0,..
N N —

C

By the corollary to the Continuous Mapping Theorem given above, (X'{d}X/N)™' converges in
probability to bounded positive definite (X'X/N)™' (as in L4).
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Noting that the k™ element of a equals ZZI x,&d,/ \/ﬁ , we apply the multivariate
extension of Theorem II in the text withz, =x,&,, orZ = {€}X. Since 1’ {¢}X =¢X =
(y-Xp)X=yX-y'X= 0'., the mean of z; is zero and so we have Z'OZ = X'{¢} {¢}X and
7Z'0d = X'{8}d . From (L2) we know that almost surely d'Od = 8'°0d” is non-zero, while (L4)
ensures that diag(X'{&} {£}X)" (X'{&} {&}X) diag(X'{&} {£}X)™ is almost surely non-singular with
determinant greater than some 0 > 0. Hence, following Theorems II and III, the distribution

across d of

X'{8) {é}X]_%(d’Odj_% X'{8\d
N N JN

converges almost surely (across 8”,X,¢) to that of the iid multivariate standard normal as by (L3)

(©3) (

and (L5) for all integer 7 greater than 2

N 6( J N j N
N? Zx;cé‘r Z[é‘zb _m(5b N ? in;c‘c:‘ir N ? Z[é‘ib a m(é‘fb )]T as(8”,X,2)
(C4) - =1 i=1 i=l ‘

7/2 1/2 7/2 N 7/2
[Zx;éfj [Z[@”w(@”)?j (Zx,ﬁj (Z[éf—m@%Fj

i=1 i=1

Using (L4) and the fact that 8'°08° /N =d'Od/ N is a scalar, we then have:

©s) (x’{é}{é}xj (X’Xj(ap'oapj NG, B, =

N N

ng,,

(X’{é} {é}Xj_%(X’XJ(X’{d}Xj (X{s} {s}xj (X{s} {a}Xj_%(d’Odj_% X' (g} (e X0
N N N N N N JN

p(d)as(8” X.g) d(d)as(8” X,¢)
- Ik - ng

X&) X ) (XX 808" )" XEHEX) 7 (d'od)” X'{E1d (@6 X
[ N j[Nj( J\/_(BN BN [ N j(Nj \/ﬁ - ng,,

thereby establishing the claim in (Va).

Regarding the wild bootstrap heteroskedasticity robust covariance estimates, we have

PBy (L4) X'{&} {8)X/N is bounded with determinant > 5; > 0. Let u denote the upper bound on the diagonal
elements. By the trace property of eigenvalues, we know that the largest eigenvalue is less than Ku, and hence the
smallest must be greater than #7,/(Ku)*". The smallest eigenvalue of diag( X'{&} {&€}X/ N )" is greater than u™*. As
the smallest eigenvalue of AB is greater than or equal to the product of their smallest eigenvalues, we have that the
smallest eigenvalue of diag( X'{&} {81 X/ N )" (X'{&} {£} X/ N) diag( X'{&} {£}X/ N )" is greater than #,/K* "X, and
hence the determinant greater than (5,/K*"u")~.
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~ oo (XXY) (XX X'{E" 1 {E1X
(C6)NV(BN)—( N j A( N j , Where A= — N

Using the formula for £y in (4), the jK” element of A is given by:

2
K xip swrosw )
ZN%(I-H) N1+49 np |:

X lk[ds
p=1
€y
i=1

N

”'0(*3w X, X, X, &.d. K X 508" XXy X, X,
A2 i VikYip<itti A A iiVik
—m(xy € d) 22 { jN'/z(f)e) j"'_zz N ﬂpnqm( le 0 j
%,—/
%,—/

b c

n_n

, we note that d’is the permutation of 5> and apply Theorem IV with z, = x, x, &’

For "a Xk

Condition (IVb) requires that:

(CS){’"(’% X3 - iy ')’ }[m(éﬁ‘4>—m<5“>2r@"m

as(8",X,g)

From (L1w) and (L4), we know that [ m(5"**)—m(5"*)* VN’ and m(x,x,£2)*/N'""  — 0.

ljlk

Applying the Cauchy-Schwarz Inequality (here, and frequently below)

(224

MAX ;X 1) Yy , é .X'l 81 N xi4 514 as(X,g)
(C9) Jl g z -0 - \/(z ]\;2 0 J(z ]\;2—0 —> 0,

i=1 i=1 i=1

where the last is guaranteed by (L4) and (L5) as

as(X.g)
— 0(L5 with r=4)
f_—J\_ﬁ

as bounded (L4)
N xl“él“ N Z(xljgl) ( as(Xs)
(€103 7= Z 0.
(i j 5 N
=1
So, by Theorem IV
"no_n, A2 w2 p(@)las(3”.X.2) w2 as(®”)
(C1D"a": m(x;x,& &ld’) - m(x; X, € Yym(5?)  — 0, where m(J, ) =2 L
by (L1w)

For "b", we apply Theorem IV with z, =x,x,x,&, /N #0) "so condition (IVb) requires that

c12 m(xyxix;z:f/ng) 171()cyxlk)clp£l/N/Z(1 0y? m(8")-m(5")? as(ﬁ“‘,x,wo
(C12) & e — 0.

Using (L1w) and
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ﬁ‘xlszkxngl‘ leszk Zx ‘9 mgs)o
+h(-0) — 2-0
N NZ\& N

i=1 i=1

(C13) m

lj lk ip z
/(1 0)

2.2A42 16 2.2 _2A2
m(x.x:x2&> /N N X XX E; \/

as(X,e)—>0(L6) as bounded (L4)

xyxzk N x;élf‘ as(X,g)
ZN4 360 ZNz—e - 0,

i=1 i=1

(Cla) === 253 SYEORE
i=1

as(X,e)—>0 (L7) as(X,£)—0(C10)

we see that condition (IVD) is met and by Theorem IV we then have

XXy X, E,d, XXX, €,  p(@as(3” X.e)
(Cls) "b": m g1 V(lf)g)l ¢ —m ij zl/(lz;)) i m(é‘i”) N O
N 2 N 2 H_J

as(8") — 0(Llw)
as(X,g) > 0 (C13)

For "c", we note that
XXy X, X, Nox; xl2 N x x as(X.e)
(C16) m(%j < \/Z ]\;2 g Nz 0 __)_/0‘
i=1 i=1 by (L6)
From the above, we see that the 77, in (C7) are multiplied by 1/86"'08" / N "¢ which
from (L1w) converges almost surely (across 8") to 0, "¢" terms which almost surely (across X,)

converge to 0, and "b" terms which also almost surely (across 8",X,g) converge in probability
across permutations d to zero. As the 77, from (L4) and (CS) almost surely (across 8" X,g)
converge in distribution across permutations d of 8" to normal variables with bounded variance,
it follows that when so multiplied they converge in probability across permutations d to zero.
This leaves only the "a" term, and consequently using (C11) we see that

X'{g} {&}X p(d)as(3”.X.¢) N " A p(d)as(8" X.g)
- >

(C17) A 0., andhence NV(By)-NV(B,) — | S

which establishes (Vb) for the wild bootstrap.
For the pairs bootstrap heteroskedasticity robust covariance estimates, from (7) we have

X’{d}leB (X’{d}le

(C18) NV(ﬁi)=( N N

X'{X(B, —B)+2,} (8”1 (X(B, —B,)+2,}X
N

where B =

The jk" element of B is given by
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2
KX, /ﬁp’Oﬁp R
xz/xzkd ZN'/Z(};-H) N my W
p=1 'Od \/— ro A
N(BN _BN)

. (d
C19 ,| where =
( )Z1 v { il ( N

K 187067 . (X% x,6d; ) EE 87087 . . [ x;xyx,%,d,
—m(xl] lkg di)_zz N npm( JNk‘/z(IPH) J*ZZ npnqm(% -
—

e A

For "d", we apply Theorem IV with z, = x, x,kg and, as by (L1p), (L4) and (C9)
as(8” ,X,g)

[m(57%)—m(57)* VN?, m(x,x, &)/ N'™ and m(x;x; ')/ N'?all  — 0, condition (IVb) is

ij lk
met So
p(d)las(3” X,¢)
(C20)"d": m(x;x,é ’d)— m(x, X, &; Hm( 5Py — 0.
—
=1(Llp)
For "e", we apply Theorem IV with z, = x;x,x, &, / N""? and, as by (L1p), (C13) and (C14)
as(8”,X,g)
[m(5"*)—m(57)* N, n1(xyxlkxlpgl/N/z(1 ?)?/ N"?and m(x,/ lkxj,gf/Nl Y/N"all - 0,
condition (IVb) is met so
o [(Xyxpx,Ed, XXX, €, P(@)as(8”.X.£)
(C2D)"e ( JN/ZOPH) J—m( JN%(I_Z) Jm(é‘ip) N 0.
=1(L1p)

as(X.g)
by(C13) — 0

For "f" we apply Theorem IV with z, = x,x,x,x, /N "% and see condition (IVb) holds as by
as(8”,X,g)

(L1p) and (C16) [ m(5*) —m(57)* YN’ and m(x,x,x,x, /N'*)*/N® ~— 0, while by (L7)

ij 7V ik

m('xl zk xi2 /Nz(l_e)) i zk m(Xs)
(C22) - Nl—qH Z Nj4 30 Z N4 30

i=l1

SO

XXX, %, d, XXX, %, p(d)las(3” X.6)
(C23)" f": m N -m & m@©/) — 0.
%/_/
=1(Llp)

as(X.g)
by (Cl16) — 0

Similar to the case of the wild bootstrap, the 7 , 10 (C19), which from (L4) and (C5) almost
surely (across 8”,X,€) converge in distribution across permutations d of &’ to normal variables
with bounded variance, are multiplied by ,/8”'08” / N'** which from (L1p) converges almost

surely (across 8”) to 0 and "e" and "/" terms which almost surely (across &’,X,€) converge in
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probability across permutations d to zero, and hence when so multiplied converge in probability

across permutations d to zero. This leaves only the "d" term and so, using (C2) earlier

'fal fo p(d)las (87 ,X,¢) ' 'Y p(d)]as(8”,X,¢)
(C24)y B EEX {s]}v{s}x S 0. X{:]}X——XNX = 0,

p(d)]as(8”,X,¢)

and hence NV([A}{Q)—N\A’([A}N) - 0

KK >
which establishes (Vb) for the pairs bootstrap.
D. Proof of Lemma in Appendix B

(L1), (L2), (L3): We prove these for the wild bootstrap, placing the more involved proofs
for the pairs in the on-line appendix. From the assumptions E[5"]=0 & E[(6"")*]=1 (Theorem
V) and the Strong Law of Large Numbers we know that m(J") aS(—a:) 0 and m((5")*) aS(—ﬁ:)l.
Markov's Inequality, E[()")*"*"]< 4 (Theorem V) and & >1/(1+6,) (Lemma) imply there

exists a v in (1/(1+6,),0) such that
& B0 4

< <0,
£ N0 Z N0

N=1

(D1) ) Prob(s; = N")<
N=1

as(8")
and thus by the Borel-Cantelli Corollary given above max,_, &;"* /N’ — 0 and so
m(é‘w4) N 5.w4 §W2 5 as(8")
1 < w
(D2) V7 Zl A S max— —m(5%) — 0.

as(8")
This establishes (L1w). As 8""08" /N — 1, for all N sufficiently large 8"08"/ N is almost

surely greater than some x such that 1 > x > 0, as stated in (L2). Regarding (L3), we have

e

N

206"

i=1

N 7/2 - N 7/2
(Z [ - m(é‘iw)]zj (Z (6" - m(é‘iw)]zj

i=1 i=1

1Sy
i=1

(D3)

NN

N Ufg){éflj (max[é —-m(0;") )_1 ﬁ: [0 —=m(5") | max Lo =m ;,géiw)]z

i<N

r/2 - N W w12
v v [6;" —m(5;)]"
[2[5 m(8")] j 27y

IN
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From the above, we know the denominator of the last almost surely converges to 1, while as for

the numerator, using (D2)

wo_ wy12 w2
(D4) r‘naxM < max J +2

N N? isN NY?

m(s")

N‘/zH

V2 ,
5iw2 m(é‘iw*)Z as(8")
max IC + N — 0.
i<N

Consequently, (D3) almost surely converges to 0 for 6 >1/(1+86,), proving (L3).
as(X,g)
(L4): In the proof of Theorem I we saw that XX/N-M, — 0., and
as(X,g)

X'{e} &} X/N-V, — 0., , where the determinants of My and Vy are > > 0 for all N
sufficiently large and the absolute values of their elements are uniformly bounded by 4" . By
the Continuous Mapping Theorem Corollary given above (X'X/N)"' =M} asf:) 0, and

(X'} X/ N) ' =V, aS(—Xf) 0, , where for all N sufficiently large the determinants of

M, and V' are greater than (K4""*")™ >0 and the absolute values of their elements bounded by
(KA" ™) 3 1t follows that almost surely for all N sufficiently large X'X/ N, X'{&} {£1X/N

and their inverses have the same properties.

(LS), (L6) & L(7): Following the same logic used in (D3), we note that:

T
9(%1] Moo 0(%—1) N 2
T AT A —
N zxikgi N Z Xix€i max x, &’ /N’
i=1 P <N
(Dsa) N /2 S N /2 - N
2 A2
2 A2 2 22 ZxA g IN
inkgi inkgi ‘ ik<i
i1 i=1 =l
2
2 2 2
N +24.2 maxx., ny .2 N 4_ 4 max x. maxx. y ,.2
D5b Z'xij‘xik < i=N * & Xy & z Xy Xik <| =N i isn Y X
( ) 20 = 10 430 = 10 10 .
o NV N o NV P N N o NV

So, to prove (L5) - (L7) it is sufficient to show that the right hand sides of the inequalities above
converge to zero. In Appendix A we already showed that almost surely Zj\;xi /' N is bounded
and max;<y x;, /N converges to 0, which establishes this for (D5b).

Turning to (D5a), as shown in Appendix A zzlxii &’/ N almost surely converges to the
diagonal element of Vy in Theorem (Ic), whose smallest eigenvalue is greater than
n/(KA4"" Y for all N sufficiently large. From the Schur-Horn Theorem, we know that the

smallest diagonal element of Vy is greater than or equal to its smallest eigenvalue, and hence the
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term z . x;&} /N in the denominator of (D5a) is almost surely greater than 7 /(KA""7) "> 0

for all N sufficiently large. Regarding the max term in the numerator, we have

K ~
(D6) x &7 /N =x. (& + Z(ﬂj —Bu)x;) N’

xzkg i| J‘_ﬂ/N|/ i€ +ii|lg IB/N“ﬂz ﬂlN|/ xl { zk
Nl -0 :1‘ ‘/2(6—1) ‘ Nl -0 Nz 26 = 121‘ 4(0-1) ‘N/z(a 1 ‘ Nz 26 Nz 20 2 20"

as(X.,g)

, as(X,g)
So, as it was shown in Appendix A that (8, —f,)/ N*“" — 0 & max,_,x2/N"" — 0, to

prove that max,_, x;&’/ N’ converges almost surely to zero it is sufficient to show that

max,., X, & / N converges almost surely to zero. However, E(| &’ XXy 7)< 4 in Theorem (Ic),
by the same argument used in (A3) above, ensures that this is the case for 0 < 8 <y/(1+y). In
sum, White's assumptions ensure that (D5a) - (D5b) converge to 0 for all & in (0,y/(1+ y)),
proving (L5) - (L7). As 61> 1/y in Theorem V, the condition & >1/(1+ 6,) for the wild bootstrap

in the Lemma and the proof of (L3) above can also be met without contradiction.
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