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A. Multivariate Extension of Theorem I
Following the presentation in the paper, let 8’ = (d|, ... , dy) denote a sequence of real

numbers, Z' =(z,,...,z, ) a sequence of K x 1 real vectors, and O =1, —1,1), /N the centering

NxN

matrix. We wish to show that across the row permutations d of &

7/0Z d'0d j/ (Z'0d)

N N JN

is asymptotically distributed multivariate iid standard normal if for all N sufficiently large 6'Od’

(Al) V(Z,5) = (

is non-zero and the correlation matrix diag(Z'OZ) "*Z'OZ diag(Z'OZ)™* , where diag(Z'OZ)is
the diagonal matrix with entries equal to the diagonal of Z'OZ , is non-singular with determinant

> / (a positive constant), while

T N N

N2 Z[Zik —m(z, )]TZ[di —m(d,)]
(A2) lim =L = =0

Now [ N 727 N 7/2
(Z[zik —m(zy )]2J (Z[di _m(di)]zj

i=1

for each element z; in the vector sequence z;,, Hoeffding (1951) provides a proof for a broader,
but univariate, permutation problem. The generalization to the multivariate case requires
additional notation, but otherwise I keep the presentation as close as possible to Hoeffding's so
that the proof can be checked against his original contribution if desired.

Define



' =V =~
(A3)Z=oz(ZOZ] &a=0d(d2dj , so that v(z,a)zﬁ.

For the k™ element of v we know that

(Ad) v, = Z*fnmmZ% zd: & 32 =33 = N forallk,
i=1 i

i=1

N ~ ~ ~ o~
and »'Z,Z, =0 forallk, #k,, as Z'1, =0,, d'1, =0, ZZ=N*1
i=1

We shall show that all of the moments of the vector v converge to those of the mean zero
multivariate normal with identity covariance matrix.

We begin by showing how the moments of the permuted variables are calculated. As d is
the row permutation of 8, d = 0d(d'Od/N)™ is simply the row permutation of
5= 058(8'08/N) ™" and the sample moments of d are the same as those of & . From the
symmetry of the permutations, each element of d has the same distribution, with expectations

across permutations d given by

(A9) Ey@)=Y 5L =0 & E,@)=3

J J=1

J :1,

= |8

while if i1 # i, we have
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JisJa Q=1 )=l J1

b

where we use the notation jj, j»,... to denote summation across multiple indices, excluding ties

between the indices. Using these, we compute the 1% and 2" moments of the components of v:
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" (if £ =1) or 0 (otherwise).

These examples illustrate, in a manner that hopefully makes the later exposition intelligible, how
the calculation of expectations produces sums of summations, with those that are across unequal
indices in turn expressible as further sums of summations. In the more immediate sense, (A7)
shows that the first moment of v is Og, while its second moments asymptotically equal the
identity matrix, as desired. The next few pages focus on the higher moments.

Let E; denote one of the 7" moments of the joint distribution of v across the row

permutations d of &

T N N
(A8) E; = E, {H"wi:Ed {NT/ZZ Z i Ziky i Zikipy b
p=1

i=1 i =l
where the k(p) indices may reference the same columns of Z,ie. k(p) = k(q) for some p # ¢, so
that the moment is across combinations of powers of the vx. As can be seen from the second line
of (A7) above, E;needs to be separated into components based upon whether the 7 indices tie or

not, which leads to elements of the form



r,{e},..,{e V)= - CASUI ALt , where » e.=7,¢e > i
(A9) [( {1} {m}) Ed N o ZdEN{e} dzm lj:‘ : h Z i i lv

i yeesdy =1 i=1
and Z ..... _denotes the summation across m indices, excluding ties between the indices, the sets
{e1}, ... ,{en} constitute a partition of the 7 elements v, of v used in Ej, with the notation e;
without {} denoting the number of elements in {e;}, and the d“and 7' denoting the product of
the elements within each set {e;}. d is raised to a cardinal number because there is only one
column in d, while we use the set notation {e;} on Z to denote the product of potentially distinct
columns of Z. The {e;} groupings tie elements together through their  and j indices. Thus, for

example, we might have
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which in turn can be expressed as the sum and difference of terms of the form

—m—z a S ~e e 1€
(A13) N 2J(z,p.q.{e} i, }) =N 22 DI Z AN LA
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with 1< p<m,1<g<m,1<c(g)<m, 1<d(h)<m, (g,h=1,..,m)
and at least one c(g) and d(/) equal to every integer in 1...p (1...q). The 2m indices c(g) and d(h)

connect the 2m different elements to the distinct p <m and g < m counters in the summations.



The third line of (A7) earlier provides an example of how expectations add summations across j
to each I(z,...), while the fourth and fifth lines show how the I(z,...) are re-expressed as the sum of
J(z,...) forms.

Each J can be written as the product of subset J's
(A14) J(T’ p-9q, {el}a'“a {em}) = HJ(T(M), p(u)’ q(u)’ {eul }9"" {eum(u)})’
u=1

where each {e,,} equals one of the original {e;}, and the s sets {e,,},..., 1€, cover {ei},....{en}

in its entirety, with

m(u)
(A15) Zem—f(u) ZT(M)—T Zp(u) p; Zq(u) 9, & ZM(M) .

u=l u=l

We assume that each J is subdivided into the greatest possible number of factors. In the fourth

line of (A7) above, for example, we have:

N N N N
(Al6) J(r=2p=2.4=24n},u})=2> > > d,d 7,7, =
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d,z,.>>d 2, =Jc0)=1p0)=Lg() =Ly} NJ((2) =1 p2)=1g(2) =1,{v}),

=l j,=1

Mz

>3

i=lj

while all three terms in the fifth line are indivisible because the i, j counters for the d and 7
elements connect at least one element of v, to v,. If J(z(u), p(u),q(u),{€, } s 1€, }) 1
indivisible, it is because the 2m(u) c(u,g) and d(u,h) subscript indices link across the m(u)

groups {€,, },---s{€,,,,,} - To do so, there must be at least m(u) - 1 equalities in these indices, i.e. at
most m(u)+ 1 distinct values. At the same time, these indices cover every one of the numbers in

1...p(u) and 1...q(u), so we may conclude that
(A17) p(u)+q(u) <m(u)+1.
We note that if (c(u,g),d(u,g)) = (c(u,h),d(u,h)) for some g # h, we have more than the minimum

m(u) - 1 equalities necessary for indivisibility and (A17) holds with strict inequality. Summing

across all s groups that make up J(7, p,q,{e },....{e,}) .,



(A18) p+g<m+s,
with strict inequality if (c(u,g),d(u,g)) = (c(u,h),d(u,h)) ever holds.
Next, we take the absolute value, apply an inequality associated with that, and then apply
Holder's Inequality as well:

leul}
jd(u 1) l e |0

(A19) V(e(w). plu). g0). ey} ] 3 Z Z

0=l p(u)*l A=l Jgwn=

e, /7(u) e, /T(u)
™ 3l F) e Pluy+a()-2 gz o jres |
< ug _
H Z DI T II N > :
=l i,u=la=l =1 i=l j=1

geum(u) E’{eum(u)}
JdGum) Te(um(u))

where the reader is reminded that e,, denotes the number of vy in{e,.}, with Zeug =1(u),
allowing the application of Holder's Inequality in the manner shown. We now decompose the set
{eug} into its constituent parts. Let 1...r, » <7, index the unique v; variables across which the

expectation Ejis taken, so that

(A20) E; =E, {Hvk(m} {Hv,j(;ﬂ
p=1

where in the first product different k(p) may reference the same v, as earlier above, but in the
second product each k(a) references a unique vy, with f{a) denoting the power to which it is
raised. Let f(ug.))...f(ug,r) similarly denote the power the unique v; are raised to in the

grouping {e,.}. We then apply H6lder's Inequality once again
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Applying the bound to each element on the right hand side of (A14), we then have

(A22) N |J(z- P>q.{e},..n te,, })| NPra mHHM(T(u) vk(a))/‘"(u a)lew)

u=l a=1

Let us now assume (to be proven later) that (A2) implies that

W) N N _
(A23)) N 2 > > d[“z;" =o(l) forallkandz(u)=3,4,.. ,
i=1

J=1

then we see that if 7(x) is even and greater than 2, M (z(u),v4(,y) — 0. If o(u) is odd and greater

than 1, we can apply the Cauchy-Schwarz inequality

t
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(A24) M(2t+1,vk(a))2=[]v 2 ZIZ;‘VM“) j
=1 j=

Vi(a)

2NN
< (N 2 ZZ‘VW)
N 2t+2_1 N N
( zzvk(a)J( ZZV%ZJ =o(l) fort=1,2,...

i=l j=1

Finally, we have
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Combining these results with (A22), and the fact that p+g < s+m, we see that if 7(u) > 2 for all u
in 1...s and (a) 7(x) > 2 for any u or (b) 7(u) = 2 for all u and p+¢ < s+m, then N™" """ J(z...)
asymptotically equals 0.

We now return to the equality in (A14), expressing J(7...) as the product of s different

J(z(u)...). If o(u) = 1 we have m(u)= p(u) = q(u) =1, and J(z(u)...) is given by

N N _ N N
(A26) ZZ%%D = Zz‘lkmzd/l =0,

=1 =l =1 =l
from which it follows that N~ ""'J(z...)= 0 for all N. Hence, the only case where
N™""*2](z...) may not be identically or asymptotically zero is where z(x) = 2 for all . This
means that each J(z(u), p(u),q(u),{e, } s {€,,., ) Involves two elements, Vi and vy ,), divided
into m(u) = 1 or 2 groups. If m(u) =2, then p(u) + q(u) <3. If p(u) + q(u) =3, then J(r(u)...) is

given by

(A27) ZZZ@U, i Zik(Zik(2) OF ZZZ@’M/ Zik(Zik(2)>

=1y =1 =1 =1ji=1j,=1
both of which are zero. If p(u) + g(u) = 2 for any u, then p + g + 5 - m <0, and by the results of
the previous paragraph N™"*'?J(z...) is asymptotically zero.

From the above, we see that the only case where N~ "'%J(z...) may not be identically or
asymptotically zero is when for each subcomponent J(z(u)...) we have ©(u) = 2 and m(u) = p(u) =
q(u) =1 (as p(u) < m(u), q(u) < m(u)), 1.e. there is only one grouping of two v;s (possibly the

same), summed across one index for i and one for j, i.e.
N N _
(A28) J(z(u)=2,p(u)=1q(u)=1 {vk(l)’vk(Z)}) sz d, ik (1) z]k(2)’

which equals N” if k(1) = k(2) and 0 otherwise. Since J(z...)is the product of J(z(u)...), we then

know that the only form of N™"""'?J(z...) that is not identically or asymptotically zero is:



(A29) N J(z,p.q, Wy Veay S oo Wiy » Ve ) Withm=p=q=17/2

N ~
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i=1 j=1
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As described earlier, I(z, {e,},...,{e, }) is made up of the sum and difference of N™"7'?J(z...)
terms, the only one of which is not identically or asymptotically zero is given in (A29). Hence,

the only /(z,...) that is not identically or asymptotically zero is that where 7 is even and

(A30) I(r,{e},s e, }) ~ NS Z Zd;; il d oz
ok Jise
= N’%J(r,r/z,r/z, {e},n{e.,)=N"N"=1.

E, is made up of the sum of /(z,...) which tie the 7 v, elements (possibly repeating) into m
groups through the indices i and j. To not be identically or asymptotically zero, the /(z,...) must
involve powers of 2 of each v, so the only asymptotically non-zero E; is that where the powers to
which the 7 unique vy are raised, f(1), ..., f{r) , as well as 7= ) fla), are all even. The number of

ways in which f{a) objects can be tied together in pairs is (f{a) -1)!! (where !! denotes the double

factorial). Consequently, we have shown that for all 7> 2
(A3l) E] =E, {H v{(;‘?} — {H( f(a) —1)!!} (if all f(a)even), =0 (otherwise),
a=1 a=1

which are the higher moments of a vector of independent mean zero standard normals.
All that remains is to show that (A2) implies (A23). Define

(A32) Zik Z _m(Zik) & C? _ di _m(dz)

v 12 i " 2
(Z —m(z;)] j (Z[di_m(di)]zj

i=1

so that (A2) may be re-expressed as

(A33) th2 Z J;:o Vk &Vr=3,4,...

i=1 Jj=1

If 7 is even, we can equivalently say that
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(A2) lim N2 > Iz .

i=1 Jj=1

However, for any odd 7 = 27+1, we note that by Holder's inequality

1
N 2+2 | N N v 21| N N
2+l ~27+2 27+2 -2 2
E ‘diﬂ <|N 2 z ‘Zik” 2 ‘di” N2 E ‘Zik”‘g ‘dlﬁ‘
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so (A2)"in fact applies for all =3, 4, ... .' We also note that

2n+1

AN 2 S F 2
=1

V2
s

7'0Z

i — L
d Odj =N"d & Z = OZ(TJ = N‘/ZZW, where W = diag(Z’OZ)%(Z'OZ)‘VZ.

(A35) d = Od( -

The elements of W are asymptotically bounded as for all N sufficiently large the determinant of

diag(Z'OZ) " Z'OZ diag(Z'OZ) ™" is greater than some positive constant 4, and so

(A36) i i w; = trace(W'W) = trace(diag(Z'0Z) " Z'OZ ™" diag(Z'0Z)") < K" / A < o0,
io1 o1

To see the last, note that by the properties of the Rayleigh quotient for any positive definite
matrix A, XXAmin < X'AX < XXAmax, Where Anin and A, are the smallest and largest eigenvalues of
A. Consequently, x'Axx 'Alx < (x’x)zllmax//lmin, as the eigenvalues of A" are the inverse of those
of A. Allowing x to equal a vector of zeros with a 1 in the i™ row, we see that the i” diagonal
element of A is less than or equal to Apax/Amin divided by the i diagonal element of A. For the
K x K matrix diag(Z'OZ) " Z'OZ diag(Z'OZ)™* with determinant greater than 4, all diagonal
elements are 1, the largest eigenvalue is less than K (as the trace equals the sum of the
eigenvalues), and the smallest eigenvalue must be greater than 4/KX™" (as the determinant equals
the product of the eigenvalues).

With these results in mind, we complete the proof using properties of the absolute value

and Hoélder's inequality to show that

'When 7= 3 and # = 1, the second square root on the right-hand side of (A34) equals 1 while the first goes
to 0; in all other cases both square roots on the right-hand side go to zero.

10
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where we use the notation Y, to denote the summation across all sets of K non-

S+ +f(K)=1

negative integers that sum to 7.
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B. Proof of (L1p), (L2), (L3) and (9) for the Pairs Bootstrap

As we are only examining the pairs bootstrap, in this appendix we simplify notation and
drop the superscript p on 8. (L1p), (L2) and (L3) appear in the Lemma in the paper's appendix
and (9) in the text.

(L1p) and (9): We begin by deriving obvious results to familiarize the reader with the
technique used in later, more challenging, steps. Define the random variable ¢, as a (0,1)
indicator of whether observation i is chosen in bootstrap draw ¢. Obviously, ¢, and ¢;; are
interdependent, as only one of N observations is selected on any given draw, with, for y and {
each equal to any positive integer, E(c,/) = N Uand E(cﬁyc[f) =01fi #J, but ¢; and ¢ for s # ¢ are

independent and identically distributed for all i and j with E(c,,-ycs_,-g) = N?2. Consequently:

N

1 L& 1 Mol
(Bl m(8,)=— Za‘ Y22l =l EmE) = ;;E@,J—N”ZT

B0 233 S, |- S5 e s 3 S S e,

N N N N N 2 3
ORI ER L )
& E(m(5,)*)—E(m(5,))> =0 [as expected],
where we use subscripted s,7 to denote the summation across values of the two indices, excluding
ties between them. So, m(d;) = 1 is a constant with zero variance (proving the first part of L1p in
the Lemma).

Turning to m(5;)

12
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3

n_n

As shown, the expectation denoted by "a" is calculated by considering all ways in which the four
indices might, based upon the equality of their values, be tied together in one, two, three or four
groups, while the expectation of "b" is similarly calculated, but with the proviso that we can
ignore cases where any ¢ index equals an s index, as the expectation then is 0 (since i #j in "b").

Having established the technique with these simple examples, we can consider the more

general expectation for any integer power 7 > 2:

(B4) E(m(5;)) =— ZZ ZE(C},, €)= D
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; N =cy(7),
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where we use the notation Zaﬁ__mfz, to denote the summation across all ways in which 7 objects
can be divided into j groups and C? to denote the number of ways this can be achieved (as all
such objects have the same expectation), with C/ = C? =1. Similarly, we have
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where, keeping in mind that in "ey" the expectation of any object with a tie between an s and ¢

index is zero,
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(B6) dy(7) = Z cr,
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We note that
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Using the above, we see that m(J;") converges in mean square and hence in probability to

the value given in (B4) as its variance is seen to be O(N'")
2ZTC2T
dy(r)  (N-1) 2 _dy(@) 73 '
+ ey(t)—cy (1) < <
N N v(D) =y (7) N N

(B8) E[m(67)*]~ E[m(67)F =
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We also note that for all 7> 2 (B4) converges to a finite constant
~NUN= o N
(B9) 2 —— =€ > 2.C.
j=1 j=1

For the case of t=2, E(m(57))=2—N"— 2 while the variance is O(Nl), S0
m(3;) converges in mean square and hence in probability to 2, as stated in the second part of
P
(L1p). This also proves (9) in the text as well, asm(5;)—m(5,)> —1. For the almost sure result

in the last part of (L1p), we note that from (B4) and (B9) above for all 7> 2 and any > 0

(B10) N"E(m(57)) = N—”ZT:WC; 0.

J=1
Since the variance of m(o,") is O(N 1, the variance of N™" m(5;)is O(N "1y and for any ¢ and
sufficiently large N such that e > N™"E(m(5/))
(B11) Prob{N "m(57) > &} = Prob{N "m(57) = N"E(m(5)) > & - N " E(m(57))}

>e— N"?E(m(a‘;))} < O(N"™")
[~ N E(m(67)

< Prob ﬂN_”m(é}r) -~ NT"E(m(5,))

=oW"™),
f

where the last inequality follows from Chebyshev's Inequality. Consequently,
(B12) > Prob{N "m(57) > &} < o0
N=1

and by the Borel-Cantelli Lemma it follows that almost surely N 7m(5;) is greater than € only a
finite number of times. Hence, almost surely for every ¢ there exists an N’ such that
N7m(6])<eforall N> N/ ie. N”’m(é’f)zo . Fort=2,as > 0 in the Lemma in the paper's
appendix is > 0, this proves the last part of (L1p). We use the result for z > 2 further below.

(L2): We have already shown, in the proof above of (9), that m(5i2) - m(5i)2 i>1 , but we
want to prove something stronger, i.e. that asymptotically it almost surely lies above some x > 0.
Let {0;= 1} denote the set of observations i that are sampled once and only once in the N iid

draws from the sample of N observations and {J; # 1} the set of (remaining) observations that are

sampled with some other frequency. As m(d;) = 1, we have (0, - m(5;))* =0 for i e {6, =1}, while
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if i {5, #1}, then (6, - m(d))> = 1 if 6,=0 & (J; - m(5;))* > 1 otherwise. With k denoting the

fraction of the N observations that are in {J; =1} , we have

NS —m(5)] -1 S 11
(1313)-2:%: Z qu z %Z(I—k).

ic{s,=1} N iels, %1}
Let Pyx(X) denote the probability that in a single bootstrap sample of N observations X belong to
the set {0; = 1} and Sp(7) denote the sum of these probabilities from 7'to N. From the Borel-

Cantelli Lemma, if for some £ < 1
(B14) > S (kN ) <o,
N=1

where [ kN | denotes the integer ceiling of kN, then almost surely 221[5,« —-m(8) /N is bounded
from below by 1- £, proving (L2).

The distribution of J; is the same as that of the distribution of N balls across N cells, i.e.
the classical "occupancy problem.” As shown in Geiringer (1938)*

& DT NINN -2)Y
B By ) = D N =20 - Z) N

So
Y (D) NINI(N-2)"7* & (1) 2!
Z:TZ!(N_Z)!(N_Z)!NN X:TX!(Z_X)!

(B16) S,(T) = . P, (X) =

:i(—l)zN!N!(N—Z)N’Z Z (-1)* 2! _E (-D)* 2!
S Z(N-2)(N-2)IN" | &S X1(Z-X)! S XI(Z-X)

:ZN:(—I)ZN!N!(N—Z)N’Z (0—(—1)“ Z-1 ]

= ZW(N-Z)(N-2Z)\N" T-1Z-T!
B i (=D NIN(N-2)"*
S (T -D(Z-T)(N-Z2)(N-Z)NZN"’
f(z,T,N)

where for subsequent use we name the terms in the last summation /. We note:

b

(B17) Sy(T) < ﬁlf(z,T,N)l <(N-T)Max,_, ,|f(Z,T,N)

*Geiringer, Hilda (1938). "On the Probability Theory of Arbitrarily Linked Events." The Annals of
Mathematical Statistics 9 (4): 260-271.
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where Max,_, , denotes the maximum across Z in integers 7 through N.
To find the maximum, we begin by noting that the proportional rate of change of f'is

given by:

(Blg)h(Z,T,N)z|f(Z+1’T’N)|:( Z j( N-Z j(N—Z—lj B _.
\f(Z,T,N)| Z+INZ+1-T\ N-Z

If we divide numerator and denominator of each term in parentheses by », set Z= 7N and

T =[kN '], and use the fact that [kN |/ N — kand (1I-N"")¥ = e, we have

T 1-7 1 (o 1-7 )\ 4
(BI9) A(2.T,N) = (HN‘I j(T+N_1 —|_kN-|/Nj(l_ (I—T)Nj ” (D(r—k](e )

which is monotonically declining in 7 and equals 1 when

(B20) 7 = LFk |
1+e

For T = |_kN —‘ , asymptotically the maximum of |{(Z,7,N)| is reached at Z = ’_TN —| , |_rN —‘—1 or

’_TN —| +1. Hence asymptotically
N(-k)N'N(N —N)"™™
(kN =1)!(zN —kN)!(N —tN)/(N — 2N ) ZNN Y

e(1-k)

————N
l—kN!N!(e(l—k) N] Ire
T l+e

i (kN—l)!G_k Nj!(e(l_k) Nj!(e(l_k) N]!NN ’

+e l+e 1+e

(B21) (N =T)Max,; | f(Z,T,N)| <

where, since we can divide everything by N, we simplify notation by replacing !_kN —‘ and !—rN —‘
with limiting values AN and z/V.

Applying Stirling's formula, the expression in (B21) is bounded from above by
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eN(1-k)

Ce 2NN2N+1|:eN(1 k)} I+e eﬁe

1 l+e 2(1+e)
12(kN-1)+1 12N(1=k)+l+e 12eN(1-k)+1+e

l+e
(B22) 1 N N(l* ) 1 N(-E) eN(l k)+1
~ WN— —TO0 A =k) | 1+e 28O N1 =k l+e
e N+l (kN _ 1) 2o e ( ) e l+e ( ) NV

l+e l+e

1 k N(1-k) 1 —kN+5 2 1 I+e 2(1+e)

— C2 |:_:| e*Nk*kN (1 __] €12N€ 12(kN-1)+1 12N (1=k)+1+e 12eN(1-k)+l+e ,

l+e kN ~

—e

where C| and C, are finite non-zero constants and the ¢"*" & " type-terms are the upper

and lower Stirling's formula proportional error bounds. For k= .9,

N(1-k)
(B23) [1 k} e VT = [—'1
l+e

—IN
e—N.9—.9N < e—.SN‘
l+e

Consequently, Zi:l Sy([.9N)) < 0 and so ZZI[@ —m(8,)]/ N is almost surely bounded from

below by 1 -.9 =1, proving (L2) for the pairs bootstrap.

(L3): We have:

VS e VIS o oemed)
(B24) " = = 1:1N 05 5 NCE
(Z[@.—m@f] (z —m(o,)] J
v et TS S et T mEhy )
— k=0 i=1 T/z k 0
c [51 _m(é‘z)] [5l _m(é‘z)]
s (;N J

From the results in (L1) and (L2) above, we know that the denominator of the last is almost

surely bounded away from zero by x > 0, while the numerator almost surely converges to zero.

Hence, the entire expression almost surely converges to 0, proving (L3) for the pairs bootstrap.
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C. Consistency of the Pairs Bootstrap with Sub-Sampling

This appendix proves consistency of the pairs bootstrap with sub-sampling M < N

observations, with and without replacement. As noted in the paper, we assume:

(Cla) for some y > 1/(1+ y) there exists a ¢ > 0 such that limj,s M/N"” > c.

(C1b) M/N — 0.
(Cla) is needed to ensure that sufficiently high moments of the bootstrap distribution exist, as the
proof of the permutation distribution uses the method of moments.

We modify the notation, so that Ais now an M x N matrix of Os with a single 1 in each
row. Otherwise, the notation is as before, with the bootstrap sample given by A(y, X) and the
associated estimated coefficients, residuals and covariance matrix:

(C2) B4 (8") = (X3 3X)'X'(8"}y = B, + (X' (8"}X) ' X'{£,} 8"
V(B) = (XX XX (B —BY) + £, 87} X (By —BY) + £, X(X'(8")X).
To simplify notation, below we drop the superscript p on & and subscript N on &. We wish to

show that across permutations d of é a version of Theorem V holds, namely

N N M

A~ P(DIp(8)as(X.e)

COMVEBN-NVEBY) = Oy,
d(@)|p(8)as(X.¢) P@lp@Bas(Xe) o . .
where - and - signify convergence in distribution and in probability across
the permutations d of ¢ in probability across the distribution of & and almost surely across the
p(®)
distribution of (X,g). Along with the result that '0d/M — 1, these results ensure that almost
surely conditional on each realization of the data (X,¢) the bootstrapped Wald statistics and

(multiplied by v M / N ) coefficient estimates have the same distribution as the unconditional (i.e.

across the data generating process) original sample Wald and coefficient estimates. In the case of
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sub-sampling without replacement, the p(d) here and everywhere later can be removed as the
results hold for all realizations of 9.

As shown in the appendix in the paper, White's (1980) assumptions are sufficient to
ensure that (L4) - (L7) in that appendix's Lemma hold for all € in (0, y/(1+ 7)). Withy" as in
(C1la), we apply (L4) - (L7) below assuming that 8 lies in (1- ", y/(1+ p)), so that 1 - 8-y < 0. In

this case, following assumption (Cla)

N N
MN° M/N”

(C4) =O(N"7")>0.

The following Lemma, proven at the end of this appendix, provides sub-sampling counterparts of
(L1p), (L2) and (L3) in the paper's appendix:
Lemma C5: Let }iﬁ; denote convergence in probability across the distribution of 8, 7 any

integer greater than 2, and 6 a constant in (1- y*, y/(1+ y)). Then:
p(d) 2 P(d)
(C5a) m[lﬁij=l; (C5b) m[ﬁafj —1; (C5¢) N%m N2 57 | —>0;
M M M

N _ 2
(C5d) for some constant k¥ > 0 for all N sufficiently large ZW > K;
i=1

e 6)(_]2[5 o),
(Cse) - —0.

(z[@—mw]

i=1

p(d)

(C5a), (C5b) and (C1b) together imply the requirement 8’08/ M — 1 noted above, as
806 L[57 —m(S)T S5 N ) M»®
C6 = : : 0, —0 |-———1.
(€6) M ; M Z‘M M M) = M N

Starting with the bootstrap coefficient estimates, we have:

XXWN/M) JIN/MHX'{EMd
N JN '

(C7) M (%, -, ) =C'a, where C =
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Regarding the jk’h element of C, given by le x; X (N/M)d;/ N  we can apply Theorem IV in

L

the paper with z; = x,x, and "d;" = (N/M)d;. As m(x,x,) is almost surely bounded and

as(X,e)

m( x; x2)/N'"? — 0 by (L4)and (L6) in the paper, we see that condition (IVb) is satisfied

2.2 2 2

m(x2x2)—m(x,x, ( ? PO@
(M ) 1 (N _Lgm(l@j 5,
N N M N

as(—x;ﬂo (L4 & L6) pﬁ?o(csc) —0E

and so

(C9)

KxK*

N N M’

| —
C =1 (C5a)

! ! p(d)[p(8)as(X,e)
X{d}X(N/M)_XXm(ld] et

By the Corollary to the Continuous Mapping Theorem and (L4) given in the paper's appendix, it

follows that (X'{d}X/M )™ converges in probability across permutations d to bounded
(X'X/N)™".

Noting that the k™ element of a equals zl]il x,&d i\/W / \/ﬁ , we apply the multivariate
extension of Theorem II in the text withz, =x,¢,, orZ={&}X and "d;" = di\/W . As was
shown in the paper's appendix, the mean of zj is zero and we have Z'OZ = X'{€} {¢}X and
Z/0d = X'{£}d , while it was also shown that diag(X'{&} {£}X)"(X'{&} {£}X) diag(X'{&} {£}X)™
is almost surely non-singular with determinant greater than some 4 > 0 for all N sufficiently
large. From (C5d) we know that d'Od = 8’04 is greater than zero for all N sufficiently large (i.e.

the ¢, are not all equal). Hence, following Theorems II and III in the paper, the distribution

across d of

XEHEaX ) (N M)dod) J(N/M)X (g
(C10) - ~ Tn

converges in probability across 6 and almost surely across (X,¢) to that of the iid multivariate

standard normal provided that for all integer 7 greater than 2
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VIS v IS ]
) 2 - 0,

N /2 N /2
(Zx;éf] (Z[@ —m(@)ﬂ

i=1

which given (L5) in the paper and (C5e) above is satisfied. Putting the preceding together, we

have:

C12) (x’{éjv{é}xj‘ ( N j( 'oaj G —p) =

N, h N o Y [Ny
(X'{é} {é}Xj%[X'Xj HX {d}X (X{ &) (2 }Xj (X @) (& }Xj v —d'od \/;X {eid d(d)‘p(i))m(x’g)n
N N N N N N N S

p()p(8)as(X,g) d(d)|p(8)as(X.g)
- Ik - ny

where all of the matrices and inverses involving X are by (L4) in the paper known to be almost
surely bounded and positive definite with determinant > # > 0 for all N sufficiently large. This
establishes (C3a).

Regarding the sub-sampling heteroskedasticity robust covariance estimates, similar to the

paper's appendix we have

X’{d}X(N/M)j_lB (X’{d}X(N/M)j_I

(013>MV(13§>=( I I

]ZX'{X(BN B+ 8 (67} (X(B, —p1)+EIX
. |

where B =

The jk" element of B is given by
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N . X, [8'00 .
N Mxijxikdi(gi_z 17 —n

M Y J[whsreﬁ ('Odj M (B, - m}

Cl4
( )Z1 v
xxxng xxxxd
N K 6’06 ik Nip©itti ’06 ik igti
=m xxé‘zd—j—Z 7 m
[””‘ M ; M M* ;; Tyl M
b c

For "a", we apply Theorem IV with z, = x,x, " and "d," = d,(N/M). As m(x,x

Xk x,£) is almost

i
as(X,¢)

surely bounded and m(xlj x:&N/N'" — 0 by (L4) & (C9) in the paper, condition (IVb) is met

m(x;x, &) —m(x,x, &} 2( 2 2 |p@asxe)
(C15) ey 1) = i ) NgmA]Z 5? —Ngm(%&j - 0,

Nl -0 2 71 i
\—ﬁ/——J
“570 W &9 R —0(C5a)
paper) — 0(C5c¢)
and so
N p(d)p(d)as(X,¢)
n"n_n,
(C16)"a (xyxlkg (N M) —m(x;x,é€; “Ym ;i —; - 0.

=1 (C5a)

For "b", we apply Theorem IV with z, = x, xlkx &/M”and"d" = d.(N/M). By (C13) and

ip©i
as(X,g)

(C14) in the paper, m(x, x,x g/N/z(“g)) —> O & m(x_x:x28>/N'"?)/N'? - 0,andso

i ik ip©i ljlklpl

condition (IVb) is met

x;xixi,glz XXy Xy, &,
e m N0 —m NA0) N2 N 2 | poyas(X.c)
(C17) Ngm(— a‘fj — N‘gm(— (2} — 0.

M N'? M? M
-0 (CH as(X.2) s —0(C5a)

i p(3)
— 0 (C13& Cl4in paper) = 0(C5¢)

and so

N
XXX, E,d, — Vi(1-0) Do) as (X
C18) b m| M | N m[x,,x,kx,ﬁ,} (N ,jp( p(®)as(X,0)

M M N A0-0) - 0.
S —

—. S—
=0 () (xe =1(C5a)

— 0 (C13 in paper)
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For "¢", we apply Theorem IV with z, = x,x, x,x, /M and "d" = d,(N/M). By (C16) and

ij ik
as(X,e) as(X,e)

(C22) in the paper m(x,x,x,, X, /IN"™) - 0 & m(xy 2 X Zx;/NHg)/Nl"e — 0, and so

condition (IVb) is met

x;xixzxz XXy X, X, ?
2-20 m N2 —m N ) 2 | p(@)as(X.c)
(C19) NM N%(N—WJ—N%(E&} N

N 2 9i ; - 0
20 asgﬁ)o (C16 & C22in paper) pS)O(CSC) —0(C5a)
and
¥ N
xlxkx X, 1-0
v gt N XXX, X, N p(d)las(8,X,¢)
"N, M ij ik
(C20)"c' - m ——L Im| —, - 0.
M M N M
—0 (C4)

as(X.e) =1(C5a)
— 0 (C16in paper)

In sum, in (C14) the 77, are multiplied by \/m which converges in probability
(across 8) to 1 and "b" and "c" terms which in probability across d and almost surely across (X,€)
across permutations d of & converge in probability to zero. As across the permutations d of 6 the
17, themselves converge to normal random variables with almost surely (across X,¢) bounded
variance, when so multiplied the product converges in probability across permutations d to zero.

This leaves only the "a" term which, using (C9), establishes (C3b):

X'{8} {&1 X P(Ip(as(X.e) N o . P@]p(B)as(X.e)
(C21) B—% - 0., & MV(B)-NV(@B,) - |

Proof of (C5) Lemma

We prove the Lemma used above. (C5a) holds automatically, as the mean of ¢; will
always equal M/N. For the case of sampling without replacement, J; is 1 for M observations and

0 for N-M. For this case, all elements of (C5) are easily proven:
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NSO _NM ooy m( a‘f]:ﬁﬂ:h
M N

(C22a) m(l@] =
M MSN MN

(C22¢) N“’m(N_Zé‘IQJ: -0 NZ%: Né7 N
M M* N MN
(C4)
iml M M N M N ~
(1 9)[7711 - r ( N j; 1 N 1 -
[0, —m(5,
(C22¢) Z o)) _\MN* ;;v'(r v)'M
(i[&—m(&ﬂfj (ﬁ:[é m(5,)] j
(o ) a4
MN M\ N V(- N 10y Eo)
=0(N 2 ) > 0.
(C4)

1-=

N

= ( M jr/Z
For sampling with replacement, we define the random variable ¢, as in Appendix B above

and following the notation and methods used there see that

N§ 2 ] QM N M 1
E —9, =F — =
QA B B A TR MM —1)
) S — L
WEEN RN T

So, m((N/M)d;) = 1 is a constant with zero variance (proving C5a)

Continuing with the notation and techniques of Appendix B, we calculate the expectation

of m((N/M)o;) for integer v > 2.
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(C24) E m(lé‘rj LSS S e )= S S By ) = ey ()
M i M= tl:l...trzl hivCri Mt:l...t . 1ivCri I N ,
!
with ¢, (7) = ZMCJ,

and the expectation of m((N /M) )’

ol syor | |- 1555

1 N M M M M 1 N M M M M
= ZZ ZZ ZE(CW € iCypely )+ el ZZ"'ZZ'“ZE(crli“'cr,icsl/‘"'cs,/)
i=l n=1 t,=ls;=1 s.=1 j=ly=1  t =ls;=1 s.=1
N M M M M N(N_l) M M M M
Wz ZZ Z CrivsCy iCy e cv,i)"'—Mz Z...zz...zE(ctli...c,rl.cslj...csrj),
t=l t,=ls;=1 s =l t.=ls;=1 s, =1
dy(7) ey (7)
with d, (7) = ZMCZT and e, (1) =3 34 /%MJ k) cicr.
j=1 k=1
We note that
M! MM
C26) e, (r)—cy(7) = - . c:C;
(C26) ey (r) ¢y (7)’ ;;N”"(M mpvdi ;;N,%(M_j)w_k)! o
Zi MIC:C; [l_ MM =1)..(M—-j+1) <0
jlklN“k(M j- k)!L M —-kYM —k+1).. (M —k—j+1)

From this we see that m((N /M )5, ) converges in mean square and hence in probability to the
finite value given in (C24) as its variance is O(M ™):

(C27) E[m(af) - E[m(&” )W = E[m(s7)2 - Elm(sn)}
NOV-D,

N M'/M ] _
O+ 0= 2 e =om ) o

where the limit follows from the fact that assumption (Cla), limjs M/N'~ > ¢ > 0, implies that M

goes to infinity as N —oo. For (C5b) we have

26



Thus, m((N/M)S’) converges in mean square and hence in probability to 1, as stated in (C5b).

For (C5c), we have:

2-6 1-0 -0
(C29) E| m N —57 | |= Ny -0,
M M M
Hr_/
50 (C4)
while the variance of m((N*?/M?)5?) is ON*?°/M*) — 0 (by C4). Consequently,

m((N*"°/M?*)5?) converges in mean square and hence in probability to 0, as stated in (C5c).

For (C5d), the lowest value is achieved when no observation is sampled more than once, so

& [6, = m(3) _M(I_MT N—M(M 2
M

(C30) >’ = —j :1—M—>1>K>o,
p= M M\ N N N

proving (C5d). Finally, with regards to (C5e) we have

—on| Z21 Nl—@ %—1 N ¢ é‘k S -k
N( )( ]2[5 —m(5)f ( m j Z lmj(wl)
(C31) =l =

N 7/2 N 2 \7/2
[é‘i_m(é‘i)]
(Ba-mer] [Foe)

A PR N Y MY
m st |
M) “Eke—k \MT)NN) o
—

7/2
- [6, = m(S)]°
2

i=1

as from (C30) we know the denominator is bounded away from zero, while m((N/M)5})
converges in probability to the finite number in (C24), and by (C1b) and (C4) M/N — 0 and

NY/M — 0.
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